sched/core: Drop unlikely behind BUG_ON()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
20f9cd2a 820 if (idle_policy(p->policy)) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
1de64443 830static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
1de64443
PZ
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
371fd7e7 835 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
836}
837
1de64443 838static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 839{
a64692a3 840 update_rq_clock(rq);
1de64443
PZ
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
371fd7e7 843 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
844}
845
029632fb 846void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
847{
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
371fd7e7 851 enqueue_task(rq, p, flags);
1e3c88bd
PZ
852}
853
029632fb 854void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
371fd7e7 859 dequeue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
fe44d621 862static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 863{
095c0aa8
GC
864/*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870#endif
871#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
095c0aa8
GC
894#endif
895#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 896 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
095c0aa8 903 rq->prev_steal_time_rq += steal;
095c0aa8
GC
904 delta -= steal;
905 }
906#endif
907
fe44d621
PZ
908 rq->clock_task += delta;
909
095c0aa8 910#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
912 sched_rt_avg_update(rq, irq_delta + steal);
913#endif
aa483808
VP
914}
915
34f971f6
PZ
916void sched_set_stop_task(int cpu, struct task_struct *stop)
917{
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944}
945
14531189 946/*
dd41f596 947 * __normal_prio - return the priority that is based on the static prio
14531189 948 */
14531189
IM
949static inline int __normal_prio(struct task_struct *p)
950{
dd41f596 951 return p->static_prio;
14531189
IM
952}
953
b29739f9
IM
954/*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
36c8b586 961static inline int normal_prio(struct task_struct *p)
b29739f9
IM
962{
963 int prio;
964
aab03e05
DF
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
b29739f9
IM
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972}
973
974/*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
36c8b586 981static int effective_prio(struct task_struct *p)
b29739f9
IM
982{
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992}
993
1da177e4
LT
994/**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
e69f6186
YB
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 999 */
36c8b586 1000inline int task_curr(const struct task_struct *p)
1da177e4
LT
1001{
1002 return cpu_curr(task_cpu(p)) == p;
1003}
1004
67dfa1b7 1005/*
4c9a4bc8
PZ
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
67dfa1b7 1011 */
cb469845
SR
1012static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
da7a735e 1014 int oldprio)
cb469845
SR
1015{
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
da7a735e 1018 prev_class->switched_from(rq, p);
4c9a4bc8 1019
da7a735e 1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
da0c1e65 1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1047 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
5cc389bc
PZ
1051/*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065/*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
5e16bbc2 1070static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1071{
5cc389bc
PZ
1072 lockdep_assert_held(&rq->lock);
1073
1074 dequeue_task(rq, p, 0);
1075 p->on_rq = TASK_ON_RQ_MIGRATING;
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 p->on_rq = TASK_ON_RQ_QUEUED;
1084 enqueue_task(rq, p, 0);
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088}
1089
1090struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093};
1094
1095/*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
5cc389bc 1103 */
5e16bbc2 1104static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1105{
5cc389bc 1106 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1107 return rq;
5cc389bc
PZ
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1111 return rq;
5cc389bc 1112
5e16bbc2
PZ
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
5cc389bc
PZ
1116}
1117
1118/*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123static int migration_cpu_stop(void *data)
1124{
1125 struct migration_arg *arg = data;
5e16bbc2
PZ
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
5cc389bc
PZ
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
5e16bbc2
PZ
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
5cc389bc
PZ
1153 local_irq_enable();
1154 return 0;
1155}
1156
c5b28038
PZ
1157/*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1162{
5cc389bc
PZ
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165}
1166
c5b28038
PZ
1167void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168{
6c37067e
PZ
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
c5b28038 1172 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1de64443 1183 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
c5b28038 1188 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1de64443 1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1194}
1195
5cc389bc
PZ
1196/*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
25834c73
PZ
1205static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1207{
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
25834c73
PZ
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
5cc389bc
PZ
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
cbce1a68
PZ
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1252 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1253 lockdep_pin_lock(&rq->lock);
1254 }
5cc389bc
PZ
1255out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259}
25834c73
PZ
1260
1261int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262{
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264}
5cc389bc
PZ
1265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
dd41f596 1267void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1268{
e2912009
PZ
1269#ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
077614ee 1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1275 !p->on_rq);
0122ec5b
PZ
1276
1277#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1278 /*
1279 * The caller should hold either p->pi_lock or rq->lock, when changing
1280 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1281 *
1282 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1283 * see task_group().
6c6c54e1
PZ
1284 *
1285 * Furthermore, all task_rq users should acquire both locks, see
1286 * task_rq_lock().
1287 */
0122ec5b
PZ
1288 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1289 lockdep_is_held(&task_rq(p)->lock)));
1290#endif
e2912009
PZ
1291#endif
1292
de1d7286 1293 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1294
0c69774e 1295 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1296 if (p->sched_class->migrate_task_rq)
1297 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1298 p->se.nr_migrations++;
ff303e66 1299 perf_event_task_migrate(p);
0c69774e 1300 }
dd41f596
IM
1301
1302 __set_task_cpu(p, new_cpu);
c65cc870
IM
1303}
1304
ac66f547
PZ
1305static void __migrate_swap_task(struct task_struct *p, int cpu)
1306{
da0c1e65 1307 if (task_on_rq_queued(p)) {
ac66f547
PZ
1308 struct rq *src_rq, *dst_rq;
1309
1310 src_rq = task_rq(p);
1311 dst_rq = cpu_rq(cpu);
1312
1313 deactivate_task(src_rq, p, 0);
1314 set_task_cpu(p, cpu);
1315 activate_task(dst_rq, p, 0);
1316 check_preempt_curr(dst_rq, p, 0);
1317 } else {
1318 /*
1319 * Task isn't running anymore; make it appear like we migrated
1320 * it before it went to sleep. This means on wakeup we make the
1321 * previous cpu our targer instead of where it really is.
1322 */
1323 p->wake_cpu = cpu;
1324 }
1325}
1326
1327struct migration_swap_arg {
1328 struct task_struct *src_task, *dst_task;
1329 int src_cpu, dst_cpu;
1330};
1331
1332static int migrate_swap_stop(void *data)
1333{
1334 struct migration_swap_arg *arg = data;
1335 struct rq *src_rq, *dst_rq;
1336 int ret = -EAGAIN;
1337
1338 src_rq = cpu_rq(arg->src_cpu);
1339 dst_rq = cpu_rq(arg->dst_cpu);
1340
74602315
PZ
1341 double_raw_lock(&arg->src_task->pi_lock,
1342 &arg->dst_task->pi_lock);
ac66f547
PZ
1343 double_rq_lock(src_rq, dst_rq);
1344 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1345 goto unlock;
1346
1347 if (task_cpu(arg->src_task) != arg->src_cpu)
1348 goto unlock;
1349
1350 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1351 goto unlock;
1352
1353 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1354 goto unlock;
1355
1356 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1357 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1358
1359 ret = 0;
1360
1361unlock:
1362 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1363 raw_spin_unlock(&arg->dst_task->pi_lock);
1364 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1365
1366 return ret;
1367}
1368
1369/*
1370 * Cross migrate two tasks
1371 */
1372int migrate_swap(struct task_struct *cur, struct task_struct *p)
1373{
1374 struct migration_swap_arg arg;
1375 int ret = -EINVAL;
1376
ac66f547
PZ
1377 arg = (struct migration_swap_arg){
1378 .src_task = cur,
1379 .src_cpu = task_cpu(cur),
1380 .dst_task = p,
1381 .dst_cpu = task_cpu(p),
1382 };
1383
1384 if (arg.src_cpu == arg.dst_cpu)
1385 goto out;
1386
6acce3ef
PZ
1387 /*
1388 * These three tests are all lockless; this is OK since all of them
1389 * will be re-checked with proper locks held further down the line.
1390 */
ac66f547
PZ
1391 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1392 goto out;
1393
1394 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1395 goto out;
1396
1397 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1398 goto out;
1399
286549dc 1400 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1401 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1402
1403out:
ac66f547
PZ
1404 return ret;
1405}
1406
1da177e4
LT
1407/*
1408 * wait_task_inactive - wait for a thread to unschedule.
1409 *
85ba2d86
RM
1410 * If @match_state is nonzero, it's the @p->state value just checked and
1411 * not expected to change. If it changes, i.e. @p might have woken up,
1412 * then return zero. When we succeed in waiting for @p to be off its CPU,
1413 * we return a positive number (its total switch count). If a second call
1414 * a short while later returns the same number, the caller can be sure that
1415 * @p has remained unscheduled the whole time.
1416 *
1da177e4
LT
1417 * The caller must ensure that the task *will* unschedule sometime soon,
1418 * else this function might spin for a *long* time. This function can't
1419 * be called with interrupts off, or it may introduce deadlock with
1420 * smp_call_function() if an IPI is sent by the same process we are
1421 * waiting to become inactive.
1422 */
85ba2d86 1423unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1424{
1425 unsigned long flags;
da0c1e65 1426 int running, queued;
85ba2d86 1427 unsigned long ncsw;
70b97a7f 1428 struct rq *rq;
1da177e4 1429
3a5c359a
AK
1430 for (;;) {
1431 /*
1432 * We do the initial early heuristics without holding
1433 * any task-queue locks at all. We'll only try to get
1434 * the runqueue lock when things look like they will
1435 * work out!
1436 */
1437 rq = task_rq(p);
fa490cfd 1438
3a5c359a
AK
1439 /*
1440 * If the task is actively running on another CPU
1441 * still, just relax and busy-wait without holding
1442 * any locks.
1443 *
1444 * NOTE! Since we don't hold any locks, it's not
1445 * even sure that "rq" stays as the right runqueue!
1446 * But we don't care, since "task_running()" will
1447 * return false if the runqueue has changed and p
1448 * is actually now running somewhere else!
1449 */
85ba2d86
RM
1450 while (task_running(rq, p)) {
1451 if (match_state && unlikely(p->state != match_state))
1452 return 0;
3a5c359a 1453 cpu_relax();
85ba2d86 1454 }
fa490cfd 1455
3a5c359a
AK
1456 /*
1457 * Ok, time to look more closely! We need the rq
1458 * lock now, to be *sure*. If we're wrong, we'll
1459 * just go back and repeat.
1460 */
1461 rq = task_rq_lock(p, &flags);
27a9da65 1462 trace_sched_wait_task(p);
3a5c359a 1463 running = task_running(rq, p);
da0c1e65 1464 queued = task_on_rq_queued(p);
85ba2d86 1465 ncsw = 0;
f31e11d8 1466 if (!match_state || p->state == match_state)
93dcf55f 1467 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1468 task_rq_unlock(rq, p, &flags);
fa490cfd 1469
85ba2d86
RM
1470 /*
1471 * If it changed from the expected state, bail out now.
1472 */
1473 if (unlikely(!ncsw))
1474 break;
1475
3a5c359a
AK
1476 /*
1477 * Was it really running after all now that we
1478 * checked with the proper locks actually held?
1479 *
1480 * Oops. Go back and try again..
1481 */
1482 if (unlikely(running)) {
1483 cpu_relax();
1484 continue;
1485 }
fa490cfd 1486
3a5c359a
AK
1487 /*
1488 * It's not enough that it's not actively running,
1489 * it must be off the runqueue _entirely_, and not
1490 * preempted!
1491 *
80dd99b3 1492 * So if it was still runnable (but just not actively
3a5c359a
AK
1493 * running right now), it's preempted, and we should
1494 * yield - it could be a while.
1495 */
da0c1e65 1496 if (unlikely(queued)) {
8eb90c30
TG
1497 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1498
1499 set_current_state(TASK_UNINTERRUPTIBLE);
1500 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1501 continue;
1502 }
fa490cfd 1503
3a5c359a
AK
1504 /*
1505 * Ahh, all good. It wasn't running, and it wasn't
1506 * runnable, which means that it will never become
1507 * running in the future either. We're all done!
1508 */
1509 break;
1510 }
85ba2d86
RM
1511
1512 return ncsw;
1da177e4
LT
1513}
1514
1515/***
1516 * kick_process - kick a running thread to enter/exit the kernel
1517 * @p: the to-be-kicked thread
1518 *
1519 * Cause a process which is running on another CPU to enter
1520 * kernel-mode, without any delay. (to get signals handled.)
1521 *
25985edc 1522 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1523 * because all it wants to ensure is that the remote task enters
1524 * the kernel. If the IPI races and the task has been migrated
1525 * to another CPU then no harm is done and the purpose has been
1526 * achieved as well.
1527 */
36c8b586 1528void kick_process(struct task_struct *p)
1da177e4
LT
1529{
1530 int cpu;
1531
1532 preempt_disable();
1533 cpu = task_cpu(p);
1534 if ((cpu != smp_processor_id()) && task_curr(p))
1535 smp_send_reschedule(cpu);
1536 preempt_enable();
1537}
b43e3521 1538EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1539
30da688e 1540/*
013fdb80 1541 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1542 */
5da9a0fb
PZ
1543static int select_fallback_rq(int cpu, struct task_struct *p)
1544{
aa00d89c
TC
1545 int nid = cpu_to_node(cpu);
1546 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1547 enum { cpuset, possible, fail } state = cpuset;
1548 int dest_cpu;
5da9a0fb 1549
aa00d89c
TC
1550 /*
1551 * If the node that the cpu is on has been offlined, cpu_to_node()
1552 * will return -1. There is no cpu on the node, and we should
1553 * select the cpu on the other node.
1554 */
1555 if (nid != -1) {
1556 nodemask = cpumask_of_node(nid);
1557
1558 /* Look for allowed, online CPU in same node. */
1559 for_each_cpu(dest_cpu, nodemask) {
1560 if (!cpu_online(dest_cpu))
1561 continue;
1562 if (!cpu_active(dest_cpu))
1563 continue;
1564 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1565 return dest_cpu;
1566 }
2baab4e9 1567 }
5da9a0fb 1568
2baab4e9
PZ
1569 for (;;) {
1570 /* Any allowed, online CPU? */
e3831edd 1571 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1572 if (!cpu_online(dest_cpu))
1573 continue;
1574 if (!cpu_active(dest_cpu))
1575 continue;
1576 goto out;
1577 }
5da9a0fb 1578
2baab4e9
PZ
1579 switch (state) {
1580 case cpuset:
1581 /* No more Mr. Nice Guy. */
1582 cpuset_cpus_allowed_fallback(p);
1583 state = possible;
1584 break;
1585
1586 case possible:
1587 do_set_cpus_allowed(p, cpu_possible_mask);
1588 state = fail;
1589 break;
1590
1591 case fail:
1592 BUG();
1593 break;
1594 }
1595 }
1596
1597out:
1598 if (state != cpuset) {
1599 /*
1600 * Don't tell them about moving exiting tasks or
1601 * kernel threads (both mm NULL), since they never
1602 * leave kernel.
1603 */
1604 if (p->mm && printk_ratelimit()) {
aac74dc4 1605 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1606 task_pid_nr(p), p->comm, cpu);
1607 }
5da9a0fb
PZ
1608 }
1609
1610 return dest_cpu;
1611}
1612
e2912009 1613/*
013fdb80 1614 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1615 */
970b13ba 1616static inline
ac66f547 1617int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1618{
cbce1a68
PZ
1619 lockdep_assert_held(&p->pi_lock);
1620
6c1d9410
WL
1621 if (p->nr_cpus_allowed > 1)
1622 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1623
1624 /*
1625 * In order not to call set_task_cpu() on a blocking task we need
1626 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1627 * cpu.
1628 *
1629 * Since this is common to all placement strategies, this lives here.
1630 *
1631 * [ this allows ->select_task() to simply return task_cpu(p) and
1632 * not worry about this generic constraint ]
1633 */
fa17b507 1634 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1635 !cpu_online(cpu)))
5da9a0fb 1636 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1637
1638 return cpu;
970b13ba 1639}
09a40af5
MG
1640
1641static void update_avg(u64 *avg, u64 sample)
1642{
1643 s64 diff = sample - *avg;
1644 *avg += diff >> 3;
1645}
25834c73
PZ
1646
1647#else
1648
1649static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1650 const struct cpumask *new_mask, bool check)
1651{
1652 return set_cpus_allowed_ptr(p, new_mask);
1653}
1654
5cc389bc 1655#endif /* CONFIG_SMP */
970b13ba 1656
d7c01d27 1657static void
b84cb5df 1658ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1659{
d7c01d27 1660#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1661 struct rq *rq = this_rq();
1662
d7c01d27
PZ
1663#ifdef CONFIG_SMP
1664 int this_cpu = smp_processor_id();
1665
1666 if (cpu == this_cpu) {
1667 schedstat_inc(rq, ttwu_local);
1668 schedstat_inc(p, se.statistics.nr_wakeups_local);
1669 } else {
1670 struct sched_domain *sd;
1671
1672 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1673 rcu_read_lock();
d7c01d27
PZ
1674 for_each_domain(this_cpu, sd) {
1675 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1676 schedstat_inc(sd, ttwu_wake_remote);
1677 break;
1678 }
1679 }
057f3fad 1680 rcu_read_unlock();
d7c01d27 1681 }
f339b9dc
PZ
1682
1683 if (wake_flags & WF_MIGRATED)
1684 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1685
d7c01d27
PZ
1686#endif /* CONFIG_SMP */
1687
1688 schedstat_inc(rq, ttwu_count);
9ed3811a 1689 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1690
1691 if (wake_flags & WF_SYNC)
9ed3811a 1692 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1693
d7c01d27
PZ
1694#endif /* CONFIG_SCHEDSTATS */
1695}
1696
1de64443 1697static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1698{
9ed3811a 1699 activate_task(rq, p, en_flags);
da0c1e65 1700 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1701
1702 /* if a worker is waking up, notify workqueue */
1703 if (p->flags & PF_WQ_WORKER)
1704 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1705}
1706
23f41eeb
PZ
1707/*
1708 * Mark the task runnable and perform wakeup-preemption.
1709 */
89363381 1710static void
23f41eeb 1711ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1712{
9ed3811a 1713 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1714 p->state = TASK_RUNNING;
fbd705a0
PZ
1715 trace_sched_wakeup(p);
1716
9ed3811a 1717#ifdef CONFIG_SMP
4c9a4bc8
PZ
1718 if (p->sched_class->task_woken) {
1719 /*
cbce1a68
PZ
1720 * Our task @p is fully woken up and running; so its safe to
1721 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1722 */
cbce1a68 1723 lockdep_unpin_lock(&rq->lock);
9ed3811a 1724 p->sched_class->task_woken(rq, p);
cbce1a68 1725 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1726 }
9ed3811a 1727
e69c6341 1728 if (rq->idle_stamp) {
78becc27 1729 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1730 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1731
abfafa54
JL
1732 update_avg(&rq->avg_idle, delta);
1733
1734 if (rq->avg_idle > max)
9ed3811a 1735 rq->avg_idle = max;
abfafa54 1736
9ed3811a
TH
1737 rq->idle_stamp = 0;
1738 }
1739#endif
1740}
1741
c05fbafb
PZ
1742static void
1743ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1744{
cbce1a68
PZ
1745 lockdep_assert_held(&rq->lock);
1746
c05fbafb
PZ
1747#ifdef CONFIG_SMP
1748 if (p->sched_contributes_to_load)
1749 rq->nr_uninterruptible--;
1750#endif
1751
1752 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1753 ttwu_do_wakeup(rq, p, wake_flags);
1754}
1755
1756/*
1757 * Called in case the task @p isn't fully descheduled from its runqueue,
1758 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1759 * since all we need to do is flip p->state to TASK_RUNNING, since
1760 * the task is still ->on_rq.
1761 */
1762static int ttwu_remote(struct task_struct *p, int wake_flags)
1763{
1764 struct rq *rq;
1765 int ret = 0;
1766
1767 rq = __task_rq_lock(p);
da0c1e65 1768 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1769 /* check_preempt_curr() may use rq clock */
1770 update_rq_clock(rq);
c05fbafb
PZ
1771 ttwu_do_wakeup(rq, p, wake_flags);
1772 ret = 1;
1773 }
1774 __task_rq_unlock(rq);
1775
1776 return ret;
1777}
1778
317f3941 1779#ifdef CONFIG_SMP
e3baac47 1780void sched_ttwu_pending(void)
317f3941
PZ
1781{
1782 struct rq *rq = this_rq();
fa14ff4a
PZ
1783 struct llist_node *llist = llist_del_all(&rq->wake_list);
1784 struct task_struct *p;
e3baac47 1785 unsigned long flags;
317f3941 1786
e3baac47
PZ
1787 if (!llist)
1788 return;
1789
1790 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1791 lockdep_pin_lock(&rq->lock);
317f3941 1792
fa14ff4a
PZ
1793 while (llist) {
1794 p = llist_entry(llist, struct task_struct, wake_entry);
1795 llist = llist_next(llist);
317f3941
PZ
1796 ttwu_do_activate(rq, p, 0);
1797 }
1798
cbce1a68 1799 lockdep_unpin_lock(&rq->lock);
e3baac47 1800 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1801}
1802
1803void scheduler_ipi(void)
1804{
f27dde8d
PZ
1805 /*
1806 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1807 * TIF_NEED_RESCHED remotely (for the first time) will also send
1808 * this IPI.
1809 */
8cb75e0c 1810 preempt_fold_need_resched();
f27dde8d 1811
fd2ac4f4 1812 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1813 return;
1814
1815 /*
1816 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1817 * traditionally all their work was done from the interrupt return
1818 * path. Now that we actually do some work, we need to make sure
1819 * we do call them.
1820 *
1821 * Some archs already do call them, luckily irq_enter/exit nest
1822 * properly.
1823 *
1824 * Arguably we should visit all archs and update all handlers,
1825 * however a fair share of IPIs are still resched only so this would
1826 * somewhat pessimize the simple resched case.
1827 */
1828 irq_enter();
fa14ff4a 1829 sched_ttwu_pending();
ca38062e
SS
1830
1831 /*
1832 * Check if someone kicked us for doing the nohz idle load balance.
1833 */
873b4c65 1834 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1835 this_rq()->idle_balance = 1;
ca38062e 1836 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1837 }
c5d753a5 1838 irq_exit();
317f3941
PZ
1839}
1840
1841static void ttwu_queue_remote(struct task_struct *p, int cpu)
1842{
e3baac47
PZ
1843 struct rq *rq = cpu_rq(cpu);
1844
1845 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1846 if (!set_nr_if_polling(rq->idle))
1847 smp_send_reschedule(cpu);
1848 else
1849 trace_sched_wake_idle_without_ipi(cpu);
1850 }
317f3941 1851}
d6aa8f85 1852
f6be8af1
CL
1853void wake_up_if_idle(int cpu)
1854{
1855 struct rq *rq = cpu_rq(cpu);
1856 unsigned long flags;
1857
fd7de1e8
AL
1858 rcu_read_lock();
1859
1860 if (!is_idle_task(rcu_dereference(rq->curr)))
1861 goto out;
f6be8af1
CL
1862
1863 if (set_nr_if_polling(rq->idle)) {
1864 trace_sched_wake_idle_without_ipi(cpu);
1865 } else {
1866 raw_spin_lock_irqsave(&rq->lock, flags);
1867 if (is_idle_task(rq->curr))
1868 smp_send_reschedule(cpu);
1869 /* Else cpu is not in idle, do nothing here */
1870 raw_spin_unlock_irqrestore(&rq->lock, flags);
1871 }
fd7de1e8
AL
1872
1873out:
1874 rcu_read_unlock();
f6be8af1
CL
1875}
1876
39be3501 1877bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1878{
1879 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1880}
d6aa8f85 1881#endif /* CONFIG_SMP */
317f3941 1882
c05fbafb
PZ
1883static void ttwu_queue(struct task_struct *p, int cpu)
1884{
1885 struct rq *rq = cpu_rq(cpu);
1886
17d9f311 1887#if defined(CONFIG_SMP)
39be3501 1888 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1889 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1890 ttwu_queue_remote(p, cpu);
1891 return;
1892 }
1893#endif
1894
c05fbafb 1895 raw_spin_lock(&rq->lock);
cbce1a68 1896 lockdep_pin_lock(&rq->lock);
c05fbafb 1897 ttwu_do_activate(rq, p, 0);
cbce1a68 1898 lockdep_unpin_lock(&rq->lock);
c05fbafb 1899 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1900}
1901
1902/**
1da177e4 1903 * try_to_wake_up - wake up a thread
9ed3811a 1904 * @p: the thread to be awakened
1da177e4 1905 * @state: the mask of task states that can be woken
9ed3811a 1906 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1907 *
1908 * Put it on the run-queue if it's not already there. The "current"
1909 * thread is always on the run-queue (except when the actual
1910 * re-schedule is in progress), and as such you're allowed to do
1911 * the simpler "current->state = TASK_RUNNING" to mark yourself
1912 * runnable without the overhead of this.
1913 *
e69f6186 1914 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1915 * or @state didn't match @p's state.
1da177e4 1916 */
e4a52bcb
PZ
1917static int
1918try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1919{
1da177e4 1920 unsigned long flags;
c05fbafb 1921 int cpu, success = 0;
2398f2c6 1922
e0acd0a6
ON
1923 /*
1924 * If we are going to wake up a thread waiting for CONDITION we
1925 * need to ensure that CONDITION=1 done by the caller can not be
1926 * reordered with p->state check below. This pairs with mb() in
1927 * set_current_state() the waiting thread does.
1928 */
1929 smp_mb__before_spinlock();
013fdb80 1930 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1931 if (!(p->state & state))
1da177e4
LT
1932 goto out;
1933
fbd705a0
PZ
1934 trace_sched_waking(p);
1935
c05fbafb 1936 success = 1; /* we're going to change ->state */
1da177e4 1937 cpu = task_cpu(p);
1da177e4 1938
c05fbafb
PZ
1939 if (p->on_rq && ttwu_remote(p, wake_flags))
1940 goto stat;
1da177e4 1941
1da177e4 1942#ifdef CONFIG_SMP
e9c84311 1943 /*
c05fbafb
PZ
1944 * If the owning (remote) cpu is still in the middle of schedule() with
1945 * this task as prev, wait until its done referencing the task.
e9c84311 1946 */
f3e94786 1947 while (p->on_cpu)
e4a52bcb 1948 cpu_relax();
0970d299 1949 /*
e4a52bcb 1950 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1951 */
e4a52bcb 1952 smp_rmb();
1da177e4 1953
a8e4f2ea 1954 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1955 p->state = TASK_WAKING;
e7693a36 1956
e4a52bcb 1957 if (p->sched_class->task_waking)
74f8e4b2 1958 p->sched_class->task_waking(p);
efbbd05a 1959
ac66f547 1960 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1961 if (task_cpu(p) != cpu) {
1962 wake_flags |= WF_MIGRATED;
e4a52bcb 1963 set_task_cpu(p, cpu);
f339b9dc 1964 }
1da177e4 1965#endif /* CONFIG_SMP */
1da177e4 1966
c05fbafb
PZ
1967 ttwu_queue(p, cpu);
1968stat:
b84cb5df 1969 ttwu_stat(p, cpu, wake_flags);
1da177e4 1970out:
013fdb80 1971 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1972
1973 return success;
1974}
1975
21aa9af0
TH
1976/**
1977 * try_to_wake_up_local - try to wake up a local task with rq lock held
1978 * @p: the thread to be awakened
1979 *
2acca55e 1980 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1981 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1982 * the current task.
21aa9af0
TH
1983 */
1984static void try_to_wake_up_local(struct task_struct *p)
1985{
1986 struct rq *rq = task_rq(p);
21aa9af0 1987
383efcd0
TH
1988 if (WARN_ON_ONCE(rq != this_rq()) ||
1989 WARN_ON_ONCE(p == current))
1990 return;
1991
21aa9af0
TH
1992 lockdep_assert_held(&rq->lock);
1993
2acca55e 1994 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1995 /*
1996 * This is OK, because current is on_cpu, which avoids it being
1997 * picked for load-balance and preemption/IRQs are still
1998 * disabled avoiding further scheduler activity on it and we've
1999 * not yet picked a replacement task.
2000 */
2001 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2002 raw_spin_unlock(&rq->lock);
2003 raw_spin_lock(&p->pi_lock);
2004 raw_spin_lock(&rq->lock);
cbce1a68 2005 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2006 }
2007
21aa9af0 2008 if (!(p->state & TASK_NORMAL))
2acca55e 2009 goto out;
21aa9af0 2010
fbd705a0
PZ
2011 trace_sched_waking(p);
2012
da0c1e65 2013 if (!task_on_rq_queued(p))
d7c01d27
PZ
2014 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2015
23f41eeb 2016 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2017 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2018out:
2019 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2020}
2021
50fa610a
DH
2022/**
2023 * wake_up_process - Wake up a specific process
2024 * @p: The process to be woken up.
2025 *
2026 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2027 * processes.
2028 *
2029 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2030 *
2031 * It may be assumed that this function implies a write memory barrier before
2032 * changing the task state if and only if any tasks are woken up.
2033 */
7ad5b3a5 2034int wake_up_process(struct task_struct *p)
1da177e4 2035{
9067ac85
ON
2036 WARN_ON(task_is_stopped_or_traced(p));
2037 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2038}
1da177e4
LT
2039EXPORT_SYMBOL(wake_up_process);
2040
7ad5b3a5 2041int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2042{
2043 return try_to_wake_up(p, state, 0);
2044}
2045
a5e7be3b
JL
2046/*
2047 * This function clears the sched_dl_entity static params.
2048 */
2049void __dl_clear_params(struct task_struct *p)
2050{
2051 struct sched_dl_entity *dl_se = &p->dl;
2052
2053 dl_se->dl_runtime = 0;
2054 dl_se->dl_deadline = 0;
2055 dl_se->dl_period = 0;
2056 dl_se->flags = 0;
2057 dl_se->dl_bw = 0;
40767b0d
PZ
2058
2059 dl_se->dl_throttled = 0;
2060 dl_se->dl_new = 1;
2061 dl_se->dl_yielded = 0;
a5e7be3b
JL
2062}
2063
1da177e4
LT
2064/*
2065 * Perform scheduler related setup for a newly forked process p.
