sched: Call select_idle_sibling() when not affine_sd
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621
PZ
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
3e51f33f
PZ
128}
129
bf5c91ba
IM
130/*
131 * Debugging: various feature bits
132 */
f00b45c1 133
f00b45c1
PZ
134#define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
bf5c91ba 137const_debug unsigned int sysctl_sched_features =
391e43da 138#include "features.h"
f00b45c1
PZ
139 0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled) \
145 #name ,
146
1292531f 147static const char * const sched_feat_names[] = {
391e43da 148#include "features.h"
f00b45c1
PZ
149};
150
151#undef SCHED_FEAT
152
34f3a814 153static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 154{
f00b45c1
PZ
155 int i;
156
f8b6d1cc 157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 161 }
34f3a814 162 seq_puts(m, "\n");
f00b45c1 163
34f3a814 164 return 0;
f00b45c1
PZ
165}
166
f8b6d1cc
PZ
167#ifdef HAVE_JUMP_LABEL
168
c5905afb
IM
169#define jump_label_key__true STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
171
172#define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
c5905afb 175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
c5905afb
IM
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
185}
186
187static void sched_feat_enable(int i)
188{
c5905afb
IM
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
1a687c2e 197static int sched_feat_set(char *cmp)
f00b45c1 198{
f00b45c1 199 int i;
1a687c2e 200 int neg = 0;
f00b45c1 201
524429c3 202 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
203 neg = 1;
204 cmp += 3;
205 }
206
f8b6d1cc 207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 209 if (neg) {
f00b45c1 210 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
211 sched_feat_disable(i);
212 } else {
f00b45c1 213 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
214 sched_feat_enable(i);
215 }
f00b45c1
PZ
216 break;
217 }
218 }
219
1a687c2e
MG
220 return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226{
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
f8b6d1cc 241 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
242 return -EINVAL;
243
42994724 244 *ppos += cnt;
f00b45c1
PZ
245
246 return cnt;
247}
248
34f3a814
LZ
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251 return single_open(filp, sched_feat_show, NULL);
252}
253
828c0950 254static const struct file_operations sched_feat_fops = {
34f3a814
LZ
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
f00b45c1
PZ
260};
261
262static __init int sched_init_debug(void)
263{
f00b45c1
PZ
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268}
269late_initcall(sched_init_debug);
f8b6d1cc 270#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 271
b82d9fdd
PZ
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
e9e9250b
PZ
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
fa85ae24 286/*
9f0c1e56 287 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
288 * default: 1s
289 */
9f0c1e56 290unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 291
029632fb 292__read_mostly int scheduler_running;
6892b75e 293
9f0c1e56
PZ
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
fa85ae24 299
0970d299 300/*
0122ec5b 301 * __task_rq_lock - lock the rq @p resides on.
b29739f9 302 */
70b97a7f 303static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
304 __acquires(rq->lock)
305{
0970d299
PZ
306 struct rq *rq;
307
0122ec5b
PZ
308 lockdep_assert_held(&p->pi_lock);
309
3a5c359a 310 for (;;) {
0970d299 311 rq = task_rq(p);
05fa785c 312 raw_spin_lock(&rq->lock);
65cc8e48 313 if (likely(rq == task_rq(p)))
3a5c359a 314 return rq;
05fa785c 315 raw_spin_unlock(&rq->lock);
b29739f9 316 }
b29739f9
IM
317}
318
1da177e4 319/*
0122ec5b 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 321 */
70b97a7f 322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 323 __acquires(p->pi_lock)
1da177e4
LT
324 __acquires(rq->lock)
325{
70b97a7f 326 struct rq *rq;
1da177e4 327
3a5c359a 328 for (;;) {
0122ec5b 329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 330 rq = task_rq(p);
05fa785c 331 raw_spin_lock(&rq->lock);
65cc8e48 332 if (likely(rq == task_rq(p)))
3a5c359a 333 return rq;
0122ec5b
PZ
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 336 }
1da177e4
LT
337}
338
a9957449 339static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
340 __releases(rq->lock)
341{
05fa785c 342 raw_spin_unlock(&rq->lock);
b29739f9
IM
343}
344
0122ec5b
PZ
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 347 __releases(rq->lock)
0122ec5b 348 __releases(p->pi_lock)
1da177e4 349{
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
352}
353
1da177e4 354/*
cc2a73b5 355 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 356 */
a9957449 357static struct rq *this_rq_lock(void)
1da177e4
LT
358 __acquires(rq->lock)
359{
70b97a7f 360 struct rq *rq;
1da177e4
LT
361
362 local_irq_disable();
363 rq = this_rq();
05fa785c 364 raw_spin_lock(&rq->lock);
1da177e4
LT
365
366 return rq;
367}
368
8f4d37ec
PZ
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 372 */
8f4d37ec 373
8f4d37ec
PZ
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
8f4d37ec
PZ
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
05fa785c 390 raw_spin_lock(&rq->lock);
3e51f33f 391 update_rq_clock(rq);
8f4d37ec 392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 393 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
394
395 return HRTIMER_NORESTART;
396}
397
95e904c7 398#ifdef CONFIG_SMP
971ee28c
PZ
399
400static int __hrtick_restart(struct rq *rq)
401{
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
31656519
PZ
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
b328ca18 412{
31656519 413 struct rq *rq = arg;
b328ca18 414
05fa785c 415 raw_spin_lock(&rq->lock);
971ee28c 416 __hrtick_restart(rq);
31656519 417 rq->hrtick_csd_pending = 0;
05fa785c 418 raw_spin_unlock(&rq->lock);
b328ca18
PZ
419}
420
31656519
PZ
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
029632fb 426void hrtick_start(struct rq *rq, u64 delay)
b328ca18 427{
31656519
PZ
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 430
cc584b21 431 hrtimer_set_expires(timer, time);
31656519
PZ
432
433 if (rq == this_rq()) {
971ee28c 434 __hrtick_restart(rq);
31656519 435 } else if (!rq->hrtick_csd_pending) {
c46fff2a 436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
437 rq->hrtick_csd_pending = 1;
438 }
b328ca18
PZ
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
31656519 453 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458}
459
fa748203 460static __init void init_hrtick(void)
b328ca18
PZ
461{
462 hotcpu_notifier(hotplug_hrtick, 0);
463}
31656519
PZ
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
029632fb 470void hrtick_start(struct rq *rq, u64 delay)
31656519 471{
7f1e2ca9 472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 473 HRTIMER_MODE_REL_PINNED, 0);
31656519 474}
b328ca18 475
006c75f1 476static inline void init_hrtick(void)
8f4d37ec 477{
8f4d37ec 478}
31656519 479#endif /* CONFIG_SMP */
8f4d37ec 480
31656519 481static void init_rq_hrtick(struct rq *rq)
8f4d37ec 482{
31656519
PZ
483#ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
8f4d37ec 485
31656519
PZ
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489#endif
8f4d37ec 490
31656519
PZ
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
8f4d37ec 493}
006c75f1 494#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
8f4d37ec
PZ
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
b328ca18
PZ
503static inline void init_hrtick(void)
504{
505}
006c75f1 506#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 507
fd99f91a
PZ
508/*
509 * cmpxchg based fetch_or, macro so it works for different integer types
510 */
511#define fetch_or(ptr, val) \
512({ typeof(*(ptr)) __old, __val = *(ptr); \
513 for (;;) { \
514 __old = cmpxchg((ptr), __val, __val | (val)); \
515 if (__old == __val) \
516 break; \
517 __val = __old; \
518 } \
519 __old; \
520})
521
522#ifdef TIF_POLLING_NRFLAG
523/*
524 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
525 * this avoids any races wrt polling state changes and thereby avoids
526 * spurious IPIs.
527 */
528static bool set_nr_and_not_polling(struct task_struct *p)
529{
530 struct thread_info *ti = task_thread_info(p);
531 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
532}
533#else
534static bool set_nr_and_not_polling(struct task_struct *p)
535{
536 set_tsk_need_resched(p);
537 return true;
538}
539#endif
540
c24d20db
IM
541/*
542 * resched_task - mark a task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
029632fb 548void resched_task(struct task_struct *p)
c24d20db
IM
549{
550 int cpu;
551
b021fe3e 552 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 553
5ed0cec0 554 if (test_tsk_need_resched(p))
c24d20db
IM
555 return;
556
c24d20db 557 cpu = task_cpu(p);
fd99f91a 558
f27dde8d 559 if (cpu == smp_processor_id()) {
fd99f91a 560 set_tsk_need_resched(p);
f27dde8d 561 set_preempt_need_resched();
c24d20db 562 return;
f27dde8d 563 }
c24d20db 564
fd99f91a 565 if (set_nr_and_not_polling(p))
c24d20db
IM
566 smp_send_reschedule(cpu);
567}
568
029632fb 569void resched_cpu(int cpu)
c24d20db
IM
570{
571 struct rq *rq = cpu_rq(cpu);
572 unsigned long flags;
573
05fa785c 574 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
575 return;
576 resched_task(cpu_curr(cpu));
05fa785c 577 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 578}
06d8308c 579
b021fe3e 580#ifdef CONFIG_SMP
3451d024 581#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
582/*
583 * In the semi idle case, use the nearest busy cpu for migrating timers
584 * from an idle cpu. This is good for power-savings.
585 *
586 * We don't do similar optimization for completely idle system, as
587 * selecting an idle cpu will add more delays to the timers than intended
588 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
589 */
6201b4d6 590int get_nohz_timer_target(int pinned)
83cd4fe2
VP
591{
592 int cpu = smp_processor_id();
593 int i;
594 struct sched_domain *sd;
595
6201b4d6
VK
596 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
597 return cpu;
598
057f3fad 599 rcu_read_lock();
83cd4fe2 600 for_each_domain(cpu, sd) {
057f3fad
PZ
601 for_each_cpu(i, sched_domain_span(sd)) {
602 if (!idle_cpu(i)) {
603 cpu = i;
604 goto unlock;
605 }
606 }
83cd4fe2 607 }
057f3fad
PZ
608unlock:
609 rcu_read_unlock();
83cd4fe2
VP
610 return cpu;
611}
06d8308c
TG
612/*
613 * When add_timer_on() enqueues a timer into the timer wheel of an
614 * idle CPU then this timer might expire before the next timer event
615 * which is scheduled to wake up that CPU. In case of a completely
616 * idle system the next event might even be infinite time into the
617 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
618 * leaves the inner idle loop so the newly added timer is taken into
619 * account when the CPU goes back to idle and evaluates the timer
620 * wheel for the next timer event.
621 */
1c20091e 622static void wake_up_idle_cpu(int cpu)
06d8308c
TG
623{
624 struct rq *rq = cpu_rq(cpu);
625
626 if (cpu == smp_processor_id())
627 return;
628
629 /*
630 * This is safe, as this function is called with the timer
631 * wheel base lock of (cpu) held. When the CPU is on the way
632 * to idle and has not yet set rq->curr to idle then it will
633 * be serialized on the timer wheel base lock and take the new
634 * timer into account automatically.
635 */
636 if (rq->curr != rq->idle)
637 return;
45bf76df 638
45bf76df 639 /*
06d8308c
TG
640 * We can set TIF_RESCHED on the idle task of the other CPU
641 * lockless. The worst case is that the other CPU runs the
642 * idle task through an additional NOOP schedule()
45bf76df 643 */
5ed0cec0 644 set_tsk_need_resched(rq->idle);
45bf76df 645
06d8308c
TG
646 /* NEED_RESCHED must be visible before we test polling */
647 smp_mb();
648 if (!tsk_is_polling(rq->idle))
649 smp_send_reschedule(cpu);
45bf76df
IM
650}
651
c5bfece2 652static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 653{
c5bfece2 654 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
655 if (cpu != smp_processor_id() ||
656 tick_nohz_tick_stopped())
657 smp_send_reschedule(cpu);
658 return true;
659 }
660
661 return false;
662}
663
664void wake_up_nohz_cpu(int cpu)
665{
c5bfece2 666 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
667 wake_up_idle_cpu(cpu);
668}
669
ca38062e 670static inline bool got_nohz_idle_kick(void)
45bf76df 671{
1c792db7 672 int cpu = smp_processor_id();
873b4c65
VG
673
674 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
675 return false;
676
677 if (idle_cpu(cpu) && !need_resched())
678 return true;
679
680 /*
681 * We can't run Idle Load Balance on this CPU for this time so we
682 * cancel it and clear NOHZ_BALANCE_KICK
683 */
684 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
685 return false;
45bf76df
IM
686}
687
3451d024 688#else /* CONFIG_NO_HZ_COMMON */
45bf76df 689
ca38062e 690static inline bool got_nohz_idle_kick(void)
2069dd75 691{
ca38062e 692 return false;
2069dd75
PZ
693}
694
3451d024 695#endif /* CONFIG_NO_HZ_COMMON */
d842de87 696
ce831b38
FW
697#ifdef CONFIG_NO_HZ_FULL
698bool sched_can_stop_tick(void)
699{
700 struct rq *rq;
701
702 rq = this_rq();
703
704 /* Make sure rq->nr_running update is visible after the IPI */
705 smp_rmb();
706
707 /* More than one running task need preemption */
708 if (rq->nr_running > 1)
709 return false;
710
711 return true;
712}
713#endif /* CONFIG_NO_HZ_FULL */
d842de87 714
029632fb 715void sched_avg_update(struct rq *rq)
18d95a28 716{
e9e9250b
PZ
717 s64 period = sched_avg_period();
718
78becc27 719 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
720 /*
721 * Inline assembly required to prevent the compiler
722 * optimising this loop into a divmod call.
723 * See __iter_div_u64_rem() for another example of this.
724 */
725 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
726 rq->age_stamp += period;
727 rq->rt_avg /= 2;
728 }
18d95a28
PZ
729}
730
6d6bc0ad 731#endif /* CONFIG_SMP */
18d95a28 732
a790de99
PT
733#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
734 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 735/*
8277434e
PT
736 * Iterate task_group tree rooted at *from, calling @down when first entering a
737 * node and @up when leaving it for the final time.
738 *
739 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 740 */
029632fb 741int walk_tg_tree_from(struct task_group *from,
8277434e 742 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
743{
744 struct task_group *parent, *child;
eb755805 745 int ret;
c09595f6 746
8277434e
PT
747 parent = from;
748
c09595f6 749down:
eb755805
PZ
750 ret = (*down)(parent, data);
751 if (ret)
8277434e 752 goto out;
c09595f6
PZ
753 list_for_each_entry_rcu(child, &parent->children, siblings) {
754 parent = child;
755 goto down;
756
757up:
758 continue;
759 }
eb755805 760 ret = (*up)(parent, data);
8277434e
PT
761 if (ret || parent == from)
762 goto out;
c09595f6
PZ
763
764 child = parent;
765 parent = parent->parent;
766 if (parent)
767 goto up;
8277434e 768out:
eb755805 769 return ret;
c09595f6
PZ
770}
771
029632fb 772int tg_nop(struct task_group *tg, void *data)
eb755805 773{
e2b245f8 774 return 0;
eb755805 775}
18d95a28
PZ
776#endif
777
45bf76df
IM
778static void set_load_weight(struct task_struct *p)
779{
f05998d4
NR
780 int prio = p->static_prio - MAX_RT_PRIO;
781 struct load_weight *load = &p->se.load;
782
dd41f596
IM
783 /*
784 * SCHED_IDLE tasks get minimal weight:
785 */
786 if (p->policy == SCHED_IDLE) {
c8b28116 787 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 788 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
789 return;
790 }
71f8bd46 791
c8b28116 792 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 793 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
794}
795
371fd7e7 796static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 797{
a64692a3 798 update_rq_clock(rq);
43148951 799 sched_info_queued(rq, p);
371fd7e7 800 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
801}
802
371fd7e7 803static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 804{
a64692a3 805 update_rq_clock(rq);
43148951 806 sched_info_dequeued(rq, p);
371fd7e7 807 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
808}
809
029632fb 810void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
811{
812 if (task_contributes_to_load(p))
813 rq->nr_uninterruptible--;
814
371fd7e7 815 enqueue_task(rq, p, flags);
1e3c88bd
PZ
816}
817
029632fb 818void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
819{
820 if (task_contributes_to_load(p))
821 rq->nr_uninterruptible++;
822
371fd7e7 823 dequeue_task(rq, p, flags);
1e3c88bd
PZ
824}
825
fe44d621 826static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 827{
095c0aa8
GC
828/*
829 * In theory, the compile should just see 0 here, and optimize out the call
830 * to sched_rt_avg_update. But I don't trust it...
831 */
832#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
833 s64 steal = 0, irq_delta = 0;
834#endif
835#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 836 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
837
838 /*
839 * Since irq_time is only updated on {soft,}irq_exit, we might run into
840 * this case when a previous update_rq_clock() happened inside a
841 * {soft,}irq region.
842 *
843 * When this happens, we stop ->clock_task and only update the
844 * prev_irq_time stamp to account for the part that fit, so that a next
845 * update will consume the rest. This ensures ->clock_task is
846 * monotonic.
847 *
848 * It does however cause some slight miss-attribution of {soft,}irq
849 * time, a more accurate solution would be to update the irq_time using
850 * the current rq->clock timestamp, except that would require using
851 * atomic ops.
852 */
853 if (irq_delta > delta)
854 irq_delta = delta;
855
856 rq->prev_irq_time += irq_delta;
857 delta -= irq_delta;
095c0aa8
GC
858#endif
859#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 860 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
861 steal = paravirt_steal_clock(cpu_of(rq));
862 steal -= rq->prev_steal_time_rq;
863
864 if (unlikely(steal > delta))
865 steal = delta;
866
095c0aa8 867 rq->prev_steal_time_rq += steal;
095c0aa8
GC
868 delta -= steal;
869 }
870#endif
871
fe44d621
PZ
872 rq->clock_task += delta;
873
095c0aa8
GC
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
876 sched_rt_avg_update(rq, irq_delta + steal);
877#endif
aa483808
VP
878}
879
34f971f6
PZ
880void sched_set_stop_task(int cpu, struct task_struct *stop)
881{
882 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
883 struct task_struct *old_stop = cpu_rq(cpu)->stop;
884
885 if (stop) {
886 /*
887 * Make it appear like a SCHED_FIFO task, its something
888 * userspace knows about and won't get confused about.
889 *
890 * Also, it will make PI more or less work without too
891 * much confusion -- but then, stop work should not
892 * rely on PI working anyway.
893 */
894 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
895
896 stop->sched_class = &stop_sched_class;
897 }
898
899 cpu_rq(cpu)->stop = stop;
900
901 if (old_stop) {
902 /*
903 * Reset it back to a normal scheduling class so that
904 * it can die in pieces.
905 */
906 old_stop->sched_class = &rt_sched_class;
907 }
908}
909
14531189 910/*
dd41f596 911 * __normal_prio - return the priority that is based on the static prio
14531189 912 */
14531189
IM
913static inline int __normal_prio(struct task_struct *p)
914{
dd41f596 915 return p->static_prio;
14531189
IM
916}
917
b29739f9
IM
918/*
919 * Calculate the expected normal priority: i.e. priority
920 * without taking RT-inheritance into account. Might be
921 * boosted by interactivity modifiers. Changes upon fork,
922 * setprio syscalls, and whenever the interactivity
923 * estimator recalculates.
924 */
36c8b586 925static inline int normal_prio(struct task_struct *p)
b29739f9
IM
926{
927 int prio;
928
aab03e05
DF
929 if (task_has_dl_policy(p))
930 prio = MAX_DL_PRIO-1;
931 else if (task_has_rt_policy(p))
b29739f9
IM
932 prio = MAX_RT_PRIO-1 - p->rt_priority;
933 else
934 prio = __normal_prio(p);
935 return prio;
936}
937
938/*
939 * Calculate the current priority, i.e. the priority
940 * taken into account by the scheduler. This value might
941 * be boosted by RT tasks, or might be boosted by
942 * interactivity modifiers. Will be RT if the task got
943 * RT-boosted. If not then it returns p->normal_prio.
944 */
36c8b586 945static int effective_prio(struct task_struct *p)
b29739f9
IM
946{
947 p->normal_prio = normal_prio(p);
948 /*
949 * If we are RT tasks or we were boosted to RT priority,
950 * keep the priority unchanged. Otherwise, update priority
951 * to the normal priority:
952 */
953 if (!rt_prio(p->prio))
954 return p->normal_prio;
955 return p->prio;
956}
957
1da177e4
LT
958/**
959 * task_curr - is this task currently executing on a CPU?
960 * @p: the task in question.
e69f6186
YB
961 *
962 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 963 */
36c8b586 964inline int task_curr(const struct task_struct *p)
1da177e4
LT
965{
966 return cpu_curr(task_cpu(p)) == p;
967}
968
cb469845
SR
969static inline void check_class_changed(struct rq *rq, struct task_struct *p,
970 const struct sched_class *prev_class,
da7a735e 971 int oldprio)
cb469845
SR
972{
973 if (prev_class != p->sched_class) {
974 if (prev_class->switched_from)
da7a735e
PZ
975 prev_class->switched_from(rq, p);
976 p->sched_class->switched_to(rq, p);
2d3d891d 977 } else if (oldprio != p->prio || dl_task(p))
da7a735e 978 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
979}
980
029632fb 981void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
982{
983 const struct sched_class *class;
984
985 if (p->sched_class == rq->curr->sched_class) {
986 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
987 } else {
988 for_each_class(class) {
989 if (class == rq->curr->sched_class)
990 break;
991 if (class == p->sched_class) {
992 resched_task(rq->curr);
993 break;
994 }
995 }
996 }
997
998 /*
999 * A queue event has occurred, and we're going to schedule. In
1000 * this case, we can save a useless back to back clock update.
1001 */
fd2f4419 1002 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1003 rq->skip_clock_update = 1;
1004}
1005
1da177e4 1006#ifdef CONFIG_SMP
dd41f596 1007void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1008{
e2912009
PZ
1009#ifdef CONFIG_SCHED_DEBUG
1010 /*
1011 * We should never call set_task_cpu() on a blocked task,
1012 * ttwu() will sort out the placement.
1013 */
077614ee 1014 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1015 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1016
1017#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1018 /*
1019 * The caller should hold either p->pi_lock or rq->lock, when changing
1020 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1021 *
1022 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1023 * see task_group().
6c6c54e1
PZ
1024 *
1025 * Furthermore, all task_rq users should acquire both locks, see
1026 * task_rq_lock().
1027 */
0122ec5b
PZ
1028 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1029 lockdep_is_held(&task_rq(p)->lock)));
1030#endif
e2912009
PZ
1031#endif
1032
de1d7286 1033 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1034
0c69774e 1035 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1036 if (p->sched_class->migrate_task_rq)
1037 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1038 p->se.nr_migrations++;
a8b0ca17 1039 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1040 }
dd41f596
IM
1041
1042 __set_task_cpu(p, new_cpu);
c65cc870
IM
1043}
1044
ac66f547
PZ
1045static void __migrate_swap_task(struct task_struct *p, int cpu)
1046{
1047 if (p->on_rq) {
1048 struct rq *src_rq, *dst_rq;
1049
1050 src_rq = task_rq(p);
1051 dst_rq = cpu_rq(cpu);
1052
1053 deactivate_task(src_rq, p, 0);
1054 set_task_cpu(p, cpu);
1055 activate_task(dst_rq, p, 0);
1056 check_preempt_curr(dst_rq, p, 0);
1057 } else {
1058 /*
1059 * Task isn't running anymore; make it appear like we migrated
1060 * it before it went to sleep. This means on wakeup we make the
1061 * previous cpu our targer instead of where it really is.
1062 */
1063 p->wake_cpu = cpu;
1064 }
1065}
1066
1067struct migration_swap_arg {
1068 struct task_struct *src_task, *dst_task;
1069 int src_cpu, dst_cpu;
1070};
1071
1072static int migrate_swap_stop(void *data)
1073{
1074 struct migration_swap_arg *arg = data;
1075 struct rq *src_rq, *dst_rq;
1076 int ret = -EAGAIN;
1077
1078 src_rq = cpu_rq(arg->src_cpu);
1079 dst_rq = cpu_rq(arg->dst_cpu);
1080
74602315
PZ
1081 double_raw_lock(&arg->src_task->pi_lock,
1082 &arg->dst_task->pi_lock);
ac66f547
PZ
1083 double_rq_lock(src_rq, dst_rq);
1084 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1085 goto unlock;
1086
1087 if (task_cpu(arg->src_task) != arg->src_cpu)
1088 goto unlock;
1089
1090 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1091 goto unlock;
1092
1093 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1094 goto unlock;
1095
1096 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1097 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1098
1099 ret = 0;
1100
1101unlock:
1102 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1103 raw_spin_unlock(&arg->dst_task->pi_lock);
1104 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1105
1106 return ret;
1107}
1108
1109/*
1110 * Cross migrate two tasks
1111 */
1112int migrate_swap(struct task_struct *cur, struct task_struct *p)
1113{
1114 struct migration_swap_arg arg;
1115 int ret = -EINVAL;
1116
ac66f547
PZ
1117 arg = (struct migration_swap_arg){
1118 .src_task = cur,
1119 .src_cpu = task_cpu(cur),
1120 .dst_task = p,
1121 .dst_cpu = task_cpu(p),
1122 };
1123
1124 if (arg.src_cpu == arg.dst_cpu)
1125 goto out;
1126
6acce3ef
PZ
1127 /*
1128 * These three tests are all lockless; this is OK since all of them
1129 * will be re-checked with proper locks held further down the line.
1130 */
ac66f547
PZ
1131 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1132 goto out;
1133
1134 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1135 goto out;
1136
1137 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1138 goto out;
1139
286549dc 1140 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1141 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1142
1143out:
ac66f547
PZ
1144 return ret;
1145}
1146
969c7921 1147struct migration_arg {
36c8b586 1148 struct task_struct *task;
1da177e4 1149 int dest_cpu;
70b97a7f 1150};
1da177e4 1151
969c7921
TH
1152static int migration_cpu_stop(void *data);
1153
1da177e4
LT
1154/*
1155 * wait_task_inactive - wait for a thread to unschedule.
1156 *
85ba2d86
RM
1157 * If @match_state is nonzero, it's the @p->state value just checked and
1158 * not expected to change. If it changes, i.e. @p might have woken up,
1159 * then return zero. When we succeed in waiting for @p to be off its CPU,
1160 * we return a positive number (its total switch count). If a second call
1161 * a short while later returns the same number, the caller can be sure that
1162 * @p has remained unscheduled the whole time.
1163 *
1da177e4
LT
1164 * The caller must ensure that the task *will* unschedule sometime soon,
1165 * else this function might spin for a *long* time. This function can't
1166 * be called with interrupts off, or it may introduce deadlock with
1167 * smp_call_function() if an IPI is sent by the same process we are
1168 * waiting to become inactive.
1169 */
85ba2d86 1170unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1171{
1172 unsigned long flags;
dd41f596 1173 int running, on_rq;
85ba2d86 1174 unsigned long ncsw;
70b97a7f 1175 struct rq *rq;
1da177e4 1176
3a5c359a
AK
1177 for (;;) {
1178 /*
1179 * We do the initial early heuristics without holding
1180 * any task-queue locks at all. We'll only try to get
1181 * the runqueue lock when things look like they will
1182 * work out!
1183 */
1184 rq = task_rq(p);
fa490cfd 1185
3a5c359a
AK
1186 /*
1187 * If the task is actively running on another CPU
1188 * still, just relax and busy-wait without holding
1189 * any locks.
1190 *
1191 * NOTE! Since we don't hold any locks, it's not
1192 * even sure that "rq" stays as the right runqueue!
1193 * But we don't care, since "task_running()" will
1194 * return false if the runqueue has changed and p
1195 * is actually now running somewhere else!
1196 */
85ba2d86
RM
1197 while (task_running(rq, p)) {
1198 if (match_state && unlikely(p->state != match_state))
1199 return 0;
3a5c359a 1200 cpu_relax();
85ba2d86 1201 }
fa490cfd 1202
3a5c359a
AK
1203 /*
1204 * Ok, time to look more closely! We need the rq
1205 * lock now, to be *sure*. If we're wrong, we'll
1206 * just go back and repeat.
1207 */
1208 rq = task_rq_lock(p, &flags);
27a9da65 1209 trace_sched_wait_task(p);
3a5c359a 1210 running = task_running(rq, p);
fd2f4419 1211 on_rq = p->on_rq;
85ba2d86 1212 ncsw = 0;
f31e11d8 1213 if (!match_state || p->state == match_state)
93dcf55f 1214 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1215 task_rq_unlock(rq, p, &flags);
fa490cfd 1216
85ba2d86
RM
1217 /*
1218 * If it changed from the expected state, bail out now.
1219 */
1220 if (unlikely(!ncsw))
1221 break;
1222
3a5c359a
AK
1223 /*
1224 * Was it really running after all now that we
1225 * checked with the proper locks actually held?
1226 *
1227 * Oops. Go back and try again..
1228 */
1229 if (unlikely(running)) {
1230 cpu_relax();
1231 continue;
1232 }
fa490cfd 1233
3a5c359a
AK
1234 /*
1235 * It's not enough that it's not actively running,
1236 * it must be off the runqueue _entirely_, and not
1237 * preempted!
1238 *
80dd99b3 1239 * So if it was still runnable (but just not actively
3a5c359a
AK
1240 * running right now), it's preempted, and we should
1241 * yield - it could be a while.
1242 */
1243 if (unlikely(on_rq)) {
8eb90c30
TG
1244 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1245
1246 set_current_state(TASK_UNINTERRUPTIBLE);
1247 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1248 continue;
1249 }
fa490cfd 1250
3a5c359a
AK
1251 /*
1252 * Ahh, all good. It wasn't running, and it wasn't
1253 * runnable, which means that it will never become
1254 * running in the future either. We're all done!
1255 */
1256 break;
1257 }
85ba2d86
RM
1258
1259 return ncsw;
1da177e4
LT
1260}
1261
1262/***
1263 * kick_process - kick a running thread to enter/exit the kernel
1264 * @p: the to-be-kicked thread
1265 *
1266 * Cause a process which is running on another CPU to enter
1267 * kernel-mode, without any delay. (to get signals handled.)
1268 *
25985edc 1269 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1270 * because all it wants to ensure is that the remote task enters
1271 * the kernel. If the IPI races and the task has been migrated
1272 * to another CPU then no harm is done and the purpose has been
1273 * achieved as well.
