Merge branch 'x86/idle' into sched/core
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
332ac17e
DF
299/*
300 * Maximum bandwidth available for all -deadline tasks and groups
301 * (if group scheduling is configured) on each CPU.
302 *
303 * default: 5%
304 */
305unsigned int sysctl_sched_dl_period = 1000000;
306int sysctl_sched_dl_runtime = 50000;
307
fa85ae24 308
1da177e4 309
0970d299 310/*
0122ec5b 311 * __task_rq_lock - lock the rq @p resides on.
b29739f9 312 */
70b97a7f 313static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
314 __acquires(rq->lock)
315{
0970d299
PZ
316 struct rq *rq;
317
0122ec5b
PZ
318 lockdep_assert_held(&p->pi_lock);
319
3a5c359a 320 for (;;) {
0970d299 321 rq = task_rq(p);
05fa785c 322 raw_spin_lock(&rq->lock);
65cc8e48 323 if (likely(rq == task_rq(p)))
3a5c359a 324 return rq;
05fa785c 325 raw_spin_unlock(&rq->lock);
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
65cc8e48 342 if (likely(rq == task_rq(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 346 }
1da177e4
LT
347}
348
a9957449 349static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
350 __releases(rq->lock)
351{
05fa785c 352 raw_spin_unlock(&rq->lock);
b29739f9
IM
353}
354
0122ec5b
PZ
355static inline void
356task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 357 __releases(rq->lock)
0122ec5b 358 __releases(p->pi_lock)
1da177e4 359{
0122ec5b
PZ
360 raw_spin_unlock(&rq->lock);
361 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
362}
363
1da177e4 364/*
cc2a73b5 365 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 366 */
a9957449 367static struct rq *this_rq_lock(void)
1da177e4
LT
368 __acquires(rq->lock)
369{
70b97a7f 370 struct rq *rq;
1da177e4
LT
371
372 local_irq_disable();
373 rq = this_rq();
05fa785c 374 raw_spin_lock(&rq->lock);
1da177e4
LT
375
376 return rq;
377}
378
8f4d37ec
PZ
379#ifdef CONFIG_SCHED_HRTICK
380/*
381 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 382 */
8f4d37ec 383
8f4d37ec
PZ
384static void hrtick_clear(struct rq *rq)
385{
386 if (hrtimer_active(&rq->hrtick_timer))
387 hrtimer_cancel(&rq->hrtick_timer);
388}
389
8f4d37ec
PZ
390/*
391 * High-resolution timer tick.
392 * Runs from hardirq context with interrupts disabled.
393 */
394static enum hrtimer_restart hrtick(struct hrtimer *timer)
395{
396 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
397
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399
05fa785c 400 raw_spin_lock(&rq->lock);
3e51f33f 401 update_rq_clock(rq);
8f4d37ec 402 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 403 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
404
405 return HRTIMER_NORESTART;
406}
407
95e904c7 408#ifdef CONFIG_SMP
971ee28c
PZ
409
410static int __hrtick_restart(struct rq *rq)
411{
412 struct hrtimer *timer = &rq->hrtick_timer;
413 ktime_t time = hrtimer_get_softexpires(timer);
414
415 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
416}
417
31656519
PZ
418/*
419 * called from hardirq (IPI) context
420 */
421static void __hrtick_start(void *arg)
b328ca18 422{
31656519 423 struct rq *rq = arg;
b328ca18 424
05fa785c 425 raw_spin_lock(&rq->lock);
971ee28c 426 __hrtick_restart(rq);
31656519 427 rq->hrtick_csd_pending = 0;
05fa785c 428 raw_spin_unlock(&rq->lock);
b328ca18
PZ
429}
430
31656519
PZ
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
029632fb 436void hrtick_start(struct rq *rq, u64 delay)
b328ca18 437{
31656519
PZ
438 struct hrtimer *timer = &rq->hrtick_timer;
439 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 440
cc584b21 441 hrtimer_set_expires(timer, time);
31656519
PZ
442
443 if (rq == this_rq()) {
971ee28c 444 __hrtick_restart(rq);
31656519 445 } else if (!rq->hrtick_csd_pending) {
6e275637 446 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
447 rq->hrtick_csd_pending = 1;
448 }
b328ca18
PZ
449}
450
451static int
452hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
453{
454 int cpu = (int)(long)hcpu;
455
456 switch (action) {
457 case CPU_UP_CANCELED:
458 case CPU_UP_CANCELED_FROZEN:
459 case CPU_DOWN_PREPARE:
460 case CPU_DOWN_PREPARE_FROZEN:
461 case CPU_DEAD:
462 case CPU_DEAD_FROZEN:
31656519 463 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
464 return NOTIFY_OK;
465 }
466
467 return NOTIFY_DONE;
468}
469
fa748203 470static __init void init_hrtick(void)
b328ca18
PZ
471{
472 hotcpu_notifier(hotplug_hrtick, 0);
473}
31656519
PZ
474#else
475/*
476 * Called to set the hrtick timer state.
477 *
478 * called with rq->lock held and irqs disabled
479 */
029632fb 480void hrtick_start(struct rq *rq, u64 delay)
31656519 481{
7f1e2ca9 482 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 483 HRTIMER_MODE_REL_PINNED, 0);
31656519 484}
b328ca18 485
006c75f1 486static inline void init_hrtick(void)
8f4d37ec 487{
8f4d37ec 488}
31656519 489#endif /* CONFIG_SMP */
8f4d37ec 490
31656519 491static void init_rq_hrtick(struct rq *rq)
8f4d37ec 492{
31656519
PZ
493#ifdef CONFIG_SMP
494 rq->hrtick_csd_pending = 0;
8f4d37ec 495
31656519
PZ
496 rq->hrtick_csd.flags = 0;
497 rq->hrtick_csd.func = __hrtick_start;
498 rq->hrtick_csd.info = rq;
499#endif
8f4d37ec 500
31656519
PZ
501 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
502 rq->hrtick_timer.function = hrtick;
8f4d37ec 503}
006c75f1 504#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
505static inline void hrtick_clear(struct rq *rq)
506{
507}
508
8f4d37ec
PZ
509static inline void init_rq_hrtick(struct rq *rq)
510{
511}
512
b328ca18
PZ
513static inline void init_hrtick(void)
514{
515}
006c75f1 516#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 517
c24d20db
IM
518/*
519 * resched_task - mark a task 'to be rescheduled now'.
520 *
521 * On UP this means the setting of the need_resched flag, on SMP it
522 * might also involve a cross-CPU call to trigger the scheduler on
523 * the target CPU.
524 */
029632fb 525void resched_task(struct task_struct *p)
c24d20db
IM
526{
527 int cpu;
528
b021fe3e 529 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 530
5ed0cec0 531 if (test_tsk_need_resched(p))
c24d20db
IM
532 return;
533
5ed0cec0 534 set_tsk_need_resched(p);
c24d20db
IM
535
536 cpu = task_cpu(p);
f27dde8d
PZ
537 if (cpu == smp_processor_id()) {
538 set_preempt_need_resched();
c24d20db 539 return;
f27dde8d 540 }
c24d20db
IM
541
542 /* NEED_RESCHED must be visible before we test polling */
543 smp_mb();
544 if (!tsk_is_polling(p))
545 smp_send_reschedule(cpu);
546}
547
029632fb 548void resched_cpu(int cpu)
c24d20db
IM
549{
550 struct rq *rq = cpu_rq(cpu);
551 unsigned long flags;
552
05fa785c 553 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
554 return;
555 resched_task(cpu_curr(cpu));
05fa785c 556 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 557}
06d8308c 558
b021fe3e 559#ifdef CONFIG_SMP
3451d024 560#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
561/*
562 * In the semi idle case, use the nearest busy cpu for migrating timers
563 * from an idle cpu. This is good for power-savings.
564 *
565 * We don't do similar optimization for completely idle system, as
566 * selecting an idle cpu will add more delays to the timers than intended
567 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
568 */
569int get_nohz_timer_target(void)
570{
571 int cpu = smp_processor_id();
572 int i;
573 struct sched_domain *sd;
574
057f3fad 575 rcu_read_lock();
83cd4fe2 576 for_each_domain(cpu, sd) {
057f3fad
PZ
577 for_each_cpu(i, sched_domain_span(sd)) {
578 if (!idle_cpu(i)) {
579 cpu = i;
580 goto unlock;
581 }
582 }
83cd4fe2 583 }
057f3fad
PZ
584unlock:
585 rcu_read_unlock();
83cd4fe2
VP
586 return cpu;
587}
06d8308c
TG
588/*
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
597 */
1c20091e 598static void wake_up_idle_cpu(int cpu)
06d8308c
TG
599{
600 struct rq *rq = cpu_rq(cpu);
601
602 if (cpu == smp_processor_id())
603 return;
604
605 /*
606 * This is safe, as this function is called with the timer
607 * wheel base lock of (cpu) held. When the CPU is on the way
608 * to idle and has not yet set rq->curr to idle then it will
609 * be serialized on the timer wheel base lock and take the new
610 * timer into account automatically.
611 */
612 if (rq->curr != rq->idle)
613 return;
45bf76df 614
45bf76df 615 /*
06d8308c
TG
616 * We can set TIF_RESCHED on the idle task of the other CPU
617 * lockless. The worst case is that the other CPU runs the
618 * idle task through an additional NOOP schedule()
45bf76df 619 */
5ed0cec0 620 set_tsk_need_resched(rq->idle);
45bf76df 621
06d8308c
TG
622 /* NEED_RESCHED must be visible before we test polling */
623 smp_mb();
624 if (!tsk_is_polling(rq->idle))
625 smp_send_reschedule(cpu);
45bf76df
IM
626}
627
c5bfece2 628static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 629{
c5bfece2 630 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
631 if (cpu != smp_processor_id() ||
632 tick_nohz_tick_stopped())
633 smp_send_reschedule(cpu);
634 return true;
635 }
636
637 return false;
638}
639
640void wake_up_nohz_cpu(int cpu)
641{
c5bfece2 642 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
643 wake_up_idle_cpu(cpu);
644}
645
ca38062e 646static inline bool got_nohz_idle_kick(void)
45bf76df 647{
1c792db7 648 int cpu = smp_processor_id();
873b4c65
VG
649
650 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
651 return false;
652
653 if (idle_cpu(cpu) && !need_resched())
654 return true;
655
656 /*
657 * We can't run Idle Load Balance on this CPU for this time so we
658 * cancel it and clear NOHZ_BALANCE_KICK
659 */
660 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
661 return false;
45bf76df
IM
662}
663
3451d024 664#else /* CONFIG_NO_HZ_COMMON */
45bf76df 665
ca38062e 666static inline bool got_nohz_idle_kick(void)
2069dd75 667{
ca38062e 668 return false;
2069dd75
PZ
669}
670
3451d024 671#endif /* CONFIG_NO_HZ_COMMON */
d842de87 672
ce831b38
FW
673#ifdef CONFIG_NO_HZ_FULL
674bool sched_can_stop_tick(void)
675{
676 struct rq *rq;
677
678 rq = this_rq();
679
680 /* Make sure rq->nr_running update is visible after the IPI */
681 smp_rmb();
682
683 /* More than one running task need preemption */
684 if (rq->nr_running > 1)
685 return false;
686
687 return true;
688}
689#endif /* CONFIG_NO_HZ_FULL */
d842de87 690
029632fb 691void sched_avg_update(struct rq *rq)
18d95a28 692{
e9e9250b
PZ
693 s64 period = sched_avg_period();
694
78becc27 695 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
696 /*
697 * Inline assembly required to prevent the compiler
698 * optimising this loop into a divmod call.
699 * See __iter_div_u64_rem() for another example of this.
700 */
701 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
702 rq->age_stamp += period;
703 rq->rt_avg /= 2;
704 }
18d95a28
PZ
705}
706
6d6bc0ad 707#endif /* CONFIG_SMP */
18d95a28 708
a790de99
PT
709#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
710 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 711/*
8277434e
PT
712 * Iterate task_group tree rooted at *from, calling @down when first entering a
713 * node and @up when leaving it for the final time.
714 *
715 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 716 */
029632fb 717int walk_tg_tree_from(struct task_group *from,
8277434e 718 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
719{
720 struct task_group *parent, *child;
eb755805 721 int ret;
c09595f6 722
8277434e
PT
723 parent = from;
724
c09595f6 725down:
eb755805
PZ
726 ret = (*down)(parent, data);
727 if (ret)
8277434e 728 goto out;
c09595f6
PZ
729 list_for_each_entry_rcu(child, &parent->children, siblings) {
730 parent = child;
731 goto down;
732
733up:
734 continue;
735 }
eb755805 736 ret = (*up)(parent, data);
8277434e
PT
737 if (ret || parent == from)
738 goto out;
c09595f6
PZ
739
740 child = parent;
741 parent = parent->parent;
742 if (parent)
743 goto up;
8277434e 744out:
eb755805 745 return ret;
c09595f6
PZ
746}
747
029632fb 748int tg_nop(struct task_group *tg, void *data)
eb755805 749{
e2b245f8 750 return 0;
eb755805 751}
18d95a28
PZ
752#endif
753
45bf76df
IM
754static void set_load_weight(struct task_struct *p)
755{
f05998d4
NR
756 int prio = p->static_prio - MAX_RT_PRIO;
757 struct load_weight *load = &p->se.load;
758
dd41f596
IM
759 /*
760 * SCHED_IDLE tasks get minimal weight:
761 */
762 if (p->policy == SCHED_IDLE) {
c8b28116 763 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 764 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
765 return;
766 }
71f8bd46 767
c8b28116 768 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 769 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
770}
771
371fd7e7 772static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 773{
a64692a3 774 update_rq_clock(rq);
43148951 775 sched_info_queued(rq, p);
371fd7e7 776 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
777}
778
371fd7e7 779static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 780{
a64692a3 781 update_rq_clock(rq);
43148951 782 sched_info_dequeued(rq, p);
371fd7e7 783 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
784}
785
029632fb 786void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
787{
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible--;
790
371fd7e7 791 enqueue_task(rq, p, flags);
1e3c88bd
PZ
792}
793
029632fb 794void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
795{
796 if (task_contributes_to_load(p))
797 rq->nr_uninterruptible++;
798
371fd7e7 799 dequeue_task(rq, p, flags);
1e3c88bd
PZ
800}
801
fe44d621 802static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 803{
095c0aa8
GC
804/*
805 * In theory, the compile should just see 0 here, and optimize out the call
806 * to sched_rt_avg_update. But I don't trust it...
807 */
808#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
809 s64 steal = 0, irq_delta = 0;
810#endif
811#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 812 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
813
814 /*
815 * Since irq_time is only updated on {soft,}irq_exit, we might run into
816 * this case when a previous update_rq_clock() happened inside a
817 * {soft,}irq region.
818 *
819 * When this happens, we stop ->clock_task and only update the
820 * prev_irq_time stamp to account for the part that fit, so that a next
821 * update will consume the rest. This ensures ->clock_task is
822 * monotonic.
823 *
824 * It does however cause some slight miss-attribution of {soft,}irq
825 * time, a more accurate solution would be to update the irq_time using
826 * the current rq->clock timestamp, except that would require using
827 * atomic ops.
828 */
829 if (irq_delta > delta)
830 irq_delta = delta;
831
832 rq->prev_irq_time += irq_delta;
833 delta -= irq_delta;
095c0aa8
GC
834#endif
835#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 836 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
837 u64 st;
838
839 steal = paravirt_steal_clock(cpu_of(rq));
840 steal -= rq->prev_steal_time_rq;
841
842 if (unlikely(steal > delta))
843 steal = delta;
844
845 st = steal_ticks(steal);
846 steal = st * TICK_NSEC;
847
848 rq->prev_steal_time_rq += steal;
849
850 delta -= steal;
851 }
852#endif
853
fe44d621
PZ
854 rq->clock_task += delta;
855
095c0aa8
GC
856#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
857 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
858 sched_rt_avg_update(rq, irq_delta + steal);
859#endif
aa483808
VP
860}
861
34f971f6
PZ
862void sched_set_stop_task(int cpu, struct task_struct *stop)
863{
864 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
865 struct task_struct *old_stop = cpu_rq(cpu)->stop;
866
867 if (stop) {
868 /*
869 * Make it appear like a SCHED_FIFO task, its something
870 * userspace knows about and won't get confused about.
871 *
872 * Also, it will make PI more or less work without too
873 * much confusion -- but then, stop work should not
874 * rely on PI working anyway.
875 */
876 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
877
878 stop->sched_class = &stop_sched_class;
879 }
880
881 cpu_rq(cpu)->stop = stop;
882
883 if (old_stop) {
884 /*
885 * Reset it back to a normal scheduling class so that
886 * it can die in pieces.
887 */
888 old_stop->sched_class = &rt_sched_class;
889 }
890}
891
14531189 892/*
dd41f596 893 * __normal_prio - return the priority that is based on the static prio
14531189 894 */
14531189
IM
895static inline int __normal_prio(struct task_struct *p)
896{
dd41f596 897 return p->static_prio;
14531189
IM
898}
899
b29739f9
IM
900/*
901 * Calculate the expected normal priority: i.e. priority
902 * without taking RT-inheritance into account. Might be
903 * boosted by interactivity modifiers. Changes upon fork,
904 * setprio syscalls, and whenever the interactivity
905 * estimator recalculates.
906 */
36c8b586 907static inline int normal_prio(struct task_struct *p)
b29739f9
IM
908{
909 int prio;
910
aab03e05
DF
911 if (task_has_dl_policy(p))
912 prio = MAX_DL_PRIO-1;
913 else if (task_has_rt_policy(p))
b29739f9
IM
914 prio = MAX_RT_PRIO-1 - p->rt_priority;
915 else
916 prio = __normal_prio(p);
917 return prio;
918}
919
920/*
921 * Calculate the current priority, i.e. the priority
922 * taken into account by the scheduler. This value might
923 * be boosted by RT tasks, or might be boosted by
924 * interactivity modifiers. Will be RT if the task got
925 * RT-boosted. If not then it returns p->normal_prio.
926 */
36c8b586 927static int effective_prio(struct task_struct *p)
b29739f9
IM
928{
929 p->normal_prio = normal_prio(p);
930 /*
931 * If we are RT tasks or we were boosted to RT priority,
932 * keep the priority unchanged. Otherwise, update priority
933 * to the normal priority:
934 */
935 if (!rt_prio(p->prio))
936 return p->normal_prio;
937 return p->prio;
938}
939
1da177e4
LT
940/**
941 * task_curr - is this task currently executing on a CPU?
942 * @p: the task in question.
e69f6186
YB
943 *
944 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 945 */
36c8b586 946inline int task_curr(const struct task_struct *p)
1da177e4
LT
947{
948 return cpu_curr(task_cpu(p)) == p;
949}
950
cb469845
SR
951static inline void check_class_changed(struct rq *rq, struct task_struct *p,
952 const struct sched_class *prev_class,
da7a735e 953 int oldprio)
cb469845
SR
954{
955 if (prev_class != p->sched_class) {
956 if (prev_class->switched_from)
da7a735e
PZ
957 prev_class->switched_from(rq, p);
958 p->sched_class->switched_to(rq, p);
2d3d891d 959 } else if (oldprio != p->prio || dl_task(p))
da7a735e 960 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
961}
962
029632fb 963void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
964{
965 const struct sched_class *class;
966
967 if (p->sched_class == rq->curr->sched_class) {
968 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
969 } else {
970 for_each_class(class) {
971 if (class == rq->curr->sched_class)
972 break;
973 if (class == p->sched_class) {
974 resched_task(rq->curr);
975 break;
976 }
977 }
978 }
979
980 /*
981 * A queue event has occurred, and we're going to schedule. In
982 * this case, we can save a useless back to back clock update.
983 */
fd2f4419 984 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
985 rq->skip_clock_update = 1;
986}
987
1da177e4 988#ifdef CONFIG_SMP
dd41f596 989void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 990{
e2912009
PZ
991#ifdef CONFIG_SCHED_DEBUG
992 /*
993 * We should never call set_task_cpu() on a blocked task,
994 * ttwu() will sort out the placement.
995 */
077614ee 996 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 997 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
998
999#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1000 /*
1001 * The caller should hold either p->pi_lock or rq->lock, when changing
1002 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003 *
1004 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1005 * see task_group().
6c6c54e1
PZ
1006 *
1007 * Furthermore, all task_rq users should acquire both locks, see
1008 * task_rq_lock().
1009 */
0122ec5b
PZ
1010 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011 lockdep_is_held(&task_rq(p)->lock)));
1012#endif
e2912009
PZ
1013#endif
1014
de1d7286 1015 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1016
0c69774e 1017 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1018 if (p->sched_class->migrate_task_rq)
1019 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1020 p->se.nr_migrations++;
a8b0ca17 1021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1022 }
dd41f596
IM
1023
1024 __set_task_cpu(p, new_cpu);
c65cc870
IM
1025}
1026
ac66f547
PZ
1027static void __migrate_swap_task(struct task_struct *p, int cpu)
1028{
1029 if (p->on_rq) {
1030 struct rq *src_rq, *dst_rq;
1031
1032 src_rq = task_rq(p);
1033 dst_rq = cpu_rq(cpu);
1034
1035 deactivate_task(src_rq, p, 0);
1036 set_task_cpu(p, cpu);
1037 activate_task(dst_rq, p, 0);
1038 check_preempt_curr(dst_rq, p, 0);
1039 } else {
1040 /*
1041 * Task isn't running anymore; make it appear like we migrated
1042 * it before it went to sleep. This means on wakeup we make the
1043 * previous cpu our targer instead of where it really is.
1044 */
1045 p->wake_cpu = cpu;
1046 }
1047}
1048
1049struct migration_swap_arg {
1050 struct task_struct *src_task, *dst_task;
1051 int src_cpu, dst_cpu;
1052};
1053
1054static int migrate_swap_stop(void *data)
1055{
1056 struct migration_swap_arg *arg = data;
1057 struct rq *src_rq, *dst_rq;
1058 int ret = -EAGAIN;
1059
1060 src_rq = cpu_rq(arg->src_cpu);
1061 dst_rq = cpu_rq(arg->dst_cpu);
1062
74602315
PZ
1063 double_raw_lock(&arg->src_task->pi_lock,
1064 &arg->dst_task->pi_lock);
ac66f547
PZ
1065 double_rq_lock(src_rq, dst_rq);
1066 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1067 goto unlock;
1068
1069 if (task_cpu(arg->src_task) != arg->src_cpu)
1070 goto unlock;
1071
1072 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1073 goto unlock;
1074
1075 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1076 goto unlock;
1077
1078 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1079 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1080
1081 ret = 0;
1082
1083unlock:
1084 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1085 raw_spin_unlock(&arg->dst_task->pi_lock);
1086 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1087
1088 return ret;
1089}
1090
1091/*
1092 * Cross migrate two tasks
1093 */
1094int migrate_swap(struct task_struct *cur, struct task_struct *p)
1095{
1096 struct migration_swap_arg arg;
1097 int ret = -EINVAL;
1098
ac66f547
PZ
1099 arg = (struct migration_swap_arg){
1100 .src_task = cur,
1101 .src_cpu = task_cpu(cur),
1102 .dst_task = p,
1103 .dst_cpu = task_cpu(p),
1104 };
1105
1106 if (arg.src_cpu == arg.dst_cpu)
1107 goto out;
1108
6acce3ef
PZ
1109 /*
1110 * These three tests are all lockless; this is OK since all of them
1111 * will be re-checked with proper locks held further down the line.
1112 */
ac66f547
PZ
1113 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1114 goto out;
1115
1116 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1117 goto out;
1118
1119 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1120 goto out;
1121
1122 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1123
1124out:
ac66f547
PZ
1125 return ret;
1126}
1127
969c7921 1128struct migration_arg {
36c8b586 1129 struct task_struct *task;
1da177e4 1130 int dest_cpu;
70b97a7f 1131};
1da177e4 1132
969c7921
TH
1133static int migration_cpu_stop(void *data);
1134
1da177e4
LT
1135/*
1136 * wait_task_inactive - wait for a thread to unschedule.
1137 *
85ba2d86
RM
1138 * If @match_state is nonzero, it's the @p->state value just checked and
1139 * not expected to change. If it changes, i.e. @p might have woken up,
1140 * then return zero. When we succeed in waiting for @p to be off its CPU,
1141 * we return a positive number (its total switch count). If a second call
1142 * a short while later returns the same number, the caller can be sure that
1143 * @p has remained unscheduled the whole time.
1144 *
1da177e4
LT
1145 * The caller must ensure that the task *will* unschedule sometime soon,
1146 * else this function might spin for a *long* time. This function can't
1147 * be called with interrupts off, or it may introduce deadlock with
1148 * smp_call_function() if an IPI is sent by the same process we are
1149 * waiting to become inactive.
1150 */
85ba2d86 1151unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1152{
1153 unsigned long flags;
dd41f596 1154 int running, on_rq;
85ba2d86 1155 unsigned long ncsw;
70b97a7f 1156 struct rq *rq;
1da177e4 1157
3a5c359a
AK
1158 for (;;) {
1159 /*
1160 * We do the initial early heuristics without holding
1161 * any task-queue locks at all. We'll only try to get
1162 * the runqueue lock when things look like they will
1163 * work out!
1164 */
1165 rq = task_rq(p);
fa490cfd 1166
3a5c359a
AK
1167 /*
1168 * If the task is actively running on another CPU
1169 * still, just relax and busy-wait without holding
1170 * any locks.
1171 *
1172 * NOTE! Since we don't hold any locks, it's not
1173 * even sure that "rq" stays as the right runqueue!
1174 * But we don't care, since "task_running()" will
1175 * return false if the runqueue has changed and p
1176 * is actually now running somewhere else!
1177 */
85ba2d86
RM
1178 while (task_running(rq, p)) {
1179 if (match_state && unlikely(p->state != match_state))
1180 return 0;
3a5c359a 1181 cpu_relax();
85ba2d86 1182 }
fa490cfd 1183
3a5c359a
AK
1184 /*
1185 * Ok, time to look more closely! We need the rq
1186 * lock now, to be *sure*. If we're wrong, we'll
1187 * just go back and repeat.
1188 */
1189 rq = task_rq_lock(p, &flags);
27a9da65 1190 trace_sched_wait_task(p);
3a5c359a 1191 running = task_running(rq, p);
fd2f4419 1192 on_rq = p->on_rq;
85ba2d86 1193 ncsw = 0;
f31e11d8 1194 if (!match_state || p->state == match_state)
93dcf55f 1195 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1196 task_rq_unlock(rq, p, &flags);
fa490cfd 1197
85ba2d86
RM
1198 /*
1199 * If it changed from the expected state, bail out now.
1200 */
1201 if (unlikely(!ncsw))
1202 break;
1203
3a5c359a
AK
1204 /*
1205 * Was it really running after all now that we
1206 * checked with the proper locks actually held?
1207 *
1208 * Oops. Go back and try again..
1209 */
1210 if (unlikely(running)) {
1211 cpu_relax();
1212 continue;
1213 }
fa490cfd 1214
3a5c359a
AK
1215 /*
1216 * It's not enough that it's not actively running,
1217 * it must be off the runqueue _entirely_, and not
1218 * preempted!
1219 *
80dd99b3 1220 * So if it was still runnable (but just not actively
3a5c359a
AK
1221 * running right now), it's preempted, and we should
1222 * yield - it could be a while.
1223 */
1224 if (unlikely(on_rq)) {
8eb90c30
TG
1225 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1226
1227 set_current_state(TASK_UNINTERRUPTIBLE);
1228 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1229 continue;
1230 }
fa490cfd 1231
3a5c359a
AK
1232 /*
1233 * Ahh, all good. It wasn't running, and it wasn't
1234 * runnable, which means that it will never become
1235 * running in the future either. We're all done!
1236 */
1237 break;
1238 }
85ba2d86
RM
1239
1240 return ncsw;
1da177e4
LT
1241}
1242
1243/***
1244 * kick_process - kick a running thread to enter/exit the kernel
1245 * @p: the to-be-kicked thread
1246 *
1247 * Cause a process which is running on another CPU to enter
1248 * kernel-mode, without any delay. (to get signals handled.)
1249 *
25985edc 1250 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1251 * because all it wants to ensure is that the remote task enters
1252 * the kernel. If the IPI races and the task has been migrated
1253 * to another CPU then no harm is done and the purpose has been
1254 * achieved as well.
1255 */
36c8b586 1256void kick_process(struct task_struct *p)
1da177e4
LT
1257{
1258 int cpu;
1259
1260 preempt_disable();
1261 cpu = task_cpu(p);
1262 if ((cpu != smp_processor_id()) && task_curr(p))
1263 smp_send_reschedule(cpu);
1264 preempt_enable();
1265}
b43e3521 1266EXPORT_SYMBOL_GPL(kick_process);
476d139c 1267#endif /* CONFIG_SMP */
1da177e4 1268
970b13ba 1269#ifdef CONFIG_SMP
30da688e 1270/*
013fdb80 1271 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1272 */
5da9a0fb
PZ
1273static int select_fallback_rq(int cpu, struct task_struct *p)
1274{
aa00d89c
TC
1275 int nid = cpu_to_node(cpu);
1276 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1277 enum { cpuset, possible, fail } state = cpuset;
1278 int dest_cpu;
5da9a0fb 1279
aa00d89c
TC
1280 /*
1281 * If the node that the cpu is on has been offlined, cpu_to_node()
1282 * will return -1. There is no cpu on the node, and we should
1283 * select the cpu on the other node.
