sched: Move sched_domains_numa_masks_clear() to DOWN_PREPARE
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
76d92ac3
FW
599 * FIFO realtime policy runs the highest priority task (after DEADLINE).
600 * Other runnable tasks are of a lower priority. The scheduler tick
601 * isn't needed.
1e78cdbd 602 */
76d92ac3
FW
603 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
604 if (fifo_nr_running)
1e78cdbd
RR
605 return true;
606
607 /*
608 * Round-robin realtime tasks time slice with other tasks at the same
76d92ac3 609 * realtime priority.
1e78cdbd 610 */
76d92ac3
FW
611 if (rq->rt.rr_nr_running) {
612 if (rq->rt.rr_nr_running == 1)
613 return true;
614 else
615 return false;
1e78cdbd
RR
616 }
617
76d92ac3
FW
618 /* Normal multitasking need periodic preemption checks */
619 if (rq->cfs.nr_running > 1)
541b8264 620 return false;
ce831b38 621
541b8264 622 return true;
ce831b38
FW
623}
624#endif /* CONFIG_NO_HZ_FULL */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
78becc27 630 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#endif /* CONFIG_SMP */
18d95a28 643
a790de99
PT
644#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
645 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 646/*
8277434e
PT
647 * Iterate task_group tree rooted at *from, calling @down when first entering a
648 * node and @up when leaving it for the final time.
649 *
650 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 651 */
029632fb 652int walk_tg_tree_from(struct task_group *from,
8277434e 653 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
654{
655 struct task_group *parent, *child;
eb755805 656 int ret;
c09595f6 657
8277434e
PT
658 parent = from;
659
c09595f6 660down:
eb755805
PZ
661 ret = (*down)(parent, data);
662 if (ret)
8277434e 663 goto out;
c09595f6
PZ
664 list_for_each_entry_rcu(child, &parent->children, siblings) {
665 parent = child;
666 goto down;
667
668up:
669 continue;
670 }
eb755805 671 ret = (*up)(parent, data);
8277434e
PT
672 if (ret || parent == from)
673 goto out;
c09595f6
PZ
674
675 child = parent;
676 parent = parent->parent;
677 if (parent)
678 goto up;
8277434e 679out:
eb755805 680 return ret;
c09595f6
PZ
681}
682
029632fb 683int tg_nop(struct task_group *tg, void *data)
eb755805 684{
e2b245f8 685 return 0;
eb755805 686}
18d95a28
PZ
687#endif
688
45bf76df
IM
689static void set_load_weight(struct task_struct *p)
690{
f05998d4
NR
691 int prio = p->static_prio - MAX_RT_PRIO;
692 struct load_weight *load = &p->se.load;
693
dd41f596
IM
694 /*
695 * SCHED_IDLE tasks get minimal weight:
696 */
20f9cd2a 697 if (idle_policy(p->policy)) {
c8b28116 698 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 699 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
700 return;
701 }
71f8bd46 702
ed82b8a1
AK
703 load->weight = scale_load(sched_prio_to_weight[prio]);
704 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
705}
706
1de64443 707static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 708{
a64692a3 709 update_rq_clock(rq);
1de64443
PZ
710 if (!(flags & ENQUEUE_RESTORE))
711 sched_info_queued(rq, p);
371fd7e7 712 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
713}
714
1de64443 715static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 716{
a64692a3 717 update_rq_clock(rq);
1de64443
PZ
718 if (!(flags & DEQUEUE_SAVE))
719 sched_info_dequeued(rq, p);
371fd7e7 720 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
721}
722
029632fb 723void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
724{
725 if (task_contributes_to_load(p))
726 rq->nr_uninterruptible--;
727
371fd7e7 728 enqueue_task(rq, p, flags);
1e3c88bd
PZ
729}
730
029632fb 731void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
732{
733 if (task_contributes_to_load(p))
734 rq->nr_uninterruptible++;
735
371fd7e7 736 dequeue_task(rq, p, flags);
1e3c88bd
PZ
737}
738
fe44d621 739static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 740{
095c0aa8
GC
741/*
742 * In theory, the compile should just see 0 here, and optimize out the call
743 * to sched_rt_avg_update. But I don't trust it...
744 */
745#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
746 s64 steal = 0, irq_delta = 0;
747#endif
748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 749 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
750
751 /*
752 * Since irq_time is only updated on {soft,}irq_exit, we might run into
753 * this case when a previous update_rq_clock() happened inside a
754 * {soft,}irq region.
755 *
756 * When this happens, we stop ->clock_task and only update the
757 * prev_irq_time stamp to account for the part that fit, so that a next
758 * update will consume the rest. This ensures ->clock_task is
759 * monotonic.
760 *
761 * It does however cause some slight miss-attribution of {soft,}irq
762 * time, a more accurate solution would be to update the irq_time using
763 * the current rq->clock timestamp, except that would require using
764 * atomic ops.
765 */
766 if (irq_delta > delta)
767 irq_delta = delta;
768
769 rq->prev_irq_time += irq_delta;
770 delta -= irq_delta;
095c0aa8
GC
771#endif
772#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 773 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
774 steal = paravirt_steal_clock(cpu_of(rq));
775 steal -= rq->prev_steal_time_rq;
776
777 if (unlikely(steal > delta))
778 steal = delta;
779
095c0aa8 780 rq->prev_steal_time_rq += steal;
095c0aa8
GC
781 delta -= steal;
782 }
783#endif
784
fe44d621
PZ
785 rq->clock_task += delta;
786
095c0aa8 787#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 788 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
789 sched_rt_avg_update(rq, irq_delta + steal);
790#endif
aa483808
VP
791}
792
34f971f6
PZ
793void sched_set_stop_task(int cpu, struct task_struct *stop)
794{
795 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
796 struct task_struct *old_stop = cpu_rq(cpu)->stop;
797
798 if (stop) {
799 /*
800 * Make it appear like a SCHED_FIFO task, its something
801 * userspace knows about and won't get confused about.
802 *
803 * Also, it will make PI more or less work without too
804 * much confusion -- but then, stop work should not
805 * rely on PI working anyway.
806 */
807 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
808
809 stop->sched_class = &stop_sched_class;
810 }
811
812 cpu_rq(cpu)->stop = stop;
813
814 if (old_stop) {
815 /*
816 * Reset it back to a normal scheduling class so that
817 * it can die in pieces.
818 */
819 old_stop->sched_class = &rt_sched_class;
820 }
821}
822
14531189 823/*
dd41f596 824 * __normal_prio - return the priority that is based on the static prio
14531189 825 */
14531189
IM
826static inline int __normal_prio(struct task_struct *p)
827{
dd41f596 828 return p->static_prio;
14531189
IM
829}
830
b29739f9
IM
831/*
832 * Calculate the expected normal priority: i.e. priority
833 * without taking RT-inheritance into account. Might be
834 * boosted by interactivity modifiers. Changes upon fork,
835 * setprio syscalls, and whenever the interactivity
836 * estimator recalculates.
837 */
36c8b586 838static inline int normal_prio(struct task_struct *p)
b29739f9
IM
839{
840 int prio;
841
aab03e05
DF
842 if (task_has_dl_policy(p))
843 prio = MAX_DL_PRIO-1;
844 else if (task_has_rt_policy(p))
b29739f9
IM
845 prio = MAX_RT_PRIO-1 - p->rt_priority;
846 else
847 prio = __normal_prio(p);
848 return prio;
849}
850
851/*
852 * Calculate the current priority, i.e. the priority
853 * taken into account by the scheduler. This value might
854 * be boosted by RT tasks, or might be boosted by
855 * interactivity modifiers. Will be RT if the task got
856 * RT-boosted. If not then it returns p->normal_prio.
857 */
36c8b586 858static int effective_prio(struct task_struct *p)
b29739f9
IM
859{
860 p->normal_prio = normal_prio(p);
861 /*
862 * If we are RT tasks or we were boosted to RT priority,
863 * keep the priority unchanged. Otherwise, update priority
864 * to the normal priority:
865 */
866 if (!rt_prio(p->prio))
867 return p->normal_prio;
868 return p->prio;
869}
870
1da177e4
LT
871/**
872 * task_curr - is this task currently executing on a CPU?
873 * @p: the task in question.
e69f6186
YB
874 *
875 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 876 */
36c8b586 877inline int task_curr(const struct task_struct *p)
1da177e4
LT
878{
879 return cpu_curr(task_cpu(p)) == p;
880}
881
67dfa1b7 882/*
4c9a4bc8
PZ
883 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
884 * use the balance_callback list if you want balancing.
885 *
886 * this means any call to check_class_changed() must be followed by a call to
887 * balance_callback().
67dfa1b7 888 */
cb469845
SR
889static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 const struct sched_class *prev_class,
da7a735e 891 int oldprio)
cb469845
SR
892{
893 if (prev_class != p->sched_class) {
894 if (prev_class->switched_from)
da7a735e 895 prev_class->switched_from(rq, p);
4c9a4bc8 896
da7a735e 897 p->sched_class->switched_to(rq, p);
2d3d891d 898 } else if (oldprio != p->prio || dl_task(p))
da7a735e 899 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
900}
901
029632fb 902void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
903{
904 const struct sched_class *class;
905
906 if (p->sched_class == rq->curr->sched_class) {
907 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
908 } else {
909 for_each_class(class) {
910 if (class == rq->curr->sched_class)
911 break;
912 if (class == p->sched_class) {
8875125e 913 resched_curr(rq);
1e5a7405
PZ
914 break;
915 }
916 }
917 }
918
919 /*
920 * A queue event has occurred, and we're going to schedule. In
921 * this case, we can save a useless back to back clock update.
922 */
da0c1e65 923 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 924 rq_clock_skip_update(rq, true);
1e5a7405
PZ
925}
926
1da177e4 927#ifdef CONFIG_SMP
5cc389bc
PZ
928/*
929 * This is how migration works:
930 *
931 * 1) we invoke migration_cpu_stop() on the target CPU using
932 * stop_one_cpu().
933 * 2) stopper starts to run (implicitly forcing the migrated thread
934 * off the CPU)
935 * 3) it checks whether the migrated task is still in the wrong runqueue.
936 * 4) if it's in the wrong runqueue then the migration thread removes
937 * it and puts it into the right queue.
938 * 5) stopper completes and stop_one_cpu() returns and the migration
939 * is done.
940 */
941
942/*
943 * move_queued_task - move a queued task to new rq.
944 *
945 * Returns (locked) new rq. Old rq's lock is released.
946 */
5e16bbc2 947static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 948{
5cc389bc
PZ
949 lockdep_assert_held(&rq->lock);
950
5cc389bc 951 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 952 dequeue_task(rq, p, 0);
5cc389bc
PZ
953 set_task_cpu(p, new_cpu);
954 raw_spin_unlock(&rq->lock);
955
956 rq = cpu_rq(new_cpu);
957
958 raw_spin_lock(&rq->lock);
959 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 960 enqueue_task(rq, p, 0);
3ea94de1 961 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
962 check_preempt_curr(rq, p, 0);
963
964 return rq;
965}
966
967struct migration_arg {
968 struct task_struct *task;
969 int dest_cpu;
970};
971
972/*
973 * Move (not current) task off this cpu, onto dest cpu. We're doing
974 * this because either it can't run here any more (set_cpus_allowed()
975 * away from this CPU, or CPU going down), or because we're
976 * attempting to rebalance this task on exec (sched_exec).
977 *
978 * So we race with normal scheduler movements, but that's OK, as long
979 * as the task is no longer on this CPU.
5cc389bc 980 */
5e16bbc2 981static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 982{
5cc389bc 983 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 984 return rq;
5cc389bc
PZ
985
986 /* Affinity changed (again). */
987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 988 return rq;
5cc389bc 989
5e16bbc2
PZ
990 rq = move_queued_task(rq, p, dest_cpu);
991
992 return rq;
5cc389bc
PZ
993}
994
995/*
996 * migration_cpu_stop - this will be executed by a highprio stopper thread
997 * and performs thread migration by bumping thread off CPU then
998 * 'pushing' onto another runqueue.
999 */
1000static int migration_cpu_stop(void *data)
1001{
1002 struct migration_arg *arg = data;
5e16bbc2
PZ
1003 struct task_struct *p = arg->task;
1004 struct rq *rq = this_rq();
5cc389bc
PZ
1005
1006 /*
1007 * The original target cpu might have gone down and we might
1008 * be on another cpu but it doesn't matter.
1009 */
1010 local_irq_disable();
1011 /*
1012 * We need to explicitly wake pending tasks before running
1013 * __migrate_task() such that we will not miss enforcing cpus_allowed
1014 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1015 */
1016 sched_ttwu_pending();
5e16bbc2
PZ
1017
1018 raw_spin_lock(&p->pi_lock);
1019 raw_spin_lock(&rq->lock);
1020 /*
1021 * If task_rq(p) != rq, it cannot be migrated here, because we're
1022 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1023 * we're holding p->pi_lock.
1024 */
1025 if (task_rq(p) == rq && task_on_rq_queued(p))
1026 rq = __migrate_task(rq, p, arg->dest_cpu);
1027 raw_spin_unlock(&rq->lock);
1028 raw_spin_unlock(&p->pi_lock);
1029
5cc389bc
PZ
1030 local_irq_enable();
1031 return 0;
1032}
1033
c5b28038
PZ
1034/*
1035 * sched_class::set_cpus_allowed must do the below, but is not required to
1036 * actually call this function.
1037 */
1038void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1039{
5cc389bc
PZ
1040 cpumask_copy(&p->cpus_allowed, new_mask);
1041 p->nr_cpus_allowed = cpumask_weight(new_mask);
1042}
1043
c5b28038
PZ
1044void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1045{
6c37067e
PZ
1046 struct rq *rq = task_rq(p);
1047 bool queued, running;
1048
c5b28038 1049 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1050
1051 queued = task_on_rq_queued(p);
1052 running = task_current(rq, p);
1053
1054 if (queued) {
1055 /*
1056 * Because __kthread_bind() calls this on blocked tasks without
1057 * holding rq->lock.
1058 */
1059 lockdep_assert_held(&rq->lock);
1de64443 1060 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1061 }
1062 if (running)
1063 put_prev_task(rq, p);
1064
c5b28038 1065 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1066
1067 if (running)
1068 p->sched_class->set_curr_task(rq);
1069 if (queued)
1de64443 1070 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1071}
1072
5cc389bc
PZ
1073/*
1074 * Change a given task's CPU affinity. Migrate the thread to a
1075 * proper CPU and schedule it away if the CPU it's executing on
1076 * is removed from the allowed bitmask.
1077 *
1078 * NOTE: the caller must have a valid reference to the task, the
1079 * task must not exit() & deallocate itself prematurely. The
1080 * call is not atomic; no spinlocks may be held.
1081 */
25834c73
PZ
1082static int __set_cpus_allowed_ptr(struct task_struct *p,
1083 const struct cpumask *new_mask, bool check)
5cc389bc 1084{
e9d867a6
PZI
1085 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1086 unsigned int dest_cpu;
5cc389bc
PZ
1087 unsigned long flags;
1088 struct rq *rq;
5cc389bc
PZ
1089 int ret = 0;
1090
1091 rq = task_rq_lock(p, &flags);
1092
e9d867a6
PZI
1093 if (p->flags & PF_KTHREAD) {
1094 /*
1095 * Kernel threads are allowed on online && !active CPUs
1096 */
1097 cpu_valid_mask = cpu_online_mask;
1098 }
1099
25834c73
PZ
1100 /*
1101 * Must re-check here, to close a race against __kthread_bind(),
1102 * sched_setaffinity() is not guaranteed to observe the flag.
1103 */
1104 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
5cc389bc
PZ
1109 if (cpumask_equal(&p->cpus_allowed, new_mask))
1110 goto out;
1111
e9d867a6 1112 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1113 ret = -EINVAL;
1114 goto out;
1115 }
1116
1117 do_set_cpus_allowed(p, new_mask);
1118
e9d867a6
PZI
1119 if (p->flags & PF_KTHREAD) {
1120 /*
1121 * For kernel threads that do indeed end up on online &&
1122 * !active we want to ensure they are strict per-cpu threads.
1123 */
1124 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1125 !cpumask_intersects(new_mask, cpu_active_mask) &&
1126 p->nr_cpus_allowed != 1);
1127 }
1128
5cc389bc
PZ
1129 /* Can the task run on the task's current CPU? If so, we're done */
1130 if (cpumask_test_cpu(task_cpu(p), new_mask))
1131 goto out;
1132
e9d867a6 1133 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1134 if (task_running(rq, p) || p->state == TASK_WAKING) {
1135 struct migration_arg arg = { p, dest_cpu };
1136 /* Need help from migration thread: drop lock and wait. */
1137 task_rq_unlock(rq, p, &flags);
1138 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1139 tlb_migrate_finish(p->mm);
1140 return 0;
cbce1a68
PZ
1141 } else if (task_on_rq_queued(p)) {
1142 /*
1143 * OK, since we're going to drop the lock immediately
1144 * afterwards anyway.
1145 */
1146 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1147 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1148 lockdep_pin_lock(&rq->lock);
1149 }
5cc389bc
PZ
1150out:
1151 task_rq_unlock(rq, p, &flags);
1152
1153 return ret;
1154}
25834c73
PZ
1155
1156int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1157{
1158 return __set_cpus_allowed_ptr(p, new_mask, false);
1159}
5cc389bc
PZ
1160EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1161
dd41f596 1162void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1163{
e2912009
PZ
1164#ifdef CONFIG_SCHED_DEBUG
1165 /*
1166 * We should never call set_task_cpu() on a blocked task,
1167 * ttwu() will sort out the placement.
1168 */
077614ee 1169 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1170 !p->on_rq);
0122ec5b 1171
3ea94de1
JP
1172 /*
1173 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1174 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1175 * time relying on p->on_rq.
1176 */
1177 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1178 p->sched_class == &fair_sched_class &&
1179 (p->on_rq && !task_on_rq_migrating(p)));
1180
0122ec5b 1181#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1182 /*
1183 * The caller should hold either p->pi_lock or rq->lock, when changing
1184 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1185 *
1186 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1187 * see task_group().
6c6c54e1
PZ
1188 *
1189 * Furthermore, all task_rq users should acquire both locks, see
1190 * task_rq_lock().
1191 */
0122ec5b
PZ
1192 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1193 lockdep_is_held(&task_rq(p)->lock)));
1194#endif
e2912009
PZ
1195#endif
1196
de1d7286 1197 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1198
0c69774e 1199 if (task_cpu(p) != new_cpu) {
0a74bef8 1200 if (p->sched_class->migrate_task_rq)
5a4fd036 1201 p->sched_class->migrate_task_rq(p);
0c69774e 1202 p->se.nr_migrations++;
ff303e66 1203 perf_event_task_migrate(p);
0c69774e 1204 }
dd41f596
IM
1205
1206 __set_task_cpu(p, new_cpu);
c65cc870
IM
1207}
1208
ac66f547
PZ
1209static void __migrate_swap_task(struct task_struct *p, int cpu)
1210{
da0c1e65 1211 if (task_on_rq_queued(p)) {
ac66f547
PZ
1212 struct rq *src_rq, *dst_rq;
1213
1214 src_rq = task_rq(p);
1215 dst_rq = cpu_rq(cpu);
1216
3ea94de1 1217 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1218 deactivate_task(src_rq, p, 0);
1219 set_task_cpu(p, cpu);
1220 activate_task(dst_rq, p, 0);
3ea94de1 1221 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1222 check_preempt_curr(dst_rq, p, 0);
1223 } else {
1224 /*
1225 * Task isn't running anymore; make it appear like we migrated
1226 * it before it went to sleep. This means on wakeup we make the
1227 * previous cpu our targer instead of where it really is.
1228 */
1229 p->wake_cpu = cpu;
1230 }
1231}
1232
1233struct migration_swap_arg {
1234 struct task_struct *src_task, *dst_task;
1235 int src_cpu, dst_cpu;
1236};
1237
1238static int migrate_swap_stop(void *data)
1239{
1240 struct migration_swap_arg *arg = data;
1241 struct rq *src_rq, *dst_rq;
1242 int ret = -EAGAIN;
1243
62694cd5
PZ
1244 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1245 return -EAGAIN;
1246
ac66f547
PZ
1247 src_rq = cpu_rq(arg->src_cpu);
1248 dst_rq = cpu_rq(arg->dst_cpu);
1249
74602315
PZ
1250 double_raw_lock(&arg->src_task->pi_lock,
1251 &arg->dst_task->pi_lock);
ac66f547 1252 double_rq_lock(src_rq, dst_rq);
62694cd5 1253
ac66f547
PZ
1254 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1255 goto unlock;
1256
1257 if (task_cpu(arg->src_task) != arg->src_cpu)
1258 goto unlock;
1259
1260 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1261 goto unlock;
1262
1263 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1264 goto unlock;
1265
1266 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1267 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1268
1269 ret = 0;
1270
1271unlock:
1272 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1273 raw_spin_unlock(&arg->dst_task->pi_lock);
1274 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1275
1276 return ret;
1277}
1278
1279/*
1280 * Cross migrate two tasks
1281 */
1282int migrate_swap(struct task_struct *cur, struct task_struct *p)
1283{
1284 struct migration_swap_arg arg;
1285 int ret = -EINVAL;
1286
ac66f547
PZ
1287 arg = (struct migration_swap_arg){
1288 .src_task = cur,
1289 .src_cpu = task_cpu(cur),
1290 .dst_task = p,
1291 .dst_cpu = task_cpu(p),
1292 };
1293
1294 if (arg.src_cpu == arg.dst_cpu)
1295 goto out;
1296
6acce3ef
PZ
1297 /*
1298 * These three tests are all lockless; this is OK since all of them
1299 * will be re-checked with proper locks held further down the line.
1300 */
ac66f547
PZ
1301 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1302 goto out;
1303
1304 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1305 goto out;
1306
1307 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1308 goto out;
1309
286549dc 1310 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1311 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1312
1313out:
ac66f547
PZ
1314 return ret;
1315}
1316
1da177e4
LT
1317/*
1318 * wait_task_inactive - wait for a thread to unschedule.
1319 *
85ba2d86
RM
1320 * If @match_state is nonzero, it's the @p->state value just checked and
1321 * not expected to change. If it changes, i.e. @p might have woken up,
1322 * then return zero. When we succeed in waiting for @p to be off its CPU,
1323 * we return a positive number (its total switch count). If a second call
1324 * a short while later returns the same number, the caller can be sure that
1325 * @p has remained unscheduled the whole time.
1326 *
1da177e4
LT
1327 * The caller must ensure that the task *will* unschedule sometime soon,
1328 * else this function might spin for a *long* time. This function can't
1329 * be called with interrupts off, or it may introduce deadlock with
1330 * smp_call_function() if an IPI is sent by the same process we are
1331 * waiting to become inactive.
1332 */
85ba2d86 1333unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1334{
1335 unsigned long flags;
da0c1e65 1336 int running, queued;
85ba2d86 1337 unsigned long ncsw;
70b97a7f 1338 struct rq *rq;
1da177e4 1339
3a5c359a
AK
1340 for (;;) {
1341 /*
1342 * We do the initial early heuristics without holding
1343 * any task-queue locks at all. We'll only try to get
1344 * the runqueue lock when things look like they will
1345 * work out!
1346 */
1347 rq = task_rq(p);
fa490cfd 1348
3a5c359a
AK
1349 /*
1350 * If the task is actively running on another CPU
1351 * still, just relax and busy-wait without holding
1352 * any locks.
1353 *
1354 * NOTE! Since we don't hold any locks, it's not
1355 * even sure that "rq" stays as the right runqueue!
1356 * But we don't care, since "task_running()" will
1357 * return false if the runqueue has changed and p
1358 * is actually now running somewhere else!
1359 */
85ba2d86
RM
1360 while (task_running(rq, p)) {
1361 if (match_state && unlikely(p->state != match_state))
1362 return 0;
3a5c359a 1363 cpu_relax();
85ba2d86 1364 }
fa490cfd 1365
3a5c359a
AK
1366 /*
1367 * Ok, time to look more closely! We need the rq
1368 * lock now, to be *sure*. If we're wrong, we'll
1369 * just go back and repeat.
1370 */
1371 rq = task_rq_lock(p, &flags);
27a9da65 1372 trace_sched_wait_task(p);
3a5c359a 1373 running = task_running(rq, p);
da0c1e65 1374 queued = task_on_rq_queued(p);
85ba2d86 1375 ncsw = 0;
f31e11d8 1376 if (!match_state || p->state == match_state)
93dcf55f 1377 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1378 task_rq_unlock(rq, p, &flags);
fa490cfd 1379
85ba2d86
RM
1380 /*
1381 * If it changed from the expected state, bail out now.
1382 */
1383 if (unlikely(!ncsw))
1384 break;
1385
3a5c359a
AK
1386 /*
1387 * Was it really running after all now that we
1388 * checked with the proper locks actually held?
1389 *
1390 * Oops. Go back and try again..
1391 */
1392 if (unlikely(running)) {
1393 cpu_relax();
1394 continue;
1395 }
fa490cfd 1396
3a5c359a
AK
1397 /*
1398 * It's not enough that it's not actively running,
1399 * it must be off the runqueue _entirely_, and not
1400 * preempted!
1401 *
80dd99b3 1402 * So if it was still runnable (but just not actively
3a5c359a
AK
1403 * running right now), it's preempted, and we should
1404 * yield - it could be a while.
1405 */
da0c1e65 1406 if (unlikely(queued)) {
8eb90c30
TG
1407 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1408
1409 set_current_state(TASK_UNINTERRUPTIBLE);
1410 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1411 continue;
1412 }
fa490cfd 1413
3a5c359a
AK
1414 /*
1415 * Ahh, all good. It wasn't running, and it wasn't
1416 * runnable, which means that it will never become
1417 * running in the future either. We're all done!
1418 */
1419 break;
1420 }
85ba2d86
RM
1421
1422 return ncsw;
1da177e4
LT
1423}
1424
1425/***
1426 * kick_process - kick a running thread to enter/exit the kernel
1427 * @p: the to-be-kicked thread
1428 *
1429 * Cause a process which is running on another CPU to enter
1430 * kernel-mode, without any delay. (to get signals handled.)
1431 *
25985edc 1432 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1433 * because all it wants to ensure is that the remote task enters
1434 * the kernel. If the IPI races and the task has been migrated
1435 * to another CPU then no harm is done and the purpose has been
1436 * achieved as well.
1437 */
36c8b586 1438void kick_process(struct task_struct *p)
1da177e4
LT
1439{
1440 int cpu;
1441
1442 preempt_disable();
1443 cpu = task_cpu(p);
1444 if ((cpu != smp_processor_id()) && task_curr(p))
1445 smp_send_reschedule(cpu);
1446 preempt_enable();
1447}
b43e3521 1448EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1449
30da688e 1450/*
013fdb80 1451 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1452 *
1453 * A few notes on cpu_active vs cpu_online:
1454 *
1455 * - cpu_active must be a subset of cpu_online
1456 *
1457 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1458 * see __set_cpus_allowed_ptr(). At this point the newly online
1459 * cpu isn't yet part of the sched domains, and balancing will not
1460 * see it.
1461 *
1462 * - on cpu-down we clear cpu_active() to mask the sched domains and
1463 * avoid the load balancer to place new tasks on the to be removed
1464 * cpu. Existing tasks will remain running there and will be taken
1465 * off.
1466 *
1467 * This means that fallback selection must not select !active CPUs.
1468 * And can assume that any active CPU must be online. Conversely
1469 * select_task_rq() below may allow selection of !active CPUs in order
1470 * to satisfy the above rules.
30da688e 1471 */
5da9a0fb
PZ
1472static int select_fallback_rq(int cpu, struct task_struct *p)
1473{
aa00d89c
TC
1474 int nid = cpu_to_node(cpu);
1475 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1476 enum { cpuset, possible, fail } state = cpuset;
1477 int dest_cpu;
5da9a0fb 1478
aa00d89c
TC
1479 /*
1480 * If the node that the cpu is on has been offlined, cpu_to_node()
1481 * will return -1. There is no cpu on the node, and we should
1482 * select the cpu on the other node.
1483 */
1484 if (nid != -1) {
1485 nodemask = cpumask_of_node(nid);
1486
1487 /* Look for allowed, online CPU in same node. */
1488 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1489 if (!cpu_active(dest_cpu))
1490 continue;
1491 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1492 return dest_cpu;
1493 }
2baab4e9 1494 }
5da9a0fb 1495
2baab4e9
PZ
1496 for (;;) {
1497 /* Any allowed, online CPU? */
e3831edd 1498 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1499 if (!cpu_active(dest_cpu))
1500 continue;
1501 goto out;
1502 }
5da9a0fb 1503
e73e85f0 1504 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1505 switch (state) {
1506 case cpuset:
e73e85f0
ON
1507 if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 cpuset_cpus_allowed_fallback(p);
1509 state = possible;
1510 break;
1511 }
1512 /* fall-through */
2baab4e9
PZ
1513 case possible:
1514 do_set_cpus_allowed(p, cpu_possible_mask);
1515 state = fail;
1516 break;
1517
1518 case fail:
1519 BUG();
1520 break;
1521 }
1522 }
1523
1524out:
1525 if (state != cpuset) {
1526 /*
1527 * Don't tell them about moving exiting tasks or
1528 * kernel threads (both mm NULL), since they never
1529 * leave kernel.
1530 */
1531 if (p->mm && printk_ratelimit()) {
aac74dc4 1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1533 task_pid_nr(p), p->comm, cpu);
1534 }
5da9a0fb
PZ
1535 }
1536
1537 return dest_cpu;
1538}
1539
e2912009 1540/*
013fdb80 1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1542 */
970b13ba 1543static inline
ac66f547 1544int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1545{
cbce1a68
PZ
1546 lockdep_assert_held(&p->pi_lock);
1547
6c1d9410
WL
1548 if (p->nr_cpus_allowed > 1)
1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1550 else
1551 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1552
1553 /*
1554 * In order not to call set_task_cpu() on a blocking task we need
1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556 * cpu.
1557 *
1558 * Since this is common to all placement strategies, this lives here.
1559 *
1560 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 * not worry about this generic constraint ]
1562 */
fa17b507 1563 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1564 !cpu_online(cpu)))
5da9a0fb 1565 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1566
1567 return cpu;
970b13ba 1568}
09a40af5
MG
1569
1570static void update_avg(u64 *avg, u64 sample)
1571{
1572 s64 diff = sample - *avg;
1573 *avg += diff >> 3;
1574}
25834c73
PZ
1575
1576#else
1577
1578static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1579 const struct cpumask *new_mask, bool check)
1580{
1581 return set_cpus_allowed_ptr(p, new_mask);
1582}
1583
5cc389bc 1584#endif /* CONFIG_SMP */
970b13ba 1585
d7c01d27 1586static void
b84cb5df 1587ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1588{
d7c01d27 1589#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1590 struct rq *rq = this_rq();
1591
d7c01d27
PZ
1592#ifdef CONFIG_SMP
1593 int this_cpu = smp_processor_id();
1594
1595 if (cpu == this_cpu) {
1596 schedstat_inc(rq, ttwu_local);
1597 schedstat_inc(p, se.statistics.nr_wakeups_local);
1598 } else {
1599 struct sched_domain *sd;
1600
1601 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1602 rcu_read_lock();
d7c01d27
PZ
1603 for_each_domain(this_cpu, sd) {
1604 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1605 schedstat_inc(sd, ttwu_wake_remote);
1606 break;
1607 }
1608 }
057f3fad 1609 rcu_read_unlock();
d7c01d27 1610 }
f339b9dc
PZ
1611
1612 if (wake_flags & WF_MIGRATED)
1613 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1614
d7c01d27
PZ
1615#endif /* CONFIG_SMP */
1616
1617 schedstat_inc(rq, ttwu_count);
9ed3811a 1618 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1619
1620 if (wake_flags & WF_SYNC)
9ed3811a 1621 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1622
d7c01d27
PZ
1623#endif /* CONFIG_SCHEDSTATS */
1624}
1625
1de64443 1626static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1627{
9ed3811a 1628 activate_task(rq, p, en_flags);
da0c1e65 1629 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1630
1631 /* if a worker is waking up, notify workqueue */
1632 if (p->flags & PF_WQ_WORKER)
1633 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1634}
1635
23f41eeb
PZ
1636/*
1637 * Mark the task runnable and perform wakeup-preemption.