2066 * p is forked by current.
dd41f596
IM
2067 *
2068 * __sched_fork() is basic setup used by init_idle() too:
2069 */
5e1576ed 2070static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2071{
fd2f4419
PZ
2072 p->on_rq = 0;
2073
2074 p->se.on_rq = 0;
dd41f596
IM
2075 p->se.exec_start = 0;
2076 p->se.sum_exec_runtime = 0;
f6cf891c 2077 p->se.prev_sum_exec_runtime = 0;
6c594c21 2078 p->se.nr_migrations = 0;
da7a735e 2079 p->se.vruntime = 0;
fd2f4419 2080 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2081
2082#ifdef CONFIG_SCHEDSTATS
41acab88 2083 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2084#endif
476d139c 2085
aab03e05 2086 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2087 init_dl_task_timer(&p->dl);
a5e7be3b 2088 __dl_clear_params(p);
aab03e05 2089
fa717060 2090 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2091
e107be36
AK
2092#ifdef CONFIG_PREEMPT_NOTIFIERS
2093 INIT_HLIST_HEAD(&p->preempt_notifiers);
2094#endif
cbee9f88
PZ
2095
2096#ifdef CONFIG_NUMA_BALANCING
2097 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2098 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2099 p->mm->numa_scan_seq = 0;
2100 }
2101
5e1576ed
RR
2102 if (clone_flags & CLONE_VM)
2103 p->numa_preferred_nid = current->numa_preferred_nid;
2104 else
2105 p->numa_preferred_nid = -1;
2106
cbee9f88
PZ
2107 p->node_stamp = 0ULL;
2108 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2109 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2110 p->numa_work.next = &p->numa_work;
44dba3d5 2111 p->numa_faults = NULL;
7e2703e6
RR
2112 p->last_task_numa_placement = 0;
2113 p->last_sum_exec_runtime = 0;
8c8a743c 2114
8c8a743c 2115 p->numa_group = NULL;
cbee9f88 2116#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2117}
2118
2a595721
SD
2119DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2120
1a687c2e 2121#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2122
1a687c2e
MG
2123void set_numabalancing_state(bool enabled)
2124{
2a595721
SD
2125 if (enabled)
2126 static_branch_enable(&sched_numa_balancing);
2127 else
2128 static_branch_disable(&sched_numa_balancing);
c3b9bc5b 2129}
54a43d54
AK
2130
2131#ifdef CONFIG_PROC_SYSCTL
2132int sysctl_numa_balancing(struct ctl_table *table, int write,
2133 void __user *buffer, size_t *lenp, loff_t *ppos)
2134{
2135 struct ctl_table t;
2136 int err;
2a595721 2137 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2138
2139 if (write && !capable(CAP_SYS_ADMIN))
2140 return -EPERM;
2141
2142 t = *table;
2143 t.data = &state;
2144 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2145 if (err < 0)
2146 return err;
2147 if (write)
2148 set_numabalancing_state(state);
2149 return err;
2150}
2151#endif
2152#endif
dd41f596
IM
2153
2154/*
2155 * fork()/clone()-time setup:
2156 */
aab03e05 2157int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2158{
0122ec5b 2159 unsigned long flags;
dd41f596
IM
2160 int cpu = get_cpu();
2161
5e1576ed 2162 __sched_fork(clone_flags, p);
06b83b5f 2163 /*
0017d735 2164 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2165 * nobody will actually run it, and a signal or other external
2166 * event cannot wake it up and insert it on the runqueue either.
2167 */
0017d735 2168 p->state = TASK_RUNNING;
dd41f596 2169
c350a04e
MG
2170 /*
2171 * Make sure we do not leak PI boosting priority to the child.
2172 */
2173 p->prio = current->normal_prio;
2174
b9dc29e7
MG
2175 /*
2176 * Revert to default priority/policy on fork if requested.
2177 */
2178 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2179 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2180 p->policy = SCHED_NORMAL;
6c697bdf 2181 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2182 p->rt_priority = 0;
2183 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2184 p->static_prio = NICE_TO_PRIO(0);
2185
2186 p->prio = p->normal_prio = __normal_prio(p);
2187 set_load_weight(p);
6c697bdf 2188
b9dc29e7
MG
2189 /*
2190 * We don't need the reset flag anymore after the fork. It has
2191 * fulfilled its duty:
2192 */
2193 p->sched_reset_on_fork = 0;
2194 }
ca94c442 2195
aab03e05
DF
2196 if (dl_prio(p->prio)) {
2197 put_cpu();
2198 return -EAGAIN;
2199 } else if (rt_prio(p->prio)) {
2200 p->sched_class = &rt_sched_class;
2201 } else {
2ddbf952 2202 p->sched_class = &fair_sched_class;
aab03e05 2203 }
b29739f9 2204
cd29fe6f
PZ
2205 if (p->sched_class->task_fork)
2206 p->sched_class->task_fork(p);
2207
86951599
PZ
2208 /*
2209 * The child is not yet in the pid-hash so no cgroup attach races,
2210 * and the cgroup is pinned to this child due to cgroup_fork()
2211 * is ran before sched_fork().
2212 *
2213 * Silence PROVE_RCU.
2214 */
0122ec5b 2215 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2216 set_task_cpu(p, cpu);
0122ec5b 2217 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2218
f6db8347 2219#ifdef CONFIG_SCHED_INFO
dd41f596 2220 if (likely(sched_info_on()))
52f17b6c 2221 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2222#endif
3ca7a440
PZ
2223#if defined(CONFIG_SMP)
2224 p->on_cpu = 0;
4866cde0 2225#endif
01028747 2226 init_task_preempt_count(p);
806c09a7 2227#ifdef CONFIG_SMP
917b627d 2228 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2229 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2230#endif
917b627d 2231
476d139c 2232 put_cpu();
aab03e05 2233 return 0;
1da177e4
LT
2234}
2235
332ac17e
DF
2236unsigned long to_ratio(u64 period, u64 runtime)
2237{
2238 if (runtime == RUNTIME_INF)
2239 return 1ULL << 20;
2240
2241 /*
2242 * Doing this here saves a lot of checks in all
2243 * the calling paths, and returning zero seems
2244 * safe for them anyway.
2245 */
2246 if (period == 0)
2247 return 0;
2248
2249 return div64_u64(runtime << 20, period);
2250}
2251
2252#ifdef CONFIG_SMP
2253inline struct dl_bw *dl_bw_of(int i)
2254{
f78f5b90
PM
2255 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2256 "sched RCU must be held");
332ac17e
DF
2257 return &cpu_rq(i)->rd->dl_bw;
2258}
2259
de212f18 2260static inline int dl_bw_cpus(int i)
332ac17e 2261{
de212f18
PZ
2262 struct root_domain *rd = cpu_rq(i)->rd;
2263 int cpus = 0;
2264
f78f5b90
PM
2265 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2266 "sched RCU must be held");
de212f18
PZ
2267 for_each_cpu_and(i, rd->span, cpu_active_mask)
2268 cpus++;
2269
2270 return cpus;
332ac17e
DF
2271}
2272#else
2273inline struct dl_bw *dl_bw_of(int i)
2274{
2275 return &cpu_rq(i)->dl.dl_bw;
2276}
2277
de212f18 2278static inline int dl_bw_cpus(int i)
332ac17e
DF
2279{
2280 return 1;
2281}
2282#endif
2283
332ac17e
DF
2284/*
2285 * We must be sure that accepting a new task (or allowing changing the
2286 * parameters of an existing one) is consistent with the bandwidth
2287 * constraints. If yes, this function also accordingly updates the currently
2288 * allocated bandwidth to reflect the new situation.
2289 *
2290 * This function is called while holding p's rq->lock.
40767b0d
PZ
2291 *
2292 * XXX we should delay bw change until the task's 0-lag point, see
2293 * __setparam_dl().
332ac17e
DF
2294 */
2295static int dl_overflow(struct task_struct *p, int policy,
2296 const struct sched_attr *attr)
2297{
2298
2299 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2300 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2301 u64 runtime = attr->sched_runtime;
2302 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2303 int cpus, err = -1;
332ac17e
DF
2304
2305 if (new_bw == p->dl.dl_bw)
2306 return 0;
2307
2308 /*
2309 * Either if a task, enters, leave, or stays -deadline but changes
2310 * its parameters, we may need to update accordingly the total
2311 * allocated bandwidth of the container.
2312 */
2313 raw_spin_lock(&dl_b->lock);
de212f18 2314 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2315 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2316 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2317 __dl_add(dl_b, new_bw);
2318 err = 0;
2319 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2320 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2321 __dl_clear(dl_b, p->dl.dl_bw);
2322 __dl_add(dl_b, new_bw);
2323 err = 0;
2324 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2325 __dl_clear(dl_b, p->dl.dl_bw);
2326 err = 0;
2327 }
2328 raw_spin_unlock(&dl_b->lock);
2329
2330 return err;
2331}
2332
2333extern void init_dl_bw(struct dl_bw *dl_b);
2334
1da177e4
LT
2335/*
2336 * wake_up_new_task - wake up a newly created task for the first time.
2337 *
2338 * This function will do some initial scheduler statistics housekeeping
2339 * that must be done for every newly created context, then puts the task
2340 * on the runqueue and wakes it.
2341 */
3e51e3ed 2342void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2343{
2344 unsigned long flags;
dd41f596 2345 struct rq *rq;
fabf318e 2346
ab2515c4 2347 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2348 /* Initialize new task's runnable average */
2349 init_entity_runnable_average(&p->se);
fabf318e
PZ
2350#ifdef CONFIG_SMP
2351 /*
2352 * Fork balancing, do it here and not earlier because:
2353 * - cpus_allowed can change in the fork path
2354 * - any previously selected cpu might disappear through hotplug
fabf318e 2355 */
ac66f547 2356 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2357#endif
2358
ab2515c4 2359 rq = __task_rq_lock(p);
cd29fe6f 2360 activate_task(rq, p, 0);
da0c1e65 2361 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2362 trace_sched_wakeup_new(p);
a7558e01 2363 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2364#ifdef CONFIG_SMP
efbbd05a
PZ
2365 if (p->sched_class->task_woken)
2366 p->sched_class->task_woken(rq, p);
9a897c5a 2367#endif
0122ec5b 2368 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2369}
2370
e107be36
AK
2371#ifdef CONFIG_PREEMPT_NOTIFIERS
2372
1cde2930
PZ
2373static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2374
2ecd9d29
PZ
2375void preempt_notifier_inc(void)
2376{
2377 static_key_slow_inc(&preempt_notifier_key);
2378}
2379EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2380
2381void preempt_notifier_dec(void)
2382{
2383 static_key_slow_dec(&preempt_notifier_key);
2384}
2385EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2386
e107be36 2387/**
80dd99b3 2388 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2389 * @notifier: notifier struct to register
e107be36
AK
2390 */
2391void preempt_notifier_register(struct preempt_notifier *notifier)
2392{
2ecd9d29
PZ
2393 if (!static_key_false(&preempt_notifier_key))
2394 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2395
e107be36
AK
2396 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2397}
2398EXPORT_SYMBOL_GPL(preempt_notifier_register);
2399
2400/**
2401 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2402 * @notifier: notifier struct to unregister
e107be36 2403 *
d84525a8 2404 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2405 */
2406void preempt_notifier_unregister(struct preempt_notifier *notifier)
2407{
2408 hlist_del(&notifier->link);
2409}
2410EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2411
1cde2930 2412static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2413{
2414 struct preempt_notifier *notifier;
e107be36 2415
b67bfe0d 2416 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2417 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2418}
2419
1cde2930
PZ
2420static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2421{
2422 if (static_key_false(&preempt_notifier_key))
2423 __fire_sched_in_preempt_notifiers(curr);
2424}
2425
e107be36 2426static void
1cde2930
PZ
2427__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2428 struct task_struct *next)
e107be36
AK
2429{
2430 struct preempt_notifier *notifier;
e107be36 2431
b67bfe0d 2432 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2433 notifier->ops->sched_out(notifier, next);
2434}
2435
1cde2930
PZ
2436static __always_inline void
2437fire_sched_out_preempt_notifiers(struct task_struct *curr,
2438 struct task_struct *next)
2439{
2440 if (static_key_false(&preempt_notifier_key))
2441 __fire_sched_out_preempt_notifiers(curr, next);
2442}
2443
6d6bc0ad 2444#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2445
1cde2930 2446static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2447{
2448}
2449
1cde2930 2450static inline void
e107be36
AK
2451fire_sched_out_preempt_notifiers(struct task_struct *curr,
2452 struct task_struct *next)
2453{
2454}
2455
6d6bc0ad 2456#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2457
4866cde0
NP
2458/**
2459 * prepare_task_switch - prepare to switch tasks
2460 * @rq: the runqueue preparing to switch
421cee29 2461 * @prev: the current task that is being switched out
4866cde0
NP
2462 * @next: the task we are going to switch to.
2463 *
2464 * This is called with the rq lock held and interrupts off. It must
2465 * be paired with a subsequent finish_task_switch after the context
2466 * switch.
2467 *
2468 * prepare_task_switch sets up locking and calls architecture specific
2469 * hooks.
2470 */
e107be36
AK
2471static inline void
2472prepare_task_switch(struct rq *rq, struct task_struct *prev,
2473 struct task_struct *next)
4866cde0 2474{
43148951 2475 sched_info_switch(rq, prev, next);
fe4b04fa 2476 perf_event_task_sched_out(prev, next);
e107be36 2477 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2478 prepare_lock_switch(rq, next);
2479 prepare_arch_switch(next);
2480}
2481
1da177e4
LT
2482/**
2483 * finish_task_switch - clean up after a task-switch
2484 * @prev: the thread we just switched away from.
2485 *
4866cde0
NP
2486 * finish_task_switch must be called after the context switch, paired
2487 * with a prepare_task_switch call before the context switch.
2488 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2489 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2490 *
2491 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2492 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2493 * with the lock held can cause deadlocks; see schedule() for
2494 * details.)
dfa50b60
ON
2495 *
2496 * The context switch have flipped the stack from under us and restored the
2497 * local variables which were saved when this task called schedule() in the
2498 * past. prev == current is still correct but we need to recalculate this_rq
2499 * because prev may have moved to another CPU.
1da177e4 2500 */
dfa50b60 2501static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2502 __releases(rq->lock)
2503{
dfa50b60 2504 struct rq *rq = this_rq();
1da177e4 2505 struct mm_struct *mm = rq->prev_mm;
55a101f8 2506 long prev_state;
1da177e4 2507
609ca066
PZ
2508 /*
2509 * The previous task will have left us with a preempt_count of 2
2510 * because it left us after:
2511 *
2512 * schedule()
2513 * preempt_disable(); // 1
2514 * __schedule()
2515 * raw_spin_lock_irq(&rq->lock) // 2
2516 *
2517 * Also, see FORK_PREEMPT_COUNT.
2518 */
e2bf1c4b
PZ
2519 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2520 "corrupted preempt_count: %s/%d/0x%x\n",
2521 current->comm, current->pid, preempt_count()))
2522 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2523
1da177e4
LT
2524 rq->prev_mm = NULL;
2525
2526 /*
2527 * A task struct has one reference for the use as "current".
c394cc9f 2528 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2529 * schedule one last time. The schedule call will never return, and
2530 * the scheduled task must drop that reference.
95913d97
PZ
2531 *
2532 * We must observe prev->state before clearing prev->on_cpu (in
2533 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2534 * running on another CPU and we could rave with its RUNNING -> DEAD
2535 * transition, resulting in a double drop.
1da177e4 2536 */
55a101f8 2537 prev_state = prev->state;
bf9fae9f 2538 vtime_task_switch(prev);
a8d757ef 2539 perf_event_task_sched_in(prev, current);
4866cde0 2540 finish_lock_switch(rq, prev);
01f23e16 2541 finish_arch_post_lock_switch();
e8fa1362 2542
e107be36 2543 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2544 if (mm)
2545 mmdrop(mm);
c394cc9f 2546 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2547 if (prev->sched_class->task_dead)
2548 prev->sched_class->task_dead(prev);
2549
c6fd91f0 2550 /*
2551 * Remove function-return probe instances associated with this
2552 * task and put them back on the free list.
9761eea8 2553 */
c6fd91f0 2554 kprobe_flush_task(prev);
1da177e4 2555 put_task_struct(prev);
c6fd91f0 2556 }
99e5ada9 2557
de734f89 2558 tick_nohz_task_switch();
dfa50b60 2559 return rq;
1da177e4
LT
2560}
2561
3f029d3c
GH
2562#ifdef CONFIG_SMP
2563
3f029d3c 2564/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2565static void __balance_callback(struct rq *rq)
3f029d3c 2566{
e3fca9e7
PZ
2567 struct callback_head *head, *next;
2568 void (*func)(struct rq *rq);
2569 unsigned long flags;
3f029d3c 2570
e3fca9e7
PZ
2571 raw_spin_lock_irqsave(&rq->lock, flags);
2572 head = rq->balance_callback;
2573 rq->balance_callback = NULL;
2574 while (head) {
2575 func = (void (*)(struct rq *))head->func;
2576 next = head->next;
2577 head->next = NULL;
2578 head = next;
3f029d3c 2579
e3fca9e7 2580 func(rq);
3f029d3c 2581 }
e3fca9e7
PZ
2582 raw_spin_unlock_irqrestore(&rq->lock, flags);
2583}
2584
2585static inline void balance_callback(struct rq *rq)
2586{
2587 if (unlikely(rq->balance_callback))
2588 __balance_callback(rq);
3f029d3c
GH
2589}
2590
2591#else
da19ab51 2592
e3fca9e7 2593static inline void balance_callback(struct rq *rq)
3f029d3c 2594{
1da177e4
LT
2595}
2596
3f029d3c
GH
2597#endif
2598
1da177e4
LT
2599/**
2600 * schedule_tail - first thing a freshly forked thread must call.
2601 * @prev: the thread we just switched away from.
2602 */
722a9f92 2603asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2604 __releases(rq->lock)
2605{
1a43a14a 2606 struct rq *rq;
da19ab51 2607
609ca066
PZ
2608 /*
2609 * New tasks start with FORK_PREEMPT_COUNT, see there and
2610 * finish_task_switch() for details.
2611 *
2612 * finish_task_switch() will drop rq->lock() and lower preempt_count
2613 * and the preempt_enable() will end up enabling preemption (on
2614 * PREEMPT_COUNT kernels).
2615 */
2616
dfa50b60 2617 rq = finish_task_switch(prev);
e3fca9e7 2618 balance_callback(rq);
1a43a14a 2619 preempt_enable();
70b97a7f 2620
1da177e4 2621 if (current->set_child_tid)
b488893a 2622 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2623}
2624
2625/*
dfa50b60 2626 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2627 */
dfa50b60 2628static inline struct rq *
70b97a7f 2629context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2630 struct task_struct *next)
1da177e4 2631{
dd41f596 2632 struct mm_struct *mm, *oldmm;
1da177e4 2633
e107be36 2634 prepare_task_switch(rq, prev, next);
fe4b04fa 2635
dd41f596
IM
2636 mm = next->mm;
2637 oldmm = prev->active_mm;
9226d125
ZA
2638 /*
2639 * For paravirt, this is coupled with an exit in switch_to to
2640 * combine the page table reload and the switch backend into
2641 * one hypercall.
2642 */
224101ed 2643 arch_start_context_switch(prev);
9226d125 2644
31915ab4 2645 if (!mm) {
1da177e4
LT
2646 next->active_mm = oldmm;
2647 atomic_inc(&oldmm->mm_count);
2648 enter_lazy_tlb(oldmm, next);
2649 } else
2650 switch_mm(oldmm, mm, next);
2651
31915ab4 2652 if (!prev->mm) {
1da177e4 2653 prev->active_mm = NULL;
1da177e4
LT
2654 rq->prev_mm = oldmm;
2655 }
3a5f5e48
IM
2656 /*
2657 * Since the runqueue lock will be released by the next
2658 * task (which is an invalid locking op but in the case
2659 * of the scheduler it's an obvious special-case), so we
2660 * do an early lockdep release here:
2661 */
cbce1a68 2662 lockdep_unpin_lock(&rq->lock);
8a25d5de 2663 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2664
2665 /* Here we just switch the register state and the stack. */
2666 switch_to(prev, next, prev);
dd41f596 2667 barrier();
dfa50b60
ON
2668
2669 return finish_task_switch(prev);
1da177e4
LT
2670}
2671
2672/*
1c3e8264 2673 * nr_running and nr_context_switches:
1da177e4
LT
2674 *
2675 * externally visible scheduler statistics: current number of runnable
1c3e8264 2676 * threads, total number of context switches performed since bootup.
1da177e4
LT
2677 */
2678unsigned long nr_running(void)
2679{
2680 unsigned long i, sum = 0;
2681
2682 for_each_online_cpu(i)
2683 sum += cpu_rq(i)->nr_running;
2684
2685 return sum;
f711f609 2686}
1da177e4 2687
2ee507c4
TC
2688/*
2689 * Check if only the current task is running on the cpu.
00cc1633
DD
2690 *
2691 * Caution: this function does not check that the caller has disabled
2692 * preemption, thus the result might have a time-of-check-to-time-of-use
2693 * race. The caller is responsible to use it correctly, for example:
2694 *
2695 * - from a non-preemptable section (of course)
2696 *
2697 * - from a thread that is bound to a single CPU
2698 *
2699 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2700 */
2701bool single_task_running(void)
2702{
00cc1633 2703 return raw_rq()->nr_running == 1;
2ee507c4
TC
2704}
2705EXPORT_SYMBOL(single_task_running);
2706
1da177e4 2707unsigned long long nr_context_switches(void)
46cb4b7c 2708{
cc94abfc
SR
2709 int i;
2710 unsigned long long sum = 0;
46cb4b7c 2711
0a945022 2712 for_each_possible_cpu(i)
1da177e4 2713 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2714
1da177e4
LT
2715 return sum;
2716}
483b4ee6 2717
1da177e4
LT
2718unsigned long nr_iowait(void)
2719{
2720 unsigned long i, sum = 0;
483b4ee6 2721
0a945022 2722 for_each_possible_cpu(i)
1da177e4 2723 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2724
1da177e4
LT
2725 return sum;
2726}
483b4ee6 2727
8c215bd3 2728unsigned long nr_iowait_cpu(int cpu)
69d25870 2729{
8c215bd3 2730 struct rq *this = cpu_rq(cpu);
69d25870
AV
2731 return atomic_read(&this->nr_iowait);
2732}
46cb4b7c 2733
372ba8cb
MG
2734void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2735{
3289bdb4
PZ
2736 struct rq *rq = this_rq();
2737 *nr_waiters = atomic_read(&rq->nr_iowait);
2738 *load = rq->load.weight;
372ba8cb
MG
2739}
2740
dd41f596 2741#ifdef CONFIG_SMP
8a0be9ef 2742
46cb4b7c 2743/*
38022906
PZ
2744 * sched_exec - execve() is a valuable balancing opportunity, because at
2745 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2746 */
38022906 2747void sched_exec(void)
46cb4b7c 2748{
38022906 2749 struct task_struct *p = current;
1da177e4 2750 unsigned long flags;
0017d735 2751 int dest_cpu;
46cb4b7c 2752
8f42ced9 2753 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2754 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2755 if (dest_cpu == smp_processor_id())
2756 goto unlock;
38022906 2757
8f42ced9 2758 if (likely(cpu_active(dest_cpu))) {
969c7921 2759 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2760
8f42ced9
PZ
2761 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2762 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2763 return;
2764 }
0017d735 2765unlock:
8f42ced9 2766 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2767}
dd41f596 2768
1da177e4
LT
2769#endif
2770
1da177e4 2771DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2772DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2773
2774EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2775EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2776
c5f8d995
HS
2777/*
2778 * Return accounted runtime for the task.
2779 * In case the task is currently running, return the runtime plus current's
2780 * pending runtime that have not been accounted yet.
2781 */
2782unsigned long long task_sched_runtime(struct task_struct *p)
2783{
2784 unsigned long flags;
2785 struct rq *rq;
6e998916 2786 u64 ns;
c5f8d995 2787
911b2898
PZ
2788#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2789 /*
2790 * 64-bit doesn't need locks to atomically read a 64bit value.
2791 * So we have a optimization chance when the task's delta_exec is 0.
2792 * Reading ->on_cpu is racy, but this is ok.
2793 *
2794 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2795 * If we race with it entering cpu, unaccounted time is 0. This is
2796 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2797 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2798 * been accounted, so we're correct here as well.
911b2898 2799 */
da0c1e65 2800 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2801 return p->se.sum_exec_runtime;
2802#endif
2803
c5f8d995 2804 rq = task_rq_lock(p, &flags);
6e998916
SG
2805 /*
2806 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2807 * project cycles that may never be accounted to this
2808 * thread, breaking clock_gettime().
2809 */
2810 if (task_current(rq, p) && task_on_rq_queued(p)) {
2811 update_rq_clock(rq);
2812 p->sched_class->update_curr(rq);
2813 }
2814 ns = p->se.sum_exec_runtime;
0122ec5b 2815 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2816
2817 return ns;
2818}
48f24c4d 2819
7835b98b
CL
2820/*
2821 * This function gets called by the timer code, with HZ frequency.
2822 * We call it with interrupts disabled.
7835b98b
CL
2823 */
2824void scheduler_tick(void)
2825{
7835b98b
CL
2826 int cpu = smp_processor_id();
2827 struct rq *rq = cpu_rq(cpu);
dd41f596 2828 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2829
2830 sched_clock_tick();
dd41f596 2831
05fa785c 2832 raw_spin_lock(&rq->lock);
3e51f33f 2833 update_rq_clock(rq);
fa85ae24 2834 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2835 update_cpu_load_active(rq);
3289bdb4 2836 calc_global_load_tick(rq);
05fa785c 2837 raw_spin_unlock(&rq->lock);
7835b98b 2838
e9d2b064 2839 perf_event_task_tick();
e220d2dc 2840
e418e1c2 2841#ifdef CONFIG_SMP
6eb57e0d 2842 rq->idle_balance = idle_cpu(cpu);
7caff66f 2843 trigger_load_balance(rq);
e418e1c2 2844#endif
265f22a9 2845 rq_last_tick_reset(rq);
1da177e4
LT
2846}
2847
265f22a9
FW
2848#ifdef CONFIG_NO_HZ_FULL
2849/**
2850 * scheduler_tick_max_deferment
2851 *
2852 * Keep at least one tick per second when a single
2853 * active task is running because the scheduler doesn't
2854 * yet completely support full dynticks environment.
2855 *
2856 * This makes sure that uptime, CFS vruntime, load
2857 * balancing, etc... continue to move forward, even
2858 * with a very low granularity.
e69f6186
YB
2859 *
2860 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2861 */
2862u64 scheduler_tick_max_deferment(void)
2863{
2864 struct rq *rq = this_rq();
316c1608 2865 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2866
2867 next = rq->last_sched_tick + HZ;
2868
2869 if (time_before_eq(next, now))
2870 return 0;
2871
8fe8ff09 2872 return jiffies_to_nsecs(next - now);
1da177e4 2873}
265f22a9 2874#endif
1da177e4 2875
132380a0 2876notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2877{
2878 if (in_lock_functions(addr)) {
2879 addr = CALLER_ADDR2;
2880 if (in_lock_functions(addr))
2881 addr = CALLER_ADDR3;
2882 }
2883 return addr;
2884}
1da177e4 2885
7e49fcce
SR
2886#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2887 defined(CONFIG_PREEMPT_TRACER))
2888
edafe3a5 2889void preempt_count_add(int val)
1da177e4 2890{
6cd8a4bb 2891#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2892 /*
2893 * Underflow?
2894 */
9a11b49a
IM
2895 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2896 return;
6cd8a4bb 2897#endif
bdb43806 2898 __preempt_count_add(val);
6cd8a4bb 2899#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2900 /*
2901 * Spinlock count overflowing soon?
2902 */
33859f7f
MOS
2903 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2904 PREEMPT_MASK - 10);
6cd8a4bb 2905#endif
8f47b187
TG
2906 if (preempt_count() == val) {
2907 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2908#ifdef CONFIG_DEBUG_PREEMPT
2909 current->preempt_disable_ip = ip;
2910#endif
2911 trace_preempt_off(CALLER_ADDR0, ip);
2912 }
1da177e4 2913}
bdb43806 2914EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2915NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2916
edafe3a5 2917void preempt_count_sub(int val)
1da177e4 2918{
6cd8a4bb 2919#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2920 /*
2921 * Underflow?
2922 */
01e3eb82 2923 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2924 return;
1da177e4
LT
2925 /*
2926 * Is the spinlock portion underflowing?
