hrtimer: Rearrange comments in the order struct members are declared
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
286549dc 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
ac66f547
PZ
1115 return ret;
1116}
1117
969c7921 1118struct migration_arg {
36c8b586 1119 struct task_struct *task;
1da177e4 1120 int dest_cpu;
70b97a7f 1121};
1da177e4 1122
969c7921
TH
1123static int migration_cpu_stop(void *data);
1124
1da177e4
LT
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
85ba2d86
RM
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1da177e4
LT
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
85ba2d86 1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1142{
1143 unsigned long flags;
dd41f596 1144 int running, on_rq;
85ba2d86 1145 unsigned long ncsw;
70b97a7f 1146 struct rq *rq;
1da177e4 1147
3a5c359a
AK
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
85ba2d86
RM
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
3a5c359a 1171 cpu_relax();
85ba2d86 1172 }
fa490cfd 1173
3a5c359a
AK
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
27a9da65 1180 trace_sched_wait_task(p);
3a5c359a 1181 running = task_running(rq, p);
fd2f4419 1182 on_rq = p->on_rq;
85ba2d86 1183 ncsw = 0;
f31e11d8 1184 if (!match_state || p->state == match_state)
93dcf55f 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1186 task_rq_unlock(rq, p, &flags);
fa490cfd 1187
85ba2d86
RM
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
3a5c359a
AK
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
fa490cfd 1204
3a5c359a
AK
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
80dd99b3 1210 * So if it was still runnable (but just not actively
3a5c359a
AK
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
8eb90c30
TG
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1219 continue;
1220 }
fa490cfd 1221
3a5c359a
AK
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
85ba2d86
RM
1229
1230 return ncsw;
1da177e4
LT
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
25985edc 1240 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
36c8b586 1246void kick_process(struct task_struct *p)
1da177e4
LT
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
b43e3521 1256EXPORT_SYMBOL_GPL(kick_process);
476d139c 1257#endif /* CONFIG_SMP */
1da177e4 1258
970b13ba 1259#ifdef CONFIG_SMP
30da688e 1260/*
013fdb80 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1262 */
5da9a0fb
PZ
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
aa00d89c
TC
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb 1269
aa00d89c
TC
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
2baab4e9 1287 }
5da9a0fb 1288
2baab4e9
PZ
1289 for (;;) {
1290 /* Any allowed, online CPU? */
e3831edd 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
5da9a0fb
PZ
1328 }
1329
1330 return dest_cpu;
1331}
1332
e2912009 1333/*
013fdb80 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1335 */
970b13ba 1336static inline
ac66f547 1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1338{
ac66f547 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
fa17b507 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1352 !cpu_online(cpu)))
5da9a0fb 1353 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1354
1355 return cpu;
970b13ba 1356}
09a40af5
MG
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
970b13ba
PZ
1363#endif
1364
d7c01d27 1365static void
b84cb5df 1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1367{
d7c01d27 1368#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1369 struct rq *rq = this_rq();
1370
d7c01d27
PZ
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1381 rcu_read_lock();
d7c01d27
PZ
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
057f3fad 1388 rcu_read_unlock();
d7c01d27 1389 }
f339b9dc
PZ
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
d7c01d27
PZ
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1398
1399 if (wake_flags & WF_SYNC)
9ed3811a 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1401
d7c01d27
PZ
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
9ed3811a 1407 activate_task(rq, p, en_flags);
fd2f4419 1408 p->on_rq = 1;
c2f7115e
PZ
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1413}
1414
23f41eeb
PZ
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
89363381 1418static void
23f41eeb 1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1420{
9ed3811a 1421 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1422 trace_sched_wakeup(p, true);
9ed3811a
TH
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
e69c6341 1429 if (rq->idle_stamp) {
78becc27 1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1431 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1432
abfafa54
JL
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
9ed3811a 1436 rq->avg_idle = max;
abfafa54 1437
9ed3811a
TH
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
c05fbafb
PZ
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1ad4ec0d
FW
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
c05fbafb
PZ
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
317f3941 1478#ifdef CONFIG_SMP
fa14ff4a 1479static void sched_ttwu_pending(void)
317f3941
PZ
1480{
1481 struct rq *rq = this_rq();
fa14ff4a
PZ
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
317f3941
PZ
1484
1485 raw_spin_lock(&rq->lock);
1486
fa14ff4a
PZ
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
317f3941
PZ
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
f27dde8d
PZ
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
8cb75e0c 1503 preempt_fold_need_resched();
f27dde8d 1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
aab03e05
DF
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1724 p->dl.dl_period = 0;
aab03e05
DF
1725 p->dl.flags = 0;
1726
fa717060 1727 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1728
e107be36
AK