1638 */
89363381 1639static void
23f41eeb 1640ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1641{
9ed3811a 1642 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1643 p->state = TASK_RUNNING;
fbd705a0
PZ
1644 trace_sched_wakeup(p);
1645
9ed3811a 1646#ifdef CONFIG_SMP
4c9a4bc8
PZ
1647 if (p->sched_class->task_woken) {
1648 /*
cbce1a68
PZ
1649 * Our task @p is fully woken up and running; so its safe to
1650 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1651 */
cbce1a68 1652 lockdep_unpin_lock(&rq->lock);
9ed3811a 1653 p->sched_class->task_woken(rq, p);
cbce1a68 1654 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1655 }
9ed3811a 1656
e69c6341 1657 if (rq->idle_stamp) {
78becc27 1658 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1659 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1660
abfafa54
JL
1661 update_avg(&rq->avg_idle, delta);
1662
1663 if (rq->avg_idle > max)
9ed3811a 1664 rq->avg_idle = max;
abfafa54 1665
9ed3811a
TH
1666 rq->idle_stamp = 0;
1667 }
1668#endif
1669}
1670
c05fbafb
PZ
1671static void
1672ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1673{
cbce1a68
PZ
1674 lockdep_assert_held(&rq->lock);
1675
c05fbafb
PZ
1676#ifdef CONFIG_SMP
1677 if (p->sched_contributes_to_load)
1678 rq->nr_uninterruptible--;
1679#endif
1680
1681 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1682 ttwu_do_wakeup(rq, p, wake_flags);
1683}
1684
1685/*
1686 * Called in case the task @p isn't fully descheduled from its runqueue,
1687 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1688 * since all we need to do is flip p->state to TASK_RUNNING, since
1689 * the task is still ->on_rq.
1690 */
1691static int ttwu_remote(struct task_struct *p, int wake_flags)
1692{
1693 struct rq *rq;
1694 int ret = 0;
1695
1696 rq = __task_rq_lock(p);
da0c1e65 1697 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1698 /* check_preempt_curr() may use rq clock */
1699 update_rq_clock(rq);
c05fbafb
PZ
1700 ttwu_do_wakeup(rq, p, wake_flags);
1701 ret = 1;
1702 }
1703 __task_rq_unlock(rq);
1704
1705 return ret;
1706}
1707
317f3941 1708#ifdef CONFIG_SMP
e3baac47 1709void sched_ttwu_pending(void)
317f3941
PZ
1710{
1711 struct rq *rq = this_rq();
fa14ff4a
PZ
1712 struct llist_node *llist = llist_del_all(&rq->wake_list);
1713 struct task_struct *p;
e3baac47 1714 unsigned long flags;
317f3941 1715
e3baac47
PZ
1716 if (!llist)
1717 return;
1718
1719 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1720 lockdep_pin_lock(&rq->lock);
317f3941 1721
fa14ff4a
PZ
1722 while (llist) {
1723 p = llist_entry(llist, struct task_struct, wake_entry);
1724 llist = llist_next(llist);
317f3941
PZ
1725 ttwu_do_activate(rq, p, 0);
1726 }
1727
cbce1a68 1728 lockdep_unpin_lock(&rq->lock);
e3baac47 1729 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1730}
1731
1732void scheduler_ipi(void)
1733{
f27dde8d
PZ
1734 /*
1735 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1736 * TIF_NEED_RESCHED remotely (for the first time) will also send
1737 * this IPI.
1738 */
8cb75e0c 1739 preempt_fold_need_resched();
f27dde8d 1740
fd2ac4f4 1741 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1742 return;
1743
1744 /*
1745 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1746 * traditionally all their work was done from the interrupt return
1747 * path. Now that we actually do some work, we need to make sure
1748 * we do call them.
1749 *
1750 * Some archs already do call them, luckily irq_enter/exit nest
1751 * properly.
1752 *
1753 * Arguably we should visit all archs and update all handlers,
1754 * however a fair share of IPIs are still resched only so this would
1755 * somewhat pessimize the simple resched case.
1756 */
1757 irq_enter();
fa14ff4a 1758 sched_ttwu_pending();
ca38062e
SS
1759
1760 /*
1761 * Check if someone kicked us for doing the nohz idle load balance.
1762 */
873b4c65 1763 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1764 this_rq()->idle_balance = 1;
ca38062e 1765 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1766 }
c5d753a5 1767 irq_exit();
317f3941
PZ
1768}
1769
1770static void ttwu_queue_remote(struct task_struct *p, int cpu)
1771{
e3baac47
PZ
1772 struct rq *rq = cpu_rq(cpu);
1773
1774 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1775 if (!set_nr_if_polling(rq->idle))
1776 smp_send_reschedule(cpu);
1777 else
1778 trace_sched_wake_idle_without_ipi(cpu);
1779 }
317f3941 1780}
d6aa8f85 1781
f6be8af1
CL
1782void wake_up_if_idle(int cpu)
1783{
1784 struct rq *rq = cpu_rq(cpu);
1785 unsigned long flags;
1786
fd7de1e8
AL
1787 rcu_read_lock();
1788
1789 if (!is_idle_task(rcu_dereference(rq->curr)))
1790 goto out;
f6be8af1
CL
1791
1792 if (set_nr_if_polling(rq->idle)) {
1793 trace_sched_wake_idle_without_ipi(cpu);
1794 } else {
1795 raw_spin_lock_irqsave(&rq->lock, flags);
1796 if (is_idle_task(rq->curr))
1797 smp_send_reschedule(cpu);
1798 /* Else cpu is not in idle, do nothing here */
1799 raw_spin_unlock_irqrestore(&rq->lock, flags);
1800 }
fd7de1e8
AL
1801
1802out:
1803 rcu_read_unlock();
f6be8af1
CL
1804}
1805
39be3501 1806bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1807{
1808 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1809}
d6aa8f85 1810#endif /* CONFIG_SMP */
317f3941 1811
c05fbafb
PZ
1812static void ttwu_queue(struct task_struct *p, int cpu)
1813{
1814 struct rq *rq = cpu_rq(cpu);
1815
17d9f311 1816#if defined(CONFIG_SMP)
39be3501 1817 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1818 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1819 ttwu_queue_remote(p, cpu);
1820 return;
1821 }
1822#endif
1823
c05fbafb 1824 raw_spin_lock(&rq->lock);
cbce1a68 1825 lockdep_pin_lock(&rq->lock);
c05fbafb 1826 ttwu_do_activate(rq, p, 0);
cbce1a68 1827 lockdep_unpin_lock(&rq->lock);
c05fbafb 1828 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1829}
1830
8643cda5
PZ
1831/*
1832 * Notes on Program-Order guarantees on SMP systems.
1833 *
1834 * MIGRATION
1835 *
1836 * The basic program-order guarantee on SMP systems is that when a task [t]
1837 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1838 * execution on its new cpu [c1].
1839 *
1840 * For migration (of runnable tasks) this is provided by the following means:
1841 *
1842 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1843 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1844 * rq(c1)->lock (if not at the same time, then in that order).
1845 * C) LOCK of the rq(c1)->lock scheduling in task
1846 *
1847 * Transitivity guarantees that B happens after A and C after B.
1848 * Note: we only require RCpc transitivity.
1849 * Note: the cpu doing B need not be c0 or c1
1850 *
1851 * Example:
1852 *
1853 * CPU0 CPU1 CPU2
1854 *
1855 * LOCK rq(0)->lock
1856 * sched-out X
1857 * sched-in Y
1858 * UNLOCK rq(0)->lock
1859 *
1860 * LOCK rq(0)->lock // orders against CPU0
1861 * dequeue X
1862 * UNLOCK rq(0)->lock
1863 *
1864 * LOCK rq(1)->lock
1865 * enqueue X
1866 * UNLOCK rq(1)->lock
1867 *
1868 * LOCK rq(1)->lock // orders against CPU2
1869 * sched-out Z
1870 * sched-in X
1871 * UNLOCK rq(1)->lock
1872 *
1873 *
1874 * BLOCKING -- aka. SLEEP + WAKEUP
1875 *
1876 * For blocking we (obviously) need to provide the same guarantee as for
1877 * migration. However the means are completely different as there is no lock
1878 * chain to provide order. Instead we do:
1879 *
1880 * 1) smp_store_release(X->on_cpu, 0)
1881 * 2) smp_cond_acquire(!X->on_cpu)
1882 *
1883 * Example:
1884 *
1885 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1886 *
1887 * LOCK rq(0)->lock LOCK X->pi_lock
1888 * dequeue X
1889 * sched-out X
1890 * smp_store_release(X->on_cpu, 0);
1891 *
1892 * smp_cond_acquire(!X->on_cpu);
1893 * X->state = WAKING
1894 * set_task_cpu(X,2)
1895 *
1896 * LOCK rq(2)->lock
1897 * enqueue X
1898 * X->state = RUNNING
1899 * UNLOCK rq(2)->lock
1900 *
1901 * LOCK rq(2)->lock // orders against CPU1
1902 * sched-out Z
1903 * sched-in X
1904 * UNLOCK rq(2)->lock
1905 *
1906 * UNLOCK X->pi_lock
1907 * UNLOCK rq(0)->lock
1908 *
1909 *
1910 * However; for wakeups there is a second guarantee we must provide, namely we
1911 * must observe the state that lead to our wakeup. That is, not only must our
1912 * task observe its own prior state, it must also observe the stores prior to
1913 * its wakeup.
1914 *
1915 * This means that any means of doing remote wakeups must order the CPU doing
1916 * the wakeup against the CPU the task is going to end up running on. This,
1917 * however, is already required for the regular Program-Order guarantee above,
1918 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1919 *
1920 */
1921
9ed3811a 1922/**
1da177e4 1923 * try_to_wake_up - wake up a thread
9ed3811a 1924 * @p: the thread to be awakened
1da177e4 1925 * @state: the mask of task states that can be woken
9ed3811a 1926 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1927 *
1928 * Put it on the run-queue if it's not already there. The "current"
1929 * thread is always on the run-queue (except when the actual
1930 * re-schedule is in progress), and as such you're allowed to do
1931 * the simpler "current->state = TASK_RUNNING" to mark yourself
1932 * runnable without the overhead of this.
1933 *
e69f6186 1934 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1935 * or @state didn't match @p's state.
1da177e4 1936 */
e4a52bcb
PZ
1937static int
1938try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1939{
1da177e4 1940 unsigned long flags;
c05fbafb 1941 int cpu, success = 0;
2398f2c6 1942
e0acd0a6
ON
1943 /*
1944 * If we are going to wake up a thread waiting for CONDITION we
1945 * need to ensure that CONDITION=1 done by the caller can not be
1946 * reordered with p->state check below. This pairs with mb() in
1947 * set_current_state() the waiting thread does.
1948 */
1949 smp_mb__before_spinlock();
013fdb80 1950 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1951 if (!(p->state & state))
1da177e4
LT
1952 goto out;
1953
fbd705a0
PZ
1954 trace_sched_waking(p);
1955
c05fbafb 1956 success = 1; /* we're going to change ->state */
1da177e4 1957 cpu = task_cpu(p);
1da177e4 1958
c05fbafb
PZ
1959 if (p->on_rq && ttwu_remote(p, wake_flags))
1960 goto stat;
1da177e4 1961
1da177e4 1962#ifdef CONFIG_SMP
ecf7d01c
PZ
1963 /*
1964 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1965 * possible to, falsely, observe p->on_cpu == 0.
1966 *
1967 * One must be running (->on_cpu == 1) in order to remove oneself
1968 * from the runqueue.
1969 *
1970 * [S] ->on_cpu = 1; [L] ->on_rq
1971 * UNLOCK rq->lock
1972 * RMB
1973 * LOCK rq->lock
1974 * [S] ->on_rq = 0; [L] ->on_cpu
1975 *
1976 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1977 * from the consecutive calls to schedule(); the first switching to our
1978 * task, the second putting it to sleep.
1979 */
1980 smp_rmb();
1981
e9c84311 1982 /*
c05fbafb
PZ
1983 * If the owning (remote) cpu is still in the middle of schedule() with
1984 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1985 *
1986 * Pairs with the smp_store_release() in finish_lock_switch().
1987 *
1988 * This ensures that tasks getting woken will be fully ordered against
1989 * their previous state and preserve Program Order.
0970d299 1990 */
b3e0b1b6 1991 smp_cond_acquire(!p->on_cpu);
1da177e4 1992
a8e4f2ea 1993 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1994 p->state = TASK_WAKING;
e7693a36 1995
e4a52bcb 1996 if (p->sched_class->task_waking)
74f8e4b2 1997 p->sched_class->task_waking(p);
efbbd05a 1998
ac66f547 1999 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2000 if (task_cpu(p) != cpu) {
2001 wake_flags |= WF_MIGRATED;
e4a52bcb 2002 set_task_cpu(p, cpu);
f339b9dc 2003 }
1da177e4 2004#endif /* CONFIG_SMP */
1da177e4 2005
c05fbafb
PZ
2006 ttwu_queue(p, cpu);
2007stat:
cb251765
MG
2008 if (schedstat_enabled())
2009 ttwu_stat(p, cpu, wake_flags);
1da177e4 2010out:
013fdb80 2011 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2012
2013 return success;
2014}
2015
21aa9af0
TH
2016/**
2017 * try_to_wake_up_local - try to wake up a local task with rq lock held
2018 * @p: the thread to be awakened
2019 *
2acca55e 2020 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2021 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2022 * the current task.
21aa9af0
TH
2023 */
2024static void try_to_wake_up_local(struct task_struct *p)
2025{
2026 struct rq *rq = task_rq(p);
21aa9af0 2027
383efcd0
TH
2028 if (WARN_ON_ONCE(rq != this_rq()) ||
2029 WARN_ON_ONCE(p == current))
2030 return;
2031
21aa9af0
TH
2032 lockdep_assert_held(&rq->lock);
2033
2acca55e 2034 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2035 /*
2036 * This is OK, because current is on_cpu, which avoids it being
2037 * picked for load-balance and preemption/IRQs are still
2038 * disabled avoiding further scheduler activity on it and we've
2039 * not yet picked a replacement task.
2040 */
2041 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2042 raw_spin_unlock(&rq->lock);
2043 raw_spin_lock(&p->pi_lock);
2044 raw_spin_lock(&rq->lock);
cbce1a68 2045 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2046 }
2047
21aa9af0 2048 if (!(p->state & TASK_NORMAL))
2acca55e 2049 goto out;
21aa9af0 2050
fbd705a0
PZ
2051 trace_sched_waking(p);
2052
da0c1e65 2053 if (!task_on_rq_queued(p))
d7c01d27
PZ
2054 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2055
23f41eeb 2056 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2057 if (schedstat_enabled())
2058 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2059out:
2060 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2061}
2062
50fa610a
DH
2063/**
2064 * wake_up_process - Wake up a specific process
2065 * @p: The process to be woken up.
2066 *
2067 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2068 * processes.
2069 *
2070 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2071 *
2072 * It may be assumed that this function implies a write memory barrier before
2073 * changing the task state if and only if any tasks are woken up.
2074 */
7ad5b3a5 2075int wake_up_process(struct task_struct *p)
1da177e4 2076{
9067ac85 2077 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2078}
1da177e4
LT
2079EXPORT_SYMBOL(wake_up_process);
2080
7ad5b3a5 2081int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2082{
2083 return try_to_wake_up(p, state, 0);
2084}
2085
a5e7be3b
JL
2086/*
2087 * This function clears the sched_dl_entity static params.
2088 */
2089void __dl_clear_params(struct task_struct *p)
2090{
2091 struct sched_dl_entity *dl_se = &p->dl;
2092
2093 dl_se->dl_runtime = 0;
2094 dl_se->dl_deadline = 0;
2095 dl_se->dl_period = 0;
2096 dl_se->flags = 0;
2097 dl_se->dl_bw = 0;
40767b0d
PZ
2098
2099 dl_se->dl_throttled = 0;
40767b0d 2100 dl_se->dl_yielded = 0;
a5e7be3b
JL
2101}
2102
1da177e4
LT
2103/*
2104 * Perform scheduler related setup for a newly forked process p.
2105 * p is forked by current.
dd41f596
IM
2106 *
2107 * __sched_fork() is basic setup used by init_idle() too:
2108 */
5e1576ed 2109static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2110{
fd2f4419
PZ
2111 p->on_rq = 0;
2112
2113 p->se.on_rq = 0;
dd41f596
IM
2114 p->se.exec_start = 0;
2115 p->se.sum_exec_runtime = 0;
f6cf891c 2116 p->se.prev_sum_exec_runtime = 0;
6c594c21 2117 p->se.nr_migrations = 0;
da7a735e 2118 p->se.vruntime = 0;
fd2f4419 2119 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2120
ad936d86
BP
2121#ifdef CONFIG_FAIR_GROUP_SCHED
2122 p->se.cfs_rq = NULL;
2123#endif
2124
6cfb0d5d 2125#ifdef CONFIG_SCHEDSTATS
cb251765 2126 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2127 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2128#endif
476d139c 2129
aab03e05 2130 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2131 init_dl_task_timer(&p->dl);
a5e7be3b 2132 __dl_clear_params(p);
aab03e05 2133
fa717060 2134 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2135 p->rt.timeout = 0;
2136 p->rt.time_slice = sched_rr_timeslice;
2137 p->rt.on_rq = 0;
2138 p->rt.on_list = 0;
476d139c 2139
e107be36
AK
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141 INIT_HLIST_HEAD(&p->preempt_notifiers);
2142#endif
cbee9f88
PZ
2143
2144#ifdef CONFIG_NUMA_BALANCING
2145 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2146 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2147 p->mm->numa_scan_seq = 0;
2148 }
2149
5e1576ed
RR
2150 if (clone_flags & CLONE_VM)
2151 p->numa_preferred_nid = current->numa_preferred_nid;
2152 else
2153 p->numa_preferred_nid = -1;
2154
cbee9f88
PZ
2155 p->node_stamp = 0ULL;
2156 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2157 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2158 p->numa_work.next = &p->numa_work;
44dba3d5 2159 p->numa_faults = NULL;
7e2703e6
RR
2160 p->last_task_numa_placement = 0;
2161 p->last_sum_exec_runtime = 0;
8c8a743c 2162
8c8a743c 2163 p->numa_group = NULL;
cbee9f88 2164#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2165}
2166
2a595721
SD
2167DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2168
1a687c2e 2169#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2170
1a687c2e
MG
2171void set_numabalancing_state(bool enabled)
2172{
2173 if (enabled)
2a595721 2174 static_branch_enable(&sched_numa_balancing);
1a687c2e 2175 else
2a595721 2176 static_branch_disable(&sched_numa_balancing);
1a687c2e 2177}
54a43d54
AK
2178
2179#ifdef CONFIG_PROC_SYSCTL
2180int sysctl_numa_balancing(struct ctl_table *table, int write,
2181 void __user *buffer, size_t *lenp, loff_t *ppos)
2182{
2183 struct ctl_table t;
2184 int err;
2a595721 2185 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2186
2187 if (write && !capable(CAP_SYS_ADMIN))
2188 return -EPERM;
2189
2190 t = *table;
2191 t.data = &state;
2192 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2193 if (err < 0)
2194 return err;
2195 if (write)
2196 set_numabalancing_state(state);
2197 return err;
2198}
2199#endif
2200#endif
dd41f596 2201
cb251765
MG
2202DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2203
2204#ifdef CONFIG_SCHEDSTATS
2205static void set_schedstats(bool enabled)
2206{
2207 if (enabled)
2208 static_branch_enable(&sched_schedstats);
2209 else
2210 static_branch_disable(&sched_schedstats);
2211}
2212
2213void force_schedstat_enabled(void)
2214{
2215 if (!schedstat_enabled()) {
2216 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2217 static_branch_enable(&sched_schedstats);
2218 }
2219}
2220
2221static int __init setup_schedstats(char *str)
2222{
2223 int ret = 0;
2224 if (!str)
2225 goto out;
2226
2227 if (!strcmp(str, "enable")) {
2228 set_schedstats(true);
2229 ret = 1;
2230 } else if (!strcmp(str, "disable")) {
2231 set_schedstats(false);
2232 ret = 1;
2233 }
2234out:
2235 if (!ret)
2236 pr_warn("Unable to parse schedstats=\n");
2237
2238 return ret;
2239}
2240__setup("schedstats=", setup_schedstats);
2241
2242#ifdef CONFIG_PROC_SYSCTL
2243int sysctl_schedstats(struct ctl_table *table, int write,
2244 void __user *buffer, size_t *lenp, loff_t *ppos)
2245{
2246 struct ctl_table t;
2247 int err;
2248 int state = static_branch_likely(&sched_schedstats);
2249
2250 if (write && !capable(CAP_SYS_ADMIN))
2251 return -EPERM;
2252
2253 t = *table;
2254 t.data = &state;
2255 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2256 if (err < 0)
2257 return err;
2258 if (write)
2259 set_schedstats(state);
2260 return err;
2261}
2262#endif
2263#endif
dd41f596
IM
2264
2265/*
2266 * fork()/clone()-time setup:
2267 */
aab03e05 2268int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2269{
0122ec5b 2270 unsigned long flags;
dd41f596
IM
2271 int cpu = get_cpu();
2272
5e1576ed 2273 __sched_fork(clone_flags, p);
06b83b5f 2274 /*
0017d735 2275 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2276 * nobody will actually run it, and a signal or other external
2277 * event cannot wake it up and insert it on the runqueue either.
2278 */
0017d735 2279 p->state = TASK_RUNNING;
dd41f596 2280
c350a04e
MG
2281 /*
2282 * Make sure we do not leak PI boosting priority to the child.
2283 */
2284 p->prio = current->normal_prio;
2285
b9dc29e7
MG
2286 /*
2287 * Revert to default priority/policy on fork if requested.
2288 */
2289 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2290 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2291 p->policy = SCHED_NORMAL;
6c697bdf 2292 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2293 p->rt_priority = 0;
2294 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2295 p->static_prio = NICE_TO_PRIO(0);
2296
2297 p->prio = p->normal_prio = __normal_prio(p);
2298 set_load_weight(p);
6c697bdf 2299
b9dc29e7
MG
2300 /*
2301 * We don't need the reset flag anymore after the fork. It has
2302 * fulfilled its duty:
2303 */
2304 p->sched_reset_on_fork = 0;
2305 }
ca94c442 2306
aab03e05
DF
2307 if (dl_prio(p->prio)) {
2308 put_cpu();
2309 return -EAGAIN;
2310 } else if (rt_prio(p->prio)) {
2311 p->sched_class = &rt_sched_class;
2312 } else {
2ddbf952 2313 p->sched_class = &fair_sched_class;
aab03e05 2314 }
b29739f9 2315
cd29fe6f
PZ
2316 if (p->sched_class->task_fork)
2317 p->sched_class->task_fork(p);
2318
86951599
PZ
2319 /*
2320 * The child is not yet in the pid-hash so no cgroup attach races,
2321 * and the cgroup is pinned to this child due to cgroup_fork()
2322 * is ran before sched_fork().
2323 *
2324 * Silence PROVE_RCU.
2325 */
0122ec5b 2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2327 set_task_cpu(p, cpu);
0122ec5b 2328 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2329
f6db8347 2330#ifdef CONFIG_SCHED_INFO
dd41f596 2331 if (likely(sched_info_on()))
52f17b6c 2332 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2333#endif
3ca7a440
PZ
2334#if defined(CONFIG_SMP)
2335 p->on_cpu = 0;
4866cde0 2336#endif
01028747 2337 init_task_preempt_count(p);
806c09a7 2338#ifdef CONFIG_SMP
917b627d 2339 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2340 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2341#endif
917b627d 2342
476d139c 2343 put_cpu();
aab03e05 2344 return 0;
1da177e4
LT
2345}
2346
332ac17e
DF
2347unsigned long to_ratio(u64 period, u64 runtime)
2348{
2349 if (runtime == RUNTIME_INF)
2350 return 1ULL << 20;
2351
2352 /*
2353 * Doing this here saves a lot of checks in all
2354 * the calling paths, and returning zero seems
2355 * safe for them anyway.
2356 */
2357 if (period == 0)
2358 return 0;
2359
2360 return div64_u64(runtime << 20, period);
2361}
2362
2363#ifdef CONFIG_SMP
2364inline struct dl_bw *dl_bw_of(int i)
2365{
f78f5b90
PM
2366 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2367 "sched RCU must be held");
332ac17e
DF
2368 return &cpu_rq(i)->rd->dl_bw;
2369}
2370
de212f18 2371static inline int dl_bw_cpus(int i)
332ac17e 2372{
de212f18
PZ
2373 struct root_domain *rd = cpu_rq(i)->rd;
2374 int cpus = 0;
2375
f78f5b90
PM
2376 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2377 "sched RCU must be held");
de212f18
PZ
2378 for_each_cpu_and(i, rd->span, cpu_active_mask)
2379 cpus++;
2380
2381 return cpus;
332ac17e
DF
2382}
2383#else
2384inline struct dl_bw *dl_bw_of(int i)
2385{
2386 return &cpu_rq(i)->dl.dl_bw;
2387}
2388
de212f18 2389static inline int dl_bw_cpus(int i)
332ac17e
DF
2390{
2391 return 1;
2392}
2393#endif
2394
332ac17e
DF
2395/*
2396 * We must be sure that accepting a new task (or allowing changing the
2397 * parameters of an existing one) is consistent with the bandwidth
2398 * constraints. If yes, this function also accordingly updates the currently
2399 * allocated bandwidth to reflect the new situation.
2400 *
2401 * This function is called while holding p's rq->lock.
40767b0d
PZ
2402 *
2403 * XXX we should delay bw change until the task's 0-lag point, see
2404 * __setparam_dl().
332ac17e
DF
2405 */
2406static int dl_overflow(struct task_struct *p, int policy,
2407 const struct sched_attr *attr)
2408{
2409
2410 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2411 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2412 u64 runtime = attr->sched_runtime;
2413 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2414 int cpus, err = -1;
332ac17e
DF
2415
2416 if (new_bw == p->dl.dl_bw)
2417 return 0;
2418
2419 /*
2420 * Either if a task, enters, leave, or stays -deadline but changes
2421 * its parameters, we may need to update accordingly the total
2422 * allocated bandwidth of the container.
2423 */
2424 raw_spin_lock(&dl_b->lock);
de212f18 2425 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2426 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2427 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2428 __dl_add(dl_b, new_bw);
2429 err = 0;
2430 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2431 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2432 __dl_clear(dl_b, p->dl.dl_bw);
2433 __dl_add(dl_b, new_bw);
2434 err = 0;
2435 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2436 __dl_clear(dl_b, p->dl.dl_bw);
2437 err = 0;
2438 }
2439 raw_spin_unlock(&dl_b->lock);
2440
2441 return err;
2442}
2443
2444extern void init_dl_bw(struct dl_bw *dl_b);
2445
1da177e4
LT
2446/*
2447 * wake_up_new_task - wake up a newly created task for the first time.
2448 *
2449 * This function will do some initial scheduler statistics housekeeping
2450 * that must be done for every newly created context, then puts the task
2451 * on the runqueue and wakes it.
2452 */
3e51e3ed 2453void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2454{
2455 unsigned long flags;
dd41f596 2456 struct rq *rq;
fabf318e 2457
ab2515c4 2458 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2459 /* Initialize new task's runnable average */
2460 init_entity_runnable_average(&p->se);
fabf318e
PZ
2461#ifdef CONFIG_SMP
2462 /*
2463 * Fork balancing, do it here and not earlier because:
2464 * - cpus_allowed can change in the fork path
2465 * - any previously selected cpu might disappear through hotplug
fabf318e 2466 */
ac66f547 2467 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2468#endif
2469
ab2515c4 2470 rq = __task_rq_lock(p);
cd29fe6f 2471 activate_task(rq, p, 0);
da0c1e65 2472 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2473 trace_sched_wakeup_new(p);
a7558e01 2474 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2475#ifdef CONFIG_SMP
0aaafaab
PZ
2476 if (p->sched_class->task_woken) {
2477 /*
2478 * Nothing relies on rq->lock after this, so its fine to
2479 * drop it.
2480 */
2481 lockdep_unpin_lock(&rq->lock);
efbbd05a 2482 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2483 lockdep_pin_lock(&rq->lock);
2484 }
9a897c5a 2485#endif
0122ec5b 2486 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2487}
2488
e107be36
AK
2489#ifdef CONFIG_PREEMPT_NOTIFIERS
2490
1cde2930
PZ
2491static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2492
2ecd9d29
PZ
2493void preempt_notifier_inc(void)
2494{
2495 static_key_slow_inc(&preempt_notifier_key);
2496}
2497EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2498
2499void preempt_notifier_dec(void)
2500{
2501 static_key_slow_dec(&preempt_notifier_key);
2502}
2503EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2504
e107be36 2505/**
80dd99b3 2506 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2507 * @notifier: notifier struct to register
e107be36
AK
2508 */
2509void preempt_notifier_register(struct preempt_notifier *notifier)
2510{
2ecd9d29
PZ
2511 if (!static_key_false(&preempt_notifier_key))
2512 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2513
e107be36
AK
2514 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2515}
2516EXPORT_SYMBOL_GPL(preempt_notifier_register);
2517
2518/**
2519 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2520 * @notifier: notifier struct to unregister
e107be36 2521 *
d84525a8 2522 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2523 */
2524void preempt_notifier_unregister(struct preempt_notifier *notifier)
2525{
2526 hlist_del(&notifier->link);
2527}
2528EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2529
1cde2930 2530static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2531{
2532 struct preempt_notifier *notifier;
e107be36 2533
b67bfe0d 2534 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2535 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2536}
2537
1cde2930
PZ
2538static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539{
2540 if (static_key_false(&preempt_notifier_key))
2541 __fire_sched_in_preempt_notifiers(curr);
2542}
2543
e107be36 2544static void
1cde2930
PZ
2545__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2546 struct task_struct *next)
e107be36
AK
2547{
2548 struct preempt_notifier *notifier;
e107be36 2549
b67bfe0d 2550 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2551 notifier->ops->sched_out(notifier, next);
2552}
2553
1cde2930
PZ
2554static __always_inline void
2555fire_sched_out_preempt_notifiers(struct task_struct *curr,
2556 struct task_struct *next)
2557{
2558 if (static_key_false(&preempt_notifier_key))
2559 __fire_sched_out_preempt_notifiers(curr, next);
2560}
2561
6d6bc0ad 2562#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2563
1cde2930 2564static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2565{
2566}
2567
1cde2930 2568static inline void
e107be36
AK
2569fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 struct task_struct *next)
2571{
2572}
2573
6d6bc0ad 2574#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2575
4866cde0
NP
2576/**
2577 * prepare_task_switch - prepare to switch tasks
2578 * @rq: the runqueue preparing to switch
421cee29 2579 * @prev: the current task that is being switched out
4866cde0
NP
2580 * @next: the task we are going to switch to.