1274 */
36c8b586 1275void kick_process(struct task_struct *p)
1da177e4
LT
1276{
1277 int cpu;
1278
1279 preempt_disable();
1280 cpu = task_cpu(p);
1281 if ((cpu != smp_processor_id()) && task_curr(p))
1282 smp_send_reschedule(cpu);
1283 preempt_enable();
1284}
b43e3521 1285EXPORT_SYMBOL_GPL(kick_process);
476d139c 1286#endif /* CONFIG_SMP */
1da177e4 1287
970b13ba 1288#ifdef CONFIG_SMP
30da688e 1289/*
013fdb80 1290 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1291 */
5da9a0fb
PZ
1292static int select_fallback_rq(int cpu, struct task_struct *p)
1293{
aa00d89c
TC
1294 int nid = cpu_to_node(cpu);
1295 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1296 enum { cpuset, possible, fail } state = cpuset;
1297 int dest_cpu;
5da9a0fb 1298
aa00d89c
TC
1299 /*
1300 * If the node that the cpu is on has been offlined, cpu_to_node()
1301 * will return -1. There is no cpu on the node, and we should
1302 * select the cpu on the other node.
1303 */
1304 if (nid != -1) {
1305 nodemask = cpumask_of_node(nid);
1306
1307 /* Look for allowed, online CPU in same node. */
1308 for_each_cpu(dest_cpu, nodemask) {
1309 if (!cpu_online(dest_cpu))
1310 continue;
1311 if (!cpu_active(dest_cpu))
1312 continue;
1313 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1314 return dest_cpu;
1315 }
2baab4e9 1316 }
5da9a0fb 1317
2baab4e9
PZ
1318 for (;;) {
1319 /* Any allowed, online CPU? */
e3831edd 1320 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1321 if (!cpu_online(dest_cpu))
1322 continue;
1323 if (!cpu_active(dest_cpu))
1324 continue;
1325 goto out;
1326 }
5da9a0fb 1327
2baab4e9
PZ
1328 switch (state) {
1329 case cpuset:
1330 /* No more Mr. Nice Guy. */
1331 cpuset_cpus_allowed_fallback(p);
1332 state = possible;
1333 break;
1334
1335 case possible:
1336 do_set_cpus_allowed(p, cpu_possible_mask);
1337 state = fail;
1338 break;
1339
1340 case fail:
1341 BUG();
1342 break;
1343 }
1344 }
1345
1346out:
1347 if (state != cpuset) {
1348 /*
1349 * Don't tell them about moving exiting tasks or
1350 * kernel threads (both mm NULL), since they never
1351 * leave kernel.
1352 */
1353 if (p->mm && printk_ratelimit()) {
1354 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1355 task_pid_nr(p), p->comm, cpu);
1356 }
5da9a0fb
PZ
1357 }
1358
1359 return dest_cpu;
1360}
1361
e2912009 1362/*
013fdb80 1363 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1364 */
970b13ba 1365static inline
ac66f547 1366int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1367{
ac66f547 1368 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1369
1370 /*
1371 * In order not to call set_task_cpu() on a blocking task we need
1372 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1373 * cpu.
1374 *
1375 * Since this is common to all placement strategies, this lives here.
1376 *
1377 * [ this allows ->select_task() to simply return task_cpu(p) and
1378 * not worry about this generic constraint ]
1379 */
fa17b507 1380 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1381 !cpu_online(cpu)))
5da9a0fb 1382 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1383
1384 return cpu;
970b13ba 1385}
09a40af5
MG
1386
1387static void update_avg(u64 *avg, u64 sample)
1388{
1389 s64 diff = sample - *avg;
1390 *avg += diff >> 3;
1391}
970b13ba
PZ
1392#endif
1393
d7c01d27 1394static void
b84cb5df 1395ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1396{
d7c01d27 1397#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1398 struct rq *rq = this_rq();
1399
d7c01d27
PZ
1400#ifdef CONFIG_SMP
1401 int this_cpu = smp_processor_id();
1402
1403 if (cpu == this_cpu) {
1404 schedstat_inc(rq, ttwu_local);
1405 schedstat_inc(p, se.statistics.nr_wakeups_local);
1406 } else {
1407 struct sched_domain *sd;
1408
1409 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1410 rcu_read_lock();
d7c01d27
PZ
1411 for_each_domain(this_cpu, sd) {
1412 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1413 schedstat_inc(sd, ttwu_wake_remote);
1414 break;
1415 }
1416 }
057f3fad 1417 rcu_read_unlock();
d7c01d27 1418 }
f339b9dc
PZ
1419
1420 if (wake_flags & WF_MIGRATED)
1421 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1422
d7c01d27
PZ
1423#endif /* CONFIG_SMP */
1424
1425 schedstat_inc(rq, ttwu_count);
9ed3811a 1426 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1427
1428 if (wake_flags & WF_SYNC)
9ed3811a 1429 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1430
d7c01d27
PZ
1431#endif /* CONFIG_SCHEDSTATS */
1432}
1433
1434static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1435{
9ed3811a 1436 activate_task(rq, p, en_flags);
fd2f4419 1437 p->on_rq = 1;
c2f7115e
PZ
1438
1439 /* if a worker is waking up, notify workqueue */
1440 if (p->flags & PF_WQ_WORKER)
1441 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1442}
1443
23f41eeb
PZ
1444/*
1445 * Mark the task runnable and perform wakeup-preemption.
1446 */
89363381 1447static void
23f41eeb 1448ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1449{
9ed3811a 1450 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1451 trace_sched_wakeup(p, true);
9ed3811a
TH
1452
1453 p->state = TASK_RUNNING;
1454#ifdef CONFIG_SMP
1455 if (p->sched_class->task_woken)
1456 p->sched_class->task_woken(rq, p);
1457
e69c6341 1458 if (rq->idle_stamp) {
78becc27 1459 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1460 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1461
abfafa54
JL
1462 update_avg(&rq->avg_idle, delta);
1463
1464 if (rq->avg_idle > max)
9ed3811a 1465 rq->avg_idle = max;
abfafa54 1466
9ed3811a
TH
1467 rq->idle_stamp = 0;
1468 }
1469#endif
1470}
1471
c05fbafb
PZ
1472static void
1473ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1474{
1475#ifdef CONFIG_SMP
1476 if (p->sched_contributes_to_load)
1477 rq->nr_uninterruptible--;
1478#endif
1479
1480 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1481 ttwu_do_wakeup(rq, p, wake_flags);
1482}
1483
1484/*
1485 * Called in case the task @p isn't fully descheduled from its runqueue,
1486 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1487 * since all we need to do is flip p->state to TASK_RUNNING, since
1488 * the task is still ->on_rq.
1489 */
1490static int ttwu_remote(struct task_struct *p, int wake_flags)
1491{
1492 struct rq *rq;
1493 int ret = 0;
1494
1495 rq = __task_rq_lock(p);
1496 if (p->on_rq) {
1ad4ec0d
FW
1497 /* check_preempt_curr() may use rq clock */
1498 update_rq_clock(rq);
c05fbafb
PZ
1499 ttwu_do_wakeup(rq, p, wake_flags);
1500 ret = 1;
1501 }
1502 __task_rq_unlock(rq);
1503
1504 return ret;
1505}
1506
317f3941 1507#ifdef CONFIG_SMP
fa14ff4a 1508static void sched_ttwu_pending(void)
317f3941
PZ
1509{
1510 struct rq *rq = this_rq();
fa14ff4a
PZ
1511 struct llist_node *llist = llist_del_all(&rq->wake_list);
1512 struct task_struct *p;
317f3941
PZ
1513
1514 raw_spin_lock(&rq->lock);
1515
fa14ff4a
PZ
1516 while (llist) {
1517 p = llist_entry(llist, struct task_struct, wake_entry);
1518 llist = llist_next(llist);
317f3941
PZ
1519 ttwu_do_activate(rq, p, 0);
1520 }
1521
1522 raw_spin_unlock(&rq->lock);
1523}
1524
1525void scheduler_ipi(void)
1526{
f27dde8d
PZ
1527 /*
1528 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1529 * TIF_NEED_RESCHED remotely (for the first time) will also send
1530 * this IPI.
1531 */
8cb75e0c 1532 preempt_fold_need_resched();
f27dde8d 1533
873b4c65
VG
1534 if (llist_empty(&this_rq()->wake_list)
1535 && !tick_nohz_full_cpu(smp_processor_id())
1536 && !got_nohz_idle_kick())
c5d753a5
PZ
1537 return;
1538
1539 /*
1540 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1541 * traditionally all their work was done from the interrupt return
1542 * path. Now that we actually do some work, we need to make sure
1543 * we do call them.
1544 *
1545 * Some archs already do call them, luckily irq_enter/exit nest
1546 * properly.
1547 *
1548 * Arguably we should visit all archs and update all handlers,
1549 * however a fair share of IPIs are still resched only so this would
1550 * somewhat pessimize the simple resched case.
1551 */
1552 irq_enter();
ff442c51 1553 tick_nohz_full_check();
fa14ff4a 1554 sched_ttwu_pending();
ca38062e
SS
1555
1556 /*
1557 * Check if someone kicked us for doing the nohz idle load balance.
1558 */
873b4c65 1559 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1560 this_rq()->idle_balance = 1;
ca38062e 1561 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1562 }
c5d753a5 1563 irq_exit();
317f3941
PZ
1564}
1565
1566static void ttwu_queue_remote(struct task_struct *p, int cpu)
1567{
fa14ff4a 1568 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1569 smp_send_reschedule(cpu);
1570}
d6aa8f85 1571
39be3501 1572bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1573{
1574 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1575}
d6aa8f85 1576#endif /* CONFIG_SMP */
317f3941 1577
c05fbafb
PZ
1578static void ttwu_queue(struct task_struct *p, int cpu)
1579{
1580 struct rq *rq = cpu_rq(cpu);
1581
17d9f311 1582#if defined(CONFIG_SMP)
39be3501 1583 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1584 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1585 ttwu_queue_remote(p, cpu);
1586 return;
1587 }
1588#endif
1589
c05fbafb
PZ
1590 raw_spin_lock(&rq->lock);
1591 ttwu_do_activate(rq, p, 0);
1592 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1593}
1594
1595/**
1da177e4 1596 * try_to_wake_up - wake up a thread
9ed3811a 1597 * @p: the thread to be awakened
1da177e4 1598 * @state: the mask of task states that can be woken
9ed3811a 1599 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1600 *
1601 * Put it on the run-queue if it's not already there. The "current"
1602 * thread is always on the run-queue (except when the actual
1603 * re-schedule is in progress), and as such you're allowed to do
1604 * the simpler "current->state = TASK_RUNNING" to mark yourself
1605 * runnable without the overhead of this.
1606 *
e69f6186 1607 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1608 * or @state didn't match @p's state.
1da177e4 1609 */
e4a52bcb
PZ
1610static int
1611try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1612{
1da177e4 1613 unsigned long flags;
c05fbafb 1614 int cpu, success = 0;
2398f2c6 1615
e0acd0a6
ON
1616 /*
1617 * If we are going to wake up a thread waiting for CONDITION we
1618 * need to ensure that CONDITION=1 done by the caller can not be
1619 * reordered with p->state check below. This pairs with mb() in
1620 * set_current_state() the waiting thread does.
1621 */
1622 smp_mb__before_spinlock();
013fdb80 1623 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1624 if (!(p->state & state))
1da177e4
LT
1625 goto out;
1626
c05fbafb 1627 success = 1; /* we're going to change ->state */
1da177e4 1628 cpu = task_cpu(p);
1da177e4 1629
c05fbafb
PZ
1630 if (p->on_rq && ttwu_remote(p, wake_flags))
1631 goto stat;
1da177e4 1632
1da177e4 1633#ifdef CONFIG_SMP
e9c84311 1634 /*
c05fbafb
PZ
1635 * If the owning (remote) cpu is still in the middle of schedule() with
1636 * this task as prev, wait until its done referencing the task.
e9c84311 1637 */
f3e94786 1638 while (p->on_cpu)
e4a52bcb 1639 cpu_relax();
0970d299 1640 /*
e4a52bcb 1641 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1642 */
e4a52bcb 1643 smp_rmb();
1da177e4 1644
a8e4f2ea 1645 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1646 p->state = TASK_WAKING;
e7693a36 1647
e4a52bcb 1648 if (p->sched_class->task_waking)
74f8e4b2 1649 p->sched_class->task_waking(p);
efbbd05a 1650
ac66f547 1651 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1652 if (task_cpu(p) != cpu) {
1653 wake_flags |= WF_MIGRATED;
e4a52bcb 1654 set_task_cpu(p, cpu);
f339b9dc 1655 }
1da177e4 1656#endif /* CONFIG_SMP */
1da177e4 1657
c05fbafb
PZ
1658 ttwu_queue(p, cpu);
1659stat:
b84cb5df 1660 ttwu_stat(p, cpu, wake_flags);
1da177e4 1661out:
013fdb80 1662 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1663
1664 return success;
1665}
1666
21aa9af0
TH
1667/**
1668 * try_to_wake_up_local - try to wake up a local task with rq lock held
1669 * @p: the thread to be awakened
1670 *
2acca55e 1671 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1672 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1673 * the current task.
21aa9af0
TH
1674 */
1675static void try_to_wake_up_local(struct task_struct *p)
1676{
1677 struct rq *rq = task_rq(p);
21aa9af0 1678
383efcd0
TH
1679 if (WARN_ON_ONCE(rq != this_rq()) ||
1680 WARN_ON_ONCE(p == current))
1681 return;
1682
21aa9af0
TH
1683 lockdep_assert_held(&rq->lock);
1684
2acca55e
PZ
1685 if (!raw_spin_trylock(&p->pi_lock)) {
1686 raw_spin_unlock(&rq->lock);
1687 raw_spin_lock(&p->pi_lock);
1688 raw_spin_lock(&rq->lock);
1689 }
1690
21aa9af0 1691 if (!(p->state & TASK_NORMAL))
2acca55e 1692 goto out;
21aa9af0 1693
fd2f4419 1694 if (!p->on_rq)
d7c01d27
PZ
1695 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1696
23f41eeb 1697 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1698 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1699out:
1700 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1701}
1702
50fa610a
DH
1703/**
1704 * wake_up_process - Wake up a specific process
1705 * @p: The process to be woken up.
1706 *
1707 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1708 * processes.
1709 *
1710 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1711 *
1712 * It may be assumed that this function implies a write memory barrier before
1713 * changing the task state if and only if any tasks are woken up.
1714 */
7ad5b3a5 1715int wake_up_process(struct task_struct *p)
1da177e4 1716{
9067ac85
ON
1717 WARN_ON(task_is_stopped_or_traced(p));
1718 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1719}
1da177e4
LT
1720EXPORT_SYMBOL(wake_up_process);
1721
7ad5b3a5 1722int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1723{
1724 return try_to_wake_up(p, state, 0);
1725}
1726
1da177e4
LT
1727/*
1728 * Perform scheduler related setup for a newly forked process p.
1729 * p is forked by current.
dd41f596
IM
1730 *
1731 * __sched_fork() is basic setup used by init_idle() too:
1732 */
5e1576ed 1733static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1734{
fd2f4419
PZ
1735 p->on_rq = 0;
1736
1737 p->se.on_rq = 0;
dd41f596
IM
1738 p->se.exec_start = 0;
1739 p->se.sum_exec_runtime = 0;
f6cf891c 1740 p->se.prev_sum_exec_runtime = 0;
6c594c21 1741 p->se.nr_migrations = 0;
da7a735e 1742 p->se.vruntime = 0;
fd2f4419 1743 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1744
1745#ifdef CONFIG_SCHEDSTATS
41acab88 1746 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1747#endif
476d139c 1748
aab03e05
DF
1749 RB_CLEAR_NODE(&p->dl.rb_node);
1750 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1751 p->dl.dl_runtime = p->dl.runtime = 0;
1752 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1753 p->dl.dl_period = 0;
aab03e05
DF
1754 p->dl.flags = 0;
1755
fa717060 1756 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1757
e107be36
AK
1758#ifdef CONFIG_PREEMPT_NOTIFIERS
1759 INIT_HLIST_HEAD(&p->preempt_notifiers);
1760#endif
cbee9f88
PZ
1761
1762#ifdef CONFIG_NUMA_BALANCING
1763 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1764 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1765 p->mm->numa_scan_seq = 0;
1766 }
1767
5e1576ed
RR
1768 if (clone_flags & CLONE_VM)
1769 p->numa_preferred_nid = current->numa_preferred_nid;
1770 else
1771 p->numa_preferred_nid = -1;
1772
cbee9f88
PZ
1773 p->node_stamp = 0ULL;
1774 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1775 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1776 p->numa_work.next = &p->numa_work;
ff1df896
RR
1777 p->numa_faults_memory = NULL;
1778 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1779 p->last_task_numa_placement = 0;
1780 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1781
1782 INIT_LIST_HEAD(&p->numa_entry);
1783 p->numa_group = NULL;
cbee9f88 1784#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1785}
1786
1a687c2e 1787#ifdef CONFIG_NUMA_BALANCING
3105b86a 1788#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1789void set_numabalancing_state(bool enabled)
1790{
1791 if (enabled)
1792 sched_feat_set("NUMA");
1793 else
1794 sched_feat_set("NO_NUMA");
1795}
3105b86a
MG
1796#else
1797__read_mostly bool numabalancing_enabled;
1798
1799void set_numabalancing_state(bool enabled)
1800{
1801 numabalancing_enabled = enabled;
dd41f596 1802}
3105b86a 1803#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1804
1805#ifdef CONFIG_PROC_SYSCTL
1806int sysctl_numa_balancing(struct ctl_table *table, int write,
1807 void __user *buffer, size_t *lenp, loff_t *ppos)
1808{
1809 struct ctl_table t;
1810 int err;
1811 int state = numabalancing_enabled;
1812
1813 if (write && !capable(CAP_SYS_ADMIN))
1814 return -EPERM;
1815
1816 t = *table;
1817 t.data = &state;
1818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1819 if (err < 0)
1820 return err;
1821 if (write)
1822 set_numabalancing_state(state);
1823 return err;
1824}
1825#endif
1826#endif
dd41f596
IM
1827
1828/*
1829 * fork()/clone()-time setup:
1830 */
aab03e05 1831int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1832{
0122ec5b 1833 unsigned long flags;
dd41f596
IM
1834 int cpu = get_cpu();
1835
5e1576ed 1836 __sched_fork(clone_flags, p);
06b83b5f 1837 /*
0017d735 1838 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1839 * nobody will actually run it, and a signal or other external
1840 * event cannot wake it up and insert it on the runqueue either.
1841 */
0017d735 1842 p->state = TASK_RUNNING;
dd41f596 1843
c350a04e
MG
1844 /*
1845 * Make sure we do not leak PI boosting priority to the child.
1846 */
1847 p->prio = current->normal_prio;
1848
b9dc29e7
MG
1849 /*
1850 * Revert to default priority/policy on fork if requested.
1851 */
1852 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1853 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1854 p->policy = SCHED_NORMAL;
6c697bdf 1855 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1856 p->rt_priority = 0;
1857 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1858 p->static_prio = NICE_TO_PRIO(0);
1859
1860 p->prio = p->normal_prio = __normal_prio(p);
1861 set_load_weight(p);
6c697bdf 1862
b9dc29e7
MG
1863 /*
1864 * We don't need the reset flag anymore after the fork. It has
1865 * fulfilled its duty:
1866 */
1867 p->sched_reset_on_fork = 0;
1868 }
ca94c442 1869
aab03e05
DF
1870 if (dl_prio(p->prio)) {
1871 put_cpu();
1872 return -EAGAIN;
1873 } else if (rt_prio(p->prio)) {
1874 p->sched_class = &rt_sched_class;
1875 } else {
2ddbf952 1876 p->sched_class = &fair_sched_class;
aab03e05 1877 }
b29739f9 1878
cd29fe6f
PZ
1879 if (p->sched_class->task_fork)
1880 p->sched_class->task_fork(p);
1881
86951599
PZ
1882 /*
1883 * The child is not yet in the pid-hash so no cgroup attach races,
1884 * and the cgroup is pinned to this child due to cgroup_fork()
1885 * is ran before sched_fork().
1886 *
1887 * Silence PROVE_RCU.
1888 */
0122ec5b 1889 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1890 set_task_cpu(p, cpu);
0122ec5b 1891 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1892
52f17b6c 1893#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1894 if (likely(sched_info_on()))
52f17b6c 1895 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1896#endif
3ca7a440
PZ
1897#if defined(CONFIG_SMP)
1898 p->on_cpu = 0;
4866cde0 1899#endif
01028747 1900 init_task_preempt_count(p);
806c09a7 1901#ifdef CONFIG_SMP
917b627d 1902 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1903 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1904#endif
917b627d 1905
476d139c 1906 put_cpu();
aab03e05 1907 return 0;
1da177e4
LT
1908}
1909
332ac17e
DF
1910unsigned long to_ratio(u64 period, u64 runtime)
1911{
1912 if (runtime == RUNTIME_INF)
1913 return 1ULL << 20;
1914
1915 /*
1916 * Doing this here saves a lot of checks in all
1917 * the calling paths, and returning zero seems
1918 * safe for them anyway.
1919 */
1920 if (period == 0)
1921 return 0;
1922
1923 return div64_u64(runtime << 20, period);
1924}
1925
1926#ifdef CONFIG_SMP
1927inline struct dl_bw *dl_bw_of(int i)
1928{
1929 return &cpu_rq(i)->rd->dl_bw;
1930}
1931
de212f18 1932static inline int dl_bw_cpus(int i)
332ac17e 1933{
de212f18
PZ
1934 struct root_domain *rd = cpu_rq(i)->rd;
1935 int cpus = 0;
1936
1937 for_each_cpu_and(i, rd->span, cpu_active_mask)
1938 cpus++;
1939
1940 return cpus;
332ac17e
DF
1941}
1942#else
1943inline struct dl_bw *dl_bw_of(int i)
1944{
1945 return &cpu_rq(i)->dl.dl_bw;
1946}
1947
de212f18 1948static inline int dl_bw_cpus(int i)
332ac17e
DF
1949{
1950 return 1;
1951}
1952#endif
1953
1954static inline
1955void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1956{
1957 dl_b->total_bw -= tsk_bw;
1958}
1959
1960static inline
1961void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1962{
1963 dl_b->total_bw += tsk_bw;
1964}
1965
1966static inline
1967bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1968{
1969 return dl_b->bw != -1 &&
1970 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1971}
1972
1973/*
1974 * We must be sure that accepting a new task (or allowing changing the
1975 * parameters of an existing one) is consistent with the bandwidth
1976 * constraints. If yes, this function also accordingly updates the currently
1977 * allocated bandwidth to reflect the new situation.
1978 *
1979 * This function is called while holding p's rq->lock.
1980 */
1981static int dl_overflow(struct task_struct *p, int policy,
1982 const struct sched_attr *attr)
1983{
1984
1985 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 1986 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
1987 u64 runtime = attr->sched_runtime;
1988 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1989 int cpus, err = -1;
332ac17e
DF
1990
1991 if (new_bw == p->dl.dl_bw)
1992 return 0;
1993
1994 /*
1995 * Either if a task, enters, leave, or stays -deadline but changes
1996 * its parameters, we may need to update accordingly the total
1997 * allocated bandwidth of the container.
1998 */
1999 raw_spin_lock(&dl_b->lock);
de212f18 2000 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2001 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2002 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2003 __dl_add(dl_b, new_bw);
2004 err = 0;
2005 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2006 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2007 __dl_clear(dl_b, p->dl.dl_bw);
2008 __dl_add(dl_b, new_bw);
2009 err = 0;
2010 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2011 __dl_clear(dl_b, p->dl.dl_bw);
2012 err = 0;
2013 }
2014 raw_spin_unlock(&dl_b->lock);
2015
2016 return err;
2017}
2018
2019extern void init_dl_bw(struct dl_bw *dl_b);
2020
1da177e4
LT
2021/*
2022 * wake_up_new_task - wake up a newly created task for the first time.
2023 *
2024 * This function will do some initial scheduler statistics housekeeping
2025 * that must be done for every newly created context, then puts the task
2026 * on the runqueue and wakes it.
2027 */
3e51e3ed 2028void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2029{
2030 unsigned long flags;
dd41f596 2031 struct rq *rq;
fabf318e 2032
ab2515c4 2033 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2034#ifdef CONFIG_SMP
2035 /*
2036 * Fork balancing, do it here and not earlier because:
2037 * - cpus_allowed can change in the fork path
2038 * - any previously selected cpu might disappear through hotplug
fabf318e 2039 */
ac66f547 2040 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2041#endif
2042
a75cdaa9
AS
2043 /* Initialize new task's runnable average */
2044 init_task_runnable_average(p);
ab2515c4 2045 rq = __task_rq_lock(p);
cd29fe6f 2046 activate_task(rq, p, 0);
fd2f4419 2047 p->on_rq = 1;
89363381 2048 trace_sched_wakeup_new(p, true);
a7558e01 2049 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2050#ifdef CONFIG_SMP
efbbd05a
PZ
2051 if (p->sched_class->task_woken)
2052 p->sched_class->task_woken(rq, p);
9a897c5a 2053#endif
0122ec5b 2054 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2055}
2056
e107be36
AK
2057#ifdef CONFIG_PREEMPT_NOTIFIERS
2058
2059/**
80dd99b3 2060 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2061 * @notifier: notifier struct to register
e107be36
AK
2062 */
2063void preempt_notifier_register(struct preempt_notifier *notifier)
2064{
2065 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2066}
2067EXPORT_SYMBOL_GPL(preempt_notifier_register);
2068
2069/**
2070 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2071 * @notifier: notifier struct to unregister
e107be36
AK
2072 *
2073 * This is safe to call from within a preemption notifier.
2074 */
2075void preempt_notifier_unregister(struct preempt_notifier *notifier)
2076{
2077 hlist_del(&notifier->link);
2078}
2079EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2080
2081static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2082{
2083 struct preempt_notifier *notifier;
e107be36 2084
b67bfe0d 2085 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2086 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2087}
2088
2089static void
2090fire_sched_out_preempt_notifiers(struct task_struct *curr,
2091 struct task_struct *next)
2092{
2093 struct preempt_notifier *notifier;
e107be36 2094
b67bfe0d 2095 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2096 notifier->ops->sched_out(notifier, next);
2097}
2098
6d6bc0ad 2099#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2100
2101static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2102{
2103}
2104
2105static void
2106fire_sched_out_preempt_notifiers(struct task_struct *curr,
2107 struct task_struct *next)
2108{
2109}
2110
6d6bc0ad 2111#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2112
4866cde0
NP
2113/**
2114 * prepare_task_switch - prepare to switch tasks
2115 * @rq: the runqueue preparing to switch
421cee29 2116 * @prev: the current task that is being switched out
4866cde0
NP
2117 * @next: the task we are going to switch to.
2118 *
2119 * This is called with the rq lock held and interrupts off. It must
2120 * be paired with a subsequent finish_task_switch after the context
2121 * switch.
2122 *
2123 * prepare_task_switch sets up locking and calls architecture specific
2124 * hooks.
2125 */
e107be36
AK
2126static inline void
2127prepare_task_switch(struct rq *rq, struct task_struct *prev,
2128 struct task_struct *next)
4866cde0 2129{
895dd92c 2130 trace_sched_switch(prev, next);
43148951 2131 sched_info_switch(rq, prev, next);
fe4b04fa 2132 perf_event_task_sched_out(prev, next);
e107be36 2133 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2134 prepare_lock_switch(rq, next);
2135 prepare_arch_switch(next);
2136}
2137
1da177e4
LT
2138/**
2139 * finish_task_switch - clean up after a task-switch
344babaa 2140 * @rq: runqueue associated with task-switch
1da177e4
LT
2141 * @prev: the thread we just switched away from.
2142 *
4866cde0
NP
2143 * finish_task_switch must be called after the context switch, paired
2144 * with a prepare_task_switch call before the context switch.
2145 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2146 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2147 *
2148 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2149 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2150 * with the lock held can cause deadlocks; see schedule() for
2151 * details.)
2152 */
a9957449 2153static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2154 __releases(rq->lock)
2155{
1da177e4 2156 struct mm_struct *mm = rq->prev_mm;
55a101f8 2157 long prev_state;
1da177e4
LT
2158
2159 rq->prev_mm = NULL;
2160
2161 /*
2162 * A task struct has one reference for the use as "current".
c394cc9f 2163 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2164 * schedule one last time. The schedule call will never return, and
2165 * the scheduled task must drop that reference.
c394cc9f 2166 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2167 * still held, otherwise prev could be scheduled on another cpu, die
2168 * there before we look at prev->state, and then the reference would
2169 * be dropped twice.
2170 * Manfred Spraul <manfred@colorfullife.com>
2171 */
55a101f8 2172 prev_state = prev->state;
bf9fae9f 2173 vtime_task_switch(prev);
4866cde0 2174 finish_arch_switch(prev);
a8d757ef 2175 perf_event_task_sched_in(prev, current);
4866cde0 2176 finish_lock_switch(rq, prev);
01f23e16 2177 finish_arch_post_lock_switch();
e8fa1362 2178
e107be36 2179 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2180 if (mm)
2181 mmdrop(mm);
c394cc9f 2182 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2183 if (prev->sched_class->task_dead)
2184 prev->sched_class->task_dead(prev);
2185
c6fd91f0 2186 /*
2187 * Remove function-return probe instances associated with this
2188 * task and put them back on the free list.
9761eea8 2189 */
c6fd91f0 2190 kprobe_flush_task(prev);
1da177e4 2191 put_task_struct(prev);
c6fd91f0 2192 }
99e5ada9
FW
2193
2194 tick_nohz_task_switch(current);
1da177e4
LT
2195}
2196
3f029d3c
GH
2197#ifdef CONFIG_SMP
2198
3f029d3c
GH
2199/* rq->lock is NOT held, but preemption is disabled */
2200static inline void post_schedule(struct rq *rq)
2201{
2202 if (rq->post_schedule) {
2203 unsigned long flags;
2204
05fa785c 2205 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2206 if (rq->curr->sched_class->post_schedule)
2207 rq->curr->sched_class->post_schedule(rq);
05fa785c 2208 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2209
2210 rq->post_schedule = 0;
2211 }
2212}
2213
2214#else
da19ab51 2215
3f029d3c
GH
2216static inline void post_schedule(struct rq *rq)
2217{
1da177e4
LT
2218}
2219
3f029d3c
GH
2220#endif
2221
1da177e4
LT
2222/**
2223 * schedule_tail - first thing a freshly forked thread must call.
2224 * @prev: the thread we just switched away from.
2225 */
722a9f92 2226asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2227 __releases(rq->lock)
2228{
70b97a7f
IM
2229 struct rq *rq = this_rq();
2230
4866cde0 2231 finish_task_switch(rq, prev);
da19ab51 2232
3f029d3c
GH
2233 /*
2234 * FIXME: do we need to worry about rq being invalidated by the
2235 * task_switch?