1284 */
1285 if (nid != -1) {
1286 nodemask = cpumask_of_node(nid);
1287
1288 /* Look for allowed, online CPU in same node. */
1289 for_each_cpu(dest_cpu, nodemask) {
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1295 return dest_cpu;
1296 }
2baab4e9 1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 for (;;) {
1300 /* Any allowed, online CPU? */
e3831edd 1301 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1302 if (!cpu_online(dest_cpu))
1303 continue;
1304 if (!cpu_active(dest_cpu))
1305 continue;
1306 goto out;
1307 }
5da9a0fb 1308
2baab4e9
PZ
1309 switch (state) {
1310 case cpuset:
1311 /* No more Mr. Nice Guy. */
1312 cpuset_cpus_allowed_fallback(p);
1313 state = possible;
1314 break;
1315
1316 case possible:
1317 do_set_cpus_allowed(p, cpu_possible_mask);
1318 state = fail;
1319 break;
1320
1321 case fail:
1322 BUG();
1323 break;
1324 }
1325 }
1326
1327out:
1328 if (state != cpuset) {
1329 /*
1330 * Don't tell them about moving exiting tasks or
1331 * kernel threads (both mm NULL), since they never
1332 * leave kernel.
1333 */
1334 if (p->mm && printk_ratelimit()) {
1335 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1336 task_pid_nr(p), p->comm, cpu);
1337 }
5da9a0fb
PZ
1338 }
1339
1340 return dest_cpu;
1341}
1342
e2912009 1343/*
013fdb80 1344 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1345 */
970b13ba 1346static inline
ac66f547 1347int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1348{
ac66f547 1349 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1350
1351 /*
1352 * In order not to call set_task_cpu() on a blocking task we need
1353 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1354 * cpu.
1355 *
1356 * Since this is common to all placement strategies, this lives here.
1357 *
1358 * [ this allows ->select_task() to simply return task_cpu(p) and
1359 * not worry about this generic constraint ]
1360 */
fa17b507 1361 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1362 !cpu_online(cpu)))
5da9a0fb 1363 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1364
1365 return cpu;
970b13ba 1366}
09a40af5
MG
1367
1368static void update_avg(u64 *avg, u64 sample)
1369{
1370 s64 diff = sample - *avg;
1371 *avg += diff >> 3;
1372}
970b13ba
PZ
1373#endif
1374
d7c01d27 1375static void
b84cb5df 1376ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1377{
d7c01d27 1378#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1379 struct rq *rq = this_rq();
1380
d7c01d27
PZ
1381#ifdef CONFIG_SMP
1382 int this_cpu = smp_processor_id();
1383
1384 if (cpu == this_cpu) {
1385 schedstat_inc(rq, ttwu_local);
1386 schedstat_inc(p, se.statistics.nr_wakeups_local);
1387 } else {
1388 struct sched_domain *sd;
1389
1390 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1391 rcu_read_lock();
d7c01d27
PZ
1392 for_each_domain(this_cpu, sd) {
1393 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1394 schedstat_inc(sd, ttwu_wake_remote);
1395 break;
1396 }
1397 }
057f3fad 1398 rcu_read_unlock();
d7c01d27 1399 }
f339b9dc
PZ
1400
1401 if (wake_flags & WF_MIGRATED)
1402 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1403
d7c01d27
PZ
1404#endif /* CONFIG_SMP */
1405
1406 schedstat_inc(rq, ttwu_count);
9ed3811a 1407 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1408
1409 if (wake_flags & WF_SYNC)
9ed3811a 1410 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1411
d7c01d27
PZ
1412#endif /* CONFIG_SCHEDSTATS */
1413}
1414
1415static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1416{
9ed3811a 1417 activate_task(rq, p, en_flags);
fd2f4419 1418 p->on_rq = 1;
c2f7115e
PZ
1419
1420 /* if a worker is waking up, notify workqueue */
1421 if (p->flags & PF_WQ_WORKER)
1422 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1423}
1424
23f41eeb
PZ
1425/*
1426 * Mark the task runnable and perform wakeup-preemption.
1427 */
89363381 1428static void
23f41eeb 1429ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1430{
9ed3811a 1431 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1432 trace_sched_wakeup(p, true);
9ed3811a
TH
1433
1434 p->state = TASK_RUNNING;
1435#ifdef CONFIG_SMP
1436 if (p->sched_class->task_woken)
1437 p->sched_class->task_woken(rq, p);
1438
e69c6341 1439 if (rq->idle_stamp) {
78becc27 1440 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1441 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1442
abfafa54
JL
1443 update_avg(&rq->avg_idle, delta);
1444
1445 if (rq->avg_idle > max)
9ed3811a 1446 rq->avg_idle = max;
abfafa54 1447
9ed3811a
TH
1448 rq->idle_stamp = 0;
1449 }
1450#endif
1451}
1452
c05fbafb
PZ
1453static void
1454ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1455{
1456#ifdef CONFIG_SMP
1457 if (p->sched_contributes_to_load)
1458 rq->nr_uninterruptible--;
1459#endif
1460
1461 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1462 ttwu_do_wakeup(rq, p, wake_flags);
1463}
1464
1465/*
1466 * Called in case the task @p isn't fully descheduled from its runqueue,
1467 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1468 * since all we need to do is flip p->state to TASK_RUNNING, since
1469 * the task is still ->on_rq.
1470 */
1471static int ttwu_remote(struct task_struct *p, int wake_flags)
1472{
1473 struct rq *rq;
1474 int ret = 0;
1475
1476 rq = __task_rq_lock(p);
1477 if (p->on_rq) {
1ad4ec0d
FW
1478 /* check_preempt_curr() may use rq clock */
1479 update_rq_clock(rq);
c05fbafb
PZ
1480 ttwu_do_wakeup(rq, p, wake_flags);
1481 ret = 1;
1482 }
1483 __task_rq_unlock(rq);
1484
1485 return ret;
1486}
1487
317f3941 1488#ifdef CONFIG_SMP
fa14ff4a 1489static void sched_ttwu_pending(void)
317f3941
PZ
1490{
1491 struct rq *rq = this_rq();
fa14ff4a
PZ
1492 struct llist_node *llist = llist_del_all(&rq->wake_list);
1493 struct task_struct *p;
317f3941
PZ
1494
1495 raw_spin_lock(&rq->lock);
1496
fa14ff4a
PZ
1497 while (llist) {
1498 p = llist_entry(llist, struct task_struct, wake_entry);
1499 llist = llist_next(llist);
317f3941
PZ
1500 ttwu_do_activate(rq, p, 0);
1501 }
1502
1503 raw_spin_unlock(&rq->lock);
1504}
1505
1506void scheduler_ipi(void)
1507{
f27dde8d
PZ
1508 /*
1509 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1510 * TIF_NEED_RESCHED remotely (for the first time) will also send
1511 * this IPI.
1512 */
1513 if (tif_need_resched())
1514 set_preempt_need_resched();
1515
873b4c65
VG
1516 if (llist_empty(&this_rq()->wake_list)
1517 && !tick_nohz_full_cpu(smp_processor_id())
1518 && !got_nohz_idle_kick())
c5d753a5
PZ
1519 return;
1520
1521 /*
1522 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1523 * traditionally all their work was done from the interrupt return
1524 * path. Now that we actually do some work, we need to make sure
1525 * we do call them.
1526 *
1527 * Some archs already do call them, luckily irq_enter/exit nest
1528 * properly.
1529 *
1530 * Arguably we should visit all archs and update all handlers,
1531 * however a fair share of IPIs are still resched only so this would
1532 * somewhat pessimize the simple resched case.
1533 */
1534 irq_enter();
ff442c51 1535 tick_nohz_full_check();
fa14ff4a 1536 sched_ttwu_pending();
ca38062e
SS
1537
1538 /*
1539 * Check if someone kicked us for doing the nohz idle load balance.
1540 */
873b4c65 1541 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1542 this_rq()->idle_balance = 1;
ca38062e 1543 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1544 }
c5d753a5 1545 irq_exit();
317f3941
PZ
1546}
1547
1548static void ttwu_queue_remote(struct task_struct *p, int cpu)
1549{
fa14ff4a 1550 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1551 smp_send_reschedule(cpu);
1552}
d6aa8f85 1553
39be3501 1554bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1555{
1556 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1557}
d6aa8f85 1558#endif /* CONFIG_SMP */
317f3941 1559
c05fbafb
PZ
1560static void ttwu_queue(struct task_struct *p, int cpu)
1561{
1562 struct rq *rq = cpu_rq(cpu);
1563
17d9f311 1564#if defined(CONFIG_SMP)
39be3501 1565 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1566 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1567 ttwu_queue_remote(p, cpu);
1568 return;
1569 }
1570#endif
1571
c05fbafb
PZ
1572 raw_spin_lock(&rq->lock);
1573 ttwu_do_activate(rq, p, 0);
1574 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1575}
1576
1577/**
1da177e4 1578 * try_to_wake_up - wake up a thread
9ed3811a 1579 * @p: the thread to be awakened
1da177e4 1580 * @state: the mask of task states that can be woken
9ed3811a 1581 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1582 *
1583 * Put it on the run-queue if it's not already there. The "current"
1584 * thread is always on the run-queue (except when the actual
1585 * re-schedule is in progress), and as such you're allowed to do
1586 * the simpler "current->state = TASK_RUNNING" to mark yourself
1587 * runnable without the overhead of this.
1588 *
e69f6186 1589 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1590 * or @state didn't match @p's state.
1da177e4 1591 */
e4a52bcb
PZ
1592static int
1593try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1594{
1da177e4 1595 unsigned long flags;
c05fbafb 1596 int cpu, success = 0;
2398f2c6 1597
e0acd0a6
ON
1598 /*
1599 * If we are going to wake up a thread waiting for CONDITION we
1600 * need to ensure that CONDITION=1 done by the caller can not be
1601 * reordered with p->state check below. This pairs with mb() in
1602 * set_current_state() the waiting thread does.
1603 */
1604 smp_mb__before_spinlock();
013fdb80 1605 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1606 if (!(p->state & state))
1da177e4
LT
1607 goto out;
1608
c05fbafb 1609 success = 1; /* we're going to change ->state */
1da177e4 1610 cpu = task_cpu(p);
1da177e4 1611
c05fbafb
PZ
1612 if (p->on_rq && ttwu_remote(p, wake_flags))
1613 goto stat;
1da177e4 1614
1da177e4 1615#ifdef CONFIG_SMP
e9c84311 1616 /*
c05fbafb
PZ
1617 * If the owning (remote) cpu is still in the middle of schedule() with
1618 * this task as prev, wait until its done referencing the task.
e9c84311 1619 */
f3e94786 1620 while (p->on_cpu)
e4a52bcb 1621 cpu_relax();
0970d299 1622 /*
e4a52bcb 1623 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1624 */
e4a52bcb 1625 smp_rmb();
1da177e4 1626
a8e4f2ea 1627 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1628 p->state = TASK_WAKING;
e7693a36 1629
e4a52bcb 1630 if (p->sched_class->task_waking)
74f8e4b2 1631 p->sched_class->task_waking(p);
efbbd05a 1632
ac66f547 1633 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1634 if (task_cpu(p) != cpu) {
1635 wake_flags |= WF_MIGRATED;
e4a52bcb 1636 set_task_cpu(p, cpu);
f339b9dc 1637 }
1da177e4 1638#endif /* CONFIG_SMP */
1da177e4 1639
c05fbafb
PZ
1640 ttwu_queue(p, cpu);
1641stat:
b84cb5df 1642 ttwu_stat(p, cpu, wake_flags);
1da177e4 1643out:
013fdb80 1644 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1645
1646 return success;
1647}
1648
21aa9af0
TH
1649/**
1650 * try_to_wake_up_local - try to wake up a local task with rq lock held
1651 * @p: the thread to be awakened
1652 *
2acca55e 1653 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1654 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1655 * the current task.
21aa9af0
TH
1656 */
1657static void try_to_wake_up_local(struct task_struct *p)
1658{
1659 struct rq *rq = task_rq(p);
21aa9af0 1660
383efcd0
TH
1661 if (WARN_ON_ONCE(rq != this_rq()) ||
1662 WARN_ON_ONCE(p == current))
1663 return;
1664
21aa9af0
TH
1665 lockdep_assert_held(&rq->lock);
1666
2acca55e
PZ
1667 if (!raw_spin_trylock(&p->pi_lock)) {
1668 raw_spin_unlock(&rq->lock);
1669 raw_spin_lock(&p->pi_lock);
1670 raw_spin_lock(&rq->lock);
1671 }
1672
21aa9af0 1673 if (!(p->state & TASK_NORMAL))
2acca55e 1674 goto out;
21aa9af0 1675
fd2f4419 1676 if (!p->on_rq)
d7c01d27
PZ
1677 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1678
23f41eeb 1679 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1680 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1681out:
1682 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1683}
1684
50fa610a
DH
1685/**
1686 * wake_up_process - Wake up a specific process
1687 * @p: The process to be woken up.
1688 *
1689 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1690 * processes.
1691 *
1692 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1693 *
1694 * It may be assumed that this function implies a write memory barrier before
1695 * changing the task state if and only if any tasks are woken up.
1696 */
7ad5b3a5 1697int wake_up_process(struct task_struct *p)
1da177e4 1698{
9067ac85
ON
1699 WARN_ON(task_is_stopped_or_traced(p));
1700 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1701}
1da177e4
LT
1702EXPORT_SYMBOL(wake_up_process);
1703
7ad5b3a5 1704int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1705{
1706 return try_to_wake_up(p, state, 0);
1707}
1708
1da177e4
LT
1709/*
1710 * Perform scheduler related setup for a newly forked process p.
1711 * p is forked by current.
dd41f596
IM
1712 *
1713 * __sched_fork() is basic setup used by init_idle() too:
1714 */
5e1576ed 1715static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1716{
fd2f4419
PZ
1717 p->on_rq = 0;
1718
1719 p->se.on_rq = 0;
dd41f596
IM
1720 p->se.exec_start = 0;
1721 p->se.sum_exec_runtime = 0;
f6cf891c 1722 p->se.prev_sum_exec_runtime = 0;
6c594c21 1723 p->se.nr_migrations = 0;
da7a735e 1724 p->se.vruntime = 0;
fd2f4419 1725 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1726
1727#ifdef CONFIG_SCHEDSTATS
41acab88 1728 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1729#endif
476d139c 1730
aab03e05
DF
1731 RB_CLEAR_NODE(&p->dl.rb_node);
1732 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1733 p->dl.dl_runtime = p->dl.runtime = 0;
1734 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1735 p->dl.dl_period = 0;
aab03e05
DF
1736 p->dl.flags = 0;
1737
fa717060 1738 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1739
e107be36
AK
1740#ifdef CONFIG_PREEMPT_NOTIFIERS
1741 INIT_HLIST_HEAD(&p->preempt_notifiers);
1742#endif
cbee9f88
PZ
1743
1744#ifdef CONFIG_NUMA_BALANCING
1745 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1746 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1747 p->mm->numa_scan_seq = 0;
1748 }
1749
5e1576ed
RR
1750 if (clone_flags & CLONE_VM)
1751 p->numa_preferred_nid = current->numa_preferred_nid;
1752 else
1753 p->numa_preferred_nid = -1;
1754
cbee9f88
PZ
1755 p->node_stamp = 0ULL;
1756 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1757 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1758 p->numa_work.next = &p->numa_work;
f809ca9a 1759 p->numa_faults = NULL;
745d6147 1760 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1761
1762 INIT_LIST_HEAD(&p->numa_entry);
1763 p->numa_group = NULL;
cbee9f88 1764#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1765}
1766
1a687c2e 1767#ifdef CONFIG_NUMA_BALANCING
3105b86a 1768#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1769void set_numabalancing_state(bool enabled)
1770{
1771 if (enabled)
1772 sched_feat_set("NUMA");
1773 else
1774 sched_feat_set("NO_NUMA");
1775}
3105b86a
MG
1776#else
1777__read_mostly bool numabalancing_enabled;
1778
1779void set_numabalancing_state(bool enabled)
1780{
1781 numabalancing_enabled = enabled;
dd41f596 1782}
3105b86a 1783#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1784#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1785
1786/*
1787 * fork()/clone()-time setup:
1788 */
aab03e05 1789int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1790{
0122ec5b 1791 unsigned long flags;
dd41f596
IM
1792 int cpu = get_cpu();
1793
5e1576ed 1794 __sched_fork(clone_flags, p);
06b83b5f 1795 /*
0017d735 1796 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1797 * nobody will actually run it, and a signal or other external
1798 * event cannot wake it up and insert it on the runqueue either.
1799 */
0017d735 1800 p->state = TASK_RUNNING;
dd41f596 1801
c350a04e
MG
1802 /*
1803 * Make sure we do not leak PI boosting priority to the child.
1804 */
1805 p->prio = current->normal_prio;
1806
b9dc29e7
MG
1807 /*
1808 * Revert to default priority/policy on fork if requested.
1809 */
1810 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1811 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1812 p->policy = SCHED_NORMAL;
6c697bdf 1813 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1814 p->rt_priority = 0;
1815 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1816 p->static_prio = NICE_TO_PRIO(0);
1817
1818 p->prio = p->normal_prio = __normal_prio(p);
1819 set_load_weight(p);
6c697bdf 1820
b9dc29e7
MG
1821 /*
1822 * We don't need the reset flag anymore after the fork. It has
1823 * fulfilled its duty:
1824 */
1825 p->sched_reset_on_fork = 0;
1826 }
ca94c442 1827
aab03e05
DF
1828 if (dl_prio(p->prio)) {
1829 put_cpu();
1830 return -EAGAIN;
1831 } else if (rt_prio(p->prio)) {
1832 p->sched_class = &rt_sched_class;
1833 } else {
2ddbf952 1834 p->sched_class = &fair_sched_class;
aab03e05 1835 }
b29739f9 1836
cd29fe6f
PZ
1837 if (p->sched_class->task_fork)
1838 p->sched_class->task_fork(p);
1839
86951599
PZ
1840 /*
1841 * The child is not yet in the pid-hash so no cgroup attach races,
1842 * and the cgroup is pinned to this child due to cgroup_fork()
1843 * is ran before sched_fork().
1844 *
1845 * Silence PROVE_RCU.
1846 */
0122ec5b 1847 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1848 set_task_cpu(p, cpu);
0122ec5b 1849 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1850
52f17b6c 1851#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1852 if (likely(sched_info_on()))
52f17b6c 1853 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1854#endif
3ca7a440
PZ
1855#if defined(CONFIG_SMP)
1856 p->on_cpu = 0;
4866cde0 1857#endif
01028747 1858 init_task_preempt_count(p);
806c09a7 1859#ifdef CONFIG_SMP
917b627d 1860 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1861 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1862#endif
917b627d 1863
476d139c 1864 put_cpu();
aab03e05 1865 return 0;
1da177e4
LT
1866}
1867
332ac17e
DF
1868unsigned long to_ratio(u64 period, u64 runtime)
1869{
1870 if (runtime == RUNTIME_INF)
1871 return 1ULL << 20;
1872
1873 /*
1874 * Doing this here saves a lot of checks in all
1875 * the calling paths, and returning zero seems
1876 * safe for them anyway.
1877 */
1878 if (period == 0)
1879 return 0;
1880
1881 return div64_u64(runtime << 20, period);
1882}
1883
1884#ifdef CONFIG_SMP
1885inline struct dl_bw *dl_bw_of(int i)
1886{
1887 return &cpu_rq(i)->rd->dl_bw;
1888}
1889
de212f18 1890static inline int dl_bw_cpus(int i)
332ac17e 1891{
de212f18
PZ
1892 struct root_domain *rd = cpu_rq(i)->rd;
1893 int cpus = 0;
1894
1895 for_each_cpu_and(i, rd->span, cpu_active_mask)
1896 cpus++;
1897
1898 return cpus;
332ac17e
DF
1899}
1900#else
1901inline struct dl_bw *dl_bw_of(int i)
1902{
1903 return &cpu_rq(i)->dl.dl_bw;
1904}
1905
de212f18 1906static inline int dl_bw_cpus(int i)
332ac17e
DF
1907{
1908 return 1;
1909}
1910#endif
1911
1912static inline
1913void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1914{
1915 dl_b->total_bw -= tsk_bw;
1916}
1917
1918static inline
1919void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1920{
1921 dl_b->total_bw += tsk_bw;
1922}
1923
1924static inline
1925bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1926{
1927 return dl_b->bw != -1 &&
1928 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1929}
1930
1931/*
1932 * We must be sure that accepting a new task (or allowing changing the
1933 * parameters of an existing one) is consistent with the bandwidth
1934 * constraints. If yes, this function also accordingly updates the currently
1935 * allocated bandwidth to reflect the new situation.
1936 *
1937 * This function is called while holding p's rq->lock.
1938 */
1939static int dl_overflow(struct task_struct *p, int policy,
1940 const struct sched_attr *attr)
1941{
1942
1943 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1944 u64 period = attr->sched_period;
1945 u64 runtime = attr->sched_runtime;
1946 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1947 int cpus, err = -1;
332ac17e
DF
1948
1949 if (new_bw == p->dl.dl_bw)
1950 return 0;
1951
1952 /*
1953 * Either if a task, enters, leave, or stays -deadline but changes
1954 * its parameters, we may need to update accordingly the total
1955 * allocated bandwidth of the container.
1956 */
1957 raw_spin_lock(&dl_b->lock);
de212f18 1958 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1959 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1960 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1961 __dl_add(dl_b, new_bw);
1962 err = 0;
1963 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1964 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1965 __dl_clear(dl_b, p->dl.dl_bw);
1966 __dl_add(dl_b, new_bw);
1967 err = 0;
1968 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1969 __dl_clear(dl_b, p->dl.dl_bw);
1970 err = 0;
1971 }
1972 raw_spin_unlock(&dl_b->lock);
1973
1974 return err;
1975}
1976
1977extern void init_dl_bw(struct dl_bw *dl_b);
1978
1da177e4
LT
1979/*
1980 * wake_up_new_task - wake up a newly created task for the first time.
1981 *
1982 * This function will do some initial scheduler statistics housekeeping
1983 * that must be done for every newly created context, then puts the task
1984 * on the runqueue and wakes it.
1985 */
3e51e3ed 1986void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1987{
1988 unsigned long flags;
dd41f596 1989 struct rq *rq;
fabf318e 1990
ab2515c4 1991 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1992#ifdef CONFIG_SMP
1993 /*
1994 * Fork balancing, do it here and not earlier because:
1995 * - cpus_allowed can change in the fork path
1996 * - any previously selected cpu might disappear through hotplug
fabf318e 1997 */
ac66f547 1998 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1999#endif
2000
a75cdaa9
AS
2001 /* Initialize new task's runnable average */
2002 init_task_runnable_average(p);
ab2515c4 2003 rq = __task_rq_lock(p);
cd29fe6f 2004 activate_task(rq, p, 0);
fd2f4419 2005 p->on_rq = 1;
89363381 2006 trace_sched_wakeup_new(p, true);
a7558e01 2007 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2008#ifdef CONFIG_SMP
efbbd05a
PZ
2009 if (p->sched_class->task_woken)
2010 p->sched_class->task_woken(rq, p);
9a897c5a 2011#endif
0122ec5b 2012 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2013}
2014
e107be36
AK
2015#ifdef CONFIG_PREEMPT_NOTIFIERS
2016
2017/**
80dd99b3 2018 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2019 * @notifier: notifier struct to register
e107be36
AK
2020 */
2021void preempt_notifier_register(struct preempt_notifier *notifier)
2022{
2023 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2024}
2025EXPORT_SYMBOL_GPL(preempt_notifier_register);
2026
2027/**
2028 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2029 * @notifier: notifier struct to unregister
e107be36
AK
2030 *
2031 * This is safe to call from within a preemption notifier.
2032 */
2033void preempt_notifier_unregister(struct preempt_notifier *notifier)
2034{
2035 hlist_del(&notifier->link);
2036}
2037EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2038
2039static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2040{
2041 struct preempt_notifier *notifier;
e107be36 2042
b67bfe0d 2043 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2044 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2045}
2046
2047static void
2048fire_sched_out_preempt_notifiers(struct task_struct *curr,
2049 struct task_struct *next)
2050{
2051 struct preempt_notifier *notifier;
e107be36 2052
b67bfe0d 2053 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2054 notifier->ops->sched_out(notifier, next);
2055}
2056
6d6bc0ad 2057#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2058
2059static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2060{
2061}
2062
2063static void
2064fire_sched_out_preempt_notifiers(struct task_struct *curr,
2065 struct task_struct *next)
2066{
2067}
2068
6d6bc0ad 2069#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2070
4866cde0
NP
2071/**
2072 * prepare_task_switch - prepare to switch tasks
2073 * @rq: the runqueue preparing to switch
421cee29 2074 * @prev: the current task that is being switched out
4866cde0
NP
2075 * @next: the task we are going to switch to.
2076 *
2077 * This is called with the rq lock held and interrupts off. It must
2078 * be paired with a subsequent finish_task_switch after the context
2079 * switch.
2080 *
2081 * prepare_task_switch sets up locking and calls architecture specific
2082 * hooks.
2083 */
e107be36
AK
2084static inline void
2085prepare_task_switch(struct rq *rq, struct task_struct *prev,
2086 struct task_struct *next)
4866cde0 2087{
895dd92c 2088 trace_sched_switch(prev, next);
43148951 2089 sched_info_switch(rq, prev, next);
fe4b04fa 2090 perf_event_task_sched_out(prev, next);
e107be36 2091 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2092 prepare_lock_switch(rq, next);
2093 prepare_arch_switch(next);
2094}
2095
1da177e4
LT
2096/**
2097 * finish_task_switch - clean up after a task-switch
344babaa 2098 * @rq: runqueue associated with task-switch
1da177e4
LT
2099 * @prev: the thread we just switched away from.
2100 *
4866cde0
NP
2101 * finish_task_switch must be called after the context switch, paired
2102 * with a prepare_task_switch call before the context switch.
2103 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2104 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2105 *
2106 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2107 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2108 * with the lock held can cause deadlocks; see schedule() for
2109 * details.)
2110 */
a9957449 2111static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2112 __releases(rq->lock)
2113{
1da177e4 2114 struct mm_struct *mm = rq->prev_mm;
55a101f8 2115 long prev_state;
1da177e4
LT
2116
2117 rq->prev_mm = NULL;
2118
2119 /*
2120 * A task struct has one reference for the use as "current".
c394cc9f 2121 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2122 * schedule one last time. The schedule call will never return, and
2123 * the scheduled task must drop that reference.
c394cc9f 2124 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2125 * still held, otherwise prev could be scheduled on another cpu, die
2126 * there before we look at prev->state, and then the reference would
2127 * be dropped twice.
2128 * Manfred Spraul <manfred@colorfullife.com>
2129 */
55a101f8 2130 prev_state = prev->state;
bf9fae9f 2131 vtime_task_switch(prev);
4866cde0 2132 finish_arch_switch(prev);
a8d757ef 2133 perf_event_task_sched_in(prev, current);
4866cde0 2134 finish_lock_switch(rq, prev);
01f23e16 2135 finish_arch_post_lock_switch();
e8fa1362 2136
e107be36 2137 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2138 if (mm)
2139 mmdrop(mm);
c394cc9f 2140 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2141 task_numa_free(prev);
2142
e6c390f2
DF
2143 if (prev->sched_class->task_dead)
2144 prev->sched_class->task_dead(prev);
2145
c6fd91f0 2146 /*
2147 * Remove function-return probe instances associated with this
2148 * task and put them back on the free list.
9761eea8 2149 */
c6fd91f0 2150 kprobe_flush_task(prev);
1da177e4 2151 put_task_struct(prev);
c6fd91f0 2152 }
99e5ada9
FW
2153
2154 tick_nohz_task_switch(current);
1da177e4
LT
2155}
2156
3f029d3c
GH
2157#ifdef CONFIG_SMP
2158
2159/* assumes rq->lock is held */
2160static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2161{
2162 if (prev->sched_class->pre_schedule)
2163 prev->sched_class->pre_schedule(rq, prev);
2164}
2165
2166/* rq->lock is NOT held, but preemption is disabled */
2167static inline void post_schedule(struct rq *rq)
2168{
2169 if (rq->post_schedule) {
2170 unsigned long flags;
2171
05fa785c 2172 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2173 if (rq->curr->sched_class->post_schedule)
2174 rq->curr->sched_class->post_schedule(rq);
05fa785c 2175 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2176
2177 rq->post_schedule = 0;
2178 }
2179}
2180
2181#else
da19ab51 2182
3f029d3c
GH
2183static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2184{
2185}
2186
2187static inline void post_schedule(struct rq *rq)
2188{
1da177e4
LT
2189}
2190
3f029d3c
GH
2191#endif
2192
1da177e4
LT
2193/**
2194 * schedule_tail - first thing a freshly forked thread must call.
2195 * @prev: the thread we just switched away from.
2196 */
36c8b586 2197asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2198 __releases(rq->lock)
2199{
70b97a7f
IM
2200 struct rq *rq = this_rq();
2201
4866cde0 2202 finish_task_switch(rq, prev);
da19ab51 2203
3f029d3c
GH
2204 /*
2205 * FIXME: do we need to worry about rq being invalidated by the
2206 * task_switch?
2207 */
2208 post_schedule(rq);
70b97a7f 2209
4866cde0
NP
2210#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2211 /* In this case, finish_task_switch does not reenable preemption */
2212 preempt_enable();
2213#endif
1da177e4 2214 if (current->set_child_tid)
b488893a 2215 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2216}
2217
2218/*
2219 * context_switch - switch to the new MM and the new
2220 * thread's register state.
2221 */
dd41f596 2222static inline void
70b97a7f 2223context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2224 struct task_struct *next)
1da177e4 2225{
dd41f596 2226 struct mm_struct *mm, *oldmm;
1da177e4 2227
e107be36 2228 prepare_task_switch(rq, prev, next);
fe4b04fa 2229
dd41f596
IM
2230 mm = next->mm;
2231 oldmm = prev->active_mm;
9226d125
ZA
2232 /*
2233 * For paravirt, this is coupled with an exit in switch_to to
2234 * combine the page table reload and the switch backend into
2235 * one hypercall.