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
cbee9f88
PZ
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
5e1576ed
RR
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
cbee9f88
PZ
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1747 p->numa_work.next = &p->numa_work;
f809ca9a 1748 p->numa_faults = NULL;
745d6147 1749 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
cbee9f88 1753#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1754}
1755
1a687c2e 1756#ifdef CONFIG_NUMA_BALANCING
3105b86a 1757#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1758void set_numabalancing_state(bool enabled)
1759{
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764}
3105b86a
MG
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770 numabalancing_enabled = enabled;
dd41f596 1771}
3105b86a 1772#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793}
1794#endif
1795#endif
dd41f596
IM
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
aab03e05 1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1801{
0122ec5b 1802 unsigned long flags;
dd41f596
IM
1803 int cpu = get_cpu();
1804
5e1576ed 1805 __sched_fork(clone_flags, p);
06b83b5f 1806 /*
0017d735 1807 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
0017d735 1811 p->state = TASK_RUNNING;
dd41f596 1812
c350a04e
MG
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
b9dc29e7
MG
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1823 p->policy = SCHED_NORMAL;
6c697bdf 1824 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
6c697bdf 1831
b9dc29e7
MG
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
ca94c442 1838
aab03e05
DF
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
2ddbf952 1845 p->sched_class = &fair_sched_class;
aab03e05 1846 }
b29739f9 1847
cd29fe6f
PZ
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
86951599
PZ
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
0122ec5b 1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1859 set_task_cpu(p, cpu);
0122ec5b 1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1861
52f17b6c 1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1863 if (likely(sched_info_on()))
52f17b6c 1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1865#endif
3ca7a440
PZ
1866#if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
4866cde0 1868#endif
01028747 1869 init_task_preempt_count(p);
806c09a7 1870#ifdef CONFIG_SMP
917b627d 1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1873#endif
917b627d 1874
476d139c 1875 put_cpu();
aab03e05 1876 return 0;
1da177e4
LT
1877}
1878
332ac17e
DF
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898 return &cpu_rq(i)->rd->dl_bw;
1899}
1900
de212f18 1901static inline int dl_bw_cpus(int i)
332ac17e 1902{
de212f18
PZ
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
332ac17e
DF
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914 return &cpu_rq(i)->dl.dl_bw;
1915}
1916
de212f18 1917static inline int dl_bw_cpus(int i)
332ac17e
DF
1918{
1919 return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926 dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932 dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952{
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period;
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1958 int cpus, err = -1;
332ac17e
DF
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
de212f18 1969 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1da177e4
LT
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
3e51e3ed 1997void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1998{
1999 unsigned long flags;
dd41f596 2000 struct rq *rq;
fabf318e 2001
ab2515c4 2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2003#ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
fabf318e 2008 */
ac66f547 2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2010#endif
2011
a75cdaa9
AS
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
ab2515c4 2014 rq = __task_rq_lock(p);
cd29fe6f 2015 activate_task(rq, p, 0);
fd2f4419 2016 p->on_rq = 1;
89363381 2017 trace_sched_wakeup_new(p, true);
a7558e01 2018 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2019#ifdef CONFIG_SMP
efbbd05a
PZ
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
9a897c5a 2022#endif
0122ec5b 2023 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2024}
2025
e107be36
AK
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
80dd99b3 2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2030 * @notifier: notifier struct to register
e107be36
AK
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2040 * @notifier: notifier struct to unregister
e107be36
AK
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046 hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052 struct preempt_notifier *notifier;
e107be36 2053
b67bfe0d 2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062 struct preempt_notifier *notifier;
e107be36 2063
b67bfe0d 2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2065 notifier->ops->sched_out(notifier, next);
2066}
2067
6d6bc0ad 2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077{
2078}
2079
6d6bc0ad 2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2081
4866cde0
NP
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
421cee29 2085 * @prev: the current task that is being switched out
4866cde0
NP
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
e107be36
AK
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
4866cde0 2098{
895dd92c 2099 trace_sched_switch(prev, next);
43148951 2100 sched_info_switch(rq, prev, next);
fe4b04fa 2101 perf_event_task_sched_out(prev, next);
e107be36 2102 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105}
2106
1da177e4
LT
2107/**
2108 * finish_task_switch - clean up after a task-switch
344babaa 2109 * @rq: runqueue associated with task-switch
1da177e4
LT
2110 * @prev: the thread we just switched away from.