2581 *
2582 * This is called with the rq lock held and interrupts off. It must
2583 * be paired with a subsequent finish_task_switch after the context
2584 * switch.
2585 *
2586 * prepare_task_switch sets up locking and calls architecture specific
2587 * hooks.
2588 */
e107be36
AK
2589static inline void
2590prepare_task_switch(struct rq *rq, struct task_struct *prev,
2591 struct task_struct *next)
4866cde0 2592{
43148951 2593 sched_info_switch(rq, prev, next);
fe4b04fa 2594 perf_event_task_sched_out(prev, next);
e107be36 2595 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2596 prepare_lock_switch(rq, next);
2597 prepare_arch_switch(next);
2598}
2599
1da177e4
LT
2600/**
2601 * finish_task_switch - clean up after a task-switch
2602 * @prev: the thread we just switched away from.
2603 *
4866cde0
NP
2604 * finish_task_switch must be called after the context switch, paired
2605 * with a prepare_task_switch call before the context switch.
2606 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2607 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2608 *
2609 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2610 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2611 * with the lock held can cause deadlocks; see schedule() for
2612 * details.)
dfa50b60
ON
2613 *
2614 * The context switch have flipped the stack from under us and restored the
2615 * local variables which were saved when this task called schedule() in the
2616 * past. prev == current is still correct but we need to recalculate this_rq
2617 * because prev may have moved to another CPU.
1da177e4 2618 */
dfa50b60 2619static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2620 __releases(rq->lock)
2621{
dfa50b60 2622 struct rq *rq = this_rq();
1da177e4 2623 struct mm_struct *mm = rq->prev_mm;
55a101f8 2624 long prev_state;
1da177e4 2625
609ca066
PZ
2626 /*
2627 * The previous task will have left us with a preempt_count of 2
2628 * because it left us after:
2629 *
2630 * schedule()
2631 * preempt_disable(); // 1
2632 * __schedule()
2633 * raw_spin_lock_irq(&rq->lock) // 2
2634 *
2635 * Also, see FORK_PREEMPT_COUNT.
2636 */
e2bf1c4b
PZ
2637 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2638 "corrupted preempt_count: %s/%d/0x%x\n",
2639 current->comm, current->pid, preempt_count()))
2640 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2641
1da177e4
LT
2642 rq->prev_mm = NULL;
2643
2644 /*
2645 * A task struct has one reference for the use as "current".
c394cc9f 2646 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2647 * schedule one last time. The schedule call will never return, and
2648 * the scheduled task must drop that reference.
95913d97
PZ
2649 *
2650 * We must observe prev->state before clearing prev->on_cpu (in
2651 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2652 * running on another CPU and we could rave with its RUNNING -> DEAD
2653 * transition, resulting in a double drop.
1da177e4 2654 */
55a101f8 2655 prev_state = prev->state;
bf9fae9f 2656 vtime_task_switch(prev);
a8d757ef 2657 perf_event_task_sched_in(prev, current);
4866cde0 2658 finish_lock_switch(rq, prev);
01f23e16 2659 finish_arch_post_lock_switch();
e8fa1362 2660
e107be36 2661 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2662 if (mm)
2663 mmdrop(mm);
c394cc9f 2664 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2665 if (prev->sched_class->task_dead)
2666 prev->sched_class->task_dead(prev);
2667
c6fd91f0 2668 /*
2669 * Remove function-return probe instances associated with this
2670 * task and put them back on the free list.
9761eea8 2671 */
c6fd91f0 2672 kprobe_flush_task(prev);
1da177e4 2673 put_task_struct(prev);
c6fd91f0 2674 }
99e5ada9 2675
de734f89 2676 tick_nohz_task_switch();
dfa50b60 2677 return rq;
1da177e4
LT
2678}
2679
3f029d3c
GH
2680#ifdef CONFIG_SMP
2681
3f029d3c 2682/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2683static void __balance_callback(struct rq *rq)
3f029d3c 2684{
e3fca9e7
PZ
2685 struct callback_head *head, *next;
2686 void (*func)(struct rq *rq);
2687 unsigned long flags;
3f029d3c 2688
e3fca9e7
PZ
2689 raw_spin_lock_irqsave(&rq->lock, flags);
2690 head = rq->balance_callback;
2691 rq->balance_callback = NULL;
2692 while (head) {
2693 func = (void (*)(struct rq *))head->func;
2694 next = head->next;
2695 head->next = NULL;
2696 head = next;
3f029d3c 2697
e3fca9e7 2698 func(rq);
3f029d3c 2699 }
e3fca9e7
PZ
2700 raw_spin_unlock_irqrestore(&rq->lock, flags);
2701}
2702
2703static inline void balance_callback(struct rq *rq)
2704{
2705 if (unlikely(rq->balance_callback))
2706 __balance_callback(rq);
3f029d3c
GH
2707}
2708
2709#else
da19ab51 2710
e3fca9e7 2711static inline void balance_callback(struct rq *rq)
3f029d3c 2712{
1da177e4
LT
2713}
2714
3f029d3c
GH
2715#endif
2716
1da177e4
LT
2717/**
2718 * schedule_tail - first thing a freshly forked thread must call.
2719 * @prev: the thread we just switched away from.
2720 */
722a9f92 2721asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2722 __releases(rq->lock)
2723{
1a43a14a 2724 struct rq *rq;
da19ab51 2725
609ca066
PZ
2726 /*
2727 * New tasks start with FORK_PREEMPT_COUNT, see there and
2728 * finish_task_switch() for details.
2729 *
2730 * finish_task_switch() will drop rq->lock() and lower preempt_count
2731 * and the preempt_enable() will end up enabling preemption (on
2732 * PREEMPT_COUNT kernels).
2733 */
2734
dfa50b60 2735 rq = finish_task_switch(prev);
e3fca9e7 2736 balance_callback(rq);
1a43a14a 2737 preempt_enable();
70b97a7f 2738
1da177e4 2739 if (current->set_child_tid)
b488893a 2740 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2741}
2742
2743/*
dfa50b60 2744 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2745 */
04936948 2746static __always_inline struct rq *
70b97a7f 2747context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2748 struct task_struct *next)
1da177e4 2749{
dd41f596 2750 struct mm_struct *mm, *oldmm;
1da177e4 2751
e107be36 2752 prepare_task_switch(rq, prev, next);
fe4b04fa 2753
dd41f596
IM
2754 mm = next->mm;
2755 oldmm = prev->active_mm;
9226d125
ZA
2756 /*
2757 * For paravirt, this is coupled with an exit in switch_to to
2758 * combine the page table reload and the switch backend into
2759 * one hypercall.
2760 */
224101ed 2761 arch_start_context_switch(prev);
9226d125 2762
31915ab4 2763 if (!mm) {
1da177e4
LT
2764 next->active_mm = oldmm;
2765 atomic_inc(&oldmm->mm_count);
2766 enter_lazy_tlb(oldmm, next);
2767 } else
2768 switch_mm(oldmm, mm, next);
2769
31915ab4 2770 if (!prev->mm) {
1da177e4 2771 prev->active_mm = NULL;
1da177e4
LT
2772 rq->prev_mm = oldmm;
2773 }
3a5f5e48
IM
2774 /*
2775 * Since the runqueue lock will be released by the next
2776 * task (which is an invalid locking op but in the case
2777 * of the scheduler it's an obvious special-case), so we
2778 * do an early lockdep release here:
2779 */
cbce1a68 2780 lockdep_unpin_lock(&rq->lock);
8a25d5de 2781 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2782
2783 /* Here we just switch the register state and the stack. */
2784 switch_to(prev, next, prev);
dd41f596 2785 barrier();
dfa50b60
ON
2786
2787 return finish_task_switch(prev);
1da177e4
LT
2788}
2789
2790/*
1c3e8264 2791 * nr_running and nr_context_switches:
1da177e4
LT
2792 *
2793 * externally visible scheduler statistics: current number of runnable
1c3e8264 2794 * threads, total number of context switches performed since bootup.
1da177e4
LT
2795 */
2796unsigned long nr_running(void)
2797{
2798 unsigned long i, sum = 0;
2799
2800 for_each_online_cpu(i)
2801 sum += cpu_rq(i)->nr_running;
2802
2803 return sum;
f711f609 2804}
1da177e4 2805
2ee507c4
TC
2806/*
2807 * Check if only the current task is running on the cpu.
00cc1633
DD
2808 *
2809 * Caution: this function does not check that the caller has disabled
2810 * preemption, thus the result might have a time-of-check-to-time-of-use
2811 * race. The caller is responsible to use it correctly, for example:
2812 *
2813 * - from a non-preemptable section (of course)
2814 *
2815 * - from a thread that is bound to a single CPU
2816 *
2817 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2818 */
2819bool single_task_running(void)
2820{
00cc1633 2821 return raw_rq()->nr_running == 1;
2ee507c4
TC
2822}
2823EXPORT_SYMBOL(single_task_running);
2824
1da177e4 2825unsigned long long nr_context_switches(void)
46cb4b7c 2826{
cc94abfc
SR
2827 int i;
2828 unsigned long long sum = 0;
46cb4b7c 2829
0a945022 2830 for_each_possible_cpu(i)
1da177e4 2831 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2832
1da177e4
LT
2833 return sum;
2834}
483b4ee6 2835
1da177e4
LT
2836unsigned long nr_iowait(void)
2837{
2838 unsigned long i, sum = 0;
483b4ee6 2839
0a945022 2840 for_each_possible_cpu(i)
1da177e4 2841 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2842
1da177e4
LT
2843 return sum;
2844}
483b4ee6 2845
8c215bd3 2846unsigned long nr_iowait_cpu(int cpu)
69d25870 2847{
8c215bd3 2848 struct rq *this = cpu_rq(cpu);
69d25870
AV
2849 return atomic_read(&this->nr_iowait);
2850}
46cb4b7c 2851
372ba8cb
MG
2852void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2853{
3289bdb4
PZ
2854 struct rq *rq = this_rq();
2855 *nr_waiters = atomic_read(&rq->nr_iowait);
2856 *load = rq->load.weight;
372ba8cb
MG
2857}
2858
dd41f596 2859#ifdef CONFIG_SMP
8a0be9ef 2860
46cb4b7c 2861/*
38022906
PZ
2862 * sched_exec - execve() is a valuable balancing opportunity, because at
2863 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2864 */
38022906 2865void sched_exec(void)
46cb4b7c 2866{
38022906 2867 struct task_struct *p = current;
1da177e4 2868 unsigned long flags;
0017d735 2869 int dest_cpu;
46cb4b7c 2870
8f42ced9 2871 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2872 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2873 if (dest_cpu == smp_processor_id())
2874 goto unlock;
38022906 2875
8f42ced9 2876 if (likely(cpu_active(dest_cpu))) {
969c7921 2877 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2878
8f42ced9
PZ
2879 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2880 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2881 return;
2882 }
0017d735 2883unlock:
8f42ced9 2884 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2885}
dd41f596 2886
1da177e4
LT
2887#endif
2888
1da177e4 2889DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2890DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2891
2892EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2893EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2894
c5f8d995
HS
2895/*
2896 * Return accounted runtime for the task.
2897 * In case the task is currently running, return the runtime plus current's
2898 * pending runtime that have not been accounted yet.
2899 */
2900unsigned long long task_sched_runtime(struct task_struct *p)
2901{
2902 unsigned long flags;
2903 struct rq *rq;
6e998916 2904 u64 ns;
c5f8d995 2905
911b2898
PZ
2906#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2907 /*
2908 * 64-bit doesn't need locks to atomically read a 64bit value.
2909 * So we have a optimization chance when the task's delta_exec is 0.
2910 * Reading ->on_cpu is racy, but this is ok.
2911 *
2912 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2913 * If we race with it entering cpu, unaccounted time is 0. This is
2914 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2915 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2916 * been accounted, so we're correct here as well.
911b2898 2917 */
da0c1e65 2918 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2919 return p->se.sum_exec_runtime;
2920#endif
2921
c5f8d995 2922 rq = task_rq_lock(p, &flags);
6e998916
SG
2923 /*
2924 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2925 * project cycles that may never be accounted to this
2926 * thread, breaking clock_gettime().
2927 */
2928 if (task_current(rq, p) && task_on_rq_queued(p)) {
2929 update_rq_clock(rq);
2930 p->sched_class->update_curr(rq);
2931 }
2932 ns = p->se.sum_exec_runtime;
0122ec5b 2933 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2934
2935 return ns;
2936}
48f24c4d 2937
7835b98b
CL
2938/*
2939 * This function gets called by the timer code, with HZ frequency.
2940 * We call it with interrupts disabled.
7835b98b
CL
2941 */
2942void scheduler_tick(void)
2943{
7835b98b
CL
2944 int cpu = smp_processor_id();
2945 struct rq *rq = cpu_rq(cpu);
dd41f596 2946 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2947
2948 sched_clock_tick();
dd41f596 2949
05fa785c 2950 raw_spin_lock(&rq->lock);
3e51f33f 2951 update_rq_clock(rq);
fa85ae24 2952 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2953 update_cpu_load_active(rq);
3289bdb4 2954 calc_global_load_tick(rq);
05fa785c 2955 raw_spin_unlock(&rq->lock);
7835b98b 2956
e9d2b064 2957 perf_event_task_tick();
e220d2dc 2958
e418e1c2 2959#ifdef CONFIG_SMP
6eb57e0d 2960 rq->idle_balance = idle_cpu(cpu);
7caff66f 2961 trigger_load_balance(rq);
e418e1c2 2962#endif
265f22a9 2963 rq_last_tick_reset(rq);
1da177e4
LT
2964}
2965
265f22a9
FW
2966#ifdef CONFIG_NO_HZ_FULL
2967/**
2968 * scheduler_tick_max_deferment
2969 *
2970 * Keep at least one tick per second when a single
2971 * active task is running because the scheduler doesn't
2972 * yet completely support full dynticks environment.
2973 *
2974 * This makes sure that uptime, CFS vruntime, load
2975 * balancing, etc... continue to move forward, even
2976 * with a very low granularity.
e69f6186
YB
2977 *
2978 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2979 */
2980u64 scheduler_tick_max_deferment(void)
2981{
2982 struct rq *rq = this_rq();
316c1608 2983 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2984
2985 next = rq->last_sched_tick + HZ;
2986
2987 if (time_before_eq(next, now))
2988 return 0;
2989
8fe8ff09 2990 return jiffies_to_nsecs(next - now);
1da177e4 2991}
265f22a9 2992#endif
1da177e4 2993
7e49fcce
SR
2994#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2995 defined(CONFIG_PREEMPT_TRACER))
2996
edafe3a5 2997void preempt_count_add(int val)
1da177e4 2998{
6cd8a4bb 2999#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3000 /*
3001 * Underflow?
3002 */
9a11b49a
IM
3003 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3004 return;
6cd8a4bb 3005#endif
bdb43806 3006 __preempt_count_add(val);
6cd8a4bb 3007#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3008 /*
3009 * Spinlock count overflowing soon?
3010 */
33859f7f
MOS
3011 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3012 PREEMPT_MASK - 10);
6cd8a4bb 3013#endif
8f47b187 3014 if (preempt_count() == val) {
f904f582 3015 unsigned long ip = get_lock_parent_ip();
8f47b187
TG
3016#ifdef CONFIG_DEBUG_PREEMPT
3017 current->preempt_disable_ip = ip;
3018#endif
3019 trace_preempt_off(CALLER_ADDR0, ip);
3020 }
1da177e4 3021}
bdb43806 3022EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3023NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3024
edafe3a5 3025void preempt_count_sub(int val)
1da177e4 3026{
6cd8a4bb 3027#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3028 /*
3029 * Underflow?
3030 */
01e3eb82 3031 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3032 return;
1da177e4
LT
3033 /*
3034 * Is the spinlock portion underflowing?
3035 */
9a11b49a
IM
3036 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3037 !(preempt_count() & PREEMPT_MASK)))
3038 return;
6cd8a4bb 3039#endif
9a11b49a 3040
6cd8a4bb 3041 if (preempt_count() == val)
f904f582 3042 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
bdb43806 3043 __preempt_count_sub(val);
1da177e4 3044}
bdb43806 3045EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3046NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
3047
3048#endif
3049
3050/*
dd41f596 3051 * Print scheduling while atomic bug:
1da177e4 3052 */
dd41f596 3053static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3054{
664dfa65
DJ
3055 if (oops_in_progress)
3056 return;
3057
3df0fc5b
PZ
3058 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3059 prev->comm, prev->pid, preempt_count());
838225b4 3060
dd41f596 3061 debug_show_held_locks(prev);
e21f5b15 3062 print_modules();
dd41f596
IM
3063 if (irqs_disabled())
3064 print_irqtrace_events(prev);
8f47b187
TG
3065#ifdef CONFIG_DEBUG_PREEMPT
3066 if (in_atomic_preempt_off()) {
3067 pr_err("Preemption disabled at:");
3068 print_ip_sym(current->preempt_disable_ip);
3069 pr_cont("\n");
3070 }
3071#endif
6135fc1e 3072 dump_stack();
373d4d09 3073 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3074}
1da177e4 3075
dd41f596
IM
3076/*
3077 * Various schedule()-time debugging checks and statistics:
3078 */
3079static inline void schedule_debug(struct task_struct *prev)
3080{
0d9e2632 3081#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3082 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3083#endif
b99def8b 3084
1dc0fffc 3085 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3086 __schedule_bug(prev);
1dc0fffc
PZ
3087 preempt_count_set(PREEMPT_DISABLED);
3088 }
b3fbab05 3089 rcu_sleep_check();
dd41f596 3090
1da177e4
LT
3091 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3092
2d72376b 3093 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3094}
3095
3096/*
3097 * Pick up the highest-prio task:
3098 */
3099static inline struct task_struct *
606dba2e 3100pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3101{
37e117c0 3102 const struct sched_class *class = &fair_sched_class;
dd41f596 3103 struct task_struct *p;
1da177e4
LT
3104
3105 /*
dd41f596
IM
3106 * Optimization: we know that if all tasks are in
3107 * the fair class we can call that function directly:
1da177e4 3108 */
37e117c0 3109 if (likely(prev->sched_class == class &&
38033c37 3110 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3111 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3112 if (unlikely(p == RETRY_TASK))
3113 goto again;
3114
3115 /* assumes fair_sched_class->next == idle_sched_class */
3116 if (unlikely(!p))
3117 p = idle_sched_class.pick_next_task(rq, prev);
3118
3119 return p;
1da177e4
LT
3120 }
3121
37e117c0 3122again:
34f971f6 3123 for_each_class(class) {
606dba2e 3124 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3125 if (p) {
3126 if (unlikely(p == RETRY_TASK))
3127 goto again;
dd41f596 3128 return p;
37e117c0 3129 }
dd41f596 3130 }
34f971f6
PZ
3131
3132 BUG(); /* the idle class will always have a runnable task */
dd41f596 3133}
1da177e4 3134
dd41f596 3135/*
c259e01a 3136 * __schedule() is the main scheduler function.
edde96ea
PE
3137 *
3138 * The main means of driving the scheduler and thus entering this function are:
3139 *
3140 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3141 *
3142 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3143 * paths. For example, see arch/x86/entry_64.S.
3144 *
3145 * To drive preemption between tasks, the scheduler sets the flag in timer
3146 * interrupt handler scheduler_tick().
3147 *
3148 * 3. Wakeups don't really cause entry into schedule(). They add a
3149 * task to the run-queue and that's it.
3150 *
3151 * Now, if the new task added to the run-queue preempts the current
3152 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3153 * called on the nearest possible occasion:
3154 *
3155 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3156 *
3157 * - in syscall or exception context, at the next outmost
3158 * preempt_enable(). (this might be as soon as the wake_up()'s
3159 * spin_unlock()!)
3160 *
3161 * - in IRQ context, return from interrupt-handler to
3162 * preemptible context
3163 *
3164 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3165 * then at the next:
3166 *
3167 * - cond_resched() call
3168 * - explicit schedule() call
3169 * - return from syscall or exception to user-space
3170 * - return from interrupt-handler to user-space
bfd9b2b5 3171 *
b30f0e3f 3172 * WARNING: must be called with preemption disabled!
dd41f596 3173 */
499d7955 3174static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3175{
3176 struct task_struct *prev, *next;
67ca7bde 3177 unsigned long *switch_count;
dd41f596 3178 struct rq *rq;
31656519 3179 int cpu;
dd41f596 3180
dd41f596
IM
3181 cpu = smp_processor_id();
3182 rq = cpu_rq(cpu);
dd41f596 3183 prev = rq->curr;
dd41f596 3184
b99def8b
PZ
3185 /*
3186 * do_exit() calls schedule() with preemption disabled as an exception;
3187 * however we must fix that up, otherwise the next task will see an
3188 * inconsistent (higher) preempt count.
3189 *
3190 * It also avoids the below schedule_debug() test from complaining
3191 * about this.
3192 */
3193 if (unlikely(prev->state == TASK_DEAD))
3194 preempt_enable_no_resched_notrace();
3195
dd41f596 3196 schedule_debug(prev);
1da177e4 3197
31656519 3198 if (sched_feat(HRTICK))
f333fdc9 3199 hrtick_clear(rq);
8f4d37ec 3200
46a5d164
PM
3201 local_irq_disable();
3202 rcu_note_context_switch();
3203
e0acd0a6
ON
3204 /*
3205 * Make sure that signal_pending_state()->signal_pending() below
3206 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3207 * done by the caller to avoid the race with signal_wake_up().
3208 */
3209 smp_mb__before_spinlock();
46a5d164 3210 raw_spin_lock(&rq->lock);
cbce1a68 3211 lockdep_pin_lock(&rq->lock);
1da177e4 3212
9edfbfed
PZ
3213 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3214
246d86b5 3215 switch_count = &prev->nivcsw;
fc13aeba 3216 if (!preempt && prev->state) {
21aa9af0 3217 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3218 prev->state = TASK_RUNNING;
21aa9af0 3219 } else {
2acca55e
PZ
3220 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3221 prev->on_rq = 0;
3222
21aa9af0 3223 /*
2acca55e
PZ
3224 * If a worker went to sleep, notify and ask workqueue
3225 * whether it wants to wake up a task to maintain
3226 * concurrency.
21aa9af0
TH
3227 */
3228 if (prev->flags & PF_WQ_WORKER) {
3229 struct task_struct *to_wakeup;
3230
9b7f6597 3231 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3232 if (to_wakeup)
3233 try_to_wake_up_local(to_wakeup);
3234 }
21aa9af0 3235 }
dd41f596 3236 switch_count = &prev->nvcsw;
1da177e4
LT
3237 }
3238
9edfbfed 3239 if (task_on_rq_queued(prev))
606dba2e
PZ
3240 update_rq_clock(rq);
3241
3242 next = pick_next_task(rq, prev);
f26f9aff 3243 clear_tsk_need_resched(prev);
f27dde8d 3244 clear_preempt_need_resched();
9edfbfed 3245 rq->clock_skip_update = 0;
1da177e4 3246
1da177e4 3247 if (likely(prev != next)) {
1da177e4
LT
3248 rq->nr_switches++;
3249 rq->curr = next;
3250 ++*switch_count;
3251
c73464b1 3252 trace_sched_switch(preempt, prev, next);
dfa50b60 3253 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3254 } else {
3255 lockdep_unpin_lock(&rq->lock);
05fa785c 3256 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3257 }
1da177e4 3258
e3fca9e7 3259 balance_callback(rq);
1da177e4 3260}
8e05e96a 3261STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3262
9c40cef2
TG
3263static inline void sched_submit_work(struct task_struct *tsk)
3264{
3c7d5184 3265 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3266 return;
3267 /*
3268 * If we are going to sleep and we have plugged IO queued,
3269 * make sure to submit it to avoid deadlocks.
3270 */
3271 if (blk_needs_flush_plug(tsk))
3272 blk_schedule_flush_plug(tsk);
3273}
3274
722a9f92 3275asmlinkage __visible void __sched schedule(void)
c259e01a 3276{
9c40cef2
TG
3277 struct task_struct *tsk = current;
3278
3279 sched_submit_work(tsk);
bfd9b2b5 3280 do {
b30f0e3f 3281 preempt_disable();
fc13aeba 3282 __schedule(false);
b30f0e3f 3283 sched_preempt_enable_no_resched();
bfd9b2b5 3284 } while (need_resched());
c259e01a 3285}
1da177e4
LT
3286EXPORT_SYMBOL(schedule);
3287
91d1aa43 3288#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3289asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3290{
3291 /*
3292 * If we come here after a random call to set_need_resched(),
3293 * or we have been woken up remotely but the IPI has not yet arrived,
3294 * we haven't yet exited the RCU idle mode. Do it here manually until
3295 * we find a better solution.
7cc78f8f
AL
3296 *
3297 * NB: There are buggy callers of this function. Ideally we
c467ea76 3298 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3299 * too frequently to make sense yet.
20ab65e3 3300 */
7cc78f8f 3301 enum ctx_state prev_state = exception_enter();
20ab65e3 3302 schedule();
7cc78f8f 3303 exception_exit(prev_state);
20ab65e3
FW
3304}
3305#endif
3306
c5491ea7
TG
3307/**
3308 * schedule_preempt_disabled - called with preemption disabled
3309 *
3310 * Returns with preemption disabled. Note: preempt_count must be 1
3311 */
3312void __sched schedule_preempt_disabled(void)
3313{
ba74c144 3314 sched_preempt_enable_no_resched();
c5491ea7
TG
3315 schedule();
3316 preempt_disable();
3317}
3318
06b1f808 3319static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3320{
3321 do {
499d7955 3322 preempt_disable_notrace();
fc13aeba 3323 __schedule(true);
499d7955 3324 preempt_enable_no_resched_notrace();
a18b5d01
FW
3325
3326 /*
3327 * Check again in case we missed a preemption opportunity
3328 * between schedule and now.
3329 */
a18b5d01
FW
3330 } while (need_resched());
3331}
3332
1da177e4
LT
3333#ifdef CONFIG_PREEMPT
3334/*
2ed6e34f 3335 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3336 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3337 * occur there and call schedule directly.
3338 */
722a9f92 3339asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3340{
1da177e4
LT
3341 /*
3342 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3343 * we do not want to preempt the current task. Just return..
1da177e4 3344 */
fbb00b56 3345 if (likely(!preemptible()))
1da177e4
LT
3346 return;
3347
a18b5d01 3348 preempt_schedule_common();
1da177e4 3349}
376e2424 3350NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3351EXPORT_SYMBOL(preempt_schedule);
009f60e2 3352
009f60e2 3353/**
4eaca0a8 3354 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3355 *
3356 * The tracing infrastructure uses preempt_enable_notrace to prevent
3357 * recursion and tracing preempt enabling caused by the tracing
3358 * infrastructure itself. But as tracing can happen in areas coming
3359 * from userspace or just about to enter userspace, a preempt enable
3360 * can occur before user_exit() is called. This will cause the scheduler
3361 * to be called when the system is still in usermode.
3362 *
3363 * To prevent this, the preempt_enable_notrace will use this function
3364 * instead of preempt_schedule() to exit user context if needed before
3365 * calling the scheduler.
3366 */
4eaca0a8 3367asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3368{
3369 enum ctx_state prev_ctx;
3370
3371 if (likely(!preemptible()))
3372 return;
3373
3374 do {
3d8f74dd 3375 preempt_disable_notrace();
009f60e2
ON
3376 /*
3377 * Needs preempt disabled in case user_exit() is traced
3378 * and the tracer calls preempt_enable_notrace() causing
3379 * an infinite recursion.
3380 */
3381 prev_ctx = exception_enter();
fc13aeba 3382 __schedule(true);
009f60e2
ON
3383 exception_exit(prev_ctx);
3384
3d8f74dd 3385 preempt_enable_no_resched_notrace();
009f60e2
ON
3386 } while (need_resched());
3387}
4eaca0a8 3388EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3389
32e475d7 3390#endif /* CONFIG_PREEMPT */
1da177e4
LT
3391
3392/*
2ed6e34f 3393 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3394 * off of irq context.
3395 * Note, that this is called and return with irqs disabled. This will
3396 * protect us against recursive calling from irq.
3397 */
722a9f92 3398asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3399{
b22366cd 3400 enum ctx_state prev_state;
6478d880 3401
2ed6e34f 3402 /* Catch callers which need to be fixed */
f27dde8d 3403 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3404
b22366cd
FW
3405 prev_state = exception_enter();
3406
3a5c359a 3407 do {
3d8f74dd 3408 preempt_disable();
3a5c359a 3409 local_irq_enable();
fc13aeba 3410 __schedule(true);
3a5c359a 3411 local_irq_disable();
3d8f74dd 3412 sched_preempt_enable_no_resched();
5ed0cec0 3413 } while (need_resched());
b22366cd
FW
3414
3415 exception_exit(prev_state);
1da177e4
LT
3416}
3417
63859d4f 3418int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3419 void *key)
1da177e4 3420{
63859d4f 3421 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3422}
1da177e4
LT
3423EXPORT_SYMBOL(default_wake_function);
3424
b29739f9
IM
3425#ifdef CONFIG_RT_MUTEXES
3426
3427/*
3428 * rt_mutex_setprio - set the current priority of a task
3429 * @p: task
3430 * @prio: prio value (kernel-internal form)
3431 *
3432 * This function changes the 'effective' priority of a task. It does
3433 * not touch ->normal_prio like __setscheduler().
3434 *
c365c292
TG
3435 * Used by the rt_mutex code to implement priority inheritance
3436 * logic. Call site only calls if the priority of the task changed.
b29739f9 3437 */
36c8b586 3438void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3439{
ff77e468 3440 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3441 struct rq *rq;
83ab0aa0 3442 const struct sched_class *prev_class;
b29739f9 3443
aab03e05 3444 BUG_ON(prio > MAX_PRIO);
b29739f9 3445
0122ec5b 3446 rq = __task_rq_lock(p);
b29739f9 3447
1c4dd99b
TG
3448 /*
3449 * Idle task boosting is a nono in general. There is one
3450 * exception, when PREEMPT_RT and NOHZ is active:
3451 *
3452 * The idle task calls get_next_timer_interrupt() and holds
3453 * the timer wheel base->lock on the CPU and another CPU wants
3454 * to access the timer (probably to cancel it). We can safely
3455 * ignore the boosting request, as the idle CPU runs this code
3456 * with interrupts disabled and will complete the lock
3457 * protected section without being interrupted. So there is no
3458 * real need to boost.