2927 */
9a11b49a
IM
2928 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2929 !(preempt_count() & PREEMPT_MASK)))
2930 return;
6cd8a4bb 2931#endif
9a11b49a 2932
6cd8a4bb
SR
2933 if (preempt_count() == val)
2934 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2935 __preempt_count_sub(val);
1da177e4 2936}
bdb43806 2937EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2938NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2939
2940#endif
2941
2942/*
dd41f596 2943 * Print scheduling while atomic bug:
1da177e4 2944 */
dd41f596 2945static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2946{
664dfa65
DJ
2947 if (oops_in_progress)
2948 return;
2949
3df0fc5b
PZ
2950 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2951 prev->comm, prev->pid, preempt_count());
838225b4 2952
dd41f596 2953 debug_show_held_locks(prev);
e21f5b15 2954 print_modules();
dd41f596
IM
2955 if (irqs_disabled())
2956 print_irqtrace_events(prev);
8f47b187
TG
2957#ifdef CONFIG_DEBUG_PREEMPT
2958 if (in_atomic_preempt_off()) {
2959 pr_err("Preemption disabled at:");
2960 print_ip_sym(current->preempt_disable_ip);
2961 pr_cont("\n");
2962 }
2963#endif
6135fc1e 2964 dump_stack();
373d4d09 2965 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2966}
1da177e4 2967
dd41f596
IM
2968/*
2969 * Various schedule()-time debugging checks and statistics:
2970 */
2971static inline void schedule_debug(struct task_struct *prev)
2972{
0d9e2632 2973#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 2974 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 2975#endif
b99def8b 2976
1dc0fffc 2977 if (unlikely(in_atomic_preempt_off())) {
dd41f596 2978 __schedule_bug(prev);
1dc0fffc
PZ
2979 preempt_count_set(PREEMPT_DISABLED);
2980 }
b3fbab05 2981 rcu_sleep_check();
dd41f596 2982
1da177e4
LT
2983 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2984
2d72376b 2985 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2986}
2987
2988/*
2989 * Pick up the highest-prio task:
2990 */
2991static inline struct task_struct *
606dba2e 2992pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2993{
37e117c0 2994 const struct sched_class *class = &fair_sched_class;
dd41f596 2995 struct task_struct *p;
1da177e4
LT
2996
2997 /*
dd41f596
IM
2998 * Optimization: we know that if all tasks are in
2999 * the fair class we can call that function directly:
1da177e4 3000 */
37e117c0 3001 if (likely(prev->sched_class == class &&
38033c37 3002 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3003 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3004 if (unlikely(p == RETRY_TASK))
3005 goto again;
3006
3007 /* assumes fair_sched_class->next == idle_sched_class */
3008 if (unlikely(!p))
3009 p = idle_sched_class.pick_next_task(rq, prev);
3010
3011 return p;
1da177e4
LT
3012 }
3013
37e117c0 3014again:
34f971f6 3015 for_each_class(class) {
606dba2e 3016 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3017 if (p) {
3018 if (unlikely(p == RETRY_TASK))
3019 goto again;
dd41f596 3020 return p;
37e117c0 3021 }
dd41f596 3022 }
34f971f6
PZ
3023
3024 BUG(); /* the idle class will always have a runnable task */
dd41f596 3025}
1da177e4 3026
dd41f596 3027/*
c259e01a 3028 * __schedule() is the main scheduler function.
edde96ea
PE
3029 *
3030 * The main means of driving the scheduler and thus entering this function are:
3031 *
3032 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3033 *
3034 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3035 * paths. For example, see arch/x86/entry_64.S.
3036 *
3037 * To drive preemption between tasks, the scheduler sets the flag in timer
3038 * interrupt handler scheduler_tick().
3039 *
3040 * 3. Wakeups don't really cause entry into schedule(). They add a
3041 * task to the run-queue and that's it.
3042 *
3043 * Now, if the new task added to the run-queue preempts the current
3044 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3045 * called on the nearest possible occasion:
3046 *
3047 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3048 *
3049 * - in syscall or exception context, at the next outmost
3050 * preempt_enable(). (this might be as soon as the wake_up()'s
3051 * spin_unlock()!)
3052 *
3053 * - in IRQ context, return from interrupt-handler to
3054 * preemptible context
3055 *
3056 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3057 * then at the next:
3058 *
3059 * - cond_resched() call
3060 * - explicit schedule() call
3061 * - return from syscall or exception to user-space
3062 * - return from interrupt-handler to user-space
bfd9b2b5 3063 *
b30f0e3f 3064 * WARNING: must be called with preemption disabled!
dd41f596 3065 */
499d7955 3066static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3067{
3068 struct task_struct *prev, *next;
67ca7bde 3069 unsigned long *switch_count;
dd41f596 3070 struct rq *rq;
31656519 3071 int cpu;
dd41f596 3072
dd41f596
IM
3073 cpu = smp_processor_id();
3074 rq = cpu_rq(cpu);
38200cf2 3075 rcu_note_context_switch();
dd41f596 3076 prev = rq->curr;
dd41f596 3077
b99def8b
PZ
3078 /*
3079 * do_exit() calls schedule() with preemption disabled as an exception;
3080 * however we must fix that up, otherwise the next task will see an
3081 * inconsistent (higher) preempt count.
3082 *
3083 * It also avoids the below schedule_debug() test from complaining
3084 * about this.
3085 */
3086 if (unlikely(prev->state == TASK_DEAD))
3087 preempt_enable_no_resched_notrace();
3088
dd41f596 3089 schedule_debug(prev);
1da177e4 3090
31656519 3091 if (sched_feat(HRTICK))
f333fdc9 3092 hrtick_clear(rq);
8f4d37ec 3093
e0acd0a6
ON
3094 /*
3095 * Make sure that signal_pending_state()->signal_pending() below
3096 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3097 * done by the caller to avoid the race with signal_wake_up().
3098 */
3099 smp_mb__before_spinlock();
05fa785c 3100 raw_spin_lock_irq(&rq->lock);
cbce1a68 3101 lockdep_pin_lock(&rq->lock);
1da177e4 3102
9edfbfed
PZ
3103 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3104
246d86b5 3105 switch_count = &prev->nivcsw;
fc13aeba 3106 if (!preempt && prev->state) {
21aa9af0 3107 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3108 prev->state = TASK_RUNNING;
21aa9af0 3109 } else {
2acca55e
PZ
3110 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3111 prev->on_rq = 0;
3112
21aa9af0 3113 /*
2acca55e
PZ
3114 * If a worker went to sleep, notify and ask workqueue
3115 * whether it wants to wake up a task to maintain
3116 * concurrency.
21aa9af0
TH
3117 */
3118 if (prev->flags & PF_WQ_WORKER) {
3119 struct task_struct *to_wakeup;
3120
3121 to_wakeup = wq_worker_sleeping(prev, cpu);
3122 if (to_wakeup)
3123 try_to_wake_up_local(to_wakeup);
3124 }
21aa9af0 3125 }
dd41f596 3126 switch_count = &prev->nvcsw;
1da177e4
LT
3127 }
3128
9edfbfed 3129 if (task_on_rq_queued(prev))
606dba2e
PZ
3130 update_rq_clock(rq);
3131
3132 next = pick_next_task(rq, prev);
f26f9aff 3133 clear_tsk_need_resched(prev);
f27dde8d 3134 clear_preempt_need_resched();
9edfbfed 3135 rq->clock_skip_update = 0;
1da177e4 3136
1da177e4 3137 if (likely(prev != next)) {
1da177e4
LT
3138 rq->nr_switches++;
3139 rq->curr = next;
3140 ++*switch_count;
3141
c73464b1 3142 trace_sched_switch(preempt, prev, next);
dfa50b60
ON
3143 rq = context_switch(rq, prev, next); /* unlocks the rq */
3144 cpu = cpu_of(rq);
cbce1a68
PZ
3145 } else {
3146 lockdep_unpin_lock(&rq->lock);
05fa785c 3147 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3148 }
1da177e4 3149
e3fca9e7 3150 balance_callback(rq);
1da177e4 3151}
c259e01a 3152
9c40cef2
TG
3153static inline void sched_submit_work(struct task_struct *tsk)
3154{
3c7d5184 3155 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3156 return;
3157 /*
3158 * If we are going to sleep and we have plugged IO queued,
3159 * make sure to submit it to avoid deadlocks.
3160 */
3161 if (blk_needs_flush_plug(tsk))
3162 blk_schedule_flush_plug(tsk);
3163}
3164
722a9f92 3165asmlinkage __visible void __sched schedule(void)
c259e01a 3166{
9c40cef2
TG
3167 struct task_struct *tsk = current;
3168
3169 sched_submit_work(tsk);
bfd9b2b5 3170 do {
b30f0e3f 3171 preempt_disable();
fc13aeba 3172 __schedule(false);
b30f0e3f 3173 sched_preempt_enable_no_resched();
bfd9b2b5 3174 } while (need_resched());
c259e01a 3175}
1da177e4
LT
3176EXPORT_SYMBOL(schedule);
3177
91d1aa43 3178#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3179asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3180{
3181 /*
3182 * If we come here after a random call to set_need_resched(),
3183 * or we have been woken up remotely but the IPI has not yet arrived,
3184 * we haven't yet exited the RCU idle mode. Do it here manually until
3185 * we find a better solution.
7cc78f8f
AL
3186 *
3187 * NB: There are buggy callers of this function. Ideally we
c467ea76 3188 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3189 * too frequently to make sense yet.
20ab65e3 3190 */
7cc78f8f 3191 enum ctx_state prev_state = exception_enter();
20ab65e3 3192 schedule();
7cc78f8f 3193 exception_exit(prev_state);
20ab65e3
FW
3194}
3195#endif
3196
c5491ea7
TG
3197/**
3198 * schedule_preempt_disabled - called with preemption disabled
3199 *
3200 * Returns with preemption disabled. Note: preempt_count must be 1
3201 */
3202void __sched schedule_preempt_disabled(void)
3203{
ba74c144 3204 sched_preempt_enable_no_resched();
c5491ea7
TG
3205 schedule();
3206 preempt_disable();
3207}
3208
06b1f808 3209static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3210{
3211 do {
499d7955 3212 preempt_disable_notrace();
fc13aeba 3213 __schedule(true);
499d7955 3214 preempt_enable_no_resched_notrace();
a18b5d01
FW
3215
3216 /*
3217 * Check again in case we missed a preemption opportunity
3218 * between schedule and now.
3219 */
a18b5d01
FW
3220 } while (need_resched());
3221}
3222
1da177e4
LT
3223#ifdef CONFIG_PREEMPT
3224/*
2ed6e34f 3225 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3226 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3227 * occur there and call schedule directly.
3228 */
722a9f92 3229asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3230{
1da177e4
LT
3231 /*
3232 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3233 * we do not want to preempt the current task. Just return..
1da177e4 3234 */
fbb00b56 3235 if (likely(!preemptible()))
1da177e4
LT
3236 return;
3237
a18b5d01 3238 preempt_schedule_common();
1da177e4 3239}
376e2424 3240NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3241EXPORT_SYMBOL(preempt_schedule);
009f60e2 3242
009f60e2 3243/**
4eaca0a8 3244 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3245 *
3246 * The tracing infrastructure uses preempt_enable_notrace to prevent
3247 * recursion and tracing preempt enabling caused by the tracing
3248 * infrastructure itself. But as tracing can happen in areas coming
3249 * from userspace or just about to enter userspace, a preempt enable
3250 * can occur before user_exit() is called. This will cause the scheduler
3251 * to be called when the system is still in usermode.
3252 *
3253 * To prevent this, the preempt_enable_notrace will use this function
3254 * instead of preempt_schedule() to exit user context if needed before
3255 * calling the scheduler.
3256 */
4eaca0a8 3257asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3258{
3259 enum ctx_state prev_ctx;
3260
3261 if (likely(!preemptible()))
3262 return;
3263
3264 do {
3d8f74dd 3265 preempt_disable_notrace();
009f60e2
ON
3266 /*
3267 * Needs preempt disabled in case user_exit() is traced
3268 * and the tracer calls preempt_enable_notrace() causing
3269 * an infinite recursion.
3270 */
3271 prev_ctx = exception_enter();
fc13aeba 3272 __schedule(true);
009f60e2
ON
3273 exception_exit(prev_ctx);
3274
3d8f74dd 3275 preempt_enable_no_resched_notrace();
009f60e2
ON
3276 } while (need_resched());
3277}
4eaca0a8 3278EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3279
32e475d7 3280#endif /* CONFIG_PREEMPT */
1da177e4
LT
3281
3282/*
2ed6e34f 3283 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3284 * off of irq context.
3285 * Note, that this is called and return with irqs disabled. This will
3286 * protect us against recursive calling from irq.
3287 */
722a9f92 3288asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3289{
b22366cd 3290 enum ctx_state prev_state;
6478d880 3291
2ed6e34f 3292 /* Catch callers which need to be fixed */
f27dde8d 3293 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3294
b22366cd
FW
3295 prev_state = exception_enter();
3296
3a5c359a 3297 do {
3d8f74dd 3298 preempt_disable();
3a5c359a 3299 local_irq_enable();
fc13aeba 3300 __schedule(true);
3a5c359a 3301 local_irq_disable();
3d8f74dd 3302 sched_preempt_enable_no_resched();
5ed0cec0 3303 } while (need_resched());
b22366cd
FW
3304
3305 exception_exit(prev_state);
1da177e4
LT
3306}
3307
63859d4f 3308int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3309 void *key)
1da177e4 3310{
63859d4f 3311 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3312}
1da177e4
LT
3313EXPORT_SYMBOL(default_wake_function);
3314
b29739f9
IM
3315#ifdef CONFIG_RT_MUTEXES
3316
3317/*
3318 * rt_mutex_setprio - set the current priority of a task
3319 * @p: task
3320 * @prio: prio value (kernel-internal form)
3321 *
3322 * This function changes the 'effective' priority of a task. It does
3323 * not touch ->normal_prio like __setscheduler().
3324 *
c365c292
TG
3325 * Used by the rt_mutex code to implement priority inheritance
3326 * logic. Call site only calls if the priority of the task changed.
b29739f9 3327 */
36c8b586 3328void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3329{
1de64443 3330 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
70b97a7f 3331 struct rq *rq;
83ab0aa0 3332 const struct sched_class *prev_class;
b29739f9 3333
aab03e05 3334 BUG_ON(prio > MAX_PRIO);
b29739f9 3335
0122ec5b 3336 rq = __task_rq_lock(p);
b29739f9 3337
1c4dd99b
TG
3338 /*
3339 * Idle task boosting is a nono in general. There is one
3340 * exception, when PREEMPT_RT and NOHZ is active:
3341 *
3342 * The idle task calls get_next_timer_interrupt() and holds
3343 * the timer wheel base->lock on the CPU and another CPU wants
3344 * to access the timer (probably to cancel it). We can safely
3345 * ignore the boosting request, as the idle CPU runs this code
3346 * with interrupts disabled and will complete the lock
3347 * protected section without being interrupted. So there is no
3348 * real need to boost.
3349 */
3350 if (unlikely(p == rq->idle)) {
3351 WARN_ON(p != rq->curr);
3352 WARN_ON(p->pi_blocked_on);
3353 goto out_unlock;
3354 }
3355
a8027073 3356 trace_sched_pi_setprio(p, prio);
d5f9f942 3357 oldprio = p->prio;
83ab0aa0 3358 prev_class = p->sched_class;
da0c1e65 3359 queued = task_on_rq_queued(p);
051a1d1a 3360 running = task_current(rq, p);
da0c1e65 3361 if (queued)
1de64443 3362 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 3363 if (running)
f3cd1c4e 3364 put_prev_task(rq, p);
dd41f596 3365
2d3d891d
DF
3366 /*
3367 * Boosting condition are:
3368 * 1. -rt task is running and holds mutex A
3369 * --> -dl task blocks on mutex A
3370 *
3371 * 2. -dl task is running and holds mutex A
3372 * --> -dl task blocks on mutex A and could preempt the
3373 * running task
3374 */
3375 if (dl_prio(prio)) {
466af29b
ON
3376 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3377 if (!dl_prio(p->normal_prio) ||
3378 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3379 p->dl.dl_boosted = 1;
1de64443 3380 enqueue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3381 } else
3382 p->dl.dl_boosted = 0;
aab03e05 3383 p->sched_class = &dl_sched_class;
2d3d891d
DF
3384 } else if (rt_prio(prio)) {
3385 if (dl_prio(oldprio))
3386 p->dl.dl_boosted = 0;
3387 if (oldprio < prio)
1de64443 3388 enqueue_flag |= ENQUEUE_HEAD;
dd41f596 3389 p->sched_class = &rt_sched_class;
2d3d891d
DF
3390 } else {
3391 if (dl_prio(oldprio))
3392 p->dl.dl_boosted = 0;
746db944
BS
3393 if (rt_prio(oldprio))
3394 p->rt.timeout = 0;
dd41f596 3395 p->sched_class = &fair_sched_class;
2d3d891d 3396 }
dd41f596 3397
b29739f9
IM
3398 p->prio = prio;
3399
0e1f3483
HS
3400 if (running)
3401 p->sched_class->set_curr_task(rq);
da0c1e65 3402 if (queued)
2d3d891d 3403 enqueue_task(rq, p, enqueue_flag);
cb469845 3404
da7a735e 3405 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3406out_unlock:
4c9a4bc8 3407 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3408 __task_rq_unlock(rq);
4c9a4bc8
PZ
3409
3410 balance_callback(rq);
3411 preempt_enable();
b29739f9 3412}
b29739f9 3413#endif
d50dde5a 3414
36c8b586 3415void set_user_nice(struct task_struct *p, long nice)
1da177e4 3416{
da0c1e65 3417 int old_prio, delta, queued;
1da177e4 3418 unsigned long flags;
70b97a7f 3419 struct rq *rq;
1da177e4 3420
75e45d51 3421 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3422 return;
3423 /*
3424 * We have to be careful, if called from sys_setpriority(),
3425 * the task might be in the middle of scheduling on another CPU.
3426 */
3427 rq = task_rq_lock(p, &flags);
3428 /*
3429 * The RT priorities are set via sched_setscheduler(), but we still
3430 * allow the 'normal' nice value to be set - but as expected
3431 * it wont have any effect on scheduling until the task is
aab03e05 3432 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3433 */
aab03e05 3434 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3435 p->static_prio = NICE_TO_PRIO(nice);
3436 goto out_unlock;
3437 }
da0c1e65
KT
3438 queued = task_on_rq_queued(p);
3439 if (queued)
1de64443 3440 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3441
1da177e4 3442 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3443 set_load_weight(p);
b29739f9
IM
3444 old_prio = p->prio;
3445 p->prio = effective_prio(p);
3446 delta = p->prio - old_prio;
1da177e4 3447
da0c1e65 3448 if (queued) {
1de64443 3449 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3450 /*
d5f9f942
AM
3451 * If the task increased its priority or is running and
3452 * lowered its priority, then reschedule its CPU:
1da177e4 3453 */
d5f9f942 3454 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3455 resched_curr(rq);
1da177e4
LT
3456 }
3457out_unlock:
0122ec5b 3458 task_rq_unlock(rq, p, &flags);
1da177e4 3459}
1da177e4
LT
3460EXPORT_SYMBOL(set_user_nice);
3461
e43379f1
MM
3462/*
3463 * can_nice - check if a task can reduce its nice value
3464 * @p: task
3465 * @nice: nice value
3466 */
36c8b586 3467int can_nice(const struct task_struct *p, const int nice)
e43379f1 3468{
024f4747 3469 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3470 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3471
78d7d407 3472 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3473 capable(CAP_SYS_NICE));
3474}
3475
1da177e4
LT
3476#ifdef __ARCH_WANT_SYS_NICE
3477
3478/*
3479 * sys_nice - change the priority of the current process.
3480 * @increment: priority increment
3481 *
3482 * sys_setpriority is a more generic, but much slower function that
3483 * does similar things.
3484 */
5add95d4 3485SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3486{
48f24c4d 3487 long nice, retval;
1da177e4
LT
3488
3489 /*
3490 * Setpriority might change our priority at the same moment.
3491 * We don't have to worry. Conceptually one call occurs first
3492 * and we have a single winner.
3493 */
a9467fa3 3494 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3495 nice = task_nice(current) + increment;
1da177e4 3496
a9467fa3 3497 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3498 if (increment < 0 && !can_nice(current, nice))
3499 return -EPERM;
3500
1da177e4
LT
3501 retval = security_task_setnice(current, nice);
3502 if (retval)
3503 return retval;
3504
3505 set_user_nice(current, nice);
3506 return 0;
3507}
3508
3509#endif
3510
3511/**
3512 * task_prio - return the priority value of a given task.
3513 * @p: the task in question.
3514 *
e69f6186 3515 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3516 * RT tasks are offset by -200. Normal tasks are centered
3517 * around 0, value goes from -16 to +15.
3518 */
36c8b586 3519int task_prio(const struct task_struct *p)
1da177e4
LT
3520{
3521 return p->prio - MAX_RT_PRIO;
3522}
3523
1da177e4
LT
3524/**
3525 * idle_cpu - is a given cpu idle currently?
3526 * @cpu: the processor in question.
e69f6186
YB
3527 *
3528 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3529 */
3530int idle_cpu(int cpu)
3531{
908a3283
TG
3532 struct rq *rq = cpu_rq(cpu);
3533
3534 if (rq->curr != rq->idle)
3535 return 0;
3536
3537 if (rq->nr_running)
3538 return 0;
3539
3540#ifdef CONFIG_SMP
3541 if (!llist_empty(&rq->wake_list))
3542 return 0;
3543#endif
3544
3545 return 1;
1da177e4
LT
3546}
3547
1da177e4
LT
3548/**
3549 * idle_task - return the idle task for a given cpu.
3550 * @cpu: the processor in question.
e69f6186
YB
3551 *
3552 * Return: The idle task for the cpu @cpu.
1da177e4 3553 */
36c8b586 3554struct task_struct *idle_task(int cpu)
1da177e4
LT
3555{
3556 return cpu_rq(cpu)->idle;
3557}
3558
3559/**
3560 * find_process_by_pid - find a process with a matching PID value.
3561 * @pid: the pid in question.
e69f6186
YB
3562 *
3563 * The task of @pid, if found. %NULL otherwise.
1da177e4 3564 */
a9957449 3565static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3566{
228ebcbe 3567 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3568}
3569
aab03e05
DF
3570/*
3571 * This function initializes the sched_dl_entity of a newly becoming
3572 * SCHED_DEADLINE task.
3573 *
3574 * Only the static values are considered here, the actual runtime and the
3575 * absolute deadline will be properly calculated when the task is enqueued
3576 * for the first time with its new policy.
3577 */
3578static void
3579__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3580{
3581 struct sched_dl_entity *dl_se = &p->dl;
3582
aab03e05
DF
3583 dl_se->dl_runtime = attr->sched_runtime;
3584 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3585 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3586 dl_se->flags = attr->sched_flags;
332ac17e 3587 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3588
3589 /*
3590 * Changing the parameters of a task is 'tricky' and we're not doing
3591 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3592 *
3593 * What we SHOULD do is delay the bandwidth release until the 0-lag
3594 * point. This would include retaining the task_struct until that time
3595 * and change dl_overflow() to not immediately decrement the current
3596 * amount.
3597 *
3598 * Instead we retain the current runtime/deadline and let the new
3599 * parameters take effect after the current reservation period lapses.
3600 * This is safe (albeit pessimistic) because the 0-lag point is always
3601 * before the current scheduling deadline.
3602 *
3603 * We can still have temporary overloads because we do not delay the
3604 * change in bandwidth until that time; so admission control is
3605 * not on the safe side. It does however guarantee tasks will never
3606 * consume more than promised.
3607 */
aab03e05
DF
3608}
3609
c13db6b1
SR
3610/*
3611 * sched_setparam() passes in -1 for its policy, to let the functions
3612 * it calls know not to change it.
3613 */
3614#define SETPARAM_POLICY -1
3615
c365c292
TG
3616static void __setscheduler_params(struct task_struct *p,
3617 const struct sched_attr *attr)
1da177e4 3618{
d50dde5a
DF
3619 int policy = attr->sched_policy;
3620
c13db6b1 3621 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3622 policy = p->policy;
3623
1da177e4 3624 p->policy = policy;
d50dde5a 3625
aab03e05
DF
3626 if (dl_policy(policy))
3627 __setparam_dl(p, attr);
39fd8fd2 3628 else if (fair_policy(policy))
d50dde5a
DF
3629 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3630
39fd8fd2
PZ
3631 /*
3632 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3633 * !rt_policy. Always setting this ensures that things like
3634 * getparam()/getattr() don't report silly values for !rt tasks.
3635 */
3636 p->rt_priority = attr->sched_priority;
383afd09 3637 p->normal_prio = normal_prio(p);
c365c292
TG
3638 set_load_weight(p);
3639}
39fd8fd2 3640
c365c292
TG
3641/* Actually do priority change: must hold pi & rq lock. */
3642static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3643 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3644{
3645 __setscheduler_params(p, attr);
d50dde5a 3646
383afd09 3647 /*
0782e63b
TG
3648 * Keep a potential priority boosting if called from
3649 * sched_setscheduler().
383afd09 3650 */
0782e63b
TG
3651 if (keep_boost)
3652 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3653 else
3654 p->prio = normal_prio(p);
383afd09 3655
aab03e05
DF
3656 if (dl_prio(p->prio))
3657 p->sched_class = &dl_sched_class;
3658 else if (rt_prio(p->prio))
ffd44db5
PZ
3659 p->sched_class = &rt_sched_class;
3660 else
3661 p->sched_class = &fair_sched_class;
1da177e4 3662}
aab03e05
DF
3663
3664static void
3665__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3666{
3667 struct sched_dl_entity *dl_se = &p->dl;
3668
3669 attr->sched_priority = p->rt_priority;
3670 attr->sched_runtime = dl_se->dl_runtime;
3671 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3672 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3673 attr->sched_flags = dl_se->flags;
3674}
3675
3676/*
3677 * This function validates the new parameters of a -deadline task.
3678 * We ask for the deadline not being zero, and greater or equal
755378a4 3679 * than the runtime, as well as the period of being zero or
332ac17e 3680 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3681 * user parameters are above the internal resolution of 1us (we
3682 * check sched_runtime only since it is always the smaller one) and
3683 * below 2^63 ns (we have to check both sched_deadline and
3684 * sched_period, as the latter can be zero).
aab03e05
DF
3685 */
3686static bool
3687__checkparam_dl(const struct sched_attr *attr)
3688{
b0827819
JL
3689 /* deadline != 0 */
3690 if (attr->sched_deadline == 0)
3691 return false;
3692
3693 /*
3694 * Since we truncate DL_SCALE bits, make sure we're at least
3695 * that big.
3696 */
3697 if (attr->sched_runtime < (1ULL << DL_SCALE))
3698 return false;
3699
3700 /*
3701 * Since we use the MSB for wrap-around and sign issues, make
3702 * sure it's not set (mind that period can be equal to zero).
3703 */
3704 if (attr->sched_deadline & (1ULL << 63) ||
3705 attr->sched_period & (1ULL << 63))
3706 return false;
3707
3708 /* runtime <= deadline <= period (if period != 0) */
3709 if ((attr->sched_period != 0 &&
3710 attr->sched_period < attr->sched_deadline) ||
3711 attr->sched_deadline < attr->sched_runtime)
3712 return false;
3713
3714 return true;
aab03e05
DF
3715}
3716
c69e8d9c
DH
3717/*
3718 * check the target process has a UID that matches the current process's
3719 */
3720static bool check_same_owner(struct task_struct *p)
3721{
3722 const struct cred *cred = current_cred(), *pcred;
3723 bool match;
3724
3725 rcu_read_lock();
3726 pcred = __task_cred(p);
9c806aa0
EB
3727 match = (uid_eq(cred->euid, pcred->euid) ||
3728 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3729 rcu_read_unlock();
3730 return match;
3731}
3732
75381608
WL
3733static bool dl_param_changed(struct task_struct *p,
3734 const struct sched_attr *attr)
3735{
3736 struct sched_dl_entity *dl_se = &p->dl;
3737
3738 if (dl_se->dl_runtime != attr->sched_runtime ||
3739 dl_se->dl_deadline != attr->sched_deadline ||
3740 dl_se->dl_period != attr->sched_period ||
3741 dl_se->flags != attr->sched_flags)
3742 return true;
3743
3744 return false;
3745}
3746
d50dde5a
DF
3747static int __sched_setscheduler(struct task_struct *p,
3748 const struct sched_attr *attr,
dbc7f069 3749 bool user, bool pi)
1da177e4 3750{
383afd09
SR
3751 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3752 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3753 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3754 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3755 unsigned long flags;
83ab0aa0 3756 const struct sched_class *prev_class;
70b97a7f 3757 struct rq *rq;
ca94c442 3758 int reset_on_fork;
1da177e4 3759
66e5393a
SR
3760 /* may grab non-irq protected spin_locks */
3761 BUG_ON(in_interrupt());
1da177e4
LT
3762recheck:
3763 /* double check policy once rq lock held */
ca94c442
LP
3764 if (policy < 0) {
3765 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3766 policy = oldpolicy = p->policy;
ca94c442 3767 } else {
7479f3c9 3768 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3769
20f9cd2a 3770 if (!valid_policy(policy))
ca94c442
LP
3771 return -EINVAL;
3772 }
3773
7479f3c9
PZ
3774 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3775 return -EINVAL;
3776
1da177e4
LT
3777 /*
3778 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3779 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3780 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3781 */
0bb040a4 3782 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3783 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3784 return -EINVAL;
aab03e05
DF
3785 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3786 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3787 return -EINVAL;
3788
37e4ab3f
OC
3789 /*
3790 * Allow unprivileged RT tasks to decrease priority:
3791 */
961ccddd 3792 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3793 if (fair_policy(policy)) {
d0ea0268 3794 if (attr->sched_nice < task_nice(p) &&
eaad4513 3795 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3796 return -EPERM;
3797 }
3798
e05606d3 3799 if (rt_policy(policy)) {
a44702e8
ON
3800 unsigned long rlim_rtprio =
3801 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3802
3803 /* can't set/change the rt policy */
3804 if (policy != p->policy && !rlim_rtprio)
3805 return -EPERM;
3806
3807 /* can't increase priority */
d50dde5a
DF
3808 if (attr->sched_priority > p->rt_priority &&
3809 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3810 return -EPERM;
3811 }
c02aa73b 3812
d44753b8
JL
3813 /*
3814 * Can't set/change SCHED_DEADLINE policy at all for now
3815 * (safest behavior); in the future we would like to allow
3816 * unprivileged DL tasks to increase their relative deadline
3817 * or reduce their runtime (both ways reducing utilization)
3818 */
3819 if (dl_policy(policy))
3820 return -EPERM;
3821
dd41f596 3822 /*
c02aa73b
DH
3823 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3824 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3825 */
20f9cd2a 3826 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3827 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3828 return -EPERM;
3829 }
5fe1d75f 3830
37e4ab3f 3831 /* can't change other user's priorities */
c69e8d9c 3832 if (!check_same_owner(p))
37e4ab3f 3833 return -EPERM;
ca94c442
LP
3834
3835 /* Normal users shall not reset the sched_reset_on_fork flag */
3836 if (p->sched_reset_on_fork && !reset_on_fork)
3837 return -EPERM;
37e4ab3f 3838 }
1da177e4 3839
725aad24 3840 if (user) {
b0ae1981 3841 retval = security_task_setscheduler(p);
725aad24
JF
3842 if (retval)
3843 return retval;
3844 }
3845
b29739f9
IM
3846 /*
3847 * make sure no PI-waiters arrive (or leave) while we are
3848 * changing the priority of the task:
0122ec5b 3849 *
25985edc 3850 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3851 * runqueue lock must be held.