2236 */
224101ed 2237 arch_start_context_switch(prev);
9226d125 2238
31915ab4 2239 if (!mm) {
1da177e4
LT
2240 next->active_mm = oldmm;
2241 atomic_inc(&oldmm->mm_count);
2242 enter_lazy_tlb(oldmm, next);
2243 } else
2244 switch_mm(oldmm, mm, next);
2245
31915ab4 2246 if (!prev->mm) {
1da177e4 2247 prev->active_mm = NULL;
1da177e4
LT
2248 rq->prev_mm = oldmm;
2249 }
3a5f5e48
IM
2250 /*
2251 * Since the runqueue lock will be released by the next
2252 * task (which is an invalid locking op but in the case
2253 * of the scheduler it's an obvious special-case), so we
2254 * do an early lockdep release here:
2255 */
2256#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2257 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2258#endif
1da177e4 2259
91d1aa43 2260 context_tracking_task_switch(prev, next);
1da177e4
LT
2261 /* Here we just switch the register state and the stack. */
2262 switch_to(prev, next, prev);
2263
dd41f596
IM
2264 barrier();
2265 /*
2266 * this_rq must be evaluated again because prev may have moved
2267 * CPUs since it called schedule(), thus the 'rq' on its stack
2268 * frame will be invalid.
2269 */
2270 finish_task_switch(this_rq(), prev);
1da177e4
LT
2271}
2272
2273/*
1c3e8264 2274 * nr_running and nr_context_switches:
1da177e4
LT
2275 *
2276 * externally visible scheduler statistics: current number of runnable
1c3e8264 2277 * threads, total number of context switches performed since bootup.
1da177e4
LT
2278 */
2279unsigned long nr_running(void)
2280{
2281 unsigned long i, sum = 0;
2282
2283 for_each_online_cpu(i)
2284 sum += cpu_rq(i)->nr_running;
2285
2286 return sum;
f711f609 2287}
1da177e4 2288
1da177e4 2289unsigned long long nr_context_switches(void)
46cb4b7c 2290{
cc94abfc
SR
2291 int i;
2292 unsigned long long sum = 0;
46cb4b7c 2293
0a945022 2294 for_each_possible_cpu(i)
1da177e4 2295 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2296
1da177e4
LT
2297 return sum;
2298}
483b4ee6 2299
1da177e4
LT
2300unsigned long nr_iowait(void)
2301{
2302 unsigned long i, sum = 0;
483b4ee6 2303
0a945022 2304 for_each_possible_cpu(i)
1da177e4 2305 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2306
1da177e4
LT
2307 return sum;
2308}
483b4ee6 2309
8c215bd3 2310unsigned long nr_iowait_cpu(int cpu)
69d25870 2311{
8c215bd3 2312 struct rq *this = cpu_rq(cpu);
69d25870
AV
2313 return atomic_read(&this->nr_iowait);
2314}
46cb4b7c 2315
dd41f596 2316#ifdef CONFIG_SMP
8a0be9ef 2317
46cb4b7c 2318/*
38022906
PZ
2319 * sched_exec - execve() is a valuable balancing opportunity, because at
2320 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2321 */
38022906 2322void sched_exec(void)
46cb4b7c 2323{
38022906 2324 struct task_struct *p = current;
1da177e4 2325 unsigned long flags;
0017d735 2326 int dest_cpu;
46cb4b7c 2327
8f42ced9 2328 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2329 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2330 if (dest_cpu == smp_processor_id())
2331 goto unlock;
38022906 2332
8f42ced9 2333 if (likely(cpu_active(dest_cpu))) {
969c7921 2334 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2335
8f42ced9
PZ
2336 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2337 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2338 return;
2339 }
0017d735 2340unlock:
8f42ced9 2341 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2342}
dd41f596 2343
1da177e4
LT
2344#endif
2345
1da177e4 2346DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2347DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2348
2349EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2350EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2351
2352/*
c5f8d995 2353 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2354 * @p in case that task is currently running.
c5f8d995
HS
2355 *
2356 * Called with task_rq_lock() held on @rq.
1da177e4 2357 */
c5f8d995
HS
2358static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2359{
2360 u64 ns = 0;
2361
2362 if (task_current(rq, p)) {
2363 update_rq_clock(rq);
78becc27 2364 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2365 if ((s64)ns < 0)
2366 ns = 0;
2367 }
2368
2369 return ns;
2370}
2371
bb34d92f 2372unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2373{
1da177e4 2374 unsigned long flags;
41b86e9c 2375 struct rq *rq;
bb34d92f 2376 u64 ns = 0;
48f24c4d 2377
41b86e9c 2378 rq = task_rq_lock(p, &flags);
c5f8d995 2379 ns = do_task_delta_exec(p, rq);
0122ec5b 2380 task_rq_unlock(rq, p, &flags);
1508487e 2381
c5f8d995
HS
2382 return ns;
2383}
f06febc9 2384
c5f8d995
HS
2385/*
2386 * Return accounted runtime for the task.
2387 * In case the task is currently running, return the runtime plus current's
2388 * pending runtime that have not been accounted yet.
2389 */
2390unsigned long long task_sched_runtime(struct task_struct *p)
2391{
2392 unsigned long flags;
2393 struct rq *rq;
2394 u64 ns = 0;
2395
911b2898
PZ
2396#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2397 /*
2398 * 64-bit doesn't need locks to atomically read a 64bit value.
2399 * So we have a optimization chance when the task's delta_exec is 0.
2400 * Reading ->on_cpu is racy, but this is ok.
2401 *
2402 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2403 * If we race with it entering cpu, unaccounted time is 0. This is
2404 * indistinguishable from the read occurring a few cycles earlier.
2405 */
2406 if (!p->on_cpu)
2407 return p->se.sum_exec_runtime;
2408#endif
2409
c5f8d995
HS
2410 rq = task_rq_lock(p, &flags);
2411 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2412 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2413
2414 return ns;
2415}
48f24c4d 2416
7835b98b
CL
2417/*
2418 * This function gets called by the timer code, with HZ frequency.
2419 * We call it with interrupts disabled.
7835b98b
CL
2420 */
2421void scheduler_tick(void)
2422{
7835b98b
CL
2423 int cpu = smp_processor_id();
2424 struct rq *rq = cpu_rq(cpu);
dd41f596 2425 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2426
2427 sched_clock_tick();
dd41f596 2428
05fa785c 2429 raw_spin_lock(&rq->lock);
3e51f33f 2430 update_rq_clock(rq);
fa85ae24 2431 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2432 update_cpu_load_active(rq);
05fa785c 2433 raw_spin_unlock(&rq->lock);
7835b98b 2434
e9d2b064 2435 perf_event_task_tick();
e220d2dc 2436
e418e1c2 2437#ifdef CONFIG_SMP
6eb57e0d 2438 rq->idle_balance = idle_cpu(cpu);
7caff66f 2439 trigger_load_balance(rq);
e418e1c2 2440#endif
265f22a9 2441 rq_last_tick_reset(rq);
1da177e4
LT
2442}
2443
265f22a9
FW
2444#ifdef CONFIG_NO_HZ_FULL
2445/**
2446 * scheduler_tick_max_deferment
2447 *
2448 * Keep at least one tick per second when a single
2449 * active task is running because the scheduler doesn't
2450 * yet completely support full dynticks environment.
2451 *
2452 * This makes sure that uptime, CFS vruntime, load
2453 * balancing, etc... continue to move forward, even
2454 * with a very low granularity.
e69f6186
YB
2455 *
2456 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2457 */
2458u64 scheduler_tick_max_deferment(void)
2459{
2460 struct rq *rq = this_rq();
2461 unsigned long next, now = ACCESS_ONCE(jiffies);
2462
2463 next = rq->last_sched_tick + HZ;
2464
2465 if (time_before_eq(next, now))
2466 return 0;
2467
2468 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2469}
265f22a9 2470#endif
1da177e4 2471
132380a0 2472notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2473{
2474 if (in_lock_functions(addr)) {
2475 addr = CALLER_ADDR2;
2476 if (in_lock_functions(addr))
2477 addr = CALLER_ADDR3;
2478 }
2479 return addr;
2480}
1da177e4 2481
7e49fcce
SR
2482#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2483 defined(CONFIG_PREEMPT_TRACER))
2484
bdb43806 2485void __kprobes preempt_count_add(int val)
1da177e4 2486{
6cd8a4bb 2487#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2488 /*
2489 * Underflow?
2490 */
9a11b49a
IM
2491 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2492 return;
6cd8a4bb 2493#endif
bdb43806 2494 __preempt_count_add(val);
6cd8a4bb 2495#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2496 /*
2497 * Spinlock count overflowing soon?
2498 */
33859f7f
MOS
2499 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2500 PREEMPT_MASK - 10);
6cd8a4bb
SR
2501#endif
2502 if (preempt_count() == val)
2503 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2504}
bdb43806 2505EXPORT_SYMBOL(preempt_count_add);
1da177e4 2506
bdb43806 2507void __kprobes preempt_count_sub(int val)
1da177e4 2508{
6cd8a4bb 2509#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2510 /*
2511 * Underflow?
2512 */
01e3eb82 2513 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2514 return;
1da177e4
LT
2515 /*
2516 * Is the spinlock portion underflowing?
2517 */
9a11b49a
IM
2518 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2519 !(preempt_count() & PREEMPT_MASK)))
2520 return;
6cd8a4bb 2521#endif
9a11b49a 2522
6cd8a4bb
SR
2523 if (preempt_count() == val)
2524 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2525 __preempt_count_sub(val);
1da177e4 2526}
bdb43806 2527EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2528
2529#endif
2530
2531/*
dd41f596 2532 * Print scheduling while atomic bug:
1da177e4 2533 */
dd41f596 2534static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2535{
664dfa65
DJ
2536 if (oops_in_progress)
2537 return;
2538
3df0fc5b
PZ
2539 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2540 prev->comm, prev->pid, preempt_count());
838225b4 2541
dd41f596 2542 debug_show_held_locks(prev);
e21f5b15 2543 print_modules();
dd41f596
IM
2544 if (irqs_disabled())
2545 print_irqtrace_events(prev);
6135fc1e 2546 dump_stack();
373d4d09 2547 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2548}
1da177e4 2549
dd41f596
IM
2550/*
2551 * Various schedule()-time debugging checks and statistics:
2552 */
2553static inline void schedule_debug(struct task_struct *prev)
2554{
1da177e4 2555 /*
41a2d6cf 2556 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2557 * schedule() atomically, we ignore that path. Otherwise whine
2558 * if we are scheduling when we should not.
1da177e4 2559 */
192301e7 2560 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2561 __schedule_bug(prev);
b3fbab05 2562 rcu_sleep_check();
dd41f596 2563
1da177e4
LT
2564 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2565
2d72376b 2566 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2567}
2568
6cecd084 2569static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2570{
61eadef6 2571 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2572 update_rq_clock(rq);
6cecd084 2573 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2574}
2575
dd41f596
IM
2576/*
2577 * Pick up the highest-prio task:
2578 */
2579static inline struct task_struct *
b67802ea 2580pick_next_task(struct rq *rq)
dd41f596 2581{
5522d5d5 2582 const struct sched_class *class;
dd41f596 2583 struct task_struct *p;
1da177e4
LT
2584
2585 /*
dd41f596
IM
2586 * Optimization: we know that if all tasks are in
2587 * the fair class we can call that function directly:
1da177e4 2588 */
953bfcd1 2589 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2590 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2591 if (likely(p))
2592 return p;
1da177e4
LT
2593 }
2594
34f971f6 2595 for_each_class(class) {
fb8d4724 2596 p = class->pick_next_task(rq);
dd41f596
IM
2597 if (p)
2598 return p;
dd41f596 2599 }
34f971f6
PZ
2600
2601 BUG(); /* the idle class will always have a runnable task */
dd41f596 2602}
1da177e4 2603
dd41f596 2604/*
c259e01a 2605 * __schedule() is the main scheduler function.
edde96ea
PE
2606 *
2607 * The main means of driving the scheduler and thus entering this function are:
2608 *
2609 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2610 *
2611 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2612 * paths. For example, see arch/x86/entry_64.S.
2613 *
2614 * To drive preemption between tasks, the scheduler sets the flag in timer
2615 * interrupt handler scheduler_tick().
2616 *
2617 * 3. Wakeups don't really cause entry into schedule(). They add a
2618 * task to the run-queue and that's it.
2619 *
2620 * Now, if the new task added to the run-queue preempts the current
2621 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2622 * called on the nearest possible occasion:
2623 *
2624 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2625 *
2626 * - in syscall or exception context, at the next outmost
2627 * preempt_enable(). (this might be as soon as the wake_up()'s
2628 * spin_unlock()!)
2629 *
2630 * - in IRQ context, return from interrupt-handler to
2631 * preemptible context
2632 *
2633 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2634 * then at the next:
2635 *
2636 * - cond_resched() call
2637 * - explicit schedule() call
2638 * - return from syscall or exception to user-space
2639 * - return from interrupt-handler to user-space
dd41f596 2640 */
c259e01a 2641static void __sched __schedule(void)
dd41f596
IM
2642{
2643 struct task_struct *prev, *next;
67ca7bde 2644 unsigned long *switch_count;
dd41f596 2645 struct rq *rq;
31656519 2646 int cpu;
dd41f596 2647
ff743345
PZ
2648need_resched:
2649 preempt_disable();
dd41f596
IM
2650 cpu = smp_processor_id();
2651 rq = cpu_rq(cpu);
25502a6c 2652 rcu_note_context_switch(cpu);
dd41f596 2653 prev = rq->curr;
dd41f596 2654
dd41f596 2655 schedule_debug(prev);
1da177e4 2656
31656519 2657 if (sched_feat(HRTICK))
f333fdc9 2658 hrtick_clear(rq);
8f4d37ec 2659
e0acd0a6
ON
2660 /*
2661 * Make sure that signal_pending_state()->signal_pending() below
2662 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2663 * done by the caller to avoid the race with signal_wake_up().
2664 */
2665 smp_mb__before_spinlock();
05fa785c 2666 raw_spin_lock_irq(&rq->lock);
1da177e4 2667
246d86b5 2668 switch_count = &prev->nivcsw;
1da177e4 2669 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2670 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2671 prev->state = TASK_RUNNING;
21aa9af0 2672 } else {
2acca55e
PZ
2673 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2674 prev->on_rq = 0;
2675
21aa9af0 2676 /*
2acca55e
PZ
2677 * If a worker went to sleep, notify and ask workqueue
2678 * whether it wants to wake up a task to maintain
2679 * concurrency.
21aa9af0
TH
2680 */
2681 if (prev->flags & PF_WQ_WORKER) {
2682 struct task_struct *to_wakeup;
2683
2684 to_wakeup = wq_worker_sleeping(prev, cpu);
2685 if (to_wakeup)
2686 try_to_wake_up_local(to_wakeup);
2687 }
21aa9af0 2688 }
dd41f596 2689 switch_count = &prev->nvcsw;
1da177e4
LT
2690 }
2691
3f029d3c 2692 pre_schedule(rq, prev);
f65eda4f 2693
dd41f596 2694 if (unlikely(!rq->nr_running))
1da177e4 2695 idle_balance(cpu, rq);
1da177e4 2696
df1c99d4 2697 put_prev_task(rq, prev);
b67802ea 2698 next = pick_next_task(rq);
f26f9aff 2699 clear_tsk_need_resched(prev);
f27dde8d 2700 clear_preempt_need_resched();
f26f9aff 2701 rq->skip_clock_update = 0;
1da177e4 2702
1da177e4 2703 if (likely(prev != next)) {
1da177e4
LT
2704 rq->nr_switches++;
2705 rq->curr = next;
2706 ++*switch_count;
2707
dd41f596 2708 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2709 /*
246d86b5
ON
2710 * The context switch have flipped the stack from under us
2711 * and restored the local variables which were saved when
2712 * this task called schedule() in the past. prev == current
2713 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2714 */
2715 cpu = smp_processor_id();
2716 rq = cpu_rq(cpu);
1da177e4 2717 } else
05fa785c 2718 raw_spin_unlock_irq(&rq->lock);
1da177e4 2719
3f029d3c 2720 post_schedule(rq);
1da177e4 2721
ba74c144 2722 sched_preempt_enable_no_resched();
ff743345 2723 if (need_resched())
1da177e4
LT
2724 goto need_resched;
2725}
c259e01a 2726
9c40cef2
TG
2727static inline void sched_submit_work(struct task_struct *tsk)
2728{
3c7d5184 2729 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2730 return;
2731 /*
2732 * If we are going to sleep and we have plugged IO queued,
2733 * make sure to submit it to avoid deadlocks.
2734 */
2735 if (blk_needs_flush_plug(tsk))
2736 blk_schedule_flush_plug(tsk);
2737}
2738
6ebbe7a0 2739asmlinkage void __sched schedule(void)
c259e01a 2740{
9c40cef2
TG
2741 struct task_struct *tsk = current;
2742
2743 sched_submit_work(tsk);
c259e01a
TG
2744 __schedule();
2745}
1da177e4
LT
2746EXPORT_SYMBOL(schedule);
2747
91d1aa43 2748#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2749asmlinkage void __sched schedule_user(void)
2750{
2751 /*
2752 * If we come here after a random call to set_need_resched(),
2753 * or we have been woken up remotely but the IPI has not yet arrived,
2754 * we haven't yet exited the RCU idle mode. Do it here manually until
2755 * we find a better solution.
2756 */
91d1aa43 2757 user_exit();
20ab65e3 2758 schedule();
91d1aa43 2759 user_enter();
20ab65e3
FW
2760}
2761#endif
2762
c5491ea7
TG
2763/**
2764 * schedule_preempt_disabled - called with preemption disabled
2765 *
2766 * Returns with preemption disabled. Note: preempt_count must be 1
2767 */
2768void __sched schedule_preempt_disabled(void)
2769{
ba74c144 2770 sched_preempt_enable_no_resched();
c5491ea7
TG
2771 schedule();
2772 preempt_disable();
2773}
2774
1da177e4
LT
2775#ifdef CONFIG_PREEMPT
2776/*
2ed6e34f 2777 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2778 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2779 * occur there and call schedule directly.
2780 */
d1f74e20 2781asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2782{
1da177e4
LT
2783 /*
2784 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2785 * we do not want to preempt the current task. Just return..
1da177e4 2786 */
fbb00b56 2787 if (likely(!preemptible()))
1da177e4
LT
2788 return;
2789
3a5c359a 2790 do {
bdb43806 2791 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2792 __schedule();
bdb43806 2793 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2794
3a5c359a
AK
2795 /*
2796 * Check again in case we missed a preemption opportunity
2797 * between schedule and now.
2798 */
2799 barrier();
5ed0cec0 2800 } while (need_resched());
1da177e4 2801}
1da177e4 2802EXPORT_SYMBOL(preempt_schedule);
32e475d7 2803#endif /* CONFIG_PREEMPT */
1da177e4
LT
2804
2805/*
2ed6e34f 2806 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2807 * off of irq context.
2808 * Note, that this is called and return with irqs disabled. This will
2809 * protect us against recursive calling from irq.
2810 */
2811asmlinkage void __sched preempt_schedule_irq(void)
2812{
b22366cd 2813 enum ctx_state prev_state;
6478d880 2814
2ed6e34f 2815 /* Catch callers which need to be fixed */
f27dde8d 2816 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2817
b22366cd
FW
2818 prev_state = exception_enter();
2819
3a5c359a 2820 do {
bdb43806 2821 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2822 local_irq_enable();
c259e01a 2823 __schedule();
3a5c359a 2824 local_irq_disable();
bdb43806 2825 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2826
3a5c359a
AK
2827 /*
2828 * Check again in case we missed a preemption opportunity
2829 * between schedule and now.
2830 */
2831 barrier();
5ed0cec0 2832 } while (need_resched());
b22366cd
FW
2833
2834 exception_exit(prev_state);
1da177e4
LT
2835}
2836
63859d4f 2837int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2838 void *key)
1da177e4 2839{
63859d4f 2840 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2841}
1da177e4
LT
2842EXPORT_SYMBOL(default_wake_function);
2843
8cbbe86d
AK
2844static long __sched
2845sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2846{
0fec171c
IM
2847 unsigned long flags;
2848 wait_queue_t wait;
2849
2850 init_waitqueue_entry(&wait, current);
1da177e4 2851
8cbbe86d 2852 __set_current_state(state);
1da177e4 2853
8cbbe86d
AK
2854 spin_lock_irqsave(&q->lock, flags);
2855 __add_wait_queue(q, &wait);
2856 spin_unlock(&q->lock);
2857 timeout = schedule_timeout(timeout);
2858 spin_lock_irq(&q->lock);
2859 __remove_wait_queue(q, &wait);
2860 spin_unlock_irqrestore(&q->lock, flags);
2861
2862 return timeout;
2863}
2864
2865void __sched interruptible_sleep_on(wait_queue_head_t *q)
2866{
2867 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2868}
1da177e4
LT
2869EXPORT_SYMBOL(interruptible_sleep_on);
2870
0fec171c 2871long __sched
95cdf3b7 2872interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2873{
8cbbe86d 2874 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2875}
1da177e4
LT
2876EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2877
0fec171c 2878void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2879{
8cbbe86d 2880 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2881}
1da177e4
LT
2882EXPORT_SYMBOL(sleep_on);
2883
0fec171c 2884long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2885{
8cbbe86d 2886 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2887}
1da177e4
LT
2888EXPORT_SYMBOL(sleep_on_timeout);
2889
b29739f9
IM
2890#ifdef CONFIG_RT_MUTEXES
2891
2892/*
2893 * rt_mutex_setprio - set the current priority of a task
2894 * @p: task
2895 * @prio: prio value (kernel-internal form)
2896 *
2897 * This function changes the 'effective' priority of a task. It does
2898 * not touch ->normal_prio like __setscheduler().
2899 *
2900 * Used by the rt_mutex code to implement priority inheritance logic.
2901 */
36c8b586 2902void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2903{
2d3d891d 2904 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2905 struct rq *rq;
83ab0aa0 2906 const struct sched_class *prev_class;
b29739f9 2907
aab03e05 2908 BUG_ON(prio > MAX_PRIO);
b29739f9 2909
0122ec5b 2910 rq = __task_rq_lock(p);
b29739f9 2911
1c4dd99b
TG
2912 /*
2913 * Idle task boosting is a nono in general. There is one
2914 * exception, when PREEMPT_RT and NOHZ is active:
2915 *
2916 * The idle task calls get_next_timer_interrupt() and holds
2917 * the timer wheel base->lock on the CPU and another CPU wants
2918 * to access the timer (probably to cancel it). We can safely
2919 * ignore the boosting request, as the idle CPU runs this code
2920 * with interrupts disabled and will complete the lock
2921 * protected section without being interrupted. So there is no
2922 * real need to boost.
2923 */
2924 if (unlikely(p == rq->idle)) {
2925 WARN_ON(p != rq->curr);
2926 WARN_ON(p->pi_blocked_on);
2927 goto out_unlock;
2928 }
2929
a8027073 2930 trace_sched_pi_setprio(p, prio);
2d3d891d 2931 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2932 oldprio = p->prio;
83ab0aa0 2933 prev_class = p->sched_class;
fd2f4419 2934 on_rq = p->on_rq;
051a1d1a 2935 running = task_current(rq, p);
0e1f3483 2936 if (on_rq)
69be72c1 2937 dequeue_task(rq, p, 0);
0e1f3483
HS
2938 if (running)
2939 p->sched_class->put_prev_task(rq, p);
dd41f596 2940
2d3d891d
DF
2941 /*
2942 * Boosting condition are:
2943 * 1. -rt task is running and holds mutex A
2944 * --> -dl task blocks on mutex A
2945 *
2946 * 2. -dl task is running and holds mutex A
2947 * --> -dl task blocks on mutex A and could preempt the
2948 * running task
2949 */
2950 if (dl_prio(prio)) {
2951 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2952 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2953 p->dl.dl_boosted = 1;
2954 p->dl.dl_throttled = 0;
2955 enqueue_flag = ENQUEUE_REPLENISH;
2956 } else
2957 p->dl.dl_boosted = 0;
aab03e05 2958 p->sched_class = &dl_sched_class;
2d3d891d
DF
2959 } else if (rt_prio(prio)) {
2960 if (dl_prio(oldprio))
2961 p->dl.dl_boosted = 0;
2962 if (oldprio < prio)
2963 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2964 p->sched_class = &rt_sched_class;
2d3d891d
DF
2965 } else {
2966 if (dl_prio(oldprio))
2967 p->dl.dl_boosted = 0;
dd41f596 2968 p->sched_class = &fair_sched_class;
2d3d891d 2969 }
dd41f596 2970
b29739f9
IM
2971 p->prio = prio;
2972
0e1f3483
HS
2973 if (running)
2974 p->sched_class->set_curr_task(rq);
da7a735e 2975 if (on_rq)
2d3d891d 2976 enqueue_task(rq, p, enqueue_flag);
cb469845 2977
da7a735e 2978 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2979out_unlock:
0122ec5b 2980 __task_rq_unlock(rq);
b29739f9 2981}
b29739f9 2982#endif
d50dde5a 2983
36c8b586 2984void set_user_nice(struct task_struct *p, long nice)
1da177e4 2985{
dd41f596 2986 int old_prio, delta, on_rq;
1da177e4 2987 unsigned long flags;
70b97a7f 2988 struct rq *rq;
1da177e4
LT
2989
2990 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2991 return;
2992 /*
2993 * We have to be careful, if called from sys_setpriority(),
2994 * the task might be in the middle of scheduling on another CPU.
2995 */
2996 rq = task_rq_lock(p, &flags);
2997 /*
2998 * The RT priorities are set via sched_setscheduler(), but we still
2999 * allow the 'normal' nice value to be set - but as expected
3000 * it wont have any effect on scheduling until the task is
aab03e05 3001 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3002 */
aab03e05 3003 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3004 p->static_prio = NICE_TO_PRIO(nice);
3005 goto out_unlock;
3006 }
fd2f4419 3007 on_rq = p->on_rq;
c09595f6 3008 if (on_rq)
69be72c1 3009 dequeue_task(rq, p, 0);
1da177e4 3010
1da177e4 3011 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3012 set_load_weight(p);
b29739f9
IM
3013 old_prio = p->prio;
3014 p->prio = effective_prio(p);
3015 delta = p->prio - old_prio;
1da177e4 3016
dd41f596 3017 if (on_rq) {
371fd7e7 3018 enqueue_task(rq, p, 0);
1da177e4 3019 /*
d5f9f942
AM
3020 * If the task increased its priority or is running and
3021 * lowered its priority, then reschedule its CPU:
1da177e4 3022 */
d5f9f942 3023 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3024 resched_task(rq->curr);
3025 }
3026out_unlock:
0122ec5b 3027 task_rq_unlock(rq, p, &flags);
1da177e4 3028}
1da177e4
LT
3029EXPORT_SYMBOL(set_user_nice);
3030
e43379f1
MM
3031/*
3032 * can_nice - check if a task can reduce its nice value
3033 * @p: task
3034 * @nice: nice value
3035 */
36c8b586 3036int can_nice(const struct task_struct *p, const int nice)
e43379f1 3037{
024f4747
MM
3038 /* convert nice value [19,-20] to rlimit style value [1,40] */
3039 int nice_rlim = 20 - nice;
48f24c4d 3040
78d7d407 3041 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3042 capable(CAP_SYS_NICE));
3043}
3044
1da177e4
LT
3045#ifdef __ARCH_WANT_SYS_NICE
3046
3047/*
3048 * sys_nice - change the priority of the current process.
3049 * @increment: priority increment
3050 *
3051 * sys_setpriority is a more generic, but much slower function that
3052 * does similar things.
3053 */
5add95d4 3054SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3055{
48f24c4d 3056 long nice, retval;
1da177e4
LT
3057
3058 /*
3059 * Setpriority might change our priority at the same moment.
3060 * We don't have to worry. Conceptually one call occurs first
3061 * and we have a single winner.
3062 */
e43379f1
MM
3063 if (increment < -40)
3064 increment = -40;
1da177e4
LT
3065 if (increment > 40)
3066 increment = 40;
3067
2b8f836f 3068 nice = TASK_NICE(current) + increment;
1da177e4
LT
3069 if (nice < -20)
3070 nice = -20;
3071 if (nice > 19)
3072 nice = 19;
3073
e43379f1
MM
3074 if (increment < 0 && !can_nice(current, nice))
3075 return -EPERM;
3076
1da177e4
LT
3077 retval = security_task_setnice(current, nice);
3078 if (retval)
3079 return retval;
3080
3081 set_user_nice(current, nice);
3082 return 0;
3083}
3084
3085#endif
3086
3087/**
3088 * task_prio - return the priority value of a given task.
3089 * @p: the task in question.
3090 *
e69f6186 3091 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3092 * RT tasks are offset by -200. Normal tasks are centered
3093 * around 0, value goes from -16 to +15.
3094 */
36c8b586 3095int task_prio(const struct task_struct *p)
1da177e4
LT
3096{
3097 return p->prio - MAX_RT_PRIO;
3098}
3099
3100/**
3101 * task_nice - return the nice value of a given task.
3102 * @p: the task in question.
e69f6186
YB
3103 *
3104 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3105 */
36c8b586 3106int task_nice(const struct task_struct *p)
1da177e4
LT
3107{
3108 return TASK_NICE(p);
3109}
150d8bed 3110EXPORT_SYMBOL(task_nice);
1da177e4
LT
3111
3112/**
3113 * idle_cpu - is a given cpu idle currently?