3459 */
3460 if (unlikely(p == rq->idle)) {
3461 WARN_ON(p != rq->curr);
3462 WARN_ON(p->pi_blocked_on);
3463 goto out_unlock;
3464 }
3465
a8027073 3466 trace_sched_pi_setprio(p, prio);
d5f9f942 3467 oldprio = p->prio;
ff77e468
PZ
3468
3469 if (oldprio == prio)
3470 queue_flag &= ~DEQUEUE_MOVE;
3471
83ab0aa0 3472 prev_class = p->sched_class;
da0c1e65 3473 queued = task_on_rq_queued(p);
051a1d1a 3474 running = task_current(rq, p);
da0c1e65 3475 if (queued)
ff77e468 3476 dequeue_task(rq, p, queue_flag);
0e1f3483 3477 if (running)
f3cd1c4e 3478 put_prev_task(rq, p);
dd41f596 3479
2d3d891d
DF
3480 /*
3481 * Boosting condition are:
3482 * 1. -rt task is running and holds mutex A
3483 * --> -dl task blocks on mutex A
3484 *
3485 * 2. -dl task is running and holds mutex A
3486 * --> -dl task blocks on mutex A and could preempt the
3487 * running task
3488 */
3489 if (dl_prio(prio)) {
466af29b
ON
3490 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3491 if (!dl_prio(p->normal_prio) ||
3492 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3493 p->dl.dl_boosted = 1;
ff77e468 3494 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3495 } else
3496 p->dl.dl_boosted = 0;
aab03e05 3497 p->sched_class = &dl_sched_class;
2d3d891d
DF
3498 } else if (rt_prio(prio)) {
3499 if (dl_prio(oldprio))
3500 p->dl.dl_boosted = 0;
3501 if (oldprio < prio)
ff77e468 3502 queue_flag |= ENQUEUE_HEAD;
dd41f596 3503 p->sched_class = &rt_sched_class;
2d3d891d
DF
3504 } else {
3505 if (dl_prio(oldprio))
3506 p->dl.dl_boosted = 0;
746db944
BS
3507 if (rt_prio(oldprio))
3508 p->rt.timeout = 0;
dd41f596 3509 p->sched_class = &fair_sched_class;
2d3d891d 3510 }
dd41f596 3511
b29739f9
IM
3512 p->prio = prio;
3513
0e1f3483
HS
3514 if (running)
3515 p->sched_class->set_curr_task(rq);
da0c1e65 3516 if (queued)
ff77e468 3517 enqueue_task(rq, p, queue_flag);
cb469845 3518
da7a735e 3519 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3520out_unlock:
4c9a4bc8 3521 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3522 __task_rq_unlock(rq);
4c9a4bc8
PZ
3523
3524 balance_callback(rq);
3525 preempt_enable();
b29739f9 3526}
b29739f9 3527#endif
d50dde5a 3528
36c8b586 3529void set_user_nice(struct task_struct *p, long nice)
1da177e4 3530{
da0c1e65 3531 int old_prio, delta, queued;
1da177e4 3532 unsigned long flags;
70b97a7f 3533 struct rq *rq;
1da177e4 3534
75e45d51 3535 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3536 return;
3537 /*
3538 * We have to be careful, if called from sys_setpriority(),
3539 * the task might be in the middle of scheduling on another CPU.
3540 */
3541 rq = task_rq_lock(p, &flags);
3542 /*
3543 * The RT priorities are set via sched_setscheduler(), but we still
3544 * allow the 'normal' nice value to be set - but as expected
3545 * it wont have any effect on scheduling until the task is
aab03e05 3546 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3547 */
aab03e05 3548 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3549 p->static_prio = NICE_TO_PRIO(nice);
3550 goto out_unlock;
3551 }
da0c1e65
KT
3552 queued = task_on_rq_queued(p);
3553 if (queued)
1de64443 3554 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3555
1da177e4 3556 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3557 set_load_weight(p);
b29739f9
IM
3558 old_prio = p->prio;
3559 p->prio = effective_prio(p);
3560 delta = p->prio - old_prio;
1da177e4 3561
da0c1e65 3562 if (queued) {
1de64443 3563 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3564 /*
d5f9f942
AM
3565 * If the task increased its priority or is running and
3566 * lowered its priority, then reschedule its CPU:
1da177e4 3567 */
d5f9f942 3568 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3569 resched_curr(rq);
1da177e4
LT
3570 }
3571out_unlock:
0122ec5b 3572 task_rq_unlock(rq, p, &flags);
1da177e4 3573}
1da177e4
LT
3574EXPORT_SYMBOL(set_user_nice);
3575
e43379f1
MM
3576/*
3577 * can_nice - check if a task can reduce its nice value
3578 * @p: task
3579 * @nice: nice value
3580 */
36c8b586 3581int can_nice(const struct task_struct *p, const int nice)
e43379f1 3582{
024f4747 3583 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3584 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3585
78d7d407 3586 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3587 capable(CAP_SYS_NICE));
3588}
3589
1da177e4
LT
3590#ifdef __ARCH_WANT_SYS_NICE
3591
3592/*
3593 * sys_nice - change the priority of the current process.
3594 * @increment: priority increment
3595 *
3596 * sys_setpriority is a more generic, but much slower function that
3597 * does similar things.
3598 */
5add95d4 3599SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3600{
48f24c4d 3601 long nice, retval;
1da177e4
LT
3602
3603 /*
3604 * Setpriority might change our priority at the same moment.
3605 * We don't have to worry. Conceptually one call occurs first
3606 * and we have a single winner.
3607 */
a9467fa3 3608 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3609 nice = task_nice(current) + increment;
1da177e4 3610
a9467fa3 3611 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3612 if (increment < 0 && !can_nice(current, nice))
3613 return -EPERM;
3614
1da177e4
LT
3615 retval = security_task_setnice(current, nice);
3616 if (retval)
3617 return retval;
3618
3619 set_user_nice(current, nice);
3620 return 0;
3621}
3622
3623#endif
3624
3625/**
3626 * task_prio - return the priority value of a given task.
3627 * @p: the task in question.
3628 *
e69f6186 3629 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3630 * RT tasks are offset by -200. Normal tasks are centered
3631 * around 0, value goes from -16 to +15.
3632 */
36c8b586 3633int task_prio(const struct task_struct *p)
1da177e4
LT
3634{
3635 return p->prio - MAX_RT_PRIO;
3636}
3637
1da177e4
LT
3638/**
3639 * idle_cpu - is a given cpu idle currently?
3640 * @cpu: the processor in question.
e69f6186
YB
3641 *
3642 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3643 */
3644int idle_cpu(int cpu)
3645{
908a3283
TG
3646 struct rq *rq = cpu_rq(cpu);
3647
3648 if (rq->curr != rq->idle)
3649 return 0;
3650
3651 if (rq->nr_running)
3652 return 0;
3653
3654#ifdef CONFIG_SMP
3655 if (!llist_empty(&rq->wake_list))
3656 return 0;
3657#endif
3658
3659 return 1;
1da177e4
LT
3660}
3661
1da177e4
LT
3662/**
3663 * idle_task - return the idle task for a given cpu.
3664 * @cpu: the processor in question.
e69f6186
YB
3665 *
3666 * Return: The idle task for the cpu @cpu.
1da177e4 3667 */
36c8b586 3668struct task_struct *idle_task(int cpu)
1da177e4
LT
3669{
3670 return cpu_rq(cpu)->idle;
3671}
3672
3673/**
3674 * find_process_by_pid - find a process with a matching PID value.
3675 * @pid: the pid in question.
e69f6186
YB
3676 *
3677 * The task of @pid, if found. %NULL otherwise.
1da177e4 3678 */
a9957449 3679static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3680{
228ebcbe 3681 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3682}
3683
aab03e05
DF
3684/*
3685 * This function initializes the sched_dl_entity of a newly becoming
3686 * SCHED_DEADLINE task.
3687 *
3688 * Only the static values are considered here, the actual runtime and the
3689 * absolute deadline will be properly calculated when the task is enqueued
3690 * for the first time with its new policy.
3691 */
3692static void
3693__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3694{
3695 struct sched_dl_entity *dl_se = &p->dl;
3696
aab03e05
DF
3697 dl_se->dl_runtime = attr->sched_runtime;
3698 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3699 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3700 dl_se->flags = attr->sched_flags;
332ac17e 3701 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3702
3703 /*
3704 * Changing the parameters of a task is 'tricky' and we're not doing
3705 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3706 *
3707 * What we SHOULD do is delay the bandwidth release until the 0-lag
3708 * point. This would include retaining the task_struct until that time
3709 * and change dl_overflow() to not immediately decrement the current
3710 * amount.
3711 *
3712 * Instead we retain the current runtime/deadline and let the new
3713 * parameters take effect after the current reservation period lapses.
3714 * This is safe (albeit pessimistic) because the 0-lag point is always
3715 * before the current scheduling deadline.
3716 *
3717 * We can still have temporary overloads because we do not delay the
3718 * change in bandwidth until that time; so admission control is
3719 * not on the safe side. It does however guarantee tasks will never
3720 * consume more than promised.
3721 */
aab03e05
DF
3722}
3723
c13db6b1
SR
3724/*
3725 * sched_setparam() passes in -1 for its policy, to let the functions
3726 * it calls know not to change it.
3727 */
3728#define SETPARAM_POLICY -1
3729
c365c292
TG
3730static void __setscheduler_params(struct task_struct *p,
3731 const struct sched_attr *attr)
1da177e4 3732{
d50dde5a
DF
3733 int policy = attr->sched_policy;
3734
c13db6b1 3735 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3736 policy = p->policy;
3737
1da177e4 3738 p->policy = policy;
d50dde5a 3739
aab03e05
DF
3740 if (dl_policy(policy))
3741 __setparam_dl(p, attr);
39fd8fd2 3742 else if (fair_policy(policy))
d50dde5a
DF
3743 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3744
39fd8fd2
PZ
3745 /*
3746 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3747 * !rt_policy. Always setting this ensures that things like
3748 * getparam()/getattr() don't report silly values for !rt tasks.
3749 */
3750 p->rt_priority = attr->sched_priority;
383afd09 3751 p->normal_prio = normal_prio(p);
c365c292
TG
3752 set_load_weight(p);
3753}
39fd8fd2 3754
c365c292
TG
3755/* Actually do priority change: must hold pi & rq lock. */
3756static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3757 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3758{
3759 __setscheduler_params(p, attr);
d50dde5a 3760
383afd09 3761 /*
0782e63b
TG
3762 * Keep a potential priority boosting if called from
3763 * sched_setscheduler().
383afd09 3764 */
0782e63b
TG
3765 if (keep_boost)
3766 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3767 else
3768 p->prio = normal_prio(p);
383afd09 3769
aab03e05
DF
3770 if (dl_prio(p->prio))
3771 p->sched_class = &dl_sched_class;
3772 else if (rt_prio(p->prio))
ffd44db5
PZ
3773 p->sched_class = &rt_sched_class;
3774 else
3775 p->sched_class = &fair_sched_class;
1da177e4 3776}
aab03e05
DF
3777
3778static void
3779__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3780{
3781 struct sched_dl_entity *dl_se = &p->dl;
3782
3783 attr->sched_priority = p->rt_priority;
3784 attr->sched_runtime = dl_se->dl_runtime;
3785 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3786 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3787 attr->sched_flags = dl_se->flags;
3788}
3789
3790/*
3791 * This function validates the new parameters of a -deadline task.
3792 * We ask for the deadline not being zero, and greater or equal
755378a4 3793 * than the runtime, as well as the period of being zero or
332ac17e 3794 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3795 * user parameters are above the internal resolution of 1us (we
3796 * check sched_runtime only since it is always the smaller one) and
3797 * below 2^63 ns (we have to check both sched_deadline and
3798 * sched_period, as the latter can be zero).
aab03e05
DF
3799 */
3800static bool
3801__checkparam_dl(const struct sched_attr *attr)
3802{
b0827819
JL
3803 /* deadline != 0 */
3804 if (attr->sched_deadline == 0)
3805 return false;
3806
3807 /*
3808 * Since we truncate DL_SCALE bits, make sure we're at least
3809 * that big.
3810 */
3811 if (attr->sched_runtime < (1ULL << DL_SCALE))
3812 return false;
3813
3814 /*
3815 * Since we use the MSB for wrap-around and sign issues, make
3816 * sure it's not set (mind that period can be equal to zero).
3817 */
3818 if (attr->sched_deadline & (1ULL << 63) ||
3819 attr->sched_period & (1ULL << 63))
3820 return false;
3821
3822 /* runtime <= deadline <= period (if period != 0) */
3823 if ((attr->sched_period != 0 &&
3824 attr->sched_period < attr->sched_deadline) ||
3825 attr->sched_deadline < attr->sched_runtime)
3826 return false;
3827
3828 return true;
aab03e05
DF
3829}
3830
c69e8d9c
DH
3831/*
3832 * check the target process has a UID that matches the current process's
3833 */
3834static bool check_same_owner(struct task_struct *p)
3835{
3836 const struct cred *cred = current_cred(), *pcred;
3837 bool match;
3838
3839 rcu_read_lock();
3840 pcred = __task_cred(p);
9c806aa0
EB
3841 match = (uid_eq(cred->euid, pcred->euid) ||
3842 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3843 rcu_read_unlock();
3844 return match;
3845}
3846
75381608
WL
3847static bool dl_param_changed(struct task_struct *p,
3848 const struct sched_attr *attr)
3849{
3850 struct sched_dl_entity *dl_se = &p->dl;
3851
3852 if (dl_se->dl_runtime != attr->sched_runtime ||
3853 dl_se->dl_deadline != attr->sched_deadline ||
3854 dl_se->dl_period != attr->sched_period ||
3855 dl_se->flags != attr->sched_flags)
3856 return true;
3857
3858 return false;
3859}
3860
d50dde5a
DF
3861static int __sched_setscheduler(struct task_struct *p,
3862 const struct sched_attr *attr,
dbc7f069 3863 bool user, bool pi)
1da177e4 3864{
383afd09
SR
3865 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3866 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3867 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3868 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3869 unsigned long flags;
83ab0aa0 3870 const struct sched_class *prev_class;
70b97a7f 3871 struct rq *rq;
ca94c442 3872 int reset_on_fork;
ff77e468 3873 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3874
66e5393a
SR
3875 /* may grab non-irq protected spin_locks */
3876 BUG_ON(in_interrupt());
1da177e4
LT
3877recheck:
3878 /* double check policy once rq lock held */
ca94c442
LP
3879 if (policy < 0) {
3880 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3881 policy = oldpolicy = p->policy;
ca94c442 3882 } else {
7479f3c9 3883 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3884
20f9cd2a 3885 if (!valid_policy(policy))
ca94c442
LP
3886 return -EINVAL;
3887 }
3888
7479f3c9
PZ
3889 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3890 return -EINVAL;
3891
1da177e4
LT
3892 /*
3893 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3894 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3895 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3896 */
0bb040a4 3897 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3898 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3899 return -EINVAL;
aab03e05
DF
3900 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3901 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3902 return -EINVAL;
3903
37e4ab3f
OC
3904 /*
3905 * Allow unprivileged RT tasks to decrease priority:
3906 */
961ccddd 3907 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3908 if (fair_policy(policy)) {
d0ea0268 3909 if (attr->sched_nice < task_nice(p) &&
eaad4513 3910 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3911 return -EPERM;
3912 }
3913
e05606d3 3914 if (rt_policy(policy)) {
a44702e8
ON
3915 unsigned long rlim_rtprio =
3916 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3917
3918 /* can't set/change the rt policy */
3919 if (policy != p->policy && !rlim_rtprio)
3920 return -EPERM;
3921
3922 /* can't increase priority */
d50dde5a
DF
3923 if (attr->sched_priority > p->rt_priority &&
3924 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3925 return -EPERM;
3926 }
c02aa73b 3927
d44753b8
JL
3928 /*
3929 * Can't set/change SCHED_DEADLINE policy at all for now
3930 * (safest behavior); in the future we would like to allow
3931 * unprivileged DL tasks to increase their relative deadline
3932 * or reduce their runtime (both ways reducing utilization)
3933 */
3934 if (dl_policy(policy))
3935 return -EPERM;
3936
dd41f596 3937 /*
c02aa73b
DH
3938 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3939 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3940 */
20f9cd2a 3941 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3942 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3943 return -EPERM;
3944 }
5fe1d75f 3945
37e4ab3f 3946 /* can't change other user's priorities */
c69e8d9c 3947 if (!check_same_owner(p))
37e4ab3f 3948 return -EPERM;
ca94c442
LP
3949
3950 /* Normal users shall not reset the sched_reset_on_fork flag */
3951 if (p->sched_reset_on_fork && !reset_on_fork)
3952 return -EPERM;
37e4ab3f 3953 }
1da177e4 3954
725aad24 3955 if (user) {
b0ae1981 3956 retval = security_task_setscheduler(p);
725aad24
JF
3957 if (retval)
3958 return retval;
3959 }
3960
b29739f9
IM
3961 /*
3962 * make sure no PI-waiters arrive (or leave) while we are
3963 * changing the priority of the task:
0122ec5b 3964 *
25985edc 3965 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3966 * runqueue lock must be held.
3967 */
0122ec5b 3968 rq = task_rq_lock(p, &flags);
dc61b1d6 3969
34f971f6
PZ
3970 /*
3971 * Changing the policy of the stop threads its a very bad idea
3972 */
3973 if (p == rq->stop) {
0122ec5b 3974 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3975 return -EINVAL;
3976 }
3977
a51e9198 3978 /*
d6b1e911
TG
3979 * If not changing anything there's no need to proceed further,
3980 * but store a possible modification of reset_on_fork.
a51e9198 3981 */
d50dde5a 3982 if (unlikely(policy == p->policy)) {
d0ea0268 3983 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3984 goto change;
3985 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3986 goto change;
75381608 3987 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3988 goto change;
d50dde5a 3989
d6b1e911 3990 p->sched_reset_on_fork = reset_on_fork;
45afb173 3991 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3992 return 0;
3993 }
d50dde5a 3994change:
a51e9198 3995
dc61b1d6 3996 if (user) {
332ac17e 3997#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3998 /*
3999 * Do not allow realtime tasks into groups that have no runtime
4000 * assigned.
4001 */
4002 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4003 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4004 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4005 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4006 return -EPERM;
4007 }
dc61b1d6 4008#endif
332ac17e
DF
4009#ifdef CONFIG_SMP
4010 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4011 cpumask_t *span = rq->rd->span;
332ac17e
DF
4012
4013 /*
4014 * Don't allow tasks with an affinity mask smaller than
4015 * the entire root_domain to become SCHED_DEADLINE. We
4016 * will also fail if there's no bandwidth available.
4017 */
e4099a5e
PZ
4018 if (!cpumask_subset(span, &p->cpus_allowed) ||
4019 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
4020 task_rq_unlock(rq, p, &flags);
4021 return -EPERM;
4022 }
4023 }
4024#endif
4025 }
dc61b1d6 4026
1da177e4
LT
4027 /* recheck policy now with rq lock held */
4028 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4029 policy = oldpolicy = -1;
0122ec5b 4030 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4031 goto recheck;
4032 }
332ac17e
DF
4033
4034 /*
4035 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4036 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4037 * is available.
4038 */
e4099a5e 4039 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4040 task_rq_unlock(rq, p, &flags);
4041 return -EBUSY;
4042 }
4043
c365c292
TG
4044 p->sched_reset_on_fork = reset_on_fork;
4045 oldprio = p->prio;
4046
dbc7f069
PZ
4047 if (pi) {
4048 /*
4049 * Take priority boosted tasks into account. If the new
4050 * effective priority is unchanged, we just store the new
4051 * normal parameters and do not touch the scheduler class and
4052 * the runqueue. This will be done when the task deboost
4053 * itself.
4054 */
4055 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4056 if (new_effective_prio == oldprio)
4057 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4058 }
4059
da0c1e65 4060 queued = task_on_rq_queued(p);
051a1d1a 4061 running = task_current(rq, p);
da0c1e65 4062 if (queued)
ff77e468 4063 dequeue_task(rq, p, queue_flags);
0e1f3483 4064 if (running)
f3cd1c4e 4065 put_prev_task(rq, p);
f6b53205 4066
83ab0aa0 4067 prev_class = p->sched_class;
dbc7f069 4068 __setscheduler(rq, p, attr, pi);
f6b53205 4069
0e1f3483
HS
4070 if (running)
4071 p->sched_class->set_curr_task(rq);
da0c1e65 4072 if (queued) {
81a44c54
TG
4073 /*
4074 * We enqueue to tail when the priority of a task is
4075 * increased (user space view).
4076 */
ff77e468
PZ
4077 if (oldprio < p->prio)
4078 queue_flags |= ENQUEUE_HEAD;
1de64443 4079
ff77e468 4080 enqueue_task(rq, p, queue_flags);
81a44c54 4081 }
cb469845 4082
da7a735e 4083 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4084 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4085 task_rq_unlock(rq, p, &flags);
b29739f9 4086
dbc7f069
PZ
4087 if (pi)
4088 rt_mutex_adjust_pi(p);
95e02ca9 4089
4c9a4bc8
PZ
4090 /*
4091 * Run balance callbacks after we've adjusted the PI chain.
4092 */
4093 balance_callback(rq);
4094 preempt_enable();
95e02ca9 4095
1da177e4
LT
4096 return 0;
4097}
961ccddd 4098
7479f3c9
PZ
4099static int _sched_setscheduler(struct task_struct *p, int policy,
4100 const struct sched_param *param, bool check)
4101{
4102 struct sched_attr attr = {
4103 .sched_policy = policy,
4104 .sched_priority = param->sched_priority,
4105 .sched_nice = PRIO_TO_NICE(p->static_prio),
4106 };
4107
c13db6b1
SR
4108 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4109 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4110 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4111 policy &= ~SCHED_RESET_ON_FORK;
4112 attr.sched_policy = policy;
4113 }
4114
dbc7f069 4115 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4116}
961ccddd
RR
4117/**
4118 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4119 * @p: the task in question.
4120 * @policy: new policy.
4121 * @param: structure containing the new RT priority.
4122 *
e69f6186
YB
4123 * Return: 0 on success. An error code otherwise.
4124 *
961ccddd
RR
4125 * NOTE that the task may be already dead.
4126 */
4127int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4128 const struct sched_param *param)
961ccddd 4129{
7479f3c9 4130 return _sched_setscheduler(p, policy, param, true);
961ccddd 4131}
1da177e4
LT
4132EXPORT_SYMBOL_GPL(sched_setscheduler);
4133
d50dde5a
DF
4134int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4135{
dbc7f069 4136 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4137}
4138EXPORT_SYMBOL_GPL(sched_setattr);
4139
961ccddd
RR
4140/**
4141 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4142 * @p: the task in question.
4143 * @policy: new policy.
4144 * @param: structure containing the new RT priority.
4145 *
4146 * Just like sched_setscheduler, only don't bother checking if the
4147 * current context has permission. For example, this is needed in
4148 * stop_machine(): we create temporary high priority worker threads,
4149 * but our caller might not have that capability.
e69f6186
YB
4150 *
4151 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4152 */
4153int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4154 const struct sched_param *param)
961ccddd 4155{
7479f3c9 4156 return _sched_setscheduler(p, policy, param, false);
961ccddd 4157}
84778472 4158EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4159
95cdf3b7
IM
4160static int
4161do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4162{
1da177e4
LT
4163 struct sched_param lparam;
4164 struct task_struct *p;
36c8b586 4165 int retval;
1da177e4
LT
4166
4167 if (!param || pid < 0)
4168 return -EINVAL;
4169 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4170 return -EFAULT;
5fe1d75f
ON
4171
4172 rcu_read_lock();
4173 retval = -ESRCH;
1da177e4 4174 p = find_process_by_pid(pid);
5fe1d75f
ON
4175 if (p != NULL)
4176 retval = sched_setscheduler(p, policy, &lparam);
4177 rcu_read_unlock();
36c8b586 4178
1da177e4
LT
4179 return retval;
4180}
4181
d50dde5a
DF
4182/*
4183 * Mimics kernel/events/core.c perf_copy_attr().
4184 */
4185static int sched_copy_attr(struct sched_attr __user *uattr,
4186 struct sched_attr *attr)
4187{
4188 u32 size;
4189 int ret;
4190
4191 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4192 return -EFAULT;
4193
4194 /*
4195 * zero the full structure, so that a short copy will be nice.
4196 */
4197 memset(attr, 0, sizeof(*attr));
4198
4199 ret = get_user(size, &uattr->size);
4200 if (ret)
4201 return ret;
4202
4203 if (size > PAGE_SIZE) /* silly large */
4204 goto err_size;
4205
4206 if (!size) /* abi compat */
4207 size = SCHED_ATTR_SIZE_VER0;
4208
4209 if (size < SCHED_ATTR_SIZE_VER0)
4210 goto err_size;
4211
4212 /*
4213 * If we're handed a bigger struct than we know of,
4214 * ensure all the unknown bits are 0 - i.e. new
4215 * user-space does not rely on any kernel feature
4216 * extensions we dont know about yet.
4217 */
4218 if (size > sizeof(*attr)) {
4219 unsigned char __user *addr;
4220 unsigned char __user *end;
4221 unsigned char val;
4222
4223 addr = (void __user *)uattr + sizeof(*attr);
4224 end = (void __user *)uattr + size;
4225
4226 for (; addr < end; addr++) {
4227 ret = get_user(val, addr);
4228 if (ret)
4229 return ret;
4230 if (val)
4231 goto err_size;
4232 }
4233 size = sizeof(*attr);
4234 }
4235
4236 ret = copy_from_user(attr, uattr, size);
4237 if (ret)
4238 return -EFAULT;
4239
4240 /*
4241 * XXX: do we want to be lenient like existing syscalls; or do we want
4242 * to be strict and return an error on out-of-bounds values?
4243 */
75e45d51 4244 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4245
e78c7bca 4246 return 0;
d50dde5a
DF
4247
4248err_size:
4249 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4250 return -E2BIG;
d50dde5a
DF
4251}
4252
1da177e4
LT
4253/**
4254 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4255 * @pid: the pid in question.
4256 * @policy: new policy.
4257 * @param: structure containing the new RT priority.
e69f6186
YB
4258 *
4259 * Return: 0 on success. An error code otherwise.
1da177e4 4260 */
5add95d4
HC
4261SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4262 struct sched_param __user *, param)
1da177e4 4263{
c21761f1
JB
4264 /* negative values for policy are not valid */
4265 if (policy < 0)
4266 return -EINVAL;
4267
1da177e4
LT
4268 return do_sched_setscheduler(pid, policy, param);
4269}
4270
4271/**
4272 * sys_sched_setparam - set/change the RT priority of a thread
4273 * @pid: the pid in question.
4274 * @param: structure containing the new RT priority.
e69f6186
YB
4275 *
4276 * Return: 0 on success. An error code otherwise.
1da177e4 4277 */
5add95d4 4278SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4279{
c13db6b1 4280 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4281}
4282
d50dde5a
DF
4283/**
4284 * sys_sched_setattr - same as above, but with extended sched_attr
4285 * @pid: the pid in question.
5778fccf 4286 * @uattr: structure containing the extended parameters.
db66d756 4287 * @flags: for future extension.
d50dde5a 4288 */
6d35ab48
PZ
4289SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4290 unsigned int, flags)
d50dde5a
DF
4291{
4292 struct sched_attr attr;
4293 struct task_struct *p;
4294 int retval;
4295
6d35ab48 4296 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4297 return -EINVAL;
4298
143cf23d
MK
4299 retval = sched_copy_attr(uattr, &attr);
4300 if (retval)
4301 return retval;
d50dde5a 4302
b14ed2c2 4303 if ((int)attr.sched_policy < 0)
dbdb2275 4304 return -EINVAL;
d50dde5a
DF
4305
4306 rcu_read_lock();
4307 retval = -ESRCH;
4308 p = find_process_by_pid(pid);
4309 if (p != NULL)
4310 retval = sched_setattr(p, &attr);
4311 rcu_read_unlock();
4312
4313 return retval;
4314}
4315
1da177e4
LT
4316/**
4317 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4318 * @pid: the pid in question.
e69f6186
YB
4319 *
4320 * Return: On success, the policy of the thread. Otherwise, a negative error
4321 * code.
1da177e4 4322 */
5add95d4 4323SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4324{
36c8b586 4325 struct task_struct *p;
3a5c359a 4326 int retval;
1da177e4
LT
4327
4328 if (pid < 0)
3a5c359a 4329 return -EINVAL;
1da177e4
LT
4330
4331 retval = -ESRCH;
5fe85be0 4332 rcu_read_lock();
1da177e4
LT
4333 p = find_process_by_pid(pid);
4334 if (p) {
4335 retval = security_task_getscheduler(p);
4336 if (!retval)
ca94c442
LP
4337 retval = p->policy
4338 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4339 }
5fe85be0 4340 rcu_read_unlock();
1da177e4
LT
4341 return retval;
4342}
4343
4344/**
ca94c442 4345 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4346 * @pid: the pid in question.
4347 * @param: structure containing the RT priority.
e69f6186
YB
4348 *
4349 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4350 * code.
1da177e4 4351 */
5add95d4 4352SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4353{
ce5f7f82 4354 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4355 struct task_struct *p;
3a5c359a 4356 int retval;
1da177e4
LT
4357
4358 if (!param || pid < 0)
3a5c359a 4359 return -EINVAL;
1da177e4 4360
5fe85be0 4361 rcu_read_lock();
1da177e4
LT
4362 p = find_process_by_pid(pid);
4363 retval = -ESRCH;
4364 if (!p)
4365 goto out_unlock;
4366
4367 retval = security_task_getscheduler(p);
4368 if (retval)
4369 goto out_unlock;
4370
ce5f7f82
PZ
4371 if (task_has_rt_policy(p))
4372 lp.sched_priority = p->rt_priority;
5fe85be0 4373 rcu_read_unlock();
1da177e4
LT
4374
4375 /*
4376 * This one might sleep, we cannot do it with a spinlock held ...
4377 */
4378 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4379
1da177e4
LT
4380 return retval;
4381
4382out_unlock:
5fe85be0 4383 rcu_read_unlock();
1da177e4
LT
4384 return retval;
4385}
4386
d50dde5a
DF
4387static int sched_read_attr(struct sched_attr __user *uattr,
4388 struct sched_attr *attr,
4389 unsigned int usize)
4390{
4391 int ret;
4392
4393 if (!access_ok(VERIFY_WRITE, uattr, usize))
4394 return -EFAULT;
4395
4396 /*
4397 * If we're handed a smaller struct than we know of,
4398 * ensure all the unknown bits are 0 - i.e. old
4399 * user-space does not get uncomplete information.
4400 */
4401 if (usize < sizeof(*attr)) {
4402 unsigned char *addr;
4403 unsigned char *end;
4404
4405 addr = (void *)attr + usize;
4406 end = (void *)attr + sizeof(*attr);
4407
4408 for (; addr < end; addr++) {
4409 if (*addr)
22400674 4410 return -EFBIG;
d50dde5a
DF
4411 }
4412
4413 attr->size = usize;
4414 }
4415
4efbc454 4416 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4417 if (ret)
4418 return -EFAULT;
4419
22400674 4420 return 0;
d50dde5a
DF
4421}
4422
4423/**
aab03e05 4424 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4425 * @pid: the pid in question.