3852 */
0122ec5b 3853 rq = task_rq_lock(p, &flags);
dc61b1d6 3854
34f971f6
PZ
3855 /*
3856 * Changing the policy of the stop threads its a very bad idea
3857 */
3858 if (p == rq->stop) {
0122ec5b 3859 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3860 return -EINVAL;
3861 }
3862
a51e9198 3863 /*
d6b1e911
TG
3864 * If not changing anything there's no need to proceed further,
3865 * but store a possible modification of reset_on_fork.
a51e9198 3866 */
d50dde5a 3867 if (unlikely(policy == p->policy)) {
d0ea0268 3868 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3869 goto change;
3870 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3871 goto change;
75381608 3872 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3873 goto change;
d50dde5a 3874
d6b1e911 3875 p->sched_reset_on_fork = reset_on_fork;
45afb173 3876 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3877 return 0;
3878 }
d50dde5a 3879change:
a51e9198 3880
dc61b1d6 3881 if (user) {
332ac17e 3882#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3883 /*
3884 * Do not allow realtime tasks into groups that have no runtime
3885 * assigned.
3886 */
3887 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3888 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3889 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3890 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3891 return -EPERM;
3892 }
dc61b1d6 3893#endif
332ac17e
DF
3894#ifdef CONFIG_SMP
3895 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3896 cpumask_t *span = rq->rd->span;
332ac17e
DF
3897
3898 /*
3899 * Don't allow tasks with an affinity mask smaller than
3900 * the entire root_domain to become SCHED_DEADLINE. We
3901 * will also fail if there's no bandwidth available.
3902 */
e4099a5e
PZ
3903 if (!cpumask_subset(span, &p->cpus_allowed) ||
3904 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3905 task_rq_unlock(rq, p, &flags);
3906 return -EPERM;
3907 }
3908 }
3909#endif
3910 }
dc61b1d6 3911
1da177e4
LT
3912 /* recheck policy now with rq lock held */
3913 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3914 policy = oldpolicy = -1;
0122ec5b 3915 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3916 goto recheck;
3917 }
332ac17e
DF
3918
3919 /*
3920 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3921 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3922 * is available.
3923 */
e4099a5e 3924 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3925 task_rq_unlock(rq, p, &flags);
3926 return -EBUSY;
3927 }
3928
c365c292
TG
3929 p->sched_reset_on_fork = reset_on_fork;
3930 oldprio = p->prio;
3931
dbc7f069
PZ
3932 if (pi) {
3933 /*
3934 * Take priority boosted tasks into account. If the new
3935 * effective priority is unchanged, we just store the new
3936 * normal parameters and do not touch the scheduler class and
3937 * the runqueue. This will be done when the task deboost
3938 * itself.
3939 */
3940 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3941 if (new_effective_prio == oldprio) {
3942 __setscheduler_params(p, attr);
3943 task_rq_unlock(rq, p, &flags);
3944 return 0;
3945 }
c365c292
TG
3946 }
3947
da0c1e65 3948 queued = task_on_rq_queued(p);
051a1d1a 3949 running = task_current(rq, p);
da0c1e65 3950 if (queued)
1de64443 3951 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 3952 if (running)
f3cd1c4e 3953 put_prev_task(rq, p);
f6b53205 3954
83ab0aa0 3955 prev_class = p->sched_class;
dbc7f069 3956 __setscheduler(rq, p, attr, pi);
f6b53205 3957
0e1f3483
HS
3958 if (running)
3959 p->sched_class->set_curr_task(rq);
da0c1e65 3960 if (queued) {
1de64443 3961 int enqueue_flags = ENQUEUE_RESTORE;
81a44c54
TG
3962 /*
3963 * We enqueue to tail when the priority of a task is
3964 * increased (user space view).
3965 */
1de64443
PZ
3966 if (oldprio <= p->prio)
3967 enqueue_flags |= ENQUEUE_HEAD;
3968
3969 enqueue_task(rq, p, enqueue_flags);
81a44c54 3970 }
cb469845 3971
da7a735e 3972 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3973 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3974 task_rq_unlock(rq, p, &flags);
b29739f9 3975
dbc7f069
PZ
3976 if (pi)
3977 rt_mutex_adjust_pi(p);
95e02ca9 3978
4c9a4bc8
PZ
3979 /*
3980 * Run balance callbacks after we've adjusted the PI chain.
3981 */
3982 balance_callback(rq);
3983 preempt_enable();
95e02ca9 3984
1da177e4
LT
3985 return 0;
3986}
961ccddd 3987
7479f3c9
PZ
3988static int _sched_setscheduler(struct task_struct *p, int policy,
3989 const struct sched_param *param, bool check)
3990{
3991 struct sched_attr attr = {
3992 .sched_policy = policy,
3993 .sched_priority = param->sched_priority,
3994 .sched_nice = PRIO_TO_NICE(p->static_prio),
3995 };
3996
c13db6b1
SR
3997 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3998 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3999 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4000 policy &= ~SCHED_RESET_ON_FORK;
4001 attr.sched_policy = policy;
4002 }
4003
dbc7f069 4004 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4005}
961ccddd
RR
4006/**
4007 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4008 * @p: the task in question.
4009 * @policy: new policy.
4010 * @param: structure containing the new RT priority.
4011 *
e69f6186
YB
4012 * Return: 0 on success. An error code otherwise.
4013 *
961ccddd
RR
4014 * NOTE that the task may be already dead.
4015 */
4016int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4017 const struct sched_param *param)
961ccddd 4018{
7479f3c9 4019 return _sched_setscheduler(p, policy, param, true);
961ccddd 4020}
1da177e4
LT
4021EXPORT_SYMBOL_GPL(sched_setscheduler);
4022
d50dde5a
DF
4023int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4024{
dbc7f069 4025 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4026}
4027EXPORT_SYMBOL_GPL(sched_setattr);
4028
961ccddd
RR
4029/**
4030 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4031 * @p: the task in question.
4032 * @policy: new policy.
4033 * @param: structure containing the new RT priority.
4034 *
4035 * Just like sched_setscheduler, only don't bother checking if the
4036 * current context has permission. For example, this is needed in
4037 * stop_machine(): we create temporary high priority worker threads,
4038 * but our caller might not have that capability.
e69f6186
YB
4039 *
4040 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4041 */
4042int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4043 const struct sched_param *param)
961ccddd 4044{
7479f3c9 4045 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4046}
4047
95cdf3b7
IM
4048static int
4049do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4050{
1da177e4
LT
4051 struct sched_param lparam;
4052 struct task_struct *p;
36c8b586 4053 int retval;
1da177e4
LT
4054
4055 if (!param || pid < 0)
4056 return -EINVAL;
4057 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4058 return -EFAULT;
5fe1d75f
ON
4059
4060 rcu_read_lock();
4061 retval = -ESRCH;
1da177e4 4062 p = find_process_by_pid(pid);
5fe1d75f
ON
4063 if (p != NULL)
4064 retval = sched_setscheduler(p, policy, &lparam);
4065 rcu_read_unlock();
36c8b586 4066
1da177e4
LT
4067 return retval;
4068}
4069
d50dde5a
DF
4070/*
4071 * Mimics kernel/events/core.c perf_copy_attr().
4072 */
4073static int sched_copy_attr(struct sched_attr __user *uattr,
4074 struct sched_attr *attr)
4075{
4076 u32 size;
4077 int ret;
4078
4079 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4080 return -EFAULT;
4081
4082 /*
4083 * zero the full structure, so that a short copy will be nice.
4084 */
4085 memset(attr, 0, sizeof(*attr));
4086
4087 ret = get_user(size, &uattr->size);
4088 if (ret)
4089 return ret;
4090
4091 if (size > PAGE_SIZE) /* silly large */
4092 goto err_size;
4093
4094 if (!size) /* abi compat */
4095 size = SCHED_ATTR_SIZE_VER0;
4096
4097 if (size < SCHED_ATTR_SIZE_VER0)
4098 goto err_size;
4099
4100 /*
4101 * If we're handed a bigger struct than we know of,
4102 * ensure all the unknown bits are 0 - i.e. new
4103 * user-space does not rely on any kernel feature
4104 * extensions we dont know about yet.
4105 */
4106 if (size > sizeof(*attr)) {
4107 unsigned char __user *addr;
4108 unsigned char __user *end;
4109 unsigned char val;
4110
4111 addr = (void __user *)uattr + sizeof(*attr);
4112 end = (void __user *)uattr + size;
4113
4114 for (; addr < end; addr++) {
4115 ret = get_user(val, addr);
4116 if (ret)
4117 return ret;
4118 if (val)
4119 goto err_size;
4120 }
4121 size = sizeof(*attr);
4122 }
4123
4124 ret = copy_from_user(attr, uattr, size);
4125 if (ret)
4126 return -EFAULT;
4127
4128 /*
4129 * XXX: do we want to be lenient like existing syscalls; or do we want
4130 * to be strict and return an error on out-of-bounds values?
4131 */
75e45d51 4132 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4133
e78c7bca 4134 return 0;
d50dde5a
DF
4135
4136err_size:
4137 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4138 return -E2BIG;
d50dde5a
DF
4139}
4140
1da177e4
LT
4141/**
4142 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4143 * @pid: the pid in question.
4144 * @policy: new policy.
4145 * @param: structure containing the new RT priority.
e69f6186
YB
4146 *
4147 * Return: 0 on success. An error code otherwise.
1da177e4 4148 */
5add95d4
HC
4149SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4150 struct sched_param __user *, param)
1da177e4 4151{
c21761f1
JB
4152 /* negative values for policy are not valid */
4153 if (policy < 0)
4154 return -EINVAL;
4155
1da177e4
LT
4156 return do_sched_setscheduler(pid, policy, param);
4157}
4158
4159/**
4160 * sys_sched_setparam - set/change the RT priority of a thread
4161 * @pid: the pid in question.
4162 * @param: structure containing the new RT priority.
e69f6186
YB
4163 *
4164 * Return: 0 on success. An error code otherwise.
1da177e4 4165 */
5add95d4 4166SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4167{
c13db6b1 4168 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4169}
4170
d50dde5a
DF
4171/**
4172 * sys_sched_setattr - same as above, but with extended sched_attr
4173 * @pid: the pid in question.
5778fccf 4174 * @uattr: structure containing the extended parameters.
db66d756 4175 * @flags: for future extension.
d50dde5a 4176 */
6d35ab48
PZ
4177SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4178 unsigned int, flags)
d50dde5a
DF
4179{
4180 struct sched_attr attr;
4181 struct task_struct *p;
4182 int retval;
4183
6d35ab48 4184 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4185 return -EINVAL;
4186
143cf23d
MK
4187 retval = sched_copy_attr(uattr, &attr);
4188 if (retval)
4189 return retval;
d50dde5a 4190
b14ed2c2 4191 if ((int)attr.sched_policy < 0)
dbdb2275 4192 return -EINVAL;
d50dde5a
DF
4193
4194 rcu_read_lock();
4195 retval = -ESRCH;
4196 p = find_process_by_pid(pid);
4197 if (p != NULL)
4198 retval = sched_setattr(p, &attr);
4199 rcu_read_unlock();
4200
4201 return retval;
4202}
4203
1da177e4
LT
4204/**
4205 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4206 * @pid: the pid in question.
e69f6186
YB
4207 *
4208 * Return: On success, the policy of the thread. Otherwise, a negative error
4209 * code.
1da177e4 4210 */
5add95d4 4211SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4212{
36c8b586 4213 struct task_struct *p;
3a5c359a 4214 int retval;
1da177e4
LT
4215
4216 if (pid < 0)
3a5c359a 4217 return -EINVAL;
1da177e4
LT
4218
4219 retval = -ESRCH;
5fe85be0 4220 rcu_read_lock();
1da177e4
LT
4221 p = find_process_by_pid(pid);
4222 if (p) {
4223 retval = security_task_getscheduler(p);
4224 if (!retval)
ca94c442
LP
4225 retval = p->policy
4226 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4227 }
5fe85be0 4228 rcu_read_unlock();
1da177e4
LT
4229 return retval;
4230}
4231
4232/**
ca94c442 4233 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4234 * @pid: the pid in question.
4235 * @param: structure containing the RT priority.
e69f6186
YB
4236 *
4237 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4238 * code.
1da177e4 4239 */
5add95d4 4240SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4241{
ce5f7f82 4242 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4243 struct task_struct *p;
3a5c359a 4244 int retval;
1da177e4
LT
4245
4246 if (!param || pid < 0)
3a5c359a 4247 return -EINVAL;
1da177e4 4248
5fe85be0 4249 rcu_read_lock();
1da177e4
LT
4250 p = find_process_by_pid(pid);
4251 retval = -ESRCH;
4252 if (!p)
4253 goto out_unlock;
4254
4255 retval = security_task_getscheduler(p);
4256 if (retval)
4257 goto out_unlock;
4258
ce5f7f82
PZ
4259 if (task_has_rt_policy(p))
4260 lp.sched_priority = p->rt_priority;
5fe85be0 4261 rcu_read_unlock();
1da177e4
LT
4262
4263 /*
4264 * This one might sleep, we cannot do it with a spinlock held ...
4265 */
4266 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4267
1da177e4
LT
4268 return retval;
4269
4270out_unlock:
5fe85be0 4271 rcu_read_unlock();
1da177e4
LT
4272 return retval;
4273}
4274
d50dde5a
DF
4275static int sched_read_attr(struct sched_attr __user *uattr,
4276 struct sched_attr *attr,
4277 unsigned int usize)
4278{
4279 int ret;
4280
4281 if (!access_ok(VERIFY_WRITE, uattr, usize))
4282 return -EFAULT;
4283
4284 /*
4285 * If we're handed a smaller struct than we know of,
4286 * ensure all the unknown bits are 0 - i.e. old
4287 * user-space does not get uncomplete information.
4288 */
4289 if (usize < sizeof(*attr)) {
4290 unsigned char *addr;
4291 unsigned char *end;
4292
4293 addr = (void *)attr + usize;
4294 end = (void *)attr + sizeof(*attr);
4295
4296 for (; addr < end; addr++) {
4297 if (*addr)
22400674 4298 return -EFBIG;
d50dde5a
DF
4299 }
4300
4301 attr->size = usize;
4302 }
4303
4efbc454 4304 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4305 if (ret)
4306 return -EFAULT;
4307
22400674 4308 return 0;
d50dde5a
DF
4309}
4310
4311/**
aab03e05 4312 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4313 * @pid: the pid in question.
5778fccf 4314 * @uattr: structure containing the extended parameters.
d50dde5a 4315 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4316 * @flags: for future extension.
d50dde5a 4317 */
6d35ab48
PZ
4318SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4319 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4320{
4321 struct sched_attr attr = {
4322 .size = sizeof(struct sched_attr),
4323 };
4324 struct task_struct *p;
4325 int retval;
4326
4327 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4328 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4329 return -EINVAL;
4330
4331 rcu_read_lock();
4332 p = find_process_by_pid(pid);
4333 retval = -ESRCH;
4334 if (!p)
4335 goto out_unlock;
4336
4337 retval = security_task_getscheduler(p);
4338 if (retval)
4339 goto out_unlock;
4340
4341 attr.sched_policy = p->policy;
7479f3c9
PZ
4342 if (p->sched_reset_on_fork)
4343 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4344 if (task_has_dl_policy(p))
4345 __getparam_dl(p, &attr);
4346 else if (task_has_rt_policy(p))
d50dde5a
DF
4347 attr.sched_priority = p->rt_priority;
4348 else
d0ea0268 4349 attr.sched_nice = task_nice(p);
d50dde5a
DF
4350
4351 rcu_read_unlock();
4352
4353 retval = sched_read_attr(uattr, &attr, size);
4354 return retval;
4355
4356out_unlock:
4357 rcu_read_unlock();
4358 return retval;
4359}
4360
96f874e2 4361long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4362{
5a16f3d3 4363 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4364 struct task_struct *p;
4365 int retval;
1da177e4 4366
23f5d142 4367 rcu_read_lock();
1da177e4
LT
4368
4369 p = find_process_by_pid(pid);
4370 if (!p) {
23f5d142 4371 rcu_read_unlock();
1da177e4
LT
4372 return -ESRCH;
4373 }
4374
23f5d142 4375 /* Prevent p going away */
1da177e4 4376 get_task_struct(p);
23f5d142 4377 rcu_read_unlock();
1da177e4 4378
14a40ffc
TH
4379 if (p->flags & PF_NO_SETAFFINITY) {
4380 retval = -EINVAL;
4381 goto out_put_task;
4382 }
5a16f3d3
RR
4383 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4384 retval = -ENOMEM;
4385 goto out_put_task;
4386 }
4387 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4388 retval = -ENOMEM;
4389 goto out_free_cpus_allowed;
4390 }
1da177e4 4391 retval = -EPERM;
4c44aaaf
EB
4392 if (!check_same_owner(p)) {
4393 rcu_read_lock();
4394 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4395 rcu_read_unlock();
16303ab2 4396 goto out_free_new_mask;
4c44aaaf
EB
4397 }
4398 rcu_read_unlock();
4399 }
1da177e4 4400
b0ae1981 4401 retval = security_task_setscheduler(p);
e7834f8f 4402 if (retval)
16303ab2 4403 goto out_free_new_mask;
e7834f8f 4404
e4099a5e
PZ
4405
4406 cpuset_cpus_allowed(p, cpus_allowed);
4407 cpumask_and(new_mask, in_mask, cpus_allowed);
4408
332ac17e
DF
4409 /*
4410 * Since bandwidth control happens on root_domain basis,
4411 * if admission test is enabled, we only admit -deadline
4412 * tasks allowed to run on all the CPUs in the task's
4413 * root_domain.
4414 */
4415#ifdef CONFIG_SMP
f1e3a093
KT
4416 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4417 rcu_read_lock();
4418 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4419 retval = -EBUSY;
f1e3a093 4420 rcu_read_unlock();
16303ab2 4421 goto out_free_new_mask;
332ac17e 4422 }
f1e3a093 4423 rcu_read_unlock();
332ac17e
DF
4424 }
4425#endif
49246274 4426again:
25834c73 4427 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4428
8707d8b8 4429 if (!retval) {
5a16f3d3
RR
4430 cpuset_cpus_allowed(p, cpus_allowed);
4431 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4432 /*
4433 * We must have raced with a concurrent cpuset
4434 * update. Just reset the cpus_allowed to the
4435 * cpuset's cpus_allowed
4436 */
5a16f3d3 4437 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4438 goto again;
4439 }
4440 }
16303ab2 4441out_free_new_mask:
5a16f3d3
RR
4442 free_cpumask_var(new_mask);
4443out_free_cpus_allowed:
4444 free_cpumask_var(cpus_allowed);
4445out_put_task:
1da177e4 4446 put_task_struct(p);
1da177e4
LT
4447 return retval;
4448}
4449
4450static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4451 struct cpumask *new_mask)
1da177e4 4452{
96f874e2
RR
4453 if (len < cpumask_size())
4454 cpumask_clear(new_mask);
4455 else if (len > cpumask_size())
4456 len = cpumask_size();
4457
1da177e4
LT
4458 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4459}
4460
4461/**
4462 * sys_sched_setaffinity - set the cpu affinity of a process
4463 * @pid: pid of the process
4464 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4465 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4466 *
4467 * Return: 0 on success. An error code otherwise.
1da177e4 4468 */
5add95d4
HC
4469SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4470 unsigned long __user *, user_mask_ptr)
1da177e4 4471{
5a16f3d3 4472 cpumask_var_t new_mask;
1da177e4
LT
4473 int retval;
4474
5a16f3d3
RR
4475 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4476 return -ENOMEM;
1da177e4 4477
5a16f3d3
RR
4478 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4479 if (retval == 0)
4480 retval = sched_setaffinity(pid, new_mask);
4481 free_cpumask_var(new_mask);
4482 return retval;
1da177e4
LT
4483}
4484
96f874e2 4485long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4486{
36c8b586 4487 struct task_struct *p;
31605683 4488 unsigned long flags;
1da177e4 4489 int retval;
1da177e4 4490
23f5d142 4491 rcu_read_lock();
1da177e4
LT
4492
4493 retval = -ESRCH;
4494 p = find_process_by_pid(pid);
4495 if (!p)
4496 goto out_unlock;
4497
e7834f8f
DQ
4498 retval = security_task_getscheduler(p);
4499 if (retval)
4500 goto out_unlock;
4501
013fdb80 4502 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4503 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4504 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4505
4506out_unlock:
23f5d142 4507 rcu_read_unlock();
1da177e4 4508
9531b62f 4509 return retval;
1da177e4
LT
4510}
4511
4512/**
4513 * sys_sched_getaffinity - get the cpu affinity of a process
4514 * @pid: pid of the process
4515 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4516 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4517 *
4518 * Return: 0 on success. An error code otherwise.
1da177e4 4519 */
5add95d4
HC
4520SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4521 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4522{
4523 int ret;
f17c8607 4524 cpumask_var_t mask;
1da177e4 4525
84fba5ec 4526 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4527 return -EINVAL;
4528 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4529 return -EINVAL;
4530
f17c8607
RR
4531 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4532 return -ENOMEM;
1da177e4 4533
f17c8607
RR
4534 ret = sched_getaffinity(pid, mask);
4535 if (ret == 0) {
8bc037fb 4536 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4537
4538 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4539 ret = -EFAULT;
4540 else
cd3d8031 4541 ret = retlen;
f17c8607
RR
4542 }
4543 free_cpumask_var(mask);
1da177e4 4544
f17c8607 4545 return ret;
1da177e4
LT
4546}
4547
4548/**
4549 * sys_sched_yield - yield the current processor to other threads.
4550 *
dd41f596
IM
4551 * This function yields the current CPU to other tasks. If there are no
4552 * other threads running on this CPU then this function will return.
e69f6186
YB
4553 *
4554 * Return: 0.
1da177e4 4555 */
5add95d4 4556SYSCALL_DEFINE0(sched_yield)
1da177e4 4557{
70b97a7f 4558 struct rq *rq = this_rq_lock();
1da177e4 4559
2d72376b 4560 schedstat_inc(rq, yld_count);
4530d7ab 4561 current->sched_class->yield_task(rq);
1da177e4
LT
4562
4563 /*
4564 * Since we are going to call schedule() anyway, there's
4565 * no need to preempt or enable interrupts:
4566 */
4567 __release(rq->lock);
8a25d5de 4568 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4569 do_raw_spin_unlock(&rq->lock);
ba74c144 4570 sched_preempt_enable_no_resched();
1da177e4
LT
4571
4572 schedule();
4573
4574 return 0;
4575}
4576
02b67cc3 4577int __sched _cond_resched(void)
1da177e4 4578{
fe32d3cd 4579 if (should_resched(0)) {
a18b5d01 4580 preempt_schedule_common();
1da177e4
LT
4581 return 1;
4582 }
4583 return 0;
4584}
02b67cc3 4585EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4586
4587/*
613afbf8 4588 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4589 * call schedule, and on return reacquire the lock.
4590 *
41a2d6cf 4591 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4592 * operations here to prevent schedule() from being called twice (once via
4593 * spin_unlock(), once by hand).
4594 */
613afbf8 4595int __cond_resched_lock(spinlock_t *lock)
1da177e4 4596{
fe32d3cd 4597 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4598 int ret = 0;
4599
f607c668
PZ
4600 lockdep_assert_held(lock);
4601
4a81e832 4602 if (spin_needbreak(lock) || resched) {
1da177e4 4603 spin_unlock(lock);
d86ee480 4604 if (resched)
a18b5d01 4605 preempt_schedule_common();
95c354fe
NP
4606 else
4607 cpu_relax();
6df3cecb 4608 ret = 1;
1da177e4 4609 spin_lock(lock);
1da177e4 4610 }
6df3cecb 4611 return ret;
1da177e4 4612}
613afbf8 4613EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4614
613afbf8 4615int __sched __cond_resched_softirq(void)
1da177e4
LT
4616{
4617 BUG_ON(!in_softirq());
4618
fe32d3cd 4619 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4620 local_bh_enable();
a18b5d01 4621 preempt_schedule_common();
1da177e4
LT
4622 local_bh_disable();
4623 return 1;
4624 }
4625 return 0;
4626}
613afbf8 4627EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4628
1da177e4
LT
4629/**
4630 * yield - yield the current processor to other threads.
4631 *
8e3fabfd
PZ
4632 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4633 *
4634 * The scheduler is at all times free to pick the calling task as the most
4635 * eligible task to run, if removing the yield() call from your code breaks
4636 * it, its already broken.
4637 *
4638 * Typical broken usage is:
4639 *
4640 * while (!event)
4641 * yield();
4642 *
4643 * where one assumes that yield() will let 'the other' process run that will
4644 * make event true. If the current task is a SCHED_FIFO task that will never
4645 * happen. Never use yield() as a progress guarantee!!
4646 *
4647 * If you want to use yield() to wait for something, use wait_event().
4648 * If you want to use yield() to be 'nice' for others, use cond_resched().
4649 * If you still want to use yield(), do not!
1da177e4
LT
4650 */
4651void __sched yield(void)
4652{
4653 set_current_state(TASK_RUNNING);
4654 sys_sched_yield();
4655}
1da177e4
LT
4656EXPORT_SYMBOL(yield);
4657
d95f4122
MG
4658/**
4659 * yield_to - yield the current processor to another thread in
4660 * your thread group, or accelerate that thread toward the
4661 * processor it's on.
16addf95
RD
4662 * @p: target task
4663 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4664 *
4665 * It's the caller's job to ensure that the target task struct
4666 * can't go away on us before we can do any checks.
4667 *
e69f6186 4668 * Return:
7b270f60
PZ
4669 * true (>0) if we indeed boosted the target task.
4670 * false (0) if we failed to boost the target.
4671 * -ESRCH if there's no task to yield to.
d95f4122 4672 */
fa93384f 4673int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4674{
4675 struct task_struct *curr = current;
4676 struct rq *rq, *p_rq;
4677 unsigned long flags;
c3c18640 4678 int yielded = 0;
d95f4122
MG
4679
4680 local_irq_save(flags);
4681 rq = this_rq();
4682
4683again:
4684 p_rq = task_rq(p);
7b270f60
PZ
4685 /*
4686 * If we're the only runnable task on the rq and target rq also
4687 * has only one task, there's absolutely no point in yielding.
4688 */
4689 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4690 yielded = -ESRCH;
4691 goto out_irq;
4692 }
4693
d95f4122 4694 double_rq_lock(rq, p_rq);
39e24d8f 4695 if (task_rq(p) != p_rq) {
d95f4122
MG
4696 double_rq_unlock(rq, p_rq);
4697 goto again;
4698 }
4699
4700 if (!curr->sched_class->yield_to_task)
7b270f60 4701 goto out_unlock;
d95f4122
MG
4702
4703 if (curr->sched_class != p->sched_class)
7b270f60 4704 goto out_unlock;
d95f4122
MG
4705
4706 if (task_running(p_rq, p) || p->state)
7b270f60 4707 goto out_unlock;
d95f4122
MG
4708
4709 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4710 if (yielded) {
d95f4122 4711 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4712 /*
4713 * Make p's CPU reschedule; pick_next_entity takes care of
4714 * fairness.
4715 */
4716 if (preempt && rq != p_rq)
8875125e 4717 resched_curr(p_rq);
6d1cafd8 4718 }
d95f4122 4719
7b270f60 4720out_unlock:
d95f4122 4721 double_rq_unlock(rq, p_rq);
7b270f60 4722out_irq:
d95f4122
MG
4723 local_irq_restore(flags);
4724
7b270f60 4725 if (yielded > 0)
d95f4122
MG
4726 schedule();
4727
4728 return yielded;
4729}
4730EXPORT_SYMBOL_GPL(yield_to);
4731
1da177e4 4732/*
41a2d6cf 4733 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4734 * that process accounting knows that this is a task in IO wait state.
1da177e4 4735 */
1da177e4
LT
4736long __sched io_schedule_timeout(long timeout)
4737{
9cff8ade
N
4738 int old_iowait = current->in_iowait;
4739 struct rq *rq;
1da177e4
LT
4740 long ret;
4741
9cff8ade 4742 current->in_iowait = 1;
10d784ea 4743 blk_schedule_flush_plug(current);
9cff8ade 4744
0ff92245 4745 delayacct_blkio_start();
9cff8ade 4746 rq = raw_rq();
1da177e4
LT
4747 atomic_inc(&rq->nr_iowait);
4748 ret = schedule_timeout(timeout);
9cff8ade 4749 current->in_iowait = old_iowait;
1da177e4 4750 atomic_dec(&rq->nr_iowait);
0ff92245 4751 delayacct_blkio_end();
9cff8ade 4752
1da177e4
LT
4753 return ret;
4754}
9cff8ade 4755EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4756
4757/**
4758 * sys_sched_get_priority_max - return maximum RT priority.