2236 */
2237 post_schedule(rq);
70b97a7f 2238
4866cde0
NP
2239#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2240 /* In this case, finish_task_switch does not reenable preemption */
2241 preempt_enable();
2242#endif
1da177e4 2243 if (current->set_child_tid)
b488893a 2244 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2245}
2246
2247/*
2248 * context_switch - switch to the new MM and the new
2249 * thread's register state.
2250 */
dd41f596 2251static inline void
70b97a7f 2252context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2253 struct task_struct *next)
1da177e4 2254{
dd41f596 2255 struct mm_struct *mm, *oldmm;
1da177e4 2256
e107be36 2257 prepare_task_switch(rq, prev, next);
fe4b04fa 2258
dd41f596
IM
2259 mm = next->mm;
2260 oldmm = prev->active_mm;
9226d125
ZA
2261 /*
2262 * For paravirt, this is coupled with an exit in switch_to to
2263 * combine the page table reload and the switch backend into
2264 * one hypercall.
2265 */
224101ed 2266 arch_start_context_switch(prev);
9226d125 2267
31915ab4 2268 if (!mm) {
1da177e4
LT
2269 next->active_mm = oldmm;
2270 atomic_inc(&oldmm->mm_count);
2271 enter_lazy_tlb(oldmm, next);
2272 } else
2273 switch_mm(oldmm, mm, next);
2274
31915ab4 2275 if (!prev->mm) {
1da177e4 2276 prev->active_mm = NULL;
1da177e4
LT
2277 rq->prev_mm = oldmm;
2278 }
3a5f5e48
IM
2279 /*
2280 * Since the runqueue lock will be released by the next
2281 * task (which is an invalid locking op but in the case
2282 * of the scheduler it's an obvious special-case), so we
2283 * do an early lockdep release here:
2284 */
2285#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2286 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2287#endif
1da177e4 2288
91d1aa43 2289 context_tracking_task_switch(prev, next);
1da177e4
LT
2290 /* Here we just switch the register state and the stack. */
2291 switch_to(prev, next, prev);
2292
dd41f596
IM
2293 barrier();
2294 /*
2295 * this_rq must be evaluated again because prev may have moved
2296 * CPUs since it called schedule(), thus the 'rq' on its stack
2297 * frame will be invalid.
2298 */
2299 finish_task_switch(this_rq(), prev);
1da177e4
LT
2300}
2301
2302/*
1c3e8264 2303 * nr_running and nr_context_switches:
1da177e4
LT
2304 *
2305 * externally visible scheduler statistics: current number of runnable
1c3e8264 2306 * threads, total number of context switches performed since bootup.
1da177e4
LT
2307 */
2308unsigned long nr_running(void)
2309{
2310 unsigned long i, sum = 0;
2311
2312 for_each_online_cpu(i)
2313 sum += cpu_rq(i)->nr_running;
2314
2315 return sum;
f711f609 2316}
1da177e4 2317
1da177e4 2318unsigned long long nr_context_switches(void)
46cb4b7c 2319{
cc94abfc
SR
2320 int i;
2321 unsigned long long sum = 0;
46cb4b7c 2322
0a945022 2323 for_each_possible_cpu(i)
1da177e4 2324 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2325
1da177e4
LT
2326 return sum;
2327}
483b4ee6 2328
1da177e4
LT
2329unsigned long nr_iowait(void)
2330{
2331 unsigned long i, sum = 0;
483b4ee6 2332
0a945022 2333 for_each_possible_cpu(i)
1da177e4 2334 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2335
1da177e4
LT
2336 return sum;
2337}
483b4ee6 2338
8c215bd3 2339unsigned long nr_iowait_cpu(int cpu)
69d25870 2340{
8c215bd3 2341 struct rq *this = cpu_rq(cpu);
69d25870
AV
2342 return atomic_read(&this->nr_iowait);
2343}
46cb4b7c 2344
dd41f596 2345#ifdef CONFIG_SMP
8a0be9ef 2346
46cb4b7c 2347/*
38022906
PZ
2348 * sched_exec - execve() is a valuable balancing opportunity, because at
2349 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2350 */
38022906 2351void sched_exec(void)
46cb4b7c 2352{
38022906 2353 struct task_struct *p = current;
1da177e4 2354 unsigned long flags;
0017d735 2355 int dest_cpu;
46cb4b7c 2356
8f42ced9 2357 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2358 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2359 if (dest_cpu == smp_processor_id())
2360 goto unlock;
38022906 2361
8f42ced9 2362 if (likely(cpu_active(dest_cpu))) {
969c7921 2363 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2364
8f42ced9
PZ
2365 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2366 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2367 return;
2368 }
0017d735 2369unlock:
8f42ced9 2370 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2371}
dd41f596 2372
1da177e4
LT
2373#endif
2374
1da177e4 2375DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2376DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2377
2378EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2379EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2380
2381/*
c5f8d995 2382 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2383 * @p in case that task is currently running.
c5f8d995
HS
2384 *
2385 * Called with task_rq_lock() held on @rq.
1da177e4 2386 */
c5f8d995
HS
2387static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2388{
2389 u64 ns = 0;
2390
2391 if (task_current(rq, p)) {
2392 update_rq_clock(rq);
78becc27 2393 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2394 if ((s64)ns < 0)
2395 ns = 0;
2396 }
2397
2398 return ns;
2399}
2400
bb34d92f 2401unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2402{
1da177e4 2403 unsigned long flags;
41b86e9c 2404 struct rq *rq;
bb34d92f 2405 u64 ns = 0;
48f24c4d 2406
41b86e9c 2407 rq = task_rq_lock(p, &flags);
c5f8d995 2408 ns = do_task_delta_exec(p, rq);
0122ec5b 2409 task_rq_unlock(rq, p, &flags);
1508487e 2410
c5f8d995
HS
2411 return ns;
2412}
f06febc9 2413
c5f8d995
HS
2414/*
2415 * Return accounted runtime for the task.
2416 * In case the task is currently running, return the runtime plus current's
2417 * pending runtime that have not been accounted yet.
2418 */
2419unsigned long long task_sched_runtime(struct task_struct *p)
2420{
2421 unsigned long flags;
2422 struct rq *rq;
2423 u64 ns = 0;
2424
911b2898
PZ
2425#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2426 /*
2427 * 64-bit doesn't need locks to atomically read a 64bit value.
2428 * So we have a optimization chance when the task's delta_exec is 0.
2429 * Reading ->on_cpu is racy, but this is ok.
2430 *
2431 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2432 * If we race with it entering cpu, unaccounted time is 0. This is
2433 * indistinguishable from the read occurring a few cycles earlier.
2434 */
2435 if (!p->on_cpu)
2436 return p->se.sum_exec_runtime;
2437#endif
2438
c5f8d995
HS
2439 rq = task_rq_lock(p, &flags);
2440 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2441 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2442
2443 return ns;
2444}
48f24c4d 2445
7835b98b
CL
2446/*
2447 * This function gets called by the timer code, with HZ frequency.
2448 * We call it with interrupts disabled.
7835b98b
CL
2449 */
2450void scheduler_tick(void)
2451{
7835b98b
CL
2452 int cpu = smp_processor_id();
2453 struct rq *rq = cpu_rq(cpu);
dd41f596 2454 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2455
2456 sched_clock_tick();
dd41f596 2457
05fa785c 2458 raw_spin_lock(&rq->lock);
3e51f33f 2459 update_rq_clock(rq);
fa85ae24 2460 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2461 update_cpu_load_active(rq);
05fa785c 2462 raw_spin_unlock(&rq->lock);
7835b98b 2463
e9d2b064 2464 perf_event_task_tick();
e220d2dc 2465
e418e1c2 2466#ifdef CONFIG_SMP
6eb57e0d 2467 rq->idle_balance = idle_cpu(cpu);
7caff66f 2468 trigger_load_balance(rq);
e418e1c2 2469#endif
265f22a9 2470 rq_last_tick_reset(rq);
1da177e4
LT
2471}
2472
265f22a9
FW
2473#ifdef CONFIG_NO_HZ_FULL
2474/**
2475 * scheduler_tick_max_deferment
2476 *
2477 * Keep at least one tick per second when a single
2478 * active task is running because the scheduler doesn't
2479 * yet completely support full dynticks environment.
2480 *
2481 * This makes sure that uptime, CFS vruntime, load
2482 * balancing, etc... continue to move forward, even
2483 * with a very low granularity.
e69f6186
YB
2484 *
2485 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2486 */
2487u64 scheduler_tick_max_deferment(void)
2488{
2489 struct rq *rq = this_rq();
2490 unsigned long next, now = ACCESS_ONCE(jiffies);
2491
2492 next = rq->last_sched_tick + HZ;
2493
2494 if (time_before_eq(next, now))
2495 return 0;
2496
8fe8ff09 2497 return jiffies_to_nsecs(next - now);
1da177e4 2498}
265f22a9 2499#endif
1da177e4 2500
132380a0 2501notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2502{
2503 if (in_lock_functions(addr)) {
2504 addr = CALLER_ADDR2;
2505 if (in_lock_functions(addr))
2506 addr = CALLER_ADDR3;
2507 }
2508 return addr;
2509}
1da177e4 2510
7e49fcce
SR
2511#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2512 defined(CONFIG_PREEMPT_TRACER))
2513
bdb43806 2514void __kprobes preempt_count_add(int val)
1da177e4 2515{
6cd8a4bb 2516#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2517 /*
2518 * Underflow?
2519 */
9a11b49a
IM
2520 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2521 return;
6cd8a4bb 2522#endif
bdb43806 2523 __preempt_count_add(val);
6cd8a4bb 2524#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2525 /*
2526 * Spinlock count overflowing soon?
2527 */
33859f7f
MOS
2528 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2529 PREEMPT_MASK - 10);
6cd8a4bb 2530#endif
8f47b187
TG
2531 if (preempt_count() == val) {
2532 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2533#ifdef CONFIG_DEBUG_PREEMPT
2534 current->preempt_disable_ip = ip;
2535#endif
2536 trace_preempt_off(CALLER_ADDR0, ip);
2537 }
1da177e4 2538}
bdb43806 2539EXPORT_SYMBOL(preempt_count_add);
1da177e4 2540
bdb43806 2541void __kprobes preempt_count_sub(int val)
1da177e4 2542{
6cd8a4bb 2543#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2544 /*
2545 * Underflow?
2546 */
01e3eb82 2547 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2548 return;
1da177e4
LT
2549 /*
2550 * Is the spinlock portion underflowing?
2551 */
9a11b49a
IM
2552 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2553 !(preempt_count() & PREEMPT_MASK)))
2554 return;
6cd8a4bb 2555#endif
9a11b49a 2556
6cd8a4bb
SR
2557 if (preempt_count() == val)
2558 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2559 __preempt_count_sub(val);
1da177e4 2560}
bdb43806 2561EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2562
2563#endif
2564
2565/*
dd41f596 2566 * Print scheduling while atomic bug:
1da177e4 2567 */
dd41f596 2568static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2569{
664dfa65
DJ
2570 if (oops_in_progress)
2571 return;
2572
3df0fc5b
PZ
2573 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2574 prev->comm, prev->pid, preempt_count());
838225b4 2575
dd41f596 2576 debug_show_held_locks(prev);
e21f5b15 2577 print_modules();
dd41f596
IM
2578 if (irqs_disabled())
2579 print_irqtrace_events(prev);
8f47b187
TG
2580#ifdef CONFIG_DEBUG_PREEMPT
2581 if (in_atomic_preempt_off()) {
2582 pr_err("Preemption disabled at:");
2583 print_ip_sym(current->preempt_disable_ip);
2584 pr_cont("\n");
2585 }
2586#endif
6135fc1e 2587 dump_stack();
373d4d09 2588 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2589}
1da177e4 2590
dd41f596
IM
2591/*
2592 * Various schedule()-time debugging checks and statistics:
2593 */
2594static inline void schedule_debug(struct task_struct *prev)
2595{
1da177e4 2596 /*
41a2d6cf 2597 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2598 * schedule() atomically, we ignore that path. Otherwise whine
2599 * if we are scheduling when we should not.
1da177e4 2600 */
192301e7 2601 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2602 __schedule_bug(prev);
b3fbab05 2603 rcu_sleep_check();
dd41f596 2604
1da177e4
LT
2605 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2606
2d72376b 2607 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2608}
2609
2610/*
2611 * Pick up the highest-prio task:
2612 */
2613static inline struct task_struct *
606dba2e 2614pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2615{
37e117c0 2616 const struct sched_class *class = &fair_sched_class;
dd41f596 2617 struct task_struct *p;
1da177e4
LT
2618
2619 /*
dd41f596
IM
2620 * Optimization: we know that if all tasks are in
2621 * the fair class we can call that function directly:
1da177e4 2622 */
37e117c0 2623 if (likely(prev->sched_class == class &&
38033c37 2624 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2625 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2626 if (unlikely(p == RETRY_TASK))
2627 goto again;
2628
2629 /* assumes fair_sched_class->next == idle_sched_class */
2630 if (unlikely(!p))
2631 p = idle_sched_class.pick_next_task(rq, prev);
2632
2633 return p;
1da177e4
LT
2634 }
2635
37e117c0 2636again:
34f971f6 2637 for_each_class(class) {
606dba2e 2638 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2639 if (p) {
2640 if (unlikely(p == RETRY_TASK))
2641 goto again;
dd41f596 2642 return p;
37e117c0 2643 }
dd41f596 2644 }
34f971f6
PZ
2645
2646 BUG(); /* the idle class will always have a runnable task */
dd41f596 2647}
1da177e4 2648
dd41f596 2649/*
c259e01a 2650 * __schedule() is the main scheduler function.
edde96ea
PE
2651 *
2652 * The main means of driving the scheduler and thus entering this function are:
2653 *
2654 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2655 *
2656 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2657 * paths. For example, see arch/x86/entry_64.S.
2658 *
2659 * To drive preemption between tasks, the scheduler sets the flag in timer
2660 * interrupt handler scheduler_tick().
2661 *
2662 * 3. Wakeups don't really cause entry into schedule(). They add a
2663 * task to the run-queue and that's it.
2664 *
2665 * Now, if the new task added to the run-queue preempts the current
2666 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2667 * called on the nearest possible occasion:
2668 *
2669 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2670 *
2671 * - in syscall or exception context, at the next outmost
2672 * preempt_enable(). (this might be as soon as the wake_up()'s
2673 * spin_unlock()!)
2674 *
2675 * - in IRQ context, return from interrupt-handler to
2676 * preemptible context
2677 *
2678 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2679 * then at the next:
2680 *
2681 * - cond_resched() call
2682 * - explicit schedule() call
2683 * - return from syscall or exception to user-space
2684 * - return from interrupt-handler to user-space
dd41f596 2685 */
c259e01a 2686static void __sched __schedule(void)
dd41f596
IM
2687{
2688 struct task_struct *prev, *next;
67ca7bde 2689 unsigned long *switch_count;
dd41f596 2690 struct rq *rq;
31656519 2691 int cpu;
dd41f596 2692
ff743345
PZ
2693need_resched:
2694 preempt_disable();
dd41f596
IM
2695 cpu = smp_processor_id();
2696 rq = cpu_rq(cpu);
25502a6c 2697 rcu_note_context_switch(cpu);
dd41f596 2698 prev = rq->curr;
dd41f596 2699
dd41f596 2700 schedule_debug(prev);
1da177e4 2701
31656519 2702 if (sched_feat(HRTICK))
f333fdc9 2703 hrtick_clear(rq);
8f4d37ec 2704
e0acd0a6
ON
2705 /*
2706 * Make sure that signal_pending_state()->signal_pending() below
2707 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2708 * done by the caller to avoid the race with signal_wake_up().
2709 */
2710 smp_mb__before_spinlock();
05fa785c 2711 raw_spin_lock_irq(&rq->lock);
1da177e4 2712
246d86b5 2713 switch_count = &prev->nivcsw;
1da177e4 2714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2715 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2716 prev->state = TASK_RUNNING;
21aa9af0 2717 } else {
2acca55e
PZ
2718 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2719 prev->on_rq = 0;
2720
21aa9af0 2721 /*
2acca55e
PZ
2722 * If a worker went to sleep, notify and ask workqueue
2723 * whether it wants to wake up a task to maintain
2724 * concurrency.
21aa9af0
TH
2725 */
2726 if (prev->flags & PF_WQ_WORKER) {
2727 struct task_struct *to_wakeup;
2728
2729 to_wakeup = wq_worker_sleeping(prev, cpu);
2730 if (to_wakeup)
2731 try_to_wake_up_local(to_wakeup);
2732 }
21aa9af0 2733 }
dd41f596 2734 switch_count = &prev->nvcsw;
1da177e4
LT
2735 }
2736
606dba2e
PZ
2737 if (prev->on_rq || rq->skip_clock_update < 0)
2738 update_rq_clock(rq);
2739
2740 next = pick_next_task(rq, prev);
f26f9aff 2741 clear_tsk_need_resched(prev);
f27dde8d 2742 clear_preempt_need_resched();
f26f9aff 2743 rq->skip_clock_update = 0;
1da177e4 2744
1da177e4 2745 if (likely(prev != next)) {
1da177e4
LT
2746 rq->nr_switches++;
2747 rq->curr = next;
2748 ++*switch_count;
2749
dd41f596 2750 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2751 /*
246d86b5
ON
2752 * The context switch have flipped the stack from under us
2753 * and restored the local variables which were saved when
2754 * this task called schedule() in the past. prev == current
2755 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2756 */
2757 cpu = smp_processor_id();
2758 rq = cpu_rq(cpu);
1da177e4 2759 } else
05fa785c 2760 raw_spin_unlock_irq(&rq->lock);
1da177e4 2761
3f029d3c 2762 post_schedule(rq);
1da177e4 2763
ba74c144 2764 sched_preempt_enable_no_resched();
ff743345 2765 if (need_resched())
1da177e4
LT
2766 goto need_resched;
2767}
c259e01a 2768
9c40cef2
TG
2769static inline void sched_submit_work(struct task_struct *tsk)
2770{
3c7d5184 2771 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2772 return;
2773 /*
2774 * If we are going to sleep and we have plugged IO queued,
2775 * make sure to submit it to avoid deadlocks.
2776 */
2777 if (blk_needs_flush_plug(tsk))
2778 blk_schedule_flush_plug(tsk);
2779}
2780
722a9f92 2781asmlinkage __visible void __sched schedule(void)
c259e01a 2782{
9c40cef2
TG
2783 struct task_struct *tsk = current;
2784
2785 sched_submit_work(tsk);
c259e01a
TG
2786 __schedule();
2787}
1da177e4
LT
2788EXPORT_SYMBOL(schedule);
2789
91d1aa43 2790#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2791asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2792{
2793 /*
2794 * If we come here after a random call to set_need_resched(),
2795 * or we have been woken up remotely but the IPI has not yet arrived,
2796 * we haven't yet exited the RCU idle mode. Do it here manually until
2797 * we find a better solution.
2798 */
91d1aa43 2799 user_exit();
20ab65e3 2800 schedule();
91d1aa43 2801 user_enter();
20ab65e3
FW
2802}
2803#endif
2804
c5491ea7
TG
2805/**
2806 * schedule_preempt_disabled - called with preemption disabled
2807 *
2808 * Returns with preemption disabled. Note: preempt_count must be 1
2809 */
2810void __sched schedule_preempt_disabled(void)
2811{
ba74c144 2812 sched_preempt_enable_no_resched();
c5491ea7
TG
2813 schedule();
2814 preempt_disable();
2815}
2816
1da177e4
LT
2817#ifdef CONFIG_PREEMPT
2818/*
2ed6e34f 2819 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2820 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2821 * occur there and call schedule directly.
2822 */
722a9f92 2823asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2824{
1da177e4
LT
2825 /*
2826 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2827 * we do not want to preempt the current task. Just return..
1da177e4 2828 */
fbb00b56 2829 if (likely(!preemptible()))
1da177e4
LT
2830 return;
2831
3a5c359a 2832 do {
bdb43806 2833 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2834 __schedule();
bdb43806 2835 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2836
3a5c359a
AK
2837 /*
2838 * Check again in case we missed a preemption opportunity
2839 * between schedule and now.
2840 */
2841 barrier();
5ed0cec0 2842 } while (need_resched());
1da177e4 2843}
1da177e4 2844EXPORT_SYMBOL(preempt_schedule);
32e475d7 2845#endif /* CONFIG_PREEMPT */
1da177e4
LT
2846
2847/*
2ed6e34f 2848 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2849 * off of irq context.
2850 * Note, that this is called and return with irqs disabled. This will
2851 * protect us against recursive calling from irq.
2852 */
722a9f92 2853asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2854{
b22366cd 2855 enum ctx_state prev_state;
6478d880 2856
2ed6e34f 2857 /* Catch callers which need to be fixed */
f27dde8d 2858 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2859
b22366cd
FW
2860 prev_state = exception_enter();
2861
3a5c359a 2862 do {
bdb43806 2863 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2864 local_irq_enable();
c259e01a 2865 __schedule();
3a5c359a 2866 local_irq_disable();
bdb43806 2867 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2868
3a5c359a
AK
2869 /*
2870 * Check again in case we missed a preemption opportunity
2871 * between schedule and now.
2872 */
2873 barrier();
5ed0cec0 2874 } while (need_resched());
b22366cd
FW
2875
2876 exception_exit(prev_state);
1da177e4
LT
2877}
2878
63859d4f 2879int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2880 void *key)
1da177e4 2881{
63859d4f 2882 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2883}
1da177e4
LT
2884EXPORT_SYMBOL(default_wake_function);
2885
b29739f9
IM
2886#ifdef CONFIG_RT_MUTEXES
2887
2888/*
2889 * rt_mutex_setprio - set the current priority of a task
2890 * @p: task
2891 * @prio: prio value (kernel-internal form)
2892 *
2893 * This function changes the 'effective' priority of a task. It does
2894 * not touch ->normal_prio like __setscheduler().
2895 *
c365c292
TG
2896 * Used by the rt_mutex code to implement priority inheritance
2897 * logic. Call site only calls if the priority of the task changed.
b29739f9 2898 */
36c8b586 2899void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2900{
2d3d891d 2901 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2902 struct rq *rq;
83ab0aa0 2903 const struct sched_class *prev_class;
b29739f9 2904
aab03e05 2905 BUG_ON(prio > MAX_PRIO);
b29739f9 2906
0122ec5b 2907 rq = __task_rq_lock(p);
b29739f9 2908
1c4dd99b
TG
2909 /*
2910 * Idle task boosting is a nono in general. There is one
2911 * exception, when PREEMPT_RT and NOHZ is active:
2912 *
2913 * The idle task calls get_next_timer_interrupt() and holds
2914 * the timer wheel base->lock on the CPU and another CPU wants
2915 * to access the timer (probably to cancel it). We can safely
2916 * ignore the boosting request, as the idle CPU runs this code
2917 * with interrupts disabled and will complete the lock
2918 * protected section without being interrupted. So there is no
2919 * real need to boost.
2920 */
2921 if (unlikely(p == rq->idle)) {
2922 WARN_ON(p != rq->curr);
2923 WARN_ON(p->pi_blocked_on);
2924 goto out_unlock;
2925 }
2926
a8027073 2927 trace_sched_pi_setprio(p, prio);
2d3d891d 2928 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2929 oldprio = p->prio;
83ab0aa0 2930 prev_class = p->sched_class;
fd2f4419 2931 on_rq = p->on_rq;
051a1d1a 2932 running = task_current(rq, p);
0e1f3483 2933 if (on_rq)
69be72c1 2934 dequeue_task(rq, p, 0);
0e1f3483
HS
2935 if (running)
2936 p->sched_class->put_prev_task(rq, p);
dd41f596 2937
2d3d891d
DF
2938 /*
2939 * Boosting condition are:
2940 * 1. -rt task is running and holds mutex A
2941 * --> -dl task blocks on mutex A
2942 *
2943 * 2. -dl task is running and holds mutex A
2944 * --> -dl task blocks on mutex A and could preempt the
2945 * running task
2946 */
2947 if (dl_prio(prio)) {
2948 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2949 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2950 p->dl.dl_boosted = 1;
2951 p->dl.dl_throttled = 0;
2952 enqueue_flag = ENQUEUE_REPLENISH;
2953 } else
2954 p->dl.dl_boosted = 0;
aab03e05 2955 p->sched_class = &dl_sched_class;
2d3d891d
DF
2956 } else if (rt_prio(prio)) {
2957 if (dl_prio(oldprio))
2958 p->dl.dl_boosted = 0;
2959 if (oldprio < prio)
2960 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2961 p->sched_class = &rt_sched_class;
2d3d891d
DF
2962 } else {
2963 if (dl_prio(oldprio))
2964 p->dl.dl_boosted = 0;
dd41f596 2965 p->sched_class = &fair_sched_class;
2d3d891d 2966 }
dd41f596 2967
b29739f9
IM
2968 p->prio = prio;
2969
0e1f3483
HS
2970 if (running)
2971 p->sched_class->set_curr_task(rq);
da7a735e 2972 if (on_rq)
2d3d891d 2973 enqueue_task(rq, p, enqueue_flag);
cb469845 2974
da7a735e 2975 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2976out_unlock:
0122ec5b 2977 __task_rq_unlock(rq);
b29739f9 2978}
b29739f9 2979#endif
d50dde5a 2980
36c8b586 2981void set_user_nice(struct task_struct *p, long nice)
1da177e4 2982{
dd41f596 2983 int old_prio, delta, on_rq;
1da177e4 2984 unsigned long flags;
70b97a7f 2985 struct rq *rq;
1da177e4 2986
75e45d51 2987 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
2988 return;
2989 /*
2990 * We have to be careful, if called from sys_setpriority(),
2991 * the task might be in the middle of scheduling on another CPU.
2992 */
2993 rq = task_rq_lock(p, &flags);
2994 /*
2995 * The RT priorities are set via sched_setscheduler(), but we still
2996 * allow the 'normal' nice value to be set - but as expected
2997 * it wont have any effect on scheduling until the task is
aab03e05 2998 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2999 */
aab03e05 3000 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3001 p->static_prio = NICE_TO_PRIO(nice);
3002 goto out_unlock;
3003 }
fd2f4419 3004 on_rq = p->on_rq;
c09595f6 3005 if (on_rq)
69be72c1 3006 dequeue_task(rq, p, 0);
1da177e4 3007
1da177e4 3008 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3009 set_load_weight(p);
b29739f9
IM
3010 old_prio = p->prio;
3011 p->prio = effective_prio(p);
3012 delta = p->prio - old_prio;
1da177e4 3013
dd41f596 3014 if (on_rq) {
371fd7e7 3015 enqueue_task(rq, p, 0);
1da177e4 3016 /*
d5f9f942
AM
3017 * If the task increased its priority or is running and
3018 * lowered its priority, then reschedule its CPU:
1da177e4 3019 */
d5f9f942 3020 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3021 resched_task(rq->curr);
3022 }
3023out_unlock:
0122ec5b 3024 task_rq_unlock(rq, p, &flags);
1da177e4 3025}
1da177e4
LT
3026EXPORT_SYMBOL(set_user_nice);
3027
e43379f1
MM
3028/*
3029 * can_nice - check if a task can reduce its nice value
3030 * @p: task
3031 * @nice: nice value
3032 */
36c8b586 3033int can_nice(const struct task_struct *p, const int nice)
e43379f1 3034{
024f4747
MM
3035 /* convert nice value [19,-20] to rlimit style value [1,40] */
3036 int nice_rlim = 20 - nice;
48f24c4d 3037
78d7d407 3038 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3039 capable(CAP_SYS_NICE));
3040}
3041
1da177e4
LT
3042#ifdef __ARCH_WANT_SYS_NICE
3043
3044/*
3045 * sys_nice - change the priority of the current process.
3046 * @increment: priority increment
3047 *
3048 * sys_setpriority is a more generic, but much slower function that
3049 * does similar things.
3050 */
5add95d4 3051SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3052{
48f24c4d 3053 long nice, retval;
1da177e4
LT
3054
3055 /*
3056 * Setpriority might change our priority at the same moment.
3057 * We don't have to worry. Conceptually one call occurs first
3058 * and we have a single winner.
3059 */
e43379f1
MM
3060 if (increment < -40)
3061 increment = -40;
1da177e4
LT
3062 if (increment > 40)
3063 increment = 40;
3064
d0ea0268 3065 nice = task_nice(current) + increment;
75e45d51
DY
3066 if (nice < MIN_NICE)
3067 nice = MIN_NICE;
3068 if (nice > MAX_NICE)
3069 nice = MAX_NICE;
1da177e4 3070
e43379f1
MM
3071 if (increment < 0 && !can_nice(current, nice))
3072 return -EPERM;
3073
1da177e4
LT
3074 retval = security_task_setnice(current, nice);
3075 if (retval)
3076 return retval;
3077
3078 set_user_nice(current, nice);
3079 return 0;
3080}
3081
3082#endif
3083
3084/**
3085 * task_prio - return the priority value of a given task.
3086 * @p: the task in question.
3087 *
e69f6186 3088 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3089 * RT tasks are offset by -200. Normal tasks are centered
3090 * around 0, value goes from -16 to +15.
3091 */
36c8b586 3092int task_prio(const struct task_struct *p)
1da177e4
LT
3093{
3094 return p->prio - MAX_RT_PRIO;
3095}
3096
1da177e4
LT
3097/**
3098 * idle_cpu - is a given cpu idle currently?
3099 * @cpu: the processor in question.
e69f6186
YB
3100 *
3101 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3102 */
3103int idle_cpu(int cpu)
3104{
908a3283
TG
3105 struct rq *rq = cpu_rq(cpu);
3106
3107 if (rq->curr != rq->idle)
3108 return 0;
3109
3110 if (rq->nr_running)
3111 return 0;
3112
3113#ifdef CONFIG_SMP
3114 if (!llist_empty(&rq->wake_list))
3115 return 0;
3116#endif
3117
3118 return 1;
1da177e4
LT
3119}
3120
1da177e4
LT
3121/**
3122 * idle_task - return the idle task for a given cpu.
3123 * @cpu: the processor in question.
e69f6186
YB
3124 *
3125 * Return: The idle task for the cpu @cpu.
1da177e4 3126 */
36c8b586 3127struct task_struct *idle_task(int cpu)
1da177e4
LT
3128{
3129 return cpu_rq(cpu)->idle;
3130}
3131
3132/**
3133 * find_process_by_pid - find a process with a matching PID value.