3114 * @cpu: the processor in question.
e69f6186
YB
3115 *
3116 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3117 */
3118int idle_cpu(int cpu)
3119{
908a3283
TG
3120 struct rq *rq = cpu_rq(cpu);
3121
3122 if (rq->curr != rq->idle)
3123 return 0;
3124
3125 if (rq->nr_running)
3126 return 0;
3127
3128#ifdef CONFIG_SMP
3129 if (!llist_empty(&rq->wake_list))
3130 return 0;
3131#endif
3132
3133 return 1;
1da177e4
LT
3134}
3135
1da177e4
LT
3136/**
3137 * idle_task - return the idle task for a given cpu.
3138 * @cpu: the processor in question.
e69f6186
YB
3139 *
3140 * Return: The idle task for the cpu @cpu.
1da177e4 3141 */
36c8b586 3142struct task_struct *idle_task(int cpu)
1da177e4
LT
3143{
3144 return cpu_rq(cpu)->idle;
3145}
3146
3147/**
3148 * find_process_by_pid - find a process with a matching PID value.
3149 * @pid: the pid in question.
e69f6186
YB
3150 *
3151 * The task of @pid, if found. %NULL otherwise.
1da177e4 3152 */
a9957449 3153static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3154{
228ebcbe 3155 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3156}
3157
aab03e05
DF
3158/*
3159 * This function initializes the sched_dl_entity of a newly becoming
3160 * SCHED_DEADLINE task.
3161 *
3162 * Only the static values are considered here, the actual runtime and the
3163 * absolute deadline will be properly calculated when the task is enqueued
3164 * for the first time with its new policy.
3165 */
3166static void
3167__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3168{
3169 struct sched_dl_entity *dl_se = &p->dl;
3170
3171 init_dl_task_timer(dl_se);
3172 dl_se->dl_runtime = attr->sched_runtime;
3173 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3174 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3175 dl_se->flags = attr->sched_flags;
332ac17e 3176 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3177 dl_se->dl_throttled = 0;
3178 dl_se->dl_new = 1;
3179}
3180
d50dde5a
DF
3181/* Actually do priority change: must hold pi & rq lock. */
3182static void __setscheduler(struct rq *rq, struct task_struct *p,
3183 const struct sched_attr *attr)
1da177e4 3184{
d50dde5a
DF
3185 int policy = attr->sched_policy;
3186
1da177e4 3187 p->policy = policy;
d50dde5a 3188
aab03e05
DF
3189 if (dl_policy(policy))
3190 __setparam_dl(p, attr);
3191 else if (rt_policy(policy))
d50dde5a
DF
3192 p->rt_priority = attr->sched_priority;
3193 else
3194 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3195
b29739f9 3196 p->normal_prio = normal_prio(p);
b29739f9 3197 p->prio = rt_mutex_getprio(p);
d50dde5a 3198
aab03e05
DF
3199 if (dl_prio(p->prio))
3200 p->sched_class = &dl_sched_class;
3201 else if (rt_prio(p->prio))
ffd44db5
PZ
3202 p->sched_class = &rt_sched_class;
3203 else
3204 p->sched_class = &fair_sched_class;
d50dde5a 3205
2dd73a4f 3206 set_load_weight(p);
1da177e4 3207}
aab03e05
DF
3208
3209static void
3210__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3211{
3212 struct sched_dl_entity *dl_se = &p->dl;
3213
3214 attr->sched_priority = p->rt_priority;
3215 attr->sched_runtime = dl_se->dl_runtime;
3216 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3217 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3218 attr->sched_flags = dl_se->flags;
3219}
3220
3221/*
3222 * This function validates the new parameters of a -deadline task.
3223 * We ask for the deadline not being zero, and greater or equal
755378a4 3224 * than the runtime, as well as the period of being zero or
332ac17e
DF
3225 * greater than deadline. Furthermore, we have to be sure that
3226 * user parameters are above the internal resolution (1us); we
3227 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3228 */
3229static bool
3230__checkparam_dl(const struct sched_attr *attr)
3231{
3232 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3233 (attr->sched_period == 0 ||
3234 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3235 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3236 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3237}
3238
c69e8d9c
DH
3239/*
3240 * check the target process has a UID that matches the current process's
3241 */
3242static bool check_same_owner(struct task_struct *p)
3243{
3244 const struct cred *cred = current_cred(), *pcred;
3245 bool match;
3246
3247 rcu_read_lock();
3248 pcred = __task_cred(p);
9c806aa0
EB
3249 match = (uid_eq(cred->euid, pcred->euid) ||
3250 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3251 rcu_read_unlock();
3252 return match;
3253}
3254
d50dde5a
DF
3255static int __sched_setscheduler(struct task_struct *p,
3256 const struct sched_attr *attr,
3257 bool user)
1da177e4 3258{
83b699ed 3259 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3260 int policy = attr->sched_policy;
1da177e4 3261 unsigned long flags;
83ab0aa0 3262 const struct sched_class *prev_class;
70b97a7f 3263 struct rq *rq;
ca94c442 3264 int reset_on_fork;
1da177e4 3265
66e5393a
SR
3266 /* may grab non-irq protected spin_locks */
3267 BUG_ON(in_interrupt());
1da177e4
LT
3268recheck:
3269 /* double check policy once rq lock held */
ca94c442
LP
3270 if (policy < 0) {
3271 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3272 policy = oldpolicy = p->policy;
ca94c442
LP
3273 } else {
3274 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3275 policy &= ~SCHED_RESET_ON_FORK;
3276
aab03e05
DF
3277 if (policy != SCHED_DEADLINE &&
3278 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3279 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3280 policy != SCHED_IDLE)
3281 return -EINVAL;
3282 }
3283
1da177e4
LT
3284 /*
3285 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3286 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3287 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3288 */
d50dde5a
DF
3289 if (attr->sched_priority < 0 ||
3290 (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3291 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3292 return -EINVAL;
aab03e05
DF
3293 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3294 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3295 return -EINVAL;
3296
37e4ab3f
OC
3297 /*
3298 * Allow unprivileged RT tasks to decrease priority:
3299 */
961ccddd 3300 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a
DF
3301 if (fair_policy(policy)) {
3302 if (!can_nice(p, attr->sched_nice))
3303 return -EPERM;
3304 }
3305
e05606d3 3306 if (rt_policy(policy)) {
a44702e8
ON
3307 unsigned long rlim_rtprio =
3308 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3309
3310 /* can't set/change the rt policy */
3311 if (policy != p->policy && !rlim_rtprio)
3312 return -EPERM;
3313
3314 /* can't increase priority */
d50dde5a
DF
3315 if (attr->sched_priority > p->rt_priority &&
3316 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3317 return -EPERM;
3318 }
c02aa73b 3319
dd41f596 3320 /*
c02aa73b
DH
3321 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3322 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3323 */
c02aa73b
DH
3324 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3325 if (!can_nice(p, TASK_NICE(p)))
3326 return -EPERM;
3327 }
5fe1d75f 3328
37e4ab3f 3329 /* can't change other user's priorities */
c69e8d9c 3330 if (!check_same_owner(p))
37e4ab3f 3331 return -EPERM;
ca94c442
LP
3332
3333 /* Normal users shall not reset the sched_reset_on_fork flag */
3334 if (p->sched_reset_on_fork && !reset_on_fork)
3335 return -EPERM;
37e4ab3f 3336 }
1da177e4 3337
725aad24 3338 if (user) {
b0ae1981 3339 retval = security_task_setscheduler(p);
725aad24
JF
3340 if (retval)
3341 return retval;
3342 }
3343
b29739f9
IM
3344 /*
3345 * make sure no PI-waiters arrive (or leave) while we are
3346 * changing the priority of the task:
0122ec5b 3347 *
25985edc 3348 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3349 * runqueue lock must be held.
3350 */
0122ec5b 3351 rq = task_rq_lock(p, &flags);
dc61b1d6 3352
34f971f6
PZ
3353 /*
3354 * Changing the policy of the stop threads its a very bad idea
3355 */
3356 if (p == rq->stop) {
0122ec5b 3357 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3358 return -EINVAL;
3359 }
3360
a51e9198
DF
3361 /*
3362 * If not changing anything there's no need to proceed further:
3363 */
d50dde5a
DF
3364 if (unlikely(policy == p->policy)) {
3365 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3366 goto change;
3367 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3368 goto change;
aab03e05
DF
3369 if (dl_policy(policy))
3370 goto change;
d50dde5a 3371
45afb173 3372 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3373 return 0;
3374 }
d50dde5a 3375change:
a51e9198 3376
dc61b1d6 3377 if (user) {
332ac17e 3378#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3379 /*
3380 * Do not allow realtime tasks into groups that have no runtime
3381 * assigned.
3382 */
3383 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3384 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3385 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3386 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3387 return -EPERM;
3388 }
dc61b1d6 3389#endif
332ac17e
DF
3390#ifdef CONFIG_SMP
3391 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3392 cpumask_t *span = rq->rd->span;
332ac17e
DF
3393
3394 /*
3395 * Don't allow tasks with an affinity mask smaller than
3396 * the entire root_domain to become SCHED_DEADLINE. We
3397 * will also fail if there's no bandwidth available.
3398 */
e4099a5e
PZ
3399 if (!cpumask_subset(span, &p->cpus_allowed) ||
3400 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3401 task_rq_unlock(rq, p, &flags);
3402 return -EPERM;
3403 }
3404 }
3405#endif
3406 }
dc61b1d6 3407
1da177e4
LT
3408 /* recheck policy now with rq lock held */
3409 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3410 policy = oldpolicy = -1;
0122ec5b 3411 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3412 goto recheck;
3413 }
332ac17e
DF
3414
3415 /*
3416 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3417 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3418 * is available.
3419 */
e4099a5e 3420 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3421 task_rq_unlock(rq, p, &flags);
3422 return -EBUSY;
3423 }
3424
fd2f4419 3425 on_rq = p->on_rq;
051a1d1a 3426 running = task_current(rq, p);
0e1f3483 3427 if (on_rq)
4ca9b72b 3428 dequeue_task(rq, p, 0);
0e1f3483
HS
3429 if (running)
3430 p->sched_class->put_prev_task(rq, p);
f6b53205 3431
ca94c442
LP
3432 p->sched_reset_on_fork = reset_on_fork;
3433
1da177e4 3434 oldprio = p->prio;
83ab0aa0 3435 prev_class = p->sched_class;
d50dde5a 3436 __setscheduler(rq, p, attr);
f6b53205 3437
0e1f3483
HS
3438 if (running)
3439 p->sched_class->set_curr_task(rq);
da7a735e 3440 if (on_rq)
4ca9b72b 3441 enqueue_task(rq, p, 0);
cb469845 3442
da7a735e 3443 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3444 task_rq_unlock(rq, p, &flags);
b29739f9 3445
95e02ca9
TG
3446 rt_mutex_adjust_pi(p);
3447
1da177e4
LT
3448 return 0;
3449}
961ccddd
RR
3450
3451/**
3452 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3453 * @p: the task in question.
3454 * @policy: new policy.
3455 * @param: structure containing the new RT priority.
3456 *
e69f6186
YB
3457 * Return: 0 on success. An error code otherwise.
3458 *
961ccddd
RR
3459 * NOTE that the task may be already dead.
3460 */
3461int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3462 const struct sched_param *param)
961ccddd 3463{
d50dde5a
DF
3464 struct sched_attr attr = {
3465 .sched_policy = policy,
3466 .sched_priority = param->sched_priority
3467 };
3468 return __sched_setscheduler(p, &attr, true);
961ccddd 3469}
1da177e4
LT
3470EXPORT_SYMBOL_GPL(sched_setscheduler);
3471
d50dde5a
DF
3472int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3473{
3474 return __sched_setscheduler(p, attr, true);
3475}
3476EXPORT_SYMBOL_GPL(sched_setattr);
3477
961ccddd
RR
3478/**
3479 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3480 * @p: the task in question.
3481 * @policy: new policy.
3482 * @param: structure containing the new RT priority.
3483 *
3484 * Just like sched_setscheduler, only don't bother checking if the
3485 * current context has permission. For example, this is needed in
3486 * stop_machine(): we create temporary high priority worker threads,
3487 * but our caller might not have that capability.
e69f6186
YB
3488 *
3489 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3490 */
3491int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3492 const struct sched_param *param)
961ccddd 3493{
d50dde5a
DF
3494 struct sched_attr attr = {
3495 .sched_policy = policy,
3496 .sched_priority = param->sched_priority
3497 };
3498 return __sched_setscheduler(p, &attr, false);
961ccddd
RR
3499}
3500
95cdf3b7
IM
3501static int
3502do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3503{
1da177e4
LT
3504 struct sched_param lparam;
3505 struct task_struct *p;
36c8b586 3506 int retval;
1da177e4
LT
3507
3508 if (!param || pid < 0)
3509 return -EINVAL;
3510 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3511 return -EFAULT;
5fe1d75f
ON
3512
3513 rcu_read_lock();
3514 retval = -ESRCH;
1da177e4 3515 p = find_process_by_pid(pid);
5fe1d75f
ON
3516 if (p != NULL)
3517 retval = sched_setscheduler(p, policy, &lparam);
3518 rcu_read_unlock();
36c8b586 3519
1da177e4
LT
3520 return retval;
3521}
3522
d50dde5a
DF
3523/*
3524 * Mimics kernel/events/core.c perf_copy_attr().
3525 */
3526static int sched_copy_attr(struct sched_attr __user *uattr,
3527 struct sched_attr *attr)
3528{
3529 u32 size;
3530 int ret;
3531
3532 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3533 return -EFAULT;
3534
3535 /*
3536 * zero the full structure, so that a short copy will be nice.
3537 */
3538 memset(attr, 0, sizeof(*attr));
3539
3540 ret = get_user(size, &uattr->size);
3541 if (ret)
3542 return ret;
3543
3544 if (size > PAGE_SIZE) /* silly large */
3545 goto err_size;
3546
3547 if (!size) /* abi compat */
3548 size = SCHED_ATTR_SIZE_VER0;
3549
3550 if (size < SCHED_ATTR_SIZE_VER0)
3551 goto err_size;
3552
3553 /*
3554 * If we're handed a bigger struct than we know of,
3555 * ensure all the unknown bits are 0 - i.e. new
3556 * user-space does not rely on any kernel feature
3557 * extensions we dont know about yet.
3558 */
3559 if (size > sizeof(*attr)) {
3560 unsigned char __user *addr;
3561 unsigned char __user *end;
3562 unsigned char val;
3563
3564 addr = (void __user *)uattr + sizeof(*attr);
3565 end = (void __user *)uattr + size;
3566
3567 for (; addr < end; addr++) {
3568 ret = get_user(val, addr);
3569 if (ret)
3570 return ret;
3571 if (val)
3572 goto err_size;
3573 }
3574 size = sizeof(*attr);
3575 }
3576
3577 ret = copy_from_user(attr, uattr, size);
3578 if (ret)
3579 return -EFAULT;
3580
3581 /*
3582 * XXX: do we want to be lenient like existing syscalls; or do we want
3583 * to be strict and return an error on out-of-bounds values?
3584 */
3585 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3586
3587out:
3588 return ret;
3589
3590err_size:
3591 put_user(sizeof(*attr), &uattr->size);
3592 ret = -E2BIG;
3593 goto out;
3594}
3595
1da177e4
LT
3596/**
3597 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3598 * @pid: the pid in question.
3599 * @policy: new policy.
3600 * @param: structure containing the new RT priority.
e69f6186
YB
3601 *
3602 * Return: 0 on success. An error code otherwise.
1da177e4 3603 */
5add95d4
HC
3604SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3605 struct sched_param __user *, param)
1da177e4 3606{
c21761f1
JB
3607 /* negative values for policy are not valid */
3608 if (policy < 0)
3609 return -EINVAL;
3610
1da177e4
LT
3611 return do_sched_setscheduler(pid, policy, param);
3612}
3613
3614/**
3615 * sys_sched_setparam - set/change the RT priority of a thread
3616 * @pid: the pid in question.
3617 * @param: structure containing the new RT priority.
e69f6186
YB
3618 *
3619 * Return: 0 on success. An error code otherwise.
1da177e4 3620 */
5add95d4 3621SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3622{
3623 return do_sched_setscheduler(pid, -1, param);
3624}
3625
d50dde5a
DF
3626/**
3627 * sys_sched_setattr - same as above, but with extended sched_attr
3628 * @pid: the pid in question.
3629 * @attr: structure containing the extended parameters.
3630 */
3631SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3632{
3633 struct sched_attr attr;
3634 struct task_struct *p;
3635 int retval;
3636
3637 if (!uattr || pid < 0)
3638 return -EINVAL;
3639
3640 if (sched_copy_attr(uattr, &attr))
3641 return -EFAULT;
3642
3643 rcu_read_lock();
3644 retval = -ESRCH;
3645 p = find_process_by_pid(pid);
3646 if (p != NULL)
3647 retval = sched_setattr(p, &attr);
3648 rcu_read_unlock();
3649
3650 return retval;
3651}
3652
1da177e4
LT
3653/**
3654 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3655 * @pid: the pid in question.
e69f6186
YB
3656 *
3657 * Return: On success, the policy of the thread. Otherwise, a negative error
3658 * code.
1da177e4 3659 */
5add95d4 3660SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3661{
36c8b586 3662 struct task_struct *p;
3a5c359a 3663 int retval;
1da177e4
LT
3664
3665 if (pid < 0)
3a5c359a 3666 return -EINVAL;
1da177e4
LT
3667
3668 retval = -ESRCH;
5fe85be0 3669 rcu_read_lock();
1da177e4
LT
3670 p = find_process_by_pid(pid);
3671 if (p) {
3672 retval = security_task_getscheduler(p);
3673 if (!retval)
ca94c442
LP
3674 retval = p->policy
3675 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3676 }
5fe85be0 3677 rcu_read_unlock();
1da177e4
LT
3678 return retval;
3679}
3680
3681/**
ca94c442 3682 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3683 * @pid: the pid in question.
3684 * @param: structure containing the RT priority.
e69f6186
YB
3685 *
3686 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3687 * code.
1da177e4 3688 */
5add95d4 3689SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3690{
3691 struct sched_param lp;
36c8b586 3692 struct task_struct *p;
3a5c359a 3693 int retval;
1da177e4
LT
3694
3695 if (!param || pid < 0)
3a5c359a 3696 return -EINVAL;
1da177e4 3697
5fe85be0 3698 rcu_read_lock();
1da177e4
LT
3699 p = find_process_by_pid(pid);
3700 retval = -ESRCH;
3701 if (!p)
3702 goto out_unlock;
3703
3704 retval = security_task_getscheduler(p);
3705 if (retval)
3706 goto out_unlock;
3707
aab03e05
DF
3708 if (task_has_dl_policy(p)) {
3709 retval = -EINVAL;
3710 goto out_unlock;
3711 }
1da177e4 3712 lp.sched_priority = p->rt_priority;
5fe85be0 3713 rcu_read_unlock();
1da177e4
LT
3714
3715 /*
3716 * This one might sleep, we cannot do it with a spinlock held ...
3717 */
3718 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3719
1da177e4
LT
3720 return retval;
3721
3722out_unlock:
5fe85be0 3723 rcu_read_unlock();
1da177e4
LT
3724 return retval;
3725}
3726
d50dde5a
DF
3727static int sched_read_attr(struct sched_attr __user *uattr,
3728 struct sched_attr *attr,
3729 unsigned int usize)
3730{
3731 int ret;
3732
3733 if (!access_ok(VERIFY_WRITE, uattr, usize))
3734 return -EFAULT;
3735
3736 /*
3737 * If we're handed a smaller struct than we know of,
3738 * ensure all the unknown bits are 0 - i.e. old
3739 * user-space does not get uncomplete information.
3740 */
3741 if (usize < sizeof(*attr)) {
3742 unsigned char *addr;
3743 unsigned char *end;
3744
3745 addr = (void *)attr + usize;
3746 end = (void *)attr + sizeof(*attr);
3747
3748 for (; addr < end; addr++) {
3749 if (*addr)
3750 goto err_size;
3751 }
3752
3753 attr->size = usize;
3754 }
3755
3756 ret = copy_to_user(uattr, attr, usize);
3757 if (ret)
3758 return -EFAULT;
3759
3760out:
3761 return ret;
3762
3763err_size:
3764 ret = -E2BIG;
3765 goto out;
3766}
3767
3768/**
aab03e05 3769 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a
DF
3770 * @pid: the pid in question.
3771 * @attr: structure containing the extended parameters.
3772 * @size: sizeof(attr) for fwd/bwd comp.
3773 */
3774SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3775 unsigned int, size)
3776{
3777 struct sched_attr attr = {
3778 .size = sizeof(struct sched_attr),
3779 };
3780 struct task_struct *p;
3781 int retval;
3782
3783 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3784 size < SCHED_ATTR_SIZE_VER0)
3785 return -EINVAL;
3786
3787 rcu_read_lock();
3788 p = find_process_by_pid(pid);
3789 retval = -ESRCH;
3790 if (!p)
3791 goto out_unlock;
3792
3793 retval = security_task_getscheduler(p);
3794 if (retval)
3795 goto out_unlock;
3796
3797 attr.sched_policy = p->policy;
aab03e05
DF
3798 if (task_has_dl_policy(p))
3799 __getparam_dl(p, &attr);
3800 else if (task_has_rt_policy(p))
d50dde5a
DF
3801 attr.sched_priority = p->rt_priority;
3802 else
3803 attr.sched_nice = TASK_NICE(p);
3804
3805 rcu_read_unlock();
3806
3807 retval = sched_read_attr(uattr, &attr, size);
3808 return retval;
3809
3810out_unlock:
3811 rcu_read_unlock();
3812 return retval;
3813}
3814
96f874e2 3815long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3816{
5a16f3d3 3817 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3818 struct task_struct *p;
3819 int retval;
1da177e4 3820
23f5d142 3821 rcu_read_lock();
1da177e4
LT
3822
3823 p = find_process_by_pid(pid);
3824 if (!p) {
23f5d142 3825 rcu_read_unlock();
1da177e4
LT
3826 return -ESRCH;
3827 }
3828
23f5d142 3829 /* Prevent p going away */
1da177e4 3830 get_task_struct(p);
23f5d142 3831 rcu_read_unlock();
1da177e4 3832
14a40ffc
TH
3833 if (p->flags & PF_NO_SETAFFINITY) {
3834 retval = -EINVAL;
3835 goto out_put_task;
3836 }
5a16f3d3
RR
3837 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3838 retval = -ENOMEM;
3839 goto out_put_task;
3840 }
3841 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3842 retval = -ENOMEM;
3843 goto out_free_cpus_allowed;
3844 }
1da177e4 3845 retval = -EPERM;
4c44aaaf
EB
3846 if (!check_same_owner(p)) {
3847 rcu_read_lock();
3848 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3849 rcu_read_unlock();
3850 goto out_unlock;
3851 }
3852 rcu_read_unlock();
3853 }
1da177e4 3854
b0ae1981 3855 retval = security_task_setscheduler(p);
e7834f8f
DQ
3856 if (retval)
3857 goto out_unlock;
3858
e4099a5e
PZ
3859
3860 cpuset_cpus_allowed(p, cpus_allowed);
3861 cpumask_and(new_mask, in_mask, cpus_allowed);
3862
332ac17e
DF
3863 /*
3864 * Since bandwidth control happens on root_domain basis,
3865 * if admission test is enabled, we only admit -deadline
3866 * tasks allowed to run on all the CPUs in the task's
3867 * root_domain.
3868 */
3869#ifdef CONFIG_SMP
3870 if (task_has_dl_policy(p)) {
3871 const struct cpumask *span = task_rq(p)->rd->span;
3872
e4099a5e 3873 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3874 retval = -EBUSY;
3875 goto out_unlock;
3876 }
3877 }
3878#endif
49246274 3879again:
5a16f3d3 3880 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3881
8707d8b8 3882 if (!retval) {
5a16f3d3
RR
3883 cpuset_cpus_allowed(p, cpus_allowed);
3884 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3885 /*
3886 * We must have raced with a concurrent cpuset
3887 * update. Just reset the cpus_allowed to the
3888 * cpuset's cpus_allowed
3889 */
5a16f3d3 3890 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3891 goto again;
3892 }
3893 }
1da177e4 3894out_unlock:
5a16f3d3
RR
3895 free_cpumask_var(new_mask);
3896out_free_cpus_allowed:
3897 free_cpumask_var(cpus_allowed);
3898out_put_task:
1da177e4 3899 put_task_struct(p);
1da177e4
LT
3900 return retval;
3901}
3902
3903static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3904 struct cpumask *new_mask)
1da177e4 3905{
96f874e2
RR
3906 if (len < cpumask_size())
3907 cpumask_clear(new_mask);
3908 else if (len > cpumask_size())
3909 len = cpumask_size();
3910
1da177e4
LT
3911 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3912}
3913
3914/**
3915 * sys_sched_setaffinity - set the cpu affinity of a process
3916 * @pid: pid of the process
3917 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3918 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3919 *
3920 * Return: 0 on success. An error code otherwise.
1da177e4 3921 */
5add95d4
HC
3922SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3923 unsigned long __user *, user_mask_ptr)
1da177e4 3924{
5a16f3d3 3925 cpumask_var_t new_mask;
1da177e4
LT
3926 int retval;
3927
5a16f3d3
RR
3928 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3929 return -ENOMEM;
1da177e4 3930
5a16f3d3
RR
3931 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3932 if (retval == 0)
3933 retval = sched_setaffinity(pid, new_mask);
3934 free_cpumask_var(new_mask);
3935 return retval;
1da177e4
LT
3936}
3937
96f874e2 3938long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3939{
36c8b586 3940 struct task_struct *p;
31605683 3941 unsigned long flags;
1da177e4 3942 int retval;
1da177e4 3943
23f5d142 3944 rcu_read_lock();
1da177e4
LT
3945
3946 retval = -ESRCH;
3947 p = find_process_by_pid(pid);
3948 if (!p)
3949 goto out_unlock;
3950
e7834f8f
DQ
3951 retval = security_task_getscheduler(p);
3952 if (retval)
3953 goto out_unlock;
3954
013fdb80 3955 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3956 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3957 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3958
3959out_unlock:
23f5d142 3960 rcu_read_unlock();
1da177e4 3961
9531b62f 3962 return retval;
1da177e4
LT
3963}
3964
3965/**
3966 * sys_sched_getaffinity - get the cpu affinity of a process
3967 * @pid: pid of the process
3968 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3969 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3970 *
3971 * Return: 0 on success. An error code otherwise.
1da177e4 3972 */
5add95d4
HC
3973SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3974 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3975{
3976 int ret;
f17c8607 3977 cpumask_var_t mask;
1da177e4 3978
84fba5ec 3979 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3980 return -EINVAL;
3981 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3982 return -EINVAL;
3983
f17c8607
RR
3984 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3985 return -ENOMEM;
1da177e4 3986
f17c8607
RR
3987 ret = sched_getaffinity(pid, mask);
3988 if (ret == 0) {
8bc037fb 3989 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3990
3991 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3992 ret = -EFAULT;
3993 else
cd3d8031 3994 ret = retlen;
f17c8607
RR
3995 }
3996 free_cpumask_var(mask);
1da177e4 3997
f17c8607 3998 return ret;
1da177e4
LT
3999}
4000
4001/**
4002 * sys_sched_yield - yield the current processor to other threads.
4003 *
dd41f596
IM
4004 * This function yields the current CPU to other tasks. If there are no
4005 * other threads running on this CPU then this function will return.
e69f6186
YB
4006 *
4007 * Return: 0.
1da177e4 4008 */
5add95d4 4009SYSCALL_DEFINE0(sched_yield)
1da177e4 4010{
70b97a7f 4011 struct rq *rq = this_rq_lock();
1da177e4 4012
2d72376b 4013 schedstat_inc(rq, yld_count);
4530d7ab 4014 current->sched_class->yield_task(rq);
1da177e4
LT
4015
4016 /*
4017 * Since we are going to call schedule() anyway, there's
4018 * no need to preempt or enable interrupts:
4019 */
4020 __release(rq->lock);
8a25d5de 4021 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4022 do_raw_spin_unlock(&rq->lock);
ba74c144 4023 sched_preempt_enable_no_resched();
1da177e4
LT
4024
4025 schedule();
4026
4027 return 0;
4028}
4029
e7b38404 4030static void __cond_resched(void)
1da177e4 4031{
bdb43806 4032 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4033 __schedule();
bdb43806 4034 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4035}
4036
02b67cc3 4037int __sched _cond_resched(void)
1da177e4 4038{
d86ee480 4039 if (should_resched()) {
1da177e4
LT
4040 __cond_resched();
4041 return 1;
4042 }
4043 return 0;
4044}
02b67cc3 4045EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4046
4047/*
613afbf8 4048 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4049 * call schedule, and on return reacquire the lock.
4050 *
41a2d6cf 4051 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4052 * operations here to prevent schedule() from being called twice (once via
4053 * spin_unlock(), once by hand).
4054 */
613afbf8 4055int __cond_resched_lock(spinlock_t *lock)
1da177e4 4056{
d86ee480 4057 int resched = should_resched();
6df3cecb
JK
4058 int ret = 0;
4059
f607c668
PZ
4060 lockdep_assert_held(lock);
4061
95c354fe 4062 if (spin_needbreak(lock) || resched) {
1da177e4 4063 spin_unlock(lock);
d86ee480 4064 if (resched)
95c354fe
NP
4065 __cond_resched();
4066 else
4067 cpu_relax();
6df3cecb 4068 ret = 1;
1da177e4 4069 spin_lock(lock);
1da177e4 4070 }
6df3cecb 4071 return ret;
1da177e4 4072}
613afbf8 4073EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4074
613afbf8 4075int __sched __cond_resched_softirq(void)
1da177e4
LT
4076{
4077 BUG_ON(!in_softirq());
4078
d86ee480 4079 if (should_resched()) {
98d82567 4080 local_bh_enable();
1da177e4
LT
4081 __cond_resched();
4082 local_bh_disable();
4083 return 1;
4084 }
4085 return 0;
4086}
613afbf8 4087EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4088
1da177e4
LT
4089/**
4090 * yield - yield the current processor to other threads.