4759 * @policy: scheduling class.
4760 *
e69f6186
YB
4761 * Return: On success, this syscall returns the maximum
4762 * rt_priority that can be used by a given scheduling class.
4763 * On failure, a negative error code is returned.
1da177e4 4764 */
5add95d4 4765SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4766{
4767 int ret = -EINVAL;
4768
4769 switch (policy) {
4770 case SCHED_FIFO:
4771 case SCHED_RR:
4772 ret = MAX_USER_RT_PRIO-1;
4773 break;
aab03e05 4774 case SCHED_DEADLINE:
1da177e4 4775 case SCHED_NORMAL:
b0a9499c 4776 case SCHED_BATCH:
dd41f596 4777 case SCHED_IDLE:
1da177e4
LT
4778 ret = 0;
4779 break;
4780 }
4781 return ret;
4782}
4783
4784/**
4785 * sys_sched_get_priority_min - return minimum RT priority.
4786 * @policy: scheduling class.
4787 *
e69f6186
YB
4788 * Return: On success, this syscall returns the minimum
4789 * rt_priority that can be used by a given scheduling class.
4790 * On failure, a negative error code is returned.
1da177e4 4791 */
5add95d4 4792SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4793{
4794 int ret = -EINVAL;
4795
4796 switch (policy) {
4797 case SCHED_FIFO:
4798 case SCHED_RR:
4799 ret = 1;
4800 break;
aab03e05 4801 case SCHED_DEADLINE:
1da177e4 4802 case SCHED_NORMAL:
b0a9499c 4803 case SCHED_BATCH:
dd41f596 4804 case SCHED_IDLE:
1da177e4
LT
4805 ret = 0;
4806 }
4807 return ret;
4808}
4809
4810/**
4811 * sys_sched_rr_get_interval - return the default timeslice of a process.
4812 * @pid: pid of the process.
4813 * @interval: userspace pointer to the timeslice value.
4814 *
4815 * this syscall writes the default timeslice value of a given process
4816 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4817 *
4818 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4819 * an error code.
1da177e4 4820 */
17da2bd9 4821SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4822 struct timespec __user *, interval)
1da177e4 4823{
36c8b586 4824 struct task_struct *p;
a4ec24b4 4825 unsigned int time_slice;
dba091b9
TG
4826 unsigned long flags;
4827 struct rq *rq;
3a5c359a 4828 int retval;
1da177e4 4829 struct timespec t;
1da177e4
LT
4830
4831 if (pid < 0)
3a5c359a 4832 return -EINVAL;
1da177e4
LT
4833
4834 retval = -ESRCH;
1a551ae7 4835 rcu_read_lock();
1da177e4
LT
4836 p = find_process_by_pid(pid);
4837 if (!p)
4838 goto out_unlock;
4839
4840 retval = security_task_getscheduler(p);
4841 if (retval)
4842 goto out_unlock;
4843
dba091b9 4844 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4845 time_slice = 0;
4846 if (p->sched_class->get_rr_interval)
4847 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4848 task_rq_unlock(rq, p, &flags);
a4ec24b4 4849
1a551ae7 4850 rcu_read_unlock();
a4ec24b4 4851 jiffies_to_timespec(time_slice, &t);
1da177e4 4852 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4853 return retval;
3a5c359a 4854
1da177e4 4855out_unlock:
1a551ae7 4856 rcu_read_unlock();
1da177e4
LT
4857 return retval;
4858}
4859
7c731e0a 4860static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4861
82a1fcb9 4862void sched_show_task(struct task_struct *p)
1da177e4 4863{
1da177e4 4864 unsigned long free = 0;
4e79752c 4865 int ppid;
1f8a7633 4866 unsigned long state = p->state;
1da177e4 4867
1f8a7633
TH
4868 if (state)
4869 state = __ffs(state) + 1;
28d0686c 4870 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4871 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4872#if BITS_PER_LONG == 32
1da177e4 4873 if (state == TASK_RUNNING)
3df0fc5b 4874 printk(KERN_CONT " running ");
1da177e4 4875 else
3df0fc5b 4876 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4877#else
4878 if (state == TASK_RUNNING)
3df0fc5b 4879 printk(KERN_CONT " running task ");
1da177e4 4880 else
3df0fc5b 4881 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4882#endif
4883#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4884 free = stack_not_used(p);
1da177e4 4885#endif
a90e984c 4886 ppid = 0;
4e79752c 4887 rcu_read_lock();
a90e984c
ON
4888 if (pid_alive(p))
4889 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4890 rcu_read_unlock();
3df0fc5b 4891 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4892 task_pid_nr(p), ppid,
aa47b7e0 4893 (unsigned long)task_thread_info(p)->flags);
1da177e4 4894
3d1cb205 4895 print_worker_info(KERN_INFO, p);
5fb5e6de 4896 show_stack(p, NULL);
1da177e4
LT
4897}
4898
e59e2ae2 4899void show_state_filter(unsigned long state_filter)
1da177e4 4900{
36c8b586 4901 struct task_struct *g, *p;
1da177e4 4902
4bd77321 4903#if BITS_PER_LONG == 32
3df0fc5b
PZ
4904 printk(KERN_INFO
4905 " task PC stack pid father\n");
1da177e4 4906#else
3df0fc5b
PZ
4907 printk(KERN_INFO
4908 " task PC stack pid father\n");
1da177e4 4909#endif
510f5acc 4910 rcu_read_lock();
5d07f420 4911 for_each_process_thread(g, p) {
1da177e4
LT
4912 /*
4913 * reset the NMI-timeout, listing all files on a slow
25985edc 4914 * console might take a lot of time:
1da177e4
LT
4915 */
4916 touch_nmi_watchdog();
39bc89fd 4917 if (!state_filter || (p->state & state_filter))
82a1fcb9 4918 sched_show_task(p);
5d07f420 4919 }
1da177e4 4920
04c9167f
JF
4921 touch_all_softlockup_watchdogs();
4922
dd41f596
IM
4923#ifdef CONFIG_SCHED_DEBUG
4924 sysrq_sched_debug_show();
4925#endif
510f5acc 4926 rcu_read_unlock();
e59e2ae2
IM
4927 /*
4928 * Only show locks if all tasks are dumped:
4929 */
93335a21 4930 if (!state_filter)
e59e2ae2 4931 debug_show_all_locks();
1da177e4
LT
4932}
4933
0db0628d 4934void init_idle_bootup_task(struct task_struct *idle)
1df21055 4935{
dd41f596 4936 idle->sched_class = &idle_sched_class;
1df21055
IM
4937}
4938
f340c0d1
IM
4939/**
4940 * init_idle - set up an idle thread for a given CPU
4941 * @idle: task in question
4942 * @cpu: cpu the idle task belongs to
4943 *
4944 * NOTE: this function does not set the idle thread's NEED_RESCHED
4945 * flag, to make booting more robust.
4946 */
0db0628d 4947void init_idle(struct task_struct *idle, int cpu)
1da177e4 4948{
70b97a7f 4949 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4950 unsigned long flags;
4951
25834c73
PZ
4952 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4953 raw_spin_lock(&rq->lock);
5cbd54ef 4954
5e1576ed 4955 __sched_fork(0, idle);
06b83b5f 4956 idle->state = TASK_RUNNING;
dd41f596
IM
4957 idle->se.exec_start = sched_clock();
4958
de9b8f5d
PZ
4959#ifdef CONFIG_SMP
4960 /*
4961 * Its possible that init_idle() gets called multiple times on a task,
4962 * in that case do_set_cpus_allowed() will not do the right thing.
4963 *
4964 * And since this is boot we can forgo the serialization.
4965 */
4966 set_cpus_allowed_common(idle, cpumask_of(cpu));
4967#endif
6506cf6c
PZ
4968 /*
4969 * We're having a chicken and egg problem, even though we are
4970 * holding rq->lock, the cpu isn't yet set to this cpu so the
4971 * lockdep check in task_group() will fail.
4972 *
4973 * Similar case to sched_fork(). / Alternatively we could
4974 * use task_rq_lock() here and obtain the other rq->lock.
4975 *
4976 * Silence PROVE_RCU
4977 */
4978 rcu_read_lock();
dd41f596 4979 __set_task_cpu(idle, cpu);
6506cf6c 4980 rcu_read_unlock();
1da177e4 4981
1da177e4 4982 rq->curr = rq->idle = idle;
da0c1e65 4983 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 4984#ifdef CONFIG_SMP
3ca7a440 4985 idle->on_cpu = 1;
4866cde0 4986#endif
25834c73
PZ
4987 raw_spin_unlock(&rq->lock);
4988 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4989
4990 /* Set the preempt count _outside_ the spinlocks! */
01028747 4991 init_idle_preempt_count(idle, cpu);
55cd5340 4992
dd41f596
IM
4993 /*
4994 * The idle tasks have their own, simple scheduling class:
4995 */
4996 idle->sched_class = &idle_sched_class;
868baf07 4997 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4998 vtime_init_idle(idle, cpu);
de9b8f5d 4999#ifdef CONFIG_SMP
f1c6f1a7
CE
5000 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5001#endif
19978ca6
IM
5002}
5003
f82f8042
JL
5004int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5005 const struct cpumask *trial)
5006{
5007 int ret = 1, trial_cpus;
5008 struct dl_bw *cur_dl_b;
5009 unsigned long flags;
5010
bb2bc55a
MG
5011 if (!cpumask_weight(cur))
5012 return ret;
5013
75e23e49 5014 rcu_read_lock_sched();
f82f8042
JL
5015 cur_dl_b = dl_bw_of(cpumask_any(cur));
5016 trial_cpus = cpumask_weight(trial);
5017
5018 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5019 if (cur_dl_b->bw != -1 &&
5020 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5021 ret = 0;
5022 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5023 rcu_read_unlock_sched();
f82f8042
JL
5024
5025 return ret;
5026}
5027
7f51412a
JL
5028int task_can_attach(struct task_struct *p,
5029 const struct cpumask *cs_cpus_allowed)
5030{
5031 int ret = 0;
5032
5033 /*
5034 * Kthreads which disallow setaffinity shouldn't be moved
5035 * to a new cpuset; we don't want to change their cpu
5036 * affinity and isolating such threads by their set of
5037 * allowed nodes is unnecessary. Thus, cpusets are not
5038 * applicable for such threads. This prevents checking for
5039 * success of set_cpus_allowed_ptr() on all attached tasks
5040 * before cpus_allowed may be changed.
5041 */
5042 if (p->flags & PF_NO_SETAFFINITY) {
5043 ret = -EINVAL;
5044 goto out;
5045 }
5046
5047#ifdef CONFIG_SMP
5048 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5049 cs_cpus_allowed)) {
5050 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5051 cs_cpus_allowed);
75e23e49 5052 struct dl_bw *dl_b;
7f51412a
JL
5053 bool overflow;
5054 int cpus;
5055 unsigned long flags;
5056
75e23e49
JL
5057 rcu_read_lock_sched();
5058 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5059 raw_spin_lock_irqsave(&dl_b->lock, flags);
5060 cpus = dl_bw_cpus(dest_cpu);
5061 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5062 if (overflow)
5063 ret = -EBUSY;
5064 else {
5065 /*
5066 * We reserve space for this task in the destination
5067 * root_domain, as we can't fail after this point.
5068 * We will free resources in the source root_domain
5069 * later on (see set_cpus_allowed_dl()).
5070 */
5071 __dl_add(dl_b, p->dl.dl_bw);
5072 }
5073 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5074 rcu_read_unlock_sched();
7f51412a
JL
5075
5076 }
5077#endif
5078out:
5079 return ret;
5080}
5081
1da177e4 5082#ifdef CONFIG_SMP
1da177e4 5083
e6628d5b
MG
5084#ifdef CONFIG_NUMA_BALANCING
5085/* Migrate current task p to target_cpu */
5086int migrate_task_to(struct task_struct *p, int target_cpu)
5087{
5088 struct migration_arg arg = { p, target_cpu };
5089 int curr_cpu = task_cpu(p);
5090
5091 if (curr_cpu == target_cpu)
5092 return 0;
5093
5094 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5095 return -EINVAL;
5096
5097 /* TODO: This is not properly updating schedstats */
5098
286549dc 5099 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5100 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5101}
0ec8aa00
PZ
5102
5103/*
5104 * Requeue a task on a given node and accurately track the number of NUMA
5105 * tasks on the runqueues
5106 */
5107void sched_setnuma(struct task_struct *p, int nid)
5108{
5109 struct rq *rq;
5110 unsigned long flags;
da0c1e65 5111 bool queued, running;
0ec8aa00
PZ
5112
5113 rq = task_rq_lock(p, &flags);
da0c1e65 5114 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5115 running = task_current(rq, p);
5116
da0c1e65 5117 if (queued)
1de64443 5118 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5119 if (running)
f3cd1c4e 5120 put_prev_task(rq, p);
0ec8aa00
PZ
5121
5122 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5123
5124 if (running)
5125 p->sched_class->set_curr_task(rq);
da0c1e65 5126 if (queued)
1de64443 5127 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5128 task_rq_unlock(rq, p, &flags);
5129}
5cc389bc 5130#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5131
1da177e4 5132#ifdef CONFIG_HOTPLUG_CPU
054b9108 5133/*
48c5ccae
PZ
5134 * Ensures that the idle task is using init_mm right before its cpu goes
5135 * offline.
054b9108 5136 */
48c5ccae 5137void idle_task_exit(void)
1da177e4 5138{
48c5ccae 5139 struct mm_struct *mm = current->active_mm;
e76bd8d9 5140
48c5ccae 5141 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5142
a53efe5f 5143 if (mm != &init_mm) {
48c5ccae 5144 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5145 finish_arch_post_lock_switch();
5146 }
48c5ccae 5147 mmdrop(mm);
1da177e4
LT
5148}
5149
5150/*
5d180232
PZ
5151 * Since this CPU is going 'away' for a while, fold any nr_active delta
5152 * we might have. Assumes we're called after migrate_tasks() so that the
5153 * nr_active count is stable.
5154 *
5155 * Also see the comment "Global load-average calculations".
1da177e4 5156 */
5d180232 5157static void calc_load_migrate(struct rq *rq)
1da177e4 5158{
5d180232
PZ
5159 long delta = calc_load_fold_active(rq);
5160 if (delta)
5161 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5162}
5163
3f1d2a31
PZ
5164static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5165{
5166}
5167
5168static const struct sched_class fake_sched_class = {
5169 .put_prev_task = put_prev_task_fake,
5170};
5171
5172static struct task_struct fake_task = {
5173 /*
5174 * Avoid pull_{rt,dl}_task()
5175 */
5176 .prio = MAX_PRIO + 1,
5177 .sched_class = &fake_sched_class,
5178};
5179
48f24c4d 5180/*
48c5ccae
PZ
5181 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5182 * try_to_wake_up()->select_task_rq().
5183 *
5184 * Called with rq->lock held even though we'er in stop_machine() and
5185 * there's no concurrency possible, we hold the required locks anyway
5186 * because of lock validation efforts.
1da177e4 5187 */
5e16bbc2 5188static void migrate_tasks(struct rq *dead_rq)
1da177e4 5189{
5e16bbc2 5190 struct rq *rq = dead_rq;
48c5ccae
PZ
5191 struct task_struct *next, *stop = rq->stop;
5192 int dest_cpu;
1da177e4
LT
5193
5194 /*
48c5ccae
PZ
5195 * Fudge the rq selection such that the below task selection loop
5196 * doesn't get stuck on the currently eligible stop task.
5197 *
5198 * We're currently inside stop_machine() and the rq is either stuck
5199 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5200 * either way we should never end up calling schedule() until we're
5201 * done here.
1da177e4 5202 */
48c5ccae 5203 rq->stop = NULL;
48f24c4d 5204
77bd3970
FW
5205 /*
5206 * put_prev_task() and pick_next_task() sched
5207 * class method both need to have an up-to-date
5208 * value of rq->clock[_task]
5209 */
5210 update_rq_clock(rq);
5211
5e16bbc2 5212 for (;;) {
48c5ccae
PZ
5213 /*
5214 * There's this thread running, bail when that's the only
5215 * remaining thread.
5216 */
5217 if (rq->nr_running == 1)
dd41f596 5218 break;
48c5ccae 5219
cbce1a68 5220 /*
5473e0cc 5221 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5222 */
5223 lockdep_pin_lock(&rq->lock);
3f1d2a31 5224 next = pick_next_task(rq, &fake_task);
48c5ccae 5225 BUG_ON(!next);
79c53799 5226 next->sched_class->put_prev_task(rq, next);
e692ab53 5227
5473e0cc
WL
5228 /*
5229 * Rules for changing task_struct::cpus_allowed are holding
5230 * both pi_lock and rq->lock, such that holding either
5231 * stabilizes the mask.
5232 *
5233 * Drop rq->lock is not quite as disastrous as it usually is
5234 * because !cpu_active at this point, which means load-balance
5235 * will not interfere. Also, stop-machine.
5236 */
5237 lockdep_unpin_lock(&rq->lock);
5238 raw_spin_unlock(&rq->lock);
5239 raw_spin_lock(&next->pi_lock);
5240 raw_spin_lock(&rq->lock);
5241
5242 /*
5243 * Since we're inside stop-machine, _nothing_ should have
5244 * changed the task, WARN if weird stuff happened, because in
5245 * that case the above rq->lock drop is a fail too.
5246 */
5247 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5248 raw_spin_unlock(&next->pi_lock);
5249 continue;
5250 }
5251
48c5ccae 5252 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5253 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5254
5e16bbc2
PZ
5255 rq = __migrate_task(rq, next, dest_cpu);
5256 if (rq != dead_rq) {
5257 raw_spin_unlock(&rq->lock);
5258 rq = dead_rq;
5259 raw_spin_lock(&rq->lock);
5260 }
5473e0cc 5261 raw_spin_unlock(&next->pi_lock);
1da177e4 5262 }
dce48a84 5263
48c5ccae 5264 rq->stop = stop;
dce48a84 5265}
1da177e4
LT
5266#endif /* CONFIG_HOTPLUG_CPU */
5267
e692ab53
NP
5268#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5269
5270static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5271 {
5272 .procname = "sched_domain",
c57baf1e 5273 .mode = 0555,
e0361851 5274 },
56992309 5275 {}
e692ab53
NP
5276};
5277
5278static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5279 {
5280 .procname = "kernel",
c57baf1e 5281 .mode = 0555,
e0361851
AD
5282 .child = sd_ctl_dir,
5283 },
56992309 5284 {}
e692ab53
NP
5285};
5286
5287static struct ctl_table *sd_alloc_ctl_entry(int n)
5288{
5289 struct ctl_table *entry =
5cf9f062 5290 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5291
e692ab53
NP
5292 return entry;
5293}
5294
6382bc90
MM
5295static void sd_free_ctl_entry(struct ctl_table **tablep)
5296{
cd790076 5297 struct ctl_table *entry;
6382bc90 5298
cd790076
MM
5299 /*
5300 * In the intermediate directories, both the child directory and
5301 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5302 * will always be set. In the lowest directory the names are
cd790076
MM
5303 * static strings and all have proc handlers.
5304 */
5305 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5306 if (entry->child)
5307 sd_free_ctl_entry(&entry->child);
cd790076
MM
5308 if (entry->proc_handler == NULL)
5309 kfree(entry->procname);
5310 }
6382bc90
MM
5311
5312 kfree(*tablep);
5313 *tablep = NULL;
5314}
5315
201c373e 5316static int min_load_idx = 0;
fd9b86d3 5317static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5318
e692ab53 5319static void
e0361851 5320set_table_entry(struct ctl_table *entry,
e692ab53 5321 const char *procname, void *data, int maxlen,
201c373e
NK
5322 umode_t mode, proc_handler *proc_handler,
5323 bool load_idx)
e692ab53 5324{
e692ab53
NP
5325 entry->procname = procname;
5326 entry->data = data;
5327 entry->maxlen = maxlen;
5328 entry->mode = mode;
5329 entry->proc_handler = proc_handler;
201c373e
NK
5330
5331 if (load_idx) {
5332 entry->extra1 = &min_load_idx;
5333 entry->extra2 = &max_load_idx;
5334 }
e692ab53
NP
5335}
5336
5337static struct ctl_table *
5338sd_alloc_ctl_domain_table(struct sched_domain *sd)
5339{
37e6bae8 5340 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5341
ad1cdc1d
MM
5342 if (table == NULL)
5343 return NULL;
5344
e0361851 5345 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5346 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5347 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5348 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5349 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5350 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5351 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5352 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5353 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5354 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5355 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5356 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5357 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5358 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5359 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5360 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5361 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5362 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5363 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5364 &sd->cache_nice_tries,
201c373e 5365 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5366 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5367 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5368 set_table_entry(&table[11], "max_newidle_lb_cost",
5369 &sd->max_newidle_lb_cost,
5370 sizeof(long), 0644, proc_doulongvec_minmax, false);
5371 set_table_entry(&table[12], "name", sd->name,
201c373e 5372 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5373 /* &table[13] is terminator */
e692ab53
NP
5374
5375 return table;
5376}
5377
be7002e6 5378static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5379{
5380 struct ctl_table *entry, *table;
5381 struct sched_domain *sd;
5382 int domain_num = 0, i;
5383 char buf[32];
5384
5385 for_each_domain(cpu, sd)
5386 domain_num++;
5387 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5388 if (table == NULL)
5389 return NULL;
e692ab53
NP
5390
5391 i = 0;
5392 for_each_domain(cpu, sd) {
5393 snprintf(buf, 32, "domain%d", i);
e692ab53 5394 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5395 entry->mode = 0555;
e692ab53
NP
5396 entry->child = sd_alloc_ctl_domain_table(sd);
5397 entry++;
5398 i++;
5399 }
5400 return table;
5401}
5402
5403static struct ctl_table_header *sd_sysctl_header;
6382bc90 5404static void register_sched_domain_sysctl(void)
e692ab53 5405{
6ad4c188 5406 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5407 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5408 char buf[32];
5409
7378547f
MM
5410 WARN_ON(sd_ctl_dir[0].child);
5411 sd_ctl_dir[0].child = entry;
5412
ad1cdc1d
MM
5413 if (entry == NULL)
5414 return;
5415
6ad4c188 5416 for_each_possible_cpu(i) {
e692ab53 5417 snprintf(buf, 32, "cpu%d", i);
e692ab53 5418 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5419 entry->mode = 0555;
e692ab53 5420 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5421 entry++;
e692ab53 5422 }
7378547f
MM
5423
5424 WARN_ON(sd_sysctl_header);
e692ab53
NP
5425 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5426}
6382bc90 5427
7378547f 5428/* may be called multiple times per register */
6382bc90
MM
5429static void unregister_sched_domain_sysctl(void)
5430{
781b0203 5431 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5432 sd_sysctl_header = NULL;
7378547f
MM
5433 if (sd_ctl_dir[0].child)
5434 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5435}
e692ab53 5436#else
6382bc90
MM
5437static void register_sched_domain_sysctl(void)
5438{
5439}
5440static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5441{
5442}
5cc389bc 5443#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5444
1f11eb6a
GH
5445static void set_rq_online(struct rq *rq)
5446{
5447 if (!rq->online) {
5448 const struct sched_class *class;
5449
c6c4927b 5450 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5451 rq->online = 1;
5452
5453 for_each_class(class) {
5454 if (class->rq_online)
5455 class->rq_online(rq);
5456 }
5457 }
5458}
5459
5460static void set_rq_offline(struct rq *rq)
5461{
5462 if (rq->online) {
5463 const struct sched_class *class;
5464
5465 for_each_class(class) {
5466 if (class->rq_offline)
5467 class->rq_offline(rq);
5468 }
5469
c6c4927b 5470 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5471 rq->online = 0;
5472 }
5473}
5474
1da177e4
LT
5475/*
5476 * migration_call - callback that gets triggered when a CPU is added.
5477 * Here we can start up the necessary migration thread for the new CPU.
5478 */
0db0628d 5479static int
48f24c4d 5480migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5481{
48f24c4d 5482 int cpu = (long)hcpu;
1da177e4 5483 unsigned long flags;
969c7921 5484 struct rq *rq = cpu_rq(cpu);
1da177e4 5485
48c5ccae 5486 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5487
1da177e4 5488 case CPU_UP_PREPARE:
a468d389 5489 rq->calc_load_update = calc_load_update;
1da177e4 5490 break;
48f24c4d 5491
1da177e4 5492 case CPU_ONLINE:
1f94ef59 5493 /* Update our root-domain */
05fa785c 5494 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5495 if (rq->rd) {
c6c4927b 5496 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5497
5498 set_rq_online(rq);
1f94ef59 5499 }
05fa785c 5500 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5501 break;
48f24c4d 5502
1da177e4 5503#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5504 case CPU_DYING:
317f3941 5505 sched_ttwu_pending();
57d885fe 5506 /* Update our root-domain */
05fa785c 5507 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5508 if (rq->rd) {
c6c4927b 5509 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5510 set_rq_offline(rq);
57d885fe 5511 }
5e16bbc2 5512 migrate_tasks(rq);
48c5ccae 5513 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5514 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5515 break;
48c5ccae 5516
5d180232 5517 case CPU_DEAD:
f319da0c 5518 calc_load_migrate(rq);
57d885fe 5519 break;
1da177e4
LT
5520#endif
5521 }
49c022e6
PZ
5522
5523 update_max_interval();
5524
1da177e4
LT
5525 return NOTIFY_OK;
5526}
5527
f38b0820
PM
5528/*
5529 * Register at high priority so that task migration (migrate_all_tasks)
5530 * happens before everything else. This has to be lower priority than
cdd6c482 5531 * the notifier in the perf_event subsystem, though.
1da177e4 5532 */
0db0628d 5533static struct notifier_block migration_notifier = {
1da177e4 5534 .notifier_call = migration_call,
50a323b7 5535 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5536};
5537
6a82b60d 5538static void set_cpu_rq_start_time(void)
a803f026
CM
5539{
5540 int cpu = smp_processor_id();
5541 struct rq *rq = cpu_rq(cpu);
5542 rq->age_stamp = sched_clock_cpu(cpu);
5543}
5544
0db0628d 5545static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5546 unsigned long action, void *hcpu)
5547{
5548 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5549 case CPU_STARTING:
5550 set_cpu_rq_start_time();
5551 return NOTIFY_OK;
dd9d3843
JS
5552 case CPU_ONLINE:
5553 /*
5554 * At this point a starting CPU has marked itself as online via
5555 * set_cpu_online(). But it might not yet have marked itself
5556 * as active, which is essential from here on.
5557 *
5558 * Thus, fall-through and help the starting CPU along.