5778fccf 4426 * @uattr: structure containing the extended parameters.
d50dde5a 4427 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4428 * @flags: for future extension.
d50dde5a 4429 */
6d35ab48
PZ
4430SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4431 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4432{
4433 struct sched_attr attr = {
4434 .size = sizeof(struct sched_attr),
4435 };
4436 struct task_struct *p;
4437 int retval;
4438
4439 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4440 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4441 return -EINVAL;
4442
4443 rcu_read_lock();
4444 p = find_process_by_pid(pid);
4445 retval = -ESRCH;
4446 if (!p)
4447 goto out_unlock;
4448
4449 retval = security_task_getscheduler(p);
4450 if (retval)
4451 goto out_unlock;
4452
4453 attr.sched_policy = p->policy;
7479f3c9
PZ
4454 if (p->sched_reset_on_fork)
4455 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4456 if (task_has_dl_policy(p))
4457 __getparam_dl(p, &attr);
4458 else if (task_has_rt_policy(p))
d50dde5a
DF
4459 attr.sched_priority = p->rt_priority;
4460 else
d0ea0268 4461 attr.sched_nice = task_nice(p);
d50dde5a
DF
4462
4463 rcu_read_unlock();
4464
4465 retval = sched_read_attr(uattr, &attr, size);
4466 return retval;
4467
4468out_unlock:
4469 rcu_read_unlock();
4470 return retval;
4471}
4472
96f874e2 4473long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4474{
5a16f3d3 4475 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4476 struct task_struct *p;
4477 int retval;
1da177e4 4478
23f5d142 4479 rcu_read_lock();
1da177e4
LT
4480
4481 p = find_process_by_pid(pid);
4482 if (!p) {
23f5d142 4483 rcu_read_unlock();
1da177e4
LT
4484 return -ESRCH;
4485 }
4486
23f5d142 4487 /* Prevent p going away */
1da177e4 4488 get_task_struct(p);
23f5d142 4489 rcu_read_unlock();
1da177e4 4490
14a40ffc
TH
4491 if (p->flags & PF_NO_SETAFFINITY) {
4492 retval = -EINVAL;
4493 goto out_put_task;
4494 }
5a16f3d3
RR
4495 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4496 retval = -ENOMEM;
4497 goto out_put_task;
4498 }
4499 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4500 retval = -ENOMEM;
4501 goto out_free_cpus_allowed;
4502 }
1da177e4 4503 retval = -EPERM;
4c44aaaf
EB
4504 if (!check_same_owner(p)) {
4505 rcu_read_lock();
4506 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4507 rcu_read_unlock();
16303ab2 4508 goto out_free_new_mask;
4c44aaaf
EB
4509 }
4510 rcu_read_unlock();
4511 }
1da177e4 4512
b0ae1981 4513 retval = security_task_setscheduler(p);
e7834f8f 4514 if (retval)
16303ab2 4515 goto out_free_new_mask;
e7834f8f 4516
e4099a5e
PZ
4517
4518 cpuset_cpus_allowed(p, cpus_allowed);
4519 cpumask_and(new_mask, in_mask, cpus_allowed);
4520
332ac17e
DF
4521 /*
4522 * Since bandwidth control happens on root_domain basis,
4523 * if admission test is enabled, we only admit -deadline
4524 * tasks allowed to run on all the CPUs in the task's
4525 * root_domain.
4526 */
4527#ifdef CONFIG_SMP
f1e3a093
KT
4528 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4529 rcu_read_lock();
4530 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4531 retval = -EBUSY;
f1e3a093 4532 rcu_read_unlock();
16303ab2 4533 goto out_free_new_mask;
332ac17e 4534 }
f1e3a093 4535 rcu_read_unlock();
332ac17e
DF
4536 }
4537#endif
49246274 4538again:
25834c73 4539 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4540
8707d8b8 4541 if (!retval) {
5a16f3d3
RR
4542 cpuset_cpus_allowed(p, cpus_allowed);
4543 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4544 /*
4545 * We must have raced with a concurrent cpuset
4546 * update. Just reset the cpus_allowed to the
4547 * cpuset's cpus_allowed
4548 */
5a16f3d3 4549 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4550 goto again;
4551 }
4552 }
16303ab2 4553out_free_new_mask:
5a16f3d3
RR
4554 free_cpumask_var(new_mask);
4555out_free_cpus_allowed:
4556 free_cpumask_var(cpus_allowed);
4557out_put_task:
1da177e4 4558 put_task_struct(p);
1da177e4
LT
4559 return retval;
4560}
4561
4562static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4563 struct cpumask *new_mask)
1da177e4 4564{
96f874e2
RR
4565 if (len < cpumask_size())
4566 cpumask_clear(new_mask);
4567 else if (len > cpumask_size())
4568 len = cpumask_size();
4569
1da177e4
LT
4570 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4571}
4572
4573/**
4574 * sys_sched_setaffinity - set the cpu affinity of a process
4575 * @pid: pid of the process
4576 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4577 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4578 *
4579 * Return: 0 on success. An error code otherwise.
1da177e4 4580 */
5add95d4
HC
4581SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4582 unsigned long __user *, user_mask_ptr)
1da177e4 4583{
5a16f3d3 4584 cpumask_var_t new_mask;
1da177e4
LT
4585 int retval;
4586
5a16f3d3
RR
4587 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4588 return -ENOMEM;
1da177e4 4589
5a16f3d3
RR
4590 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4591 if (retval == 0)
4592 retval = sched_setaffinity(pid, new_mask);
4593 free_cpumask_var(new_mask);
4594 return retval;
1da177e4
LT
4595}
4596
96f874e2 4597long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4598{
36c8b586 4599 struct task_struct *p;
31605683 4600 unsigned long flags;
1da177e4 4601 int retval;
1da177e4 4602
23f5d142 4603 rcu_read_lock();
1da177e4
LT
4604
4605 retval = -ESRCH;
4606 p = find_process_by_pid(pid);
4607 if (!p)
4608 goto out_unlock;
4609
e7834f8f
DQ
4610 retval = security_task_getscheduler(p);
4611 if (retval)
4612 goto out_unlock;
4613
013fdb80 4614 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4615 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4617
4618out_unlock:
23f5d142 4619 rcu_read_unlock();
1da177e4 4620
9531b62f 4621 return retval;
1da177e4
LT
4622}
4623
4624/**
4625 * sys_sched_getaffinity - get the cpu affinity of a process
4626 * @pid: pid of the process
4627 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4628 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4629 *
4630 * Return: 0 on success. An error code otherwise.
1da177e4 4631 */
5add95d4
HC
4632SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4633 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4634{
4635 int ret;
f17c8607 4636 cpumask_var_t mask;
1da177e4 4637
84fba5ec 4638 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4639 return -EINVAL;
4640 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4641 return -EINVAL;
4642
f17c8607
RR
4643 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4644 return -ENOMEM;
1da177e4 4645
f17c8607
RR
4646 ret = sched_getaffinity(pid, mask);
4647 if (ret == 0) {
8bc037fb 4648 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4649
4650 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4651 ret = -EFAULT;
4652 else
cd3d8031 4653 ret = retlen;
f17c8607
RR
4654 }
4655 free_cpumask_var(mask);
1da177e4 4656
f17c8607 4657 return ret;
1da177e4
LT
4658}
4659
4660/**
4661 * sys_sched_yield - yield the current processor to other threads.
4662 *
dd41f596
IM
4663 * This function yields the current CPU to other tasks. If there are no
4664 * other threads running on this CPU then this function will return.
e69f6186
YB
4665 *
4666 * Return: 0.
1da177e4 4667 */
5add95d4 4668SYSCALL_DEFINE0(sched_yield)
1da177e4 4669{
70b97a7f 4670 struct rq *rq = this_rq_lock();
1da177e4 4671
2d72376b 4672 schedstat_inc(rq, yld_count);
4530d7ab 4673 current->sched_class->yield_task(rq);
1da177e4
LT
4674
4675 /*
4676 * Since we are going to call schedule() anyway, there's
4677 * no need to preempt or enable interrupts:
4678 */
4679 __release(rq->lock);
8a25d5de 4680 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4681 do_raw_spin_unlock(&rq->lock);
ba74c144 4682 sched_preempt_enable_no_resched();
1da177e4
LT
4683
4684 schedule();
4685
4686 return 0;
4687}
4688
02b67cc3 4689int __sched _cond_resched(void)
1da177e4 4690{
fe32d3cd 4691 if (should_resched(0)) {
a18b5d01 4692 preempt_schedule_common();
1da177e4
LT
4693 return 1;
4694 }
4695 return 0;
4696}
02b67cc3 4697EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4698
4699/*
613afbf8 4700 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4701 * call schedule, and on return reacquire the lock.
4702 *
41a2d6cf 4703 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4704 * operations here to prevent schedule() from being called twice (once via
4705 * spin_unlock(), once by hand).
4706 */
613afbf8 4707int __cond_resched_lock(spinlock_t *lock)
1da177e4 4708{
fe32d3cd 4709 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4710 int ret = 0;
4711
f607c668
PZ
4712 lockdep_assert_held(lock);
4713
4a81e832 4714 if (spin_needbreak(lock) || resched) {
1da177e4 4715 spin_unlock(lock);
d86ee480 4716 if (resched)
a18b5d01 4717 preempt_schedule_common();
95c354fe
NP
4718 else
4719 cpu_relax();
6df3cecb 4720 ret = 1;
1da177e4 4721 spin_lock(lock);
1da177e4 4722 }
6df3cecb 4723 return ret;
1da177e4 4724}
613afbf8 4725EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4726
613afbf8 4727int __sched __cond_resched_softirq(void)
1da177e4
LT
4728{
4729 BUG_ON(!in_softirq());
4730
fe32d3cd 4731 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4732 local_bh_enable();
a18b5d01 4733 preempt_schedule_common();
1da177e4
LT
4734 local_bh_disable();
4735 return 1;
4736 }
4737 return 0;
4738}
613afbf8 4739EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4740
1da177e4
LT
4741/**
4742 * yield - yield the current processor to other threads.
4743 *
8e3fabfd
PZ
4744 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4745 *
4746 * The scheduler is at all times free to pick the calling task as the most
4747 * eligible task to run, if removing the yield() call from your code breaks
4748 * it, its already broken.
4749 *
4750 * Typical broken usage is:
4751 *
4752 * while (!event)
4753 * yield();
4754 *
4755 * where one assumes that yield() will let 'the other' process run that will
4756 * make event true. If the current task is a SCHED_FIFO task that will never
4757 * happen. Never use yield() as a progress guarantee!!
4758 *
4759 * If you want to use yield() to wait for something, use wait_event().
4760 * If you want to use yield() to be 'nice' for others, use cond_resched().
4761 * If you still want to use yield(), do not!
1da177e4
LT
4762 */
4763void __sched yield(void)
4764{
4765 set_current_state(TASK_RUNNING);
4766 sys_sched_yield();
4767}
1da177e4
LT
4768EXPORT_SYMBOL(yield);
4769
d95f4122
MG
4770/**
4771 * yield_to - yield the current processor to another thread in
4772 * your thread group, or accelerate that thread toward the
4773 * processor it's on.
16addf95
RD
4774 * @p: target task
4775 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4776 *
4777 * It's the caller's job to ensure that the target task struct
4778 * can't go away on us before we can do any checks.
4779 *
e69f6186 4780 * Return:
7b270f60
PZ
4781 * true (>0) if we indeed boosted the target task.
4782 * false (0) if we failed to boost the target.
4783 * -ESRCH if there's no task to yield to.
d95f4122 4784 */
fa93384f 4785int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4786{
4787 struct task_struct *curr = current;
4788 struct rq *rq, *p_rq;
4789 unsigned long flags;
c3c18640 4790 int yielded = 0;
d95f4122
MG
4791
4792 local_irq_save(flags);
4793 rq = this_rq();
4794
4795again:
4796 p_rq = task_rq(p);
7b270f60
PZ
4797 /*
4798 * If we're the only runnable task on the rq and target rq also
4799 * has only one task, there's absolutely no point in yielding.
4800 */
4801 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4802 yielded = -ESRCH;
4803 goto out_irq;
4804 }
4805
d95f4122 4806 double_rq_lock(rq, p_rq);
39e24d8f 4807 if (task_rq(p) != p_rq) {
d95f4122
MG
4808 double_rq_unlock(rq, p_rq);
4809 goto again;
4810 }
4811
4812 if (!curr->sched_class->yield_to_task)
7b270f60 4813 goto out_unlock;
d95f4122
MG
4814
4815 if (curr->sched_class != p->sched_class)
7b270f60 4816 goto out_unlock;
d95f4122
MG
4817
4818 if (task_running(p_rq, p) || p->state)
7b270f60 4819 goto out_unlock;
d95f4122
MG
4820
4821 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4822 if (yielded) {
d95f4122 4823 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4824 /*
4825 * Make p's CPU reschedule; pick_next_entity takes care of
4826 * fairness.
4827 */
4828 if (preempt && rq != p_rq)
8875125e 4829 resched_curr(p_rq);
6d1cafd8 4830 }
d95f4122 4831
7b270f60 4832out_unlock:
d95f4122 4833 double_rq_unlock(rq, p_rq);
7b270f60 4834out_irq:
d95f4122
MG
4835 local_irq_restore(flags);
4836
7b270f60 4837 if (yielded > 0)
d95f4122
MG
4838 schedule();
4839
4840 return yielded;
4841}
4842EXPORT_SYMBOL_GPL(yield_to);
4843
1da177e4 4844/*
41a2d6cf 4845 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4846 * that process accounting knows that this is a task in IO wait state.
1da177e4 4847 */
1da177e4
LT
4848long __sched io_schedule_timeout(long timeout)
4849{
9cff8ade
N
4850 int old_iowait = current->in_iowait;
4851 struct rq *rq;
1da177e4
LT
4852 long ret;
4853
9cff8ade 4854 current->in_iowait = 1;
10d784ea 4855 blk_schedule_flush_plug(current);
9cff8ade 4856
0ff92245 4857 delayacct_blkio_start();
9cff8ade 4858 rq = raw_rq();
1da177e4
LT
4859 atomic_inc(&rq->nr_iowait);
4860 ret = schedule_timeout(timeout);
9cff8ade 4861 current->in_iowait = old_iowait;
1da177e4 4862 atomic_dec(&rq->nr_iowait);
0ff92245 4863 delayacct_blkio_end();
9cff8ade 4864
1da177e4
LT
4865 return ret;
4866}
9cff8ade 4867EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4868
4869/**
4870 * sys_sched_get_priority_max - return maximum RT priority.
4871 * @policy: scheduling class.
4872 *
e69f6186
YB
4873 * Return: On success, this syscall returns the maximum
4874 * rt_priority that can be used by a given scheduling class.
4875 * On failure, a negative error code is returned.
1da177e4 4876 */
5add95d4 4877SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4878{
4879 int ret = -EINVAL;
4880
4881 switch (policy) {
4882 case SCHED_FIFO:
4883 case SCHED_RR:
4884 ret = MAX_USER_RT_PRIO-1;
4885 break;
aab03e05 4886 case SCHED_DEADLINE:
1da177e4 4887 case SCHED_NORMAL:
b0a9499c 4888 case SCHED_BATCH:
dd41f596 4889 case SCHED_IDLE:
1da177e4
LT
4890 ret = 0;
4891 break;
4892 }
4893 return ret;
4894}
4895
4896/**
4897 * sys_sched_get_priority_min - return minimum RT priority.
4898 * @policy: scheduling class.
4899 *
e69f6186
YB
4900 * Return: On success, this syscall returns the minimum
4901 * rt_priority that can be used by a given scheduling class.
4902 * On failure, a negative error code is returned.
1da177e4 4903 */
5add95d4 4904SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4905{
4906 int ret = -EINVAL;
4907
4908 switch (policy) {
4909 case SCHED_FIFO:
4910 case SCHED_RR:
4911 ret = 1;
4912 break;
aab03e05 4913 case SCHED_DEADLINE:
1da177e4 4914 case SCHED_NORMAL:
b0a9499c 4915 case SCHED_BATCH:
dd41f596 4916 case SCHED_IDLE:
1da177e4
LT
4917 ret = 0;
4918 }
4919 return ret;
4920}
4921
4922/**
4923 * sys_sched_rr_get_interval - return the default timeslice of a process.
4924 * @pid: pid of the process.
4925 * @interval: userspace pointer to the timeslice value.
4926 *
4927 * this syscall writes the default timeslice value of a given process
4928 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4929 *
4930 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4931 * an error code.
1da177e4 4932 */
17da2bd9 4933SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4934 struct timespec __user *, interval)
1da177e4 4935{
36c8b586 4936 struct task_struct *p;
a4ec24b4 4937 unsigned int time_slice;
dba091b9
TG
4938 unsigned long flags;
4939 struct rq *rq;
3a5c359a 4940 int retval;
1da177e4 4941 struct timespec t;
1da177e4
LT
4942
4943 if (pid < 0)
3a5c359a 4944 return -EINVAL;
1da177e4
LT
4945
4946 retval = -ESRCH;
1a551ae7 4947 rcu_read_lock();
1da177e4
LT
4948 p = find_process_by_pid(pid);
4949 if (!p)
4950 goto out_unlock;
4951
4952 retval = security_task_getscheduler(p);
4953 if (retval)
4954 goto out_unlock;
4955
dba091b9 4956 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4957 time_slice = 0;
4958 if (p->sched_class->get_rr_interval)
4959 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4960 task_rq_unlock(rq, p, &flags);
a4ec24b4 4961
1a551ae7 4962 rcu_read_unlock();
a4ec24b4 4963 jiffies_to_timespec(time_slice, &t);
1da177e4 4964 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4965 return retval;
3a5c359a 4966
1da177e4 4967out_unlock:
1a551ae7 4968 rcu_read_unlock();
1da177e4
LT
4969 return retval;
4970}
4971
7c731e0a 4972static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4973
82a1fcb9 4974void sched_show_task(struct task_struct *p)
1da177e4 4975{
1da177e4 4976 unsigned long free = 0;
4e79752c 4977 int ppid;
1f8a7633 4978 unsigned long state = p->state;
1da177e4 4979
1f8a7633
TH
4980 if (state)
4981 state = __ffs(state) + 1;
28d0686c 4982 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4983 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4984#if BITS_PER_LONG == 32
1da177e4 4985 if (state == TASK_RUNNING)
3df0fc5b 4986 printk(KERN_CONT " running ");
1da177e4 4987 else
3df0fc5b 4988 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4989#else
4990 if (state == TASK_RUNNING)
3df0fc5b 4991 printk(KERN_CONT " running task ");
1da177e4 4992 else
3df0fc5b 4993 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4994#endif
4995#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4996 free = stack_not_used(p);
1da177e4 4997#endif
a90e984c 4998 ppid = 0;
4e79752c 4999 rcu_read_lock();
a90e984c
ON
5000 if (pid_alive(p))
5001 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5002 rcu_read_unlock();
3df0fc5b 5003 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5004 task_pid_nr(p), ppid,
aa47b7e0 5005 (unsigned long)task_thread_info(p)->flags);
1da177e4 5006
3d1cb205 5007 print_worker_info(KERN_INFO, p);
5fb5e6de 5008 show_stack(p, NULL);
1da177e4
LT
5009}
5010
e59e2ae2 5011void show_state_filter(unsigned long state_filter)
1da177e4 5012{
36c8b586 5013 struct task_struct *g, *p;
1da177e4 5014
4bd77321 5015#if BITS_PER_LONG == 32
3df0fc5b
PZ
5016 printk(KERN_INFO
5017 " task PC stack pid father\n");
1da177e4 5018#else
3df0fc5b
PZ
5019 printk(KERN_INFO
5020 " task PC stack pid father\n");
1da177e4 5021#endif
510f5acc 5022 rcu_read_lock();
5d07f420 5023 for_each_process_thread(g, p) {
1da177e4
LT
5024 /*
5025 * reset the NMI-timeout, listing all files on a slow
25985edc 5026 * console might take a lot of time:
1da177e4
LT
5027 */
5028 touch_nmi_watchdog();
39bc89fd 5029 if (!state_filter || (p->state & state_filter))
82a1fcb9 5030 sched_show_task(p);
5d07f420 5031 }
1da177e4 5032
04c9167f
JF
5033 touch_all_softlockup_watchdogs();
5034
dd41f596
IM
5035#ifdef CONFIG_SCHED_DEBUG
5036 sysrq_sched_debug_show();
5037#endif
510f5acc 5038 rcu_read_unlock();
e59e2ae2
IM
5039 /*
5040 * Only show locks if all tasks are dumped:
5041 */
93335a21 5042 if (!state_filter)
e59e2ae2 5043 debug_show_all_locks();
1da177e4
LT
5044}
5045
0db0628d 5046void init_idle_bootup_task(struct task_struct *idle)
1df21055 5047{
dd41f596 5048 idle->sched_class = &idle_sched_class;
1df21055
IM
5049}
5050
f340c0d1
IM
5051/**
5052 * init_idle - set up an idle thread for a given CPU
5053 * @idle: task in question
5054 * @cpu: cpu the idle task belongs to
5055 *
5056 * NOTE: this function does not set the idle thread's NEED_RESCHED
5057 * flag, to make booting more robust.
5058 */
0db0628d 5059void init_idle(struct task_struct *idle, int cpu)
1da177e4 5060{
70b97a7f 5061 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5062 unsigned long flags;
5063
25834c73
PZ
5064 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5065 raw_spin_lock(&rq->lock);
5cbd54ef 5066
5e1576ed 5067 __sched_fork(0, idle);
06b83b5f 5068 idle->state = TASK_RUNNING;
dd41f596
IM
5069 idle->se.exec_start = sched_clock();
5070
e1b77c92
MR
5071 kasan_unpoison_task_stack(idle);
5072
de9b8f5d
PZ
5073#ifdef CONFIG_SMP
5074 /*
5075 * Its possible that init_idle() gets called multiple times on a task,
5076 * in that case do_set_cpus_allowed() will not do the right thing.
5077 *
5078 * And since this is boot we can forgo the serialization.
5079 */
5080 set_cpus_allowed_common(idle, cpumask_of(cpu));
5081#endif
6506cf6c
PZ
5082 /*
5083 * We're having a chicken and egg problem, even though we are
5084 * holding rq->lock, the cpu isn't yet set to this cpu so the
5085 * lockdep check in task_group() will fail.
5086 *
5087 * Similar case to sched_fork(). / Alternatively we could
5088 * use task_rq_lock() here and obtain the other rq->lock.
5089 *
5090 * Silence PROVE_RCU
5091 */
5092 rcu_read_lock();
dd41f596 5093 __set_task_cpu(idle, cpu);
6506cf6c 5094 rcu_read_unlock();
1da177e4 5095
1da177e4 5096 rq->curr = rq->idle = idle;
da0c1e65 5097 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5098#ifdef CONFIG_SMP
3ca7a440 5099 idle->on_cpu = 1;
4866cde0 5100#endif
25834c73
PZ
5101 raw_spin_unlock(&rq->lock);
5102 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5103
5104 /* Set the preempt count _outside_ the spinlocks! */
01028747 5105 init_idle_preempt_count(idle, cpu);
55cd5340 5106
dd41f596
IM
5107 /*
5108 * The idle tasks have their own, simple scheduling class:
5109 */
5110 idle->sched_class = &idle_sched_class;
868baf07 5111 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5112 vtime_init_idle(idle, cpu);
de9b8f5d 5113#ifdef CONFIG_SMP
f1c6f1a7
CE
5114 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5115#endif
19978ca6
IM
5116}
5117
f82f8042
JL
5118int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5119 const struct cpumask *trial)
5120{
5121 int ret = 1, trial_cpus;
5122 struct dl_bw *cur_dl_b;
5123 unsigned long flags;
5124
bb2bc55a
MG
5125 if (!cpumask_weight(cur))
5126 return ret;
5127
75e23e49 5128 rcu_read_lock_sched();
f82f8042
JL
5129 cur_dl_b = dl_bw_of(cpumask_any(cur));
5130 trial_cpus = cpumask_weight(trial);
5131
5132 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5133 if (cur_dl_b->bw != -1 &&
5134 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5135 ret = 0;
5136 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5137 rcu_read_unlock_sched();
f82f8042
JL
5138
5139 return ret;
5140}
5141
7f51412a
JL
5142int task_can_attach(struct task_struct *p,
5143 const struct cpumask *cs_cpus_allowed)
5144{
5145 int ret = 0;
5146
5147 /*
5148 * Kthreads which disallow setaffinity shouldn't be moved
5149 * to a new cpuset; we don't want to change their cpu
5150 * affinity and isolating such threads by their set of
5151 * allowed nodes is unnecessary. Thus, cpusets are not
5152 * applicable for such threads. This prevents checking for
5153 * success of set_cpus_allowed_ptr() on all attached tasks
5154 * before cpus_allowed may be changed.
5155 */
5156 if (p->flags & PF_NO_SETAFFINITY) {
5157 ret = -EINVAL;
5158 goto out;
5159 }
5160
5161#ifdef CONFIG_SMP
5162 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5163 cs_cpus_allowed)) {
5164 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5165 cs_cpus_allowed);
75e23e49 5166 struct dl_bw *dl_b;
7f51412a
JL
5167 bool overflow;
5168 int cpus;
5169 unsigned long flags;
5170
75e23e49
JL
5171 rcu_read_lock_sched();
5172 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5173 raw_spin_lock_irqsave(&dl_b->lock, flags);
5174 cpus = dl_bw_cpus(dest_cpu);
5175 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5176 if (overflow)
5177 ret = -EBUSY;
5178 else {
5179 /*
5180 * We reserve space for this task in the destination
5181 * root_domain, as we can't fail after this point.
5182 * We will free resources in the source root_domain
5183 * later on (see set_cpus_allowed_dl()).
5184 */
5185 __dl_add(dl_b, p->dl.dl_bw);
5186 }
5187 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5188 rcu_read_unlock_sched();
7f51412a
JL
5189
5190 }
5191#endif
5192out:
5193 return ret;
5194}
5195
1da177e4 5196#ifdef CONFIG_SMP
1da177e4 5197
e26fbffd
TG
5198static bool sched_smp_initialized __read_mostly;
5199
e6628d5b
MG
5200#ifdef CONFIG_NUMA_BALANCING
5201/* Migrate current task p to target_cpu */
5202int migrate_task_to(struct task_struct *p, int target_cpu)
5203{
5204 struct migration_arg arg = { p, target_cpu };
5205 int curr_cpu = task_cpu(p);
5206
5207 if (curr_cpu == target_cpu)
5208 return 0;
5209
5210 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5211 return -EINVAL;
5212
5213 /* TODO: This is not properly updating schedstats */
5214
286549dc 5215 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5216 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5217}
0ec8aa00
PZ
5218
5219/*
5220 * Requeue a task on a given node and accurately track the number of NUMA
5221 * tasks on the runqueues
5222 */
5223void sched_setnuma(struct task_struct *p, int nid)
5224{
5225 struct rq *rq;
5226 unsigned long flags;
da0c1e65 5227 bool queued, running;
0ec8aa00
PZ
5228
5229 rq = task_rq_lock(p, &flags);
da0c1e65 5230 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5231 running = task_current(rq, p);
5232
da0c1e65 5233 if (queued)
1de64443 5234 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5235 if (running)
f3cd1c4e 5236 put_prev_task(rq, p);
0ec8aa00
PZ
5237
5238 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5239
5240 if (running)
5241 p->sched_class->set_curr_task(rq);
da0c1e65 5242 if (queued)
1de64443 5243 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5244 task_rq_unlock(rq, p, &flags);
5245}
5cc389bc 5246#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5247
1da177e4 5248#ifdef CONFIG_HOTPLUG_CPU
054b9108 5249/*
48c5ccae
PZ
5250 * Ensures that the idle task is using init_mm right before its cpu goes
5251 * offline.
054b9108 5252 */
48c5ccae 5253void idle_task_exit(void)
1da177e4 5254{
48c5ccae 5255 struct mm_struct *mm = current->active_mm;
e76bd8d9 5256
48c5ccae 5257 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5258
a53efe5f 5259 if (mm != &init_mm) {
48c5ccae 5260 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5261 finish_arch_post_lock_switch();
5262 }
48c5ccae 5263 mmdrop(mm);
1da177e4
LT
5264}
5265
5266/*
5d180232
PZ
5267 * Since this CPU is going 'away' for a while, fold any nr_active delta
5268 * we might have. Assumes we're called after migrate_tasks() so that the
5269 * nr_active count is stable.
5270 *
5271 * Also see the comment "Global load-average calculations".
1da177e4 5272 */
5d180232 5273static void calc_load_migrate(struct rq *rq)
1da177e4 5274{
5d180232
PZ
5275 long delta = calc_load_fold_active(rq);
5276 if (delta)
5277 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5278}
5279
3f1d2a31
PZ
5280static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5281{
5282}
5283
5284static const struct sched_class fake_sched_class = {
5285 .put_prev_task = put_prev_task_fake,
5286};
5287
5288static struct task_struct fake_task = {
5289 /*
5290 * Avoid pull_{rt,dl}_task()
5291 */
5292 .prio = MAX_PRIO + 1,
5293 .sched_class = &fake_sched_class,
5294};
5295
48f24c4d 5296/*
48c5ccae
PZ
5297 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5298 * try_to_wake_up()->select_task_rq().
5299 *
5300 * Called with rq->lock held even though we'er in stop_machine() and
5301 * there's no concurrency possible, we hold the required locks anyway
5302 * because of lock validation efforts.
1da177e4 5303 */
5e16bbc2 5304static void migrate_tasks(struct rq *dead_rq)
1da177e4 5305{
5e16bbc2 5306 struct rq *rq = dead_rq;
48c5ccae
PZ
5307 struct task_struct *next, *stop = rq->stop;
5308 int dest_cpu;
1da177e4
LT
5309
5310 /*
48c5ccae
PZ
5311 * Fudge the rq selection such that the below task selection loop
5312 * doesn't get stuck on the currently eligible stop task.
5313 *
5314 * We're currently inside stop_machine() and the rq is either stuck
5315 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5316 * either way we should never end up calling schedule() until we're
5317 * done here.
1da177e4 5318 */
48c5ccae 5319 rq->stop = NULL;
48f24c4d 5320
77bd3970
FW
5321 /*
5322 * put_prev_task() and pick_next_task() sched
5323 * class method both need to have an up-to-date
5324 * value of rq->clock[_task]
5325 */
5326 update_rq_clock(rq);
5327
5e16bbc2 5328 for (;;) {
48c5ccae
PZ
5329 /*
5330 * There's this thread running, bail when that's the only
5331 * remaining thread.
5332 */
5333 if (rq->nr_running == 1)
dd41f596 5334 break;
48c5ccae 5335
cbce1a68 5336 /*
5473e0cc 5337 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5338 */
5339 lockdep_pin_lock(&rq->lock);
3f1d2a31 5340 next = pick_next_task(rq, &fake_task);
48c5ccae 5341 BUG_ON(!next);
79c53799 5342 next->sched_class->put_prev_task(rq, next);
e692ab53 5343
5473e0cc
WL
5344 /*
5345 * Rules for changing task_struct::cpus_allowed are holding
5346 * both pi_lock and rq->lock, such that holding either
5347 * stabilizes the mask.
5348 *
5349 * Drop rq->lock is not quite as disastrous as it usually is
5350 * because !cpu_active at this point, which means load-balance
5351 * will not interfere. Also, stop-machine.
5352 */
5353 lockdep_unpin_lock(&rq->lock);
5354 raw_spin_unlock(&rq->lock);
5355 raw_spin_lock(&next->pi_lock);
5356 raw_spin_lock(&rq->lock);
5357
5358 /*
5359 * Since we're inside stop-machine, _nothing_ should have
5360 * changed the task, WARN if weird stuff happened, because in
5361 * that case the above rq->lock drop is a fail too.
5362 */
5363 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5364 raw_spin_unlock(&next->pi_lock);
5365 continue;
5366 }
5367
48c5ccae 5368 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5369 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5370
5e16bbc2
PZ
5371 rq = __migrate_task(rq, next, dest_cpu);
5372 if (rq != dead_rq) {
5373 raw_spin_unlock(&rq->lock);
5374 rq = dead_rq;
5375 raw_spin_lock(&rq->lock);
5376 }
5473e0cc 5377 raw_spin_unlock(&next->pi_lock);
1da177e4 5378 }
dce48a84 5379
48c5ccae 5380 rq->stop = stop;
dce48a84 5381}
1da177e4
LT
5382#endif /* CONFIG_HOTPLUG_CPU */
5383
1f11eb6a
GH
5384static void set_rq_online(struct rq *rq)
5385{
5386 if (!rq->online) {
5387 const struct sched_class *class;
5388
c6c4927b 5389 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5390 rq->online = 1;
5391
5392 for_each_class(class) {
5393 if (class->rq_online)
5394 class->rq_online(rq);
5395 }
5396 }
5397}
5398
5399static void set_rq_offline(struct rq *rq)
5400{
5401 if (rq->online) {
5402 const struct sched_class *class;
5403
5404 for_each_class(class) {
5405 if (class->rq_offline)
5406 class->rq_offline(rq);
5407 }
5408
c6c4927b 5409 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5410 rq->online = 0;
5411 }
5412}
5413
1da177e4
LT
5414/*
5415 * migration_call - callback that gets triggered when a CPU is added.