3134 * @pid: the pid in question.
e69f6186
YB
3135 *
3136 * The task of @pid, if found. %NULL otherwise.
1da177e4 3137 */
a9957449 3138static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3139{
228ebcbe 3140 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3141}
3142
aab03e05
DF
3143/*
3144 * This function initializes the sched_dl_entity of a newly becoming
3145 * SCHED_DEADLINE task.
3146 *
3147 * Only the static values are considered here, the actual runtime and the
3148 * absolute deadline will be properly calculated when the task is enqueued
3149 * for the first time with its new policy.
3150 */
3151static void
3152__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3153{
3154 struct sched_dl_entity *dl_se = &p->dl;
3155
3156 init_dl_task_timer(dl_se);
3157 dl_se->dl_runtime = attr->sched_runtime;
3158 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3159 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3160 dl_se->flags = attr->sched_flags;
332ac17e 3161 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3162 dl_se->dl_throttled = 0;
3163 dl_se->dl_new = 1;
5bfd126e 3164 dl_se->dl_yielded = 0;
aab03e05
DF
3165}
3166
c365c292
TG
3167static void __setscheduler_params(struct task_struct *p,
3168 const struct sched_attr *attr)
1da177e4 3169{
d50dde5a
DF
3170 int policy = attr->sched_policy;
3171
39fd8fd2
PZ
3172 if (policy == -1) /* setparam */
3173 policy = p->policy;
3174
1da177e4 3175 p->policy = policy;
d50dde5a 3176
aab03e05
DF
3177 if (dl_policy(policy))
3178 __setparam_dl(p, attr);
39fd8fd2 3179 else if (fair_policy(policy))
d50dde5a
DF
3180 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3181
39fd8fd2
PZ
3182 /*
3183 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3184 * !rt_policy. Always setting this ensures that things like
3185 * getparam()/getattr() don't report silly values for !rt tasks.
3186 */
3187 p->rt_priority = attr->sched_priority;
383afd09 3188 p->normal_prio = normal_prio(p);
c365c292
TG
3189 set_load_weight(p);
3190}
39fd8fd2 3191
c365c292
TG
3192/* Actually do priority change: must hold pi & rq lock. */
3193static void __setscheduler(struct rq *rq, struct task_struct *p,
3194 const struct sched_attr *attr)
3195{
3196 __setscheduler_params(p, attr);
d50dde5a 3197
383afd09
SR
3198 /*
3199 * If we get here, there was no pi waiters boosting the
3200 * task. It is safe to use the normal prio.
3201 */
3202 p->prio = normal_prio(p);
3203
aab03e05
DF
3204 if (dl_prio(p->prio))
3205 p->sched_class = &dl_sched_class;
3206 else if (rt_prio(p->prio))
ffd44db5
PZ
3207 p->sched_class = &rt_sched_class;
3208 else
3209 p->sched_class = &fair_sched_class;
1da177e4 3210}
aab03e05
DF
3211
3212static void
3213__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3214{
3215 struct sched_dl_entity *dl_se = &p->dl;
3216
3217 attr->sched_priority = p->rt_priority;
3218 attr->sched_runtime = dl_se->dl_runtime;
3219 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3220 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3221 attr->sched_flags = dl_se->flags;
3222}
3223
3224/*
3225 * This function validates the new parameters of a -deadline task.
3226 * We ask for the deadline not being zero, and greater or equal
755378a4 3227 * than the runtime, as well as the period of being zero or
332ac17e 3228 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3229 * user parameters are above the internal resolution of 1us (we
3230 * check sched_runtime only since it is always the smaller one) and
3231 * below 2^63 ns (we have to check both sched_deadline and
3232 * sched_period, as the latter can be zero).
aab03e05
DF
3233 */
3234static bool
3235__checkparam_dl(const struct sched_attr *attr)
3236{
b0827819
JL
3237 /* deadline != 0 */
3238 if (attr->sched_deadline == 0)
3239 return false;
3240
3241 /*
3242 * Since we truncate DL_SCALE bits, make sure we're at least
3243 * that big.
3244 */
3245 if (attr->sched_runtime < (1ULL << DL_SCALE))
3246 return false;
3247
3248 /*
3249 * Since we use the MSB for wrap-around and sign issues, make
3250 * sure it's not set (mind that period can be equal to zero).
3251 */
3252 if (attr->sched_deadline & (1ULL << 63) ||
3253 attr->sched_period & (1ULL << 63))
3254 return false;
3255
3256 /* runtime <= deadline <= period (if period != 0) */
3257 if ((attr->sched_period != 0 &&
3258 attr->sched_period < attr->sched_deadline) ||
3259 attr->sched_deadline < attr->sched_runtime)
3260 return false;
3261
3262 return true;
aab03e05
DF
3263}
3264
c69e8d9c
DH
3265/*
3266 * check the target process has a UID that matches the current process's
3267 */
3268static bool check_same_owner(struct task_struct *p)
3269{
3270 const struct cred *cred = current_cred(), *pcred;
3271 bool match;
3272
3273 rcu_read_lock();
3274 pcred = __task_cred(p);
9c806aa0
EB
3275 match = (uid_eq(cred->euid, pcred->euid) ||
3276 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3277 rcu_read_unlock();
3278 return match;
3279}
3280
d50dde5a
DF
3281static int __sched_setscheduler(struct task_struct *p,
3282 const struct sched_attr *attr,
3283 bool user)
1da177e4 3284{
383afd09
SR
3285 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3286 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3287 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3288 int policy = attr->sched_policy;
1da177e4 3289 unsigned long flags;
83ab0aa0 3290 const struct sched_class *prev_class;
70b97a7f 3291 struct rq *rq;
ca94c442 3292 int reset_on_fork;
1da177e4 3293
66e5393a
SR
3294 /* may grab non-irq protected spin_locks */
3295 BUG_ON(in_interrupt());
1da177e4
LT
3296recheck:
3297 /* double check policy once rq lock held */
ca94c442
LP
3298 if (policy < 0) {
3299 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3300 policy = oldpolicy = p->policy;
ca94c442 3301 } else {
7479f3c9 3302 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3303
aab03e05
DF
3304 if (policy != SCHED_DEADLINE &&
3305 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3306 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3307 policy != SCHED_IDLE)
3308 return -EINVAL;
3309 }
3310
7479f3c9
PZ
3311 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3312 return -EINVAL;
3313
1da177e4
LT
3314 /*
3315 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3316 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3317 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3318 */
0bb040a4 3319 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3320 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3321 return -EINVAL;
aab03e05
DF
3322 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3323 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3324 return -EINVAL;
3325
37e4ab3f
OC
3326 /*
3327 * Allow unprivileged RT tasks to decrease priority:
3328 */
961ccddd 3329 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3330 if (fair_policy(policy)) {
d0ea0268 3331 if (attr->sched_nice < task_nice(p) &&
eaad4513 3332 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3333 return -EPERM;
3334 }
3335
e05606d3 3336 if (rt_policy(policy)) {
a44702e8
ON
3337 unsigned long rlim_rtprio =
3338 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3339
3340 /* can't set/change the rt policy */
3341 if (policy != p->policy && !rlim_rtprio)
3342 return -EPERM;
3343
3344 /* can't increase priority */
d50dde5a
DF
3345 if (attr->sched_priority > p->rt_priority &&
3346 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3347 return -EPERM;
3348 }
c02aa73b 3349
d44753b8
JL
3350 /*
3351 * Can't set/change SCHED_DEADLINE policy at all for now
3352 * (safest behavior); in the future we would like to allow
3353 * unprivileged DL tasks to increase their relative deadline
3354 * or reduce their runtime (both ways reducing utilization)
3355 */
3356 if (dl_policy(policy))
3357 return -EPERM;
3358
dd41f596 3359 /*
c02aa73b
DH
3360 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3361 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3362 */
c02aa73b 3363 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3364 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3365 return -EPERM;
3366 }
5fe1d75f 3367
37e4ab3f 3368 /* can't change other user's priorities */
c69e8d9c 3369 if (!check_same_owner(p))
37e4ab3f 3370 return -EPERM;
ca94c442
LP
3371
3372 /* Normal users shall not reset the sched_reset_on_fork flag */
3373 if (p->sched_reset_on_fork && !reset_on_fork)
3374 return -EPERM;
37e4ab3f 3375 }
1da177e4 3376
725aad24 3377 if (user) {
b0ae1981 3378 retval = security_task_setscheduler(p);
725aad24
JF
3379 if (retval)
3380 return retval;
3381 }
3382
b29739f9
IM
3383 /*
3384 * make sure no PI-waiters arrive (or leave) while we are
3385 * changing the priority of the task:
0122ec5b 3386 *
25985edc 3387 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3388 * runqueue lock must be held.
3389 */
0122ec5b 3390 rq = task_rq_lock(p, &flags);
dc61b1d6 3391
34f971f6
PZ
3392 /*
3393 * Changing the policy of the stop threads its a very bad idea
3394 */
3395 if (p == rq->stop) {
0122ec5b 3396 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3397 return -EINVAL;
3398 }
3399
a51e9198 3400 /*
d6b1e911
TG
3401 * If not changing anything there's no need to proceed further,
3402 * but store a possible modification of reset_on_fork.
a51e9198 3403 */
d50dde5a 3404 if (unlikely(policy == p->policy)) {
d0ea0268 3405 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3406 goto change;
3407 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3408 goto change;
aab03e05
DF
3409 if (dl_policy(policy))
3410 goto change;
d50dde5a 3411
d6b1e911 3412 p->sched_reset_on_fork = reset_on_fork;
45afb173 3413 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3414 return 0;
3415 }
d50dde5a 3416change:
a51e9198 3417
dc61b1d6 3418 if (user) {
332ac17e 3419#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3420 /*
3421 * Do not allow realtime tasks into groups that have no runtime
3422 * assigned.
3423 */
3424 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3425 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3426 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3427 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3428 return -EPERM;
3429 }
dc61b1d6 3430#endif
332ac17e
DF
3431#ifdef CONFIG_SMP
3432 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3433 cpumask_t *span = rq->rd->span;
332ac17e
DF
3434
3435 /*
3436 * Don't allow tasks with an affinity mask smaller than
3437 * the entire root_domain to become SCHED_DEADLINE. We
3438 * will also fail if there's no bandwidth available.
3439 */
e4099a5e
PZ
3440 if (!cpumask_subset(span, &p->cpus_allowed) ||
3441 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3442 task_rq_unlock(rq, p, &flags);
3443 return -EPERM;
3444 }
3445 }
3446#endif
3447 }
dc61b1d6 3448
1da177e4
LT
3449 /* recheck policy now with rq lock held */
3450 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3451 policy = oldpolicy = -1;
0122ec5b 3452 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3453 goto recheck;
3454 }
332ac17e
DF
3455
3456 /*
3457 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3458 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3459 * is available.
3460 */
e4099a5e 3461 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3462 task_rq_unlock(rq, p, &flags);
3463 return -EBUSY;
3464 }
3465
c365c292
TG
3466 p->sched_reset_on_fork = reset_on_fork;
3467 oldprio = p->prio;
3468
3469 /*
3470 * Special case for priority boosted tasks.
3471 *
3472 * If the new priority is lower or equal (user space view)
3473 * than the current (boosted) priority, we just store the new
3474 * normal parameters and do not touch the scheduler class and
3475 * the runqueue. This will be done when the task deboost
3476 * itself.
3477 */
3478 if (rt_mutex_check_prio(p, newprio)) {
3479 __setscheduler_params(p, attr);
3480 task_rq_unlock(rq, p, &flags);
3481 return 0;
3482 }
3483
fd2f4419 3484 on_rq = p->on_rq;
051a1d1a 3485 running = task_current(rq, p);
0e1f3483 3486 if (on_rq)
4ca9b72b 3487 dequeue_task(rq, p, 0);
0e1f3483
HS
3488 if (running)
3489 p->sched_class->put_prev_task(rq, p);
f6b53205 3490
83ab0aa0 3491 prev_class = p->sched_class;
d50dde5a 3492 __setscheduler(rq, p, attr);
f6b53205 3493
0e1f3483
HS
3494 if (running)
3495 p->sched_class->set_curr_task(rq);
81a44c54
TG
3496 if (on_rq) {
3497 /*
3498 * We enqueue to tail when the priority of a task is
3499 * increased (user space view).
3500 */
3501 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3502 }
cb469845 3503
da7a735e 3504 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3505 task_rq_unlock(rq, p, &flags);
b29739f9 3506
95e02ca9
TG
3507 rt_mutex_adjust_pi(p);
3508
1da177e4
LT
3509 return 0;
3510}
961ccddd 3511
7479f3c9
PZ
3512static int _sched_setscheduler(struct task_struct *p, int policy,
3513 const struct sched_param *param, bool check)
3514{
3515 struct sched_attr attr = {
3516 .sched_policy = policy,
3517 .sched_priority = param->sched_priority,
3518 .sched_nice = PRIO_TO_NICE(p->static_prio),
3519 };
3520
3521 /*
3522 * Fixup the legacy SCHED_RESET_ON_FORK hack
3523 */
3524 if (policy & SCHED_RESET_ON_FORK) {
3525 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3526 policy &= ~SCHED_RESET_ON_FORK;
3527 attr.sched_policy = policy;
3528 }
3529
3530 return __sched_setscheduler(p, &attr, check);
3531}
961ccddd
RR
3532/**
3533 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3534 * @p: the task in question.
3535 * @policy: new policy.
3536 * @param: structure containing the new RT priority.
3537 *
e69f6186
YB
3538 * Return: 0 on success. An error code otherwise.
3539 *
961ccddd
RR
3540 * NOTE that the task may be already dead.
3541 */
3542int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3543 const struct sched_param *param)
961ccddd 3544{
7479f3c9 3545 return _sched_setscheduler(p, policy, param, true);
961ccddd 3546}
1da177e4
LT
3547EXPORT_SYMBOL_GPL(sched_setscheduler);
3548
d50dde5a
DF
3549int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3550{
3551 return __sched_setscheduler(p, attr, true);
3552}
3553EXPORT_SYMBOL_GPL(sched_setattr);
3554
961ccddd
RR
3555/**
3556 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3557 * @p: the task in question.
3558 * @policy: new policy.
3559 * @param: structure containing the new RT priority.
3560 *
3561 * Just like sched_setscheduler, only don't bother checking if the
3562 * current context has permission. For example, this is needed in
3563 * stop_machine(): we create temporary high priority worker threads,
3564 * but our caller might not have that capability.
e69f6186
YB
3565 *
3566 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3567 */
3568int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3569 const struct sched_param *param)
961ccddd 3570{
7479f3c9 3571 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3572}
3573
95cdf3b7
IM
3574static int
3575do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3576{
1da177e4
LT
3577 struct sched_param lparam;
3578 struct task_struct *p;
36c8b586 3579 int retval;
1da177e4
LT
3580
3581 if (!param || pid < 0)
3582 return -EINVAL;
3583 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3584 return -EFAULT;
5fe1d75f
ON
3585
3586 rcu_read_lock();
3587 retval = -ESRCH;
1da177e4 3588 p = find_process_by_pid(pid);
5fe1d75f
ON
3589 if (p != NULL)
3590 retval = sched_setscheduler(p, policy, &lparam);
3591 rcu_read_unlock();
36c8b586 3592
1da177e4
LT
3593 return retval;
3594}
3595
d50dde5a
DF
3596/*
3597 * Mimics kernel/events/core.c perf_copy_attr().
3598 */
3599static int sched_copy_attr(struct sched_attr __user *uattr,
3600 struct sched_attr *attr)
3601{
3602 u32 size;
3603 int ret;
3604
3605 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3606 return -EFAULT;
3607
3608 /*
3609 * zero the full structure, so that a short copy will be nice.
3610 */
3611 memset(attr, 0, sizeof(*attr));
3612
3613 ret = get_user(size, &uattr->size);
3614 if (ret)
3615 return ret;
3616
3617 if (size > PAGE_SIZE) /* silly large */
3618 goto err_size;
3619
3620 if (!size) /* abi compat */
3621 size = SCHED_ATTR_SIZE_VER0;
3622
3623 if (size < SCHED_ATTR_SIZE_VER0)
3624 goto err_size;
3625
3626 /*
3627 * If we're handed a bigger struct than we know of,
3628 * ensure all the unknown bits are 0 - i.e. new
3629 * user-space does not rely on any kernel feature
3630 * extensions we dont know about yet.
3631 */
3632 if (size > sizeof(*attr)) {
3633 unsigned char __user *addr;
3634 unsigned char __user *end;
3635 unsigned char val;
3636
3637 addr = (void __user *)uattr + sizeof(*attr);
3638 end = (void __user *)uattr + size;
3639
3640 for (; addr < end; addr++) {
3641 ret = get_user(val, addr);
3642 if (ret)
3643 return ret;
3644 if (val)
3645 goto err_size;
3646 }
3647 size = sizeof(*attr);
3648 }
3649
3650 ret = copy_from_user(attr, uattr, size);
3651 if (ret)
3652 return -EFAULT;
3653
3654 /*
3655 * XXX: do we want to be lenient like existing syscalls; or do we want
3656 * to be strict and return an error on out-of-bounds values?
3657 */
75e45d51 3658 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3659
e78c7bca 3660 return 0;
d50dde5a
DF
3661
3662err_size:
3663 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3664 return -E2BIG;
d50dde5a
DF
3665}
3666
1da177e4
LT
3667/**
3668 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3669 * @pid: the pid in question.
3670 * @policy: new policy.
3671 * @param: structure containing the new RT priority.
e69f6186
YB
3672 *
3673 * Return: 0 on success. An error code otherwise.
1da177e4 3674 */
5add95d4
HC
3675SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3676 struct sched_param __user *, param)
1da177e4 3677{
c21761f1
JB
3678 /* negative values for policy are not valid */
3679 if (policy < 0)
3680 return -EINVAL;
3681
1da177e4
LT
3682 return do_sched_setscheduler(pid, policy, param);
3683}
3684
3685/**
3686 * sys_sched_setparam - set/change the RT priority of a thread
3687 * @pid: the pid in question.
3688 * @param: structure containing the new RT priority.
e69f6186
YB
3689 *
3690 * Return: 0 on success. An error code otherwise.
1da177e4 3691 */
5add95d4 3692SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3693{
3694 return do_sched_setscheduler(pid, -1, param);
3695}
3696
d50dde5a
DF
3697/**
3698 * sys_sched_setattr - same as above, but with extended sched_attr
3699 * @pid: the pid in question.
5778fccf 3700 * @uattr: structure containing the extended parameters.
db66d756 3701 * @flags: for future extension.
d50dde5a 3702 */
6d35ab48
PZ
3703SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3704 unsigned int, flags)
d50dde5a
DF
3705{
3706 struct sched_attr attr;
3707 struct task_struct *p;
3708 int retval;
3709
6d35ab48 3710 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3711 return -EINVAL;
3712
143cf23d
MK
3713 retval = sched_copy_attr(uattr, &attr);
3714 if (retval)
3715 return retval;
d50dde5a 3716
dbdb2275
PZ
3717 if (attr.sched_policy < 0)
3718 return -EINVAL;
d50dde5a
DF
3719
3720 rcu_read_lock();
3721 retval = -ESRCH;
3722 p = find_process_by_pid(pid);
3723 if (p != NULL)
3724 retval = sched_setattr(p, &attr);
3725 rcu_read_unlock();
3726
3727 return retval;
3728}
3729
1da177e4
LT
3730/**
3731 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3732 * @pid: the pid in question.
e69f6186
YB
3733 *
3734 * Return: On success, the policy of the thread. Otherwise, a negative error
3735 * code.
1da177e4 3736 */
5add95d4 3737SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3738{
36c8b586 3739 struct task_struct *p;
3a5c359a 3740 int retval;
1da177e4
LT
3741
3742 if (pid < 0)
3a5c359a 3743 return -EINVAL;
1da177e4
LT
3744
3745 retval = -ESRCH;
5fe85be0 3746 rcu_read_lock();
1da177e4
LT
3747 p = find_process_by_pid(pid);
3748 if (p) {
3749 retval = security_task_getscheduler(p);
3750 if (!retval)
ca94c442
LP
3751 retval = p->policy
3752 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3753 }
5fe85be0 3754 rcu_read_unlock();
1da177e4
LT
3755 return retval;
3756}
3757
3758/**
ca94c442 3759 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3760 * @pid: the pid in question.
3761 * @param: structure containing the RT priority.
e69f6186
YB
3762 *
3763 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3764 * code.
1da177e4 3765 */
5add95d4 3766SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3767{
ce5f7f82 3768 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3769 struct task_struct *p;
3a5c359a 3770 int retval;
1da177e4
LT
3771
3772 if (!param || pid < 0)
3a5c359a 3773 return -EINVAL;
1da177e4 3774
5fe85be0 3775 rcu_read_lock();
1da177e4
LT
3776 p = find_process_by_pid(pid);
3777 retval = -ESRCH;
3778 if (!p)
3779 goto out_unlock;
3780
3781 retval = security_task_getscheduler(p);
3782 if (retval)
3783 goto out_unlock;
3784
ce5f7f82
PZ
3785 if (task_has_rt_policy(p))
3786 lp.sched_priority = p->rt_priority;
5fe85be0 3787 rcu_read_unlock();
1da177e4
LT
3788
3789 /*
3790 * This one might sleep, we cannot do it with a spinlock held ...
3791 */
3792 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3793
1da177e4
LT
3794 return retval;
3795
3796out_unlock:
5fe85be0 3797 rcu_read_unlock();
1da177e4
LT
3798 return retval;
3799}
3800
d50dde5a
DF
3801static int sched_read_attr(struct sched_attr __user *uattr,
3802 struct sched_attr *attr,
3803 unsigned int usize)
3804{
3805 int ret;
3806
3807 if (!access_ok(VERIFY_WRITE, uattr, usize))
3808 return -EFAULT;
3809
3810 /*
3811 * If we're handed a smaller struct than we know of,
3812 * ensure all the unknown bits are 0 - i.e. old
3813 * user-space does not get uncomplete information.
3814 */
3815 if (usize < sizeof(*attr)) {
3816 unsigned char *addr;
3817 unsigned char *end;
3818
3819 addr = (void *)attr + usize;
3820 end = (void *)attr + sizeof(*attr);
3821
3822 for (; addr < end; addr++) {
3823 if (*addr)
22400674 3824 return -EFBIG;
d50dde5a
DF
3825 }
3826
3827 attr->size = usize;
3828 }
3829
4efbc454 3830 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3831 if (ret)
3832 return -EFAULT;
3833
22400674 3834 return 0;
d50dde5a
DF
3835}
3836
3837/**
aab03e05 3838 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3839 * @pid: the pid in question.
5778fccf 3840 * @uattr: structure containing the extended parameters.
d50dde5a 3841 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3842 * @flags: for future extension.
d50dde5a 3843 */
6d35ab48
PZ
3844SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3845 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3846{
3847 struct sched_attr attr = {
3848 .size = sizeof(struct sched_attr),
3849 };
3850 struct task_struct *p;
3851 int retval;
3852
3853 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3854 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3855 return -EINVAL;
3856
3857 rcu_read_lock();
3858 p = find_process_by_pid(pid);
3859 retval = -ESRCH;
3860 if (!p)
3861 goto out_unlock;
3862
3863 retval = security_task_getscheduler(p);
3864 if (retval)
3865 goto out_unlock;
3866
3867 attr.sched_policy = p->policy;
7479f3c9
PZ
3868 if (p->sched_reset_on_fork)
3869 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3870 if (task_has_dl_policy(p))
3871 __getparam_dl(p, &attr);
3872 else if (task_has_rt_policy(p))
d50dde5a
DF
3873 attr.sched_priority = p->rt_priority;
3874 else
d0ea0268 3875 attr.sched_nice = task_nice(p);
d50dde5a
DF
3876
3877 rcu_read_unlock();
3878
3879 retval = sched_read_attr(uattr, &attr, size);
3880 return retval;
3881
3882out_unlock:
3883 rcu_read_unlock();
3884 return retval;
3885}
3886
96f874e2 3887long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3888{
5a16f3d3 3889 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3890 struct task_struct *p;
3891 int retval;
1da177e4 3892
23f5d142 3893 rcu_read_lock();
1da177e4
LT
3894
3895 p = find_process_by_pid(pid);
3896 if (!p) {
23f5d142 3897 rcu_read_unlock();
1da177e4
LT
3898 return -ESRCH;
3899 }
3900
23f5d142 3901 /* Prevent p going away */
1da177e4 3902 get_task_struct(p);
23f5d142 3903 rcu_read_unlock();
1da177e4 3904
14a40ffc
TH
3905 if (p->flags & PF_NO_SETAFFINITY) {
3906 retval = -EINVAL;
3907 goto out_put_task;
3908 }
5a16f3d3
RR
3909 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3910 retval = -ENOMEM;
3911 goto out_put_task;
3912 }
3913 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3914 retval = -ENOMEM;
3915 goto out_free_cpus_allowed;
3916 }
1da177e4 3917 retval = -EPERM;
4c44aaaf
EB
3918 if (!check_same_owner(p)) {
3919 rcu_read_lock();
3920 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3921 rcu_read_unlock();
3922 goto out_unlock;
3923 }
3924 rcu_read_unlock();
3925 }
1da177e4 3926
b0ae1981 3927 retval = security_task_setscheduler(p);
e7834f8f
DQ
3928 if (retval)
3929 goto out_unlock;
3930
e4099a5e
PZ
3931
3932 cpuset_cpus_allowed(p, cpus_allowed);
3933 cpumask_and(new_mask, in_mask, cpus_allowed);
3934
332ac17e
DF
3935 /*
3936 * Since bandwidth control happens on root_domain basis,
3937 * if admission test is enabled, we only admit -deadline
3938 * tasks allowed to run on all the CPUs in the task's
3939 * root_domain.
3940 */
3941#ifdef CONFIG_SMP
3942 if (task_has_dl_policy(p)) {
3943 const struct cpumask *span = task_rq(p)->rd->span;
3944
e4099a5e 3945 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3946 retval = -EBUSY;
3947 goto out_unlock;
3948 }
3949 }
3950#endif
49246274 3951again:
5a16f3d3 3952 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3953
8707d8b8 3954 if (!retval) {
5a16f3d3
RR
3955 cpuset_cpus_allowed(p, cpus_allowed);
3956 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3957 /*
3958 * We must have raced with a concurrent cpuset
3959 * update. Just reset the cpus_allowed to the
3960 * cpuset's cpus_allowed
3961 */
5a16f3d3 3962 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3963 goto again;
3964 }
3965 }
1da177e4 3966out_unlock:
5a16f3d3
RR
3967 free_cpumask_var(new_mask);
3968out_free_cpus_allowed:
3969 free_cpumask_var(cpus_allowed);
3970out_put_task:
1da177e4 3971 put_task_struct(p);
1da177e4
LT
3972 return retval;
3973}
3974
3975static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3976 struct cpumask *new_mask)
1da177e4 3977{
96f874e2
RR
3978 if (len < cpumask_size())
3979 cpumask_clear(new_mask);
3980 else if (len > cpumask_size())
3981 len = cpumask_size();
3982
1da177e4
LT
3983 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3984}
3985
3986/**
3987 * sys_sched_setaffinity - set the cpu affinity of a process
3988 * @pid: pid of the process
3989 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3990 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3991 *
3992 * Return: 0 on success. An error code otherwise.
1da177e4 3993 */
5add95d4
HC
3994SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3995 unsigned long __user *, user_mask_ptr)
1da177e4 3996{
5a16f3d3 3997 cpumask_var_t new_mask;
1da177e4
LT
3998 int retval;
3999
5a16f3d3
RR
4000 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4001 return -ENOMEM;
1da177e4 4002
5a16f3d3
RR
4003 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4004 if (retval == 0)
4005 retval = sched_setaffinity(pid, new_mask);
4006 free_cpumask_var(new_mask);
4007 return retval;
1da177e4
LT
4008}
4009
96f874e2 4010long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4011{
36c8b586 4012 struct task_struct *p;
31605683 4013 unsigned long flags;
1da177e4 4014 int retval;
1da177e4 4015
23f5d142 4016 rcu_read_lock();
1da177e4
LT
4017
4018 retval = -ESRCH;
4019 p = find_process_by_pid(pid);
4020 if (!p)
4021 goto out_unlock;
4022
e7834f8f
DQ
4023 retval = security_task_getscheduler(p);
4024 if (retval)
4025 goto out_unlock;
4026
013fdb80 4027 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4028 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4029 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4030
4031out_unlock:
23f5d142 4032 rcu_read_unlock();
1da177e4 4033
9531b62f 4034 return retval;
1da177e4
LT
4035}
4036
4037/**
4038 * sys_sched_getaffinity - get the cpu affinity of a process
4039 * @pid: pid of the process
4040 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4041 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4042 *
4043 * Return: 0 on success. An error code otherwise.
1da177e4 4044 */
5add95d4
HC
4045SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4046 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4047{
4048 int ret;
f17c8607 4049 cpumask_var_t mask;
1da177e4 4050
84fba5ec 4051 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4052 return -EINVAL;
4053 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4054 return -EINVAL;
4055
f17c8607
RR
4056 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4057 return -ENOMEM;
1da177e4 4058
f17c8607
RR
4059 ret = sched_getaffinity(pid, mask);
4060 if (ret == 0) {
8bc037fb 4061 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4062
4063 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4064 ret = -EFAULT;
4065 else
cd3d8031 4066 ret = retlen;
f17c8607
RR
4067 }
4068 free_cpumask_var(mask);
1da177e4 4069
f17c8607 4070 return ret;
1da177e4
LT
4071}
4072
4073/**
4074 * sys_sched_yield - yield the current processor to other threads.
4075 *
dd41f596
IM
4076 * This function yields the current CPU to other tasks. If there are no
4077 * other threads running on this CPU then this function will return.
e69f6186
YB
4078 *
4079 * Return: 0.
1da177e4 4080 */
5add95d4 4081SYSCALL_DEFINE0(sched_yield)
1da177e4 4082{
70b97a7f 4083 struct rq *rq = this_rq_lock();
1da177e4 4084
2d72376b 4085 schedstat_inc(rq, yld_count);
4530d7ab 4086 current->sched_class->yield_task(rq);
1da177e4
LT
4087
4088 /*
4089 * Since we are going to call schedule() anyway, there's
4090 * no need to preempt or enable interrupts:
4091 */
4092 __release(rq->lock);
8a25d5de 4093 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4094 do_raw_spin_unlock(&rq->lock);
ba74c144 4095 sched_preempt_enable_no_resched();
1da177e4
LT
4096
4097 schedule();
4098
4099 return 0;
4100}
4101
e7b38404 4102static void __cond_resched(void)
1da177e4 4103{
bdb43806 4104 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4105 __schedule();
bdb43806 4106 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4107}
4108
02b67cc3 4109int __sched _cond_resched(void)
1da177e4 4110{
d86ee480 4111 if (should_resched()) {
1da177e4
LT
4112 __cond_resched();
4113 return 1;
4114 }
4115 return 0;
4116}
02b67cc3 4117EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4118
4119/*
613afbf8 4120 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4121 * call schedule, and on return reacquire the lock.