4091 *
8e3fabfd
PZ
4092 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4093 *
4094 * The scheduler is at all times free to pick the calling task as the most
4095 * eligible task to run, if removing the yield() call from your code breaks
4096 * it, its already broken.
4097 *
4098 * Typical broken usage is:
4099 *
4100 * while (!event)
4101 * yield();
4102 *
4103 * where one assumes that yield() will let 'the other' process run that will
4104 * make event true. If the current task is a SCHED_FIFO task that will never
4105 * happen. Never use yield() as a progress guarantee!!
4106 *
4107 * If you want to use yield() to wait for something, use wait_event().
4108 * If you want to use yield() to be 'nice' for others, use cond_resched().
4109 * If you still want to use yield(), do not!
1da177e4
LT
4110 */
4111void __sched yield(void)
4112{
4113 set_current_state(TASK_RUNNING);
4114 sys_sched_yield();
4115}
1da177e4
LT
4116EXPORT_SYMBOL(yield);
4117
d95f4122
MG
4118/**
4119 * yield_to - yield the current processor to another thread in
4120 * your thread group, or accelerate that thread toward the
4121 * processor it's on.
16addf95
RD
4122 * @p: target task
4123 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4124 *
4125 * It's the caller's job to ensure that the target task struct
4126 * can't go away on us before we can do any checks.
4127 *
e69f6186 4128 * Return:
7b270f60
PZ
4129 * true (>0) if we indeed boosted the target task.
4130 * false (0) if we failed to boost the target.
4131 * -ESRCH if there's no task to yield to.
d95f4122
MG
4132 */
4133bool __sched yield_to(struct task_struct *p, bool preempt)
4134{
4135 struct task_struct *curr = current;
4136 struct rq *rq, *p_rq;
4137 unsigned long flags;
c3c18640 4138 int yielded = 0;
d95f4122
MG
4139
4140 local_irq_save(flags);
4141 rq = this_rq();
4142
4143again:
4144 p_rq = task_rq(p);
7b270f60
PZ
4145 /*
4146 * If we're the only runnable task on the rq and target rq also
4147 * has only one task, there's absolutely no point in yielding.
4148 */
4149 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4150 yielded = -ESRCH;
4151 goto out_irq;
4152 }
4153
d95f4122 4154 double_rq_lock(rq, p_rq);
39e24d8f 4155 if (task_rq(p) != p_rq) {
d95f4122
MG
4156 double_rq_unlock(rq, p_rq);
4157 goto again;
4158 }
4159
4160 if (!curr->sched_class->yield_to_task)
7b270f60 4161 goto out_unlock;
d95f4122
MG
4162
4163 if (curr->sched_class != p->sched_class)
7b270f60 4164 goto out_unlock;
d95f4122
MG
4165
4166 if (task_running(p_rq, p) || p->state)
7b270f60 4167 goto out_unlock;
d95f4122
MG
4168
4169 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4170 if (yielded) {
d95f4122 4171 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4172 /*
4173 * Make p's CPU reschedule; pick_next_entity takes care of
4174 * fairness.
4175 */
4176 if (preempt && rq != p_rq)
4177 resched_task(p_rq->curr);
4178 }
d95f4122 4179
7b270f60 4180out_unlock:
d95f4122 4181 double_rq_unlock(rq, p_rq);
7b270f60 4182out_irq:
d95f4122
MG
4183 local_irq_restore(flags);
4184
7b270f60 4185 if (yielded > 0)
d95f4122
MG
4186 schedule();
4187
4188 return yielded;
4189}
4190EXPORT_SYMBOL_GPL(yield_to);
4191
1da177e4 4192/*
41a2d6cf 4193 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4194 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4195 */
4196void __sched io_schedule(void)
4197{
54d35f29 4198 struct rq *rq = raw_rq();
1da177e4 4199
0ff92245 4200 delayacct_blkio_start();
1da177e4 4201 atomic_inc(&rq->nr_iowait);
73c10101 4202 blk_flush_plug(current);
8f0dfc34 4203 current->in_iowait = 1;
1da177e4 4204 schedule();
8f0dfc34 4205 current->in_iowait = 0;
1da177e4 4206 atomic_dec(&rq->nr_iowait);
0ff92245 4207 delayacct_blkio_end();
1da177e4 4208}
1da177e4
LT
4209EXPORT_SYMBOL(io_schedule);
4210
4211long __sched io_schedule_timeout(long timeout)
4212{
54d35f29 4213 struct rq *rq = raw_rq();
1da177e4
LT
4214 long ret;
4215
0ff92245 4216 delayacct_blkio_start();
1da177e4 4217 atomic_inc(&rq->nr_iowait);
73c10101 4218 blk_flush_plug(current);
8f0dfc34 4219 current->in_iowait = 1;
1da177e4 4220 ret = schedule_timeout(timeout);
8f0dfc34 4221 current->in_iowait = 0;
1da177e4 4222 atomic_dec(&rq->nr_iowait);
0ff92245 4223 delayacct_blkio_end();
1da177e4
LT
4224 return ret;
4225}
4226
4227/**
4228 * sys_sched_get_priority_max - return maximum RT priority.
4229 * @policy: scheduling class.
4230 *
e69f6186
YB
4231 * Return: On success, this syscall returns the maximum
4232 * rt_priority that can be used by a given scheduling class.
4233 * On failure, a negative error code is returned.
1da177e4 4234 */
5add95d4 4235SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4236{
4237 int ret = -EINVAL;
4238
4239 switch (policy) {
4240 case SCHED_FIFO:
4241 case SCHED_RR:
4242 ret = MAX_USER_RT_PRIO-1;
4243 break;
aab03e05 4244 case SCHED_DEADLINE:
1da177e4 4245 case SCHED_NORMAL:
b0a9499c 4246 case SCHED_BATCH:
dd41f596 4247 case SCHED_IDLE:
1da177e4
LT
4248 ret = 0;
4249 break;
4250 }
4251 return ret;
4252}
4253
4254/**
4255 * sys_sched_get_priority_min - return minimum RT priority.
4256 * @policy: scheduling class.
4257 *
e69f6186
YB
4258 * Return: On success, this syscall returns the minimum
4259 * rt_priority that can be used by a given scheduling class.
4260 * On failure, a negative error code is returned.
1da177e4 4261 */
5add95d4 4262SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4263{
4264 int ret = -EINVAL;
4265
4266 switch (policy) {
4267 case SCHED_FIFO:
4268 case SCHED_RR:
4269 ret = 1;
4270 break;
aab03e05 4271 case SCHED_DEADLINE:
1da177e4 4272 case SCHED_NORMAL:
b0a9499c 4273 case SCHED_BATCH:
dd41f596 4274 case SCHED_IDLE:
1da177e4
LT
4275 ret = 0;
4276 }
4277 return ret;
4278}
4279
4280/**
4281 * sys_sched_rr_get_interval - return the default timeslice of a process.
4282 * @pid: pid of the process.
4283 * @interval: userspace pointer to the timeslice value.
4284 *
4285 * this syscall writes the default timeslice value of a given process
4286 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4287 *
4288 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4289 * an error code.
1da177e4 4290 */
17da2bd9 4291SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4292 struct timespec __user *, interval)
1da177e4 4293{
36c8b586 4294 struct task_struct *p;
a4ec24b4 4295 unsigned int time_slice;
dba091b9
TG
4296 unsigned long flags;
4297 struct rq *rq;
3a5c359a 4298 int retval;
1da177e4 4299 struct timespec t;
1da177e4
LT
4300
4301 if (pid < 0)
3a5c359a 4302 return -EINVAL;
1da177e4
LT
4303
4304 retval = -ESRCH;
1a551ae7 4305 rcu_read_lock();
1da177e4
LT
4306 p = find_process_by_pid(pid);
4307 if (!p)
4308 goto out_unlock;
4309
4310 retval = security_task_getscheduler(p);
4311 if (retval)
4312 goto out_unlock;
4313
dba091b9
TG
4314 rq = task_rq_lock(p, &flags);
4315 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4316 task_rq_unlock(rq, p, &flags);
a4ec24b4 4317
1a551ae7 4318 rcu_read_unlock();
a4ec24b4 4319 jiffies_to_timespec(time_slice, &t);
1da177e4 4320 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4321 return retval;
3a5c359a 4322
1da177e4 4323out_unlock:
1a551ae7 4324 rcu_read_unlock();
1da177e4
LT
4325 return retval;
4326}
4327
7c731e0a 4328static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4329
82a1fcb9 4330void sched_show_task(struct task_struct *p)
1da177e4 4331{
1da177e4 4332 unsigned long free = 0;
4e79752c 4333 int ppid;
36c8b586 4334 unsigned state;
1da177e4 4335
1da177e4 4336 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4337 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4338 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4339#if BITS_PER_LONG == 32
1da177e4 4340 if (state == TASK_RUNNING)
3df0fc5b 4341 printk(KERN_CONT " running ");
1da177e4 4342 else
3df0fc5b 4343 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4344#else
4345 if (state == TASK_RUNNING)
3df0fc5b 4346 printk(KERN_CONT " running task ");
1da177e4 4347 else
3df0fc5b 4348 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4349#endif
4350#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4351 free = stack_not_used(p);
1da177e4 4352#endif
4e79752c
PM
4353 rcu_read_lock();
4354 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4355 rcu_read_unlock();
3df0fc5b 4356 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4357 task_pid_nr(p), ppid,
aa47b7e0 4358 (unsigned long)task_thread_info(p)->flags);
1da177e4 4359
3d1cb205 4360 print_worker_info(KERN_INFO, p);
5fb5e6de 4361 show_stack(p, NULL);
1da177e4
LT
4362}
4363
e59e2ae2 4364void show_state_filter(unsigned long state_filter)
1da177e4 4365{
36c8b586 4366 struct task_struct *g, *p;
1da177e4 4367
4bd77321 4368#if BITS_PER_LONG == 32
3df0fc5b
PZ
4369 printk(KERN_INFO
4370 " task PC stack pid father\n");
1da177e4 4371#else
3df0fc5b
PZ
4372 printk(KERN_INFO
4373 " task PC stack pid father\n");
1da177e4 4374#endif
510f5acc 4375 rcu_read_lock();
1da177e4
LT
4376 do_each_thread(g, p) {
4377 /*
4378 * reset the NMI-timeout, listing all files on a slow
25985edc 4379 * console might take a lot of time:
1da177e4
LT
4380 */
4381 touch_nmi_watchdog();
39bc89fd 4382 if (!state_filter || (p->state & state_filter))
82a1fcb9 4383 sched_show_task(p);
1da177e4
LT
4384 } while_each_thread(g, p);
4385
04c9167f
JF
4386 touch_all_softlockup_watchdogs();
4387
dd41f596
IM
4388#ifdef CONFIG_SCHED_DEBUG
4389 sysrq_sched_debug_show();
4390#endif
510f5acc 4391 rcu_read_unlock();
e59e2ae2
IM
4392 /*
4393 * Only show locks if all tasks are dumped:
4394 */
93335a21 4395 if (!state_filter)
e59e2ae2 4396 debug_show_all_locks();
1da177e4
LT
4397}
4398
0db0628d 4399void init_idle_bootup_task(struct task_struct *idle)
1df21055 4400{
dd41f596 4401 idle->sched_class = &idle_sched_class;
1df21055
IM
4402}
4403
f340c0d1
IM
4404/**
4405 * init_idle - set up an idle thread for a given CPU
4406 * @idle: task in question
4407 * @cpu: cpu the idle task belongs to
4408 *
4409 * NOTE: this function does not set the idle thread's NEED_RESCHED
4410 * flag, to make booting more robust.
4411 */
0db0628d 4412void init_idle(struct task_struct *idle, int cpu)
1da177e4 4413{
70b97a7f 4414 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4415 unsigned long flags;
4416
05fa785c 4417 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4418
5e1576ed 4419 __sched_fork(0, idle);
06b83b5f 4420 idle->state = TASK_RUNNING;
dd41f596
IM
4421 idle->se.exec_start = sched_clock();
4422
1e1b6c51 4423 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4424 /*
4425 * We're having a chicken and egg problem, even though we are
4426 * holding rq->lock, the cpu isn't yet set to this cpu so the
4427 * lockdep check in task_group() will fail.
4428 *
4429 * Similar case to sched_fork(). / Alternatively we could
4430 * use task_rq_lock() here and obtain the other rq->lock.
4431 *
4432 * Silence PROVE_RCU
4433 */
4434 rcu_read_lock();
dd41f596 4435 __set_task_cpu(idle, cpu);
6506cf6c 4436 rcu_read_unlock();
1da177e4 4437
1da177e4 4438 rq->curr = rq->idle = idle;
3ca7a440
PZ
4439#if defined(CONFIG_SMP)
4440 idle->on_cpu = 1;
4866cde0 4441#endif
05fa785c 4442 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4443
4444 /* Set the preempt count _outside_ the spinlocks! */
01028747 4445 init_idle_preempt_count(idle, cpu);
55cd5340 4446
dd41f596
IM
4447 /*
4448 * The idle tasks have their own, simple scheduling class:
4449 */
4450 idle->sched_class = &idle_sched_class;
868baf07 4451 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4452 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4453#if defined(CONFIG_SMP)
4454 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4455#endif
19978ca6
IM
4456}
4457
1da177e4 4458#ifdef CONFIG_SMP
1e1b6c51
KM
4459void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4460{
4461 if (p->sched_class && p->sched_class->set_cpus_allowed)
4462 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4463
4464 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4465 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4466}
4467
1da177e4
LT
4468/*
4469 * This is how migration works:
4470 *
969c7921
TH
4471 * 1) we invoke migration_cpu_stop() on the target CPU using
4472 * stop_one_cpu().
4473 * 2) stopper starts to run (implicitly forcing the migrated thread
4474 * off the CPU)
4475 * 3) it checks whether the migrated task is still in the wrong runqueue.
4476 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4477 * it and puts it into the right queue.
969c7921
TH
4478 * 5) stopper completes and stop_one_cpu() returns and the migration
4479 * is done.
1da177e4
LT
4480 */
4481
4482/*
4483 * Change a given task's CPU affinity. Migrate the thread to a
4484 * proper CPU and schedule it away if the CPU it's executing on
4485 * is removed from the allowed bitmask.
4486 *
4487 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4488 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4489 * call is not atomic; no spinlocks may be held.
4490 */
96f874e2 4491int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4492{
4493 unsigned long flags;
70b97a7f 4494 struct rq *rq;
969c7921 4495 unsigned int dest_cpu;
48f24c4d 4496 int ret = 0;
1da177e4
LT
4497
4498 rq = task_rq_lock(p, &flags);
e2912009 4499
db44fc01
YZ
4500 if (cpumask_equal(&p->cpus_allowed, new_mask))
4501 goto out;
4502
6ad4c188 4503 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4504 ret = -EINVAL;
4505 goto out;
4506 }
4507
1e1b6c51 4508 do_set_cpus_allowed(p, new_mask);
73fe6aae 4509
1da177e4 4510 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4511 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4512 goto out;
4513
969c7921 4514 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4515 if (p->on_rq) {
969c7921 4516 struct migration_arg arg = { p, dest_cpu };
1da177e4 4517 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4518 task_rq_unlock(rq, p, &flags);
969c7921 4519 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4520 tlb_migrate_finish(p->mm);
4521 return 0;
4522 }
4523out:
0122ec5b 4524 task_rq_unlock(rq, p, &flags);
48f24c4d 4525
1da177e4
LT
4526 return ret;
4527}
cd8ba7cd 4528EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4529
4530/*
41a2d6cf 4531 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4532 * this because either it can't run here any more (set_cpus_allowed()
4533 * away from this CPU, or CPU going down), or because we're
4534 * attempting to rebalance this task on exec (sched_exec).
4535 *
4536 * So we race with normal scheduler movements, but that's OK, as long
4537 * as the task is no longer on this CPU.
efc30814
KK
4538 *
4539 * Returns non-zero if task was successfully migrated.
1da177e4 4540 */
efc30814 4541static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4542{
70b97a7f 4543 struct rq *rq_dest, *rq_src;
e2912009 4544 int ret = 0;
1da177e4 4545
e761b772 4546 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4547 return ret;
1da177e4
LT
4548
4549 rq_src = cpu_rq(src_cpu);
4550 rq_dest = cpu_rq(dest_cpu);
4551
0122ec5b 4552 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4553 double_rq_lock(rq_src, rq_dest);
4554 /* Already moved. */
4555 if (task_cpu(p) != src_cpu)
b1e38734 4556 goto done;
1da177e4 4557 /* Affinity changed (again). */
fa17b507 4558 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4559 goto fail;
1da177e4 4560
e2912009
PZ
4561 /*
4562 * If we're not on a rq, the next wake-up will ensure we're
4563 * placed properly.
4564 */
fd2f4419 4565 if (p->on_rq) {
4ca9b72b 4566 dequeue_task(rq_src, p, 0);
e2912009 4567 set_task_cpu(p, dest_cpu);
4ca9b72b 4568 enqueue_task(rq_dest, p, 0);
15afe09b 4569 check_preempt_curr(rq_dest, p, 0);
1da177e4 4570 }
b1e38734 4571done:
efc30814 4572 ret = 1;
b1e38734 4573fail:
1da177e4 4574 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4575 raw_spin_unlock(&p->pi_lock);
efc30814 4576 return ret;
1da177e4
LT
4577}
4578
e6628d5b
MG
4579#ifdef CONFIG_NUMA_BALANCING
4580/* Migrate current task p to target_cpu */
4581int migrate_task_to(struct task_struct *p, int target_cpu)
4582{
4583 struct migration_arg arg = { p, target_cpu };
4584 int curr_cpu = task_cpu(p);
4585
4586 if (curr_cpu == target_cpu)
4587 return 0;
4588
4589 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4590 return -EINVAL;
4591
4592 /* TODO: This is not properly updating schedstats */
4593
4594 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4595}
0ec8aa00
PZ
4596
4597/*
4598 * Requeue a task on a given node and accurately track the number of NUMA
4599 * tasks on the runqueues
4600 */
4601void sched_setnuma(struct task_struct *p, int nid)
4602{
4603 struct rq *rq;
4604 unsigned long flags;
4605 bool on_rq, running;
4606
4607 rq = task_rq_lock(p, &flags);
4608 on_rq = p->on_rq;
4609 running = task_current(rq, p);
4610
4611 if (on_rq)
4612 dequeue_task(rq, p, 0);
4613 if (running)
4614 p->sched_class->put_prev_task(rq, p);
4615
4616 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4617
4618 if (running)
4619 p->sched_class->set_curr_task(rq);
4620 if (on_rq)
4621 enqueue_task(rq, p, 0);
4622 task_rq_unlock(rq, p, &flags);
4623}
e6628d5b
MG
4624#endif
4625
1da177e4 4626/*
969c7921
TH
4627 * migration_cpu_stop - this will be executed by a highprio stopper thread
4628 * and performs thread migration by bumping thread off CPU then
4629 * 'pushing' onto another runqueue.
1da177e4 4630 */
969c7921 4631static int migration_cpu_stop(void *data)
1da177e4 4632{
969c7921 4633 struct migration_arg *arg = data;
f7b4cddc 4634
969c7921
TH
4635 /*
4636 * The original target cpu might have gone down and we might
4637 * be on another cpu but it doesn't matter.
4638 */
f7b4cddc 4639 local_irq_disable();
969c7921 4640 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4641 local_irq_enable();
1da177e4 4642 return 0;
f7b4cddc
ON
4643}
4644
1da177e4 4645#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4646
054b9108 4647/*
48c5ccae
PZ
4648 * Ensures that the idle task is using init_mm right before its cpu goes
4649 * offline.
054b9108 4650 */
48c5ccae 4651void idle_task_exit(void)
1da177e4 4652{
48c5ccae 4653 struct mm_struct *mm = current->active_mm;
e76bd8d9 4654
48c5ccae 4655 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4656
48c5ccae
PZ
4657 if (mm != &init_mm)
4658 switch_mm(mm, &init_mm, current);
4659 mmdrop(mm);
1da177e4
LT
4660}
4661
4662/*
5d180232
PZ
4663 * Since this CPU is going 'away' for a while, fold any nr_active delta
4664 * we might have. Assumes we're called after migrate_tasks() so that the
4665 * nr_active count is stable.
4666 *
4667 * Also see the comment "Global load-average calculations".
1da177e4 4668 */
5d180232 4669static void calc_load_migrate(struct rq *rq)
1da177e4 4670{
5d180232
PZ
4671 long delta = calc_load_fold_active(rq);
4672 if (delta)
4673 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4674}
4675
48f24c4d 4676/*
48c5ccae
PZ
4677 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4678 * try_to_wake_up()->select_task_rq().
4679 *
4680 * Called with rq->lock held even though we'er in stop_machine() and
4681 * there's no concurrency possible, we hold the required locks anyway
4682 * because of lock validation efforts.
1da177e4 4683 */
48c5ccae 4684static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4685{
70b97a7f 4686 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4687 struct task_struct *next, *stop = rq->stop;
4688 int dest_cpu;
1da177e4
LT
4689
4690 /*
48c5ccae
PZ
4691 * Fudge the rq selection such that the below task selection loop
4692 * doesn't get stuck on the currently eligible stop task.
4693 *
4694 * We're currently inside stop_machine() and the rq is either stuck
4695 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4696 * either way we should never end up calling schedule() until we're
4697 * done here.
1da177e4 4698 */
48c5ccae 4699 rq->stop = NULL;
48f24c4d 4700
77bd3970
FW
4701 /*
4702 * put_prev_task() and pick_next_task() sched
4703 * class method both need to have an up-to-date
4704 * value of rq->clock[_task]
4705 */
4706 update_rq_clock(rq);
4707
dd41f596 4708 for ( ; ; ) {
48c5ccae
PZ
4709 /*
4710 * There's this thread running, bail when that's the only
4711 * remaining thread.
4712 */
4713 if (rq->nr_running == 1)
dd41f596 4714 break;
48c5ccae 4715
b67802ea 4716 next = pick_next_task(rq);
48c5ccae 4717 BUG_ON(!next);
79c53799 4718 next->sched_class->put_prev_task(rq, next);
e692ab53 4719
48c5ccae
PZ
4720 /* Find suitable destination for @next, with force if needed. */
4721 dest_cpu = select_fallback_rq(dead_cpu, next);
4722 raw_spin_unlock(&rq->lock);
4723
4724 __migrate_task(next, dead_cpu, dest_cpu);
4725
4726 raw_spin_lock(&rq->lock);
1da177e4 4727 }
dce48a84 4728
48c5ccae 4729 rq->stop = stop;
dce48a84 4730}
48c5ccae 4731
1da177e4
LT
4732#endif /* CONFIG_HOTPLUG_CPU */
4733
e692ab53
NP
4734#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4735
4736static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4737 {
4738 .procname = "sched_domain",
c57baf1e 4739 .mode = 0555,
e0361851 4740 },
56992309 4741 {}
e692ab53
NP
4742};
4743
4744static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4745 {
4746 .procname = "kernel",
c57baf1e 4747 .mode = 0555,
e0361851
AD
4748 .child = sd_ctl_dir,
4749 },
56992309 4750 {}
e692ab53
NP
4751};
4752
4753static struct ctl_table *sd_alloc_ctl_entry(int n)
4754{
4755 struct ctl_table *entry =
5cf9f062 4756 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4757
e692ab53
NP
4758 return entry;
4759}
4760
6382bc90
MM
4761static void sd_free_ctl_entry(struct ctl_table **tablep)
4762{
cd790076 4763 struct ctl_table *entry;
6382bc90 4764
cd790076
MM
4765 /*
4766 * In the intermediate directories, both the child directory and
4767 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4768 * will always be set. In the lowest directory the names are
cd790076
MM
4769 * static strings and all have proc handlers.
4770 */
4771 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4772 if (entry->child)
4773 sd_free_ctl_entry(&entry->child);
cd790076
MM
4774 if (entry->proc_handler == NULL)
4775 kfree(entry->procname);
4776 }
6382bc90
MM
4777
4778 kfree(*tablep);
4779 *tablep = NULL;
4780}
4781
201c373e 4782static int min_load_idx = 0;
fd9b86d3 4783static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4784
e692ab53 4785static void
e0361851 4786set_table_entry(struct ctl_table *entry,
e692ab53 4787 const char *procname, void *data, int maxlen,
201c373e
NK
4788 umode_t mode, proc_handler *proc_handler,
4789 bool load_idx)
e692ab53 4790{
e692ab53
NP
4791 entry->procname = procname;
4792 entry->data = data;
4793 entry->maxlen = maxlen;
4794 entry->mode = mode;
4795 entry->proc_handler = proc_handler;
201c373e
NK
4796
4797 if (load_idx) {
4798 entry->extra1 = &min_load_idx;
4799 entry->extra2 = &max_load_idx;
4800 }
e692ab53
NP
4801}
4802
4803static struct ctl_table *
4804sd_alloc_ctl_domain_table(struct sched_domain *sd)
4805{
a5d8c348 4806 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4807
ad1cdc1d
MM
4808 if (table == NULL)
4809 return NULL;
4810
e0361851 4811 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4812 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4813 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4814 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4815 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4816 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4817 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4818 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4819 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4820 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4821 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4822 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4823 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4824 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4825 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4826 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4827 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4828 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4829 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4830 &sd->cache_nice_tries,
201c373e 4831 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4832 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4833 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4834 set_table_entry(&table[11], "name", sd->name,
201c373e 4835 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4836 /* &table[12] is terminator */
e692ab53
NP
4837
4838 return table;
4839}
4840
be7002e6 4841static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4842{
4843 struct ctl_table *entry, *table;
4844 struct sched_domain *sd;
4845 int domain_num = 0, i;
4846 char buf[32];
4847
4848 for_each_domain(cpu, sd)
4849 domain_num++;
4850 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4851 if (table == NULL)
4852 return NULL;
e692ab53
NP
4853
4854 i = 0;
4855 for_each_domain(cpu, sd) {
4856 snprintf(buf, 32, "domain%d", i);
e692ab53 4857 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4858 entry->mode = 0555;
e692ab53
NP
4859 entry->child = sd_alloc_ctl_domain_table(sd);
4860 entry++;
4861 i++;
4862 }
4863 return table;
4864}
4865
4866static struct ctl_table_header *sd_sysctl_header;
6382bc90 4867static void register_sched_domain_sysctl(void)
e692ab53 4868{
6ad4c188 4869 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4870 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4871 char buf[32];
4872
7378547f
MM
4873 WARN_ON(sd_ctl_dir[0].child);
4874 sd_ctl_dir[0].child = entry;
4875
ad1cdc1d
MM
4876 if (entry == NULL)
4877 return;
4878
6ad4c188 4879 for_each_possible_cpu(i) {
e692ab53 4880 snprintf(buf, 32, "cpu%d", i);
e692ab53 4881 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4882 entry->mode = 0555;
e692ab53 4883 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4884 entry++;
e692ab53 4885 }
7378547f
MM
4886
4887 WARN_ON(sd_sysctl_header);
e692ab53
NP
4888 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4889}
6382bc90 4890
7378547f 4891/* may be called multiple times per register */
6382bc90
MM
4892static void unregister_sched_domain_sysctl(void)
4893{
7378547f
MM
4894 if (sd_sysctl_header)
4895 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4896 sd_sysctl_header = NULL;
7378547f
MM
4897 if (sd_ctl_dir[0].child)
4898 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4899}
e692ab53 4900#else
6382bc90
MM
4901static void register_sched_domain_sysctl(void)
4902{
4903}
4904static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4905{
4906}
4907#endif
4908
1f11eb6a
GH
4909static void set_rq_online(struct rq *rq)
4910{
4911 if (!rq->online) {
4912 const struct sched_class *class;
4913
c6c4927b 4914 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4915 rq->online = 1;
4916
4917 for_each_class(class) {
4918 if (class->rq_online)
4919 class->rq_online(rq);
4920 }
4921 }
4922}
4923
4924static void set_rq_offline(struct rq *rq)
4925{
4926 if (rq->online) {
4927 const struct sched_class *class;
4928
4929 for_each_class(class) {
4930 if (class->rq_offline)
4931 class->rq_offline(rq);
4932 }
4933
c6c4927b 4934 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4935 rq->online = 0;
4936 }
4937}
4938
1da177e4
LT
4939/*
4940 * migration_call - callback that gets triggered when a CPU is added.
4941 * Here we can start up the necessary migration thread for the new CPU.
4942 */
0db0628d 4943static int
48f24c4d 4944migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4945{
48f24c4d 4946 int cpu = (long)hcpu;
1da177e4 4947 unsigned long flags;
969c7921 4948 struct rq *rq = cpu_rq(cpu);
1da177e4 4949
48c5ccae 4950 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4951
1da177e4 4952 case CPU_UP_PREPARE:
a468d389 4953 rq->calc_load_update = calc_load_update;
1da177e4 4954 break;
48f24c4d 4955
1da177e4 4956 case CPU_ONLINE:
1f94ef59 4957 /* Update our root-domain */
05fa785c 4958 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4959 if (rq->rd) {
c6c4927b 4960 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4961
4962 set_rq_online(rq);
1f94ef59 4963 }
05fa785c 4964 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4965 break;
48f24c4d 4966
1da177e4 4967#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4968 case CPU_DYING:
317f3941 4969 sched_ttwu_pending();
57d885fe 4970 /* Update our root-domain */
05fa785c 4971 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4972 if (rq->rd) {
c6c4927b 4973 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4974 set_rq_offline(rq);
57d885fe 4975 }
48c5ccae
PZ
4976 migrate_tasks(cpu);
4977 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4978 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4979 break;
48c5ccae 4980
5d180232 4981 case CPU_DEAD:
f319da0c 4982 calc_load_migrate(rq);
57d885fe 4983 break;
1da177e4
LT
4984#endif
4985 }
49c022e6
PZ
4986
4987 update_max_interval();
4988
1da177e4
LT
4989 return NOTIFY_OK;
4990}
4991
f38b0820
PM
4992/*
4993 * Register at high priority so that task migration (migrate_all_tasks)
4994 * happens before everything else. This has to be lower priority than
cdd6c482 4995 * the notifier in the perf_event subsystem, though.