5559 */
3a101d05
TH
5560 case CPU_DOWN_FAILED:
5561 set_cpu_active((long)hcpu, true);
5562 return NOTIFY_OK;
5563 default:
5564 return NOTIFY_DONE;
5565 }
5566}
5567
0db0628d 5568static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5569 unsigned long action, void *hcpu)
5570{
5571 switch (action & ~CPU_TASKS_FROZEN) {
5572 case CPU_DOWN_PREPARE:
3c18d447 5573 set_cpu_active((long)hcpu, false);
3a101d05 5574 return NOTIFY_OK;
3c18d447
JL
5575 default:
5576 return NOTIFY_DONE;
3a101d05
TH
5577 }
5578}
5579
7babe8db 5580static int __init migration_init(void)
1da177e4
LT
5581{
5582 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5583 int err;
48f24c4d 5584
3a101d05 5585 /* Initialize migration for the boot CPU */
07dccf33
AM
5586 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5587 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5588 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5589 register_cpu_notifier(&migration_notifier);
7babe8db 5590
3a101d05
TH
5591 /* Register cpu active notifiers */
5592 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5593 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5594
a004cd42 5595 return 0;
1da177e4 5596}
7babe8db 5597early_initcall(migration_init);
476f3534 5598
4cb98839
PZ
5599static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5600
3e9830dc 5601#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5602
d039ac60 5603static __read_mostly int sched_debug_enabled;
f6630114 5604
d039ac60 5605static int __init sched_debug_setup(char *str)
f6630114 5606{
d039ac60 5607 sched_debug_enabled = 1;
f6630114
MT
5608
5609 return 0;
5610}
d039ac60
PZ
5611early_param("sched_debug", sched_debug_setup);
5612
5613static inline bool sched_debug(void)
5614{
5615 return sched_debug_enabled;
5616}
f6630114 5617
7c16ec58 5618static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5619 struct cpumask *groupmask)
1da177e4 5620{
4dcf6aff 5621 struct sched_group *group = sd->groups;
1da177e4 5622
96f874e2 5623 cpumask_clear(groupmask);
4dcf6aff
IM
5624
5625 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5626
5627 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5628 printk("does not load-balance\n");
4dcf6aff 5629 if (sd->parent)
3df0fc5b
PZ
5630 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5631 " has parent");
4dcf6aff 5632 return -1;
41c7ce9a
NP
5633 }
5634
333470ee
TH
5635 printk(KERN_CONT "span %*pbl level %s\n",
5636 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5637
758b2cdc 5638 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5639 printk(KERN_ERR "ERROR: domain->span does not contain "
5640 "CPU%d\n", cpu);
4dcf6aff 5641 }
758b2cdc 5642 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5643 printk(KERN_ERR "ERROR: domain->groups does not contain"
5644 " CPU%d\n", cpu);
4dcf6aff 5645 }
1da177e4 5646
4dcf6aff 5647 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5648 do {
4dcf6aff 5649 if (!group) {
3df0fc5b
PZ
5650 printk("\n");
5651 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5652 break;
5653 }
5654
758b2cdc 5655 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5656 printk(KERN_CONT "\n");
5657 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5658 break;
5659 }
1da177e4 5660
cb83b629
PZ
5661 if (!(sd->flags & SD_OVERLAP) &&
5662 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5663 printk(KERN_CONT "\n");
5664 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5665 break;
5666 }
1da177e4 5667
758b2cdc 5668 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5669
333470ee
TH
5670 printk(KERN_CONT " %*pbl",
5671 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5672 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5673 printk(KERN_CONT " (cpu_capacity = %d)",
5674 group->sgc->capacity);
381512cf 5675 }
1da177e4 5676
4dcf6aff
IM
5677 group = group->next;
5678 } while (group != sd->groups);
3df0fc5b 5679 printk(KERN_CONT "\n");
1da177e4 5680
758b2cdc 5681 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5682 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5683
758b2cdc
RR
5684 if (sd->parent &&
5685 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5686 printk(KERN_ERR "ERROR: parent span is not a superset "
5687 "of domain->span\n");
4dcf6aff
IM
5688 return 0;
5689}
1da177e4 5690
4dcf6aff
IM
5691static void sched_domain_debug(struct sched_domain *sd, int cpu)
5692{
5693 int level = 0;
1da177e4 5694
d039ac60 5695 if (!sched_debug_enabled)
f6630114
MT
5696 return;
5697
4dcf6aff
IM
5698 if (!sd) {
5699 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5700 return;
5701 }
1da177e4 5702
4dcf6aff
IM
5703 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5704
5705 for (;;) {
4cb98839 5706 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5707 break;
1da177e4
LT
5708 level++;
5709 sd = sd->parent;
33859f7f 5710 if (!sd)
4dcf6aff
IM
5711 break;
5712 }
1da177e4 5713}
6d6bc0ad 5714#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5715# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5716static inline bool sched_debug(void)
5717{
5718 return false;
5719}
6d6bc0ad 5720#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5721
1a20ff27 5722static int sd_degenerate(struct sched_domain *sd)
245af2c7 5723{
758b2cdc 5724 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5725 return 1;
5726
5727 /* Following flags need at least 2 groups */
5728 if (sd->flags & (SD_LOAD_BALANCE |
5729 SD_BALANCE_NEWIDLE |
5730 SD_BALANCE_FORK |
89c4710e 5731 SD_BALANCE_EXEC |
5d4dfddd 5732 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5733 SD_SHARE_PKG_RESOURCES |
5734 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5735 if (sd->groups != sd->groups->next)
5736 return 0;
5737 }
5738
5739 /* Following flags don't use groups */
c88d5910 5740 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5741 return 0;
5742
5743 return 1;
5744}
5745
48f24c4d
IM
5746static int
5747sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5748{
5749 unsigned long cflags = sd->flags, pflags = parent->flags;
5750
5751 if (sd_degenerate(parent))
5752 return 1;
5753
758b2cdc 5754 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5755 return 0;
5756
245af2c7
SS
5757 /* Flags needing groups don't count if only 1 group in parent */
5758 if (parent->groups == parent->groups->next) {
5759 pflags &= ~(SD_LOAD_BALANCE |
5760 SD_BALANCE_NEWIDLE |
5761 SD_BALANCE_FORK |
89c4710e 5762 SD_BALANCE_EXEC |
5d4dfddd 5763 SD_SHARE_CPUCAPACITY |
10866e62 5764 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5765 SD_PREFER_SIBLING |
5766 SD_SHARE_POWERDOMAIN);
5436499e
KC
5767 if (nr_node_ids == 1)
5768 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5769 }
5770 if (~cflags & pflags)
5771 return 0;
5772
5773 return 1;
5774}
5775
dce840a0 5776static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5777{
dce840a0 5778 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5779
68e74568 5780 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5781 cpudl_cleanup(&rd->cpudl);
1baca4ce 5782 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5783 free_cpumask_var(rd->rto_mask);
5784 free_cpumask_var(rd->online);
5785 free_cpumask_var(rd->span);
5786 kfree(rd);
5787}
5788
57d885fe
GH
5789static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5790{
a0490fa3 5791 struct root_domain *old_rd = NULL;
57d885fe 5792 unsigned long flags;
57d885fe 5793
05fa785c 5794 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5795
5796 if (rq->rd) {
a0490fa3 5797 old_rd = rq->rd;
57d885fe 5798
c6c4927b 5799 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5800 set_rq_offline(rq);
57d885fe 5801
c6c4927b 5802 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5803
a0490fa3 5804 /*
0515973f 5805 * If we dont want to free the old_rd yet then
a0490fa3
IM
5806 * set old_rd to NULL to skip the freeing later
5807 * in this function:
5808 */
5809 if (!atomic_dec_and_test(&old_rd->refcount))
5810 old_rd = NULL;
57d885fe
GH
5811 }
5812
5813 atomic_inc(&rd->refcount);
5814 rq->rd = rd;
5815
c6c4927b 5816 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5817 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5818 set_rq_online(rq);
57d885fe 5819
05fa785c 5820 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5821
5822 if (old_rd)
dce840a0 5823 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5824}
5825
68c38fc3 5826static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5827{
5828 memset(rd, 0, sizeof(*rd));
5829
68c38fc3 5830 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5831 goto out;
68c38fc3 5832 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5833 goto free_span;
1baca4ce 5834 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5835 goto free_online;
1baca4ce
JL
5836 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5837 goto free_dlo_mask;
6e0534f2 5838
332ac17e 5839 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5840 if (cpudl_init(&rd->cpudl) != 0)
5841 goto free_dlo_mask;
332ac17e 5842
68c38fc3 5843 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5844 goto free_rto_mask;
c6c4927b 5845 return 0;
6e0534f2 5846
68e74568
RR
5847free_rto_mask:
5848 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5849free_dlo_mask:
5850 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5851free_online:
5852 free_cpumask_var(rd->online);
5853free_span:
5854 free_cpumask_var(rd->span);
0c910d28 5855out:
c6c4927b 5856 return -ENOMEM;
57d885fe
GH
5857}
5858
029632fb
PZ
5859/*
5860 * By default the system creates a single root-domain with all cpus as
5861 * members (mimicking the global state we have today).
5862 */
5863struct root_domain def_root_domain;
5864
57d885fe
GH
5865static void init_defrootdomain(void)
5866{
68c38fc3 5867 init_rootdomain(&def_root_domain);
c6c4927b 5868
57d885fe
GH
5869 atomic_set(&def_root_domain.refcount, 1);
5870}
5871
dc938520 5872static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5873{
5874 struct root_domain *rd;
5875
5876 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5877 if (!rd)
5878 return NULL;
5879
68c38fc3 5880 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5881 kfree(rd);
5882 return NULL;
5883 }
57d885fe
GH
5884
5885 return rd;
5886}
5887
63b2ca30 5888static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5889{
5890 struct sched_group *tmp, *first;
5891
5892 if (!sg)
5893 return;
5894
5895 first = sg;
5896 do {
5897 tmp = sg->next;
5898
63b2ca30
NP
5899 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5900 kfree(sg->sgc);
e3589f6c
PZ
5901
5902 kfree(sg);
5903 sg = tmp;
5904 } while (sg != first);
5905}
5906
dce840a0
PZ
5907static void free_sched_domain(struct rcu_head *rcu)
5908{
5909 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5910
5911 /*
5912 * If its an overlapping domain it has private groups, iterate and
5913 * nuke them all.
5914 */
5915 if (sd->flags & SD_OVERLAP) {
5916 free_sched_groups(sd->groups, 1);
5917 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5918 kfree(sd->groups->sgc);
dce840a0 5919 kfree(sd->groups);
9c3f75cb 5920 }
dce840a0
PZ
5921 kfree(sd);
5922}
5923
5924static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5925{
5926 call_rcu(&sd->rcu, free_sched_domain);
5927}
5928
5929static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5930{
5931 for (; sd; sd = sd->parent)
5932 destroy_sched_domain(sd, cpu);
5933}
5934
518cd623
PZ
5935/*
5936 * Keep a special pointer to the highest sched_domain that has
5937 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5938 * allows us to avoid some pointer chasing select_idle_sibling().
5939 *
5940 * Also keep a unique ID per domain (we use the first cpu number in
5941 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5942 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5943 */
5944DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5945DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5946DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5947DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5948DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5949DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5950
5951static void update_top_cache_domain(int cpu)
5952{
5953 struct sched_domain *sd;
5d4cf996 5954 struct sched_domain *busy_sd = NULL;
518cd623 5955 int id = cpu;
7d9ffa89 5956 int size = 1;
518cd623
PZ
5957
5958 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5959 if (sd) {
518cd623 5960 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5961 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5962 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5963 }
5d4cf996 5964 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5965
5966 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5967 per_cpu(sd_llc_size, cpu) = size;
518cd623 5968 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5969
5970 sd = lowest_flag_domain(cpu, SD_NUMA);
5971 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5972
5973 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5974 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5975}
5976
1da177e4 5977/*
0eab9146 5978 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5979 * hold the hotplug lock.
5980 */
0eab9146
IM
5981static void
5982cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5983{
70b97a7f 5984 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5985 struct sched_domain *tmp;
5986
5987 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5988 for (tmp = sd; tmp; ) {
245af2c7
SS
5989 struct sched_domain *parent = tmp->parent;
5990 if (!parent)
5991 break;
f29c9b1c 5992
1a848870 5993 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5994 tmp->parent = parent->parent;
1a848870
SS
5995 if (parent->parent)
5996 parent->parent->child = tmp;
10866e62
PZ
5997 /*
5998 * Transfer SD_PREFER_SIBLING down in case of a
5999 * degenerate parent; the spans match for this
6000 * so the property transfers.
6001 */
6002 if (parent->flags & SD_PREFER_SIBLING)
6003 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6004 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6005 } else
6006 tmp = tmp->parent;
245af2c7
SS
6007 }
6008
1a848870 6009 if (sd && sd_degenerate(sd)) {
dce840a0 6010 tmp = sd;
245af2c7 6011 sd = sd->parent;
dce840a0 6012 destroy_sched_domain(tmp, cpu);
1a848870
SS
6013 if (sd)
6014 sd->child = NULL;
6015 }
1da177e4 6016
4cb98839 6017 sched_domain_debug(sd, cpu);
1da177e4 6018
57d885fe 6019 rq_attach_root(rq, rd);
dce840a0 6020 tmp = rq->sd;
674311d5 6021 rcu_assign_pointer(rq->sd, sd);
dce840a0 6022 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6023
6024 update_top_cache_domain(cpu);
1da177e4
LT
6025}
6026
1da177e4
LT
6027/* Setup the mask of cpus configured for isolated domains */
6028static int __init isolated_cpu_setup(char *str)
6029{
bdddd296 6030 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6031 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6032 return 1;
6033}
6034
8927f494 6035__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6036
49a02c51 6037struct s_data {
21d42ccf 6038 struct sched_domain ** __percpu sd;
49a02c51
AH
6039 struct root_domain *rd;
6040};
6041
2109b99e 6042enum s_alloc {
2109b99e 6043 sa_rootdomain,
21d42ccf 6044 sa_sd,
dce840a0 6045 sa_sd_storage,
2109b99e
AH
6046 sa_none,
6047};
6048
c1174876
PZ
6049/*
6050 * Build an iteration mask that can exclude certain CPUs from the upwards
6051 * domain traversal.
6052 *
6053 * Asymmetric node setups can result in situations where the domain tree is of
6054 * unequal depth, make sure to skip domains that already cover the entire
6055 * range.
6056 *
6057 * In that case build_sched_domains() will have terminated the iteration early
6058 * and our sibling sd spans will be empty. Domains should always include the
6059 * cpu they're built on, so check that.
6060 *
6061 */
6062static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6063{
6064 const struct cpumask *span = sched_domain_span(sd);
6065 struct sd_data *sdd = sd->private;
6066 struct sched_domain *sibling;
6067 int i;
6068
6069 for_each_cpu(i, span) {
6070 sibling = *per_cpu_ptr(sdd->sd, i);
6071 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6072 continue;
6073
6074 cpumask_set_cpu(i, sched_group_mask(sg));
6075 }
6076}
6077
6078/*
6079 * Return the canonical balance cpu for this group, this is the first cpu
6080 * of this group that's also in the iteration mask.
6081 */
6082int group_balance_cpu(struct sched_group *sg)
6083{
6084 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6085}
6086
e3589f6c
PZ
6087static int
6088build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6089{
6090 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6091 const struct cpumask *span = sched_domain_span(sd);
6092 struct cpumask *covered = sched_domains_tmpmask;
6093 struct sd_data *sdd = sd->private;
aaecac4a 6094 struct sched_domain *sibling;
e3589f6c
PZ
6095 int i;
6096
6097 cpumask_clear(covered);
6098
6099 for_each_cpu(i, span) {
6100 struct cpumask *sg_span;
6101
6102 if (cpumask_test_cpu(i, covered))
6103 continue;
6104
aaecac4a 6105 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6106
6107 /* See the comment near build_group_mask(). */
aaecac4a 6108 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6109 continue;
6110
e3589f6c 6111 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6112 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6113
6114 if (!sg)
6115 goto fail;
6116
6117 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6118 if (sibling->child)
6119 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6120 else
e3589f6c
PZ
6121 cpumask_set_cpu(i, sg_span);
6122
6123 cpumask_or(covered, covered, sg_span);
6124
63b2ca30
NP
6125 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6126 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6127 build_group_mask(sd, sg);
6128
c3decf0d 6129 /*
63b2ca30 6130 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6131 * domains and no possible iteration will get us here, we won't
6132 * die on a /0 trap.
6133 */
ca8ce3d0 6134 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6135
c1174876
PZ
6136 /*
6137 * Make sure the first group of this domain contains the
6138 * canonical balance cpu. Otherwise the sched_domain iteration
6139 * breaks. See update_sg_lb_stats().
6140 */
74a5ce20 6141 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6142 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6143 groups = sg;
6144
6145 if (!first)
6146 first = sg;
6147 if (last)
6148 last->next = sg;
6149 last = sg;
6150 last->next = first;
6151 }
6152 sd->groups = groups;
6153
6154 return 0;
6155
6156fail:
6157 free_sched_groups(first, 0);
6158
6159 return -ENOMEM;
6160}
6161
dce840a0 6162static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6163{
dce840a0
PZ
6164 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6165 struct sched_domain *child = sd->child;
1da177e4 6166
dce840a0
PZ
6167 if (child)
6168 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6169
9c3f75cb 6170 if (sg) {
dce840a0 6171 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6172 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6173 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6174 }
dce840a0
PZ
6175
6176 return cpu;
1e9f28fa 6177}
1e9f28fa 6178
01a08546 6179/*
dce840a0
PZ
6180 * build_sched_groups will build a circular linked list of the groups
6181 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6182 * and ->cpu_capacity to 0.
e3589f6c
PZ
6183 *
6184 * Assumes the sched_domain tree is fully constructed
01a08546 6185 */
e3589f6c
PZ
6186static int
6187build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6188{
dce840a0
PZ
6189 struct sched_group *first = NULL, *last = NULL;
6190 struct sd_data *sdd = sd->private;
6191 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6192 struct cpumask *covered;
dce840a0 6193 int i;
9c1cfda2 6194
e3589f6c
PZ
6195 get_group(cpu, sdd, &sd->groups);
6196 atomic_inc(&sd->groups->ref);
6197
0936629f 6198 if (cpu != cpumask_first(span))
e3589f6c
PZ
6199 return 0;
6200
f96225fd
PZ
6201 lockdep_assert_held(&sched_domains_mutex);
6202 covered = sched_domains_tmpmask;
6203
dce840a0 6204 cpumask_clear(covered);
6711cab4 6205
dce840a0
PZ
6206 for_each_cpu(i, span) {
6207 struct sched_group *sg;
cd08e923 6208 int group, j;
6711cab4 6209
dce840a0
PZ
6210 if (cpumask_test_cpu(i, covered))
6211 continue;
6711cab4 6212
cd08e923 6213 group = get_group(i, sdd, &sg);
c1174876 6214 cpumask_setall(sched_group_mask(sg));
0601a88d 6215
dce840a0
PZ
6216 for_each_cpu(j, span) {
6217 if (get_group(j, sdd, NULL) != group)
6218 continue;
0601a88d 6219
dce840a0
PZ
6220 cpumask_set_cpu(j, covered);
6221 cpumask_set_cpu(j, sched_group_cpus(sg));
6222 }
0601a88d 6223
dce840a0
PZ
6224 if (!first)
6225 first = sg;
6226 if (last)
6227 last->next = sg;
6228 last = sg;
6229 }
6230 last->next = first;
e3589f6c
PZ
6231
6232 return 0;
0601a88d 6233}
51888ca2 6234
89c4710e 6235/*
63b2ca30 6236 * Initialize sched groups cpu_capacity.
89c4710e 6237 *
63b2ca30 6238 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6239 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6240 * Typically cpu_capacity for all the groups in a sched domain will be same
6241 * unless there are asymmetries in the topology. If there are asymmetries,
6242 * group having more cpu_capacity will pickup more load compared to the
6243 * group having less cpu_capacity.
89c4710e 6244 */
63b2ca30 6245static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6246{
e3589f6c 6247 struct sched_group *sg = sd->groups;
89c4710e 6248
94c95ba6 6249 WARN_ON(!sg);
e3589f6c
PZ
6250
6251 do {
6252 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6253 sg = sg->next;
6254 } while (sg != sd->groups);
89c4710e 6255
c1174876 6256 if (cpu != group_balance_cpu(sg))
e3589f6c 6257 return;
aae6d3dd 6258
63b2ca30
NP
6259 update_group_capacity(sd, cpu);
6260 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6261}
6262
7c16ec58
MT
6263/*
6264 * Initializers for schedule domains
6265 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6266 */
6267
1d3504fc 6268static int default_relax_domain_level = -1;
60495e77 6269int sched_domain_level_max;
1d3504fc
HS
6270
6271static int __init setup_relax_domain_level(char *str)
6272{
a841f8ce
DS
6273 if (kstrtoint(str, 0, &default_relax_domain_level))
6274 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6275
1d3504fc
HS
6276 return 1;
6277}
6278__setup("relax_domain_level=", setup_relax_domain_level);
6279
6280static void set_domain_attribute(struct sched_domain *sd,
6281 struct sched_domain_attr *attr)
6282{
6283 int request;
6284
6285 if (!attr || attr->relax_domain_level < 0) {
6286 if (default_relax_domain_level < 0)
6287 return;
6288 else
6289 request = default_relax_domain_level;
6290 } else
6291 request = attr->relax_domain_level;
6292 if (request < sd->level) {
6293 /* turn off idle balance on this domain */
c88d5910 6294 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6295 } else {
6296 /* turn on idle balance on this domain */
c88d5910 6297 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6298 }
6299}
6300
54ab4ff4
PZ
6301static void __sdt_free(const struct cpumask *cpu_map);
6302static int __sdt_alloc(const struct cpumask *cpu_map);
6303
2109b99e
AH
6304static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6305 const struct cpumask *cpu_map)
6306{
6307 switch (what) {
2109b99e 6308 case sa_rootdomain:
822ff793
PZ
6309 if (!atomic_read(&d->rd->refcount))
6310 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6311 case sa_sd:
6312 free_percpu(d->sd); /* fall through */
dce840a0 6313 case sa_sd_storage:
54ab4ff4 6314 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6315 case sa_none:
6316 break;
6317 }
6318}
3404c8d9 6319
2109b99e
AH
6320static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6321 const struct cpumask *cpu_map)
6322{
dce840a0
PZ
6323 memset(d, 0, sizeof(*d));
6324
54ab4ff4
PZ
6325 if (__sdt_alloc(cpu_map))
6326 return sa_sd_storage;
dce840a0
PZ
6327 d->sd = alloc_percpu(struct sched_domain *);
6328 if (!d->sd)
6329 return sa_sd_storage;
2109b99e 6330 d->rd = alloc_rootdomain();
dce840a0 6331 if (!d->rd)
21d42ccf 6332 return sa_sd;
2109b99e
AH
6333 return sa_rootdomain;
6334}
57d885fe 6335
dce840a0
PZ
6336/*
6337 * NULL the sd_data elements we've used to build the sched_domain and
6338 * sched_group structure so that the subsequent __free_domain_allocs()
6339 * will not free the data we're using.
6340 */
6341static void claim_allocations(int cpu, struct sched_domain *sd)
6342{
6343 struct sd_data *sdd = sd->private;
dce840a0
PZ
6344
6345 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6346 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6347
e3589f6c 6348 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6349 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6350
63b2ca30
NP
6351 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6352 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6353}
6354
cb83b629 6355#ifdef CONFIG_NUMA
cb83b629 6356static int sched_domains_numa_levels;
e3fe70b1 6357enum numa_topology_type sched_numa_topology_type;
cb83b629 6358static int *sched_domains_numa_distance;
9942f79b 6359int sched_max_numa_distance;
cb83b629
PZ
6360static struct cpumask ***sched_domains_numa_masks;
6361static int sched_domains_curr_level;
143e1e28 6362#endif
cb83b629 6363
143e1e28
VG
6364/*
6365 * SD_flags allowed in topology descriptions.
6366 *
5d4dfddd 6367 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6368 * SD_SHARE_PKG_RESOURCES - describes shared caches
6369 * SD_NUMA - describes NUMA topologies
d77b3ed5 6370 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6371 *
6372 * Odd one out:
6373 * SD_ASYM_PACKING - describes SMT quirks
6374 */
6375#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6376 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6377 SD_SHARE_PKG_RESOURCES | \
6378 SD_NUMA | \
d77b3ed5
VG
6379 SD_ASYM_PACKING | \
6380 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6381
6382static struct sched_domain *
143e1e28 6383sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6384{
6385 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6386 int sd_weight, sd_flags = 0;
6387
6388#ifdef CONFIG_NUMA
6389 /*
6390 * Ugly hack to pass state to sd_numa_mask()...
6391 */
6392 sched_domains_curr_level = tl->numa_level;
6393#endif
6394
6395 sd_weight = cpumask_weight(tl->mask(cpu));
6396
6397 if (tl->sd_flags)
6398 sd_flags = (*tl->sd_flags)();
6399 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6400 "wrong sd_flags in topology description\n"))
6401 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6402
6403 *sd = (struct sched_domain){
6404 .min_interval = sd_weight,
6405 .max_interval = 2*sd_weight,
6406 .busy_factor = 32,
870a0bb5 6407 .imbalance_pct = 125,
143e1e28
VG
6408
6409 .cache_nice_tries = 0,
6410 .busy_idx = 0,
6411 .idle_idx = 0,
cb83b629
PZ
6412 .newidle_idx = 0,
6413 .wake_idx = 0,
6414 .forkexec_idx = 0,
6415
6416 .flags = 1*SD_LOAD_BALANCE
6417 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6418 | 1*SD_BALANCE_EXEC
6419 | 1*SD_BALANCE_FORK
cb83b629 6420 | 0*SD_BALANCE_WAKE
143e1e28 6421 | 1*SD_WAKE_AFFINE
5d4dfddd 6422 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6423 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6424 | 0*SD_SERIALIZE
cb83b629 6425 | 0*SD_PREFER_SIBLING
143e1e28
VG
6426 | 0*SD_NUMA
6427 | sd_flags
cb83b629 6428 ,
143e1e28 6429
cb83b629
PZ
6430 .last_balance = jiffies,
6431 .balance_interval = sd_weight,
143e1e28 6432 .smt_gain = 0,
2b4cfe64
JL
6433 .max_newidle_lb_cost = 0,
6434 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6435#ifdef CONFIG_SCHED_DEBUG
6436 .name = tl->name,
6437#endif
cb83b629 6438 };
cb83b629
PZ
6439
6440 /*
143e1e28 6441 * Convert topological properties into behaviour.
cb83b629 6442 */
143e1e28 6443
5d4dfddd 6444 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6445 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6446 sd->imbalance_pct = 110;
6447 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6448
6449 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6450 sd->imbalance_pct = 117;
6451 sd->cache_nice_tries = 1;
6452 sd->busy_idx = 2;
6453
6454#ifdef CONFIG_NUMA
6455 } else if (sd->flags & SD_NUMA) {
6456 sd->cache_nice_tries = 2;
6457 sd->busy_idx = 3;
6458 sd->idle_idx = 2;
6459
6460 sd->flags |= SD_SERIALIZE;
6461 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6462 sd->flags &= ~(SD_BALANCE_EXEC |
6463 SD_BALANCE_FORK |
6464 SD_WAKE_AFFINE);
6465 }
6466
6467#endif
6468 } else {
6469 sd->flags |= SD_PREFER_SIBLING;
6470 sd->cache_nice_tries = 1;
6471 sd->busy_idx = 2;
6472 sd->idle_idx = 1;
6473 }
6474
6475 sd->private = &tl->data;
cb83b629
PZ
6476
6477 return sd;
6478}
6479
143e1e28
VG
6480/*
6481 * Topology list, bottom-up.
6482 */
6483static struct sched_domain_topology_level default_topology[] = {
6484#ifdef CONFIG_SCHED_SMT
6485 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6486#endif
6487#ifdef CONFIG_SCHED_MC
6488 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6489#endif
6490 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6491 { NULL, },
6492};
6493
c6e1e7b5
JG
6494static struct sched_domain_topology_level *sched_domain_topology =
6495 default_topology;
143e1e28
VG
6496
6497#define for_each_sd_topology(tl) \
6498 for (tl = sched_domain_topology; tl->mask; tl++)
6499
6500void set_sched_topology(struct sched_domain_topology_level *tl)
6501{
6502 sched_domain_topology = tl;
6503}
6504
6505#ifdef CONFIG_NUMA
6506
cb83b629
PZ
6507static const struct cpumask *sd_numa_mask(int cpu)
6508{
6509 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6510}
6511
d039ac60
PZ
6512static void sched_numa_warn(const char *str)
6513{
6514 static int done = false;
6515 int i,j;
6516
6517 if (done)
6518 return;
6519
6520 done = true;
6521
6522 printk(KERN_WARNING "ERROR: %s\n\n", str);
6523
6524 for (i = 0; i < nr_node_ids; i++) {
6525 printk(KERN_WARNING " ");
6526 for (j = 0; j < nr_node_ids; j++)
6527 printk(KERN_CONT "%02d ", node_distance(i,j));
6528 printk(KERN_CONT "\n");
6529 }
6530 printk(KERN_WARNING "\n");
6531}
6532
9942f79b 6533bool find_numa_distance(int distance)
d039ac60
PZ
6534{
6535 int i;
6536
6537 if (distance == node_distance(0, 0))
6538 return true;
6539
6540 for (i = 0; i < sched_domains_numa_levels; i++) {
6541 if (sched_domains_numa_distance[i] == distance)
6542 return true;
6543 }
6544
6545 return false;
6546}
6547
e3fe70b1
RR
6548/*
6549 * A system can have three types of NUMA topology:
6550 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6551 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6552 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6553 *
6554 * The difference between a glueless mesh topology and a backplane
6555 * topology lies in whether communication between not directly
6556 * connected nodes goes through intermediary nodes (where programs
6557 * could run), or through backplane controllers. This affects
6558 * placement of programs.
6559 *
6560 * The type of topology can be discerned with the following tests:
6561 * - If the maximum distance between any nodes is 1 hop, the system
6562 * is directly connected.
6563 * - If for two nodes A and B, located N > 1 hops away from each other,
6564 * there is an intermediary node C, which is < N hops away from both
6565 * nodes A and B, the system is a glueless mesh.
6566 */
6567static void init_numa_topology_type(void)
6568{
6569 int a, b, c, n;
6570
6571 n = sched_max_numa_distance;
6572
e237882b 6573 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6574 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6575 return;
6576 }
e3fe70b1
RR
6577
6578 for_each_online_node(a) {
6579 for_each_online_node(b) {
6580 /* Find two nodes furthest removed from each other. */
6581 if (node_distance(a, b) < n)
6582 continue;
6583
6584 /* Is there an intermediary node between a and b? */
6585 for_each_online_node(c) {
6586 if (node_distance(a, c) < n &&
6587 node_distance(b, c) < n) {
6588 sched_numa_topology_type =
6589 NUMA_GLUELESS_MESH;
6590 return;
6591 }
6592 }
6593
6594 sched_numa_topology_type = NUMA_BACKPLANE;
6595 return;
6596 }
6597 }
6598}
6599
cb83b629
PZ
6600static void sched_init_numa(void)
6601{
6602 int next_distance, curr_distance = node_distance(0, 0);
6603 struct sched_domain_topology_level *tl;
6604 int level = 0;
6605 int i, j, k;
6606
cb83b629
PZ
6607 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6608 if (!sched_domains_numa_distance)
6609 return;
6610
6611 /*
6612 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6613 * unique distances in the node_distance() table.
6614 *
6615 * Assumes node_distance(0,j) includes all distances in
6616 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6617 */
6618 next_distance = curr_distance;
6619 for (i = 0; i < nr_node_ids; i++) {
6620 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6621 for (k = 0; k < nr_node_ids; k++) {
6622 int distance = node_distance(i, k);
6623
6624 if (distance > curr_distance &&
6625 (distance < next_distance ||
6626 next_distance == curr_distance))
6627 next_distance = distance;
6628
6629 /*
6630 * While not a strong assumption it would be nice to know
6631 * about cases where if node A is connected to B, B is not
6632 * equally connected to A.