4122 *
41a2d6cf 4123 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4124 * operations here to prevent schedule() from being called twice (once via
4125 * spin_unlock(), once by hand).
4126 */
613afbf8 4127int __cond_resched_lock(spinlock_t *lock)
1da177e4 4128{
d86ee480 4129 int resched = should_resched();
6df3cecb
JK
4130 int ret = 0;
4131
f607c668
PZ
4132 lockdep_assert_held(lock);
4133
95c354fe 4134 if (spin_needbreak(lock) || resched) {
1da177e4 4135 spin_unlock(lock);
d86ee480 4136 if (resched)
95c354fe
NP
4137 __cond_resched();
4138 else
4139 cpu_relax();
6df3cecb 4140 ret = 1;
1da177e4 4141 spin_lock(lock);
1da177e4 4142 }
6df3cecb 4143 return ret;
1da177e4 4144}
613afbf8 4145EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4146
613afbf8 4147int __sched __cond_resched_softirq(void)
1da177e4
LT
4148{
4149 BUG_ON(!in_softirq());
4150
d86ee480 4151 if (should_resched()) {
98d82567 4152 local_bh_enable();
1da177e4
LT
4153 __cond_resched();
4154 local_bh_disable();
4155 return 1;
4156 }
4157 return 0;
4158}
613afbf8 4159EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4160
1da177e4
LT
4161/**
4162 * yield - yield the current processor to other threads.
4163 *
8e3fabfd
PZ
4164 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4165 *
4166 * The scheduler is at all times free to pick the calling task as the most
4167 * eligible task to run, if removing the yield() call from your code breaks
4168 * it, its already broken.
4169 *
4170 * Typical broken usage is:
4171 *
4172 * while (!event)
4173 * yield();
4174 *
4175 * where one assumes that yield() will let 'the other' process run that will
4176 * make event true. If the current task is a SCHED_FIFO task that will never
4177 * happen. Never use yield() as a progress guarantee!!
4178 *
4179 * If you want to use yield() to wait for something, use wait_event().
4180 * If you want to use yield() to be 'nice' for others, use cond_resched().
4181 * If you still want to use yield(), do not!
1da177e4
LT
4182 */
4183void __sched yield(void)
4184{
4185 set_current_state(TASK_RUNNING);
4186 sys_sched_yield();
4187}
1da177e4
LT
4188EXPORT_SYMBOL(yield);
4189
d95f4122
MG
4190/**
4191 * yield_to - yield the current processor to another thread in
4192 * your thread group, or accelerate that thread toward the
4193 * processor it's on.
16addf95
RD
4194 * @p: target task
4195 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4196 *
4197 * It's the caller's job to ensure that the target task struct
4198 * can't go away on us before we can do any checks.
4199 *
e69f6186 4200 * Return:
7b270f60
PZ
4201 * true (>0) if we indeed boosted the target task.
4202 * false (0) if we failed to boost the target.
4203 * -ESRCH if there's no task to yield to.
d95f4122
MG
4204 */
4205bool __sched yield_to(struct task_struct *p, bool preempt)
4206{
4207 struct task_struct *curr = current;
4208 struct rq *rq, *p_rq;
4209 unsigned long flags;
c3c18640 4210 int yielded = 0;
d95f4122
MG
4211
4212 local_irq_save(flags);
4213 rq = this_rq();
4214
4215again:
4216 p_rq = task_rq(p);
7b270f60
PZ
4217 /*
4218 * If we're the only runnable task on the rq and target rq also
4219 * has only one task, there's absolutely no point in yielding.
4220 */
4221 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4222 yielded = -ESRCH;
4223 goto out_irq;
4224 }
4225
d95f4122 4226 double_rq_lock(rq, p_rq);
39e24d8f 4227 if (task_rq(p) != p_rq) {
d95f4122
MG
4228 double_rq_unlock(rq, p_rq);
4229 goto again;
4230 }
4231
4232 if (!curr->sched_class->yield_to_task)
7b270f60 4233 goto out_unlock;
d95f4122
MG
4234
4235 if (curr->sched_class != p->sched_class)
7b270f60 4236 goto out_unlock;
d95f4122
MG
4237
4238 if (task_running(p_rq, p) || p->state)
7b270f60 4239 goto out_unlock;
d95f4122
MG
4240
4241 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4242 if (yielded) {
d95f4122 4243 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4244 /*
4245 * Make p's CPU reschedule; pick_next_entity takes care of
4246 * fairness.
4247 */
4248 if (preempt && rq != p_rq)
4249 resched_task(p_rq->curr);
4250 }
d95f4122 4251
7b270f60 4252out_unlock:
d95f4122 4253 double_rq_unlock(rq, p_rq);
7b270f60 4254out_irq:
d95f4122
MG
4255 local_irq_restore(flags);
4256
7b270f60 4257 if (yielded > 0)
d95f4122
MG
4258 schedule();
4259
4260 return yielded;
4261}
4262EXPORT_SYMBOL_GPL(yield_to);
4263
1da177e4 4264/*
41a2d6cf 4265 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4266 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4267 */
4268void __sched io_schedule(void)
4269{
54d35f29 4270 struct rq *rq = raw_rq();
1da177e4 4271
0ff92245 4272 delayacct_blkio_start();
1da177e4 4273 atomic_inc(&rq->nr_iowait);
73c10101 4274 blk_flush_plug(current);
8f0dfc34 4275 current->in_iowait = 1;
1da177e4 4276 schedule();
8f0dfc34 4277 current->in_iowait = 0;
1da177e4 4278 atomic_dec(&rq->nr_iowait);
0ff92245 4279 delayacct_blkio_end();
1da177e4 4280}
1da177e4
LT
4281EXPORT_SYMBOL(io_schedule);
4282
4283long __sched io_schedule_timeout(long timeout)
4284{
54d35f29 4285 struct rq *rq = raw_rq();
1da177e4
LT
4286 long ret;
4287
0ff92245 4288 delayacct_blkio_start();
1da177e4 4289 atomic_inc(&rq->nr_iowait);
73c10101 4290 blk_flush_plug(current);
8f0dfc34 4291 current->in_iowait = 1;
1da177e4 4292 ret = schedule_timeout(timeout);
8f0dfc34 4293 current->in_iowait = 0;
1da177e4 4294 atomic_dec(&rq->nr_iowait);
0ff92245 4295 delayacct_blkio_end();
1da177e4
LT
4296 return ret;
4297}
4298
4299/**
4300 * sys_sched_get_priority_max - return maximum RT priority.
4301 * @policy: scheduling class.
4302 *
e69f6186
YB
4303 * Return: On success, this syscall returns the maximum
4304 * rt_priority that can be used by a given scheduling class.
4305 * On failure, a negative error code is returned.
1da177e4 4306 */
5add95d4 4307SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4308{
4309 int ret = -EINVAL;
4310
4311 switch (policy) {
4312 case SCHED_FIFO:
4313 case SCHED_RR:
4314 ret = MAX_USER_RT_PRIO-1;
4315 break;
aab03e05 4316 case SCHED_DEADLINE:
1da177e4 4317 case SCHED_NORMAL:
b0a9499c 4318 case SCHED_BATCH:
dd41f596 4319 case SCHED_IDLE:
1da177e4
LT
4320 ret = 0;
4321 break;
4322 }
4323 return ret;
4324}
4325
4326/**
4327 * sys_sched_get_priority_min - return minimum RT priority.
4328 * @policy: scheduling class.
4329 *
e69f6186
YB
4330 * Return: On success, this syscall returns the minimum
4331 * rt_priority that can be used by a given scheduling class.
4332 * On failure, a negative error code is returned.
1da177e4 4333 */
5add95d4 4334SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4335{
4336 int ret = -EINVAL;
4337
4338 switch (policy) {
4339 case SCHED_FIFO:
4340 case SCHED_RR:
4341 ret = 1;
4342 break;
aab03e05 4343 case SCHED_DEADLINE:
1da177e4 4344 case SCHED_NORMAL:
b0a9499c 4345 case SCHED_BATCH:
dd41f596 4346 case SCHED_IDLE:
1da177e4
LT
4347 ret = 0;
4348 }
4349 return ret;
4350}
4351
4352/**
4353 * sys_sched_rr_get_interval - return the default timeslice of a process.
4354 * @pid: pid of the process.
4355 * @interval: userspace pointer to the timeslice value.
4356 *
4357 * this syscall writes the default timeslice value of a given process
4358 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4359 *
4360 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4361 * an error code.
1da177e4 4362 */
17da2bd9 4363SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4364 struct timespec __user *, interval)
1da177e4 4365{
36c8b586 4366 struct task_struct *p;
a4ec24b4 4367 unsigned int time_slice;
dba091b9
TG
4368 unsigned long flags;
4369 struct rq *rq;
3a5c359a 4370 int retval;
1da177e4 4371 struct timespec t;
1da177e4
LT
4372
4373 if (pid < 0)
3a5c359a 4374 return -EINVAL;
1da177e4
LT
4375
4376 retval = -ESRCH;
1a551ae7 4377 rcu_read_lock();
1da177e4
LT
4378 p = find_process_by_pid(pid);
4379 if (!p)
4380 goto out_unlock;
4381
4382 retval = security_task_getscheduler(p);
4383 if (retval)
4384 goto out_unlock;
4385
dba091b9 4386 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4387 time_slice = 0;
4388 if (p->sched_class->get_rr_interval)
4389 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4390 task_rq_unlock(rq, p, &flags);
a4ec24b4 4391
1a551ae7 4392 rcu_read_unlock();
a4ec24b4 4393 jiffies_to_timespec(time_slice, &t);
1da177e4 4394 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4395 return retval;
3a5c359a 4396
1da177e4 4397out_unlock:
1a551ae7 4398 rcu_read_unlock();
1da177e4
LT
4399 return retval;
4400}
4401
7c731e0a 4402static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4403
82a1fcb9 4404void sched_show_task(struct task_struct *p)
1da177e4 4405{
1da177e4 4406 unsigned long free = 0;
4e79752c 4407 int ppid;
36c8b586 4408 unsigned state;
1da177e4 4409
1da177e4 4410 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4411 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4412 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4413#if BITS_PER_LONG == 32
1da177e4 4414 if (state == TASK_RUNNING)
3df0fc5b 4415 printk(KERN_CONT " running ");
1da177e4 4416 else
3df0fc5b 4417 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4418#else
4419 if (state == TASK_RUNNING)
3df0fc5b 4420 printk(KERN_CONT " running task ");
1da177e4 4421 else
3df0fc5b 4422 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4423#endif
4424#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4425 free = stack_not_used(p);
1da177e4 4426#endif
4e79752c
PM
4427 rcu_read_lock();
4428 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4429 rcu_read_unlock();
3df0fc5b 4430 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4431 task_pid_nr(p), ppid,
aa47b7e0 4432 (unsigned long)task_thread_info(p)->flags);
1da177e4 4433
3d1cb205 4434 print_worker_info(KERN_INFO, p);
5fb5e6de 4435 show_stack(p, NULL);
1da177e4
LT
4436}
4437
e59e2ae2 4438void show_state_filter(unsigned long state_filter)
1da177e4 4439{
36c8b586 4440 struct task_struct *g, *p;
1da177e4 4441
4bd77321 4442#if BITS_PER_LONG == 32
3df0fc5b
PZ
4443 printk(KERN_INFO
4444 " task PC stack pid father\n");
1da177e4 4445#else
3df0fc5b
PZ
4446 printk(KERN_INFO
4447 " task PC stack pid father\n");
1da177e4 4448#endif
510f5acc 4449 rcu_read_lock();
1da177e4
LT
4450 do_each_thread(g, p) {
4451 /*
4452 * reset the NMI-timeout, listing all files on a slow
25985edc 4453 * console might take a lot of time:
1da177e4
LT
4454 */
4455 touch_nmi_watchdog();
39bc89fd 4456 if (!state_filter || (p->state & state_filter))
82a1fcb9 4457 sched_show_task(p);
1da177e4
LT
4458 } while_each_thread(g, p);
4459
04c9167f
JF
4460 touch_all_softlockup_watchdogs();
4461
dd41f596
IM
4462#ifdef CONFIG_SCHED_DEBUG
4463 sysrq_sched_debug_show();
4464#endif
510f5acc 4465 rcu_read_unlock();
e59e2ae2
IM
4466 /*
4467 * Only show locks if all tasks are dumped:
4468 */
93335a21 4469 if (!state_filter)
e59e2ae2 4470 debug_show_all_locks();
1da177e4
LT
4471}
4472
0db0628d 4473void init_idle_bootup_task(struct task_struct *idle)
1df21055 4474{
dd41f596 4475 idle->sched_class = &idle_sched_class;
1df21055
IM
4476}
4477
f340c0d1
IM
4478/**
4479 * init_idle - set up an idle thread for a given CPU
4480 * @idle: task in question
4481 * @cpu: cpu the idle task belongs to
4482 *
4483 * NOTE: this function does not set the idle thread's NEED_RESCHED
4484 * flag, to make booting more robust.
4485 */
0db0628d 4486void init_idle(struct task_struct *idle, int cpu)
1da177e4 4487{
70b97a7f 4488 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4489 unsigned long flags;
4490
05fa785c 4491 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4492
5e1576ed 4493 __sched_fork(0, idle);
06b83b5f 4494 idle->state = TASK_RUNNING;
dd41f596
IM
4495 idle->se.exec_start = sched_clock();
4496
1e1b6c51 4497 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4498 /*
4499 * We're having a chicken and egg problem, even though we are
4500 * holding rq->lock, the cpu isn't yet set to this cpu so the
4501 * lockdep check in task_group() will fail.
4502 *
4503 * Similar case to sched_fork(). / Alternatively we could
4504 * use task_rq_lock() here and obtain the other rq->lock.
4505 *
4506 * Silence PROVE_RCU
4507 */
4508 rcu_read_lock();
dd41f596 4509 __set_task_cpu(idle, cpu);
6506cf6c 4510 rcu_read_unlock();
1da177e4 4511
1da177e4 4512 rq->curr = rq->idle = idle;
77177856 4513 idle->on_rq = 1;
3ca7a440
PZ
4514#if defined(CONFIG_SMP)
4515 idle->on_cpu = 1;
4866cde0 4516#endif
05fa785c 4517 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4518
4519 /* Set the preempt count _outside_ the spinlocks! */
01028747 4520 init_idle_preempt_count(idle, cpu);
55cd5340 4521
dd41f596
IM
4522 /*
4523 * The idle tasks have their own, simple scheduling class:
4524 */
4525 idle->sched_class = &idle_sched_class;
868baf07 4526 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4527 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4528#if defined(CONFIG_SMP)
4529 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4530#endif
19978ca6
IM
4531}
4532
1da177e4 4533#ifdef CONFIG_SMP
1e1b6c51
KM
4534void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4535{
4536 if (p->sched_class && p->sched_class->set_cpus_allowed)
4537 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4538
4539 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4540 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4541}
4542
1da177e4
LT
4543/*
4544 * This is how migration works:
4545 *
969c7921
TH
4546 * 1) we invoke migration_cpu_stop() on the target CPU using
4547 * stop_one_cpu().
4548 * 2) stopper starts to run (implicitly forcing the migrated thread
4549 * off the CPU)
4550 * 3) it checks whether the migrated task is still in the wrong runqueue.
4551 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4552 * it and puts it into the right queue.
969c7921
TH
4553 * 5) stopper completes and stop_one_cpu() returns and the migration
4554 * is done.
1da177e4
LT
4555 */
4556
4557/*
4558 * Change a given task's CPU affinity. Migrate the thread to a
4559 * proper CPU and schedule it away if the CPU it's executing on
4560 * is removed from the allowed bitmask.
4561 *
4562 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4563 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4564 * call is not atomic; no spinlocks may be held.
4565 */
96f874e2 4566int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4567{
4568 unsigned long flags;
70b97a7f 4569 struct rq *rq;
969c7921 4570 unsigned int dest_cpu;
48f24c4d 4571 int ret = 0;
1da177e4
LT
4572
4573 rq = task_rq_lock(p, &flags);
e2912009 4574
db44fc01
YZ
4575 if (cpumask_equal(&p->cpus_allowed, new_mask))
4576 goto out;
4577
6ad4c188 4578 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4579 ret = -EINVAL;
4580 goto out;
4581 }
4582
1e1b6c51 4583 do_set_cpus_allowed(p, new_mask);
73fe6aae 4584
1da177e4 4585 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4586 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4587 goto out;
4588
969c7921 4589 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4590 if (p->on_rq) {
969c7921 4591 struct migration_arg arg = { p, dest_cpu };
1da177e4 4592 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4593 task_rq_unlock(rq, p, &flags);
969c7921 4594 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4595 tlb_migrate_finish(p->mm);
4596 return 0;
4597 }
4598out:
0122ec5b 4599 task_rq_unlock(rq, p, &flags);
48f24c4d 4600
1da177e4
LT
4601 return ret;
4602}
cd8ba7cd 4603EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4604
4605/*
41a2d6cf 4606 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4607 * this because either it can't run here any more (set_cpus_allowed()
4608 * away from this CPU, or CPU going down), or because we're
4609 * attempting to rebalance this task on exec (sched_exec).
4610 *
4611 * So we race with normal scheduler movements, but that's OK, as long
4612 * as the task is no longer on this CPU.
efc30814
KK
4613 *
4614 * Returns non-zero if task was successfully migrated.
1da177e4 4615 */
efc30814 4616static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4617{
70b97a7f 4618 struct rq *rq_dest, *rq_src;
e2912009 4619 int ret = 0;
1da177e4 4620
e761b772 4621 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4622 return ret;
1da177e4
LT
4623
4624 rq_src = cpu_rq(src_cpu);
4625 rq_dest = cpu_rq(dest_cpu);
4626
0122ec5b 4627 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4628 double_rq_lock(rq_src, rq_dest);
4629 /* Already moved. */
4630 if (task_cpu(p) != src_cpu)
b1e38734 4631 goto done;
1da177e4 4632 /* Affinity changed (again). */
fa17b507 4633 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4634 goto fail;
1da177e4 4635
e2912009
PZ
4636 /*
4637 * If we're not on a rq, the next wake-up will ensure we're
4638 * placed properly.
4639 */
fd2f4419 4640 if (p->on_rq) {
4ca9b72b 4641 dequeue_task(rq_src, p, 0);
e2912009 4642 set_task_cpu(p, dest_cpu);
4ca9b72b 4643 enqueue_task(rq_dest, p, 0);
15afe09b 4644 check_preempt_curr(rq_dest, p, 0);
1da177e4 4645 }
b1e38734 4646done:
efc30814 4647 ret = 1;
b1e38734 4648fail:
1da177e4 4649 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4650 raw_spin_unlock(&p->pi_lock);
efc30814 4651 return ret;
1da177e4
LT
4652}
4653
e6628d5b
MG
4654#ifdef CONFIG_NUMA_BALANCING
4655/* Migrate current task p to target_cpu */
4656int migrate_task_to(struct task_struct *p, int target_cpu)
4657{
4658 struct migration_arg arg = { p, target_cpu };
4659 int curr_cpu = task_cpu(p);
4660
4661 if (curr_cpu == target_cpu)
4662 return 0;
4663
4664 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4665 return -EINVAL;
4666
4667 /* TODO: This is not properly updating schedstats */
4668
286549dc 4669 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4670 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4671}
0ec8aa00
PZ
4672
4673/*
4674 * Requeue a task on a given node and accurately track the number of NUMA
4675 * tasks on the runqueues
4676 */
4677void sched_setnuma(struct task_struct *p, int nid)
4678{
4679 struct rq *rq;
4680 unsigned long flags;
4681 bool on_rq, running;
4682
4683 rq = task_rq_lock(p, &flags);
4684 on_rq = p->on_rq;
4685 running = task_current(rq, p);
4686
4687 if (on_rq)
4688 dequeue_task(rq, p, 0);
4689 if (running)
4690 p->sched_class->put_prev_task(rq, p);
4691
4692 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4693
4694 if (running)
4695 p->sched_class->set_curr_task(rq);
4696 if (on_rq)
4697 enqueue_task(rq, p, 0);
4698 task_rq_unlock(rq, p, &flags);
4699}
e6628d5b
MG
4700#endif
4701
1da177e4 4702/*
969c7921
TH
4703 * migration_cpu_stop - this will be executed by a highprio stopper thread
4704 * and performs thread migration by bumping thread off CPU then
4705 * 'pushing' onto another runqueue.
1da177e4 4706 */
969c7921 4707static int migration_cpu_stop(void *data)
1da177e4 4708{
969c7921 4709 struct migration_arg *arg = data;
f7b4cddc 4710
969c7921
TH
4711 /*
4712 * The original target cpu might have gone down and we might
4713 * be on another cpu but it doesn't matter.
4714 */
f7b4cddc 4715 local_irq_disable();
969c7921 4716 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4717 local_irq_enable();
1da177e4 4718 return 0;
f7b4cddc
ON
4719}
4720
1da177e4 4721#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4722
054b9108 4723/*
48c5ccae
PZ
4724 * Ensures that the idle task is using init_mm right before its cpu goes
4725 * offline.
054b9108 4726 */
48c5ccae 4727void idle_task_exit(void)
1da177e4 4728{
48c5ccae 4729 struct mm_struct *mm = current->active_mm;
e76bd8d9 4730
48c5ccae 4731 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4732
a53efe5f 4733 if (mm != &init_mm) {
48c5ccae 4734 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4735 finish_arch_post_lock_switch();
4736 }
48c5ccae 4737 mmdrop(mm);
1da177e4
LT
4738}
4739
4740/*
5d180232
PZ
4741 * Since this CPU is going 'away' for a while, fold any nr_active delta
4742 * we might have. Assumes we're called after migrate_tasks() so that the
4743 * nr_active count is stable.
4744 *
4745 * Also see the comment "Global load-average calculations".
1da177e4 4746 */
5d180232 4747static void calc_load_migrate(struct rq *rq)
1da177e4 4748{
5d180232
PZ
4749 long delta = calc_load_fold_active(rq);
4750 if (delta)
4751 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4752}
4753
3f1d2a31
PZ
4754static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4755{
4756}
4757
4758static const struct sched_class fake_sched_class = {
4759 .put_prev_task = put_prev_task_fake,
4760};
4761
4762static struct task_struct fake_task = {
4763 /*
4764 * Avoid pull_{rt,dl}_task()
4765 */
4766 .prio = MAX_PRIO + 1,
4767 .sched_class = &fake_sched_class,
4768};
4769
48f24c4d 4770/*
48c5ccae
PZ
4771 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4772 * try_to_wake_up()->select_task_rq().
4773 *
4774 * Called with rq->lock held even though we'er in stop_machine() and
4775 * there's no concurrency possible, we hold the required locks anyway
4776 * because of lock validation efforts.
1da177e4 4777 */
48c5ccae 4778static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4779{
70b97a7f 4780 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4781 struct task_struct *next, *stop = rq->stop;
4782 int dest_cpu;
1da177e4
LT
4783
4784 /*
48c5ccae
PZ
4785 * Fudge the rq selection such that the below task selection loop
4786 * doesn't get stuck on the currently eligible stop task.
4787 *
4788 * We're currently inside stop_machine() and the rq is either stuck
4789 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4790 * either way we should never end up calling schedule() until we're
4791 * done here.
1da177e4 4792 */
48c5ccae 4793 rq->stop = NULL;
48f24c4d 4794
77bd3970
FW
4795 /*
4796 * put_prev_task() and pick_next_task() sched
4797 * class method both need to have an up-to-date
4798 * value of rq->clock[_task]
4799 */
4800 update_rq_clock(rq);
4801
dd41f596 4802 for ( ; ; ) {
48c5ccae
PZ
4803 /*
4804 * There's this thread running, bail when that's the only
4805 * remaining thread.
4806 */
4807 if (rq->nr_running == 1)
dd41f596 4808 break;
48c5ccae 4809
3f1d2a31 4810 next = pick_next_task(rq, &fake_task);
48c5ccae 4811 BUG_ON(!next);
79c53799 4812 next->sched_class->put_prev_task(rq, next);
e692ab53 4813
48c5ccae
PZ
4814 /* Find suitable destination for @next, with force if needed. */
4815 dest_cpu = select_fallback_rq(dead_cpu, next);
4816 raw_spin_unlock(&rq->lock);
4817
4818 __migrate_task(next, dead_cpu, dest_cpu);
4819
4820 raw_spin_lock(&rq->lock);
1da177e4 4821 }
dce48a84 4822
48c5ccae 4823 rq->stop = stop;
dce48a84 4824}
48c5ccae 4825
1da177e4
LT
4826#endif /* CONFIG_HOTPLUG_CPU */
4827
e692ab53
NP
4828#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4829
4830static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4831 {
4832 .procname = "sched_domain",
c57baf1e 4833 .mode = 0555,
e0361851 4834 },
56992309 4835 {}
e692ab53
NP
4836};
4837
4838static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4839 {
4840 .procname = "kernel",
c57baf1e 4841 .mode = 0555,
e0361851
AD
4842 .child = sd_ctl_dir,
4843 },
56992309 4844 {}
e692ab53
NP
4845};
4846
4847static struct ctl_table *sd_alloc_ctl_entry(int n)
4848{
4849 struct ctl_table *entry =
5cf9f062 4850 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4851
e692ab53
NP
4852 return entry;
4853}
4854
6382bc90
MM
4855static void sd_free_ctl_entry(struct ctl_table **tablep)
4856{
cd790076 4857 struct ctl_table *entry;
6382bc90 4858
cd790076
MM
4859 /*
4860 * In the intermediate directories, both the child directory and
4861 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4862 * will always be set. In the lowest directory the names are
cd790076
MM
4863 * static strings and all have proc handlers.
4864 */
4865 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4866 if (entry->child)
4867 sd_free_ctl_entry(&entry->child);
cd790076
MM
4868 if (entry->proc_handler == NULL)
4869 kfree(entry->procname);
4870 }
6382bc90
MM
4871
4872 kfree(*tablep);
4873 *tablep = NULL;
4874}
4875
201c373e 4876static int min_load_idx = 0;
fd9b86d3 4877static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4878
e692ab53 4879static void
e0361851 4880set_table_entry(struct ctl_table *entry,
e692ab53 4881 const char *procname, void *data, int maxlen,
201c373e
NK
4882 umode_t mode, proc_handler *proc_handler,
4883 bool load_idx)
e692ab53 4884{
e692ab53
NP
4885 entry->procname = procname;
4886 entry->data = data;
4887 entry->maxlen = maxlen;
4888 entry->mode = mode;
4889 entry->proc_handler = proc_handler;
201c373e
NK
4890
4891 if (load_idx) {
4892 entry->extra1 = &min_load_idx;
4893 entry->extra2 = &max_load_idx;
4894 }
e692ab53
NP
4895}
4896
4897static struct ctl_table *
4898sd_alloc_ctl_domain_table(struct sched_domain *sd)
4899{
37e6bae8 4900 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4901
ad1cdc1d
MM
4902 if (table == NULL)
4903 return NULL;
4904
e0361851 4905 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4906 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4907 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4908 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4909 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4910 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4911 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4912 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4913 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4914 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4915 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4916 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4917 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4918 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4919 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4920 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4921 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4922 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4923 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4924 &sd->cache_nice_tries,
201c373e 4925 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4926 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4927 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4928 set_table_entry(&table[11], "max_newidle_lb_cost",
4929 &sd->max_newidle_lb_cost,
4930 sizeof(long), 0644, proc_doulongvec_minmax, false);
4931 set_table_entry(&table[12], "name", sd->name,
201c373e 4932 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4933 /* &table[13] is terminator */
e692ab53
NP
4934
4935 return table;
4936}
4937
be7002e6 4938static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4939{
4940 struct ctl_table *entry, *table;
4941 struct sched_domain *sd;
4942 int domain_num = 0, i;
4943 char buf[32];
4944
4945 for_each_domain(cpu, sd)
4946 domain_num++;
4947 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4948 if (table == NULL)
4949 return NULL;
e692ab53
NP
4950
4951 i = 0;
4952 for_each_domain(cpu, sd) {
4953 snprintf(buf, 32, "domain%d", i);
e692ab53 4954 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4955 entry->mode = 0555;
e692ab53
NP
4956 entry->child = sd_alloc_ctl_domain_table(sd);
4957 entry++;
4958 i++;
4959 }
4960 return table;
4961}
4962
4963static struct ctl_table_header *sd_sysctl_header;
6382bc90 4964static void register_sched_domain_sysctl(void)
e692ab53 4965{
6ad4c188 4966 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4967 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4968 char buf[32];
4969
7378547f
MM
4970 WARN_ON(sd_ctl_dir[0].child);
4971 sd_ctl_dir[0].child = entry;
4972
ad1cdc1d
MM
4973 if (entry == NULL)
4974 return;
4975
6ad4c188 4976 for_each_possible_cpu(i) {
e692ab53 4977 snprintf(buf, 32, "cpu%d", i);
e692ab53 4978 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4979 entry->mode = 0555;
e692ab53 4980 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4981 entry++;
e692ab53 4982 }
7378547f
MM
4983
4984 WARN_ON(sd_sysctl_header);
e692ab53
NP
4985 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4986}
6382bc90 4987
7378547f 4988/* may be called multiple times per register */
6382bc90
MM
4989static void unregister_sched_domain_sysctl(void)
4990{
7378547f
MM
4991 if (sd_sysctl_header)
4992 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4993 sd_sysctl_header = NULL;
7378547f
MM
4994 if (sd_ctl_dir[0].child)
4995 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4996}
e692ab53 4997#else
6382bc90
MM
4998static void register_sched_domain_sysctl(void)
4999{
5000}
5001static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5002{
5003}
5004#endif
5005
1f11eb6a
GH
5006static void set_rq_online(struct rq *rq)
5007{
5008 if (!rq->online) {
5009 const struct sched_class *class;
5010
c6c4927b 5011 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5012 rq->online = 1;
5013
5014 for_each_class(class) {
5015 if (class->rq_online)
5016 class->rq_online(rq);
5017 }
5018 }
5019}
5020
5021static void set_rq_offline(struct rq *rq)
5022{
5023 if (rq->online) {
5024 const struct sched_class *class;
5025
5026 for_each_class(class) {
5027 if (class->rq_offline)
5028 class->rq_offline(rq);
5029 }
5030
c6c4927b 5031 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5032 rq->online = 0;
5033 }
5034}
5035
1da177e4
LT
5036/*
5037 * migration_call - callback that gets triggered when a CPU is added.