5416 * Here we can start up the necessary migration thread for the new CPU.
5417 */
0db0628d 5418static int
48f24c4d 5419migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5420{
48f24c4d 5421 int cpu = (long)hcpu;
1da177e4 5422 unsigned long flags;
969c7921 5423 struct rq *rq = cpu_rq(cpu);
1da177e4 5424
48c5ccae 5425 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5426
1da177e4 5427 case CPU_UP_PREPARE:
a468d389 5428 rq->calc_load_update = calc_load_update;
e9532e69 5429 account_reset_rq(rq);
1da177e4 5430 break;
48f24c4d 5431
1da177e4 5432 case CPU_ONLINE:
1f94ef59 5433 /* Update our root-domain */
05fa785c 5434 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5435 if (rq->rd) {
c6c4927b 5436 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5437
5438 set_rq_online(rq);
1f94ef59 5439 }
05fa785c 5440 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5441 break;
48f24c4d 5442
1da177e4 5443#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5444 case CPU_DYING:
317f3941 5445 sched_ttwu_pending();
57d885fe 5446 /* Update our root-domain */
05fa785c 5447 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5448 if (rq->rd) {
c6c4927b 5449 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5450 set_rq_offline(rq);
57d885fe 5451 }
5e16bbc2 5452 migrate_tasks(rq);
48c5ccae 5453 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5454 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5455 break;
48c5ccae 5456
5d180232 5457 case CPU_DEAD:
f319da0c 5458 calc_load_migrate(rq);
57d885fe 5459 break;
1da177e4
LT
5460#endif
5461 }
49c022e6
PZ
5462
5463 update_max_interval();
5464
1da177e4
LT
5465 return NOTIFY_OK;
5466}
5467
f38b0820
PM
5468/*
5469 * Register at high priority so that task migration (migrate_all_tasks)
5470 * happens before everything else. This has to be lower priority than
cdd6c482 5471 * the notifier in the perf_event subsystem, though.
1da177e4 5472 */
0db0628d 5473static struct notifier_block migration_notifier = {
1da177e4 5474 .notifier_call = migration_call,
50a323b7 5475 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5476};
5477
9cf7243d 5478static void set_cpu_rq_start_time(unsigned int cpu)
a803f026 5479{
a803f026 5480 struct rq *rq = cpu_rq(cpu);
9cf7243d 5481
a803f026
CM
5482 rq->age_stamp = sched_clock_cpu(cpu);
5483}
5484
4cb98839
PZ
5485static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5486
3e9830dc 5487#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5488
d039ac60 5489static __read_mostly int sched_debug_enabled;
f6630114 5490
d039ac60 5491static int __init sched_debug_setup(char *str)
f6630114 5492{
d039ac60 5493 sched_debug_enabled = 1;
f6630114
MT
5494
5495 return 0;
5496}
d039ac60
PZ
5497early_param("sched_debug", sched_debug_setup);
5498
5499static inline bool sched_debug(void)
5500{
5501 return sched_debug_enabled;
5502}
f6630114 5503
7c16ec58 5504static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5505 struct cpumask *groupmask)
1da177e4 5506{
4dcf6aff 5507 struct sched_group *group = sd->groups;
1da177e4 5508
96f874e2 5509 cpumask_clear(groupmask);
4dcf6aff
IM
5510
5511 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5512
5513 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5514 printk("does not load-balance\n");
4dcf6aff 5515 if (sd->parent)
3df0fc5b
PZ
5516 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5517 " has parent");
4dcf6aff 5518 return -1;
41c7ce9a
NP
5519 }
5520
333470ee
TH
5521 printk(KERN_CONT "span %*pbl level %s\n",
5522 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5523
758b2cdc 5524 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5525 printk(KERN_ERR "ERROR: domain->span does not contain "
5526 "CPU%d\n", cpu);
4dcf6aff 5527 }
758b2cdc 5528 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5529 printk(KERN_ERR "ERROR: domain->groups does not contain"
5530 " CPU%d\n", cpu);
4dcf6aff 5531 }
1da177e4 5532
4dcf6aff 5533 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5534 do {
4dcf6aff 5535 if (!group) {
3df0fc5b
PZ
5536 printk("\n");
5537 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5538 break;
5539 }
5540
758b2cdc 5541 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5542 printk(KERN_CONT "\n");
5543 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5544 break;
5545 }
1da177e4 5546
cb83b629
PZ
5547 if (!(sd->flags & SD_OVERLAP) &&
5548 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5549 printk(KERN_CONT "\n");
5550 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5551 break;
5552 }
1da177e4 5553
758b2cdc 5554 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5555
333470ee
TH
5556 printk(KERN_CONT " %*pbl",
5557 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5558 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5559 printk(KERN_CONT " (cpu_capacity = %d)",
5560 group->sgc->capacity);
381512cf 5561 }
1da177e4 5562
4dcf6aff
IM
5563 group = group->next;
5564 } while (group != sd->groups);
3df0fc5b 5565 printk(KERN_CONT "\n");
1da177e4 5566
758b2cdc 5567 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5568 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5569
758b2cdc
RR
5570 if (sd->parent &&
5571 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5572 printk(KERN_ERR "ERROR: parent span is not a superset "
5573 "of domain->span\n");
4dcf6aff
IM
5574 return 0;
5575}
1da177e4 5576
4dcf6aff
IM
5577static void sched_domain_debug(struct sched_domain *sd, int cpu)
5578{
5579 int level = 0;
1da177e4 5580
d039ac60 5581 if (!sched_debug_enabled)
f6630114
MT
5582 return;
5583
4dcf6aff
IM
5584 if (!sd) {
5585 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5586 return;
5587 }
1da177e4 5588
4dcf6aff
IM
5589 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5590
5591 for (;;) {
4cb98839 5592 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5593 break;
1da177e4
LT
5594 level++;
5595 sd = sd->parent;
33859f7f 5596 if (!sd)
4dcf6aff
IM
5597 break;
5598 }
1da177e4 5599}
6d6bc0ad 5600#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5601# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5602static inline bool sched_debug(void)
5603{
5604 return false;
5605}
6d6bc0ad 5606#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5607
1a20ff27 5608static int sd_degenerate(struct sched_domain *sd)
245af2c7 5609{
758b2cdc 5610 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5611 return 1;
5612
5613 /* Following flags need at least 2 groups */
5614 if (sd->flags & (SD_LOAD_BALANCE |
5615 SD_BALANCE_NEWIDLE |
5616 SD_BALANCE_FORK |
89c4710e 5617 SD_BALANCE_EXEC |
5d4dfddd 5618 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5619 SD_SHARE_PKG_RESOURCES |
5620 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5621 if (sd->groups != sd->groups->next)
5622 return 0;
5623 }
5624
5625 /* Following flags don't use groups */
c88d5910 5626 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5627 return 0;
5628
5629 return 1;
5630}
5631
48f24c4d
IM
5632static int
5633sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5634{
5635 unsigned long cflags = sd->flags, pflags = parent->flags;
5636
5637 if (sd_degenerate(parent))
5638 return 1;
5639
758b2cdc 5640 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5641 return 0;
5642
245af2c7
SS
5643 /* Flags needing groups don't count if only 1 group in parent */
5644 if (parent->groups == parent->groups->next) {
5645 pflags &= ~(SD_LOAD_BALANCE |
5646 SD_BALANCE_NEWIDLE |
5647 SD_BALANCE_FORK |
89c4710e 5648 SD_BALANCE_EXEC |
5d4dfddd 5649 SD_SHARE_CPUCAPACITY |
10866e62 5650 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5651 SD_PREFER_SIBLING |
5652 SD_SHARE_POWERDOMAIN);
5436499e
KC
5653 if (nr_node_ids == 1)
5654 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5655 }
5656 if (~cflags & pflags)
5657 return 0;
5658
5659 return 1;
5660}
5661
dce840a0 5662static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5663{
dce840a0 5664 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5665
68e74568 5666 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5667 cpudl_cleanup(&rd->cpudl);
1baca4ce 5668 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5669 free_cpumask_var(rd->rto_mask);
5670 free_cpumask_var(rd->online);
5671 free_cpumask_var(rd->span);
5672 kfree(rd);
5673}
5674
57d885fe
GH
5675static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5676{
a0490fa3 5677 struct root_domain *old_rd = NULL;
57d885fe 5678 unsigned long flags;
57d885fe 5679
05fa785c 5680 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5681
5682 if (rq->rd) {
a0490fa3 5683 old_rd = rq->rd;
57d885fe 5684
c6c4927b 5685 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5686 set_rq_offline(rq);
57d885fe 5687
c6c4927b 5688 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5689
a0490fa3 5690 /*
0515973f 5691 * If we dont want to free the old_rd yet then
a0490fa3
IM
5692 * set old_rd to NULL to skip the freeing later
5693 * in this function:
5694 */
5695 if (!atomic_dec_and_test(&old_rd->refcount))
5696 old_rd = NULL;
57d885fe
GH
5697 }
5698
5699 atomic_inc(&rd->refcount);
5700 rq->rd = rd;
5701
c6c4927b 5702 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5703 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5704 set_rq_online(rq);
57d885fe 5705
05fa785c 5706 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5707
5708 if (old_rd)
dce840a0 5709 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5710}
5711
68c38fc3 5712static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5713{
5714 memset(rd, 0, sizeof(*rd));
5715
8295c699 5716 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5717 goto out;
8295c699 5718 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5719 goto free_span;
8295c699 5720 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5721 goto free_online;
8295c699 5722 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5723 goto free_dlo_mask;
6e0534f2 5724
332ac17e 5725 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5726 if (cpudl_init(&rd->cpudl) != 0)
5727 goto free_dlo_mask;
332ac17e 5728
68c38fc3 5729 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5730 goto free_rto_mask;
c6c4927b 5731 return 0;
6e0534f2 5732
68e74568
RR
5733free_rto_mask:
5734 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5735free_dlo_mask:
5736 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5737free_online:
5738 free_cpumask_var(rd->online);
5739free_span:
5740 free_cpumask_var(rd->span);
0c910d28 5741out:
c6c4927b 5742 return -ENOMEM;
57d885fe
GH
5743}
5744
029632fb
PZ
5745/*
5746 * By default the system creates a single root-domain with all cpus as
5747 * members (mimicking the global state we have today).
5748 */
5749struct root_domain def_root_domain;
5750
57d885fe
GH
5751static void init_defrootdomain(void)
5752{
68c38fc3 5753 init_rootdomain(&def_root_domain);
c6c4927b 5754
57d885fe
GH
5755 atomic_set(&def_root_domain.refcount, 1);
5756}
5757
dc938520 5758static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5759{
5760 struct root_domain *rd;
5761
5762 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5763 if (!rd)
5764 return NULL;
5765
68c38fc3 5766 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5767 kfree(rd);
5768 return NULL;
5769 }
57d885fe
GH
5770
5771 return rd;
5772}
5773
63b2ca30 5774static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5775{
5776 struct sched_group *tmp, *first;
5777
5778 if (!sg)
5779 return;
5780
5781 first = sg;
5782 do {
5783 tmp = sg->next;
5784
63b2ca30
NP
5785 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5786 kfree(sg->sgc);
e3589f6c
PZ
5787
5788 kfree(sg);
5789 sg = tmp;
5790 } while (sg != first);
5791}
5792
dce840a0
PZ
5793static void free_sched_domain(struct rcu_head *rcu)
5794{
5795 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5796
5797 /*
5798 * If its an overlapping domain it has private groups, iterate and
5799 * nuke them all.
5800 */
5801 if (sd->flags & SD_OVERLAP) {
5802 free_sched_groups(sd->groups, 1);
5803 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5804 kfree(sd->groups->sgc);
dce840a0 5805 kfree(sd->groups);
9c3f75cb 5806 }
dce840a0
PZ
5807 kfree(sd);
5808}
5809
5810static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5811{
5812 call_rcu(&sd->rcu, free_sched_domain);
5813}
5814
5815static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5816{
5817 for (; sd; sd = sd->parent)
5818 destroy_sched_domain(sd, cpu);
5819}
5820
518cd623
PZ
5821/*
5822 * Keep a special pointer to the highest sched_domain that has
5823 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5824 * allows us to avoid some pointer chasing select_idle_sibling().
5825 *
5826 * Also keep a unique ID per domain (we use the first cpu number in
5827 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5828 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5829 */
5830DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5831DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5832DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5833DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5834DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5835DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5836
5837static void update_top_cache_domain(int cpu)
5838{
5839 struct sched_domain *sd;
5d4cf996 5840 struct sched_domain *busy_sd = NULL;
518cd623 5841 int id = cpu;
7d9ffa89 5842 int size = 1;
518cd623
PZ
5843
5844 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5845 if (sd) {
518cd623 5846 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5847 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5848 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5849 }
5d4cf996 5850 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5851
5852 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5853 per_cpu(sd_llc_size, cpu) = size;
518cd623 5854 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5855
5856 sd = lowest_flag_domain(cpu, SD_NUMA);
5857 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5858
5859 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5860 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5861}
5862
1da177e4 5863/*
0eab9146 5864 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5865 * hold the hotplug lock.
5866 */
0eab9146
IM
5867static void
5868cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5869{
70b97a7f 5870 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5871 struct sched_domain *tmp;
5872
5873 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5874 for (tmp = sd; tmp; ) {
245af2c7
SS
5875 struct sched_domain *parent = tmp->parent;
5876 if (!parent)
5877 break;
f29c9b1c 5878
1a848870 5879 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5880 tmp->parent = parent->parent;
1a848870
SS
5881 if (parent->parent)
5882 parent->parent->child = tmp;
10866e62
PZ
5883 /*
5884 * Transfer SD_PREFER_SIBLING down in case of a
5885 * degenerate parent; the spans match for this
5886 * so the property transfers.
5887 */
5888 if (parent->flags & SD_PREFER_SIBLING)
5889 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5890 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5891 } else
5892 tmp = tmp->parent;
245af2c7
SS
5893 }
5894
1a848870 5895 if (sd && sd_degenerate(sd)) {
dce840a0 5896 tmp = sd;
245af2c7 5897 sd = sd->parent;
dce840a0 5898 destroy_sched_domain(tmp, cpu);
1a848870
SS
5899 if (sd)
5900 sd->child = NULL;
5901 }
1da177e4 5902
4cb98839 5903 sched_domain_debug(sd, cpu);
1da177e4 5904
57d885fe 5905 rq_attach_root(rq, rd);
dce840a0 5906 tmp = rq->sd;
674311d5 5907 rcu_assign_pointer(rq->sd, sd);
dce840a0 5908 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5909
5910 update_top_cache_domain(cpu);
1da177e4
LT
5911}
5912
1da177e4
LT
5913/* Setup the mask of cpus configured for isolated domains */
5914static int __init isolated_cpu_setup(char *str)
5915{
a6e4491c
PB
5916 int ret;
5917
bdddd296 5918 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5919 ret = cpulist_parse(str, cpu_isolated_map);
5920 if (ret) {
5921 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5922 return 0;
5923 }
1da177e4
LT
5924 return 1;
5925}
8927f494 5926__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5927
49a02c51 5928struct s_data {
21d42ccf 5929 struct sched_domain ** __percpu sd;
49a02c51
AH
5930 struct root_domain *rd;
5931};
5932
2109b99e 5933enum s_alloc {
2109b99e 5934 sa_rootdomain,
21d42ccf 5935 sa_sd,
dce840a0 5936 sa_sd_storage,
2109b99e
AH
5937 sa_none,
5938};
5939
c1174876
PZ
5940/*
5941 * Build an iteration mask that can exclude certain CPUs from the upwards
5942 * domain traversal.
5943 *
5944 * Asymmetric node setups can result in situations where the domain tree is of
5945 * unequal depth, make sure to skip domains that already cover the entire
5946 * range.
5947 *
5948 * In that case build_sched_domains() will have terminated the iteration early
5949 * and our sibling sd spans will be empty. Domains should always include the
5950 * cpu they're built on, so check that.
5951 *
5952 */
5953static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5954{
5955 const struct cpumask *span = sched_domain_span(sd);
5956 struct sd_data *sdd = sd->private;
5957 struct sched_domain *sibling;
5958 int i;
5959
5960 for_each_cpu(i, span) {
5961 sibling = *per_cpu_ptr(sdd->sd, i);
5962 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5963 continue;
5964
5965 cpumask_set_cpu(i, sched_group_mask(sg));
5966 }
5967}
5968
5969/*
5970 * Return the canonical balance cpu for this group, this is the first cpu
5971 * of this group that's also in the iteration mask.
5972 */
5973int group_balance_cpu(struct sched_group *sg)
5974{
5975 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5976}
5977
e3589f6c
PZ
5978static int
5979build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5980{
5981 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5982 const struct cpumask *span = sched_domain_span(sd);
5983 struct cpumask *covered = sched_domains_tmpmask;
5984 struct sd_data *sdd = sd->private;
aaecac4a 5985 struct sched_domain *sibling;
e3589f6c
PZ
5986 int i;
5987
5988 cpumask_clear(covered);
5989
5990 for_each_cpu(i, span) {
5991 struct cpumask *sg_span;
5992
5993 if (cpumask_test_cpu(i, covered))
5994 continue;
5995
aaecac4a 5996 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5997
5998 /* See the comment near build_group_mask(). */
aaecac4a 5999 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6000 continue;
6001
e3589f6c 6002 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6003 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6004
6005 if (!sg)
6006 goto fail;
6007
6008 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6009 if (sibling->child)
6010 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6011 else
e3589f6c
PZ
6012 cpumask_set_cpu(i, sg_span);
6013
6014 cpumask_or(covered, covered, sg_span);
6015
63b2ca30
NP
6016 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6017 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6018 build_group_mask(sd, sg);
6019
c3decf0d 6020 /*
63b2ca30 6021 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6022 * domains and no possible iteration will get us here, we won't
6023 * die on a /0 trap.
6024 */
ca8ce3d0 6025 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6026
c1174876
PZ
6027 /*
6028 * Make sure the first group of this domain contains the
6029 * canonical balance cpu. Otherwise the sched_domain iteration
6030 * breaks. See update_sg_lb_stats().
6031 */
74a5ce20 6032 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6033 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6034 groups = sg;
6035
6036 if (!first)
6037 first = sg;
6038 if (last)
6039 last->next = sg;
6040 last = sg;
6041 last->next = first;
6042 }
6043 sd->groups = groups;
6044
6045 return 0;
6046
6047fail:
6048 free_sched_groups(first, 0);
6049
6050 return -ENOMEM;
6051}
6052
dce840a0 6053static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6054{
dce840a0
PZ
6055 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6056 struct sched_domain *child = sd->child;
1da177e4 6057
dce840a0
PZ
6058 if (child)
6059 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6060
9c3f75cb 6061 if (sg) {
dce840a0 6062 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6063 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6064 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6065 }
dce840a0
PZ
6066
6067 return cpu;
1e9f28fa 6068}
1e9f28fa 6069
01a08546 6070/*
dce840a0
PZ
6071 * build_sched_groups will build a circular linked list of the groups
6072 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6073 * and ->cpu_capacity to 0.
e3589f6c
PZ
6074 *
6075 * Assumes the sched_domain tree is fully constructed
01a08546 6076 */
e3589f6c
PZ
6077static int
6078build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6079{
dce840a0
PZ
6080 struct sched_group *first = NULL, *last = NULL;
6081 struct sd_data *sdd = sd->private;
6082 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6083 struct cpumask *covered;
dce840a0 6084 int i;
9c1cfda2 6085
e3589f6c
PZ
6086 get_group(cpu, sdd, &sd->groups);
6087 atomic_inc(&sd->groups->ref);
6088
0936629f 6089 if (cpu != cpumask_first(span))
e3589f6c
PZ
6090 return 0;
6091
f96225fd
PZ
6092 lockdep_assert_held(&sched_domains_mutex);
6093 covered = sched_domains_tmpmask;
6094
dce840a0 6095 cpumask_clear(covered);
6711cab4 6096
dce840a0
PZ
6097 for_each_cpu(i, span) {
6098 struct sched_group *sg;
cd08e923 6099 int group, j;
6711cab4 6100
dce840a0
PZ
6101 if (cpumask_test_cpu(i, covered))
6102 continue;
6711cab4 6103
cd08e923 6104 group = get_group(i, sdd, &sg);
c1174876 6105 cpumask_setall(sched_group_mask(sg));
0601a88d 6106
dce840a0
PZ
6107 for_each_cpu(j, span) {
6108 if (get_group(j, sdd, NULL) != group)
6109 continue;
0601a88d 6110
dce840a0
PZ
6111 cpumask_set_cpu(j, covered);
6112 cpumask_set_cpu(j, sched_group_cpus(sg));
6113 }
0601a88d 6114
dce840a0
PZ
6115 if (!first)
6116 first = sg;
6117 if (last)
6118 last->next = sg;
6119 last = sg;
6120 }
6121 last->next = first;
e3589f6c
PZ
6122
6123 return 0;
0601a88d 6124}
51888ca2 6125
89c4710e 6126/*
63b2ca30 6127 * Initialize sched groups cpu_capacity.
89c4710e 6128 *
63b2ca30 6129 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6130 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6131 * Typically cpu_capacity for all the groups in a sched domain will be same
6132 * unless there are asymmetries in the topology. If there are asymmetries,
6133 * group having more cpu_capacity will pickup more load compared to the
6134 * group having less cpu_capacity.
89c4710e 6135 */
63b2ca30 6136static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6137{
e3589f6c 6138 struct sched_group *sg = sd->groups;
89c4710e 6139
94c95ba6 6140 WARN_ON(!sg);
e3589f6c
PZ
6141
6142 do {
6143 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6144 sg = sg->next;
6145 } while (sg != sd->groups);
89c4710e 6146
c1174876 6147 if (cpu != group_balance_cpu(sg))
e3589f6c 6148 return;
aae6d3dd 6149
63b2ca30
NP
6150 update_group_capacity(sd, cpu);
6151 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6152}
6153
7c16ec58
MT
6154/*
6155 * Initializers for schedule domains
6156 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6157 */
6158
1d3504fc 6159static int default_relax_domain_level = -1;
60495e77 6160int sched_domain_level_max;
1d3504fc
HS
6161
6162static int __init setup_relax_domain_level(char *str)
6163{
a841f8ce
DS
6164 if (kstrtoint(str, 0, &default_relax_domain_level))
6165 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6166
1d3504fc
HS
6167 return 1;
6168}
6169__setup("relax_domain_level=", setup_relax_domain_level);
6170
6171static void set_domain_attribute(struct sched_domain *sd,
6172 struct sched_domain_attr *attr)
6173{
6174 int request;
6175
6176 if (!attr || attr->relax_domain_level < 0) {
6177 if (default_relax_domain_level < 0)
6178 return;
6179 else
6180 request = default_relax_domain_level;
6181 } else
6182 request = attr->relax_domain_level;
6183 if (request < sd->level) {
6184 /* turn off idle balance on this domain */
c88d5910 6185 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6186 } else {
6187 /* turn on idle balance on this domain */
c88d5910 6188 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6189 }
6190}
6191
54ab4ff4
PZ
6192static void __sdt_free(const struct cpumask *cpu_map);
6193static int __sdt_alloc(const struct cpumask *cpu_map);
6194
2109b99e
AH
6195static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6196 const struct cpumask *cpu_map)
6197{
6198 switch (what) {
2109b99e 6199 case sa_rootdomain:
822ff793
PZ
6200 if (!atomic_read(&d->rd->refcount))
6201 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6202 case sa_sd:
6203 free_percpu(d->sd); /* fall through */
dce840a0 6204 case sa_sd_storage:
54ab4ff4 6205 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6206 case sa_none:
6207 break;
6208 }
6209}
3404c8d9 6210
2109b99e
AH
6211static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6212 const struct cpumask *cpu_map)
6213{
dce840a0
PZ
6214 memset(d, 0, sizeof(*d));
6215
54ab4ff4
PZ
6216 if (__sdt_alloc(cpu_map))
6217 return sa_sd_storage;
dce840a0
PZ
6218 d->sd = alloc_percpu(struct sched_domain *);
6219 if (!d->sd)
6220 return sa_sd_storage;
2109b99e 6221 d->rd = alloc_rootdomain();
dce840a0 6222 if (!d->rd)
21d42ccf 6223 return sa_sd;
2109b99e
AH
6224 return sa_rootdomain;
6225}
57d885fe 6226
dce840a0
PZ
6227/*
6228 * NULL the sd_data elements we've used to build the sched_domain and
6229 * sched_group structure so that the subsequent __free_domain_allocs()
6230 * will not free the data we're using.
6231 */
6232static void claim_allocations(int cpu, struct sched_domain *sd)
6233{
6234 struct sd_data *sdd = sd->private;
dce840a0
PZ
6235
6236 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6237 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6238
e3589f6c 6239 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6240 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6241
63b2ca30
NP
6242 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6243 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6244}
6245
cb83b629 6246#ifdef CONFIG_NUMA
cb83b629 6247static int sched_domains_numa_levels;
e3fe70b1 6248enum numa_topology_type sched_numa_topology_type;
cb83b629 6249static int *sched_domains_numa_distance;
9942f79b 6250int sched_max_numa_distance;
cb83b629
PZ
6251static struct cpumask ***sched_domains_numa_masks;
6252static int sched_domains_curr_level;
143e1e28 6253#endif
cb83b629 6254
143e1e28
VG
6255/*
6256 * SD_flags allowed in topology descriptions.
6257 *
5d4dfddd 6258 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6259 * SD_SHARE_PKG_RESOURCES - describes shared caches
6260 * SD_NUMA - describes NUMA topologies
d77b3ed5 6261 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6262 *
6263 * Odd one out:
6264 * SD_ASYM_PACKING - describes SMT quirks
6265 */
6266#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6267 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6268 SD_SHARE_PKG_RESOURCES | \
6269 SD_NUMA | \
d77b3ed5
VG
6270 SD_ASYM_PACKING | \
6271 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6272
6273static struct sched_domain *
143e1e28 6274sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6275{
6276 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6277 int sd_weight, sd_flags = 0;
6278
6279#ifdef CONFIG_NUMA
6280 /*
6281 * Ugly hack to pass state to sd_numa_mask()...
6282 */
6283 sched_domains_curr_level = tl->numa_level;
6284#endif
6285
6286 sd_weight = cpumask_weight(tl->mask(cpu));
6287
6288 if (tl->sd_flags)
6289 sd_flags = (*tl->sd_flags)();
6290 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6291 "wrong sd_flags in topology description\n"))
6292 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6293
6294 *sd = (struct sched_domain){
6295 .min_interval = sd_weight,
6296 .max_interval = 2*sd_weight,
6297 .busy_factor = 32,
870a0bb5 6298 .imbalance_pct = 125,
143e1e28
VG
6299
6300 .cache_nice_tries = 0,
6301 .busy_idx = 0,
6302 .idle_idx = 0,
cb83b629
PZ
6303 .newidle_idx = 0,
6304 .wake_idx = 0,
6305 .forkexec_idx = 0,
6306
6307 .flags = 1*SD_LOAD_BALANCE
6308 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6309 | 1*SD_BALANCE_EXEC
6310 | 1*SD_BALANCE_FORK
cb83b629 6311 | 0*SD_BALANCE_WAKE
143e1e28 6312 | 1*SD_WAKE_AFFINE
5d4dfddd 6313 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6314 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6315 | 0*SD_SERIALIZE
cb83b629 6316 | 0*SD_PREFER_SIBLING
143e1e28
VG
6317 | 0*SD_NUMA
6318 | sd_flags
cb83b629 6319 ,
143e1e28 6320
cb83b629
PZ
6321 .last_balance = jiffies,
6322 .balance_interval = sd_weight,
143e1e28 6323 .smt_gain = 0,
2b4cfe64
JL
6324 .max_newidle_lb_cost = 0,
6325 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6326#ifdef CONFIG_SCHED_DEBUG
6327 .name = tl->name,
6328#endif
cb83b629 6329 };
cb83b629
PZ
6330
6331 /*
143e1e28 6332 * Convert topological properties into behaviour.
cb83b629 6333 */
143e1e28 6334
5d4dfddd 6335 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6336 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6337 sd->imbalance_pct = 110;
6338 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6339
6340 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6341 sd->imbalance_pct = 117;
6342 sd->cache_nice_tries = 1;
6343 sd->busy_idx = 2;
6344
6345#ifdef CONFIG_NUMA
6346 } else if (sd->flags & SD_NUMA) {
6347 sd->cache_nice_tries = 2;
6348 sd->busy_idx = 3;
6349 sd->idle_idx = 2;
6350
6351 sd->flags |= SD_SERIALIZE;
6352 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6353 sd->flags &= ~(SD_BALANCE_EXEC |
6354 SD_BALANCE_FORK |
6355 SD_WAKE_AFFINE);
6356 }
6357
6358#endif
6359 } else {
6360 sd->flags |= SD_PREFER_SIBLING;
6361 sd->cache_nice_tries = 1;
6362 sd->busy_idx = 2;
6363 sd->idle_idx = 1;
6364 }
6365
6366 sd->private = &tl->data;
cb83b629
PZ
6367
6368 return sd;
6369}
6370
143e1e28
VG
6371/*
6372 * Topology list, bottom-up.
6373 */
6374static struct sched_domain_topology_level default_topology[] = {
6375#ifdef CONFIG_SCHED_SMT
6376 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6377#endif
6378#ifdef CONFIG_SCHED_MC
6379 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6380#endif
6381 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6382 { NULL, },
6383};
6384
c6e1e7b5
JG
6385static struct sched_domain_topology_level *sched_domain_topology =
6386 default_topology;
143e1e28
VG
6387
6388#define for_each_sd_topology(tl) \
6389 for (tl = sched_domain_topology; tl->mask; tl++)
6390
6391void set_sched_topology(struct sched_domain_topology_level *tl)
6392{
6393 sched_domain_topology = tl;
6394}
6395
6396#ifdef CONFIG_NUMA
6397
cb83b629
PZ
6398static const struct cpumask *sd_numa_mask(int cpu)
6399{
6400 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6401}
6402
d039ac60
PZ
6403static void sched_numa_warn(const char *str)
6404{
6405 static int done = false;
6406 int i,j;
6407
6408 if (done)
6409 return;
6410
6411 done = true;
6412
6413 printk(KERN_WARNING "ERROR: %s\n\n", str);
6414
6415 for (i = 0; i < nr_node_ids; i++) {
6416 printk(KERN_WARNING " ");
6417 for (j = 0; j < nr_node_ids; j++)
6418 printk(KERN_CONT "%02d ", node_distance(i,j));
6419 printk(KERN_CONT "\n");
6420 }
6421 printk(KERN_WARNING "\n");
6422}
6423
9942f79b 6424bool find_numa_distance(int distance)
d039ac60
PZ
6425{
6426 int i;
6427
6428 if (distance == node_distance(0, 0))
6429 return true;
6430
6431 for (i = 0; i < sched_domains_numa_levels; i++) {
6432 if (sched_domains_numa_distance[i] == distance)
6433 return true;
6434 }
6435
6436 return false;
6437}
6438
e3fe70b1
RR
6439/*
6440 * A system can have three types of NUMA topology:
6441 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6442 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6443 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6444 *
6445 * The difference between a glueless mesh topology and a backplane
6446 * topology lies in whether communication between not directly
6447 * connected nodes goes through intermediary nodes (where programs
6448 * could run), or through backplane controllers. This affects
6449 * placement of programs.
6450 *
6451 * The type of topology can be discerned with the following tests:
6452 * - If the maximum distance between any nodes is 1 hop, the system
6453 * is directly connected.