1da177e4 4996 */
0db0628d 4997static struct notifier_block migration_notifier = {
1da177e4 4998 .notifier_call = migration_call,
50a323b7 4999 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5000};
5001
0db0628d 5002static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5003 unsigned long action, void *hcpu)
5004{
5005 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5006 case CPU_STARTING:
3a101d05
TH
5007 case CPU_DOWN_FAILED:
5008 set_cpu_active((long)hcpu, true);
5009 return NOTIFY_OK;
5010 default:
5011 return NOTIFY_DONE;
5012 }
5013}
5014
0db0628d 5015static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5016 unsigned long action, void *hcpu)
5017{
de212f18
PZ
5018 unsigned long flags;
5019 long cpu = (long)hcpu;
5020
3a101d05
TH
5021 switch (action & ~CPU_TASKS_FROZEN) {
5022 case CPU_DOWN_PREPARE:
de212f18
PZ
5023 set_cpu_active(cpu, false);
5024
5025 /* explicitly allow suspend */
5026 if (!(action & CPU_TASKS_FROZEN)) {
5027 struct dl_bw *dl_b = dl_bw_of(cpu);
5028 bool overflow;
5029 int cpus;
5030
5031 raw_spin_lock_irqsave(&dl_b->lock, flags);
5032 cpus = dl_bw_cpus(cpu);
5033 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5034 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5035
5036 if (overflow)
5037 return notifier_from_errno(-EBUSY);
5038 }
3a101d05 5039 return NOTIFY_OK;
3a101d05 5040 }
de212f18
PZ
5041
5042 return NOTIFY_DONE;
3a101d05
TH
5043}
5044
7babe8db 5045static int __init migration_init(void)
1da177e4
LT
5046{
5047 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5048 int err;
48f24c4d 5049
3a101d05 5050 /* Initialize migration for the boot CPU */
07dccf33
AM
5051 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5052 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5053 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5054 register_cpu_notifier(&migration_notifier);
7babe8db 5055
3a101d05
TH
5056 /* Register cpu active notifiers */
5057 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5058 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5059
a004cd42 5060 return 0;
1da177e4 5061}
7babe8db 5062early_initcall(migration_init);
1da177e4
LT
5063#endif
5064
5065#ifdef CONFIG_SMP
476f3534 5066
4cb98839
PZ
5067static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5068
3e9830dc 5069#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5070
d039ac60 5071static __read_mostly int sched_debug_enabled;
f6630114 5072
d039ac60 5073static int __init sched_debug_setup(char *str)
f6630114 5074{
d039ac60 5075 sched_debug_enabled = 1;
f6630114
MT
5076
5077 return 0;
5078}
d039ac60
PZ
5079early_param("sched_debug", sched_debug_setup);
5080
5081static inline bool sched_debug(void)
5082{
5083 return sched_debug_enabled;
5084}
f6630114 5085
7c16ec58 5086static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5087 struct cpumask *groupmask)
1da177e4 5088{
4dcf6aff 5089 struct sched_group *group = sd->groups;
434d53b0 5090 char str[256];
1da177e4 5091
968ea6d8 5092 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5093 cpumask_clear(groupmask);
4dcf6aff
IM
5094
5095 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5096
5097 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5098 printk("does not load-balance\n");
4dcf6aff 5099 if (sd->parent)
3df0fc5b
PZ
5100 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5101 " has parent");
4dcf6aff 5102 return -1;
41c7ce9a
NP
5103 }
5104
3df0fc5b 5105 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5106
758b2cdc 5107 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5108 printk(KERN_ERR "ERROR: domain->span does not contain "
5109 "CPU%d\n", cpu);
4dcf6aff 5110 }
758b2cdc 5111 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5112 printk(KERN_ERR "ERROR: domain->groups does not contain"
5113 " CPU%d\n", cpu);
4dcf6aff 5114 }
1da177e4 5115
4dcf6aff 5116 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5117 do {
4dcf6aff 5118 if (!group) {
3df0fc5b
PZ
5119 printk("\n");
5120 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5121 break;
5122 }
5123
c3decf0d
PZ
5124 /*
5125 * Even though we initialize ->power to something semi-sane,
5126 * we leave power_orig unset. This allows us to detect if
5127 * domain iteration is still funny without causing /0 traps.
5128 */
5129 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5130 printk(KERN_CONT "\n");
5131 printk(KERN_ERR "ERROR: domain->cpu_power not "
5132 "set\n");
4dcf6aff
IM
5133 break;
5134 }
1da177e4 5135
758b2cdc 5136 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5137 printk(KERN_CONT "\n");
5138 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5139 break;
5140 }
1da177e4 5141
cb83b629
PZ
5142 if (!(sd->flags & SD_OVERLAP) &&
5143 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5144 printk(KERN_CONT "\n");
5145 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5146 break;
5147 }
1da177e4 5148
758b2cdc 5149 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5150
968ea6d8 5151 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5152
3df0fc5b 5153 printk(KERN_CONT " %s", str);
9c3f75cb 5154 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5155 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5156 group->sgp->power);
381512cf 5157 }
1da177e4 5158
4dcf6aff
IM
5159 group = group->next;
5160 } while (group != sd->groups);
3df0fc5b 5161 printk(KERN_CONT "\n");
1da177e4 5162
758b2cdc 5163 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5164 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5165
758b2cdc
RR
5166 if (sd->parent &&
5167 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5168 printk(KERN_ERR "ERROR: parent span is not a superset "
5169 "of domain->span\n");
4dcf6aff
IM
5170 return 0;
5171}
1da177e4 5172
4dcf6aff
IM
5173static void sched_domain_debug(struct sched_domain *sd, int cpu)
5174{
5175 int level = 0;
1da177e4 5176
d039ac60 5177 if (!sched_debug_enabled)
f6630114
MT
5178 return;
5179
4dcf6aff
IM
5180 if (!sd) {
5181 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5182 return;
5183 }
1da177e4 5184
4dcf6aff
IM
5185 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5186
5187 for (;;) {
4cb98839 5188 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5189 break;
1da177e4
LT
5190 level++;
5191 sd = sd->parent;
33859f7f 5192 if (!sd)
4dcf6aff
IM
5193 break;
5194 }
1da177e4 5195}
6d6bc0ad 5196#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5197# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5198static inline bool sched_debug(void)
5199{
5200 return false;
5201}
6d6bc0ad 5202#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5203
1a20ff27 5204static int sd_degenerate(struct sched_domain *sd)
245af2c7 5205{
758b2cdc 5206 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5207 return 1;
5208
5209 /* Following flags need at least 2 groups */
5210 if (sd->flags & (SD_LOAD_BALANCE |
5211 SD_BALANCE_NEWIDLE |
5212 SD_BALANCE_FORK |
89c4710e
SS
5213 SD_BALANCE_EXEC |
5214 SD_SHARE_CPUPOWER |
5215 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5216 if (sd->groups != sd->groups->next)
5217 return 0;
5218 }
5219
5220 /* Following flags don't use groups */
c88d5910 5221 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5222 return 0;
5223
5224 return 1;
5225}
5226
48f24c4d
IM
5227static int
5228sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5229{
5230 unsigned long cflags = sd->flags, pflags = parent->flags;
5231
5232 if (sd_degenerate(parent))
5233 return 1;
5234
758b2cdc 5235 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5236 return 0;
5237
245af2c7
SS
5238 /* Flags needing groups don't count if only 1 group in parent */
5239 if (parent->groups == parent->groups->next) {
5240 pflags &= ~(SD_LOAD_BALANCE |
5241 SD_BALANCE_NEWIDLE |
5242 SD_BALANCE_FORK |
89c4710e
SS
5243 SD_BALANCE_EXEC |
5244 SD_SHARE_CPUPOWER |
10866e62
PZ
5245 SD_SHARE_PKG_RESOURCES |
5246 SD_PREFER_SIBLING);
5436499e
KC
5247 if (nr_node_ids == 1)
5248 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5249 }
5250 if (~cflags & pflags)
5251 return 0;
5252
5253 return 1;
5254}
5255
dce840a0 5256static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5257{
dce840a0 5258 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5259
68e74568 5260 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5261 cpudl_cleanup(&rd->cpudl);
1baca4ce 5262 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5263 free_cpumask_var(rd->rto_mask);
5264 free_cpumask_var(rd->online);
5265 free_cpumask_var(rd->span);
5266 kfree(rd);
5267}
5268
57d885fe
GH
5269static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5270{
a0490fa3 5271 struct root_domain *old_rd = NULL;
57d885fe 5272 unsigned long flags;
57d885fe 5273
05fa785c 5274 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5275
5276 if (rq->rd) {
a0490fa3 5277 old_rd = rq->rd;
57d885fe 5278
c6c4927b 5279 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5280 set_rq_offline(rq);
57d885fe 5281
c6c4927b 5282 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5283
a0490fa3 5284 /*
0515973f 5285 * If we dont want to free the old_rd yet then
a0490fa3
IM
5286 * set old_rd to NULL to skip the freeing later
5287 * in this function:
5288 */
5289 if (!atomic_dec_and_test(&old_rd->refcount))
5290 old_rd = NULL;
57d885fe
GH
5291 }
5292
5293 atomic_inc(&rd->refcount);
5294 rq->rd = rd;
5295
c6c4927b 5296 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5297 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5298 set_rq_online(rq);
57d885fe 5299
05fa785c 5300 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5301
5302 if (old_rd)
dce840a0 5303 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5304}
5305
68c38fc3 5306static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5307{
5308 memset(rd, 0, sizeof(*rd));
5309
68c38fc3 5310 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5311 goto out;
68c38fc3 5312 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5313 goto free_span;
1baca4ce 5314 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5315 goto free_online;
1baca4ce
JL
5316 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5317 goto free_dlo_mask;
6e0534f2 5318
332ac17e 5319 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5320 if (cpudl_init(&rd->cpudl) != 0)
5321 goto free_dlo_mask;
332ac17e 5322
68c38fc3 5323 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5324 goto free_rto_mask;
c6c4927b 5325 return 0;
6e0534f2 5326
68e74568
RR
5327free_rto_mask:
5328 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5329free_dlo_mask:
5330 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5331free_online:
5332 free_cpumask_var(rd->online);
5333free_span:
5334 free_cpumask_var(rd->span);
0c910d28 5335out:
c6c4927b 5336 return -ENOMEM;
57d885fe
GH
5337}
5338
029632fb
PZ
5339/*
5340 * By default the system creates a single root-domain with all cpus as
5341 * members (mimicking the global state we have today).
5342 */
5343struct root_domain def_root_domain;
5344
57d885fe
GH
5345static void init_defrootdomain(void)
5346{
68c38fc3 5347 init_rootdomain(&def_root_domain);
c6c4927b 5348
57d885fe
GH
5349 atomic_set(&def_root_domain.refcount, 1);
5350}
5351
dc938520 5352static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5353{
5354 struct root_domain *rd;
5355
5356 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5357 if (!rd)
5358 return NULL;
5359
68c38fc3 5360 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5361 kfree(rd);
5362 return NULL;
5363 }
57d885fe
GH
5364
5365 return rd;
5366}
5367
e3589f6c
PZ
5368static void free_sched_groups(struct sched_group *sg, int free_sgp)
5369{
5370 struct sched_group *tmp, *first;
5371
5372 if (!sg)
5373 return;
5374
5375 first = sg;
5376 do {
5377 tmp = sg->next;
5378
5379 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5380 kfree(sg->sgp);
5381
5382 kfree(sg);
5383 sg = tmp;
5384 } while (sg != first);
5385}
5386
dce840a0
PZ
5387static void free_sched_domain(struct rcu_head *rcu)
5388{
5389 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5390
5391 /*
5392 * If its an overlapping domain it has private groups, iterate and
5393 * nuke them all.
5394 */
5395 if (sd->flags & SD_OVERLAP) {
5396 free_sched_groups(sd->groups, 1);
5397 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5398 kfree(sd->groups->sgp);
dce840a0 5399 kfree(sd->groups);
9c3f75cb 5400 }
dce840a0
PZ
5401 kfree(sd);
5402}
5403
5404static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5405{
5406 call_rcu(&sd->rcu, free_sched_domain);
5407}
5408
5409static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5410{
5411 for (; sd; sd = sd->parent)
5412 destroy_sched_domain(sd, cpu);
5413}
5414
518cd623
PZ
5415/*
5416 * Keep a special pointer to the highest sched_domain that has
5417 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5418 * allows us to avoid some pointer chasing select_idle_sibling().
5419 *
5420 * Also keep a unique ID per domain (we use the first cpu number in
5421 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5422 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5423 */
5424DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5425DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5426DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5427DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5428DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5429DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5430
5431static void update_top_cache_domain(int cpu)
5432{
5433 struct sched_domain *sd;
5d4cf996 5434 struct sched_domain *busy_sd = NULL;
518cd623 5435 int id = cpu;
7d9ffa89 5436 int size = 1;
518cd623
PZ
5437
5438 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5439 if (sd) {
518cd623 5440 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5441 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5442 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5443 }
5d4cf996 5444 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5445
5446 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5447 per_cpu(sd_llc_size, cpu) = size;
518cd623 5448 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5449
5450 sd = lowest_flag_domain(cpu, SD_NUMA);
5451 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5452
5453 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5454 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5455}
5456
1da177e4 5457/*
0eab9146 5458 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5459 * hold the hotplug lock.
5460 */
0eab9146
IM
5461static void
5462cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5463{
70b97a7f 5464 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5465 struct sched_domain *tmp;
5466
5467 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5468 for (tmp = sd; tmp; ) {
245af2c7
SS
5469 struct sched_domain *parent = tmp->parent;
5470 if (!parent)
5471 break;
f29c9b1c 5472
1a848870 5473 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5474 tmp->parent = parent->parent;
1a848870
SS
5475 if (parent->parent)
5476 parent->parent->child = tmp;
10866e62
PZ
5477 /*
5478 * Transfer SD_PREFER_SIBLING down in case of a
5479 * degenerate parent; the spans match for this
5480 * so the property transfers.
5481 */
5482 if (parent->flags & SD_PREFER_SIBLING)
5483 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5484 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5485 } else
5486 tmp = tmp->parent;
245af2c7
SS
5487 }
5488
1a848870 5489 if (sd && sd_degenerate(sd)) {
dce840a0 5490 tmp = sd;
245af2c7 5491 sd = sd->parent;
dce840a0 5492 destroy_sched_domain(tmp, cpu);
1a848870
SS
5493 if (sd)
5494 sd->child = NULL;
5495 }
1da177e4 5496
4cb98839 5497 sched_domain_debug(sd, cpu);
1da177e4 5498
57d885fe 5499 rq_attach_root(rq, rd);
dce840a0 5500 tmp = rq->sd;
674311d5 5501 rcu_assign_pointer(rq->sd, sd);
dce840a0 5502 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5503
5504 update_top_cache_domain(cpu);
1da177e4
LT
5505}
5506
5507/* cpus with isolated domains */
dcc30a35 5508static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5509
5510/* Setup the mask of cpus configured for isolated domains */
5511static int __init isolated_cpu_setup(char *str)
5512{
bdddd296 5513 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5514 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5515 return 1;
5516}
5517
8927f494 5518__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5519
d3081f52
PZ
5520static const struct cpumask *cpu_cpu_mask(int cpu)
5521{
5522 return cpumask_of_node(cpu_to_node(cpu));
5523}
5524
dce840a0
PZ
5525struct sd_data {
5526 struct sched_domain **__percpu sd;
5527 struct sched_group **__percpu sg;
9c3f75cb 5528 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5529};
5530
49a02c51 5531struct s_data {
21d42ccf 5532 struct sched_domain ** __percpu sd;
49a02c51
AH
5533 struct root_domain *rd;
5534};
5535
2109b99e 5536enum s_alloc {
2109b99e 5537 sa_rootdomain,
21d42ccf 5538 sa_sd,
dce840a0 5539 sa_sd_storage,
2109b99e
AH
5540 sa_none,
5541};
5542
54ab4ff4
PZ
5543struct sched_domain_topology_level;
5544
5545typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5546typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5547
e3589f6c
PZ
5548#define SDTL_OVERLAP 0x01
5549
eb7a74e6 5550struct sched_domain_topology_level {
2c402dc3
PZ
5551 sched_domain_init_f init;
5552 sched_domain_mask_f mask;
e3589f6c 5553 int flags;
cb83b629 5554 int numa_level;
54ab4ff4 5555 struct sd_data data;
eb7a74e6
PZ
5556};
5557
c1174876
PZ
5558/*
5559 * Build an iteration mask that can exclude certain CPUs from the upwards
5560 * domain traversal.
5561 *
5562 * Asymmetric node setups can result in situations where the domain tree is of
5563 * unequal depth, make sure to skip domains that already cover the entire
5564 * range.
5565 *
5566 * In that case build_sched_domains() will have terminated the iteration early
5567 * and our sibling sd spans will be empty. Domains should always include the
5568 * cpu they're built on, so check that.
5569 *
5570 */
5571static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5572{
5573 const struct cpumask *span = sched_domain_span(sd);
5574 struct sd_data *sdd = sd->private;
5575 struct sched_domain *sibling;
5576 int i;
5577
5578 for_each_cpu(i, span) {
5579 sibling = *per_cpu_ptr(sdd->sd, i);
5580 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5581 continue;
5582
5583 cpumask_set_cpu(i, sched_group_mask(sg));
5584 }
5585}
5586
5587/*
5588 * Return the canonical balance cpu for this group, this is the first cpu
5589 * of this group that's also in the iteration mask.
5590 */
5591int group_balance_cpu(struct sched_group *sg)
5592{
5593 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5594}
5595
e3589f6c
PZ
5596static int
5597build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5598{
5599 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5600 const struct cpumask *span = sched_domain_span(sd);
5601 struct cpumask *covered = sched_domains_tmpmask;
5602 struct sd_data *sdd = sd->private;
5603 struct sched_domain *child;
5604 int i;
5605
5606 cpumask_clear(covered);
5607
5608 for_each_cpu(i, span) {
5609 struct cpumask *sg_span;
5610
5611 if (cpumask_test_cpu(i, covered))
5612 continue;
5613
c1174876
PZ
5614 child = *per_cpu_ptr(sdd->sd, i);
5615
5616 /* See the comment near build_group_mask(). */
5617 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5618 continue;
5619
e3589f6c 5620 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5621 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5622
5623 if (!sg)
5624 goto fail;
5625
5626 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5627 if (child->child) {
5628 child = child->child;
5629 cpumask_copy(sg_span, sched_domain_span(child));
5630 } else
5631 cpumask_set_cpu(i, sg_span);
5632
5633 cpumask_or(covered, covered, sg_span);
5634
74a5ce20 5635 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5636 if (atomic_inc_return(&sg->sgp->ref) == 1)
5637 build_group_mask(sd, sg);
5638
c3decf0d
PZ
5639 /*
5640 * Initialize sgp->power such that even if we mess up the
5641 * domains and no possible iteration will get us here, we won't
5642 * die on a /0 trap.
5643 */
5644 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5645 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5646
c1174876
PZ
5647 /*
5648 * Make sure the first group of this domain contains the
5649 * canonical balance cpu. Otherwise the sched_domain iteration
5650 * breaks. See update_sg_lb_stats().
5651 */
74a5ce20 5652 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5653 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5654 groups = sg;
5655
5656 if (!first)
5657 first = sg;
5658 if (last)
5659 last->next = sg;
5660 last = sg;
5661 last->next = first;
5662 }
5663 sd->groups = groups;
5664
5665 return 0;
5666
5667fail:
5668 free_sched_groups(first, 0);
5669
5670 return -ENOMEM;
5671}
5672
dce840a0 5673static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5674{
dce840a0
PZ
5675 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5676 struct sched_domain *child = sd->child;
1da177e4 5677
dce840a0
PZ
5678 if (child)
5679 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5680
9c3f75cb 5681 if (sg) {
dce840a0 5682 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5683 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5684 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5685 }
dce840a0
PZ
5686
5687 return cpu;
1e9f28fa 5688}
1e9f28fa 5689
01a08546 5690/*
dce840a0
PZ
5691 * build_sched_groups will build a circular linked list of the groups
5692 * covered by the given span, and will set each group's ->cpumask correctly,
5693 * and ->cpu_power to 0.
e3589f6c
PZ
5694 *
5695 * Assumes the sched_domain tree is fully constructed
01a08546 5696 */
e3589f6c
PZ
5697static int
5698build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5699{
dce840a0
PZ
5700 struct sched_group *first = NULL, *last = NULL;
5701 struct sd_data *sdd = sd->private;
5702 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5703 struct cpumask *covered;
dce840a0 5704 int i;
9c1cfda2 5705
e3589f6c
PZ
5706 get_group(cpu, sdd, &sd->groups);
5707 atomic_inc(&sd->groups->ref);
5708
0936629f 5709 if (cpu != cpumask_first(span))
e3589f6c
PZ
5710 return 0;
5711
f96225fd
PZ
5712 lockdep_assert_held(&sched_domains_mutex);
5713 covered = sched_domains_tmpmask;
5714
dce840a0 5715 cpumask_clear(covered);
6711cab4 5716
dce840a0
PZ
5717 for_each_cpu(i, span) {
5718 struct sched_group *sg;
cd08e923 5719 int group, j;
6711cab4 5720
dce840a0
PZ
5721 if (cpumask_test_cpu(i, covered))
5722 continue;
6711cab4 5723
cd08e923 5724 group = get_group(i, sdd, &sg);
dce840a0 5725 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5726 sg->sgp->power = 0;
c1174876 5727 cpumask_setall(sched_group_mask(sg));
0601a88d 5728
dce840a0
PZ
5729 for_each_cpu(j, span) {
5730 if (get_group(j, sdd, NULL) != group)
5731 continue;
0601a88d 5732
dce840a0
PZ
5733 cpumask_set_cpu(j, covered);
5734 cpumask_set_cpu(j, sched_group_cpus(sg));
5735 }
0601a88d 5736
dce840a0
PZ
5737 if (!first)
5738 first = sg;
5739 if (last)
5740 last->next = sg;
5741 last = sg;
5742 }
5743 last->next = first;
e3589f6c
PZ
5744
5745 return 0;
0601a88d 5746}
51888ca2 5747
89c4710e
SS
5748/*
5749 * Initialize sched groups cpu_power.
5750 *
5751 * cpu_power indicates the capacity of sched group, which is used while
5752 * distributing the load between different sched groups in a sched domain.
5753 * Typically cpu_power for all the groups in a sched domain will be same unless
5754 * there are asymmetries in the topology. If there are asymmetries, group
5755 * having more cpu_power will pickup more load compared to the group having
5756 * less cpu_power.
89c4710e
SS
5757 */
5758static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5759{
e3589f6c 5760 struct sched_group *sg = sd->groups;
89c4710e 5761
94c95ba6 5762 WARN_ON(!sg);
e3589f6c
PZ
5763
5764 do {
5765 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5766 sg = sg->next;
5767 } while (sg != sd->groups);
89c4710e 5768
c1174876 5769 if (cpu != group_balance_cpu(sg))
e3589f6c 5770 return;
aae6d3dd 5771
d274cb30 5772 update_group_power(sd, cpu);
69e1e811 5773 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5774}
5775
029632fb
PZ
5776int __weak arch_sd_sibling_asym_packing(void)
5777{
5778 return 0*SD_ASYM_PACKING;
89c4710e
SS
5779}
5780
7c16ec58
MT
5781/*
5782 * Initializers for schedule domains
5783 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5784 */
5785
a5d8c348
IM
5786#ifdef CONFIG_SCHED_DEBUG
5787# define SD_INIT_NAME(sd, type) sd->name = #type
5788#else
5789# define SD_INIT_NAME(sd, type) do { } while (0)
5790#endif
5791
54ab4ff4
PZ
5792#define SD_INIT_FUNC(type) \
5793static noinline struct sched_domain * \
5794sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5795{ \
5796 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5797 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5798 SD_INIT_NAME(sd, type); \
5799 sd->private = &tl->data; \
5800 return sd; \
7c16ec58
MT
5801}
5802
5803SD_INIT_FUNC(CPU)
7c16ec58
MT
5804#ifdef CONFIG_SCHED_SMT
5805 SD_INIT_FUNC(SIBLING)
5806#endif
5807#ifdef CONFIG_SCHED_MC
5808 SD_INIT_FUNC(MC)
5809#endif
01a08546
HC
5810#ifdef CONFIG_SCHED_BOOK
5811 SD_INIT_FUNC(BOOK)
5812#endif
7c16ec58 5813
1d3504fc 5814static int default_relax_domain_level = -1;
60495e77 5815int sched_domain_level_max;
1d3504fc
HS
5816
5817static int __init setup_relax_domain_level(char *str)
5818{
a841f8ce
DS
5819 if (kstrtoint(str, 0, &default_relax_domain_level))
5820 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5821
1d3504fc
HS
5822 return 1;
5823}
5824__setup("relax_domain_level=", setup_relax_domain_level);
5825
5826static void set_domain_attribute(struct sched_domain *sd,
5827 struct sched_domain_attr *attr)
5828{
5829 int request;
5830
5831 if (!attr || attr->relax_domain_level < 0) {
5832 if (default_relax_domain_level < 0)
5833 return;
5834 else
5835 request = default_relax_domain_level;
5836 } else
5837 request = attr->relax_domain_level;
5838 if (request < sd->level) {
5839 /* turn off idle balance on this domain */
c88d5910 5840 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5841 } else {
5842 /* turn on idle balance on this domain */
c88d5910 5843 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5844 }
5845}
5846
54ab4ff4
PZ
5847static void __sdt_free(const struct cpumask *cpu_map);
5848static int __sdt_alloc(const struct cpumask *cpu_map);
5849
2109b99e
AH
5850static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5851 const struct cpumask *cpu_map)
5852{
5853 switch (what) {
2109b99e 5854 case sa_rootdomain:
822ff793
PZ
5855 if (!atomic_read(&d->rd->refcount))
5856 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5857 case sa_sd:
5858 free_percpu(d->sd); /* fall through */
dce840a0 5859 case sa_sd_storage:
54ab4ff4 5860 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5861 case sa_none:
5862 break;
5863 }
5864}
3404c8d9 5865
2109b99e
AH
5866static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5867 const struct cpumask *cpu_map)
5868{
dce840a0
PZ
5869 memset(d, 0, sizeof(*d));
5870
54ab4ff4
PZ
5871 if (__sdt_alloc(cpu_map))
5872 return sa_sd_storage;
dce840a0
PZ
5873 d->sd = alloc_percpu(struct sched_domain *);
5874 if (!d->sd)
5875 return sa_sd_storage;
2109b99e 5876 d->rd = alloc_rootdomain();
dce840a0 5877 if (!d->rd)
21d42ccf 5878 return sa_sd;
2109b99e
AH
5879 return sa_rootdomain;
5880}
57d885fe 5881
dce840a0
PZ
5882/*
5883 * NULL the sd_data elements we've used to build the sched_domain and
5884 * sched_group structure so that the subsequent __free_domain_allocs()
5885 * will not free the data we're using.
5886 */
5887static void claim_allocations(int cpu, struct sched_domain *sd)
5888{
5889 struct sd_data *sdd = sd->private;
dce840a0
PZ
5890
5891 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5892 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5893
e3589f6c 5894 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5895 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5896
5897 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5898 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5899}
5900
2c402dc3
PZ
5901#ifdef CONFIG_SCHED_SMT
5902static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5903{
2c402dc3 5904 return topology_thread_cpumask(cpu);
3bd65a80 5905}
2c402dc3 5906#endif
7f4588f3 5907
d069b916
PZ
5908/*
5909 * Topology list, bottom-up.
5910 */
2c402dc3 5911static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5912#ifdef CONFIG_SCHED_SMT
5913 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5914#endif
1e9f28fa 5915#ifdef CONFIG_SCHED_MC
2c402dc3 5916 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5917#endif
d069b916
PZ
5918#ifdef CONFIG_SCHED_BOOK
5919 { sd_init_BOOK, cpu_book_mask, },
5920#endif
5921 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5922 { NULL, },
5923};
5924
5925static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5926
27723a68
VK
5927#define for_each_sd_topology(tl) \
5928 for (tl = sched_domain_topology; tl->init; tl++)
5929
cb83b629
PZ
5930#ifdef CONFIG_NUMA
5931
5932static int sched_domains_numa_levels;
cb83b629
PZ
5933static int *sched_domains_numa_distance;
5934static struct cpumask ***sched_domains_numa_masks;
5935static int sched_domains_curr_level;
5936
cb83b629
PZ
5937static inline int sd_local_flags(int level)
5938{
10717dcd 5939 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5940 return 0;
5941
5942 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5943}
5944
5945static struct sched_domain *
5946sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5947{
5948 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5949 int level = tl->numa_level;
5950 int sd_weight = cpumask_weight(
5951 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5952
5953 *sd = (struct sched_domain){
5954 .min_interval = sd_weight,
5955 .max_interval = 2*sd_weight,
5956 .busy_factor = 32,
870a0bb5 5957 .imbalance_pct = 125,
cb83b629
PZ
5958 .cache_nice_tries = 2,
5959 .busy_idx = 3,
5960 .idle_idx = 2,
5961 .newidle_idx = 0,
5962 .wake_idx = 0,
5963 .forkexec_idx = 0,
5964
5965 .flags = 1*SD_LOAD_BALANCE
5966 | 1*SD_BALANCE_NEWIDLE
5967 | 0*SD_BALANCE_EXEC
5968 | 0*SD_BALANCE_FORK
5969 | 0*SD_BALANCE_WAKE
5970 | 0*SD_WAKE_AFFINE
cb83b629 5971 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5972 | 0*SD_SHARE_PKG_RESOURCES
5973 | 1*SD_SERIALIZE
5974 | 0*SD_PREFER_SIBLING
3a7053b3 5975 | 1*SD_NUMA
cb83b629
PZ
5976 | sd_local_flags(level)
5977 ,
5978 .last_balance = jiffies,
5979 .balance_interval = sd_weight,
5980 };
5981 SD_INIT_NAME(sd, NUMA);
5982 sd->private = &tl->data;
5983
5984 /*
5985 * Ugly hack to pass state to sd_numa_mask()...