2111 *
4866cde0
NP
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2118 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
a9957449 2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2123 __releases(rq->lock)
2124{
1da177e4 2125 struct mm_struct *mm = rq->prev_mm;
55a101f8 2126 long prev_state;
1da177e4
LT
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
c394cc9f 2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
c394cc9f 2135 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
55a101f8 2141 prev_state = prev->state;
bf9fae9f 2142 vtime_task_switch(prev);
4866cde0 2143 finish_arch_switch(prev);
a8d757ef 2144 perf_event_task_sched_in(prev, current);
4866cde0 2145 finish_lock_switch(rq, prev);
01f23e16 2146 finish_arch_post_lock_switch();
e8fa1362 2147
e107be36 2148 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2149 if (mm)
2150 mmdrop(mm);
c394cc9f 2151 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2152 task_numa_free(prev);
2153
e6c390f2
DF
2154 if (prev->sched_class->task_dead)
2155 prev->sched_class->task_dead(prev);
2156
c6fd91f0 2157 /*
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
9761eea8 2160 */
c6fd91f0 2161 kprobe_flush_task(prev);
1da177e4 2162 put_task_struct(prev);
c6fd91f0 2163 }
99e5ada9
FW
2164
2165 tick_nohz_task_switch(current);
1da177e4
LT
2166}
2167
3f029d3c
GH
2168#ifdef CONFIG_SMP
2169
2170/* assumes rq->lock is held */
2171static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2172{
2173 if (prev->sched_class->pre_schedule)
2174 prev->sched_class->pre_schedule(rq, prev);
2175}
2176
2177/* rq->lock is NOT held, but preemption is disabled */
2178static inline void post_schedule(struct rq *rq)
2179{
2180 if (rq->post_schedule) {
2181 unsigned long flags;
2182
05fa785c 2183 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2184 if (rq->curr->sched_class->post_schedule)
2185 rq->curr->sched_class->post_schedule(rq);
05fa785c 2186 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2187
2188 rq->post_schedule = 0;
2189 }
2190}
2191
2192#else
da19ab51 2193
3f029d3c
GH
2194static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2195{
2196}
2197
2198static inline void post_schedule(struct rq *rq)
2199{
1da177e4
LT
2200}
2201
3f029d3c
GH
2202#endif
2203
1da177e4
LT
2204/**
2205 * schedule_tail - first thing a freshly forked thread must call.
2206 * @prev: the thread we just switched away from.
2207 */
36c8b586 2208asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2209 __releases(rq->lock)
2210{
70b97a7f
IM
2211 struct rq *rq = this_rq();
2212
4866cde0 2213 finish_task_switch(rq, prev);
da19ab51 2214
3f029d3c
GH
2215 /*
2216 * FIXME: do we need to worry about rq being invalidated by the
2217 * task_switch?
2218 */
2219 post_schedule(rq);
70b97a7f 2220
4866cde0
NP
2221#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222 /* In this case, finish_task_switch does not reenable preemption */
2223 preempt_enable();
2224#endif
1da177e4 2225 if (current->set_child_tid)
b488893a 2226 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2227}
2228
2229/*
2230 * context_switch - switch to the new MM and the new
2231 * thread's register state.
2232 */
dd41f596 2233static inline void
70b97a7f 2234context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2235 struct task_struct *next)
1da177e4 2236{
dd41f596 2237 struct mm_struct *mm, *oldmm;
1da177e4 2238
e107be36 2239 prepare_task_switch(rq, prev, next);
fe4b04fa 2240
dd41f596
IM
2241 mm = next->mm;
2242 oldmm = prev->active_mm;
9226d125
ZA
2243 /*
2244 * For paravirt, this is coupled with an exit in switch_to to
2245 * combine the page table reload and the switch backend into
2246 * one hypercall.