6454 * - If for two nodes A and B, located N > 1 hops away from each other,
6455 * there is an intermediary node C, which is < N hops away from both
6456 * nodes A and B, the system is a glueless mesh.
6457 */
6458static void init_numa_topology_type(void)
6459{
6460 int a, b, c, n;
6461
6462 n = sched_max_numa_distance;
6463
e237882b 6464 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6465 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6466 return;
6467 }
e3fe70b1
RR
6468
6469 for_each_online_node(a) {
6470 for_each_online_node(b) {
6471 /* Find two nodes furthest removed from each other. */
6472 if (node_distance(a, b) < n)
6473 continue;
6474
6475 /* Is there an intermediary node between a and b? */
6476 for_each_online_node(c) {
6477 if (node_distance(a, c) < n &&
6478 node_distance(b, c) < n) {
6479 sched_numa_topology_type =
6480 NUMA_GLUELESS_MESH;
6481 return;
6482 }
6483 }
6484
6485 sched_numa_topology_type = NUMA_BACKPLANE;
6486 return;
6487 }
6488 }
6489}
6490
cb83b629
PZ
6491static void sched_init_numa(void)
6492{
6493 int next_distance, curr_distance = node_distance(0, 0);
6494 struct sched_domain_topology_level *tl;
6495 int level = 0;
6496 int i, j, k;
6497
cb83b629
PZ
6498 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6499 if (!sched_domains_numa_distance)
6500 return;
6501
6502 /*
6503 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6504 * unique distances in the node_distance() table.
6505 *
6506 * Assumes node_distance(0,j) includes all distances in
6507 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6508 */
6509 next_distance = curr_distance;
6510 for (i = 0; i < nr_node_ids; i++) {
6511 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6512 for (k = 0; k < nr_node_ids; k++) {
6513 int distance = node_distance(i, k);
6514
6515 if (distance > curr_distance &&
6516 (distance < next_distance ||
6517 next_distance == curr_distance))
6518 next_distance = distance;
6519
6520 /*
6521 * While not a strong assumption it would be nice to know
6522 * about cases where if node A is connected to B, B is not
6523 * equally connected to A.
6524 */
6525 if (sched_debug() && node_distance(k, i) != distance)
6526 sched_numa_warn("Node-distance not symmetric");
6527
6528 if (sched_debug() && i && !find_numa_distance(distance))
6529 sched_numa_warn("Node-0 not representative");
6530 }
6531 if (next_distance != curr_distance) {
6532 sched_domains_numa_distance[level++] = next_distance;
6533 sched_domains_numa_levels = level;
6534 curr_distance = next_distance;
6535 } else break;
cb83b629 6536 }
d039ac60
PZ
6537
6538 /*
6539 * In case of sched_debug() we verify the above assumption.
6540 */
6541 if (!sched_debug())
6542 break;
cb83b629 6543 }
c123588b
AR
6544
6545 if (!level)
6546 return;
6547
cb83b629
PZ
6548 /*
6549 * 'level' contains the number of unique distances, excluding the
6550 * identity distance node_distance(i,i).
6551 *
28b4a521 6552 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6553 * numbers.
6554 */
6555
5f7865f3
TC
6556 /*
6557 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6558 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6559 * the array will contain less then 'level' members. This could be
6560 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6561 * in other functions.
6562 *
6563 * We reset it to 'level' at the end of this function.
6564 */
6565 sched_domains_numa_levels = 0;
6566
cb83b629
PZ
6567 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6568 if (!sched_domains_numa_masks)
6569 return;
6570
6571 /*
6572 * Now for each level, construct a mask per node which contains all
6573 * cpus of nodes that are that many hops away from us.
6574 */
6575 for (i = 0; i < level; i++) {
6576 sched_domains_numa_masks[i] =
6577 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6578 if (!sched_domains_numa_masks[i])
6579 return;
6580
6581 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6582 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6583 if (!mask)
6584 return;
6585
6586 sched_domains_numa_masks[i][j] = mask;
6587
9c03ee14 6588 for_each_node(k) {
dd7d8634 6589 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6590 continue;
6591
6592 cpumask_or(mask, mask, cpumask_of_node(k));
6593 }
6594 }
6595 }
6596
143e1e28
VG
6597 /* Compute default topology size */
6598 for (i = 0; sched_domain_topology[i].mask; i++);
6599
c515db8c 6600 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6601 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6602 if (!tl)
6603 return;
6604
6605 /*
6606 * Copy the default topology bits..
6607 */
143e1e28
VG
6608 for (i = 0; sched_domain_topology[i].mask; i++)
6609 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6610
6611 /*
6612 * .. and append 'j' levels of NUMA goodness.
6613 */
6614 for (j = 0; j < level; i++, j++) {
6615 tl[i] = (struct sched_domain_topology_level){
cb83b629 6616 .mask = sd_numa_mask,
143e1e28 6617 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6618 .flags = SDTL_OVERLAP,
6619 .numa_level = j,
143e1e28 6620 SD_INIT_NAME(NUMA)
cb83b629
PZ
6621 };
6622 }
6623
6624 sched_domain_topology = tl;
5f7865f3
TC
6625
6626 sched_domains_numa_levels = level;
9942f79b 6627 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6628
6629 init_numa_topology_type();
cb83b629 6630}
301a5cba 6631
135fb3e1 6632static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6633{
301a5cba 6634 int node = cpu_to_node(cpu);
135fb3e1
TG
6635 int i, j;
6636
6637 if (!sched_smp_initialized)
6638 return;
301a5cba
TC
6639
6640 for (i = 0; i < sched_domains_numa_levels; i++) {
6641 for (j = 0; j < nr_node_ids; j++) {
6642 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6643 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6644 }
6645 }
6646}
6647
135fb3e1 6648static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6649{
6650 int i, j;
135fb3e1
TG
6651
6652 if (!sched_smp_initialized)
6653 return;
6654
301a5cba
TC
6655 for (i = 0; i < sched_domains_numa_levels; i++) {
6656 for (j = 0; j < nr_node_ids; j++)
6657 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6658 }
6659}
6660
cb83b629 6661#else
135fb3e1
TG
6662static inline void sched_init_numa(void) { }
6663static void sched_domains_numa_masks_set(unsigned int cpu) { }
6664static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6665#endif /* CONFIG_NUMA */
6666
54ab4ff4
PZ
6667static int __sdt_alloc(const struct cpumask *cpu_map)
6668{
6669 struct sched_domain_topology_level *tl;
6670 int j;
6671
27723a68 6672 for_each_sd_topology(tl) {
54ab4ff4
PZ
6673 struct sd_data *sdd = &tl->data;
6674
6675 sdd->sd = alloc_percpu(struct sched_domain *);
6676 if (!sdd->sd)
6677 return -ENOMEM;
6678
6679 sdd->sg = alloc_percpu(struct sched_group *);
6680 if (!sdd->sg)
6681 return -ENOMEM;
6682
63b2ca30
NP
6683 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6684 if (!sdd->sgc)
9c3f75cb
PZ
6685 return -ENOMEM;
6686
54ab4ff4
PZ
6687 for_each_cpu(j, cpu_map) {
6688 struct sched_domain *sd;
6689 struct sched_group *sg;
63b2ca30 6690 struct sched_group_capacity *sgc;
54ab4ff4 6691
5cc389bc 6692 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6693 GFP_KERNEL, cpu_to_node(j));
6694 if (!sd)
6695 return -ENOMEM;
6696
6697 *per_cpu_ptr(sdd->sd, j) = sd;
6698
6699 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6700 GFP_KERNEL, cpu_to_node(j));
6701 if (!sg)
6702 return -ENOMEM;
6703
30b4e9eb
IM
6704 sg->next = sg;
6705
54ab4ff4 6706 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6707
63b2ca30 6708 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6709 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6710 if (!sgc)
9c3f75cb
PZ
6711 return -ENOMEM;
6712
63b2ca30 6713 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6714 }
6715 }
6716
6717 return 0;
6718}
6719
6720static void __sdt_free(const struct cpumask *cpu_map)
6721{
6722 struct sched_domain_topology_level *tl;
6723 int j;
6724
27723a68 6725 for_each_sd_topology(tl) {
54ab4ff4
PZ
6726 struct sd_data *sdd = &tl->data;
6727
6728 for_each_cpu(j, cpu_map) {
fb2cf2c6 6729 struct sched_domain *sd;
6730
6731 if (sdd->sd) {
6732 sd = *per_cpu_ptr(sdd->sd, j);
6733 if (sd && (sd->flags & SD_OVERLAP))
6734 free_sched_groups(sd->groups, 0);
6735 kfree(*per_cpu_ptr(sdd->sd, j));
6736 }
6737
6738 if (sdd->sg)
6739 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6740 if (sdd->sgc)
6741 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6742 }
6743 free_percpu(sdd->sd);
fb2cf2c6 6744 sdd->sd = NULL;
54ab4ff4 6745 free_percpu(sdd->sg);
fb2cf2c6 6746 sdd->sg = NULL;
63b2ca30
NP
6747 free_percpu(sdd->sgc);
6748 sdd->sgc = NULL;
54ab4ff4
PZ
6749 }
6750}
6751
2c402dc3 6752struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6753 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6754 struct sched_domain *child, int cpu)
2c402dc3 6755{
143e1e28 6756 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6757 if (!sd)
d069b916 6758 return child;
2c402dc3 6759
2c402dc3 6760 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6761 if (child) {
6762 sd->level = child->level + 1;
6763 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6764 child->parent = sd;
c75e0128 6765 sd->child = child;
6ae72dff
PZ
6766
6767 if (!cpumask_subset(sched_domain_span(child),
6768 sched_domain_span(sd))) {
6769 pr_err("BUG: arch topology borken\n");
6770#ifdef CONFIG_SCHED_DEBUG
6771 pr_err(" the %s domain not a subset of the %s domain\n",
6772 child->name, sd->name);
6773#endif
6774 /* Fixup, ensure @sd has at least @child cpus. */
6775 cpumask_or(sched_domain_span(sd),
6776 sched_domain_span(sd),
6777 sched_domain_span(child));
6778 }
6779
60495e77 6780 }
a841f8ce 6781 set_domain_attribute(sd, attr);
2c402dc3
PZ
6782
6783 return sd;
6784}
6785
2109b99e
AH
6786/*
6787 * Build sched domains for a given set of cpus and attach the sched domains
6788 * to the individual cpus
6789 */
dce840a0
PZ
6790static int build_sched_domains(const struct cpumask *cpu_map,
6791 struct sched_domain_attr *attr)
2109b99e 6792{
1c632169 6793 enum s_alloc alloc_state;
dce840a0 6794 struct sched_domain *sd;
2109b99e 6795 struct s_data d;
822ff793 6796 int i, ret = -ENOMEM;
9c1cfda2 6797
2109b99e
AH
6798 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6799 if (alloc_state != sa_rootdomain)
6800 goto error;
9c1cfda2 6801
dce840a0 6802 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6803 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6804 struct sched_domain_topology_level *tl;
6805
3bd65a80 6806 sd = NULL;
27723a68 6807 for_each_sd_topology(tl) {
4a850cbe 6808 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6809 if (tl == sched_domain_topology)
6810 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6811 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6812 sd->flags |= SD_OVERLAP;
d110235d
PZ
6813 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6814 break;
e3589f6c 6815 }
dce840a0
PZ
6816 }
6817
6818 /* Build the groups for the domains */
6819 for_each_cpu(i, cpu_map) {
6820 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6821 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6822 if (sd->flags & SD_OVERLAP) {
6823 if (build_overlap_sched_groups(sd, i))
6824 goto error;
6825 } else {
6826 if (build_sched_groups(sd, i))
6827 goto error;
6828 }
1cf51902 6829 }
a06dadbe 6830 }
9c1cfda2 6831
ced549fa 6832 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6833 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6834 if (!cpumask_test_cpu(i, cpu_map))
6835 continue;
9c1cfda2 6836
dce840a0
PZ
6837 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6838 claim_allocations(i, sd);
63b2ca30 6839 init_sched_groups_capacity(i, sd);
dce840a0 6840 }
f712c0c7 6841 }
9c1cfda2 6842
1da177e4 6843 /* Attach the domains */
dce840a0 6844 rcu_read_lock();
abcd083a 6845 for_each_cpu(i, cpu_map) {
21d42ccf 6846 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6847 cpu_attach_domain(sd, d.rd, i);
1da177e4 6848 }
dce840a0 6849 rcu_read_unlock();
51888ca2 6850
822ff793 6851 ret = 0;
51888ca2 6852error:
2109b99e 6853 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6854 return ret;
1da177e4 6855}
029190c5 6856
acc3f5d7 6857static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6858static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6859static struct sched_domain_attr *dattr_cur;
6860 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6861
6862/*
6863 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6864 * cpumask) fails, then fallback to a single sched domain,
6865 * as determined by the single cpumask fallback_doms.
029190c5 6866 */
4212823f 6867static cpumask_var_t fallback_doms;
029190c5 6868
ee79d1bd
HC
6869/*
6870 * arch_update_cpu_topology lets virtualized architectures update the
6871 * cpu core maps. It is supposed to return 1 if the topology changed
6872 * or 0 if it stayed the same.
6873 */
52f5684c 6874int __weak arch_update_cpu_topology(void)
22e52b07 6875{
ee79d1bd 6876 return 0;
22e52b07
HC
6877}
6878
acc3f5d7
RR
6879cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6880{
6881 int i;
6882 cpumask_var_t *doms;
6883
6884 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6885 if (!doms)
6886 return NULL;
6887 for (i = 0; i < ndoms; i++) {
6888 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6889 free_sched_domains(doms, i);
6890 return NULL;
6891 }
6892 }
6893 return doms;
6894}
6895
6896void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6897{
6898 unsigned int i;
6899 for (i = 0; i < ndoms; i++)
6900 free_cpumask_var(doms[i]);
6901 kfree(doms);
6902}
6903
1a20ff27 6904/*
41a2d6cf 6905 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6906 * For now this just excludes isolated cpus, but could be used to
6907 * exclude other special cases in the future.
1a20ff27 6908 */
c4a8849a 6909static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6910{
7378547f
MM
6911 int err;
6912
22e52b07 6913 arch_update_cpu_topology();
029190c5 6914 ndoms_cur = 1;
acc3f5d7 6915 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6916 if (!doms_cur)
acc3f5d7
RR
6917 doms_cur = &fallback_doms;
6918 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6919 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6920 register_sched_domain_sysctl();
7378547f
MM
6921
6922 return err;
1a20ff27
DG
6923}
6924
1a20ff27
DG
6925/*
6926 * Detach sched domains from a group of cpus specified in cpu_map
6927 * These cpus will now be attached to the NULL domain
6928 */
96f874e2 6929static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6930{
6931 int i;
6932
dce840a0 6933 rcu_read_lock();
abcd083a 6934 for_each_cpu(i, cpu_map)
57d885fe 6935 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6936 rcu_read_unlock();
1a20ff27
DG
6937}
6938
1d3504fc
HS
6939/* handle null as "default" */
6940static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6941 struct sched_domain_attr *new, int idx_new)
6942{
6943 struct sched_domain_attr tmp;
6944
6945 /* fast path */
6946 if (!new && !cur)
6947 return 1;
6948
6949 tmp = SD_ATTR_INIT;
6950 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6951 new ? (new + idx_new) : &tmp,
6952 sizeof(struct sched_domain_attr));
6953}
6954
029190c5
PJ
6955/*
6956 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6957 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6958 * doms_new[] to the current sched domain partitioning, doms_cur[].
6959 * It destroys each deleted domain and builds each new domain.
6960 *
acc3f5d7 6961 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6962 * The masks don't intersect (don't overlap.) We should setup one
6963 * sched domain for each mask. CPUs not in any of the cpumasks will
6964 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6965 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6966 * it as it is.
6967 *
acc3f5d7
RR
6968 * The passed in 'doms_new' should be allocated using
6969 * alloc_sched_domains. This routine takes ownership of it and will
6970 * free_sched_domains it when done with it. If the caller failed the
6971 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6972 * and partition_sched_domains() will fallback to the single partition
6973 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6974 *
96f874e2 6975 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6976 * ndoms_new == 0 is a special case for destroying existing domains,
6977 * and it will not create the default domain.
dfb512ec 6978 *
029190c5
PJ
6979 * Call with hotplug lock held
6980 */
acc3f5d7 6981void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6982 struct sched_domain_attr *dattr_new)
029190c5 6983{
dfb512ec 6984 int i, j, n;
d65bd5ec 6985 int new_topology;
029190c5 6986
712555ee 6987 mutex_lock(&sched_domains_mutex);
a1835615 6988
7378547f
MM
6989 /* always unregister in case we don't destroy any domains */
6990 unregister_sched_domain_sysctl();
6991
d65bd5ec
HC
6992 /* Let architecture update cpu core mappings. */
6993 new_topology = arch_update_cpu_topology();
6994
dfb512ec 6995 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6996
6997 /* Destroy deleted domains */
6998 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6999 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7000 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7001 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7002 goto match1;
7003 }
7004 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7005 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7006match1:
7007 ;
7008 }
7009
c8d2d47a 7010 n = ndoms_cur;
e761b772 7011 if (doms_new == NULL) {
c8d2d47a 7012 n = 0;
acc3f5d7 7013 doms_new = &fallback_doms;
6ad4c188 7014 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7015 WARN_ON_ONCE(dattr_new);
e761b772
MK
7016 }
7017
029190c5
PJ
7018 /* Build new domains */
7019 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7020 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7021 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7022 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7023 goto match2;
7024 }
7025 /* no match - add a new doms_new */
dce840a0 7026 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7027match2:
7028 ;
7029 }
7030
7031 /* Remember the new sched domains */
acc3f5d7
RR
7032 if (doms_cur != &fallback_doms)
7033 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7034 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7035 doms_cur = doms_new;
1d3504fc 7036 dattr_cur = dattr_new;
029190c5 7037 ndoms_cur = ndoms_new;
7378547f
MM
7038
7039 register_sched_domain_sysctl();
a1835615 7040
712555ee 7041 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7042}
7043
d35be8ba
SB
7044static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7045
1da177e4 7046/*
3a101d05
TH
7047 * Update cpusets according to cpu_active mask. If cpusets are
7048 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7049 * around partition_sched_domains().
d35be8ba
SB
7050 *
7051 * If we come here as part of a suspend/resume, don't touch cpusets because we
7052 * want to restore it back to its original state upon resume anyway.
1da177e4 7053 */
135fb3e1 7054static void cpuset_cpu_active(bool frozen)
e761b772 7055{
e26fbffd 7056 if (!sched_smp_initialized)
135fb3e1 7057 return;
d35be8ba 7058
135fb3e1 7059 if (frozen) {
d35be8ba
SB
7060 /*
7061 * num_cpus_frozen tracks how many CPUs are involved in suspend
7062 * resume sequence. As long as this is not the last online
7063 * operation in the resume sequence, just build a single sched
7064 * domain, ignoring cpusets.
7065 */
7066 num_cpus_frozen--;
7067 if (likely(num_cpus_frozen)) {
7068 partition_sched_domains(1, NULL, NULL);
135fb3e1 7069 return;
d35be8ba 7070 }
d35be8ba
SB
7071 /*
7072 * This is the last CPU online operation. So fall through and
7073 * restore the original sched domains by considering the
7074 * cpuset configurations.
7075 */
3a101d05 7076 }
135fb3e1 7077 cpuset_update_active_cpus(true);
3a101d05 7078}
e761b772 7079
135fb3e1 7080static int cpuset_cpu_inactive(unsigned int cpu, bool frozen)
3a101d05 7081{
3c18d447 7082 unsigned long flags;
3c18d447 7083 struct dl_bw *dl_b;
533445c6
OS
7084 bool overflow;
7085 int cpus;
3c18d447 7086
e26fbffd 7087 if (!sched_smp_initialized)
135fb3e1 7088 return 0;
e26fbffd 7089
135fb3e1 7090 if (!frozen) {
533445c6
OS
7091 rcu_read_lock_sched();
7092 dl_b = dl_bw_of(cpu);
3c18d447 7093
533445c6
OS
7094 raw_spin_lock_irqsave(&dl_b->lock, flags);
7095 cpus = dl_bw_cpus(cpu);
7096 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7097 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7098
533445c6 7099 rcu_read_unlock_sched();
3c18d447 7100
533445c6 7101 if (overflow)
135fb3e1 7102 return -EBUSY;
7ddf96b0 7103 cpuset_update_active_cpus(false);
135fb3e1 7104 } else {
d35be8ba
SB
7105 num_cpus_frozen++;
7106 partition_sched_domains(1, NULL, NULL);
135fb3e1
TG
7107 }
7108 return 0;
7109}
7110
7111static int sched_cpu_active(struct notifier_block *nfb, unsigned long action,
7112 void *hcpu)
7113{
7114 unsigned int cpu = (unsigned long)hcpu;
7115
7116 switch (action & ~CPU_TASKS_FROZEN) {
7117 case CPU_DOWN_FAILED:
7118 case CPU_ONLINE:
7119 set_cpu_active(cpu, true);
7120 sched_domains_numa_masks_set(cpu);
7121 cpuset_cpu_active(action & CPU_TASKS_FROZEN);
7122 return NOTIFY_OK;
e761b772
MK
7123 default:
7124 return NOTIFY_DONE;
7125 }
135fb3e1
TG
7126}
7127
7128static int sched_cpu_inactive(struct notifier_block *nfb,
7129 unsigned long action, void *hcpu)
7130{
7131 unsigned int cpu = (unsigned long)hcpu;
7132 int ret;
7133
7134 switch (action & ~CPU_TASKS_FROZEN) {
7135 case CPU_DOWN_PREPARE:
7136 set_cpu_active(cpu, false);
7137 ret = cpuset_cpu_inactive(cpu, action & CPU_TASKS_FROZEN);
7138 if (ret) {
7139 set_cpu_active(cpu, true);
7140 return notifier_from_errno(ret);
7141 }
135fb3e1
TG
7142 sched_domains_numa_masks_clear(cpu);
7143 return NOTIFY_OK;
7144 default:
7145 return NOTIFY_DONE;
7146 }
7147}
7148
7149int sched_cpu_starting(unsigned int cpu)
7150{
7151 set_cpu_rq_start_time(cpu);
7152 return 0;
e761b772 7153}
e761b772 7154
1da177e4
LT
7155void __init sched_init_smp(void)
7156{
dcc30a35
RR
7157 cpumask_var_t non_isolated_cpus;
7158
7159 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7160 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7161
cb83b629
PZ
7162 sched_init_numa();
7163
6acce3ef
PZ
7164 /*
7165 * There's no userspace yet to cause hotplug operations; hence all the
7166 * cpu masks are stable and all blatant races in the below code cannot
7167 * happen.
7168 */
712555ee 7169 mutex_lock(&sched_domains_mutex);
c4a8849a 7170 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7171 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7172 if (cpumask_empty(non_isolated_cpus))
7173 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7174 mutex_unlock(&sched_domains_mutex);
e761b772 7175
b328ca18 7176 init_hrtick();
5c1e1767
NP
7177
7178 /* Move init over to a non-isolated CPU */
dcc30a35 7179 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7180 BUG();
19978ca6 7181 sched_init_granularity();
dcc30a35 7182 free_cpumask_var(non_isolated_cpus);
4212823f 7183
0e3900e6 7184 init_sched_rt_class();
1baca4ce 7185 init_sched_dl_class();
e26fbffd 7186 sched_smp_initialized = true;
1da177e4 7187}
e26fbffd
TG
7188
7189static int __init migration_init(void)
7190{
7191 void *cpu = (void *)(long)smp_processor_id();
7192 int err;
7193
7194 /* Initialize migration for the boot CPU */
7195 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7196 BUG_ON(err == NOTIFY_BAD);
7197 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7198 register_cpu_notifier(&migration_notifier);
7199
7200 /* Register cpu active notifiers */
7201 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
7202 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
7203
e26fbffd
TG
7204 return 0;
7205}
7206early_initcall(migration_init);
7207
1da177e4
LT
7208#else
7209void __init sched_init_smp(void)
7210{
19978ca6 7211 sched_init_granularity();
1da177e4
LT
7212}
7213#endif /* CONFIG_SMP */
7214
7215int in_sched_functions(unsigned long addr)
7216{
1da177e4
LT
7217 return in_lock_functions(addr) ||
7218 (addr >= (unsigned long)__sched_text_start
7219 && addr < (unsigned long)__sched_text_end);
7220}
7221
029632fb 7222#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7223/*
7224 * Default task group.
7225 * Every task in system belongs to this group at bootup.
7226 */
029632fb 7227struct task_group root_task_group;
35cf4e50 7228LIST_HEAD(task_groups);
b0367629
WL
7229
7230/* Cacheline aligned slab cache for task_group */
7231static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7232#endif
6f505b16 7233
e6252c3e 7234DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7235
1da177e4
LT
7236void __init sched_init(void)
7237{
dd41f596 7238 int i, j;
434d53b0
MT
7239 unsigned long alloc_size = 0, ptr;
7240
7241#ifdef CONFIG_FAIR_GROUP_SCHED
7242 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7243#endif
7244#ifdef CONFIG_RT_GROUP_SCHED
7245 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7246#endif
434d53b0 7247 if (alloc_size) {
36b7b6d4 7248 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7249
7250#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7251 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
07e06b01 7254 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7255 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7256
6d6bc0ad 7257#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7258#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7259 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7260 ptr += nr_cpu_ids * sizeof(void **);
7261
07e06b01 7262 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7263 ptr += nr_cpu_ids * sizeof(void **);
7264
6d6bc0ad 7265#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7266 }
df7c8e84 7267#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7268 for_each_possible_cpu(i) {
7269 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7270 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7271 }
b74e6278 7272#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7273
332ac17e
DF
7274 init_rt_bandwidth(&def_rt_bandwidth,
7275 global_rt_period(), global_rt_runtime());
7276 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7277 global_rt_period(), global_rt_runtime());
332ac17e 7278
57d885fe
GH
7279#ifdef CONFIG_SMP
7280 init_defrootdomain();
7281#endif
7282
d0b27fa7 7283#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7284 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7285 global_rt_period(), global_rt_runtime());
6d6bc0ad 7286#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7287
7c941438 7288#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7289 task_group_cache = KMEM_CACHE(task_group, 0);
7290
07e06b01
YZ
7291 list_add(&root_task_group.list, &task_groups);
7292 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7293 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7294 autogroup_init(&init_task);
7c941438 7295#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7296
0a945022 7297 for_each_possible_cpu(i) {
70b97a7f 7298 struct rq *rq;
1da177e4
LT
7299
7300 rq = cpu_rq(i);
05fa785c 7301 raw_spin_lock_init(&rq->lock);
7897986b 7302 rq->nr_running = 0;
dce48a84
TG
7303 rq->calc_load_active = 0;
7304 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7305 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7306 init_rt_rq(&rq->rt);
7307 init_dl_rq(&rq->dl);
dd41f596 7308#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7309 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7310 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7311 /*
07e06b01 7312 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7313 *
7314 * In case of task-groups formed thr' the cgroup filesystem, it
7315 * gets 100% of the cpu resources in the system. This overall
7316 * system cpu resource is divided among the tasks of
07e06b01 7317 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7318 * based on each entity's (task or task-group's) weight
7319 * (se->load.weight).
7320 *
07e06b01 7321 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7322 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7323 * then A0's share of the cpu resource is:
7324 *
0d905bca 7325 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7326 *
07e06b01
YZ
7327 * We achieve this by letting root_task_group's tasks sit
7328 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7329 */
ab84d31e 7330 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7331 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7332#endif /* CONFIG_FAIR_GROUP_SCHED */
7333
7334 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7335#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7336 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7337#endif
1da177e4 7338
dd41f596
IM
7339 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7340 rq->cpu_load[j] = 0;
fdf3e95d
VP
7341
7342 rq->last_load_update_tick = jiffies;
7343
1da177e4 7344#ifdef CONFIG_SMP
41c7ce9a 7345 rq->sd = NULL;
57d885fe 7346 rq->rd = NULL;
ca6d75e6 7347 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7348 rq->balance_callback = NULL;
1da177e4 7349 rq->active_balance = 0;
dd41f596 7350 rq->next_balance = jiffies;
1da177e4 7351 rq->push_cpu = 0;
0a2966b4 7352 rq->cpu = i;
1f11eb6a 7353 rq->online = 0;
eae0c9df
MG
7354 rq->idle_stamp = 0;
7355 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7356 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7357
7358 INIT_LIST_HEAD(&rq->cfs_tasks);
7359
dc938520 7360 rq_attach_root(rq, &def_root_domain);
3451d024 7361#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7362 rq->nohz_flags = 0;
83cd4fe2 7363#endif
265f22a9
FW
7364#ifdef CONFIG_NO_HZ_FULL
7365 rq->last_sched_tick = 0;
7366#endif
1da177e4 7367#endif
8f4d37ec 7368 init_rq_hrtick(rq);
1da177e4 7369 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7370 }
7371
2dd73a4f 7372 set_load_weight(&init_task);
b50f60ce 7373
e107be36
AK
7374#ifdef CONFIG_PREEMPT_NOTIFIERS
7375 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7376#endif
7377
1da177e4
LT
7378 /*
7379 * The boot idle thread does lazy MMU switching as well:
7380 */
7381 atomic_inc(&init_mm.mm_count);
7382 enter_lazy_tlb(&init_mm, current);
7383
1b537c7d
YD
7384 /*
7385 * During early bootup we pretend to be a normal task:
7386 */
7387 current->sched_class = &fair_sched_class;
7388
1da177e4
LT
7389 /*
7390 * Make us the idle thread. Technically, schedule() should not be
7391 * called from this thread, however somewhere below it might be,
7392 * but because we are the idle thread, we just pick up running again
7393 * when this runqueue becomes "idle".
7394 */
7395 init_idle(current, smp_processor_id());
dce48a84
TG
7396
7397 calc_load_update = jiffies + LOAD_FREQ;
7398
bf4d83f6 7399#ifdef CONFIG_SMP
4cb98839 7400 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7401 /* May be allocated at isolcpus cmdline parse time */
7402 if (cpu_isolated_map == NULL)
7403 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7404 idle_thread_set_boot_cpu();
9cf7243d 7405 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7406#endif
7407 init_sched_fair_class();
6a7b3dc3 7408
6892b75e 7409 scheduler_running = 1;
1da177e4
LT
7410}
7411
d902db1e 7412#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7413static inline int preempt_count_equals(int preempt_offset)
7414{
da7142e2 7415 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7416
4ba8216c 7417 return (nested == preempt_offset);
e4aafea2
FW
7418}
7419
d894837f 7420void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7421{
8eb23b9f
PZ
7422 /*
7423 * Blocking primitives will set (and therefore destroy) current->state,
7424 * since we will exit with TASK_RUNNING make sure we enter with it,
7425 * otherwise we will destroy state.