5986 */
5987 sched_domains_curr_level = tl->numa_level;
5988
5989 return sd;
5990}
5991
5992static const struct cpumask *sd_numa_mask(int cpu)
5993{
5994 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5995}
5996
d039ac60
PZ
5997static void sched_numa_warn(const char *str)
5998{
5999 static int done = false;
6000 int i,j;
6001
6002 if (done)
6003 return;
6004
6005 done = true;
6006
6007 printk(KERN_WARNING "ERROR: %s\n\n", str);
6008
6009 for (i = 0; i < nr_node_ids; i++) {
6010 printk(KERN_WARNING " ");
6011 for (j = 0; j < nr_node_ids; j++)
6012 printk(KERN_CONT "%02d ", node_distance(i,j));
6013 printk(KERN_CONT "\n");
6014 }
6015 printk(KERN_WARNING "\n");
6016}
6017
6018static bool find_numa_distance(int distance)
6019{
6020 int i;
6021
6022 if (distance == node_distance(0, 0))
6023 return true;
6024
6025 for (i = 0; i < sched_domains_numa_levels; i++) {
6026 if (sched_domains_numa_distance[i] == distance)
6027 return true;
6028 }
6029
6030 return false;
6031}
6032
cb83b629
PZ
6033static void sched_init_numa(void)
6034{
6035 int next_distance, curr_distance = node_distance(0, 0);
6036 struct sched_domain_topology_level *tl;
6037 int level = 0;
6038 int i, j, k;
6039
cb83b629
PZ
6040 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6041 if (!sched_domains_numa_distance)
6042 return;
6043
6044 /*
6045 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6046 * unique distances in the node_distance() table.
6047 *
6048 * Assumes node_distance(0,j) includes all distances in
6049 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6050 */
6051 next_distance = curr_distance;
6052 for (i = 0; i < nr_node_ids; i++) {
6053 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6054 for (k = 0; k < nr_node_ids; k++) {
6055 int distance = node_distance(i, k);
6056
6057 if (distance > curr_distance &&
6058 (distance < next_distance ||
6059 next_distance == curr_distance))
6060 next_distance = distance;
6061
6062 /*
6063 * While not a strong assumption it would be nice to know
6064 * about cases where if node A is connected to B, B is not
6065 * equally connected to A.
6066 */
6067 if (sched_debug() && node_distance(k, i) != distance)
6068 sched_numa_warn("Node-distance not symmetric");
6069
6070 if (sched_debug() && i && !find_numa_distance(distance))
6071 sched_numa_warn("Node-0 not representative");
6072 }
6073 if (next_distance != curr_distance) {
6074 sched_domains_numa_distance[level++] = next_distance;
6075 sched_domains_numa_levels = level;
6076 curr_distance = next_distance;
6077 } else break;
cb83b629 6078 }
d039ac60
PZ
6079
6080 /*
6081 * In case of sched_debug() we verify the above assumption.
6082 */
6083 if (!sched_debug())
6084 break;
cb83b629
PZ
6085 }
6086 /*
6087 * 'level' contains the number of unique distances, excluding the
6088 * identity distance node_distance(i,i).
6089 *
28b4a521 6090 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6091 * numbers.
6092 */
6093
5f7865f3
TC
6094 /*
6095 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6096 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6097 * the array will contain less then 'level' members. This could be
6098 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6099 * in other functions.
6100 *
6101 * We reset it to 'level' at the end of this function.
6102 */
6103 sched_domains_numa_levels = 0;
6104
cb83b629
PZ
6105 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6106 if (!sched_domains_numa_masks)
6107 return;
6108
6109 /*
6110 * Now for each level, construct a mask per node which contains all
6111 * cpus of nodes that are that many hops away from us.
6112 */
6113 for (i = 0; i < level; i++) {
6114 sched_domains_numa_masks[i] =
6115 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6116 if (!sched_domains_numa_masks[i])
6117 return;
6118
6119 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6120 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6121 if (!mask)
6122 return;
6123
6124 sched_domains_numa_masks[i][j] = mask;
6125
6126 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6127 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6128 continue;
6129
6130 cpumask_or(mask, mask, cpumask_of_node(k));
6131 }
6132 }
6133 }
6134
6135 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6136 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6137 if (!tl)
6138 return;
6139
6140 /*
6141 * Copy the default topology bits..
6142 */
6143 for (i = 0; default_topology[i].init; i++)
6144 tl[i] = default_topology[i];
6145
6146 /*
6147 * .. and append 'j' levels of NUMA goodness.
6148 */
6149 for (j = 0; j < level; i++, j++) {
6150 tl[i] = (struct sched_domain_topology_level){
6151 .init = sd_numa_init,
6152 .mask = sd_numa_mask,
6153 .flags = SDTL_OVERLAP,
6154 .numa_level = j,
6155 };
6156 }
6157
6158 sched_domain_topology = tl;
5f7865f3
TC
6159
6160 sched_domains_numa_levels = level;
cb83b629 6161}
301a5cba
TC
6162
6163static void sched_domains_numa_masks_set(int cpu)
6164{
6165 int i, j;
6166 int node = cpu_to_node(cpu);
6167
6168 for (i = 0; i < sched_domains_numa_levels; i++) {
6169 for (j = 0; j < nr_node_ids; j++) {
6170 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6171 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6172 }
6173 }
6174}
6175
6176static void sched_domains_numa_masks_clear(int cpu)
6177{
6178 int i, j;
6179 for (i = 0; i < sched_domains_numa_levels; i++) {
6180 for (j = 0; j < nr_node_ids; j++)
6181 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6182 }
6183}
6184
6185/*
6186 * Update sched_domains_numa_masks[level][node] array when new cpus
6187 * are onlined.
6188 */
6189static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6190 unsigned long action,
6191 void *hcpu)
6192{
6193 int cpu = (long)hcpu;
6194
6195 switch (action & ~CPU_TASKS_FROZEN) {
6196 case CPU_ONLINE:
6197 sched_domains_numa_masks_set(cpu);
6198 break;
6199
6200 case CPU_DEAD:
6201 sched_domains_numa_masks_clear(cpu);
6202 break;
6203
6204 default:
6205 return NOTIFY_DONE;
6206 }
6207
6208 return NOTIFY_OK;
cb83b629
PZ
6209}
6210#else
6211static inline void sched_init_numa(void)
6212{
6213}
301a5cba
TC
6214
6215static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6216 unsigned long action,
6217 void *hcpu)
6218{
6219 return 0;
6220}
cb83b629
PZ
6221#endif /* CONFIG_NUMA */
6222
54ab4ff4
PZ
6223static int __sdt_alloc(const struct cpumask *cpu_map)
6224{
6225 struct sched_domain_topology_level *tl;
6226 int j;
6227
27723a68 6228 for_each_sd_topology(tl) {
54ab4ff4
PZ
6229 struct sd_data *sdd = &tl->data;
6230
6231 sdd->sd = alloc_percpu(struct sched_domain *);
6232 if (!sdd->sd)
6233 return -ENOMEM;
6234
6235 sdd->sg = alloc_percpu(struct sched_group *);
6236 if (!sdd->sg)
6237 return -ENOMEM;
6238
9c3f75cb
PZ
6239 sdd->sgp = alloc_percpu(struct sched_group_power *);
6240 if (!sdd->sgp)
6241 return -ENOMEM;
6242
54ab4ff4
PZ
6243 for_each_cpu(j, cpu_map) {
6244 struct sched_domain *sd;
6245 struct sched_group *sg;
9c3f75cb 6246 struct sched_group_power *sgp;
54ab4ff4
PZ
6247
6248 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6249 GFP_KERNEL, cpu_to_node(j));
6250 if (!sd)
6251 return -ENOMEM;
6252
6253 *per_cpu_ptr(sdd->sd, j) = sd;
6254
6255 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6256 GFP_KERNEL, cpu_to_node(j));
6257 if (!sg)
6258 return -ENOMEM;
6259
30b4e9eb
IM
6260 sg->next = sg;
6261
54ab4ff4 6262 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6263
c1174876 6264 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6265 GFP_KERNEL, cpu_to_node(j));
6266 if (!sgp)
6267 return -ENOMEM;
6268
6269 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6270 }
6271 }
6272
6273 return 0;
6274}
6275
6276static void __sdt_free(const struct cpumask *cpu_map)
6277{
6278 struct sched_domain_topology_level *tl;
6279 int j;
6280
27723a68 6281 for_each_sd_topology(tl) {
54ab4ff4
PZ
6282 struct sd_data *sdd = &tl->data;
6283
6284 for_each_cpu(j, cpu_map) {
fb2cf2c6 6285 struct sched_domain *sd;
6286
6287 if (sdd->sd) {
6288 sd = *per_cpu_ptr(sdd->sd, j);
6289 if (sd && (sd->flags & SD_OVERLAP))
6290 free_sched_groups(sd->groups, 0);
6291 kfree(*per_cpu_ptr(sdd->sd, j));
6292 }
6293
6294 if (sdd->sg)
6295 kfree(*per_cpu_ptr(sdd->sg, j));
6296 if (sdd->sgp)
6297 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6298 }
6299 free_percpu(sdd->sd);
fb2cf2c6 6300 sdd->sd = NULL;
54ab4ff4 6301 free_percpu(sdd->sg);
fb2cf2c6 6302 sdd->sg = NULL;
9c3f75cb 6303 free_percpu(sdd->sgp);
fb2cf2c6 6304 sdd->sgp = NULL;
54ab4ff4
PZ
6305 }
6306}
6307
2c402dc3 6308struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6309 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6310 struct sched_domain *child, int cpu)
2c402dc3 6311{
54ab4ff4 6312 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6313 if (!sd)
d069b916 6314 return child;
2c402dc3 6315
2c402dc3 6316 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6317 if (child) {
6318 sd->level = child->level + 1;
6319 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6320 child->parent = sd;
c75e0128 6321 sd->child = child;
60495e77 6322 }
a841f8ce 6323 set_domain_attribute(sd, attr);
2c402dc3
PZ
6324
6325 return sd;
6326}
6327
2109b99e
AH
6328/*
6329 * Build sched domains for a given set of cpus and attach the sched domains
6330 * to the individual cpus
6331 */
dce840a0
PZ
6332static int build_sched_domains(const struct cpumask *cpu_map,
6333 struct sched_domain_attr *attr)
2109b99e 6334{
1c632169 6335 enum s_alloc alloc_state;
dce840a0 6336 struct sched_domain *sd;
2109b99e 6337 struct s_data d;
822ff793 6338 int i, ret = -ENOMEM;
9c1cfda2 6339
2109b99e
AH
6340 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6341 if (alloc_state != sa_rootdomain)
6342 goto error;
9c1cfda2 6343
dce840a0 6344 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6345 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6346 struct sched_domain_topology_level *tl;
6347
3bd65a80 6348 sd = NULL;
27723a68 6349 for_each_sd_topology(tl) {
4a850cbe 6350 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6351 if (tl == sched_domain_topology)
6352 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6353 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6354 sd->flags |= SD_OVERLAP;
d110235d
PZ
6355 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6356 break;
e3589f6c 6357 }
dce840a0
PZ
6358 }
6359
6360 /* Build the groups for the domains */
6361 for_each_cpu(i, cpu_map) {
6362 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6363 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6364 if (sd->flags & SD_OVERLAP) {
6365 if (build_overlap_sched_groups(sd, i))
6366 goto error;
6367 } else {
6368 if (build_sched_groups(sd, i))
6369 goto error;
6370 }
1cf51902 6371 }
a06dadbe 6372 }
9c1cfda2 6373
1da177e4 6374 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6375 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6376 if (!cpumask_test_cpu(i, cpu_map))
6377 continue;
9c1cfda2 6378
dce840a0
PZ
6379 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6380 claim_allocations(i, sd);
cd4ea6ae 6381 init_sched_groups_power(i, sd);
dce840a0 6382 }
f712c0c7 6383 }
9c1cfda2 6384
1da177e4 6385 /* Attach the domains */
dce840a0 6386 rcu_read_lock();
abcd083a 6387 for_each_cpu(i, cpu_map) {
21d42ccf 6388 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6389 cpu_attach_domain(sd, d.rd, i);
1da177e4 6390 }
dce840a0 6391 rcu_read_unlock();
51888ca2 6392
822ff793 6393 ret = 0;
51888ca2 6394error:
2109b99e 6395 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6396 return ret;
1da177e4 6397}
029190c5 6398
acc3f5d7 6399static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6400static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6401static struct sched_domain_attr *dattr_cur;
6402 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6403
6404/*
6405 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6406 * cpumask) fails, then fallback to a single sched domain,
6407 * as determined by the single cpumask fallback_doms.
029190c5 6408 */
4212823f 6409static cpumask_var_t fallback_doms;
029190c5 6410
ee79d1bd
HC
6411/*
6412 * arch_update_cpu_topology lets virtualized architectures update the
6413 * cpu core maps. It is supposed to return 1 if the topology changed
6414 * or 0 if it stayed the same.
6415 */
6416int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6417{
ee79d1bd 6418 return 0;
22e52b07
HC
6419}
6420
acc3f5d7
RR
6421cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6422{
6423 int i;
6424 cpumask_var_t *doms;
6425
6426 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6427 if (!doms)
6428 return NULL;
6429 for (i = 0; i < ndoms; i++) {
6430 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6431 free_sched_domains(doms, i);
6432 return NULL;
6433 }
6434 }
6435 return doms;
6436}
6437
6438void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6439{
6440 unsigned int i;
6441 for (i = 0; i < ndoms; i++)
6442 free_cpumask_var(doms[i]);
6443 kfree(doms);
6444}
6445
1a20ff27 6446/*
41a2d6cf 6447 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6448 * For now this just excludes isolated cpus, but could be used to
6449 * exclude other special cases in the future.
1a20ff27 6450 */
c4a8849a 6451static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6452{
7378547f
MM
6453 int err;
6454
22e52b07 6455 arch_update_cpu_topology();
029190c5 6456 ndoms_cur = 1;
acc3f5d7 6457 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6458 if (!doms_cur)
acc3f5d7
RR
6459 doms_cur = &fallback_doms;
6460 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6461 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6462 register_sched_domain_sysctl();
7378547f
MM
6463
6464 return err;
1a20ff27
DG
6465}
6466
1a20ff27
DG
6467/*
6468 * Detach sched domains from a group of cpus specified in cpu_map
6469 * These cpus will now be attached to the NULL domain
6470 */
96f874e2 6471static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6472{
6473 int i;
6474
dce840a0 6475 rcu_read_lock();
abcd083a 6476 for_each_cpu(i, cpu_map)
57d885fe 6477 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6478 rcu_read_unlock();
1a20ff27
DG
6479}
6480
1d3504fc
HS
6481/* handle null as "default" */
6482static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6483 struct sched_domain_attr *new, int idx_new)
6484{
6485 struct sched_domain_attr tmp;
6486
6487 /* fast path */
6488 if (!new && !cur)
6489 return 1;
6490
6491 tmp = SD_ATTR_INIT;
6492 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6493 new ? (new + idx_new) : &tmp,
6494 sizeof(struct sched_domain_attr));
6495}
6496
029190c5
PJ
6497/*
6498 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6499 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6500 * doms_new[] to the current sched domain partitioning, doms_cur[].
6501 * It destroys each deleted domain and builds each new domain.
6502 *
acc3f5d7 6503 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6504 * The masks don't intersect (don't overlap.) We should setup one
6505 * sched domain for each mask. CPUs not in any of the cpumasks will
6506 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6507 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6508 * it as it is.
6509 *
acc3f5d7
RR
6510 * The passed in 'doms_new' should be allocated using
6511 * alloc_sched_domains. This routine takes ownership of it and will
6512 * free_sched_domains it when done with it. If the caller failed the
6513 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6514 * and partition_sched_domains() will fallback to the single partition
6515 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6516 *
96f874e2 6517 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6518 * ndoms_new == 0 is a special case for destroying existing domains,
6519 * and it will not create the default domain.
dfb512ec 6520 *
029190c5
PJ
6521 * Call with hotplug lock held
6522 */
acc3f5d7 6523void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6524 struct sched_domain_attr *dattr_new)
029190c5 6525{
dfb512ec 6526 int i, j, n;
d65bd5ec 6527 int new_topology;
029190c5 6528
712555ee 6529 mutex_lock(&sched_domains_mutex);
a1835615 6530
7378547f
MM
6531 /* always unregister in case we don't destroy any domains */
6532 unregister_sched_domain_sysctl();
6533
d65bd5ec
HC
6534 /* Let architecture update cpu core mappings. */
6535 new_topology = arch_update_cpu_topology();
6536
dfb512ec 6537 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6538
6539 /* Destroy deleted domains */
6540 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6541 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6542 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6543 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6544 goto match1;
6545 }
6546 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6547 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6548match1:
6549 ;
6550 }
6551
c8d2d47a 6552 n = ndoms_cur;
e761b772 6553 if (doms_new == NULL) {
c8d2d47a 6554 n = 0;
acc3f5d7 6555 doms_new = &fallback_doms;
6ad4c188 6556 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6557 WARN_ON_ONCE(dattr_new);
e761b772
MK
6558 }
6559
029190c5
PJ
6560 /* Build new domains */
6561 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6562 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6563 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6564 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6565 goto match2;
6566 }
6567 /* no match - add a new doms_new */
dce840a0 6568 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6569match2:
6570 ;
6571 }
6572
6573 /* Remember the new sched domains */
acc3f5d7
RR
6574 if (doms_cur != &fallback_doms)
6575 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6576 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6577 doms_cur = doms_new;
1d3504fc 6578 dattr_cur = dattr_new;
029190c5 6579 ndoms_cur = ndoms_new;
7378547f
MM
6580
6581 register_sched_domain_sysctl();
a1835615 6582
712555ee 6583 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6584}
6585
d35be8ba
SB
6586static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6587
1da177e4 6588/*
3a101d05
TH
6589 * Update cpusets according to cpu_active mask. If cpusets are
6590 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6591 * around partition_sched_domains().
d35be8ba
SB
6592 *
6593 * If we come here as part of a suspend/resume, don't touch cpusets because we
6594 * want to restore it back to its original state upon resume anyway.
1da177e4 6595 */
0b2e918a
TH
6596static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6597 void *hcpu)
e761b772 6598{
d35be8ba
SB
6599 switch (action) {
6600 case CPU_ONLINE_FROZEN:
6601 case CPU_DOWN_FAILED_FROZEN:
6602
6603 /*
6604 * num_cpus_frozen tracks how many CPUs are involved in suspend
6605 * resume sequence. As long as this is not the last online
6606 * operation in the resume sequence, just build a single sched
6607 * domain, ignoring cpusets.
6608 */
6609 num_cpus_frozen--;
6610 if (likely(num_cpus_frozen)) {
6611 partition_sched_domains(1, NULL, NULL);
6612 break;
6613 }
6614
6615 /*
6616 * This is the last CPU online operation. So fall through and
6617 * restore the original sched domains by considering the
6618 * cpuset configurations.
6619 */
6620
e761b772 6621 case CPU_ONLINE:
6ad4c188 6622 case CPU_DOWN_FAILED:
7ddf96b0 6623 cpuset_update_active_cpus(true);
d35be8ba 6624 break;
3a101d05
TH
6625 default:
6626 return NOTIFY_DONE;
6627 }
d35be8ba 6628 return NOTIFY_OK;
3a101d05 6629}
e761b772 6630
0b2e918a
TH
6631static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6632 void *hcpu)
3a101d05 6633{
d35be8ba 6634 switch (action) {
3a101d05 6635 case CPU_DOWN_PREPARE:
7ddf96b0 6636 cpuset_update_active_cpus(false);
d35be8ba
SB
6637 break;
6638 case CPU_DOWN_PREPARE_FROZEN:
6639 num_cpus_frozen++;
6640 partition_sched_domains(1, NULL, NULL);
6641 break;
e761b772
MK
6642 default:
6643 return NOTIFY_DONE;
6644 }
d35be8ba 6645 return NOTIFY_OK;
e761b772 6646}
e761b772 6647
1da177e4
LT
6648void __init sched_init_smp(void)
6649{
dcc30a35
RR
6650 cpumask_var_t non_isolated_cpus;
6651
6652 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6653 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6654
cb83b629
PZ
6655 sched_init_numa();
6656
6acce3ef
PZ
6657 /*
6658 * There's no userspace yet to cause hotplug operations; hence all the
6659 * cpu masks are stable and all blatant races in the below code cannot
6660 * happen.
6661 */
712555ee 6662 mutex_lock(&sched_domains_mutex);
c4a8849a 6663 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6664 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6665 if (cpumask_empty(non_isolated_cpus))
6666 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6667 mutex_unlock(&sched_domains_mutex);
e761b772 6668
301a5cba 6669 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6670 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6671 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6672
b328ca18 6673 init_hrtick();
5c1e1767
NP
6674
6675 /* Move init over to a non-isolated CPU */
dcc30a35 6676 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6677 BUG();
19978ca6 6678 sched_init_granularity();
dcc30a35 6679 free_cpumask_var(non_isolated_cpus);
4212823f 6680
0e3900e6 6681 init_sched_rt_class();
1baca4ce 6682 init_sched_dl_class();
1da177e4
LT
6683}
6684#else
6685void __init sched_init_smp(void)
6686{
19978ca6 6687 sched_init_granularity();
1da177e4
LT
6688}
6689#endif /* CONFIG_SMP */
6690
cd1bb94b
AB
6691const_debug unsigned int sysctl_timer_migration = 1;
6692
1da177e4
LT
6693int in_sched_functions(unsigned long addr)
6694{
1da177e4
LT
6695 return in_lock_functions(addr) ||
6696 (addr >= (unsigned long)__sched_text_start
6697 && addr < (unsigned long)__sched_text_end);
6698}
6699
029632fb 6700#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6701/*
6702 * Default task group.
6703 * Every task in system belongs to this group at bootup.
6704 */
029632fb 6705struct task_group root_task_group;
35cf4e50 6706LIST_HEAD(task_groups);
052f1dc7 6707#endif
6f505b16 6708
e6252c3e 6709DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6710
1da177e4
LT
6711void __init sched_init(void)
6712{
dd41f596 6713 int i, j;
434d53b0
MT
6714 unsigned long alloc_size = 0, ptr;
6715
6716#ifdef CONFIG_FAIR_GROUP_SCHED
6717 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6718#endif
6719#ifdef CONFIG_RT_GROUP_SCHED
6720 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6721#endif
df7c8e84 6722#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6723 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6724#endif
434d53b0 6725 if (alloc_size) {
36b7b6d4 6726 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6727
6728#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6729 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6730 ptr += nr_cpu_ids * sizeof(void **);
6731
07e06b01 6732 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6733 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6734
6d6bc0ad 6735#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6736#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6737 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6738 ptr += nr_cpu_ids * sizeof(void **);
6739
07e06b01 6740 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6741 ptr += nr_cpu_ids * sizeof(void **);
6742
6d6bc0ad 6743#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6744#ifdef CONFIG_CPUMASK_OFFSTACK
6745 for_each_possible_cpu(i) {
e6252c3e 6746 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6747 ptr += cpumask_size();
6748 }
6749#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6750 }
dd41f596 6751
332ac17e
DF
6752 init_rt_bandwidth(&def_rt_bandwidth,
6753 global_rt_period(), global_rt_runtime());
6754 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6755 global_rt_period(), global_rt_runtime());
332ac17e 6756
57d885fe
GH
6757#ifdef CONFIG_SMP
6758 init_defrootdomain();
6759#endif
6760
d0b27fa7 6761#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6762 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6763 global_rt_period(), global_rt_runtime());
6d6bc0ad 6764#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6765
7c941438 6766#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6767 list_add(&root_task_group.list, &task_groups);
6768 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6769 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6770 autogroup_init(&init_task);
54c707e9 6771
7c941438 6772#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6773
0a945022 6774 for_each_possible_cpu(i) {
70b97a7f 6775 struct rq *rq;
1da177e4
LT
6776
6777 rq = cpu_rq(i);
05fa785c 6778 raw_spin_lock_init(&rq->lock);
7897986b 6779 rq->nr_running = 0;
dce48a84
TG
6780 rq->calc_load_active = 0;
6781 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6782 init_cfs_rq(&rq->cfs);
6f505b16 6783 init_rt_rq(&rq->rt, rq);
aab03e05 6784 init_dl_rq(&rq->dl, rq);
dd41f596 6785#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6786 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6787 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6788 /*
07e06b01 6789 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6790 *
6791 * In case of task-groups formed thr' the cgroup filesystem, it
6792 * gets 100% of the cpu resources in the system. This overall
6793 * system cpu resource is divided among the tasks of
07e06b01 6794 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6795 * based on each entity's (task or task-group's) weight
6796 * (se->load.weight).
6797 *
07e06b01 6798 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6799 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6800 * then A0's share of the cpu resource is:
6801 *
0d905bca 6802 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6803 *
07e06b01
YZ
6804 * We achieve this by letting root_task_group's tasks sit
6805 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6806 */
ab84d31e 6807 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6808 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6809#endif /* CONFIG_FAIR_GROUP_SCHED */
6810
6811 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6812#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6813 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6814 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6815#endif
1da177e4 6816
dd41f596
IM
6817 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6818 rq->cpu_load[j] = 0;
fdf3e95d
VP
6819
6820 rq->last_load_update_tick = jiffies;
6821
1da177e4 6822#ifdef CONFIG_SMP
41c7ce9a 6823 rq->sd = NULL;
57d885fe 6824 rq->rd = NULL;
1399fa78 6825 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6826 rq->post_schedule = 0;
1da177e4 6827 rq->active_balance = 0;
dd41f596 6828 rq->next_balance = jiffies;
1da177e4 6829 rq->push_cpu = 0;
0a2966b4 6830 rq->cpu = i;
1f11eb6a 6831 rq->online = 0;
eae0c9df
MG
6832 rq->idle_stamp = 0;
6833 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6834 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6835
6836 INIT_LIST_HEAD(&rq->cfs_tasks);
6837
dc938520 6838 rq_attach_root(rq, &def_root_domain);
3451d024 6839#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6840 rq->nohz_flags = 0;
83cd4fe2 6841#endif
265f22a9
FW
6842#ifdef CONFIG_NO_HZ_FULL
6843 rq->last_sched_tick = 0;
6844#endif
1da177e4 6845#endif
8f4d37ec 6846 init_rq_hrtick(rq);
1da177e4 6847 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6848 }
6849
2dd73a4f 6850 set_load_weight(&init_task);
b50f60ce 6851
e107be36
AK
6852#ifdef CONFIG_PREEMPT_NOTIFIERS
6853 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6854#endif
6855
1da177e4
LT
6856 /*
6857 * The boot idle thread does lazy MMU switching as well:
6858 */
6859 atomic_inc(&init_mm.mm_count);
6860 enter_lazy_tlb(&init_mm, current);
6861
6862 /*
6863 * Make us the idle thread. Technically, schedule() should not be
6864 * called from this thread, however somewhere below it might be,
6865 * but because we are the idle thread, we just pick up running again
6866 * when this runqueue becomes "idle".