5038 * Here we can start up the necessary migration thread for the new CPU.
5039 */
0db0628d 5040static int
48f24c4d 5041migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5042{
48f24c4d 5043 int cpu = (long)hcpu;
1da177e4 5044 unsigned long flags;
969c7921 5045 struct rq *rq = cpu_rq(cpu);
1da177e4 5046
48c5ccae 5047 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5048
1da177e4 5049 case CPU_UP_PREPARE:
a468d389 5050 rq->calc_load_update = calc_load_update;
1da177e4 5051 break;
48f24c4d 5052
1da177e4 5053 case CPU_ONLINE:
1f94ef59 5054 /* Update our root-domain */
05fa785c 5055 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5056 if (rq->rd) {
c6c4927b 5057 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5058
5059 set_rq_online(rq);
1f94ef59 5060 }
05fa785c 5061 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5062 break;
48f24c4d 5063
1da177e4 5064#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5065 case CPU_DYING:
317f3941 5066 sched_ttwu_pending();
57d885fe 5067 /* Update our root-domain */
05fa785c 5068 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5069 if (rq->rd) {
c6c4927b 5070 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5071 set_rq_offline(rq);
57d885fe 5072 }
48c5ccae
PZ
5073 migrate_tasks(cpu);
5074 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5075 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5076 break;
48c5ccae 5077
5d180232 5078 case CPU_DEAD:
f319da0c 5079 calc_load_migrate(rq);
57d885fe 5080 break;
1da177e4
LT
5081#endif
5082 }
49c022e6
PZ
5083
5084 update_max_interval();
5085
1da177e4
LT
5086 return NOTIFY_OK;
5087}
5088
f38b0820
PM
5089/*
5090 * Register at high priority so that task migration (migrate_all_tasks)
5091 * happens before everything else. This has to be lower priority than
cdd6c482 5092 * the notifier in the perf_event subsystem, though.
1da177e4 5093 */
0db0628d 5094static struct notifier_block migration_notifier = {
1da177e4 5095 .notifier_call = migration_call,
50a323b7 5096 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5097};
5098
0db0628d 5099static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5100 unsigned long action, void *hcpu)
5101{
5102 switch (action & ~CPU_TASKS_FROZEN) {
3a101d05
TH
5103 case CPU_DOWN_FAILED:
5104 set_cpu_active((long)hcpu, true);
5105 return NOTIFY_OK;
5106 default:
5107 return NOTIFY_DONE;
5108 }
5109}
5110
0db0628d 5111static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5112 unsigned long action, void *hcpu)
5113{
de212f18
PZ
5114 unsigned long flags;
5115 long cpu = (long)hcpu;
5116
3a101d05
TH
5117 switch (action & ~CPU_TASKS_FROZEN) {
5118 case CPU_DOWN_PREPARE:
de212f18
PZ
5119 set_cpu_active(cpu, false);
5120
5121 /* explicitly allow suspend */
5122 if (!(action & CPU_TASKS_FROZEN)) {
5123 struct dl_bw *dl_b = dl_bw_of(cpu);
5124 bool overflow;
5125 int cpus;
5126
5127 raw_spin_lock_irqsave(&dl_b->lock, flags);
5128 cpus = dl_bw_cpus(cpu);
5129 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5130 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5131
5132 if (overflow)
5133 return notifier_from_errno(-EBUSY);
5134 }
3a101d05 5135 return NOTIFY_OK;
3a101d05 5136 }
de212f18
PZ
5137
5138 return NOTIFY_DONE;
3a101d05
TH
5139}
5140
7babe8db 5141static int __init migration_init(void)
1da177e4
LT
5142{
5143 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5144 int err;
48f24c4d 5145
3a101d05 5146 /* Initialize migration for the boot CPU */
07dccf33
AM
5147 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5148 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5149 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5150 register_cpu_notifier(&migration_notifier);
7babe8db 5151
3a101d05
TH
5152 /* Register cpu active notifiers */
5153 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5154 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5155
a004cd42 5156 return 0;
1da177e4 5157}
7babe8db 5158early_initcall(migration_init);
1da177e4
LT
5159#endif
5160
5161#ifdef CONFIG_SMP
476f3534 5162
4cb98839
PZ
5163static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5164
3e9830dc 5165#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5166
d039ac60 5167static __read_mostly int sched_debug_enabled;
f6630114 5168
d039ac60 5169static int __init sched_debug_setup(char *str)
f6630114 5170{
d039ac60 5171 sched_debug_enabled = 1;
f6630114
MT
5172
5173 return 0;
5174}
d039ac60
PZ
5175early_param("sched_debug", sched_debug_setup);
5176
5177static inline bool sched_debug(void)
5178{
5179 return sched_debug_enabled;
5180}
f6630114 5181
7c16ec58 5182static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5183 struct cpumask *groupmask)
1da177e4 5184{
4dcf6aff 5185 struct sched_group *group = sd->groups;
434d53b0 5186 char str[256];
1da177e4 5187
968ea6d8 5188 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5189 cpumask_clear(groupmask);
4dcf6aff
IM
5190
5191 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5192
5193 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5194 printk("does not load-balance\n");
4dcf6aff 5195 if (sd->parent)
3df0fc5b
PZ
5196 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5197 " has parent");
4dcf6aff 5198 return -1;
41c7ce9a
NP
5199 }
5200
3df0fc5b 5201 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5202
758b2cdc 5203 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5204 printk(KERN_ERR "ERROR: domain->span does not contain "
5205 "CPU%d\n", cpu);
4dcf6aff 5206 }
758b2cdc 5207 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5208 printk(KERN_ERR "ERROR: domain->groups does not contain"
5209 " CPU%d\n", cpu);
4dcf6aff 5210 }
1da177e4 5211
4dcf6aff 5212 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5213 do {
4dcf6aff 5214 if (!group) {
3df0fc5b
PZ
5215 printk("\n");
5216 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5217 break;
5218 }
5219
c3decf0d
PZ
5220 /*
5221 * Even though we initialize ->power to something semi-sane,
5222 * we leave power_orig unset. This allows us to detect if
5223 * domain iteration is still funny without causing /0 traps.
5224 */
5225 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5226 printk(KERN_CONT "\n");
5227 printk(KERN_ERR "ERROR: domain->cpu_power not "
5228 "set\n");
4dcf6aff
IM
5229 break;
5230 }
1da177e4 5231
758b2cdc 5232 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5233 printk(KERN_CONT "\n");
5234 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5235 break;
5236 }
1da177e4 5237
cb83b629
PZ
5238 if (!(sd->flags & SD_OVERLAP) &&
5239 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5240 printk(KERN_CONT "\n");
5241 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5242 break;
5243 }
1da177e4 5244
758b2cdc 5245 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5246
968ea6d8 5247 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5248
3df0fc5b 5249 printk(KERN_CONT " %s", str);
9c3f75cb 5250 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5251 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5252 group->sgp->power);
381512cf 5253 }
1da177e4 5254
4dcf6aff
IM
5255 group = group->next;
5256 } while (group != sd->groups);
3df0fc5b 5257 printk(KERN_CONT "\n");
1da177e4 5258
758b2cdc 5259 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5260 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5261
758b2cdc
RR
5262 if (sd->parent &&
5263 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5264 printk(KERN_ERR "ERROR: parent span is not a superset "
5265 "of domain->span\n");
4dcf6aff
IM
5266 return 0;
5267}
1da177e4 5268
4dcf6aff
IM
5269static void sched_domain_debug(struct sched_domain *sd, int cpu)
5270{
5271 int level = 0;
1da177e4 5272
d039ac60 5273 if (!sched_debug_enabled)
f6630114
MT
5274 return;
5275
4dcf6aff
IM
5276 if (!sd) {
5277 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5278 return;
5279 }
1da177e4 5280
4dcf6aff
IM
5281 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5282
5283 for (;;) {
4cb98839 5284 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5285 break;
1da177e4
LT
5286 level++;
5287 sd = sd->parent;
33859f7f 5288 if (!sd)
4dcf6aff
IM
5289 break;
5290 }
1da177e4 5291}
6d6bc0ad 5292#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5293# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5294static inline bool sched_debug(void)
5295{
5296 return false;
5297}
6d6bc0ad 5298#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5299
1a20ff27 5300static int sd_degenerate(struct sched_domain *sd)
245af2c7 5301{
758b2cdc 5302 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5303 return 1;
5304
5305 /* Following flags need at least 2 groups */
5306 if (sd->flags & (SD_LOAD_BALANCE |
5307 SD_BALANCE_NEWIDLE |
5308 SD_BALANCE_FORK |
89c4710e
SS
5309 SD_BALANCE_EXEC |
5310 SD_SHARE_CPUPOWER |
d77b3ed5
VG
5311 SD_SHARE_PKG_RESOURCES |
5312 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5313 if (sd->groups != sd->groups->next)
5314 return 0;
5315 }
5316
5317 /* Following flags don't use groups */
c88d5910 5318 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5319 return 0;
5320
5321 return 1;
5322}
5323
48f24c4d
IM
5324static int
5325sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5326{
5327 unsigned long cflags = sd->flags, pflags = parent->flags;
5328
5329 if (sd_degenerate(parent))
5330 return 1;
5331
758b2cdc 5332 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5333 return 0;
5334
245af2c7
SS
5335 /* Flags needing groups don't count if only 1 group in parent */
5336 if (parent->groups == parent->groups->next) {
5337 pflags &= ~(SD_LOAD_BALANCE |
5338 SD_BALANCE_NEWIDLE |
5339 SD_BALANCE_FORK |
89c4710e
SS
5340 SD_BALANCE_EXEC |
5341 SD_SHARE_CPUPOWER |
10866e62 5342 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5343 SD_PREFER_SIBLING |
5344 SD_SHARE_POWERDOMAIN);
5436499e
KC
5345 if (nr_node_ids == 1)
5346 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5347 }
5348 if (~cflags & pflags)
5349 return 0;
5350
5351 return 1;
5352}
5353
dce840a0 5354static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5355{
dce840a0 5356 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5357
68e74568 5358 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5359 cpudl_cleanup(&rd->cpudl);
1baca4ce 5360 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5361 free_cpumask_var(rd->rto_mask);
5362 free_cpumask_var(rd->online);
5363 free_cpumask_var(rd->span);
5364 kfree(rd);
5365}
5366
57d885fe
GH
5367static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5368{
a0490fa3 5369 struct root_domain *old_rd = NULL;
57d885fe 5370 unsigned long flags;
57d885fe 5371
05fa785c 5372 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5373
5374 if (rq->rd) {
a0490fa3 5375 old_rd = rq->rd;
57d885fe 5376
c6c4927b 5377 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5378 set_rq_offline(rq);
57d885fe 5379
c6c4927b 5380 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5381
a0490fa3 5382 /*
0515973f 5383 * If we dont want to free the old_rd yet then
a0490fa3
IM
5384 * set old_rd to NULL to skip the freeing later
5385 * in this function:
5386 */
5387 if (!atomic_dec_and_test(&old_rd->refcount))
5388 old_rd = NULL;
57d885fe
GH
5389 }
5390
5391 atomic_inc(&rd->refcount);
5392 rq->rd = rd;
5393
c6c4927b 5394 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5395 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5396 set_rq_online(rq);
57d885fe 5397
05fa785c 5398 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5399
5400 if (old_rd)
dce840a0 5401 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5402}
5403
68c38fc3 5404static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5405{
5406 memset(rd, 0, sizeof(*rd));
5407
68c38fc3 5408 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5409 goto out;
68c38fc3 5410 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5411 goto free_span;
1baca4ce 5412 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5413 goto free_online;
1baca4ce
JL
5414 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5415 goto free_dlo_mask;
6e0534f2 5416
332ac17e 5417 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5418 if (cpudl_init(&rd->cpudl) != 0)
5419 goto free_dlo_mask;
332ac17e 5420
68c38fc3 5421 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5422 goto free_rto_mask;
c6c4927b 5423 return 0;
6e0534f2 5424
68e74568
RR
5425free_rto_mask:
5426 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5427free_dlo_mask:
5428 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5429free_online:
5430 free_cpumask_var(rd->online);
5431free_span:
5432 free_cpumask_var(rd->span);
0c910d28 5433out:
c6c4927b 5434 return -ENOMEM;
57d885fe
GH
5435}
5436
029632fb
PZ
5437/*
5438 * By default the system creates a single root-domain with all cpus as
5439 * members (mimicking the global state we have today).
5440 */
5441struct root_domain def_root_domain;
5442
57d885fe
GH
5443static void init_defrootdomain(void)
5444{
68c38fc3 5445 init_rootdomain(&def_root_domain);
c6c4927b 5446
57d885fe
GH
5447 atomic_set(&def_root_domain.refcount, 1);
5448}
5449
dc938520 5450static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5451{
5452 struct root_domain *rd;
5453
5454 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5455 if (!rd)
5456 return NULL;
5457
68c38fc3 5458 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5459 kfree(rd);
5460 return NULL;
5461 }
57d885fe
GH
5462
5463 return rd;
5464}
5465
e3589f6c
PZ
5466static void free_sched_groups(struct sched_group *sg, int free_sgp)
5467{
5468 struct sched_group *tmp, *first;
5469
5470 if (!sg)
5471 return;
5472
5473 first = sg;
5474 do {
5475 tmp = sg->next;
5476
5477 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5478 kfree(sg->sgp);
5479
5480 kfree(sg);
5481 sg = tmp;
5482 } while (sg != first);
5483}
5484
dce840a0
PZ
5485static void free_sched_domain(struct rcu_head *rcu)
5486{
5487 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5488
5489 /*
5490 * If its an overlapping domain it has private groups, iterate and
5491 * nuke them all.
5492 */
5493 if (sd->flags & SD_OVERLAP) {
5494 free_sched_groups(sd->groups, 1);
5495 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5496 kfree(sd->groups->sgp);
dce840a0 5497 kfree(sd->groups);
9c3f75cb 5498 }
dce840a0
PZ
5499 kfree(sd);
5500}
5501
5502static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5503{
5504 call_rcu(&sd->rcu, free_sched_domain);
5505}
5506
5507static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5508{
5509 for (; sd; sd = sd->parent)
5510 destroy_sched_domain(sd, cpu);
5511}
5512
518cd623
PZ
5513/*
5514 * Keep a special pointer to the highest sched_domain that has
5515 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5516 * allows us to avoid some pointer chasing select_idle_sibling().
5517 *
5518 * Also keep a unique ID per domain (we use the first cpu number in
5519 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5520 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5521 */
5522DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5523DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5524DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5525DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5526DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5527DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5528
5529static void update_top_cache_domain(int cpu)
5530{
5531 struct sched_domain *sd;
5d4cf996 5532 struct sched_domain *busy_sd = NULL;
518cd623 5533 int id = cpu;
7d9ffa89 5534 int size = 1;
518cd623
PZ
5535
5536 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5537 if (sd) {
518cd623 5538 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5539 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5540 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5541 }
5d4cf996 5542 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5543
5544 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5545 per_cpu(sd_llc_size, cpu) = size;
518cd623 5546 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5547
5548 sd = lowest_flag_domain(cpu, SD_NUMA);
5549 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5550
5551 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5552 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5553}
5554
1da177e4 5555/*
0eab9146 5556 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5557 * hold the hotplug lock.
5558 */
0eab9146
IM
5559static void
5560cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5561{
70b97a7f 5562 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5563 struct sched_domain *tmp;
5564
5565 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5566 for (tmp = sd; tmp; ) {
245af2c7
SS
5567 struct sched_domain *parent = tmp->parent;
5568 if (!parent)
5569 break;
f29c9b1c 5570
1a848870 5571 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5572 tmp->parent = parent->parent;
1a848870
SS
5573 if (parent->parent)
5574 parent->parent->child = tmp;
10866e62
PZ
5575 /*
5576 * Transfer SD_PREFER_SIBLING down in case of a
5577 * degenerate parent; the spans match for this
5578 * so the property transfers.
5579 */
5580 if (parent->flags & SD_PREFER_SIBLING)
5581 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5582 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5583 } else
5584 tmp = tmp->parent;
245af2c7
SS
5585 }
5586
1a848870 5587 if (sd && sd_degenerate(sd)) {
dce840a0 5588 tmp = sd;
245af2c7 5589 sd = sd->parent;
dce840a0 5590 destroy_sched_domain(tmp, cpu);
1a848870
SS
5591 if (sd)
5592 sd->child = NULL;
5593 }
1da177e4 5594
4cb98839 5595 sched_domain_debug(sd, cpu);
1da177e4 5596
57d885fe 5597 rq_attach_root(rq, rd);
dce840a0 5598 tmp = rq->sd;
674311d5 5599 rcu_assign_pointer(rq->sd, sd);
dce840a0 5600 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5601
5602 update_top_cache_domain(cpu);
1da177e4
LT
5603}
5604
5605/* cpus with isolated domains */
dcc30a35 5606static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5607
5608/* Setup the mask of cpus configured for isolated domains */
5609static int __init isolated_cpu_setup(char *str)
5610{
bdddd296 5611 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5612 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5613 return 1;
5614}
5615
8927f494 5616__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5617
49a02c51 5618struct s_data {
21d42ccf 5619 struct sched_domain ** __percpu sd;
49a02c51
AH
5620 struct root_domain *rd;
5621};
5622
2109b99e 5623enum s_alloc {
2109b99e 5624 sa_rootdomain,
21d42ccf 5625 sa_sd,
dce840a0 5626 sa_sd_storage,
2109b99e
AH
5627 sa_none,
5628};
5629
c1174876
PZ
5630/*
5631 * Build an iteration mask that can exclude certain CPUs from the upwards
5632 * domain traversal.
5633 *
5634 * Asymmetric node setups can result in situations where the domain tree is of
5635 * unequal depth, make sure to skip domains that already cover the entire
5636 * range.
5637 *
5638 * In that case build_sched_domains() will have terminated the iteration early
5639 * and our sibling sd spans will be empty. Domains should always include the
5640 * cpu they're built on, so check that.
5641 *
5642 */
5643static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5644{
5645 const struct cpumask *span = sched_domain_span(sd);
5646 struct sd_data *sdd = sd->private;
5647 struct sched_domain *sibling;
5648 int i;
5649
5650 for_each_cpu(i, span) {
5651 sibling = *per_cpu_ptr(sdd->sd, i);
5652 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5653 continue;
5654
5655 cpumask_set_cpu(i, sched_group_mask(sg));
5656 }
5657}
5658
5659/*
5660 * Return the canonical balance cpu for this group, this is the first cpu
5661 * of this group that's also in the iteration mask.
5662 */
5663int group_balance_cpu(struct sched_group *sg)
5664{
5665 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5666}
5667
e3589f6c
PZ
5668static int
5669build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5670{
5671 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5672 const struct cpumask *span = sched_domain_span(sd);
5673 struct cpumask *covered = sched_domains_tmpmask;
5674 struct sd_data *sdd = sd->private;
5675 struct sched_domain *child;
5676 int i;
5677
5678 cpumask_clear(covered);
5679
5680 for_each_cpu(i, span) {
5681 struct cpumask *sg_span;
5682
5683 if (cpumask_test_cpu(i, covered))
5684 continue;
5685
c1174876
PZ
5686 child = *per_cpu_ptr(sdd->sd, i);
5687
5688 /* See the comment near build_group_mask(). */
5689 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5690 continue;
5691
e3589f6c 5692 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5693 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5694
5695 if (!sg)
5696 goto fail;
5697
5698 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5699 if (child->child) {
5700 child = child->child;
5701 cpumask_copy(sg_span, sched_domain_span(child));
5702 } else
5703 cpumask_set_cpu(i, sg_span);
5704
5705 cpumask_or(covered, covered, sg_span);
5706
74a5ce20 5707 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5708 if (atomic_inc_return(&sg->sgp->ref) == 1)
5709 build_group_mask(sd, sg);
5710
c3decf0d
PZ
5711 /*
5712 * Initialize sgp->power such that even if we mess up the
5713 * domains and no possible iteration will get us here, we won't
5714 * die on a /0 trap.
5715 */
5716 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5717 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5718
c1174876
PZ
5719 /*
5720 * Make sure the first group of this domain contains the
5721 * canonical balance cpu. Otherwise the sched_domain iteration
5722 * breaks. See update_sg_lb_stats().
5723 */
74a5ce20 5724 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5725 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5726 groups = sg;
5727
5728 if (!first)
5729 first = sg;
5730 if (last)
5731 last->next = sg;
5732 last = sg;
5733 last->next = first;
5734 }
5735 sd->groups = groups;
5736
5737 return 0;
5738
5739fail:
5740 free_sched_groups(first, 0);
5741
5742 return -ENOMEM;
5743}
5744
dce840a0 5745static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5746{
dce840a0
PZ
5747 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5748 struct sched_domain *child = sd->child;
1da177e4 5749
dce840a0
PZ
5750 if (child)
5751 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5752
9c3f75cb 5753 if (sg) {
dce840a0 5754 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5755 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5756 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5757 }
dce840a0
PZ
5758
5759 return cpu;
1e9f28fa 5760}
1e9f28fa 5761
01a08546 5762/*
dce840a0
PZ
5763 * build_sched_groups will build a circular linked list of the groups
5764 * covered by the given span, and will set each group's ->cpumask correctly,
5765 * and ->cpu_power to 0.
e3589f6c
PZ
5766 *
5767 * Assumes the sched_domain tree is fully constructed
01a08546 5768 */
e3589f6c
PZ
5769static int
5770build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5771{
dce840a0
PZ
5772 struct sched_group *first = NULL, *last = NULL;
5773 struct sd_data *sdd = sd->private;
5774 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5775 struct cpumask *covered;
dce840a0 5776 int i;
9c1cfda2 5777
e3589f6c
PZ
5778 get_group(cpu, sdd, &sd->groups);
5779 atomic_inc(&sd->groups->ref);
5780
0936629f 5781 if (cpu != cpumask_first(span))
e3589f6c
PZ
5782 return 0;
5783
f96225fd
PZ
5784 lockdep_assert_held(&sched_domains_mutex);
5785 covered = sched_domains_tmpmask;
5786
dce840a0 5787 cpumask_clear(covered);
6711cab4 5788
dce840a0
PZ
5789 for_each_cpu(i, span) {
5790 struct sched_group *sg;
cd08e923 5791 int group, j;
6711cab4 5792
dce840a0
PZ
5793 if (cpumask_test_cpu(i, covered))
5794 continue;
6711cab4 5795
cd08e923 5796 group = get_group(i, sdd, &sg);
dce840a0 5797 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5798 sg->sgp->power = 0;
c1174876 5799 cpumask_setall(sched_group_mask(sg));
0601a88d 5800
dce840a0
PZ
5801 for_each_cpu(j, span) {
5802 if (get_group(j, sdd, NULL) != group)
5803 continue;
0601a88d 5804
dce840a0
PZ
5805 cpumask_set_cpu(j, covered);
5806 cpumask_set_cpu(j, sched_group_cpus(sg));
5807 }
0601a88d 5808
dce840a0
PZ
5809 if (!first)
5810 first = sg;
5811 if (last)
5812 last->next = sg;
5813 last = sg;
5814 }
5815 last->next = first;
e3589f6c
PZ
5816
5817 return 0;
0601a88d 5818}
51888ca2 5819
89c4710e
SS
5820/*
5821 * Initialize sched groups cpu_power.
5822 *
5823 * cpu_power indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_power for all the groups in a sched domain will be same unless
5826 * there are asymmetries in the topology. If there are asymmetries, group
5827 * having more cpu_power will pickup more load compared to the group having
5828 * less cpu_power.
89c4710e
SS
5829 */
5830static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5831{
e3589f6c 5832 struct sched_group *sg = sd->groups;
89c4710e 5833
94c95ba6 5834 WARN_ON(!sg);
e3589f6c
PZ
5835
5836 do {
5837 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838 sg = sg->next;
5839 } while (sg != sd->groups);
89c4710e 5840
c1174876 5841 if (cpu != group_balance_cpu(sg))
e3589f6c 5842 return;
aae6d3dd 5843
d274cb30 5844 update_group_power(sd, cpu);
69e1e811 5845 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5846}
5847
7c16ec58
MT
5848/*
5849 * Initializers for schedule domains
5850 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5851 */
5852
1d3504fc 5853static int default_relax_domain_level = -1;
60495e77 5854int sched_domain_level_max;
1d3504fc
HS
5855
5856static int __init setup_relax_domain_level(char *str)
5857{
a841f8ce
DS
5858 if (kstrtoint(str, 0, &default_relax_domain_level))
5859 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5860
1d3504fc
HS
5861 return 1;
5862}
5863__setup("relax_domain_level=", setup_relax_domain_level);
5864
5865static void set_domain_attribute(struct sched_domain *sd,
5866 struct sched_domain_attr *attr)
5867{
5868 int request;
5869
5870 if (!attr || attr->relax_domain_level < 0) {
5871 if (default_relax_domain_level < 0)
5872 return;
5873 else
5874 request = default_relax_domain_level;
5875 } else
5876 request = attr->relax_domain_level;
5877 if (request < sd->level) {
5878 /* turn off idle balance on this domain */
c88d5910 5879 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5880 } else {
5881 /* turn on idle balance on this domain */
c88d5910 5882 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5883 }
5884}
5885
54ab4ff4
PZ
5886static void __sdt_free(const struct cpumask *cpu_map);
5887static int __sdt_alloc(const struct cpumask *cpu_map);
5888
2109b99e
AH
5889static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890 const struct cpumask *cpu_map)
5891{
5892 switch (what) {
2109b99e 5893 case sa_rootdomain:
822ff793
PZ
5894 if (!atomic_read(&d->rd->refcount))
5895 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5896 case sa_sd:
5897 free_percpu(d->sd); /* fall through */
dce840a0 5898 case sa_sd_storage:
54ab4ff4 5899 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5900 case sa_none:
5901 break;
5902 }
5903}
3404c8d9 5904
2109b99e
AH
5905static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906 const struct cpumask *cpu_map)
5907{
dce840a0
PZ
5908 memset(d, 0, sizeof(*d));
5909
54ab4ff4
PZ
5910 if (__sdt_alloc(cpu_map))
5911 return sa_sd_storage;
dce840a0
PZ
5912 d->sd = alloc_percpu(struct sched_domain *);
5913 if (!d->sd)
5914 return sa_sd_storage;
2109b99e 5915 d->rd = alloc_rootdomain();
dce840a0 5916 if (!d->rd)
21d42ccf 5917 return sa_sd;
2109b99e
AH
5918 return sa_rootdomain;
5919}
57d885fe 5920
dce840a0
PZ
5921/*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926static void claim_allocations(int cpu, struct sched_domain *sd)
5927{
5928 struct sd_data *sdd = sd->private;
dce840a0
PZ
5929
5930 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
e3589f6c 5933 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5934 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5935
5936 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5937 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5938}
5939
cb83b629 5940#ifdef CONFIG_NUMA
cb83b629 5941static int sched_domains_numa_levels;
cb83b629
PZ
5942static int *sched_domains_numa_distance;
5943static struct cpumask ***sched_domains_numa_masks;
5944static int sched_domains_curr_level;
143e1e28 5945#endif
cb83b629 5946
143e1e28
VG
5947/*
5948 * SD_flags allowed in topology descriptions.
5949 *
5950 * SD_SHARE_CPUPOWER - describes SMT topologies
5951 * SD_SHARE_PKG_RESOURCES - describes shared caches
5952 * SD_NUMA - describes NUMA topologies
d77b3ed5 5953 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
5954 *
5955 * Odd one out:
5956 * SD_ASYM_PACKING - describes SMT quirks
5957 */
5958#define TOPOLOGY_SD_FLAGS \
5959 (SD_SHARE_CPUPOWER | \
5960 SD_SHARE_PKG_RESOURCES | \
5961 SD_NUMA | \
d77b3ed5
VG
5962 SD_ASYM_PACKING | \
5963 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
5964
5965static struct sched_domain *
143e1e28 5966sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
5967{
5968 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
5969 int sd_weight, sd_flags = 0;
5970
5971#ifdef CONFIG_NUMA
5972 /*
5973 * Ugly hack to pass state to sd_numa_mask()...
5974 */
5975 sched_domains_curr_level = tl->numa_level;
5976#endif
5977
5978 sd_weight = cpumask_weight(tl->mask(cpu));
5979
5980 if (tl->sd_flags)
5981 sd_flags = (*tl->sd_flags)();
5982 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
5983 "wrong sd_flags in topology description\n"))
5984 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
5985
5986 *sd = (struct sched_domain){
5987 .min_interval = sd_weight,
5988 .max_interval = 2*sd_weight,
5989 .busy_factor = 32,
870a0bb5 5990 .imbalance_pct = 125,
143e1e28
VG
5991
5992 .cache_nice_tries = 0,
5993 .busy_idx = 0,
5994 .idle_idx = 0,
cb83b629
PZ
5995 .newidle_idx = 0,
5996 .wake_idx = 0,
5997 .forkexec_idx = 0,
5998
5999 .flags = 1*SD_LOAD_BALANCE
6000 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6001 | 1*SD_BALANCE_EXEC
6002 | 1*SD_BALANCE_FORK
cb83b629 6003 | 0*SD_BALANCE_WAKE
143e1e28 6004 | 1*SD_WAKE_AFFINE
cb83b629 6005 | 0*SD_SHARE_CPUPOWER
cb83b629 6006 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6007 | 0*SD_SERIALIZE
cb83b629 6008 | 0*SD_PREFER_SIBLING
143e1e28
VG
6009 | 0*SD_NUMA
6010 | sd_flags
cb83b629 6011 ,
143e1e28 6012
cb83b629
PZ
6013 .last_balance = jiffies,
6014 .balance_interval = sd_weight,
143e1e28 6015 .smt_gain = 0,
2b4cfe64
JL
6016 .max_newidle_lb_cost = 0,
6017 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6018#ifdef CONFIG_SCHED_DEBUG
6019 .name = tl->name,
6020#endif
cb83b629 6021 };
cb83b629
PZ
6022
6023 /*
143e1e28 6024 * Convert topological properties into behaviour.
cb83b629 6025 */
143e1e28
VG
6026
6027 if (sd->flags & SD_SHARE_CPUPOWER) {
6028 sd->imbalance_pct = 110;
6029 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6030
6031 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6032 sd->imbalance_pct = 117;
6033 sd->cache_nice_tries = 1;
6034 sd->busy_idx = 2;
6035
6036#ifdef CONFIG_NUMA
6037 } else if (sd->flags & SD_NUMA) {
6038 sd->cache_nice_tries = 2;
6039 sd->busy_idx = 3;
6040 sd->idle_idx = 2;
6041
6042 sd->flags |= SD_SERIALIZE;
6043 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6044 sd->flags &= ~(SD_BALANCE_EXEC |
6045 SD_BALANCE_FORK |
6046 SD_WAKE_AFFINE);
6047 }
6048
6049#endif
6050 } else {
6051 sd->flags |= SD_PREFER_SIBLING;
6052 sd->cache_nice_tries = 1;
6053 sd->busy_idx = 2;
6054 sd->idle_idx = 1;
6055 }
6056
6057 sd->private = &tl->data;
cb83b629
PZ
6058
6059 return sd;
6060}
6061
143e1e28
VG
6062/*
6063 * Topology list, bottom-up.