2247 */
224101ed 2248 arch_start_context_switch(prev);
9226d125 2249
31915ab4 2250 if (!mm) {
1da177e4
LT
2251 next->active_mm = oldmm;
2252 atomic_inc(&oldmm->mm_count);
2253 enter_lazy_tlb(oldmm, next);
2254 } else
2255 switch_mm(oldmm, mm, next);
2256
31915ab4 2257 if (!prev->mm) {
1da177e4 2258 prev->active_mm = NULL;
1da177e4
LT
2259 rq->prev_mm = oldmm;
2260 }
3a5f5e48
IM
2261 /*
2262 * Since the runqueue lock will be released by the next
2263 * task (which is an invalid locking op but in the case
2264 * of the scheduler it's an obvious special-case), so we
2265 * do an early lockdep release here:
2266 */
2267#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2268 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2269#endif
1da177e4 2270
91d1aa43 2271 context_tracking_task_switch(prev, next);
1da177e4
LT
2272 /* Here we just switch the register state and the stack. */
2273 switch_to(prev, next, prev);
2274
dd41f596
IM
2275 barrier();
2276 /*
2277 * this_rq must be evaluated again because prev may have moved
2278 * CPUs since it called schedule(), thus the 'rq' on its stack
2279 * frame will be invalid.
2280 */
2281 finish_task_switch(this_rq(), prev);
1da177e4
LT
2282}
2283
2284/*
1c3e8264 2285 * nr_running and nr_context_switches:
1da177e4
LT
2286 *
2287 * externally visible scheduler statistics: current number of runnable
1c3e8264 2288 * threads, total number of context switches performed since bootup.
1da177e4
LT
2289 */
2290unsigned long nr_running(void)
2291{
2292 unsigned long i, sum = 0;
2293
2294 for_each_online_cpu(i)
2295 sum += cpu_rq(i)->nr_running;
2296
2297 return sum;
f711f609 2298}
1da177e4 2299
1da177e4 2300unsigned long long nr_context_switches(void)
46cb4b7c 2301{
cc94abfc
SR
2302 int i;
2303 unsigned long long sum = 0;
46cb4b7c 2304
0a945022 2305 for_each_possible_cpu(i)
1da177e4 2306 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2307
1da177e4
LT
2308 return sum;
2309}
483b4ee6 2310
1da177e4
LT
2311unsigned long nr_iowait(void)
2312{
2313 unsigned long i, sum = 0;
483b4ee6 2314
0a945022 2315 for_each_possible_cpu(i)
1da177e4 2316 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2317
1da177e4
LT
2318 return sum;
2319}
483b4ee6 2320
8c215bd3 2321unsigned long nr_iowait_cpu(int cpu)
69d25870 2322{
8c215bd3 2323 struct rq *this = cpu_rq(cpu);
69d25870
AV
2324 return atomic_read(&this->nr_iowait);
2325}
46cb4b7c 2326
dd41f596 2327#ifdef CONFIG_SMP
8a0be9ef 2328
46cb4b7c 2329/*
38022906
PZ
2330 * sched_exec - execve() is a valuable balancing opportunity, because at
2331 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2332 */
38022906 2333void sched_exec(void)
46cb4b7c 2334{
38022906 2335 struct task_struct *p = current;
1da177e4 2336 unsigned long flags;
0017d735 2337 int dest_cpu;
46cb4b7c 2338
8f42ced9 2339 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2340 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2341 if (dest_cpu == smp_processor_id())
2342 goto unlock;
38022906 2343
8f42ced9 2344 if (likely(cpu_active(dest_cpu))) {
969c7921 2345 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2346
8f42ced9
PZ
2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2349 return;
2350 }
0017d735 2351unlock:
8f42ced9 2352 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2353}
dd41f596 2354
1da177e4
LT
2355#endif
2356
1da177e4 2357DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2358DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2359
2360EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2361EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2362
2363/*
c5f8d995 2364 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2365 * @p in case that task is currently running.
c5f8d995
HS
2366 *
2367 * Called with task_rq_lock() held on @rq.