7426 */
00845eb9 7427 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7428 "do not call blocking ops when !TASK_RUNNING; "
7429 "state=%lx set at [<%p>] %pS\n",
7430 current->state,
7431 (void *)current->task_state_change,
00845eb9 7432 (void *)current->task_state_change);
8eb23b9f 7433
3427445a
PZ
7434 ___might_sleep(file, line, preempt_offset);
7435}
7436EXPORT_SYMBOL(__might_sleep);
7437
7438void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7439{
1da177e4
LT
7440 static unsigned long prev_jiffy; /* ratelimiting */
7441
b3fbab05 7442 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7443 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7444 !is_idle_task(current)) ||
e4aafea2 7445 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7446 return;
7447 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7448 return;
7449 prev_jiffy = jiffies;
7450
3df0fc5b
PZ
7451 printk(KERN_ERR
7452 "BUG: sleeping function called from invalid context at %s:%d\n",
7453 file, line);
7454 printk(KERN_ERR
7455 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7456 in_atomic(), irqs_disabled(),
7457 current->pid, current->comm);
aef745fc 7458
a8b686b3
ES
7459 if (task_stack_end_corrupted(current))
7460 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7461
aef745fc
IM
7462 debug_show_held_locks(current);
7463 if (irqs_disabled())
7464 print_irqtrace_events(current);
8f47b187
TG
7465#ifdef CONFIG_DEBUG_PREEMPT
7466 if (!preempt_count_equals(preempt_offset)) {
7467 pr_err("Preemption disabled at:");
7468 print_ip_sym(current->preempt_disable_ip);
7469 pr_cont("\n");
7470 }
7471#endif
aef745fc 7472 dump_stack();
1da177e4 7473}
3427445a 7474EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7475#endif
7476
7477#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7478void normalize_rt_tasks(void)
3a5e4dc1 7479{
dbc7f069 7480 struct task_struct *g, *p;
d50dde5a
DF
7481 struct sched_attr attr = {
7482 .sched_policy = SCHED_NORMAL,
7483 };
1da177e4 7484
3472eaa1 7485 read_lock(&tasklist_lock);
5d07f420 7486 for_each_process_thread(g, p) {
178be793
IM
7487 /*
7488 * Only normalize user tasks:
7489 */
3472eaa1 7490 if (p->flags & PF_KTHREAD)
178be793
IM
7491 continue;
7492
6cfb0d5d 7493 p->se.exec_start = 0;
6cfb0d5d 7494#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7495 p->se.statistics.wait_start = 0;
7496 p->se.statistics.sleep_start = 0;
7497 p->se.statistics.block_start = 0;
6cfb0d5d 7498#endif
dd41f596 7499
aab03e05 7500 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7501 /*
7502 * Renice negative nice level userspace
7503 * tasks back to 0:
7504 */
3472eaa1 7505 if (task_nice(p) < 0)
dd41f596 7506 set_user_nice(p, 0);
1da177e4 7507 continue;
dd41f596 7508 }
1da177e4 7509
dbc7f069 7510 __sched_setscheduler(p, &attr, false, false);
5d07f420 7511 }
3472eaa1 7512 read_unlock(&tasklist_lock);
1da177e4
LT
7513}
7514
7515#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7516
67fc4e0c 7517#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7518/*
67fc4e0c 7519 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7520 *
7521 * They can only be called when the whole system has been
7522 * stopped - every CPU needs to be quiescent, and no scheduling
7523 * activity can take place. Using them for anything else would
7524 * be a serious bug, and as a result, they aren't even visible
7525 * under any other configuration.
7526 */
7527
7528/**
7529 * curr_task - return the current task for a given cpu.
7530 * @cpu: the processor in question.
7531 *
7532 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7533 *
7534 * Return: The current task for @cpu.
1df5c10a 7535 */
36c8b586 7536struct task_struct *curr_task(int cpu)
1df5c10a
LT
7537{
7538 return cpu_curr(cpu);
7539}
7540
67fc4e0c
JW
7541#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7542
7543#ifdef CONFIG_IA64
1df5c10a
LT
7544/**
7545 * set_curr_task - set the current task for a given cpu.
7546 * @cpu: the processor in question.
7547 * @p: the task pointer to set.
7548 *
7549 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7550 * are serviced on a separate stack. It allows the architecture to switch the
7551 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7552 * must be called with all CPU's synchronized, and interrupts disabled, the
7553 * and caller must save the original value of the current task (see
7554 * curr_task() above) and restore that value before reenabling interrupts and
7555 * re-starting the system.
7556 *
7557 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7558 */
36c8b586 7559void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7560{
7561 cpu_curr(cpu) = p;
7562}
7563
7564#endif
29f59db3 7565
7c941438 7566#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7567/* task_group_lock serializes the addition/removal of task groups */
7568static DEFINE_SPINLOCK(task_group_lock);
7569
2f5177f0 7570static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7571{
7572 free_fair_sched_group(tg);
7573 free_rt_sched_group(tg);
e9aa1dd1 7574 autogroup_free(tg);
b0367629 7575 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7576}
7577
7578/* allocate runqueue etc for a new task group */
ec7dc8ac 7579struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7580{
7581 struct task_group *tg;
bccbe08a 7582
b0367629 7583 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7584 if (!tg)
7585 return ERR_PTR(-ENOMEM);
7586
ec7dc8ac 7587 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7588 goto err;
7589
ec7dc8ac 7590 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7591 goto err;
7592
ace783b9
LZ
7593 return tg;
7594
7595err:
2f5177f0 7596 sched_free_group(tg);
ace783b9
LZ
7597 return ERR_PTR(-ENOMEM);
7598}
7599
7600void sched_online_group(struct task_group *tg, struct task_group *parent)
7601{
7602 unsigned long flags;
7603
8ed36996 7604 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7605 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7606
7607 WARN_ON(!parent); /* root should already exist */
7608
7609 tg->parent = parent;
f473aa5e 7610 INIT_LIST_HEAD(&tg->children);
09f2724a 7611 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7612 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7613}
7614
9b5b7751 7615/* rcu callback to free various structures associated with a task group */
2f5177f0 7616static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7617{
29f59db3 7618 /* now it should be safe to free those cfs_rqs */
2f5177f0 7619 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7620}
7621
4cf86d77 7622void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7623{
7624 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7625 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7626}
7627
7628void sched_offline_group(struct task_group *tg)
29f59db3 7629{
8ed36996 7630 unsigned long flags;
29f59db3 7631
3d4b47b4 7632 /* end participation in shares distribution */
6fe1f348 7633 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7634
7635 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7636 list_del_rcu(&tg->list);
f473aa5e 7637 list_del_rcu(&tg->siblings);
8ed36996 7638 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7639}
7640
9b5b7751 7641/* change task's runqueue when it moves between groups.
3a252015
IM
7642 * The caller of this function should have put the task in its new group
7643 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7644 * reflect its new group.
9b5b7751
SV
7645 */
7646void sched_move_task(struct task_struct *tsk)
29f59db3 7647{
8323f26c 7648 struct task_group *tg;
da0c1e65 7649 int queued, running;
29f59db3
SV
7650 unsigned long flags;
7651 struct rq *rq;
7652
7653 rq = task_rq_lock(tsk, &flags);
7654
051a1d1a 7655 running = task_current(rq, tsk);
da0c1e65 7656 queued = task_on_rq_queued(tsk);
29f59db3 7657
da0c1e65 7658 if (queued)
ff77e468 7659 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7660 if (unlikely(running))
f3cd1c4e 7661 put_prev_task(rq, tsk);
29f59db3 7662
f7b8a47d
KT
7663 /*
7664 * All callers are synchronized by task_rq_lock(); we do not use RCU
7665 * which is pointless here. Thus, we pass "true" to task_css_check()
7666 * to prevent lockdep warnings.
7667 */
7668 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7669 struct task_group, css);
7670 tg = autogroup_task_group(tsk, tg);
7671 tsk->sched_task_group = tg;
7672
810b3817 7673#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7674 if (tsk->sched_class->task_move_group)
bc54da21 7675 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7676 else
810b3817 7677#endif
b2b5ce02 7678 set_task_rq(tsk, task_cpu(tsk));
810b3817 7679
0e1f3483
HS
7680 if (unlikely(running))
7681 tsk->sched_class->set_curr_task(rq);
da0c1e65 7682 if (queued)
ff77e468 7683 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7684
0122ec5b 7685 task_rq_unlock(rq, tsk, &flags);
29f59db3 7686}
7c941438 7687#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7688
a790de99
PT
7689#ifdef CONFIG_RT_GROUP_SCHED
7690/*
7691 * Ensure that the real time constraints are schedulable.
7692 */
7693static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7694
9a7e0b18
PZ
7695/* Must be called with tasklist_lock held */
7696static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7697{
9a7e0b18 7698 struct task_struct *g, *p;
b40b2e8e 7699
1fe89e1b
PZ
7700 /*
7701 * Autogroups do not have RT tasks; see autogroup_create().
7702 */
7703 if (task_group_is_autogroup(tg))
7704 return 0;
7705
5d07f420 7706 for_each_process_thread(g, p) {
8651c658 7707 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7708 return 1;
5d07f420 7709 }
b40b2e8e 7710
9a7e0b18
PZ
7711 return 0;
7712}
b40b2e8e 7713
9a7e0b18
PZ
7714struct rt_schedulable_data {
7715 struct task_group *tg;
7716 u64 rt_period;
7717 u64 rt_runtime;
7718};
b40b2e8e 7719
a790de99 7720static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7721{
7722 struct rt_schedulable_data *d = data;
7723 struct task_group *child;
7724 unsigned long total, sum = 0;
7725 u64 period, runtime;
b40b2e8e 7726
9a7e0b18
PZ
7727 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7728 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7729
9a7e0b18
PZ
7730 if (tg == d->tg) {
7731 period = d->rt_period;
7732 runtime = d->rt_runtime;
b40b2e8e 7733 }
b40b2e8e 7734
4653f803
PZ
7735 /*
7736 * Cannot have more runtime than the period.
7737 */
7738 if (runtime > period && runtime != RUNTIME_INF)
7739 return -EINVAL;
6f505b16 7740
4653f803
PZ
7741 /*
7742 * Ensure we don't starve existing RT tasks.
7743 */
9a7e0b18
PZ
7744 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7745 return -EBUSY;
6f505b16 7746
9a7e0b18 7747 total = to_ratio(period, runtime);
6f505b16 7748
4653f803
PZ
7749 /*
7750 * Nobody can have more than the global setting allows.
7751 */
7752 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7753 return -EINVAL;
6f505b16 7754
4653f803
PZ
7755 /*
7756 * The sum of our children's runtime should not exceed our own.
7757 */
9a7e0b18
PZ
7758 list_for_each_entry_rcu(child, &tg->children, siblings) {
7759 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7760 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7761
9a7e0b18
PZ
7762 if (child == d->tg) {
7763 period = d->rt_period;
7764 runtime = d->rt_runtime;
7765 }
6f505b16 7766
9a7e0b18 7767 sum += to_ratio(period, runtime);
9f0c1e56 7768 }
6f505b16 7769
9a7e0b18
PZ
7770 if (sum > total)
7771 return -EINVAL;
7772
7773 return 0;
6f505b16
PZ
7774}
7775
9a7e0b18 7776static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7777{
8277434e
PT
7778 int ret;
7779
9a7e0b18
PZ
7780 struct rt_schedulable_data data = {
7781 .tg = tg,
7782 .rt_period = period,
7783 .rt_runtime = runtime,
7784 };
7785
8277434e
PT
7786 rcu_read_lock();
7787 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7788 rcu_read_unlock();
7789
7790 return ret;
521f1a24
DG
7791}
7792
ab84d31e 7793static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7794 u64 rt_period, u64 rt_runtime)
6f505b16 7795{
ac086bc2 7796 int i, err = 0;
9f0c1e56 7797
2636ed5f
PZ
7798 /*
7799 * Disallowing the root group RT runtime is BAD, it would disallow the
7800 * kernel creating (and or operating) RT threads.
7801 */
7802 if (tg == &root_task_group && rt_runtime == 0)
7803 return -EINVAL;
7804
7805 /* No period doesn't make any sense. */
7806 if (rt_period == 0)
7807 return -EINVAL;
7808
9f0c1e56 7809 mutex_lock(&rt_constraints_mutex);
521f1a24 7810 read_lock(&tasklist_lock);
9a7e0b18
PZ
7811 err = __rt_schedulable(tg, rt_period, rt_runtime);
7812 if (err)
9f0c1e56 7813 goto unlock;
ac086bc2 7814
0986b11b 7815 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7816 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7817 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7818
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = tg->rt_rq[i];
7821
0986b11b 7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7823 rt_rq->rt_runtime = rt_runtime;
0986b11b 7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7825 }
0986b11b 7826 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7827unlock:
521f1a24 7828 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7829 mutex_unlock(&rt_constraints_mutex);
7830
7831 return err;
6f505b16
PZ
7832}
7833
25cc7da7 7834static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7835{
7836 u64 rt_runtime, rt_period;
7837
7838 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7839 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7840 if (rt_runtime_us < 0)
7841 rt_runtime = RUNTIME_INF;
7842
ab84d31e 7843 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7844}
7845
25cc7da7 7846static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7847{
7848 u64 rt_runtime_us;
7849
d0b27fa7 7850 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7851 return -1;
7852
d0b27fa7 7853 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7854 do_div(rt_runtime_us, NSEC_PER_USEC);
7855 return rt_runtime_us;
7856}
d0b27fa7 7857
ce2f5fe4 7858static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7859{
7860 u64 rt_runtime, rt_period;
7861
ce2f5fe4 7862 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7863 rt_runtime = tg->rt_bandwidth.rt_runtime;
7864
ab84d31e 7865 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7866}
7867
25cc7da7 7868static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7869{
7870 u64 rt_period_us;
7871
7872 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7873 do_div(rt_period_us, NSEC_PER_USEC);
7874 return rt_period_us;
7875}
332ac17e 7876#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7877
332ac17e 7878#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7879static int sched_rt_global_constraints(void)
7880{
7881 int ret = 0;
7882
7883 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7884 read_lock(&tasklist_lock);
4653f803 7885 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7886 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7887 mutex_unlock(&rt_constraints_mutex);
7888
7889 return ret;
7890}
54e99124 7891
25cc7da7 7892static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7893{
7894 /* Don't accept realtime tasks when there is no way for them to run */
7895 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7896 return 0;
7897
7898 return 1;
7899}
7900
6d6bc0ad 7901#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7902static int sched_rt_global_constraints(void)
7903{
ac086bc2 7904 unsigned long flags;
332ac17e 7905 int i, ret = 0;
ec5d4989 7906
0986b11b 7907 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7908 for_each_possible_cpu(i) {
7909 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7910
0986b11b 7911 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7912 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7913 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7914 }
0986b11b 7915 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7916
332ac17e 7917 return ret;
d0b27fa7 7918}
6d6bc0ad 7919#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7920
a1963b81 7921static int sched_dl_global_validate(void)
332ac17e 7922{
1724813d
PZ
7923 u64 runtime = global_rt_runtime();
7924 u64 period = global_rt_period();
332ac17e 7925 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7926 struct dl_bw *dl_b;
1724813d 7927 int cpu, ret = 0;
49516342 7928 unsigned long flags;
332ac17e
DF
7929
7930 /*
7931 * Here we want to check the bandwidth not being set to some
7932 * value smaller than the currently allocated bandwidth in
7933 * any of the root_domains.
7934 *
7935 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7936 * cycling on root_domains... Discussion on different/better
7937 * solutions is welcome!
7938 */
1724813d 7939 for_each_possible_cpu(cpu) {
f10e00f4
KT
7940 rcu_read_lock_sched();
7941 dl_b = dl_bw_of(cpu);
332ac17e 7942
49516342 7943 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7944 if (new_bw < dl_b->total_bw)
7945 ret = -EBUSY;
49516342 7946 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7947
f10e00f4
KT
7948 rcu_read_unlock_sched();
7949
1724813d
PZ
7950 if (ret)
7951 break;
332ac17e
DF
7952 }
7953
1724813d 7954 return ret;
332ac17e
DF
7955}
7956
1724813d 7957static void sched_dl_do_global(void)
ce0dbbbb 7958{
1724813d 7959 u64 new_bw = -1;
f10e00f4 7960 struct dl_bw *dl_b;
1724813d 7961 int cpu;
49516342 7962 unsigned long flags;
ce0dbbbb 7963
1724813d
PZ
7964 def_dl_bandwidth.dl_period = global_rt_period();
7965 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7966
7967 if (global_rt_runtime() != RUNTIME_INF)
7968 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7969
7970 /*
7971 * FIXME: As above...
7972 */
7973 for_each_possible_cpu(cpu) {
f10e00f4
KT
7974 rcu_read_lock_sched();
7975 dl_b = dl_bw_of(cpu);
1724813d 7976
49516342 7977 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7978 dl_b->bw = new_bw;
49516342 7979 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7980
7981 rcu_read_unlock_sched();
ce0dbbbb 7982 }
1724813d
PZ
7983}
7984
7985static int sched_rt_global_validate(void)
7986{
7987 if (sysctl_sched_rt_period <= 0)
7988 return -EINVAL;
7989
e9e7cb38
JL
7990 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7991 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7992 return -EINVAL;
7993
7994 return 0;
7995}
7996
7997static void sched_rt_do_global(void)
7998{
7999 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8000 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8001}
8002
d0b27fa7 8003int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8004 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8005 loff_t *ppos)
8006{
d0b27fa7
PZ
8007 int old_period, old_runtime;
8008 static DEFINE_MUTEX(mutex);
1724813d 8009 int ret;
d0b27fa7
PZ
8010
8011 mutex_lock(&mutex);
8012 old_period = sysctl_sched_rt_period;
8013 old_runtime = sysctl_sched_rt_runtime;
8014
8d65af78 8015 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8016
8017 if (!ret && write) {
1724813d
PZ
8018 ret = sched_rt_global_validate();
8019 if (ret)
8020 goto undo;
8021
a1963b81 8022 ret = sched_dl_global_validate();
1724813d
PZ
8023 if (ret)
8024 goto undo;
8025
a1963b81 8026 ret = sched_rt_global_constraints();
1724813d
PZ
8027 if (ret)
8028 goto undo;
8029
8030 sched_rt_do_global();
8031 sched_dl_do_global();
8032 }
8033 if (0) {
8034undo:
8035 sysctl_sched_rt_period = old_period;
8036 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8037 }
8038 mutex_unlock(&mutex);
8039
8040 return ret;
8041}
68318b8e 8042
1724813d 8043int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8044 void __user *buffer, size_t *lenp,
8045 loff_t *ppos)
8046{
8047 int ret;
332ac17e 8048 static DEFINE_MUTEX(mutex);
332ac17e
DF
8049
8050 mutex_lock(&mutex);
332ac17e 8051 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8052 /* make sure that internally we keep jiffies */
8053 /* also, writing zero resets timeslice to default */
332ac17e 8054 if (!ret && write) {
1724813d
PZ
8055 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8056 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8057 }
8058 mutex_unlock(&mutex);
332ac17e
DF
8059 return ret;
8060}
8061
052f1dc7 8062#ifdef CONFIG_CGROUP_SCHED
68318b8e 8063
a7c6d554 8064static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8065{
a7c6d554 8066 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8067}
8068
eb95419b
TH
8069static struct cgroup_subsys_state *
8070cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8071{
eb95419b
TH
8072 struct task_group *parent = css_tg(parent_css);
8073 struct task_group *tg;
68318b8e 8074
eb95419b 8075 if (!parent) {
68318b8e 8076 /* This is early initialization for the top cgroup */
07e06b01 8077 return &root_task_group.css;
68318b8e
SV
8078 }
8079
ec7dc8ac 8080 tg = sched_create_group(parent);
68318b8e
SV
8081 if (IS_ERR(tg))
8082 return ERR_PTR(-ENOMEM);
8083
2f5177f0
PZ
8084 sched_online_group(tg, parent);
8085
68318b8e
SV
8086 return &tg->css;
8087}
8088
2f5177f0 8089static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8090{
eb95419b 8091 struct task_group *tg = css_tg(css);
ace783b9 8092
2f5177f0 8093 sched_offline_group(tg);
ace783b9
LZ
8094}
8095
eb95419b 8096static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8097{
eb95419b 8098 struct task_group *tg = css_tg(css);
68318b8e 8099
2f5177f0
PZ
8100 /*
8101 * Relies on the RCU grace period between css_released() and this.
8102 */
8103 sched_free_group(tg);
ace783b9
LZ
8104}
8105
b53202e6 8106static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8107{
8108 sched_move_task(task);
8109}
8110
1f7dd3e5 8111static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8112{
bb9d97b6 8113 struct task_struct *task;
1f7dd3e5 8114 struct cgroup_subsys_state *css;
bb9d97b6 8115
1f7dd3e5 8116 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8117#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8118 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8119 return -EINVAL;
b68aa230 8120#else
bb9d97b6
TH
8121 /* We don't support RT-tasks being in separate groups */
8122 if (task->sched_class != &fair_sched_class)
8123 return -EINVAL;
b68aa230 8124#endif
bb9d97b6 8125 }
be367d09
BB
8126 return 0;
8127}
68318b8e 8128
1f7dd3e5 8129static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8130{
bb9d97b6 8131 struct task_struct *task;
1f7dd3e5 8132 struct cgroup_subsys_state *css;
bb9d97b6 8133
1f7dd3e5 8134 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8135 sched_move_task(task);
68318b8e
SV
8136}
8137
052f1dc7 8138#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8139static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8140 struct cftype *cftype, u64 shareval)
68318b8e 8141{
182446d0 8142 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8143}
8144
182446d0
TH
8145static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8146 struct cftype *cft)
68318b8e 8147{
182446d0 8148 struct task_group *tg = css_tg(css);
68318b8e 8149
c8b28116 8150 return (u64) scale_load_down(tg->shares);
68318b8e 8151}
ab84d31e
PT
8152
8153#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8154static DEFINE_MUTEX(cfs_constraints_mutex);
8155
ab84d31e
PT
8156const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8157const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8158
a790de99
PT
8159static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8160
ab84d31e
PT
8161static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8162{
56f570e5 8163 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8164 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8165
8166 if (tg == &root_task_group)
8167 return -EINVAL;
8168
8169 /*
8170 * Ensure we have at some amount of bandwidth every period. This is
8171 * to prevent reaching a state of large arrears when throttled via
8172 * entity_tick() resulting in prolonged exit starvation.
8173 */
8174 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8175 return -EINVAL;
8176
8177 /*
8178 * Likewise, bound things on the otherside by preventing insane quota
8179 * periods. This also allows us to normalize in computing quota
8180 * feasibility.
8181 */
8182 if (period > max_cfs_quota_period)
8183 return -EINVAL;
8184
0e59bdae
KT
8185 /*
8186 * Prevent race between setting of cfs_rq->runtime_enabled and
8187 * unthrottle_offline_cfs_rqs().
8188 */
8189 get_online_cpus();
a790de99
PT
8190 mutex_lock(&cfs_constraints_mutex);
8191 ret = __cfs_schedulable(tg, period, quota);
8192 if (ret)
8193 goto out_unlock;
8194
58088ad0 8195 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8196 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8197 /*
8198 * If we need to toggle cfs_bandwidth_used, off->on must occur
8199 * before making related changes, and on->off must occur afterwards
8200 */
8201 if (runtime_enabled && !runtime_was_enabled)
8202 cfs_bandwidth_usage_inc();
ab84d31e
PT
8203 raw_spin_lock_irq(&cfs_b->lock);
8204 cfs_b->period = ns_to_ktime(period);
8205 cfs_b->quota = quota;
58088ad0 8206
a9cf55b2 8207 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8208 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8209 if (runtime_enabled)
8210 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8211 raw_spin_unlock_irq(&cfs_b->lock);
8212
0e59bdae 8213 for_each_online_cpu(i) {
ab84d31e 8214 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8215 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8216
8217 raw_spin_lock_irq(&rq->lock);
58088ad0 8218 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8219 cfs_rq->runtime_remaining = 0;
671fd9da 8220
029632fb 8221 if (cfs_rq->throttled)
671fd9da 8222 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8223 raw_spin_unlock_irq(&rq->lock);
8224 }
1ee14e6c
BS
8225 if (runtime_was_enabled && !runtime_enabled)
8226 cfs_bandwidth_usage_dec();
a790de99
PT
8227out_unlock:
8228 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8229 put_online_cpus();
ab84d31e 8230
a790de99 8231 return ret;
ab84d31e
PT
8232}
8233
8234int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8235{
8236 u64 quota, period;
8237
029632fb 8238 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8239 if (cfs_quota_us < 0)
8240 quota = RUNTIME_INF;
8241 else
8242 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8243
8244 return tg_set_cfs_bandwidth(tg, period, quota);
8245}
8246
8247long tg_get_cfs_quota(struct task_group *tg)
8248{
8249 u64 quota_us;
8250
029632fb 8251 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8252 return -1;
8253
029632fb 8254 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8255 do_div(quota_us, NSEC_PER_USEC);
8256
8257 return quota_us;
8258}
8259
8260int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8261{
8262 u64 quota, period;
8263
8264 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8265 quota = tg->cfs_bandwidth.quota;
ab84d31e 8266
ab84d31e
PT
8267 return tg_set_cfs_bandwidth(tg, period, quota);
8268}
8269
8270long tg_get_cfs_period(struct task_group *tg)
8271{
8272 u64 cfs_period_us;
8273
029632fb 8274 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8275 do_div(cfs_period_us, NSEC_PER_USEC);
8276
8277 return cfs_period_us;
8278}
8279
182446d0
TH
8280static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8281 struct cftype *cft)
ab84d31e 8282{
182446d0 8283 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8284}
8285
182446d0
TH
8286static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8287 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8288{
182446d0 8289 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8290}
8291
182446d0
TH
8292static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8293 struct cftype *cft)
ab84d31e 8294{
182446d0 8295 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8296}
8297
182446d0
TH
8298static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8299 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8300{
182446d0 8301 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8302}
8303
a790de99
PT
8304struct cfs_schedulable_data {
8305 struct task_group *tg;
8306 u64 period, quota;
8307};
8308
8309/*
8310 * normalize group quota/period to be quota/max_period
8311 * note: units are usecs
8312 */
8313static u64 normalize_cfs_quota(struct task_group *tg,
8314 struct cfs_schedulable_data *d)
8315{
8316 u64 quota, period;
8317
8318 if (tg == d->tg) {
8319 period = d->period;
8320 quota = d->quota;
8321 } else {
8322 period = tg_get_cfs_period(tg);
8323 quota = tg_get_cfs_quota(tg);
8324 }
8325
8326 /* note: these should typically be equivalent */
8327 if (quota == RUNTIME_INF || quota == -1)
8328 return RUNTIME_INF;
8329
8330 return to_ratio(period, quota);
8331}
8332
8333static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8334{
8335 struct cfs_schedulable_data *d = data;
029632fb 8336 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8337 s64 quota = 0, parent_quota = -1;
8338
8339 if (!tg->parent) {
8340 quota = RUNTIME_INF;
8341 } else {
029632fb 8342 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8343
8344 quota = normalize_cfs_quota(tg, d);
9c58c79a 8345 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8346
8347 /*
8348 * ensure max(child_quota) <= parent_quota, inherit when no
8349 * limit is set
8350 */
8351 if (quota == RUNTIME_INF)
8352 quota = parent_quota;
8353 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8354 return -EINVAL;
8355 }
9c58c79a 8356 cfs_b->hierarchical_quota = quota;
a790de99
PT
8357
8358 return 0;
8359}
8360
8361static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8362{
8277434e 8363 int ret;
a790de99
PT
8364 struct cfs_schedulable_data data = {
8365 .tg = tg,
8366 .period = period,
8367 .quota = quota,
8368 };
8369
8370 if (quota != RUNTIME_INF) {
8371 do_div(data.period, NSEC_PER_USEC);
8372 do_div(data.quota, NSEC_PER_USEC);
8373 }
8374
8277434e
PT
8375 rcu_read_lock();
8376 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8377 rcu_read_unlock();
8378
8379 return ret;
a790de99 8380}
e8da1b18 8381
2da8ca82 8382static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8383{
2da8ca82 8384 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8385 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8386
44ffc75b
TH
8387 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8388 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8389 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8390
8391 return 0;
8392}
ab84d31e 8393#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8394#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8395
052f1dc7 8396#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8397static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8398 struct cftype *cft, s64 val)
6f505b16 8399{
182446d0 8400 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8401}
8402
182446d0
TH
8403static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8404 struct cftype *cft)
6f505b16 8405{
182446d0 8406 return sched_group_rt_runtime(css_tg(css));
6f505b16 8407}
d0b27fa7 8408
182446d0
TH
8409static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8410 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8411{
182446d0 8412 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8413}
8414
182446d0
TH
8415static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8416 struct cftype *cft)
d0b27fa7 8417{
182446d0 8418 return sched_group_rt_period(css_tg(css));
d0b27fa7 8419}
6d6bc0ad 8420#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8421
fe5c7cc2 8422static struct cftype cpu_files[] = {
052f1dc7 8423#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8424 {
8425 .name = "shares",
f4c753b7
PM
8426 .read_u64 = cpu_shares_read_u64,
8427 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8428 },
052f1dc7 8429#endif
ab84d31e
PT
8430#ifdef CONFIG_CFS_BANDWIDTH
8431 {
8432 .name = "cfs_quota_us",
8433 .read_s64 = cpu_cfs_quota_read_s64,
8434 .write_s64 = cpu_cfs_quota_write_s64,
8435 },
8436 {
8437 .name = "cfs_period_us",
8438 .read_u64 = cpu_cfs_period_read_u64,
8439 .write_u64 = cpu_cfs_period_write_u64,
8440 },
e8da1b18
NR
8441 {
8442 .name = "stat",
2da8ca82 8443 .seq_show = cpu_stats_show,
e8da1b18 8444 },
ab84d31e 8445#endif
052f1dc7 8446#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8447 {
9f0c1e56 8448 .name = "rt_runtime_us",
06ecb27c
PM
8449 .read_s64 = cpu_rt_runtime_read,
8450 .write_s64 = cpu_rt_runtime_write,
6f505b16 8451 },
d0b27fa7
PZ
8452 {
8453 .name = "rt_period_us",
f4c753b7
PM
8454 .read_u64 = cpu_rt_period_read_uint,
8455 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8456 },
052f1dc7 8457#endif
4baf6e33 8458 { } /* terminate */
68318b8e
SV
8459};
8460
073219e9 8461struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8462 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8463 .css_released = cpu_cgroup_css_released,
92fb9748 8464 .css_free = cpu_cgroup_css_free,
eeb61e53 8465 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8466 .can_attach = cpu_cgroup_can_attach,
8467 .attach = cpu_cgroup_attach,
5577964e 8468 .legacy_cftypes = cpu_files,
b38e42e9 8469 .early_init = true,
68318b8e
SV
8470};
8471
052f1dc7 8472#endif /* CONFIG_CGROUP_SCHED */
d842de87 8473
b637a328
PM
8474void dump_cpu_task(int cpu)
8475{
8476 pr_info("Task dump for CPU %d:\n", cpu);
8477 sched_show_task(cpu_curr(cpu));
8478}
ed82b8a1
AK
8479
8480/*
8481 * Nice levels are multiplicative, with a gentle 10% change for every
8482 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8483 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8484 * that remained on nice 0.
8485 *
8486 * The "10% effect" is relative and cumulative: from _any_ nice level,
8487 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8488 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8489 * If a task goes up by ~10% and another task goes down by ~10% then
8490 * the relative distance between them is ~25%.)
8491 */
8492const int sched_prio_to_weight[40] = {
8493 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8494 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8495 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8496 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8497 /* 0 */ 1024, 820, 655, 526, 423,
8498 /* 5 */ 335, 272, 215, 172, 137,
8499 /* 10 */ 110, 87, 70, 56, 45,
8500 /* 15 */ 36, 29, 23, 18, 15,
8501};
8502
8503/*
8504 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8505 *
8506 * In cases where the weight does not change often, we can use the
8507 * precalculated inverse to speed up arithmetics by turning divisions
8508 * into multiplications:
8509 */
8510const u32 sched_prio_to_wmult[40] = {
8511 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8512 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8513 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8514 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8515 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8516 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8517 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8518 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8519};
This page took 2.933661 seconds and 5 git commands to generate.