6064 */
6065static struct sched_domain_topology_level default_topology[] = {
6066#ifdef CONFIG_SCHED_SMT
6067 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6068#endif
6069#ifdef CONFIG_SCHED_MC
6070 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6071#endif
6072 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6073 { NULL, },
6074};
6075
6076struct sched_domain_topology_level *sched_domain_topology = default_topology;
6077
6078#define for_each_sd_topology(tl) \
6079 for (tl = sched_domain_topology; tl->mask; tl++)
6080
6081void set_sched_topology(struct sched_domain_topology_level *tl)
6082{
6083 sched_domain_topology = tl;
6084}
6085
6086#ifdef CONFIG_NUMA
6087
cb83b629
PZ
6088static const struct cpumask *sd_numa_mask(int cpu)
6089{
6090 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6091}
6092
d039ac60
PZ
6093static void sched_numa_warn(const char *str)
6094{
6095 static int done = false;
6096 int i,j;
6097
6098 if (done)
6099 return;
6100
6101 done = true;
6102
6103 printk(KERN_WARNING "ERROR: %s\n\n", str);
6104
6105 for (i = 0; i < nr_node_ids; i++) {
6106 printk(KERN_WARNING " ");
6107 for (j = 0; j < nr_node_ids; j++)
6108 printk(KERN_CONT "%02d ", node_distance(i,j));
6109 printk(KERN_CONT "\n");
6110 }
6111 printk(KERN_WARNING "\n");
6112}
6113
6114static bool find_numa_distance(int distance)
6115{
6116 int i;
6117
6118 if (distance == node_distance(0, 0))
6119 return true;
6120
6121 for (i = 0; i < sched_domains_numa_levels; i++) {
6122 if (sched_domains_numa_distance[i] == distance)
6123 return true;
6124 }
6125
6126 return false;
6127}
6128
cb83b629
PZ
6129static void sched_init_numa(void)
6130{
6131 int next_distance, curr_distance = node_distance(0, 0);
6132 struct sched_domain_topology_level *tl;
6133 int level = 0;
6134 int i, j, k;
6135
cb83b629
PZ
6136 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6137 if (!sched_domains_numa_distance)
6138 return;
6139
6140 /*
6141 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6142 * unique distances in the node_distance() table.
6143 *
6144 * Assumes node_distance(0,j) includes all distances in
6145 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6146 */
6147 next_distance = curr_distance;
6148 for (i = 0; i < nr_node_ids; i++) {
6149 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6150 for (k = 0; k < nr_node_ids; k++) {
6151 int distance = node_distance(i, k);
6152
6153 if (distance > curr_distance &&
6154 (distance < next_distance ||
6155 next_distance == curr_distance))
6156 next_distance = distance;
6157
6158 /*
6159 * While not a strong assumption it would be nice to know
6160 * about cases where if node A is connected to B, B is not
6161 * equally connected to A.
6162 */
6163 if (sched_debug() && node_distance(k, i) != distance)
6164 sched_numa_warn("Node-distance not symmetric");
6165
6166 if (sched_debug() && i && !find_numa_distance(distance))
6167 sched_numa_warn("Node-0 not representative");
6168 }
6169 if (next_distance != curr_distance) {
6170 sched_domains_numa_distance[level++] = next_distance;
6171 sched_domains_numa_levels = level;
6172 curr_distance = next_distance;
6173 } else break;
cb83b629 6174 }
d039ac60
PZ
6175
6176 /*
6177 * In case of sched_debug() we verify the above assumption.
6178 */
6179 if (!sched_debug())
6180 break;
cb83b629
PZ
6181 }
6182 /*
6183 * 'level' contains the number of unique distances, excluding the
6184 * identity distance node_distance(i,i).
6185 *
28b4a521 6186 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6187 * numbers.
6188 */
6189
5f7865f3
TC
6190 /*
6191 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6192 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6193 * the array will contain less then 'level' members. This could be
6194 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6195 * in other functions.
6196 *
6197 * We reset it to 'level' at the end of this function.
6198 */
6199 sched_domains_numa_levels = 0;
6200
cb83b629
PZ
6201 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6202 if (!sched_domains_numa_masks)
6203 return;
6204
6205 /*
6206 * Now for each level, construct a mask per node which contains all
6207 * cpus of nodes that are that many hops away from us.
6208 */
6209 for (i = 0; i < level; i++) {
6210 sched_domains_numa_masks[i] =
6211 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6212 if (!sched_domains_numa_masks[i])
6213 return;
6214
6215 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6216 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6217 if (!mask)
6218 return;
6219
6220 sched_domains_numa_masks[i][j] = mask;
6221
6222 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6223 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6224 continue;
6225
6226 cpumask_or(mask, mask, cpumask_of_node(k));
6227 }
6228 }
6229 }
6230
143e1e28
VG
6231 /* Compute default topology size */
6232 for (i = 0; sched_domain_topology[i].mask; i++);
6233
6234 tl = kzalloc((i + level) *
cb83b629
PZ
6235 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6236 if (!tl)
6237 return;
6238
6239 /*
6240 * Copy the default topology bits..
6241 */
143e1e28
VG
6242 for (i = 0; sched_domain_topology[i].mask; i++)
6243 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6244
6245 /*
6246 * .. and append 'j' levels of NUMA goodness.
6247 */
6248 for (j = 0; j < level; i++, j++) {
6249 tl[i] = (struct sched_domain_topology_level){
cb83b629 6250 .mask = sd_numa_mask,
143e1e28 6251 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6252 .flags = SDTL_OVERLAP,
6253 .numa_level = j,
143e1e28 6254 SD_INIT_NAME(NUMA)
cb83b629
PZ
6255 };
6256 }
6257
6258 sched_domain_topology = tl;
5f7865f3
TC
6259
6260 sched_domains_numa_levels = level;
cb83b629 6261}
301a5cba
TC
6262
6263static void sched_domains_numa_masks_set(int cpu)
6264{
6265 int i, j;
6266 int node = cpu_to_node(cpu);
6267
6268 for (i = 0; i < sched_domains_numa_levels; i++) {
6269 for (j = 0; j < nr_node_ids; j++) {
6270 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6271 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6272 }
6273 }
6274}
6275
6276static void sched_domains_numa_masks_clear(int cpu)
6277{
6278 int i, j;
6279 for (i = 0; i < sched_domains_numa_levels; i++) {
6280 for (j = 0; j < nr_node_ids; j++)
6281 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6282 }
6283}
6284
6285/*
6286 * Update sched_domains_numa_masks[level][node] array when new cpus
6287 * are onlined.
6288 */
6289static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290 unsigned long action,
6291 void *hcpu)
6292{
6293 int cpu = (long)hcpu;
6294
6295 switch (action & ~CPU_TASKS_FROZEN) {
6296 case CPU_ONLINE:
6297 sched_domains_numa_masks_set(cpu);
6298 break;
6299
6300 case CPU_DEAD:
6301 sched_domains_numa_masks_clear(cpu);
6302 break;
6303
6304 default:
6305 return NOTIFY_DONE;
6306 }
6307
6308 return NOTIFY_OK;
cb83b629
PZ
6309}
6310#else
6311static inline void sched_init_numa(void)
6312{
6313}
301a5cba
TC
6314
6315static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6316 unsigned long action,
6317 void *hcpu)
6318{
6319 return 0;
6320}
cb83b629
PZ
6321#endif /* CONFIG_NUMA */
6322
54ab4ff4
PZ
6323static int __sdt_alloc(const struct cpumask *cpu_map)
6324{
6325 struct sched_domain_topology_level *tl;
6326 int j;
6327
27723a68 6328 for_each_sd_topology(tl) {
54ab4ff4
PZ
6329 struct sd_data *sdd = &tl->data;
6330
6331 sdd->sd = alloc_percpu(struct sched_domain *);
6332 if (!sdd->sd)
6333 return -ENOMEM;
6334
6335 sdd->sg = alloc_percpu(struct sched_group *);
6336 if (!sdd->sg)
6337 return -ENOMEM;
6338
9c3f75cb
PZ
6339 sdd->sgp = alloc_percpu(struct sched_group_power *);
6340 if (!sdd->sgp)
6341 return -ENOMEM;
6342
54ab4ff4
PZ
6343 for_each_cpu(j, cpu_map) {
6344 struct sched_domain *sd;
6345 struct sched_group *sg;
9c3f75cb 6346 struct sched_group_power *sgp;
54ab4ff4
PZ
6347
6348 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6349 GFP_KERNEL, cpu_to_node(j));
6350 if (!sd)
6351 return -ENOMEM;
6352
6353 *per_cpu_ptr(sdd->sd, j) = sd;
6354
6355 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6356 GFP_KERNEL, cpu_to_node(j));
6357 if (!sg)
6358 return -ENOMEM;
6359
30b4e9eb
IM
6360 sg->next = sg;
6361
54ab4ff4 6362 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6363
c1174876 6364 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6365 GFP_KERNEL, cpu_to_node(j));
6366 if (!sgp)
6367 return -ENOMEM;
6368
6369 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6370 }
6371 }
6372
6373 return 0;
6374}
6375
6376static void __sdt_free(const struct cpumask *cpu_map)
6377{
6378 struct sched_domain_topology_level *tl;
6379 int j;
6380
27723a68 6381 for_each_sd_topology(tl) {
54ab4ff4
PZ
6382 struct sd_data *sdd = &tl->data;
6383
6384 for_each_cpu(j, cpu_map) {
fb2cf2c6 6385 struct sched_domain *sd;
6386
6387 if (sdd->sd) {
6388 sd = *per_cpu_ptr(sdd->sd, j);
6389 if (sd && (sd->flags & SD_OVERLAP))
6390 free_sched_groups(sd->groups, 0);
6391 kfree(*per_cpu_ptr(sdd->sd, j));
6392 }
6393
6394 if (sdd->sg)
6395 kfree(*per_cpu_ptr(sdd->sg, j));
6396 if (sdd->sgp)
6397 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6398 }
6399 free_percpu(sdd->sd);
fb2cf2c6 6400 sdd->sd = NULL;
54ab4ff4 6401 free_percpu(sdd->sg);
fb2cf2c6 6402 sdd->sg = NULL;
9c3f75cb 6403 free_percpu(sdd->sgp);
fb2cf2c6 6404 sdd->sgp = NULL;
54ab4ff4
PZ
6405 }
6406}
6407
2c402dc3 6408struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6409 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6410 struct sched_domain *child, int cpu)
2c402dc3 6411{
143e1e28 6412 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6413 if (!sd)
d069b916 6414 return child;
2c402dc3 6415
2c402dc3 6416 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6417 if (child) {
6418 sd->level = child->level + 1;
6419 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6420 child->parent = sd;
c75e0128 6421 sd->child = child;
60495e77 6422 }
a841f8ce 6423 set_domain_attribute(sd, attr);
2c402dc3
PZ
6424
6425 return sd;
6426}
6427
2109b99e
AH
6428/*
6429 * Build sched domains for a given set of cpus and attach the sched domains
6430 * to the individual cpus
6431 */
dce840a0
PZ
6432static int build_sched_domains(const struct cpumask *cpu_map,
6433 struct sched_domain_attr *attr)
2109b99e 6434{
1c632169 6435 enum s_alloc alloc_state;
dce840a0 6436 struct sched_domain *sd;
2109b99e 6437 struct s_data d;
822ff793 6438 int i, ret = -ENOMEM;
9c1cfda2 6439
2109b99e
AH
6440 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6441 if (alloc_state != sa_rootdomain)
6442 goto error;
9c1cfda2 6443
dce840a0 6444 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6445 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6446 struct sched_domain_topology_level *tl;
6447
3bd65a80 6448 sd = NULL;
27723a68 6449 for_each_sd_topology(tl) {
4a850cbe 6450 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6451 if (tl == sched_domain_topology)
6452 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6453 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6454 sd->flags |= SD_OVERLAP;
d110235d
PZ
6455 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6456 break;
e3589f6c 6457 }
dce840a0
PZ
6458 }
6459
6460 /* Build the groups for the domains */
6461 for_each_cpu(i, cpu_map) {
6462 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6463 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6464 if (sd->flags & SD_OVERLAP) {
6465 if (build_overlap_sched_groups(sd, i))
6466 goto error;
6467 } else {
6468 if (build_sched_groups(sd, i))
6469 goto error;
6470 }
1cf51902 6471 }
a06dadbe 6472 }
9c1cfda2 6473
1da177e4 6474 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6475 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6476 if (!cpumask_test_cpu(i, cpu_map))
6477 continue;
9c1cfda2 6478
dce840a0
PZ
6479 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6480 claim_allocations(i, sd);
cd4ea6ae 6481 init_sched_groups_power(i, sd);
dce840a0 6482 }
f712c0c7 6483 }
9c1cfda2 6484
1da177e4 6485 /* Attach the domains */
dce840a0 6486 rcu_read_lock();
abcd083a 6487 for_each_cpu(i, cpu_map) {
21d42ccf 6488 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6489 cpu_attach_domain(sd, d.rd, i);
1da177e4 6490 }
dce840a0 6491 rcu_read_unlock();
51888ca2 6492
822ff793 6493 ret = 0;
51888ca2 6494error:
2109b99e 6495 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6496 return ret;
1da177e4 6497}
029190c5 6498
acc3f5d7 6499static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6500static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6501static struct sched_domain_attr *dattr_cur;
6502 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6503
6504/*
6505 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6506 * cpumask) fails, then fallback to a single sched domain,
6507 * as determined by the single cpumask fallback_doms.
029190c5 6508 */
4212823f 6509static cpumask_var_t fallback_doms;
029190c5 6510
ee79d1bd
HC
6511/*
6512 * arch_update_cpu_topology lets virtualized architectures update the
6513 * cpu core maps. It is supposed to return 1 if the topology changed
6514 * or 0 if it stayed the same.
6515 */
52f5684c 6516int __weak arch_update_cpu_topology(void)
22e52b07 6517{
ee79d1bd 6518 return 0;
22e52b07
HC
6519}
6520
acc3f5d7
RR
6521cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6522{
6523 int i;
6524 cpumask_var_t *doms;
6525
6526 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6527 if (!doms)
6528 return NULL;
6529 for (i = 0; i < ndoms; i++) {
6530 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6531 free_sched_domains(doms, i);
6532 return NULL;
6533 }
6534 }
6535 return doms;
6536}
6537
6538void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6539{
6540 unsigned int i;
6541 for (i = 0; i < ndoms; i++)
6542 free_cpumask_var(doms[i]);
6543 kfree(doms);
6544}
6545
1a20ff27 6546/*
41a2d6cf 6547 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6548 * For now this just excludes isolated cpus, but could be used to
6549 * exclude other special cases in the future.
1a20ff27 6550 */
c4a8849a 6551static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6552{
7378547f
MM
6553 int err;
6554
22e52b07 6555 arch_update_cpu_topology();
029190c5 6556 ndoms_cur = 1;
acc3f5d7 6557 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6558 if (!doms_cur)
acc3f5d7
RR
6559 doms_cur = &fallback_doms;
6560 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6561 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6562 register_sched_domain_sysctl();
7378547f
MM
6563
6564 return err;
1a20ff27
DG
6565}
6566
1a20ff27
DG
6567/*
6568 * Detach sched domains from a group of cpus specified in cpu_map
6569 * These cpus will now be attached to the NULL domain
6570 */
96f874e2 6571static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6572{
6573 int i;
6574
dce840a0 6575 rcu_read_lock();
abcd083a 6576 for_each_cpu(i, cpu_map)
57d885fe 6577 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6578 rcu_read_unlock();
1a20ff27
DG
6579}
6580
1d3504fc
HS
6581/* handle null as "default" */
6582static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6583 struct sched_domain_attr *new, int idx_new)
6584{
6585 struct sched_domain_attr tmp;
6586
6587 /* fast path */
6588 if (!new && !cur)
6589 return 1;
6590
6591 tmp = SD_ATTR_INIT;
6592 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6593 new ? (new + idx_new) : &tmp,
6594 sizeof(struct sched_domain_attr));
6595}
6596
029190c5
PJ
6597/*
6598 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6599 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6600 * doms_new[] to the current sched domain partitioning, doms_cur[].
6601 * It destroys each deleted domain and builds each new domain.
6602 *
acc3f5d7 6603 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6604 * The masks don't intersect (don't overlap.) We should setup one
6605 * sched domain for each mask. CPUs not in any of the cpumasks will
6606 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6607 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6608 * it as it is.
6609 *
acc3f5d7
RR
6610 * The passed in 'doms_new' should be allocated using
6611 * alloc_sched_domains. This routine takes ownership of it and will
6612 * free_sched_domains it when done with it. If the caller failed the
6613 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6614 * and partition_sched_domains() will fallback to the single partition
6615 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6616 *
96f874e2 6617 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6618 * ndoms_new == 0 is a special case for destroying existing domains,
6619 * and it will not create the default domain.
dfb512ec 6620 *
029190c5
PJ
6621 * Call with hotplug lock held
6622 */
acc3f5d7 6623void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6624 struct sched_domain_attr *dattr_new)
029190c5 6625{
dfb512ec 6626 int i, j, n;
d65bd5ec 6627 int new_topology;
029190c5 6628
712555ee 6629 mutex_lock(&sched_domains_mutex);
a1835615 6630
7378547f
MM
6631 /* always unregister in case we don't destroy any domains */
6632 unregister_sched_domain_sysctl();
6633
d65bd5ec
HC
6634 /* Let architecture update cpu core mappings. */
6635 new_topology = arch_update_cpu_topology();
6636
dfb512ec 6637 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6638
6639 /* Destroy deleted domains */
6640 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6641 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6642 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6643 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6644 goto match1;
6645 }
6646 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6647 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6648match1:
6649 ;
6650 }
6651
c8d2d47a 6652 n = ndoms_cur;
e761b772 6653 if (doms_new == NULL) {
c8d2d47a 6654 n = 0;
acc3f5d7 6655 doms_new = &fallback_doms;
6ad4c188 6656 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6657 WARN_ON_ONCE(dattr_new);
e761b772
MK
6658 }
6659
029190c5
PJ
6660 /* Build new domains */
6661 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6662 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6663 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6664 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6665 goto match2;
6666 }
6667 /* no match - add a new doms_new */
dce840a0 6668 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6669match2:
6670 ;
6671 }
6672
6673 /* Remember the new sched domains */
acc3f5d7
RR
6674 if (doms_cur != &fallback_doms)
6675 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6676 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6677 doms_cur = doms_new;
1d3504fc 6678 dattr_cur = dattr_new;
029190c5 6679 ndoms_cur = ndoms_new;
7378547f
MM
6680
6681 register_sched_domain_sysctl();
a1835615 6682
712555ee 6683 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6684}
6685
d35be8ba
SB
6686static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6687
1da177e4 6688/*
3a101d05
TH
6689 * Update cpusets according to cpu_active mask. If cpusets are
6690 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6691 * around partition_sched_domains().
d35be8ba
SB
6692 *
6693 * If we come here as part of a suspend/resume, don't touch cpusets because we
6694 * want to restore it back to its original state upon resume anyway.
1da177e4 6695 */
0b2e918a
TH
6696static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6697 void *hcpu)
e761b772 6698{
d35be8ba
SB
6699 switch (action) {
6700 case CPU_ONLINE_FROZEN:
6701 case CPU_DOWN_FAILED_FROZEN:
6702
6703 /*
6704 * num_cpus_frozen tracks how many CPUs are involved in suspend
6705 * resume sequence. As long as this is not the last online
6706 * operation in the resume sequence, just build a single sched
6707 * domain, ignoring cpusets.
6708 */
6709 num_cpus_frozen--;
6710 if (likely(num_cpus_frozen)) {
6711 partition_sched_domains(1, NULL, NULL);
6712 break;
6713 }
6714
6715 /*
6716 * This is the last CPU online operation. So fall through and
6717 * restore the original sched domains by considering the
6718 * cpuset configurations.
6719 */
6720
e761b772 6721 case CPU_ONLINE:
6ad4c188 6722 case CPU_DOWN_FAILED:
7ddf96b0 6723 cpuset_update_active_cpus(true);
d35be8ba 6724 break;
3a101d05
TH
6725 default:
6726 return NOTIFY_DONE;
6727 }
d35be8ba 6728 return NOTIFY_OK;
3a101d05 6729}
e761b772 6730
0b2e918a
TH
6731static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6732 void *hcpu)
3a101d05 6733{
d35be8ba 6734 switch (action) {
3a101d05 6735 case CPU_DOWN_PREPARE:
7ddf96b0 6736 cpuset_update_active_cpus(false);
d35be8ba
SB
6737 break;
6738 case CPU_DOWN_PREPARE_FROZEN:
6739 num_cpus_frozen++;
6740 partition_sched_domains(1, NULL, NULL);
6741 break;
e761b772
MK
6742 default:
6743 return NOTIFY_DONE;
6744 }
d35be8ba 6745 return NOTIFY_OK;
e761b772 6746}
e761b772 6747
1da177e4
LT
6748void __init sched_init_smp(void)
6749{
dcc30a35
RR
6750 cpumask_var_t non_isolated_cpus;
6751
6752 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6753 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6754
cb83b629
PZ
6755 sched_init_numa();
6756
6acce3ef
PZ
6757 /*
6758 * There's no userspace yet to cause hotplug operations; hence all the
6759 * cpu masks are stable and all blatant races in the below code cannot
6760 * happen.
6761 */
712555ee 6762 mutex_lock(&sched_domains_mutex);
c4a8849a 6763 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6764 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6765 if (cpumask_empty(non_isolated_cpus))
6766 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6767 mutex_unlock(&sched_domains_mutex);
e761b772 6768
301a5cba 6769 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6770 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6771 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6772
b328ca18 6773 init_hrtick();
5c1e1767
NP
6774
6775 /* Move init over to a non-isolated CPU */
dcc30a35 6776 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6777 BUG();
19978ca6 6778 sched_init_granularity();
dcc30a35 6779 free_cpumask_var(non_isolated_cpus);
4212823f 6780
0e3900e6 6781 init_sched_rt_class();
1baca4ce 6782 init_sched_dl_class();
1da177e4
LT
6783}
6784#else
6785void __init sched_init_smp(void)
6786{
19978ca6 6787 sched_init_granularity();
1da177e4
LT
6788}
6789#endif /* CONFIG_SMP */
6790
cd1bb94b
AB
6791const_debug unsigned int sysctl_timer_migration = 1;
6792
1da177e4
LT
6793int in_sched_functions(unsigned long addr)
6794{
1da177e4
LT
6795 return in_lock_functions(addr) ||
6796 (addr >= (unsigned long)__sched_text_start
6797 && addr < (unsigned long)__sched_text_end);
6798}
6799
029632fb 6800#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6801/*
6802 * Default task group.
6803 * Every task in system belongs to this group at bootup.
6804 */
029632fb 6805struct task_group root_task_group;
35cf4e50 6806LIST_HEAD(task_groups);
052f1dc7 6807#endif
6f505b16 6808
e6252c3e 6809DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6810
1da177e4
LT
6811void __init sched_init(void)
6812{
dd41f596 6813 int i, j;
434d53b0
MT
6814 unsigned long alloc_size = 0, ptr;
6815
6816#ifdef CONFIG_FAIR_GROUP_SCHED
6817 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6818#endif
6819#ifdef CONFIG_RT_GROUP_SCHED
6820 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6821#endif
df7c8e84 6822#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6823 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6824#endif
434d53b0 6825 if (alloc_size) {
36b7b6d4 6826 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6827
6828#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6829 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6830 ptr += nr_cpu_ids * sizeof(void **);
6831
07e06b01 6832 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6833 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6834
6d6bc0ad 6835#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6836#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6837 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6838 ptr += nr_cpu_ids * sizeof(void **);
6839
07e06b01 6840 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6841 ptr += nr_cpu_ids * sizeof(void **);
6842
6d6bc0ad 6843#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6844#ifdef CONFIG_CPUMASK_OFFSTACK
6845 for_each_possible_cpu(i) {
e6252c3e 6846 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6847 ptr += cpumask_size();
6848 }
6849#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6850 }
dd41f596 6851
332ac17e
DF
6852 init_rt_bandwidth(&def_rt_bandwidth,
6853 global_rt_period(), global_rt_runtime());
6854 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6855 global_rt_period(), global_rt_runtime());
332ac17e 6856
57d885fe
GH
6857#ifdef CONFIG_SMP
6858 init_defrootdomain();
6859#endif
6860
d0b27fa7 6861#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6862 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6863 global_rt_period(), global_rt_runtime());
6d6bc0ad 6864#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6865
7c941438 6866#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6867 list_add(&root_task_group.list, &task_groups);
6868 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6869 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6870 autogroup_init(&init_task);
54c707e9 6871
7c941438 6872#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6873
0a945022 6874 for_each_possible_cpu(i) {
70b97a7f 6875 struct rq *rq;
1da177e4
LT
6876
6877 rq = cpu_rq(i);
05fa785c 6878 raw_spin_lock_init(&rq->lock);
7897986b 6879 rq->nr_running = 0;
dce48a84
TG
6880 rq->calc_load_active = 0;
6881 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6882 init_cfs_rq(&rq->cfs);
6f505b16 6883 init_rt_rq(&rq->rt, rq);
aab03e05 6884 init_dl_rq(&rq->dl, rq);
dd41f596 6885#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6886 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6887 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6888 /*
07e06b01 6889 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6890 *
6891 * In case of task-groups formed thr' the cgroup filesystem, it
6892 * gets 100% of the cpu resources in the system. This overall
6893 * system cpu resource is divided among the tasks of
07e06b01 6894 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6895 * based on each entity's (task or task-group's) weight
6896 * (se->load.weight).
6897 *
07e06b01 6898 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6899 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6900 * then A0's share of the cpu resource is:
6901 *
0d905bca 6902 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6903 *
07e06b01
YZ
6904 * We achieve this by letting root_task_group's tasks sit
6905 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6906 */
ab84d31e 6907 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6908 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6909#endif /* CONFIG_FAIR_GROUP_SCHED */
6910
6911 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6912#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6913 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6914#endif
1da177e4 6915
dd41f596
IM
6916 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6917 rq->cpu_load[j] = 0;
fdf3e95d
VP
6918
6919 rq->last_load_update_tick = jiffies;
6920
1da177e4 6921#ifdef CONFIG_SMP
41c7ce9a 6922 rq->sd = NULL;
57d885fe 6923 rq->rd = NULL;
1399fa78 6924 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6925 rq->post_schedule = 0;
1da177e4 6926 rq->active_balance = 0;
dd41f596 6927 rq->next_balance = jiffies;
1da177e4 6928 rq->push_cpu = 0;
0a2966b4 6929 rq->cpu = i;
1f11eb6a 6930 rq->online = 0;
eae0c9df
MG
6931 rq->idle_stamp = 0;
6932 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6933 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6934
6935 INIT_LIST_HEAD(&rq->cfs_tasks);
6936
dc938520 6937 rq_attach_root(rq, &def_root_domain);
3451d024 6938#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6939 rq->nohz_flags = 0;
83cd4fe2 6940#endif
265f22a9
FW
6941#ifdef CONFIG_NO_HZ_FULL
6942 rq->last_sched_tick = 0;
6943#endif
1da177e4 6944#endif
8f4d37ec 6945 init_rq_hrtick(rq);
1da177e4 6946 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6947 }
6948
2dd73a4f 6949 set_load_weight(&init_task);
b50f60ce 6950
e107be36
AK
6951#ifdef CONFIG_PREEMPT_NOTIFIERS
6952 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6953#endif
6954
1da177e4
LT
6955 /*
6956 * The boot idle thread does lazy MMU switching as well:
6957 */
6958 atomic_inc(&init_mm.mm_count);
6959 enter_lazy_tlb(&init_mm, current);
6960
6961 /*
6962 * Make us the idle thread. Technically, schedule() should not be
6963 * called from this thread, however somewhere below it might be,
6964 * but because we are the idle thread, we just pick up running again
6965 * when this runqueue becomes "idle".