6633 */
6634 if (sched_debug() && node_distance(k, i) != distance)
6635 sched_numa_warn("Node-distance not symmetric");
6636
6637 if (sched_debug() && i && !find_numa_distance(distance))
6638 sched_numa_warn("Node-0 not representative");
6639 }
6640 if (next_distance != curr_distance) {
6641 sched_domains_numa_distance[level++] = next_distance;
6642 sched_domains_numa_levels = level;
6643 curr_distance = next_distance;
6644 } else break;
cb83b629 6645 }
d039ac60
PZ
6646
6647 /*
6648 * In case of sched_debug() we verify the above assumption.
6649 */
6650 if (!sched_debug())
6651 break;
cb83b629 6652 }
c123588b
AR
6653
6654 if (!level)
6655 return;
6656
cb83b629
PZ
6657 /*
6658 * 'level' contains the number of unique distances, excluding the
6659 * identity distance node_distance(i,i).
6660 *
28b4a521 6661 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6662 * numbers.
6663 */
6664
5f7865f3
TC
6665 /*
6666 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6667 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6668 * the array will contain less then 'level' members. This could be
6669 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6670 * in other functions.
6671 *
6672 * We reset it to 'level' at the end of this function.
6673 */
6674 sched_domains_numa_levels = 0;
6675
cb83b629
PZ
6676 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6677 if (!sched_domains_numa_masks)
6678 return;
6679
6680 /*
6681 * Now for each level, construct a mask per node which contains all
6682 * cpus of nodes that are that many hops away from us.
6683 */
6684 for (i = 0; i < level; i++) {
6685 sched_domains_numa_masks[i] =
6686 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6687 if (!sched_domains_numa_masks[i])
6688 return;
6689
6690 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6691 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6692 if (!mask)
6693 return;
6694
6695 sched_domains_numa_masks[i][j] = mask;
6696
6697 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6698 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6699 continue;
6700
6701 cpumask_or(mask, mask, cpumask_of_node(k));
6702 }
6703 }
6704 }
6705
143e1e28
VG
6706 /* Compute default topology size */
6707 for (i = 0; sched_domain_topology[i].mask; i++);
6708
c515db8c 6709 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6710 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6711 if (!tl)
6712 return;
6713
6714 /*
6715 * Copy the default topology bits..
6716 */
143e1e28
VG
6717 for (i = 0; sched_domain_topology[i].mask; i++)
6718 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6719
6720 /*
6721 * .. and append 'j' levels of NUMA goodness.
6722 */
6723 for (j = 0; j < level; i++, j++) {
6724 tl[i] = (struct sched_domain_topology_level){
cb83b629 6725 .mask = sd_numa_mask,
143e1e28 6726 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6727 .flags = SDTL_OVERLAP,
6728 .numa_level = j,
143e1e28 6729 SD_INIT_NAME(NUMA)
cb83b629
PZ
6730 };
6731 }
6732
6733 sched_domain_topology = tl;
5f7865f3
TC
6734
6735 sched_domains_numa_levels = level;
9942f79b 6736 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6737
6738 init_numa_topology_type();
cb83b629 6739}
301a5cba
TC
6740
6741static void sched_domains_numa_masks_set(int cpu)
6742{
6743 int i, j;
6744 int node = cpu_to_node(cpu);
6745
6746 for (i = 0; i < sched_domains_numa_levels; i++) {
6747 for (j = 0; j < nr_node_ids; j++) {
6748 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6749 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6750 }
6751 }
6752}
6753
6754static void sched_domains_numa_masks_clear(int cpu)
6755{
6756 int i, j;
6757 for (i = 0; i < sched_domains_numa_levels; i++) {
6758 for (j = 0; j < nr_node_ids; j++)
6759 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6760 }
6761}
6762
6763/*
6764 * Update sched_domains_numa_masks[level][node] array when new cpus
6765 * are onlined.
6766 */
6767static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6768 unsigned long action,
6769 void *hcpu)
6770{
6771 int cpu = (long)hcpu;
6772
6773 switch (action & ~CPU_TASKS_FROZEN) {
6774 case CPU_ONLINE:
6775 sched_domains_numa_masks_set(cpu);
6776 break;
6777
6778 case CPU_DEAD:
6779 sched_domains_numa_masks_clear(cpu);
6780 break;
6781
6782 default:
6783 return NOTIFY_DONE;
6784 }
6785
6786 return NOTIFY_OK;
cb83b629
PZ
6787}
6788#else
6789static inline void sched_init_numa(void)
6790{
6791}
301a5cba
TC
6792
6793static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6794 unsigned long action,
6795 void *hcpu)
6796{
6797 return 0;
6798}
cb83b629
PZ
6799#endif /* CONFIG_NUMA */
6800
54ab4ff4
PZ
6801static int __sdt_alloc(const struct cpumask *cpu_map)
6802{
6803 struct sched_domain_topology_level *tl;
6804 int j;
6805
27723a68 6806 for_each_sd_topology(tl) {
54ab4ff4
PZ
6807 struct sd_data *sdd = &tl->data;
6808
6809 sdd->sd = alloc_percpu(struct sched_domain *);
6810 if (!sdd->sd)
6811 return -ENOMEM;
6812
6813 sdd->sg = alloc_percpu(struct sched_group *);
6814 if (!sdd->sg)
6815 return -ENOMEM;
6816
63b2ca30
NP
6817 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6818 if (!sdd->sgc)
9c3f75cb
PZ
6819 return -ENOMEM;
6820
54ab4ff4
PZ
6821 for_each_cpu(j, cpu_map) {
6822 struct sched_domain *sd;
6823 struct sched_group *sg;
63b2ca30 6824 struct sched_group_capacity *sgc;
54ab4ff4 6825
5cc389bc 6826 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6827 GFP_KERNEL, cpu_to_node(j));
6828 if (!sd)
6829 return -ENOMEM;
6830
6831 *per_cpu_ptr(sdd->sd, j) = sd;
6832
6833 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6834 GFP_KERNEL, cpu_to_node(j));
6835 if (!sg)
6836 return -ENOMEM;
6837
30b4e9eb
IM
6838 sg->next = sg;
6839
54ab4ff4 6840 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6841
63b2ca30 6842 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6843 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6844 if (!sgc)
9c3f75cb
PZ
6845 return -ENOMEM;
6846
63b2ca30 6847 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6848 }
6849 }
6850
6851 return 0;
6852}
6853
6854static void __sdt_free(const struct cpumask *cpu_map)
6855{
6856 struct sched_domain_topology_level *tl;
6857 int j;
6858
27723a68 6859 for_each_sd_topology(tl) {
54ab4ff4
PZ
6860 struct sd_data *sdd = &tl->data;
6861
6862 for_each_cpu(j, cpu_map) {
fb2cf2c6 6863 struct sched_domain *sd;
6864
6865 if (sdd->sd) {
6866 sd = *per_cpu_ptr(sdd->sd, j);
6867 if (sd && (sd->flags & SD_OVERLAP))
6868 free_sched_groups(sd->groups, 0);
6869 kfree(*per_cpu_ptr(sdd->sd, j));
6870 }
6871
6872 if (sdd->sg)
6873 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6874 if (sdd->sgc)
6875 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6876 }
6877 free_percpu(sdd->sd);
fb2cf2c6 6878 sdd->sd = NULL;
54ab4ff4 6879 free_percpu(sdd->sg);
fb2cf2c6 6880 sdd->sg = NULL;
63b2ca30
NP
6881 free_percpu(sdd->sgc);
6882 sdd->sgc = NULL;
54ab4ff4
PZ
6883 }
6884}
6885
2c402dc3 6886struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6887 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6888 struct sched_domain *child, int cpu)
2c402dc3 6889{
143e1e28 6890 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6891 if (!sd)
d069b916 6892 return child;
2c402dc3 6893
2c402dc3 6894 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6895 if (child) {
6896 sd->level = child->level + 1;
6897 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6898 child->parent = sd;
c75e0128 6899 sd->child = child;
6ae72dff
PZ
6900
6901 if (!cpumask_subset(sched_domain_span(child),
6902 sched_domain_span(sd))) {
6903 pr_err("BUG: arch topology borken\n");
6904#ifdef CONFIG_SCHED_DEBUG
6905 pr_err(" the %s domain not a subset of the %s domain\n",
6906 child->name, sd->name);
6907#endif
6908 /* Fixup, ensure @sd has at least @child cpus. */
6909 cpumask_or(sched_domain_span(sd),
6910 sched_domain_span(sd),
6911 sched_domain_span(child));
6912 }
6913
60495e77 6914 }
a841f8ce 6915 set_domain_attribute(sd, attr);
2c402dc3
PZ
6916
6917 return sd;
6918}
6919
2109b99e
AH
6920/*
6921 * Build sched domains for a given set of cpus and attach the sched domains
6922 * to the individual cpus
6923 */
dce840a0
PZ
6924static int build_sched_domains(const struct cpumask *cpu_map,
6925 struct sched_domain_attr *attr)
2109b99e 6926{
1c632169 6927 enum s_alloc alloc_state;
dce840a0 6928 struct sched_domain *sd;
2109b99e 6929 struct s_data d;
822ff793 6930 int i, ret = -ENOMEM;
9c1cfda2 6931
2109b99e
AH
6932 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6933 if (alloc_state != sa_rootdomain)
6934 goto error;
9c1cfda2 6935
dce840a0 6936 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6937 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6938 struct sched_domain_topology_level *tl;
6939
3bd65a80 6940 sd = NULL;
27723a68 6941 for_each_sd_topology(tl) {
4a850cbe 6942 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6943 if (tl == sched_domain_topology)
6944 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6945 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6946 sd->flags |= SD_OVERLAP;
d110235d
PZ
6947 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6948 break;
e3589f6c 6949 }
dce840a0
PZ
6950 }
6951
6952 /* Build the groups for the domains */
6953 for_each_cpu(i, cpu_map) {
6954 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6955 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6956 if (sd->flags & SD_OVERLAP) {
6957 if (build_overlap_sched_groups(sd, i))
6958 goto error;
6959 } else {
6960 if (build_sched_groups(sd, i))
6961 goto error;
6962 }
1cf51902 6963 }
a06dadbe 6964 }
9c1cfda2 6965
ced549fa 6966 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6967 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6968 if (!cpumask_test_cpu(i, cpu_map))
6969 continue;
9c1cfda2 6970
dce840a0
PZ
6971 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6972 claim_allocations(i, sd);
63b2ca30 6973 init_sched_groups_capacity(i, sd);
dce840a0 6974 }
f712c0c7 6975 }
9c1cfda2 6976
1da177e4 6977 /* Attach the domains */
dce840a0 6978 rcu_read_lock();
abcd083a 6979 for_each_cpu(i, cpu_map) {
21d42ccf 6980 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6981 cpu_attach_domain(sd, d.rd, i);
1da177e4 6982 }
dce840a0 6983 rcu_read_unlock();
51888ca2 6984
822ff793 6985 ret = 0;
51888ca2 6986error:
2109b99e 6987 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6988 return ret;
1da177e4 6989}
029190c5 6990
acc3f5d7 6991static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6992static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6993static struct sched_domain_attr *dattr_cur;
6994 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6995
6996/*
6997 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6998 * cpumask) fails, then fallback to a single sched domain,
6999 * as determined by the single cpumask fallback_doms.
029190c5 7000 */
4212823f 7001static cpumask_var_t fallback_doms;
029190c5 7002
ee79d1bd
HC
7003/*
7004 * arch_update_cpu_topology lets virtualized architectures update the
7005 * cpu core maps. It is supposed to return 1 if the topology changed
7006 * or 0 if it stayed the same.
7007 */
52f5684c 7008int __weak arch_update_cpu_topology(void)
22e52b07 7009{
ee79d1bd 7010 return 0;
22e52b07
HC
7011}
7012
acc3f5d7
RR
7013cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7014{
7015 int i;
7016 cpumask_var_t *doms;
7017
7018 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7019 if (!doms)
7020 return NULL;
7021 for (i = 0; i < ndoms; i++) {
7022 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7023 free_sched_domains(doms, i);
7024 return NULL;
7025 }
7026 }
7027 return doms;
7028}
7029
7030void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7031{
7032 unsigned int i;
7033 for (i = 0; i < ndoms; i++)
7034 free_cpumask_var(doms[i]);
7035 kfree(doms);
7036}
7037
1a20ff27 7038/*
41a2d6cf 7039 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7040 * For now this just excludes isolated cpus, but could be used to
7041 * exclude other special cases in the future.
1a20ff27 7042 */
c4a8849a 7043static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7044{
7378547f
MM
7045 int err;
7046
22e52b07 7047 arch_update_cpu_topology();
029190c5 7048 ndoms_cur = 1;
acc3f5d7 7049 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7050 if (!doms_cur)
acc3f5d7
RR
7051 doms_cur = &fallback_doms;
7052 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7053 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7054 register_sched_domain_sysctl();
7378547f
MM
7055
7056 return err;
1a20ff27
DG
7057}
7058
1a20ff27
DG
7059/*
7060 * Detach sched domains from a group of cpus specified in cpu_map
7061 * These cpus will now be attached to the NULL domain
7062 */
96f874e2 7063static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7064{
7065 int i;
7066
dce840a0 7067 rcu_read_lock();
abcd083a 7068 for_each_cpu(i, cpu_map)
57d885fe 7069 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7070 rcu_read_unlock();
1a20ff27
DG
7071}
7072
1d3504fc
HS
7073/* handle null as "default" */
7074static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7075 struct sched_domain_attr *new, int idx_new)
7076{
7077 struct sched_domain_attr tmp;
7078
7079 /* fast path */
7080 if (!new && !cur)
7081 return 1;
7082
7083 tmp = SD_ATTR_INIT;
7084 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7085 new ? (new + idx_new) : &tmp,
7086 sizeof(struct sched_domain_attr));
7087}
7088
029190c5
PJ
7089/*
7090 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7091 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7092 * doms_new[] to the current sched domain partitioning, doms_cur[].
7093 * It destroys each deleted domain and builds each new domain.
7094 *
acc3f5d7 7095 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7096 * The masks don't intersect (don't overlap.) We should setup one
7097 * sched domain for each mask. CPUs not in any of the cpumasks will
7098 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7099 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7100 * it as it is.
7101 *
acc3f5d7
RR
7102 * The passed in 'doms_new' should be allocated using
7103 * alloc_sched_domains. This routine takes ownership of it and will
7104 * free_sched_domains it when done with it. If the caller failed the
7105 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7106 * and partition_sched_domains() will fallback to the single partition
7107 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7108 *
96f874e2 7109 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7110 * ndoms_new == 0 is a special case for destroying existing domains,
7111 * and it will not create the default domain.
dfb512ec 7112 *
029190c5
PJ
7113 * Call with hotplug lock held
7114 */
acc3f5d7 7115void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7116 struct sched_domain_attr *dattr_new)
029190c5 7117{
dfb512ec 7118 int i, j, n;
d65bd5ec 7119 int new_topology;
029190c5 7120
712555ee 7121 mutex_lock(&sched_domains_mutex);
a1835615 7122
7378547f
MM
7123 /* always unregister in case we don't destroy any domains */
7124 unregister_sched_domain_sysctl();
7125
d65bd5ec
HC
7126 /* Let architecture update cpu core mappings. */
7127 new_topology = arch_update_cpu_topology();
7128
dfb512ec 7129 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7130
7131 /* Destroy deleted domains */
7132 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7133 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7134 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7135 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7136 goto match1;
7137 }
7138 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7139 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7140match1:
7141 ;
7142 }
7143
c8d2d47a 7144 n = ndoms_cur;
e761b772 7145 if (doms_new == NULL) {
c8d2d47a 7146 n = 0;
acc3f5d7 7147 doms_new = &fallback_doms;
6ad4c188 7148 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7149 WARN_ON_ONCE(dattr_new);
e761b772
MK
7150 }
7151
029190c5
PJ
7152 /* Build new domains */
7153 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7154 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7155 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7156 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7157 goto match2;
7158 }
7159 /* no match - add a new doms_new */
dce840a0 7160 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7161match2:
7162 ;
7163 }
7164
7165 /* Remember the new sched domains */
acc3f5d7
RR
7166 if (doms_cur != &fallback_doms)
7167 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7168 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7169 doms_cur = doms_new;
1d3504fc 7170 dattr_cur = dattr_new;
029190c5 7171 ndoms_cur = ndoms_new;
7378547f
MM
7172
7173 register_sched_domain_sysctl();
a1835615 7174
712555ee 7175 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7176}
7177
d35be8ba
SB
7178static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7179
1da177e4 7180/*
3a101d05
TH
7181 * Update cpusets according to cpu_active mask. If cpusets are
7182 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7183 * around partition_sched_domains().
d35be8ba
SB
7184 *
7185 * If we come here as part of a suspend/resume, don't touch cpusets because we
7186 * want to restore it back to its original state upon resume anyway.
1da177e4 7187 */
0b2e918a
TH
7188static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7189 void *hcpu)
e761b772 7190{
d35be8ba
SB
7191 switch (action) {
7192 case CPU_ONLINE_FROZEN:
7193 case CPU_DOWN_FAILED_FROZEN:
7194
7195 /*
7196 * num_cpus_frozen tracks how many CPUs are involved in suspend
7197 * resume sequence. As long as this is not the last online
7198 * operation in the resume sequence, just build a single sched
7199 * domain, ignoring cpusets.
7200 */
7201 num_cpus_frozen--;
7202 if (likely(num_cpus_frozen)) {
7203 partition_sched_domains(1, NULL, NULL);
7204 break;
7205 }
7206
7207 /*
7208 * This is the last CPU online operation. So fall through and
7209 * restore the original sched domains by considering the
7210 * cpuset configurations.
7211 */
7212
e761b772 7213 case CPU_ONLINE:
7ddf96b0 7214 cpuset_update_active_cpus(true);
d35be8ba 7215 break;
3a101d05
TH
7216 default:
7217 return NOTIFY_DONE;
7218 }
d35be8ba 7219 return NOTIFY_OK;
3a101d05 7220}
e761b772 7221
0b2e918a
TH
7222static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7223 void *hcpu)
3a101d05 7224{
3c18d447
JL
7225 unsigned long flags;
7226 long cpu = (long)hcpu;
7227 struct dl_bw *dl_b;
533445c6
OS
7228 bool overflow;
7229 int cpus;
3c18d447 7230
533445c6 7231 switch (action) {
3a101d05 7232 case CPU_DOWN_PREPARE:
533445c6
OS
7233 rcu_read_lock_sched();
7234 dl_b = dl_bw_of(cpu);
3c18d447 7235
533445c6
OS
7236 raw_spin_lock_irqsave(&dl_b->lock, flags);
7237 cpus = dl_bw_cpus(cpu);
7238 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7239 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7240
533445c6 7241 rcu_read_unlock_sched();
3c18d447 7242
533445c6
OS
7243 if (overflow)
7244 return notifier_from_errno(-EBUSY);
7ddf96b0 7245 cpuset_update_active_cpus(false);
d35be8ba
SB
7246 break;
7247 case CPU_DOWN_PREPARE_FROZEN:
7248 num_cpus_frozen++;
7249 partition_sched_domains(1, NULL, NULL);
7250 break;
e761b772
MK
7251 default:
7252 return NOTIFY_DONE;
7253 }
d35be8ba 7254 return NOTIFY_OK;
e761b772 7255}
e761b772 7256
1da177e4
LT
7257void __init sched_init_smp(void)
7258{
dcc30a35
RR
7259 cpumask_var_t non_isolated_cpus;
7260
7261 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7262 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7263
8cb9764f
CM
7264 /* nohz_full won't take effect without isolating the cpus. */
7265 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7266
cb83b629
PZ
7267 sched_init_numa();
7268
6acce3ef
PZ
7269 /*
7270 * There's no userspace yet to cause hotplug operations; hence all the
7271 * cpu masks are stable and all blatant races in the below code cannot
7272 * happen.
7273 */
712555ee 7274 mutex_lock(&sched_domains_mutex);
c4a8849a 7275 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7276 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7277 if (cpumask_empty(non_isolated_cpus))
7278 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7279 mutex_unlock(&sched_domains_mutex);
e761b772 7280
301a5cba 7281 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7282 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7283 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7284
b328ca18 7285 init_hrtick();
5c1e1767
NP
7286
7287 /* Move init over to a non-isolated CPU */
dcc30a35 7288 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7289 BUG();
19978ca6 7290 sched_init_granularity();
dcc30a35 7291 free_cpumask_var(non_isolated_cpus);
4212823f 7292
0e3900e6 7293 init_sched_rt_class();
1baca4ce 7294 init_sched_dl_class();
1da177e4
LT
7295}
7296#else
7297void __init sched_init_smp(void)
7298{
19978ca6 7299 sched_init_granularity();
1da177e4
LT
7300}
7301#endif /* CONFIG_SMP */
7302
7303int in_sched_functions(unsigned long addr)
7304{
1da177e4
LT
7305 return in_lock_functions(addr) ||
7306 (addr >= (unsigned long)__sched_text_start
7307 && addr < (unsigned long)__sched_text_end);
7308}
7309
029632fb 7310#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7311/*
7312 * Default task group.
7313 * Every task in system belongs to this group at bootup.
7314 */
029632fb 7315struct task_group root_task_group;
35cf4e50 7316LIST_HEAD(task_groups);
052f1dc7 7317#endif
6f505b16 7318
e6252c3e 7319DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7320
1da177e4
LT
7321void __init sched_init(void)
7322{
dd41f596 7323 int i, j;
434d53b0
MT
7324 unsigned long alloc_size = 0, ptr;
7325
7326#ifdef CONFIG_FAIR_GROUP_SCHED
7327 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7328#endif
7329#ifdef CONFIG_RT_GROUP_SCHED
7330 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7331#endif
434d53b0 7332 if (alloc_size) {
36b7b6d4 7333 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7334
7335#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7336 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7337 ptr += nr_cpu_ids * sizeof(void **);
7338
07e06b01 7339 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7340 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7341
6d6bc0ad 7342#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7343#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7344 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7345 ptr += nr_cpu_ids * sizeof(void **);
7346
07e06b01 7347 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7348 ptr += nr_cpu_ids * sizeof(void **);
7349
6d6bc0ad 7350#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7351 }
df7c8e84 7352#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7353 for_each_possible_cpu(i) {
7354 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7355 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7356 }
b74e6278 7357#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7358
332ac17e
DF
7359 init_rt_bandwidth(&def_rt_bandwidth,
7360 global_rt_period(), global_rt_runtime());
7361 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7362 global_rt_period(), global_rt_runtime());
332ac17e 7363
57d885fe
GH
7364#ifdef CONFIG_SMP
7365 init_defrootdomain();
7366#endif
7367
d0b27fa7 7368#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7369 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7370 global_rt_period(), global_rt_runtime());
6d6bc0ad 7371#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7372
7c941438 7373#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7374 list_add(&root_task_group.list, &task_groups);
7375 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7376 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7377 autogroup_init(&init_task);
54c707e9 7378
7c941438 7379#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7380
0a945022 7381 for_each_possible_cpu(i) {
70b97a7f 7382 struct rq *rq;
1da177e4
LT
7383
7384 rq = cpu_rq(i);
05fa785c 7385 raw_spin_lock_init(&rq->lock);
7897986b 7386 rq->nr_running = 0;
dce48a84
TG
7387 rq->calc_load_active = 0;
7388 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7389 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7390 init_rt_rq(&rq->rt);
7391 init_dl_rq(&rq->dl);
dd41f596 7392#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7393 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7394 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7395 /*
07e06b01 7396 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7397 *
7398 * In case of task-groups formed thr' the cgroup filesystem, it
7399 * gets 100% of the cpu resources in the system. This overall
7400 * system cpu resource is divided among the tasks of
07e06b01 7401 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7402 * based on each entity's (task or task-group's) weight
7403 * (se->load.weight).
7404 *
07e06b01 7405 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7406 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7407 * then A0's share of the cpu resource is:
7408 *
0d905bca 7409 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7410 *
07e06b01
YZ
7411 * We achieve this by letting root_task_group's tasks sit
7412 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7413 */
ab84d31e 7414 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7415 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7416#endif /* CONFIG_FAIR_GROUP_SCHED */
7417
7418 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7419#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7420 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7421#endif
1da177e4 7422
dd41f596
IM
7423 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7424 rq->cpu_load[j] = 0;
fdf3e95d
VP
7425
7426 rq->last_load_update_tick = jiffies;
7427
1da177e4 7428#ifdef CONFIG_SMP
41c7ce9a 7429 rq->sd = NULL;
57d885fe 7430 rq->rd = NULL;
ca6d75e6 7431 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7432 rq->balance_callback = NULL;
1da177e4 7433 rq->active_balance = 0;
dd41f596 7434 rq->next_balance = jiffies;
1da177e4 7435 rq->push_cpu = 0;
0a2966b4 7436 rq->cpu = i;
1f11eb6a 7437 rq->online = 0;
eae0c9df
MG
7438 rq->idle_stamp = 0;
7439 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7440 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7441
7442 INIT_LIST_HEAD(&rq->cfs_tasks);
7443
dc938520 7444 rq_attach_root(rq, &def_root_domain);
3451d024 7445#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7446 rq->nohz_flags = 0;
83cd4fe2 7447#endif
265f22a9
FW
7448#ifdef CONFIG_NO_HZ_FULL
7449 rq->last_sched_tick = 0;
7450#endif
1da177e4 7451#endif
8f4d37ec 7452 init_rq_hrtick(rq);
1da177e4 7453 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7454 }
7455
2dd73a4f 7456 set_load_weight(&init_task);
b50f60ce 7457
e107be36
AK
7458#ifdef CONFIG_PREEMPT_NOTIFIERS
7459 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7460#endif
7461
1da177e4
LT
7462 /*
7463 * The boot idle thread does lazy MMU switching as well:
7464 */
7465 atomic_inc(&init_mm.mm_count);
7466 enter_lazy_tlb(&init_mm, current);
7467
1b537c7d
YD
7468 /*
7469 * During early bootup we pretend to be a normal task:
7470 */
7471 current->sched_class = &fair_sched_class;
7472
1da177e4
LT
7473 /*
7474 * Make us the idle thread. Technically, schedule() should not be
7475 * called from this thread, however somewhere below it might be,
7476 * but because we are the idle thread, we just pick up running again
7477 * when this runqueue becomes "idle".
7478 */
7479 init_idle(current, smp_processor_id());
dce48a84
TG
7480
7481 calc_load_update = jiffies + LOAD_FREQ;
7482
bf4d83f6 7483#ifdef CONFIG_SMP
4cb98839 7484 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7485 /* May be allocated at isolcpus cmdline parse time */
7486 if (cpu_isolated_map == NULL)
7487 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7488 idle_thread_set_boot_cpu();
a803f026 7489 set_cpu_rq_start_time();
029632fb
PZ
7490#endif
7491 init_sched_fair_class();
6a7b3dc3 7492
6892b75e 7493 scheduler_running = 1;
1da177e4
LT
7494}
7495
d902db1e 7496#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7497static inline int preempt_count_equals(int preempt_offset)
7498{
da7142e2 7499 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7500
4ba8216c 7501 return (nested == preempt_offset);
e4aafea2
FW
7502}
7503
d894837f 7504void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7505{
8eb23b9f
PZ
7506 /*
7507 * Blocking primitives will set (and therefore destroy) current->state,
7508 * since we will exit with TASK_RUNNING make sure we enter with it,
7509 * otherwise we will destroy state.
7510 */
00845eb9 7511 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7512 "do not call blocking ops when !TASK_RUNNING; "
7513 "state=%lx set at [<%p>] %pS\n",
7514 current->state,
7515 (void *)current->task_state_change,
00845eb9 7516 (void *)current->task_state_change);
8eb23b9f 7517
3427445a
PZ
7518 ___might_sleep(file, line, preempt_offset);
7519}
7520EXPORT_SYMBOL(__might_sleep);
7521
7522void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7523{
1da177e4
LT
7524 static unsigned long prev_jiffy; /* ratelimiting */
7525
b3fbab05 7526 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7527 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7528 !is_idle_task(current)) ||
e4aafea2 7529 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7530 return;
7531 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7532 return;
7533 prev_jiffy = jiffies;
7534
3df0fc5b
PZ
7535 printk(KERN_ERR
7536 "BUG: sleeping function called from invalid context at %s:%d\n",
7537 file, line);
7538 printk(KERN_ERR
7539 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7540 in_atomic(), irqs_disabled(),
7541 current->pid, current->comm);
aef745fc 7542
a8b686b3
ES
7543 if (task_stack_end_corrupted(current))
7544 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7545
aef745fc
IM
7546 debug_show_held_locks(current);
7547 if (irqs_disabled())
7548 print_irqtrace_events(current);
8f47b187
TG
7549#ifdef CONFIG_DEBUG_PREEMPT
7550 if (!preempt_count_equals(preempt_offset)) {
7551 pr_err("Preemption disabled at:");
7552 print_ip_sym(current->preempt_disable_ip);
7553 pr_cont("\n");
7554 }
7555#endif
aef745fc 7556 dump_stack();
1da177e4 7557}
3427445a 7558EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7559#endif
7560
7561#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7562void normalize_rt_tasks(void)
3a5e4dc1 7563{
dbc7f069 7564 struct task_struct *g, *p;
d50dde5a
DF
7565 struct sched_attr attr = {
7566 .sched_policy = SCHED_NORMAL,
7567 };
1da177e4 7568
3472eaa1 7569 read_lock(&tasklist_lock);
5d07f420 7570 for_each_process_thread(g, p) {
178be793
IM
7571 /*
7572 * Only normalize user tasks:
7573 */
3472eaa1 7574 if (p->flags & PF_KTHREAD)
178be793
IM
7575 continue;
7576
6cfb0d5d 7577 p->se.exec_start = 0;
6cfb0d5d 7578#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7579 p->se.statistics.wait_start = 0;
7580 p->se.statistics.sleep_start = 0;
7581 p->se.statistics.block_start = 0;
6cfb0d5d 7582#endif
dd41f596 7583
aab03e05 7584 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7585 /*
7586 * Renice negative nice level userspace
7587 * tasks back to 0:
7588 */
3472eaa1 7589 if (task_nice(p) < 0)
dd41f596 7590 set_user_nice(p, 0);
1da177e4 7591 continue;
dd41f596 7592 }
1da177e4 7593
dbc7f069 7594 __sched_setscheduler(p, &attr, false, false);
5d07f420 7595 }
3472eaa1 7596 read_unlock(&tasklist_lock);
1da177e4
LT
7597}
7598
7599#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7600
67fc4e0c 7601#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7602/*
67fc4e0c 7603 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7604 *
7605 * They can only be called when the whole system has been
7606 * stopped - every CPU needs to be quiescent, and no scheduling
7607 * activity can take place. Using them for anything else would
7608 * be a serious bug, and as a result, they aren't even visible
7609 * under any other configuration.