6867 */
6868 init_idle(current, smp_processor_id());
dce48a84
TG
6869
6870 calc_load_update = jiffies + LOAD_FREQ;
6871
dd41f596
IM
6872 /*
6873 * During early bootup we pretend to be a normal task:
6874 */
6875 current->sched_class = &fair_sched_class;
6892b75e 6876
bf4d83f6 6877#ifdef CONFIG_SMP
4cb98839 6878 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6879 /* May be allocated at isolcpus cmdline parse time */
6880 if (cpu_isolated_map == NULL)
6881 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6882 idle_thread_set_boot_cpu();
029632fb
PZ
6883#endif
6884 init_sched_fair_class();
6a7b3dc3 6885
6892b75e 6886 scheduler_running = 1;
1da177e4
LT
6887}
6888
d902db1e 6889#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6890static inline int preempt_count_equals(int preempt_offset)
6891{
234da7bc 6892 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6893
4ba8216c 6894 return (nested == preempt_offset);
e4aafea2
FW
6895}
6896
d894837f 6897void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6898{
1da177e4
LT
6899 static unsigned long prev_jiffy; /* ratelimiting */
6900
b3fbab05 6901 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6902 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6903 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6904 return;
6905 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6906 return;
6907 prev_jiffy = jiffies;
6908
3df0fc5b
PZ
6909 printk(KERN_ERR
6910 "BUG: sleeping function called from invalid context at %s:%d\n",
6911 file, line);
6912 printk(KERN_ERR
6913 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6914 in_atomic(), irqs_disabled(),
6915 current->pid, current->comm);
aef745fc
IM
6916
6917 debug_show_held_locks(current);
6918 if (irqs_disabled())
6919 print_irqtrace_events(current);
6920 dump_stack();
1da177e4
LT
6921}
6922EXPORT_SYMBOL(__might_sleep);
6923#endif
6924
6925#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6926static void normalize_task(struct rq *rq, struct task_struct *p)
6927{
da7a735e 6928 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6929 struct sched_attr attr = {
6930 .sched_policy = SCHED_NORMAL,
6931 };
da7a735e 6932 int old_prio = p->prio;
3a5e4dc1 6933 int on_rq;
3e51f33f 6934
fd2f4419 6935 on_rq = p->on_rq;
3a5e4dc1 6936 if (on_rq)
4ca9b72b 6937 dequeue_task(rq, p, 0);
d50dde5a 6938 __setscheduler(rq, p, &attr);
3a5e4dc1 6939 if (on_rq) {
4ca9b72b 6940 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6941 resched_task(rq->curr);
6942 }
da7a735e
PZ
6943
6944 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6945}
6946
1da177e4
LT
6947void normalize_rt_tasks(void)
6948{
a0f98a1c 6949 struct task_struct *g, *p;
1da177e4 6950 unsigned long flags;
70b97a7f 6951 struct rq *rq;
1da177e4 6952
4cf5d77a 6953 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6954 do_each_thread(g, p) {
178be793
IM
6955 /*
6956 * Only normalize user tasks:
6957 */
6958 if (!p->mm)
6959 continue;
6960
6cfb0d5d 6961 p->se.exec_start = 0;
6cfb0d5d 6962#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6963 p->se.statistics.wait_start = 0;
6964 p->se.statistics.sleep_start = 0;
6965 p->se.statistics.block_start = 0;
6cfb0d5d 6966#endif
dd41f596 6967
aab03e05 6968 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6969 /*
6970 * Renice negative nice level userspace
6971 * tasks back to 0:
6972 */
6973 if (TASK_NICE(p) < 0 && p->mm)
6974 set_user_nice(p, 0);
1da177e4 6975 continue;
dd41f596 6976 }
1da177e4 6977
1d615482 6978 raw_spin_lock(&p->pi_lock);
b29739f9 6979 rq = __task_rq_lock(p);
1da177e4 6980
178be793 6981 normalize_task(rq, p);
3a5e4dc1 6982
b29739f9 6983 __task_rq_unlock(rq);
1d615482 6984 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6985 } while_each_thread(g, p);
6986
4cf5d77a 6987 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6988}
6989
6990#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6991
67fc4e0c 6992#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6993/*
67fc4e0c 6994 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6995 *
6996 * They can only be called when the whole system has been
6997 * stopped - every CPU needs to be quiescent, and no scheduling
6998 * activity can take place. Using them for anything else would
6999 * be a serious bug, and as a result, they aren't even visible
7000 * under any other configuration.
7001 */
7002
7003/**
7004 * curr_task - return the current task for a given cpu.
7005 * @cpu: the processor in question.
7006 *
7007 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7008 *
7009 * Return: The current task for @cpu.
1df5c10a 7010 */
36c8b586 7011struct task_struct *curr_task(int cpu)
1df5c10a
LT
7012{
7013 return cpu_curr(cpu);
7014}
7015
67fc4e0c
JW
7016#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7017
7018#ifdef CONFIG_IA64
1df5c10a
LT
7019/**
7020 * set_curr_task - set the current task for a given cpu.
7021 * @cpu: the processor in question.
7022 * @p: the task pointer to set.
7023 *
7024 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7025 * are serviced on a separate stack. It allows the architecture to switch the
7026 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7027 * must be called with all CPU's synchronized, and interrupts disabled, the
7028 * and caller must save the original value of the current task (see
7029 * curr_task() above) and restore that value before reenabling interrupts and
7030 * re-starting the system.
7031 *
7032 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7033 */
36c8b586 7034void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7035{
7036 cpu_curr(cpu) = p;
7037}
7038
7039#endif
29f59db3 7040
7c941438 7041#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7042/* task_group_lock serializes the addition/removal of task groups */
7043static DEFINE_SPINLOCK(task_group_lock);
7044
bccbe08a
PZ
7045static void free_sched_group(struct task_group *tg)
7046{
7047 free_fair_sched_group(tg);
7048 free_rt_sched_group(tg);
e9aa1dd1 7049 autogroup_free(tg);
bccbe08a
PZ
7050 kfree(tg);
7051}
7052
7053/* allocate runqueue etc for a new task group */
ec7dc8ac 7054struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7055{
7056 struct task_group *tg;
bccbe08a
PZ
7057
7058 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7059 if (!tg)
7060 return ERR_PTR(-ENOMEM);
7061
ec7dc8ac 7062 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7063 goto err;
7064
ec7dc8ac 7065 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7066 goto err;
7067
ace783b9
LZ
7068 return tg;
7069
7070err:
7071 free_sched_group(tg);
7072 return ERR_PTR(-ENOMEM);
7073}
7074
7075void sched_online_group(struct task_group *tg, struct task_group *parent)
7076{
7077 unsigned long flags;
7078
8ed36996 7079 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7080 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7081
7082 WARN_ON(!parent); /* root should already exist */
7083
7084 tg->parent = parent;
f473aa5e 7085 INIT_LIST_HEAD(&tg->children);
09f2724a 7086 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7087 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7088}
7089
9b5b7751 7090/* rcu callback to free various structures associated with a task group */
6f505b16 7091static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7092{
29f59db3 7093 /* now it should be safe to free those cfs_rqs */
6f505b16 7094 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7095}
7096
9b5b7751 7097/* Destroy runqueue etc associated with a task group */
4cf86d77 7098void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7099{
7100 /* wait for possible concurrent references to cfs_rqs complete */
7101 call_rcu(&tg->rcu, free_sched_group_rcu);
7102}
7103
7104void sched_offline_group(struct task_group *tg)
29f59db3 7105{
8ed36996 7106 unsigned long flags;
9b5b7751 7107 int i;
29f59db3 7108
3d4b47b4
PZ
7109 /* end participation in shares distribution */
7110 for_each_possible_cpu(i)
bccbe08a 7111 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7112
7113 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7114 list_del_rcu(&tg->list);
f473aa5e 7115 list_del_rcu(&tg->siblings);
8ed36996 7116 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7117}
7118
9b5b7751 7119/* change task's runqueue when it moves between groups.
3a252015
IM
7120 * The caller of this function should have put the task in its new group
7121 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7122 * reflect its new group.
9b5b7751
SV
7123 */
7124void sched_move_task(struct task_struct *tsk)
29f59db3 7125{
8323f26c 7126 struct task_group *tg;
29f59db3
SV
7127 int on_rq, running;
7128 unsigned long flags;
7129 struct rq *rq;
7130
7131 rq = task_rq_lock(tsk, &flags);
7132
051a1d1a 7133 running = task_current(rq, tsk);
fd2f4419 7134 on_rq = tsk->on_rq;
29f59db3 7135
0e1f3483 7136 if (on_rq)
29f59db3 7137 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7138 if (unlikely(running))
7139 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7140
8af01f56 7141 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7142 lockdep_is_held(&tsk->sighand->siglock)),
7143 struct task_group, css);
7144 tg = autogroup_task_group(tsk, tg);
7145 tsk->sched_task_group = tg;
7146
810b3817 7147#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7148 if (tsk->sched_class->task_move_group)
7149 tsk->sched_class->task_move_group(tsk, on_rq);
7150 else
810b3817 7151#endif
b2b5ce02 7152 set_task_rq(tsk, task_cpu(tsk));
810b3817 7153
0e1f3483
HS
7154 if (unlikely(running))
7155 tsk->sched_class->set_curr_task(rq);
7156 if (on_rq)
371fd7e7 7157 enqueue_task(rq, tsk, 0);
29f59db3 7158
0122ec5b 7159 task_rq_unlock(rq, tsk, &flags);
29f59db3 7160}
7c941438 7161#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7162
a790de99
PT
7163#ifdef CONFIG_RT_GROUP_SCHED
7164/*
7165 * Ensure that the real time constraints are schedulable.
7166 */
7167static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7168
9a7e0b18
PZ
7169/* Must be called with tasklist_lock held */
7170static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7171{
9a7e0b18 7172 struct task_struct *g, *p;
b40b2e8e 7173
9a7e0b18 7174 do_each_thread(g, p) {
029632fb 7175 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7176 return 1;
7177 } while_each_thread(g, p);
b40b2e8e 7178
9a7e0b18
PZ
7179 return 0;
7180}
b40b2e8e 7181
9a7e0b18
PZ
7182struct rt_schedulable_data {
7183 struct task_group *tg;
7184 u64 rt_period;
7185 u64 rt_runtime;
7186};
b40b2e8e 7187
a790de99 7188static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7189{
7190 struct rt_schedulable_data *d = data;
7191 struct task_group *child;
7192 unsigned long total, sum = 0;
7193 u64 period, runtime;
b40b2e8e 7194
9a7e0b18
PZ
7195 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7196 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7197
9a7e0b18
PZ
7198 if (tg == d->tg) {
7199 period = d->rt_period;
7200 runtime = d->rt_runtime;
b40b2e8e 7201 }
b40b2e8e 7202
4653f803
PZ
7203 /*
7204 * Cannot have more runtime than the period.
7205 */
7206 if (runtime > period && runtime != RUNTIME_INF)
7207 return -EINVAL;
6f505b16 7208
4653f803
PZ
7209 /*
7210 * Ensure we don't starve existing RT tasks.
7211 */
9a7e0b18
PZ
7212 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7213 return -EBUSY;
6f505b16 7214
9a7e0b18 7215 total = to_ratio(period, runtime);
6f505b16 7216
4653f803
PZ
7217 /*
7218 * Nobody can have more than the global setting allows.
7219 */
7220 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7221 return -EINVAL;
6f505b16 7222
4653f803
PZ
7223 /*
7224 * The sum of our children's runtime should not exceed our own.
7225 */
9a7e0b18
PZ
7226 list_for_each_entry_rcu(child, &tg->children, siblings) {
7227 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7228 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7229
9a7e0b18
PZ
7230 if (child == d->tg) {
7231 period = d->rt_period;
7232 runtime = d->rt_runtime;
7233 }
6f505b16 7234
9a7e0b18 7235 sum += to_ratio(period, runtime);
9f0c1e56 7236 }
6f505b16 7237
9a7e0b18
PZ
7238 if (sum > total)
7239 return -EINVAL;
7240
7241 return 0;
6f505b16
PZ
7242}
7243
9a7e0b18 7244static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7245{
8277434e
PT
7246 int ret;
7247
9a7e0b18
PZ
7248 struct rt_schedulable_data data = {
7249 .tg = tg,
7250 .rt_period = period,
7251 .rt_runtime = runtime,
7252 };
7253
8277434e
PT
7254 rcu_read_lock();
7255 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7256 rcu_read_unlock();
7257
7258 return ret;
521f1a24
DG
7259}
7260
ab84d31e 7261static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7262 u64 rt_period, u64 rt_runtime)
6f505b16 7263{
ac086bc2 7264 int i, err = 0;
9f0c1e56 7265
9f0c1e56 7266 mutex_lock(&rt_constraints_mutex);
521f1a24 7267 read_lock(&tasklist_lock);
9a7e0b18
PZ
7268 err = __rt_schedulable(tg, rt_period, rt_runtime);
7269 if (err)
9f0c1e56 7270 goto unlock;
ac086bc2 7271
0986b11b 7272 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7273 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7274 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7275
7276 for_each_possible_cpu(i) {
7277 struct rt_rq *rt_rq = tg->rt_rq[i];
7278
0986b11b 7279 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7280 rt_rq->rt_runtime = rt_runtime;
0986b11b 7281 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7282 }
0986b11b 7283 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7284unlock:
521f1a24 7285 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7286 mutex_unlock(&rt_constraints_mutex);
7287
7288 return err;
6f505b16
PZ
7289}
7290
25cc7da7 7291static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7292{
7293 u64 rt_runtime, rt_period;
7294
7295 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7296 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7297 if (rt_runtime_us < 0)
7298 rt_runtime = RUNTIME_INF;
7299
ab84d31e 7300 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7301}
7302
25cc7da7 7303static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7304{
7305 u64 rt_runtime_us;
7306
d0b27fa7 7307 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7308 return -1;
7309
d0b27fa7 7310 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7311 do_div(rt_runtime_us, NSEC_PER_USEC);
7312 return rt_runtime_us;
7313}
d0b27fa7 7314
25cc7da7 7315static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7316{
7317 u64 rt_runtime, rt_period;
7318
7319 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7320 rt_runtime = tg->rt_bandwidth.rt_runtime;
7321
619b0488
R
7322 if (rt_period == 0)
7323 return -EINVAL;
7324
ab84d31e 7325 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7326}
7327
25cc7da7 7328static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7329{
7330 u64 rt_period_us;
7331
7332 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7333 do_div(rt_period_us, NSEC_PER_USEC);
7334 return rt_period_us;
7335}
332ac17e 7336#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7337
332ac17e 7338#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7339static int sched_rt_global_constraints(void)
7340{
7341 int ret = 0;
7342
7343 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7344 read_lock(&tasklist_lock);
4653f803 7345 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7346 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7347 mutex_unlock(&rt_constraints_mutex);
7348
7349 return ret;
7350}
54e99124 7351
25cc7da7 7352static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7353{
7354 /* Don't accept realtime tasks when there is no way for them to run */
7355 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7356 return 0;
7357
7358 return 1;
7359}
7360
6d6bc0ad 7361#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7362static int sched_rt_global_constraints(void)
7363{
ac086bc2 7364 unsigned long flags;
332ac17e 7365 int i, ret = 0;
ec5d4989 7366
0986b11b 7367 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7368 for_each_possible_cpu(i) {
7369 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7370
0986b11b 7371 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7372 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7373 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7374 }
0986b11b 7375 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7376
332ac17e 7377 return ret;
d0b27fa7 7378}
6d6bc0ad 7379#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7380
332ac17e
DF
7381static int sched_dl_global_constraints(void)
7382{
1724813d
PZ
7383 u64 runtime = global_rt_runtime();
7384 u64 period = global_rt_period();
332ac17e 7385 u64 new_bw = to_ratio(period, runtime);
1724813d 7386 int cpu, ret = 0;
332ac17e
DF
7387
7388 /*
7389 * Here we want to check the bandwidth not being set to some
7390 * value smaller than the currently allocated bandwidth in
7391 * any of the root_domains.
7392 *
7393 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7394 * cycling on root_domains... Discussion on different/better
7395 * solutions is welcome!
7396 */
1724813d
PZ
7397 for_each_possible_cpu(cpu) {
7398 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7399
7400 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7401 if (new_bw < dl_b->total_bw)
7402 ret = -EBUSY;
332ac17e 7403 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7404
7405 if (ret)
7406 break;
332ac17e
DF
7407 }
7408
1724813d 7409 return ret;
332ac17e
DF
7410}
7411
1724813d 7412static void sched_dl_do_global(void)
ce0dbbbb 7413{
1724813d
PZ
7414 u64 new_bw = -1;
7415 int cpu;
ce0dbbbb 7416
1724813d
PZ
7417 def_dl_bandwidth.dl_period = global_rt_period();
7418 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7419
7420 if (global_rt_runtime() != RUNTIME_INF)
7421 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7422
7423 /*
7424 * FIXME: As above...
7425 */
7426 for_each_possible_cpu(cpu) {
7427 struct dl_bw *dl_b = dl_bw_of(cpu);
7428
7429 raw_spin_lock(&dl_b->lock);
7430 dl_b->bw = new_bw;
7431 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7432 }
1724813d
PZ
7433}
7434
7435static int sched_rt_global_validate(void)
7436{
7437 if (sysctl_sched_rt_period <= 0)
7438 return -EINVAL;
7439
7440 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7441 return -EINVAL;
7442
7443 return 0;
7444}
7445
7446static void sched_rt_do_global(void)
7447{
7448 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7449 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7450}
7451
d0b27fa7 7452int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7453 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7454 loff_t *ppos)
7455{
d0b27fa7
PZ
7456 int old_period, old_runtime;
7457 static DEFINE_MUTEX(mutex);
1724813d 7458 int ret;
d0b27fa7
PZ
7459
7460 mutex_lock(&mutex);
7461 old_period = sysctl_sched_rt_period;
7462 old_runtime = sysctl_sched_rt_runtime;
7463
8d65af78 7464 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7465
7466 if (!ret && write) {
1724813d
PZ
7467 ret = sched_rt_global_validate();
7468 if (ret)
7469 goto undo;
7470
d0b27fa7 7471 ret = sched_rt_global_constraints();
1724813d
PZ
7472 if (ret)
7473 goto undo;
7474
7475 ret = sched_dl_global_constraints();
7476 if (ret)
7477 goto undo;
7478
7479 sched_rt_do_global();
7480 sched_dl_do_global();
7481 }
7482 if (0) {
7483undo:
7484 sysctl_sched_rt_period = old_period;
7485 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7486 }
7487 mutex_unlock(&mutex);
7488
7489 return ret;
7490}
68318b8e 7491
1724813d 7492int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7493 void __user *buffer, size_t *lenp,
7494 loff_t *ppos)
7495{
7496 int ret;
332ac17e 7497 static DEFINE_MUTEX(mutex);
332ac17e
DF
7498
7499 mutex_lock(&mutex);
332ac17e 7500 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7501 /* make sure that internally we keep jiffies */
7502 /* also, writing zero resets timeslice to default */
332ac17e 7503 if (!ret && write) {
1724813d
PZ
7504 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7505 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7506 }
7507 mutex_unlock(&mutex);
332ac17e
DF
7508 return ret;
7509}
7510
052f1dc7 7511#ifdef CONFIG_CGROUP_SCHED
68318b8e 7512
a7c6d554 7513static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7514{
a7c6d554 7515 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7516}
7517
eb95419b
TH
7518static struct cgroup_subsys_state *
7519cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7520{
eb95419b
TH
7521 struct task_group *parent = css_tg(parent_css);
7522 struct task_group *tg;
68318b8e 7523
eb95419b 7524 if (!parent) {
68318b8e 7525 /* This is early initialization for the top cgroup */
07e06b01 7526 return &root_task_group.css;
68318b8e
SV
7527 }
7528
ec7dc8ac 7529 tg = sched_create_group(parent);
68318b8e
SV
7530 if (IS_ERR(tg))
7531 return ERR_PTR(-ENOMEM);
7532
68318b8e
SV
7533 return &tg->css;
7534}
7535
eb95419b 7536static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7537{
eb95419b
TH
7538 struct task_group *tg = css_tg(css);
7539 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7540
63876986
TH
7541 if (parent)
7542 sched_online_group(tg, parent);
ace783b9
LZ
7543 return 0;
7544}
7545
eb95419b 7546static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7547{
eb95419b 7548 struct task_group *tg = css_tg(css);
68318b8e
SV
7549
7550 sched_destroy_group(tg);
7551}
7552
eb95419b 7553static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7554{
eb95419b 7555 struct task_group *tg = css_tg(css);
ace783b9
LZ
7556
7557 sched_offline_group(tg);
7558}
7559
eb95419b 7560static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7561 struct cgroup_taskset *tset)
68318b8e 7562{
bb9d97b6
TH
7563 struct task_struct *task;
7564
d99c8727 7565 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7566#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7567 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7568 return -EINVAL;
b68aa230 7569#else
bb9d97b6
TH
7570 /* We don't support RT-tasks being in separate groups */
7571 if (task->sched_class != &fair_sched_class)
7572 return -EINVAL;
b68aa230 7573#endif
bb9d97b6 7574 }
be367d09
BB
7575 return 0;
7576}
68318b8e 7577
eb95419b 7578static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7579 struct cgroup_taskset *tset)
68318b8e 7580{
bb9d97b6
TH
7581 struct task_struct *task;
7582
d99c8727 7583 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7584 sched_move_task(task);
68318b8e
SV
7585}
7586
eb95419b
TH
7587static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7588 struct cgroup_subsys_state *old_css,
7589 struct task_struct *task)
068c5cc5
PZ
7590{
7591 /*
7592 * cgroup_exit() is called in the copy_process() failure path.
7593 * Ignore this case since the task hasn't ran yet, this avoids
7594 * trying to poke a half freed task state from generic code.
7595 */
7596 if (!(task->flags & PF_EXITING))
7597 return;
7598
7599 sched_move_task(task);
7600}
7601
052f1dc7 7602#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7603static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7604 struct cftype *cftype, u64 shareval)
68318b8e 7605{
182446d0 7606 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7607}
7608
182446d0
TH
7609static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7610 struct cftype *cft)
68318b8e 7611{
182446d0 7612 struct task_group *tg = css_tg(css);
68318b8e 7613
c8b28116 7614 return (u64) scale_load_down(tg->shares);
68318b8e 7615}
ab84d31e
PT
7616
7617#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7618static DEFINE_MUTEX(cfs_constraints_mutex);
7619
ab84d31e
PT
7620const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7621const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7622
a790de99
PT
7623static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7624
ab84d31e
PT
7625static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7626{
56f570e5 7627 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7628 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7629
7630 if (tg == &root_task_group)
7631 return -EINVAL;
7632
7633 /*
7634 * Ensure we have at some amount of bandwidth every period. This is
7635 * to prevent reaching a state of large arrears when throttled via
7636 * entity_tick() resulting in prolonged exit starvation.
7637 */
7638 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7639 return -EINVAL;
7640
7641 /*
7642 * Likewise, bound things on the otherside by preventing insane quota
7643 * periods. This also allows us to normalize in computing quota
7644 * feasibility.
7645 */
7646 if (period > max_cfs_quota_period)
7647 return -EINVAL;
7648
a790de99
PT
7649 mutex_lock(&cfs_constraints_mutex);
7650 ret = __cfs_schedulable(tg, period, quota);
7651 if (ret)
7652 goto out_unlock;
7653
58088ad0 7654 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7655 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7656 /*
7657 * If we need to toggle cfs_bandwidth_used, off->on must occur
7658 * before making related changes, and on->off must occur afterwards
7659 */
7660 if (runtime_enabled && !runtime_was_enabled)
7661 cfs_bandwidth_usage_inc();
ab84d31e
PT
7662 raw_spin_lock_irq(&cfs_b->lock);
7663 cfs_b->period = ns_to_ktime(period);
7664 cfs_b->quota = quota;
58088ad0 7665
a9cf55b2 7666 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7667 /* restart the period timer (if active) to handle new period expiry */
7668 if (runtime_enabled && cfs_b->timer_active) {
7669 /* force a reprogram */
7670 cfs_b->timer_active = 0;
7671 __start_cfs_bandwidth(cfs_b);
7672 }
ab84d31e
PT
7673 raw_spin_unlock_irq(&cfs_b->lock);
7674
7675 for_each_possible_cpu(i) {
7676 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7677 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7678
7679 raw_spin_lock_irq(&rq->lock);
58088ad0 7680 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7681 cfs_rq->runtime_remaining = 0;
671fd9da 7682
029632fb 7683 if (cfs_rq->throttled)
671fd9da 7684 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7685 raw_spin_unlock_irq(&rq->lock);
7686 }
1ee14e6c
BS
7687 if (runtime_was_enabled && !runtime_enabled)
7688 cfs_bandwidth_usage_dec();
a790de99
PT
7689out_unlock:
7690 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7691
a790de99 7692 return ret;
ab84d31e
PT
7693}
7694
7695int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7696{
7697 u64 quota, period;
7698
029632fb 7699 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7700 if (cfs_quota_us < 0)
7701 quota = RUNTIME_INF;
7702 else
7703 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7704
7705 return tg_set_cfs_bandwidth(tg, period, quota);
7706}
7707
7708long tg_get_cfs_quota(struct task_group *tg)
7709{
7710 u64 quota_us;
7711
029632fb 7712 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7713 return -1;
7714
029632fb 7715 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7716 do_div(quota_us, NSEC_PER_USEC);
7717
7718 return quota_us;
7719}
7720
7721int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7722{
7723 u64 quota, period;
7724
7725 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7726 quota = tg->cfs_bandwidth.quota;
ab84d31e 7727
ab84d31e
PT
7728 return tg_set_cfs_bandwidth(tg, period, quota);
7729}
7730
7731long tg_get_cfs_period(struct task_group *tg)
7732{
7733 u64 cfs_period_us;
7734
029632fb 7735 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7736 do_div(cfs_period_us, NSEC_PER_USEC);
7737
7738 return cfs_period_us;
7739}
7740
182446d0
TH
7741static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7742 struct cftype *cft)
ab84d31e 7743{
182446d0 7744 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7745}
7746
182446d0
TH
7747static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7748 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7749{
182446d0 7750 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7751}
7752
182446d0
TH
7753static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7754 struct cftype *cft)
ab84d31e 7755{
182446d0 7756 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7757}
7758
182446d0
TH
7759static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7760 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7761{
182446d0 7762 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7763}
7764
a790de99
PT
7765struct cfs_schedulable_data {
7766 struct task_group *tg;
7767 u64 period, quota;
7768};
7769
7770/*
7771 * normalize group quota/period to be quota/max_period
7772 * note: units are usecs
7773 */
7774static u64 normalize_cfs_quota(struct task_group *tg,
7775 struct cfs_schedulable_data *d)
7776{
7777 u64 quota, period;
7778
7779 if (tg == d->tg) {
7780 period = d->period;
7781 quota = d->quota;
7782 } else {
7783 period = tg_get_cfs_period(tg);
7784 quota = tg_get_cfs_quota(tg);
7785 }
7786
7787 /* note: these should typically be equivalent */
7788 if (quota == RUNTIME_INF || quota == -1)
7789 return RUNTIME_INF;
7790
7791 return to_ratio(period, quota);
7792}
7793
7794static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7795{
7796 struct cfs_schedulable_data *d = data;
029632fb 7797 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7798 s64 quota = 0, parent_quota = -1;
7799
7800 if (!tg->parent) {
7801 quota = RUNTIME_INF;
7802 } else {
029632fb 7803 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7804
7805 quota = normalize_cfs_quota(tg, d);
7806 parent_quota = parent_b->hierarchal_quota;
7807
7808 /*
7809 * ensure max(child_quota) <= parent_quota, inherit when no
7810 * limit is set
7811 */
7812 if (quota == RUNTIME_INF)
7813 quota = parent_quota;
7814 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7815 return -EINVAL;
7816 }
7817 cfs_b->hierarchal_quota = quota;
7818
7819 return 0;
7820}
7821
7822static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7823{
8277434e 7824 int ret;
a790de99
PT
7825 struct cfs_schedulable_data data = {
7826 .tg = tg,
7827 .period = period,
7828 .quota = quota,
7829 };
7830
7831 if (quota != RUNTIME_INF) {
7832 do_div(data.period, NSEC_PER_USEC);
7833 do_div(data.quota, NSEC_PER_USEC);
7834 }
7835
8277434e
PT
7836 rcu_read_lock();
7837 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7838 rcu_read_unlock();
7839
7840 return ret;
a790de99 7841}
e8da1b18 7842
182446d0 7843static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7844 struct cgroup_map_cb *cb)
7845{
182446d0 7846 struct task_group *tg = css_tg(css);
029632fb 7847 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7848
7849 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7850 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7851 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7852
7853 return 0;
7854}
ab84d31e 7855#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7856#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7857
052f1dc7 7858#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7859static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7860 struct cftype *cft, s64 val)
6f505b16 7861{
182446d0 7862 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7863}
7864
182446d0
TH
7865static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7866 struct cftype *cft)
6f505b16 7867{
182446d0 7868 return sched_group_rt_runtime(css_tg(css));
6f505b16 7869}
d0b27fa7 7870
182446d0
TH
7871static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7872 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7873{
182446d0 7874 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7875}
7876
182446d0
TH
7877static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7878 struct cftype *cft)
d0b27fa7 7879{
182446d0 7880 return sched_group_rt_period(css_tg(css));
d0b27fa7 7881}
6d6bc0ad 7882#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7883
fe5c7cc2 7884static struct cftype cpu_files[] = {
052f1dc7 7885#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7886 {
7887 .name = "shares",
f4c753b7
PM
7888 .read_u64 = cpu_shares_read_u64,
7889 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7890 },
052f1dc7 7891#endif
ab84d31e
PT
7892#ifdef CONFIG_CFS_BANDWIDTH
7893 {
7894 .name = "cfs_quota_us",
7895 .read_s64 = cpu_cfs_quota_read_s64,
7896 .write_s64 = cpu_cfs_quota_write_s64,
7897 },
7898 {
7899 .name = "cfs_period_us",
7900 .read_u64 = cpu_cfs_period_read_u64,
7901 .write_u64 = cpu_cfs_period_write_u64,
7902 },
e8da1b18
NR
7903 {
7904 .name = "stat",
7905 .read_map = cpu_stats_show,
7906 },
ab84d31e 7907#endif
052f1dc7 7908#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7909 {
9f0c1e56 7910 .name = "rt_runtime_us",
06ecb27c
PM
7911 .read_s64 = cpu_rt_runtime_read,
7912 .write_s64 = cpu_rt_runtime_write,
6f505b16 7913 },
d0b27fa7
PZ
7914 {
7915 .name = "rt_period_us",
f4c753b7
PM
7916 .read_u64 = cpu_rt_period_read_uint,
7917 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7918 },
052f1dc7 7919#endif
4baf6e33 7920 { } /* terminate */
68318b8e
SV
7921};
7922
68318b8e 7923struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7924 .name = "cpu",
92fb9748
TH
7925 .css_alloc = cpu_cgroup_css_alloc,
7926 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7927 .css_online = cpu_cgroup_css_online,
7928 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7929 .can_attach = cpu_cgroup_can_attach,
7930 .attach = cpu_cgroup_attach,
068c5cc5 7931 .exit = cpu_cgroup_exit,
38605cae 7932 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7933 .base_cftypes = cpu_files,
68318b8e
SV
7934 .early_init = 1,
7935};
7936
052f1dc7 7937#endif /* CONFIG_CGROUP_SCHED */
d842de87 7938
b637a328
PM
7939void dump_cpu_task(int cpu)
7940{
7941 pr_info("Task dump for CPU %d:\n", cpu);
7942 sched_show_task(cpu_curr(cpu));
7943}
This page took 2.421961 seconds and 5 git commands to generate.