6966 */
6967 init_idle(current, smp_processor_id());
dce48a84
TG
6968
6969 calc_load_update = jiffies + LOAD_FREQ;
6970
dd41f596
IM
6971 /*
6972 * During early bootup we pretend to be a normal task:
6973 */
6974 current->sched_class = &fair_sched_class;
6892b75e 6975
bf4d83f6 6976#ifdef CONFIG_SMP
4cb98839 6977 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6978 /* May be allocated at isolcpus cmdline parse time */
6979 if (cpu_isolated_map == NULL)
6980 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6981 idle_thread_set_boot_cpu();
029632fb
PZ
6982#endif
6983 init_sched_fair_class();
6a7b3dc3 6984
6892b75e 6985 scheduler_running = 1;
1da177e4
LT
6986}
6987
d902db1e 6988#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6989static inline int preempt_count_equals(int preempt_offset)
6990{
234da7bc 6991 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6992
4ba8216c 6993 return (nested == preempt_offset);
e4aafea2
FW
6994}
6995
d894837f 6996void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6997{
1da177e4
LT
6998 static unsigned long prev_jiffy; /* ratelimiting */
6999
b3fbab05 7000 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7001 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7002 !is_idle_task(current)) ||
e4aafea2 7003 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7004 return;
7005 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7006 return;
7007 prev_jiffy = jiffies;
7008
3df0fc5b
PZ
7009 printk(KERN_ERR
7010 "BUG: sleeping function called from invalid context at %s:%d\n",
7011 file, line);
7012 printk(KERN_ERR
7013 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7014 in_atomic(), irqs_disabled(),
7015 current->pid, current->comm);
aef745fc
IM
7016
7017 debug_show_held_locks(current);
7018 if (irqs_disabled())
7019 print_irqtrace_events(current);
8f47b187
TG
7020#ifdef CONFIG_DEBUG_PREEMPT
7021 if (!preempt_count_equals(preempt_offset)) {
7022 pr_err("Preemption disabled at:");
7023 print_ip_sym(current->preempt_disable_ip);
7024 pr_cont("\n");
7025 }
7026#endif
aef745fc 7027 dump_stack();
1da177e4
LT
7028}
7029EXPORT_SYMBOL(__might_sleep);
7030#endif
7031
7032#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7033static void normalize_task(struct rq *rq, struct task_struct *p)
7034{
da7a735e 7035 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7036 struct sched_attr attr = {
7037 .sched_policy = SCHED_NORMAL,
7038 };
da7a735e 7039 int old_prio = p->prio;
3a5e4dc1 7040 int on_rq;
3e51f33f 7041
fd2f4419 7042 on_rq = p->on_rq;
3a5e4dc1 7043 if (on_rq)
4ca9b72b 7044 dequeue_task(rq, p, 0);
d50dde5a 7045 __setscheduler(rq, p, &attr);
3a5e4dc1 7046 if (on_rq) {
4ca9b72b 7047 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7048 resched_task(rq->curr);
7049 }
da7a735e
PZ
7050
7051 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7052}
7053
1da177e4
LT
7054void normalize_rt_tasks(void)
7055{
a0f98a1c 7056 struct task_struct *g, *p;
1da177e4 7057 unsigned long flags;
70b97a7f 7058 struct rq *rq;
1da177e4 7059
4cf5d77a 7060 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7061 do_each_thread(g, p) {
178be793
IM
7062 /*
7063 * Only normalize user tasks:
7064 */
7065 if (!p->mm)
7066 continue;
7067
6cfb0d5d 7068 p->se.exec_start = 0;
6cfb0d5d 7069#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7070 p->se.statistics.wait_start = 0;
7071 p->se.statistics.sleep_start = 0;
7072 p->se.statistics.block_start = 0;
6cfb0d5d 7073#endif
dd41f596 7074
aab03e05 7075 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7076 /*
7077 * Renice negative nice level userspace
7078 * tasks back to 0:
7079 */
d0ea0268 7080 if (task_nice(p) < 0 && p->mm)
dd41f596 7081 set_user_nice(p, 0);
1da177e4 7082 continue;
dd41f596 7083 }
1da177e4 7084
1d615482 7085 raw_spin_lock(&p->pi_lock);
b29739f9 7086 rq = __task_rq_lock(p);
1da177e4 7087
178be793 7088 normalize_task(rq, p);
3a5e4dc1 7089
b29739f9 7090 __task_rq_unlock(rq);
1d615482 7091 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7092 } while_each_thread(g, p);
7093
4cf5d77a 7094 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7095}
7096
7097#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7098
67fc4e0c 7099#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7100/*
67fc4e0c 7101 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7102 *
7103 * They can only be called when the whole system has been
7104 * stopped - every CPU needs to be quiescent, and no scheduling
7105 * activity can take place. Using them for anything else would
7106 * be a serious bug, and as a result, they aren't even visible
7107 * under any other configuration.
7108 */
7109
7110/**
7111 * curr_task - return the current task for a given cpu.
7112 * @cpu: the processor in question.
7113 *
7114 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7115 *
7116 * Return: The current task for @cpu.
1df5c10a 7117 */
36c8b586 7118struct task_struct *curr_task(int cpu)
1df5c10a
LT
7119{
7120 return cpu_curr(cpu);
7121}
7122
67fc4e0c
JW
7123#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7124
7125#ifdef CONFIG_IA64
1df5c10a
LT
7126/**
7127 * set_curr_task - set the current task for a given cpu.
7128 * @cpu: the processor in question.
7129 * @p: the task pointer to set.
7130 *
7131 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7132 * are serviced on a separate stack. It allows the architecture to switch the
7133 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7134 * must be called with all CPU's synchronized, and interrupts disabled, the
7135 * and caller must save the original value of the current task (see
7136 * curr_task() above) and restore that value before reenabling interrupts and
7137 * re-starting the system.
7138 *
7139 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7140 */
36c8b586 7141void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7142{
7143 cpu_curr(cpu) = p;
7144}
7145
7146#endif
29f59db3 7147
7c941438 7148#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7149/* task_group_lock serializes the addition/removal of task groups */
7150static DEFINE_SPINLOCK(task_group_lock);
7151
bccbe08a
PZ
7152static void free_sched_group(struct task_group *tg)
7153{
7154 free_fair_sched_group(tg);
7155 free_rt_sched_group(tg);
e9aa1dd1 7156 autogroup_free(tg);
bccbe08a
PZ
7157 kfree(tg);
7158}
7159
7160/* allocate runqueue etc for a new task group */
ec7dc8ac 7161struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7162{
7163 struct task_group *tg;
bccbe08a
PZ
7164
7165 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7166 if (!tg)
7167 return ERR_PTR(-ENOMEM);
7168
ec7dc8ac 7169 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7170 goto err;
7171
ec7dc8ac 7172 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7173 goto err;
7174
ace783b9
LZ
7175 return tg;
7176
7177err:
7178 free_sched_group(tg);
7179 return ERR_PTR(-ENOMEM);
7180}
7181
7182void sched_online_group(struct task_group *tg, struct task_group *parent)
7183{
7184 unsigned long flags;
7185
8ed36996 7186 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7187 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7188
7189 WARN_ON(!parent); /* root should already exist */
7190
7191 tg->parent = parent;
f473aa5e 7192 INIT_LIST_HEAD(&tg->children);
09f2724a 7193 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7194 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7195}
7196
9b5b7751 7197/* rcu callback to free various structures associated with a task group */
6f505b16 7198static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7199{
29f59db3 7200 /* now it should be safe to free those cfs_rqs */
6f505b16 7201 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7202}
7203
9b5b7751 7204/* Destroy runqueue etc associated with a task group */
4cf86d77 7205void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7206{
7207 /* wait for possible concurrent references to cfs_rqs complete */
7208 call_rcu(&tg->rcu, free_sched_group_rcu);
7209}
7210
7211void sched_offline_group(struct task_group *tg)
29f59db3 7212{
8ed36996 7213 unsigned long flags;
9b5b7751 7214 int i;
29f59db3 7215
3d4b47b4
PZ
7216 /* end participation in shares distribution */
7217 for_each_possible_cpu(i)
bccbe08a 7218 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7219
7220 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7221 list_del_rcu(&tg->list);
f473aa5e 7222 list_del_rcu(&tg->siblings);
8ed36996 7223 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7224}
7225
9b5b7751 7226/* change task's runqueue when it moves between groups.
3a252015
IM
7227 * The caller of this function should have put the task in its new group
7228 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7229 * reflect its new group.
9b5b7751
SV
7230 */
7231void sched_move_task(struct task_struct *tsk)
29f59db3 7232{
8323f26c 7233 struct task_group *tg;
29f59db3
SV
7234 int on_rq, running;
7235 unsigned long flags;
7236 struct rq *rq;
7237
7238 rq = task_rq_lock(tsk, &flags);
7239
051a1d1a 7240 running = task_current(rq, tsk);
fd2f4419 7241 on_rq = tsk->on_rq;
29f59db3 7242
0e1f3483 7243 if (on_rq)
29f59db3 7244 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7245 if (unlikely(running))
7246 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7247
073219e9 7248 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7249 lockdep_is_held(&tsk->sighand->siglock)),
7250 struct task_group, css);
7251 tg = autogroup_task_group(tsk, tg);
7252 tsk->sched_task_group = tg;
7253
810b3817 7254#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7255 if (tsk->sched_class->task_move_group)
7256 tsk->sched_class->task_move_group(tsk, on_rq);
7257 else
810b3817 7258#endif
b2b5ce02 7259 set_task_rq(tsk, task_cpu(tsk));
810b3817 7260
0e1f3483
HS
7261 if (unlikely(running))
7262 tsk->sched_class->set_curr_task(rq);
7263 if (on_rq)
371fd7e7 7264 enqueue_task(rq, tsk, 0);
29f59db3 7265
0122ec5b 7266 task_rq_unlock(rq, tsk, &flags);
29f59db3 7267}
7c941438 7268#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7269
a790de99
PT
7270#ifdef CONFIG_RT_GROUP_SCHED
7271/*
7272 * Ensure that the real time constraints are schedulable.
7273 */
7274static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7275
9a7e0b18
PZ
7276/* Must be called with tasklist_lock held */
7277static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7278{
9a7e0b18 7279 struct task_struct *g, *p;
b40b2e8e 7280
9a7e0b18 7281 do_each_thread(g, p) {
029632fb 7282 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7283 return 1;
7284 } while_each_thread(g, p);
b40b2e8e 7285
9a7e0b18
PZ
7286 return 0;
7287}
b40b2e8e 7288
9a7e0b18
PZ
7289struct rt_schedulable_data {
7290 struct task_group *tg;
7291 u64 rt_period;
7292 u64 rt_runtime;
7293};
b40b2e8e 7294
a790de99 7295static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7296{
7297 struct rt_schedulable_data *d = data;
7298 struct task_group *child;
7299 unsigned long total, sum = 0;
7300 u64 period, runtime;
b40b2e8e 7301
9a7e0b18
PZ
7302 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7303 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7304
9a7e0b18
PZ
7305 if (tg == d->tg) {
7306 period = d->rt_period;
7307 runtime = d->rt_runtime;
b40b2e8e 7308 }
b40b2e8e 7309
4653f803
PZ
7310 /*
7311 * Cannot have more runtime than the period.
7312 */
7313 if (runtime > period && runtime != RUNTIME_INF)
7314 return -EINVAL;
6f505b16 7315
4653f803
PZ
7316 /*
7317 * Ensure we don't starve existing RT tasks.
7318 */
9a7e0b18
PZ
7319 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7320 return -EBUSY;
6f505b16 7321
9a7e0b18 7322 total = to_ratio(period, runtime);
6f505b16 7323
4653f803
PZ
7324 /*
7325 * Nobody can have more than the global setting allows.
7326 */
7327 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7328 return -EINVAL;
6f505b16 7329
4653f803
PZ
7330 /*
7331 * The sum of our children's runtime should not exceed our own.
7332 */
9a7e0b18
PZ
7333 list_for_each_entry_rcu(child, &tg->children, siblings) {
7334 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7335 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7336
9a7e0b18
PZ
7337 if (child == d->tg) {
7338 period = d->rt_period;
7339 runtime = d->rt_runtime;
7340 }
6f505b16 7341
9a7e0b18 7342 sum += to_ratio(period, runtime);
9f0c1e56 7343 }
6f505b16 7344
9a7e0b18
PZ
7345 if (sum > total)
7346 return -EINVAL;
7347
7348 return 0;
6f505b16
PZ
7349}
7350
9a7e0b18 7351static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7352{
8277434e
PT
7353 int ret;
7354
9a7e0b18
PZ
7355 struct rt_schedulable_data data = {
7356 .tg = tg,
7357 .rt_period = period,
7358 .rt_runtime = runtime,
7359 };
7360
8277434e
PT
7361 rcu_read_lock();
7362 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7363 rcu_read_unlock();
7364
7365 return ret;
521f1a24
DG
7366}
7367
ab84d31e 7368static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7369 u64 rt_period, u64 rt_runtime)
6f505b16 7370{
ac086bc2 7371 int i, err = 0;
9f0c1e56 7372
9f0c1e56 7373 mutex_lock(&rt_constraints_mutex);
521f1a24 7374 read_lock(&tasklist_lock);
9a7e0b18
PZ
7375 err = __rt_schedulable(tg, rt_period, rt_runtime);
7376 if (err)
9f0c1e56 7377 goto unlock;
ac086bc2 7378
0986b11b 7379 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7380 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7381 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7382
7383 for_each_possible_cpu(i) {
7384 struct rt_rq *rt_rq = tg->rt_rq[i];
7385
0986b11b 7386 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7387 rt_rq->rt_runtime = rt_runtime;
0986b11b 7388 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7389 }
0986b11b 7390 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7391unlock:
521f1a24 7392 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7393 mutex_unlock(&rt_constraints_mutex);
7394
7395 return err;
6f505b16
PZ
7396}
7397
25cc7da7 7398static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7399{
7400 u64 rt_runtime, rt_period;
7401
7402 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7403 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7404 if (rt_runtime_us < 0)
7405 rt_runtime = RUNTIME_INF;
7406
ab84d31e 7407 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7408}
7409
25cc7da7 7410static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7411{
7412 u64 rt_runtime_us;
7413
d0b27fa7 7414 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7415 return -1;
7416
d0b27fa7 7417 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7418 do_div(rt_runtime_us, NSEC_PER_USEC);
7419 return rt_runtime_us;
7420}
d0b27fa7 7421
25cc7da7 7422static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7423{
7424 u64 rt_runtime, rt_period;
7425
7426 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7427 rt_runtime = tg->rt_bandwidth.rt_runtime;
7428
619b0488
R
7429 if (rt_period == 0)
7430 return -EINVAL;
7431
ab84d31e 7432 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7433}
7434
25cc7da7 7435static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7436{
7437 u64 rt_period_us;
7438
7439 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7440 do_div(rt_period_us, NSEC_PER_USEC);
7441 return rt_period_us;
7442}
332ac17e 7443#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7444
332ac17e 7445#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7446static int sched_rt_global_constraints(void)
7447{
7448 int ret = 0;
7449
7450 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7451 read_lock(&tasklist_lock);
4653f803 7452 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7453 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7454 mutex_unlock(&rt_constraints_mutex);
7455
7456 return ret;
7457}
54e99124 7458
25cc7da7 7459static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7460{
7461 /* Don't accept realtime tasks when there is no way for them to run */
7462 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7463 return 0;
7464
7465 return 1;
7466}
7467
6d6bc0ad 7468#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7469static int sched_rt_global_constraints(void)
7470{
ac086bc2 7471 unsigned long flags;
332ac17e 7472 int i, ret = 0;
ec5d4989 7473
0986b11b 7474 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7475 for_each_possible_cpu(i) {
7476 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7477
0986b11b 7478 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7479 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7480 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7481 }
0986b11b 7482 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7483
332ac17e 7484 return ret;
d0b27fa7 7485}
6d6bc0ad 7486#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7487
332ac17e
DF
7488static int sched_dl_global_constraints(void)
7489{
1724813d
PZ
7490 u64 runtime = global_rt_runtime();
7491 u64 period = global_rt_period();
332ac17e 7492 u64 new_bw = to_ratio(period, runtime);
1724813d 7493 int cpu, ret = 0;
49516342 7494 unsigned long flags;
332ac17e
DF
7495
7496 /*
7497 * Here we want to check the bandwidth not being set to some
7498 * value smaller than the currently allocated bandwidth in
7499 * any of the root_domains.
7500 *
7501 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7502 * cycling on root_domains... Discussion on different/better
7503 * solutions is welcome!
7504 */
1724813d
PZ
7505 for_each_possible_cpu(cpu) {
7506 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7507
49516342 7508 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7509 if (new_bw < dl_b->total_bw)
7510 ret = -EBUSY;
49516342 7511 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7512
7513 if (ret)
7514 break;
332ac17e
DF
7515 }
7516
1724813d 7517 return ret;
332ac17e
DF
7518}
7519
1724813d 7520static void sched_dl_do_global(void)
ce0dbbbb 7521{
1724813d
PZ
7522 u64 new_bw = -1;
7523 int cpu;
49516342 7524 unsigned long flags;
ce0dbbbb 7525
1724813d
PZ
7526 def_dl_bandwidth.dl_period = global_rt_period();
7527 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7528
7529 if (global_rt_runtime() != RUNTIME_INF)
7530 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7531
7532 /*
7533 * FIXME: As above...
7534 */
7535 for_each_possible_cpu(cpu) {
7536 struct dl_bw *dl_b = dl_bw_of(cpu);
7537
49516342 7538 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7539 dl_b->bw = new_bw;
49516342 7540 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7541 }
1724813d
PZ
7542}
7543
7544static int sched_rt_global_validate(void)
7545{
7546 if (sysctl_sched_rt_period <= 0)
7547 return -EINVAL;
7548
e9e7cb38
JL
7549 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7550 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7551 return -EINVAL;
7552
7553 return 0;
7554}
7555
7556static void sched_rt_do_global(void)
7557{
7558 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7559 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7560}
7561
d0b27fa7 7562int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7563 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7564 loff_t *ppos)
7565{
d0b27fa7
PZ
7566 int old_period, old_runtime;
7567 static DEFINE_MUTEX(mutex);
1724813d 7568 int ret;
d0b27fa7
PZ
7569
7570 mutex_lock(&mutex);
7571 old_period = sysctl_sched_rt_period;
7572 old_runtime = sysctl_sched_rt_runtime;
7573
8d65af78 7574 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7575
7576 if (!ret && write) {
1724813d
PZ
7577 ret = sched_rt_global_validate();
7578 if (ret)
7579 goto undo;
7580
d0b27fa7 7581 ret = sched_rt_global_constraints();
1724813d
PZ
7582 if (ret)
7583 goto undo;
7584
7585 ret = sched_dl_global_constraints();
7586 if (ret)
7587 goto undo;
7588
7589 sched_rt_do_global();
7590 sched_dl_do_global();
7591 }
7592 if (0) {
7593undo:
7594 sysctl_sched_rt_period = old_period;
7595 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7596 }
7597 mutex_unlock(&mutex);
7598
7599 return ret;
7600}
68318b8e 7601
1724813d 7602int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7603 void __user *buffer, size_t *lenp,
7604 loff_t *ppos)
7605{
7606 int ret;
332ac17e 7607 static DEFINE_MUTEX(mutex);
332ac17e
DF
7608
7609 mutex_lock(&mutex);
332ac17e 7610 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7611 /* make sure that internally we keep jiffies */
7612 /* also, writing zero resets timeslice to default */
332ac17e 7613 if (!ret && write) {
1724813d
PZ
7614 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7615 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7616 }
7617 mutex_unlock(&mutex);
332ac17e
DF
7618 return ret;
7619}
7620
052f1dc7 7621#ifdef CONFIG_CGROUP_SCHED
68318b8e 7622
a7c6d554 7623static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7624{
a7c6d554 7625 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7626}
7627
eb95419b
TH
7628static struct cgroup_subsys_state *
7629cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7630{
eb95419b
TH
7631 struct task_group *parent = css_tg(parent_css);
7632 struct task_group *tg;
68318b8e 7633
eb95419b 7634 if (!parent) {
68318b8e 7635 /* This is early initialization for the top cgroup */
07e06b01 7636 return &root_task_group.css;
68318b8e
SV
7637 }
7638
ec7dc8ac 7639 tg = sched_create_group(parent);
68318b8e
SV
7640 if (IS_ERR(tg))
7641 return ERR_PTR(-ENOMEM);
7642
68318b8e
SV
7643 return &tg->css;
7644}
7645
eb95419b 7646static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7647{
eb95419b
TH
7648 struct task_group *tg = css_tg(css);
7649 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7650
63876986
TH
7651 if (parent)
7652 sched_online_group(tg, parent);
ace783b9
LZ
7653 return 0;
7654}
7655
eb95419b 7656static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7657{
eb95419b 7658 struct task_group *tg = css_tg(css);
68318b8e
SV
7659
7660 sched_destroy_group(tg);
7661}
7662
eb95419b 7663static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7664{
eb95419b 7665 struct task_group *tg = css_tg(css);
ace783b9
LZ
7666
7667 sched_offline_group(tg);
7668}
7669
eb95419b 7670static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7671 struct cgroup_taskset *tset)
68318b8e 7672{
bb9d97b6
TH
7673 struct task_struct *task;
7674
924f0d9a 7675 cgroup_taskset_for_each(task, tset) {
b68aa230 7676#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7677 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7678 return -EINVAL;
b68aa230 7679#else
bb9d97b6
TH
7680 /* We don't support RT-tasks being in separate groups */
7681 if (task->sched_class != &fair_sched_class)
7682 return -EINVAL;
b68aa230 7683#endif
bb9d97b6 7684 }
be367d09
BB
7685 return 0;
7686}
68318b8e 7687
eb95419b 7688static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7689 struct cgroup_taskset *tset)
68318b8e 7690{
bb9d97b6
TH
7691 struct task_struct *task;
7692
924f0d9a 7693 cgroup_taskset_for_each(task, tset)
bb9d97b6 7694 sched_move_task(task);
68318b8e
SV
7695}
7696
eb95419b
TH
7697static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7698 struct cgroup_subsys_state *old_css,
7699 struct task_struct *task)
068c5cc5
PZ
7700{
7701 /*
7702 * cgroup_exit() is called in the copy_process() failure path.
7703 * Ignore this case since the task hasn't ran yet, this avoids
7704 * trying to poke a half freed task state from generic code.
7705 */
7706 if (!(task->flags & PF_EXITING))
7707 return;
7708
7709 sched_move_task(task);
7710}
7711
052f1dc7 7712#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7713static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7714 struct cftype *cftype, u64 shareval)
68318b8e 7715{
182446d0 7716 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7717}
7718
182446d0
TH
7719static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7720 struct cftype *cft)
68318b8e 7721{
182446d0 7722 struct task_group *tg = css_tg(css);
68318b8e 7723
c8b28116 7724 return (u64) scale_load_down(tg->shares);
68318b8e 7725}
ab84d31e
PT
7726
7727#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7728static DEFINE_MUTEX(cfs_constraints_mutex);
7729
ab84d31e
PT
7730const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7731const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7732
a790de99
PT
7733static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7734
ab84d31e
PT
7735static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7736{
56f570e5 7737 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7738 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7739
7740 if (tg == &root_task_group)
7741 return -EINVAL;
7742
7743 /*
7744 * Ensure we have at some amount of bandwidth every period. This is
7745 * to prevent reaching a state of large arrears when throttled via
7746 * entity_tick() resulting in prolonged exit starvation.
7747 */
7748 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7749 return -EINVAL;
7750
7751 /*
7752 * Likewise, bound things on the otherside by preventing insane quota
7753 * periods. This also allows us to normalize in computing quota
7754 * feasibility.
7755 */
7756 if (period > max_cfs_quota_period)
7757 return -EINVAL;
7758
a790de99
PT
7759 mutex_lock(&cfs_constraints_mutex);
7760 ret = __cfs_schedulable(tg, period, quota);
7761 if (ret)
7762 goto out_unlock;
7763
58088ad0 7764 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7765 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7766 /*
7767 * If we need to toggle cfs_bandwidth_used, off->on must occur
7768 * before making related changes, and on->off must occur afterwards
7769 */
7770 if (runtime_enabled && !runtime_was_enabled)
7771 cfs_bandwidth_usage_inc();
ab84d31e
PT
7772 raw_spin_lock_irq(&cfs_b->lock);
7773 cfs_b->period = ns_to_ktime(period);
7774 cfs_b->quota = quota;
58088ad0 7775
a9cf55b2 7776 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7777 /* restart the period timer (if active) to handle new period expiry */
7778 if (runtime_enabled && cfs_b->timer_active) {
7779 /* force a reprogram */
7780 cfs_b->timer_active = 0;
7781 __start_cfs_bandwidth(cfs_b);
7782 }
ab84d31e
PT
7783 raw_spin_unlock_irq(&cfs_b->lock);
7784
7785 for_each_possible_cpu(i) {
7786 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7787 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7788
7789 raw_spin_lock_irq(&rq->lock);
58088ad0 7790 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7791 cfs_rq->runtime_remaining = 0;
671fd9da 7792
029632fb 7793 if (cfs_rq->throttled)
671fd9da 7794 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7795 raw_spin_unlock_irq(&rq->lock);
7796 }
1ee14e6c
BS
7797 if (runtime_was_enabled && !runtime_enabled)
7798 cfs_bandwidth_usage_dec();
a790de99
PT
7799out_unlock:
7800 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7801
a790de99 7802 return ret;
ab84d31e
PT
7803}
7804
7805int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7806{
7807 u64 quota, period;
7808
029632fb 7809 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7810 if (cfs_quota_us < 0)
7811 quota = RUNTIME_INF;
7812 else
7813 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7814
7815 return tg_set_cfs_bandwidth(tg, period, quota);
7816}
7817
7818long tg_get_cfs_quota(struct task_group *tg)
7819{
7820 u64 quota_us;
7821
029632fb 7822 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7823 return -1;
7824
029632fb 7825 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7826 do_div(quota_us, NSEC_PER_USEC);
7827
7828 return quota_us;
7829}
7830
7831int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7832{
7833 u64 quota, period;
7834
7835 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7836 quota = tg->cfs_bandwidth.quota;
ab84d31e 7837
ab84d31e
PT
7838 return tg_set_cfs_bandwidth(tg, period, quota);
7839}
7840
7841long tg_get_cfs_period(struct task_group *tg)
7842{
7843 u64 cfs_period_us;
7844
029632fb 7845 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7846 do_div(cfs_period_us, NSEC_PER_USEC);
7847
7848 return cfs_period_us;
7849}
7850
182446d0
TH
7851static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7852 struct cftype *cft)
ab84d31e 7853{
182446d0 7854 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7855}
7856
182446d0
TH
7857static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7858 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7859{
182446d0 7860 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7861}
7862
182446d0
TH
7863static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7864 struct cftype *cft)
ab84d31e 7865{
182446d0 7866 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7867}
7868
182446d0
TH
7869static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7870 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7871{
182446d0 7872 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7873}
7874
a790de99
PT
7875struct cfs_schedulable_data {
7876 struct task_group *tg;
7877 u64 period, quota;
7878};
7879
7880/*
7881 * normalize group quota/period to be quota/max_period
7882 * note: units are usecs
7883 */
7884static u64 normalize_cfs_quota(struct task_group *tg,
7885 struct cfs_schedulable_data *d)
7886{
7887 u64 quota, period;
7888
7889 if (tg == d->tg) {
7890 period = d->period;
7891 quota = d->quota;
7892 } else {
7893 period = tg_get_cfs_period(tg);
7894 quota = tg_get_cfs_quota(tg);
7895 }
7896
7897 /* note: these should typically be equivalent */
7898 if (quota == RUNTIME_INF || quota == -1)
7899 return RUNTIME_INF;
7900
7901 return to_ratio(period, quota);
7902}
7903
7904static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7905{
7906 struct cfs_schedulable_data *d = data;
029632fb 7907 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7908 s64 quota = 0, parent_quota = -1;
7909
7910 if (!tg->parent) {
7911 quota = RUNTIME_INF;
7912 } else {
029632fb 7913 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7914
7915 quota = normalize_cfs_quota(tg, d);
7916 parent_quota = parent_b->hierarchal_quota;
7917
7918 /*
7919 * ensure max(child_quota) <= parent_quota, inherit when no
7920 * limit is set
7921 */
7922 if (quota == RUNTIME_INF)
7923 quota = parent_quota;
7924 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7925 return -EINVAL;
7926 }
7927 cfs_b->hierarchal_quota = quota;
7928
7929 return 0;
7930}
7931
7932static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7933{
8277434e 7934 int ret;
a790de99
PT
7935 struct cfs_schedulable_data data = {
7936 .tg = tg,
7937 .period = period,
7938 .quota = quota,
7939 };
7940
7941 if (quota != RUNTIME_INF) {
7942 do_div(data.period, NSEC_PER_USEC);
7943 do_div(data.quota, NSEC_PER_USEC);
7944 }
7945
8277434e
PT
7946 rcu_read_lock();
7947 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7948 rcu_read_unlock();
7949
7950 return ret;
a790de99 7951}
e8da1b18 7952
2da8ca82 7953static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7954{
2da8ca82 7955 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7956 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7957
44ffc75b
TH
7958 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7959 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7960 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7961
7962 return 0;
7963}
ab84d31e 7964#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7965#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7966
052f1dc7 7967#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7968static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7969 struct cftype *cft, s64 val)
6f505b16 7970{
182446d0 7971 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7972}
7973
182446d0
TH
7974static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7975 struct cftype *cft)
6f505b16 7976{
182446d0 7977 return sched_group_rt_runtime(css_tg(css));
6f505b16 7978}
d0b27fa7 7979
182446d0
TH
7980static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7981 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7982{
182446d0 7983 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7984}
7985
182446d0
TH
7986static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7987 struct cftype *cft)
d0b27fa7 7988{
182446d0 7989 return sched_group_rt_period(css_tg(css));
d0b27fa7 7990}
6d6bc0ad 7991#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7992
fe5c7cc2 7993static struct cftype cpu_files[] = {
052f1dc7 7994#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7995 {
7996 .name = "shares",
f4c753b7
PM
7997 .read_u64 = cpu_shares_read_u64,
7998 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7999 },
052f1dc7 8000#endif
ab84d31e
PT
8001#ifdef CONFIG_CFS_BANDWIDTH
8002 {
8003 .name = "cfs_quota_us",
8004 .read_s64 = cpu_cfs_quota_read_s64,
8005 .write_s64 = cpu_cfs_quota_write_s64,
8006 },
8007 {
8008 .name = "cfs_period_us",
8009 .read_u64 = cpu_cfs_period_read_u64,
8010 .write_u64 = cpu_cfs_period_write_u64,
8011 },
e8da1b18
NR
8012 {
8013 .name = "stat",
2da8ca82 8014 .seq_show = cpu_stats_show,
e8da1b18 8015 },
ab84d31e 8016#endif
052f1dc7 8017#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8018 {
9f0c1e56 8019 .name = "rt_runtime_us",
06ecb27c
PM
8020 .read_s64 = cpu_rt_runtime_read,
8021 .write_s64 = cpu_rt_runtime_write,
6f505b16 8022 },
d0b27fa7
PZ
8023 {
8024 .name = "rt_period_us",
f4c753b7
PM
8025 .read_u64 = cpu_rt_period_read_uint,
8026 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8027 },
052f1dc7 8028#endif
4baf6e33 8029 { } /* terminate */
68318b8e
SV
8030};
8031
073219e9 8032struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8033 .css_alloc = cpu_cgroup_css_alloc,
8034 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8035 .css_online = cpu_cgroup_css_online,
8036 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8037 .can_attach = cpu_cgroup_can_attach,
8038 .attach = cpu_cgroup_attach,
068c5cc5 8039 .exit = cpu_cgroup_exit,
4baf6e33 8040 .base_cftypes = cpu_files,
68318b8e
SV
8041 .early_init = 1,
8042};
8043
052f1dc7 8044#endif /* CONFIG_CGROUP_SCHED */
d842de87 8045
b637a328
PM
8046void dump_cpu_task(int cpu)
8047{
8048 pr_info("Task dump for CPU %d:\n", cpu);
8049 sched_show_task(cpu_curr(cpu));
8050}
This page took 2.470355 seconds and 5 git commands to generate.