7610 */
7611
7612/**
7613 * curr_task - return the current task for a given cpu.
7614 * @cpu: the processor in question.
7615 *
7616 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7617 *
7618 * Return: The current task for @cpu.
1df5c10a 7619 */
36c8b586 7620struct task_struct *curr_task(int cpu)
1df5c10a
LT
7621{
7622 return cpu_curr(cpu);
7623}
7624
67fc4e0c
JW
7625#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7626
7627#ifdef CONFIG_IA64
1df5c10a
LT
7628/**
7629 * set_curr_task - set the current task for a given cpu.
7630 * @cpu: the processor in question.
7631 * @p: the task pointer to set.
7632 *
7633 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7634 * are serviced on a separate stack. It allows the architecture to switch the
7635 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7636 * must be called with all CPU's synchronized, and interrupts disabled, the
7637 * and caller must save the original value of the current task (see
7638 * curr_task() above) and restore that value before reenabling interrupts and
7639 * re-starting the system.
7640 *
7641 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7642 */
36c8b586 7643void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7644{
7645 cpu_curr(cpu) = p;
7646}
7647
7648#endif
29f59db3 7649
7c941438 7650#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7651/* task_group_lock serializes the addition/removal of task groups */
7652static DEFINE_SPINLOCK(task_group_lock);
7653
bccbe08a
PZ
7654static void free_sched_group(struct task_group *tg)
7655{
7656 free_fair_sched_group(tg);
7657 free_rt_sched_group(tg);
e9aa1dd1 7658 autogroup_free(tg);
bccbe08a
PZ
7659 kfree(tg);
7660}
7661
7662/* allocate runqueue etc for a new task group */
ec7dc8ac 7663struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7664{
7665 struct task_group *tg;
bccbe08a
PZ
7666
7667 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7668 if (!tg)
7669 return ERR_PTR(-ENOMEM);
7670
ec7dc8ac 7671 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7672 goto err;
7673
ec7dc8ac 7674 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7675 goto err;
7676
ace783b9
LZ
7677 return tg;
7678
7679err:
7680 free_sched_group(tg);
7681 return ERR_PTR(-ENOMEM);
7682}
7683
7684void sched_online_group(struct task_group *tg, struct task_group *parent)
7685{
7686 unsigned long flags;
7687
8ed36996 7688 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7689 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7690
7691 WARN_ON(!parent); /* root should already exist */
7692
7693 tg->parent = parent;
f473aa5e 7694 INIT_LIST_HEAD(&tg->children);
09f2724a 7695 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7696 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7697}
7698
9b5b7751 7699/* rcu callback to free various structures associated with a task group */
6f505b16 7700static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7701{
29f59db3 7702 /* now it should be safe to free those cfs_rqs */
6f505b16 7703 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7704}
7705
9b5b7751 7706/* Destroy runqueue etc associated with a task group */
4cf86d77 7707void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7708{
7709 /* wait for possible concurrent references to cfs_rqs complete */
7710 call_rcu(&tg->rcu, free_sched_group_rcu);
7711}
7712
7713void sched_offline_group(struct task_group *tg)
29f59db3 7714{
8ed36996 7715 unsigned long flags;
9b5b7751 7716 int i;
29f59db3 7717
3d4b47b4
PZ
7718 /* end participation in shares distribution */
7719 for_each_possible_cpu(i)
bccbe08a 7720 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7721
7722 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7723 list_del_rcu(&tg->list);
f473aa5e 7724 list_del_rcu(&tg->siblings);
8ed36996 7725 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7726}
7727
9b5b7751 7728/* change task's runqueue when it moves between groups.
3a252015
IM
7729 * The caller of this function should have put the task in its new group
7730 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7731 * reflect its new group.
9b5b7751
SV
7732 */
7733void sched_move_task(struct task_struct *tsk)
29f59db3 7734{
8323f26c 7735 struct task_group *tg;
da0c1e65 7736 int queued, running;
29f59db3
SV
7737 unsigned long flags;
7738 struct rq *rq;
7739
7740 rq = task_rq_lock(tsk, &flags);
7741
051a1d1a 7742 running = task_current(rq, tsk);
da0c1e65 7743 queued = task_on_rq_queued(tsk);
29f59db3 7744
da0c1e65 7745 if (queued)
1de64443 7746 dequeue_task(rq, tsk, DEQUEUE_SAVE);
0e1f3483 7747 if (unlikely(running))
f3cd1c4e 7748 put_prev_task(rq, tsk);
29f59db3 7749
f7b8a47d
KT
7750 /*
7751 * All callers are synchronized by task_rq_lock(); we do not use RCU
7752 * which is pointless here. Thus, we pass "true" to task_css_check()
7753 * to prevent lockdep warnings.
7754 */
7755 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7756 struct task_group, css);
7757 tg = autogroup_task_group(tsk, tg);
7758 tsk->sched_task_group = tg;
7759
810b3817 7760#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7761 if (tsk->sched_class->task_move_group)
bc54da21 7762 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7763 else
810b3817 7764#endif
b2b5ce02 7765 set_task_rq(tsk, task_cpu(tsk));
810b3817 7766
0e1f3483
HS
7767 if (unlikely(running))
7768 tsk->sched_class->set_curr_task(rq);
da0c1e65 7769 if (queued)
1de64443 7770 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
29f59db3 7771
0122ec5b 7772 task_rq_unlock(rq, tsk, &flags);
29f59db3 7773}
7c941438 7774#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7775
a790de99
PT
7776#ifdef CONFIG_RT_GROUP_SCHED
7777/*
7778 * Ensure that the real time constraints are schedulable.
7779 */
7780static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7781
9a7e0b18
PZ
7782/* Must be called with tasklist_lock held */
7783static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7784{
9a7e0b18 7785 struct task_struct *g, *p;
b40b2e8e 7786
1fe89e1b
PZ
7787 /*
7788 * Autogroups do not have RT tasks; see autogroup_create().
7789 */
7790 if (task_group_is_autogroup(tg))
7791 return 0;
7792
5d07f420 7793 for_each_process_thread(g, p) {
8651c658 7794 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7795 return 1;
5d07f420 7796 }
b40b2e8e 7797
9a7e0b18
PZ
7798 return 0;
7799}
b40b2e8e 7800
9a7e0b18
PZ
7801struct rt_schedulable_data {
7802 struct task_group *tg;
7803 u64 rt_period;
7804 u64 rt_runtime;
7805};
b40b2e8e 7806
a790de99 7807static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7808{
7809 struct rt_schedulable_data *d = data;
7810 struct task_group *child;
7811 unsigned long total, sum = 0;
7812 u64 period, runtime;
b40b2e8e 7813
9a7e0b18
PZ
7814 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7815 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7816
9a7e0b18
PZ
7817 if (tg == d->tg) {
7818 period = d->rt_period;
7819 runtime = d->rt_runtime;
b40b2e8e 7820 }
b40b2e8e 7821
4653f803
PZ
7822 /*
7823 * Cannot have more runtime than the period.
7824 */
7825 if (runtime > period && runtime != RUNTIME_INF)
7826 return -EINVAL;
6f505b16 7827
4653f803
PZ
7828 /*
7829 * Ensure we don't starve existing RT tasks.
7830 */
9a7e0b18
PZ
7831 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7832 return -EBUSY;
6f505b16 7833
9a7e0b18 7834 total = to_ratio(period, runtime);
6f505b16 7835
4653f803
PZ
7836 /*
7837 * Nobody can have more than the global setting allows.
7838 */
7839 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7840 return -EINVAL;
6f505b16 7841
4653f803
PZ
7842 /*
7843 * The sum of our children's runtime should not exceed our own.
7844 */
9a7e0b18
PZ
7845 list_for_each_entry_rcu(child, &tg->children, siblings) {
7846 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7847 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7848
9a7e0b18
PZ
7849 if (child == d->tg) {
7850 period = d->rt_period;
7851 runtime = d->rt_runtime;
7852 }
6f505b16 7853
9a7e0b18 7854 sum += to_ratio(period, runtime);
9f0c1e56 7855 }
6f505b16 7856
9a7e0b18
PZ
7857 if (sum > total)
7858 return -EINVAL;
7859
7860 return 0;
6f505b16
PZ
7861}
7862
9a7e0b18 7863static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7864{
8277434e
PT
7865 int ret;
7866
9a7e0b18
PZ
7867 struct rt_schedulable_data data = {
7868 .tg = tg,
7869 .rt_period = period,
7870 .rt_runtime = runtime,
7871 };
7872
8277434e
PT
7873 rcu_read_lock();
7874 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7875 rcu_read_unlock();
7876
7877 return ret;
521f1a24
DG
7878}
7879
ab84d31e 7880static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7881 u64 rt_period, u64 rt_runtime)
6f505b16 7882{
ac086bc2 7883 int i, err = 0;
9f0c1e56 7884
2636ed5f
PZ
7885 /*
7886 * Disallowing the root group RT runtime is BAD, it would disallow the
7887 * kernel creating (and or operating) RT threads.
7888 */
7889 if (tg == &root_task_group && rt_runtime == 0)
7890 return -EINVAL;
7891
7892 /* No period doesn't make any sense. */
7893 if (rt_period == 0)
7894 return -EINVAL;
7895
9f0c1e56 7896 mutex_lock(&rt_constraints_mutex);
521f1a24 7897 read_lock(&tasklist_lock);
9a7e0b18
PZ
7898 err = __rt_schedulable(tg, rt_period, rt_runtime);
7899 if (err)
9f0c1e56 7900 goto unlock;
ac086bc2 7901
0986b11b 7902 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7903 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7904 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7905
7906 for_each_possible_cpu(i) {
7907 struct rt_rq *rt_rq = tg->rt_rq[i];
7908
0986b11b 7909 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7910 rt_rq->rt_runtime = rt_runtime;
0986b11b 7911 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7912 }
0986b11b 7913 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7914unlock:
521f1a24 7915 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7916 mutex_unlock(&rt_constraints_mutex);
7917
7918 return err;
6f505b16
PZ
7919}
7920
25cc7da7 7921static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7922{
7923 u64 rt_runtime, rt_period;
7924
7925 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7926 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7927 if (rt_runtime_us < 0)
7928 rt_runtime = RUNTIME_INF;
7929
ab84d31e 7930 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7931}
7932
25cc7da7 7933static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7934{
7935 u64 rt_runtime_us;
7936
d0b27fa7 7937 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7938 return -1;
7939
d0b27fa7 7940 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7941 do_div(rt_runtime_us, NSEC_PER_USEC);
7942 return rt_runtime_us;
7943}
d0b27fa7 7944
ce2f5fe4 7945static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7946{
7947 u64 rt_runtime, rt_period;
7948
ce2f5fe4 7949 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7950 rt_runtime = tg->rt_bandwidth.rt_runtime;
7951
ab84d31e 7952 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7953}
7954
25cc7da7 7955static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7956{
7957 u64 rt_period_us;
7958
7959 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7960 do_div(rt_period_us, NSEC_PER_USEC);
7961 return rt_period_us;
7962}
332ac17e 7963#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7964
332ac17e 7965#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7966static int sched_rt_global_constraints(void)
7967{
7968 int ret = 0;
7969
7970 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7971 read_lock(&tasklist_lock);
4653f803 7972 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7973 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7974 mutex_unlock(&rt_constraints_mutex);
7975
7976 return ret;
7977}
54e99124 7978
25cc7da7 7979static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7980{
7981 /* Don't accept realtime tasks when there is no way for them to run */
7982 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7983 return 0;
7984
7985 return 1;
7986}
7987
6d6bc0ad 7988#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7989static int sched_rt_global_constraints(void)
7990{
ac086bc2 7991 unsigned long flags;
332ac17e 7992 int i, ret = 0;
ec5d4989 7993
0986b11b 7994 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7995 for_each_possible_cpu(i) {
7996 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7997
0986b11b 7998 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7999 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8000 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8001 }
0986b11b 8002 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8003
332ac17e 8004 return ret;
d0b27fa7 8005}
6d6bc0ad 8006#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8007
a1963b81 8008static int sched_dl_global_validate(void)
332ac17e 8009{
1724813d
PZ
8010 u64 runtime = global_rt_runtime();
8011 u64 period = global_rt_period();
332ac17e 8012 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8013 struct dl_bw *dl_b;
1724813d 8014 int cpu, ret = 0;
49516342 8015 unsigned long flags;
332ac17e
DF
8016
8017 /*
8018 * Here we want to check the bandwidth not being set to some
8019 * value smaller than the currently allocated bandwidth in
8020 * any of the root_domains.
8021 *
8022 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8023 * cycling on root_domains... Discussion on different/better
8024 * solutions is welcome!
8025 */
1724813d 8026 for_each_possible_cpu(cpu) {
f10e00f4
KT
8027 rcu_read_lock_sched();
8028 dl_b = dl_bw_of(cpu);
332ac17e 8029
49516342 8030 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8031 if (new_bw < dl_b->total_bw)
8032 ret = -EBUSY;
49516342 8033 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8034
f10e00f4
KT
8035 rcu_read_unlock_sched();
8036
1724813d
PZ
8037 if (ret)
8038 break;
332ac17e
DF
8039 }
8040
1724813d 8041 return ret;
332ac17e
DF
8042}
8043
1724813d 8044static void sched_dl_do_global(void)
ce0dbbbb 8045{
1724813d 8046 u64 new_bw = -1;
f10e00f4 8047 struct dl_bw *dl_b;
1724813d 8048 int cpu;
49516342 8049 unsigned long flags;
ce0dbbbb 8050
1724813d
PZ
8051 def_dl_bandwidth.dl_period = global_rt_period();
8052 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8053
8054 if (global_rt_runtime() != RUNTIME_INF)
8055 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8056
8057 /*
8058 * FIXME: As above...
8059 */
8060 for_each_possible_cpu(cpu) {
f10e00f4
KT
8061 rcu_read_lock_sched();
8062 dl_b = dl_bw_of(cpu);
1724813d 8063
49516342 8064 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8065 dl_b->bw = new_bw;
49516342 8066 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8067
8068 rcu_read_unlock_sched();
ce0dbbbb 8069 }
1724813d
PZ
8070}
8071
8072static int sched_rt_global_validate(void)
8073{
8074 if (sysctl_sched_rt_period <= 0)
8075 return -EINVAL;
8076
e9e7cb38
JL
8077 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8078 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8079 return -EINVAL;
8080
8081 return 0;
8082}
8083
8084static void sched_rt_do_global(void)
8085{
8086 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8087 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8088}
8089
d0b27fa7 8090int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8091 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8092 loff_t *ppos)
8093{
d0b27fa7
PZ
8094 int old_period, old_runtime;
8095 static DEFINE_MUTEX(mutex);
1724813d 8096 int ret;
d0b27fa7
PZ
8097
8098 mutex_lock(&mutex);
8099 old_period = sysctl_sched_rt_period;
8100 old_runtime = sysctl_sched_rt_runtime;
8101
8d65af78 8102 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8103
8104 if (!ret && write) {
1724813d
PZ
8105 ret = sched_rt_global_validate();
8106 if (ret)
8107 goto undo;
8108
a1963b81 8109 ret = sched_dl_global_validate();
1724813d
PZ
8110 if (ret)
8111 goto undo;
8112
a1963b81 8113 ret = sched_rt_global_constraints();
1724813d
PZ
8114 if (ret)
8115 goto undo;
8116
8117 sched_rt_do_global();
8118 sched_dl_do_global();
8119 }
8120 if (0) {
8121undo:
8122 sysctl_sched_rt_period = old_period;
8123 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8124 }
8125 mutex_unlock(&mutex);
8126
8127 return ret;
8128}
68318b8e 8129
1724813d 8130int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8131 void __user *buffer, size_t *lenp,
8132 loff_t *ppos)
8133{
8134 int ret;
332ac17e 8135 static DEFINE_MUTEX(mutex);
332ac17e
DF
8136
8137 mutex_lock(&mutex);
332ac17e 8138 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8139 /* make sure that internally we keep jiffies */
8140 /* also, writing zero resets timeslice to default */
332ac17e 8141 if (!ret && write) {
1724813d
PZ
8142 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8143 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8144 }
8145 mutex_unlock(&mutex);
332ac17e
DF
8146 return ret;
8147}
8148
052f1dc7 8149#ifdef CONFIG_CGROUP_SCHED
68318b8e 8150
a7c6d554 8151static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8152{
a7c6d554 8153 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8154}
8155
eb95419b
TH
8156static struct cgroup_subsys_state *
8157cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8158{
eb95419b
TH
8159 struct task_group *parent = css_tg(parent_css);
8160 struct task_group *tg;
68318b8e 8161
eb95419b 8162 if (!parent) {
68318b8e 8163 /* This is early initialization for the top cgroup */
07e06b01 8164 return &root_task_group.css;
68318b8e
SV
8165 }
8166
ec7dc8ac 8167 tg = sched_create_group(parent);
68318b8e
SV
8168 if (IS_ERR(tg))
8169 return ERR_PTR(-ENOMEM);
8170
68318b8e
SV
8171 return &tg->css;
8172}
8173
eb95419b 8174static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8175{
eb95419b 8176 struct task_group *tg = css_tg(css);
5c9d535b 8177 struct task_group *parent = css_tg(css->parent);
ace783b9 8178
63876986
TH
8179 if (parent)
8180 sched_online_group(tg, parent);
ace783b9
LZ
8181 return 0;
8182}
8183
eb95419b 8184static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8185{
eb95419b 8186 struct task_group *tg = css_tg(css);
68318b8e
SV
8187
8188 sched_destroy_group(tg);
8189}
8190
eb95419b 8191static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8192{
eb95419b 8193 struct task_group *tg = css_tg(css);
ace783b9
LZ
8194
8195 sched_offline_group(tg);
8196}
8197
7e47682e 8198static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8199{
8200 sched_move_task(task);
8201}
8202
eb95419b 8203static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8204 struct cgroup_taskset *tset)
68318b8e 8205{
bb9d97b6
TH
8206 struct task_struct *task;
8207
924f0d9a 8208 cgroup_taskset_for_each(task, tset) {
b68aa230 8209#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8210 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8211 return -EINVAL;
b68aa230 8212#else
bb9d97b6
TH
8213 /* We don't support RT-tasks being in separate groups */
8214 if (task->sched_class != &fair_sched_class)
8215 return -EINVAL;
b68aa230 8216#endif
bb9d97b6 8217 }
be367d09
BB
8218 return 0;
8219}
68318b8e 8220
eb95419b 8221static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8222 struct cgroup_taskset *tset)
68318b8e 8223{
bb9d97b6
TH
8224 struct task_struct *task;
8225
924f0d9a 8226 cgroup_taskset_for_each(task, tset)
bb9d97b6 8227 sched_move_task(task);
68318b8e
SV
8228}
8229
eb95419b
TH
8230static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8231 struct cgroup_subsys_state *old_css,
8232 struct task_struct *task)
068c5cc5 8233{
068c5cc5
PZ
8234 sched_move_task(task);
8235}
8236
052f1dc7 8237#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8238static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8239 struct cftype *cftype, u64 shareval)
68318b8e 8240{
182446d0 8241 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8242}
8243
182446d0
TH
8244static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8245 struct cftype *cft)
68318b8e 8246{
182446d0 8247 struct task_group *tg = css_tg(css);
68318b8e 8248
c8b28116 8249 return (u64) scale_load_down(tg->shares);
68318b8e 8250}
ab84d31e
PT
8251
8252#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8253static DEFINE_MUTEX(cfs_constraints_mutex);
8254
ab84d31e
PT
8255const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8256const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8257
a790de99
PT
8258static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8259
ab84d31e
PT
8260static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8261{
56f570e5 8262 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8263 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8264
8265 if (tg == &root_task_group)
8266 return -EINVAL;
8267
8268 /*
8269 * Ensure we have at some amount of bandwidth every period. This is
8270 * to prevent reaching a state of large arrears when throttled via
8271 * entity_tick() resulting in prolonged exit starvation.
8272 */
8273 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8274 return -EINVAL;
8275
8276 /*
8277 * Likewise, bound things on the otherside by preventing insane quota
8278 * periods. This also allows us to normalize in computing quota
8279 * feasibility.
8280 */
8281 if (period > max_cfs_quota_period)
8282 return -EINVAL;
8283
0e59bdae
KT
8284 /*
8285 * Prevent race between setting of cfs_rq->runtime_enabled and
8286 * unthrottle_offline_cfs_rqs().
8287 */
8288 get_online_cpus();
a790de99
PT
8289 mutex_lock(&cfs_constraints_mutex);
8290 ret = __cfs_schedulable(tg, period, quota);
8291 if (ret)
8292 goto out_unlock;
8293
58088ad0 8294 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8295 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8296 /*
8297 * If we need to toggle cfs_bandwidth_used, off->on must occur
8298 * before making related changes, and on->off must occur afterwards
8299 */
8300 if (runtime_enabled && !runtime_was_enabled)
8301 cfs_bandwidth_usage_inc();
ab84d31e
PT
8302 raw_spin_lock_irq(&cfs_b->lock);
8303 cfs_b->period = ns_to_ktime(period);
8304 cfs_b->quota = quota;
58088ad0 8305
a9cf55b2 8306 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8307 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8308 if (runtime_enabled)
8309 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8310 raw_spin_unlock_irq(&cfs_b->lock);
8311
0e59bdae 8312 for_each_online_cpu(i) {
ab84d31e 8313 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8314 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8315
8316 raw_spin_lock_irq(&rq->lock);
58088ad0 8317 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8318 cfs_rq->runtime_remaining = 0;
671fd9da 8319
029632fb 8320 if (cfs_rq->throttled)
671fd9da 8321 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8322 raw_spin_unlock_irq(&rq->lock);
8323 }
1ee14e6c
BS
8324 if (runtime_was_enabled && !runtime_enabled)
8325 cfs_bandwidth_usage_dec();
a790de99
PT
8326out_unlock:
8327 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8328 put_online_cpus();
ab84d31e 8329
a790de99 8330 return ret;
ab84d31e
PT
8331}
8332
8333int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8334{
8335 u64 quota, period;
8336
029632fb 8337 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8338 if (cfs_quota_us < 0)
8339 quota = RUNTIME_INF;
8340 else
8341 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8342
8343 return tg_set_cfs_bandwidth(tg, period, quota);
8344}
8345
8346long tg_get_cfs_quota(struct task_group *tg)
8347{
8348 u64 quota_us;
8349
029632fb 8350 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8351 return -1;
8352
029632fb 8353 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8354 do_div(quota_us, NSEC_PER_USEC);
8355
8356 return quota_us;
8357}
8358
8359int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8360{
8361 u64 quota, period;
8362
8363 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8364 quota = tg->cfs_bandwidth.quota;
ab84d31e 8365
ab84d31e
PT
8366 return tg_set_cfs_bandwidth(tg, period, quota);
8367}
8368
8369long tg_get_cfs_period(struct task_group *tg)
8370{
8371 u64 cfs_period_us;
8372
029632fb 8373 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8374 do_div(cfs_period_us, NSEC_PER_USEC);
8375
8376 return cfs_period_us;
8377}
8378
182446d0
TH
8379static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8380 struct cftype *cft)
ab84d31e 8381{
182446d0 8382 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8383}
8384
182446d0
TH
8385static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8386 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8387{
182446d0 8388 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8389}
8390
182446d0
TH
8391static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8392 struct cftype *cft)
ab84d31e 8393{
182446d0 8394 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8395}
8396
182446d0
TH
8397static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8398 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8399{
182446d0 8400 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8401}
8402
a790de99
PT
8403struct cfs_schedulable_data {
8404 struct task_group *tg;
8405 u64 period, quota;
8406};
8407
8408/*
8409 * normalize group quota/period to be quota/max_period
8410 * note: units are usecs
8411 */
8412static u64 normalize_cfs_quota(struct task_group *tg,
8413 struct cfs_schedulable_data *d)
8414{
8415 u64 quota, period;
8416
8417 if (tg == d->tg) {
8418 period = d->period;
8419 quota = d->quota;
8420 } else {
8421 period = tg_get_cfs_period(tg);
8422 quota = tg_get_cfs_quota(tg);
8423 }
8424
8425 /* note: these should typically be equivalent */
8426 if (quota == RUNTIME_INF || quota == -1)
8427 return RUNTIME_INF;
8428
8429 return to_ratio(period, quota);
8430}
8431
8432static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8433{
8434 struct cfs_schedulable_data *d = data;
029632fb 8435 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8436 s64 quota = 0, parent_quota = -1;
8437
8438 if (!tg->parent) {
8439 quota = RUNTIME_INF;
8440 } else {
029632fb 8441 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8442
8443 quota = normalize_cfs_quota(tg, d);
9c58c79a 8444 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8445
8446 /*
8447 * ensure max(child_quota) <= parent_quota, inherit when no
8448 * limit is set
8449 */
8450 if (quota == RUNTIME_INF)
8451 quota = parent_quota;
8452 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8453 return -EINVAL;
8454 }
9c58c79a 8455 cfs_b->hierarchical_quota = quota;
a790de99
PT
8456
8457 return 0;
8458}
8459
8460static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8461{
8277434e 8462 int ret;
a790de99
PT
8463 struct cfs_schedulable_data data = {
8464 .tg = tg,
8465 .period = period,
8466 .quota = quota,
8467 };
8468
8469 if (quota != RUNTIME_INF) {
8470 do_div(data.period, NSEC_PER_USEC);
8471 do_div(data.quota, NSEC_PER_USEC);
8472 }
8473
8277434e
PT
8474 rcu_read_lock();
8475 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8476 rcu_read_unlock();
8477
8478 return ret;
a790de99 8479}
e8da1b18 8480
2da8ca82 8481static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8482{
2da8ca82 8483 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8484 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8485
44ffc75b
TH
8486 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8487 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8488 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8489
8490 return 0;
8491}
ab84d31e 8492#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8493#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8494
052f1dc7 8495#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8496static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8497 struct cftype *cft, s64 val)
6f505b16 8498{
182446d0 8499 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8500}
8501
182446d0
TH
8502static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8503 struct cftype *cft)
6f505b16 8504{
182446d0 8505 return sched_group_rt_runtime(css_tg(css));
6f505b16 8506}
d0b27fa7 8507
182446d0
TH
8508static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8509 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8510{
182446d0 8511 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8512}
8513
182446d0
TH
8514static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8515 struct cftype *cft)
d0b27fa7 8516{
182446d0 8517 return sched_group_rt_period(css_tg(css));
d0b27fa7 8518}
6d6bc0ad 8519#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8520
fe5c7cc2 8521static struct cftype cpu_files[] = {
052f1dc7 8522#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8523 {
8524 .name = "shares",
f4c753b7
PM
8525 .read_u64 = cpu_shares_read_u64,
8526 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8527 },
052f1dc7 8528#endif
ab84d31e
PT
8529#ifdef CONFIG_CFS_BANDWIDTH
8530 {
8531 .name = "cfs_quota_us",
8532 .read_s64 = cpu_cfs_quota_read_s64,
8533 .write_s64 = cpu_cfs_quota_write_s64,
8534 },
8535 {
8536 .name = "cfs_period_us",
8537 .read_u64 = cpu_cfs_period_read_u64,
8538 .write_u64 = cpu_cfs_period_write_u64,
8539 },
e8da1b18
NR
8540 {
8541 .name = "stat",
2da8ca82 8542 .seq_show = cpu_stats_show,
e8da1b18 8543 },
ab84d31e 8544#endif
052f1dc7 8545#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8546 {
9f0c1e56 8547 .name = "rt_runtime_us",
06ecb27c
PM
8548 .read_s64 = cpu_rt_runtime_read,
8549 .write_s64 = cpu_rt_runtime_write,
6f505b16 8550 },
d0b27fa7
PZ
8551 {
8552 .name = "rt_period_us",
f4c753b7
PM
8553 .read_u64 = cpu_rt_period_read_uint,
8554 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8555 },
052f1dc7 8556#endif
4baf6e33 8557 { } /* terminate */
68318b8e
SV
8558};
8559
073219e9 8560struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8561 .css_alloc = cpu_cgroup_css_alloc,
8562 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8563 .css_online = cpu_cgroup_css_online,
8564 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8565 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8566 .can_attach = cpu_cgroup_can_attach,
8567 .attach = cpu_cgroup_attach,
068c5cc5 8568 .exit = cpu_cgroup_exit,
5577964e 8569 .legacy_cftypes = cpu_files,
68318b8e
SV
8570 .early_init = 1,
8571};
8572
052f1dc7 8573#endif /* CONFIG_CGROUP_SCHED */
d842de87 8574
b637a328
PM
8575void dump_cpu_task(int cpu)
8576{
8577 pr_info("Task dump for CPU %d:\n", cpu);
8578 sched_show_task(cpu_curr(cpu));
8579}
This page took 2.818635 seconds and 5 git commands to generate.