1da177e4 2368 */
c5f8d995
HS
2369static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2370{
2371 u64 ns = 0;
2372
2373 if (task_current(rq, p)) {
2374 update_rq_clock(rq);
78becc27 2375 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2376 if ((s64)ns < 0)
2377 ns = 0;
2378 }
2379
2380 return ns;
2381}
2382
bb34d92f 2383unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2384{
1da177e4 2385 unsigned long flags;
41b86e9c 2386 struct rq *rq;
bb34d92f 2387 u64 ns = 0;
48f24c4d 2388
41b86e9c 2389 rq = task_rq_lock(p, &flags);
c5f8d995 2390 ns = do_task_delta_exec(p, rq);
0122ec5b 2391 task_rq_unlock(rq, p, &flags);
1508487e 2392
c5f8d995
HS
2393 return ns;
2394}
f06febc9 2395
c5f8d995
HS
2396/*
2397 * Return accounted runtime for the task.
2398 * In case the task is currently running, return the runtime plus current's
2399 * pending runtime that have not been accounted yet.
2400 */
2401unsigned long long task_sched_runtime(struct task_struct *p)
2402{
2403 unsigned long flags;
2404 struct rq *rq;
2405 u64 ns = 0;
2406
911b2898
PZ
2407#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2408 /*
2409 * 64-bit doesn't need locks to atomically read a 64bit value.
2410 * So we have a optimization chance when the task's delta_exec is 0.
2411 * Reading ->on_cpu is racy, but this is ok.
2412 *
2413 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414 * If we race with it entering cpu, unaccounted time is 0. This is
2415 * indistinguishable from the read occurring a few cycles earlier.
2416 */
2417 if (!p->on_cpu)
2418 return p->se.sum_exec_runtime;
2419#endif
2420
c5f8d995
HS
2421 rq = task_rq_lock(p, &flags);
2422 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2423 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2424
2425 return ns;
2426}
48f24c4d 2427
7835b98b
CL
2428/*
2429 * This function gets called by the timer code, with HZ frequency.
2430 * We call it with interrupts disabled.
7835b98b
CL
2431 */
2432void scheduler_tick(void)
2433{
7835b98b
CL
2434 int cpu = smp_processor_id();
2435 struct rq *rq = cpu_rq(cpu);
dd41f596 2436 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2437
2438 sched_clock_tick();
dd41f596 2439
05fa785c 2440 raw_spin_lock(&rq->lock);
3e51f33f 2441 update_rq_clock(rq);
fa85ae24 2442 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2443 update_cpu_load_active(rq);
05fa785c 2444 raw_spin_unlock(&rq->lock);
7835b98b 2445
e9d2b064 2446 perf_event_task_tick();
e220d2dc 2447
e418e1c2 2448#ifdef CONFIG_SMP
6eb57e0d 2449 rq->idle_balance = idle_cpu(cpu);
7caff66f 2450 trigger_load_balance(rq);
e418e1c2 2451#endif
265f22a9 2452 rq_last_tick_reset(rq);
1da177e4
LT
2453}
2454
265f22a9
FW
2455#ifdef CONFIG_NO_HZ_FULL
2456/**
2457 * scheduler_tick_max_deferment
2458 *
2459 * Keep at least one tick per second when a single
2460 * active task is running because the scheduler doesn't
2461 * yet completely support full dynticks environment.
2462 *
2463 * This makes sure that uptime, CFS vruntime, load
2464 * balancing, etc... continue to move forward, even
2465 * with a very low granularity.
e69f6186
YB
2466 *
2467 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2468 */
2469u64 scheduler_tick_max_deferment(void)
2470{
2471 struct rq *rq = this_rq();
2472 unsigned long next, now = ACCESS_ONCE(jiffies);
2473
2474 next = rq->last_sched_tick + HZ;
2475
2476 if (time_before_eq(next, now))
2477 return 0;
2478
8fe8ff09 2479 return jiffies_to_nsecs(next - now);
1da177e4 2480}
265f22a9 2481#endif
1da177e4 2482
132380a0 2483notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2484{
2485 if (in_lock_functions(addr)) {
2486 addr = CALLER_ADDR2;
2487 if (in_lock_functions(addr))
2488 addr = CALLER_ADDR3;
2489 }
2490 return addr;
2491}
1da177e4 2492
7e49fcce
SR
2493#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494 defined(CONFIG_PREEMPT_TRACER))
2495
bdb43806 2496void __kprobes preempt_count_add(int val)
1da177e4 2497{
6cd8a4bb 2498#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2499 /*
2500 * Underflow?
2501 */
9a11b49a
IM
2502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2503 return;
6cd8a4bb 2504#endif
bdb43806 2505 __preempt_count_add(val);
6cd8a4bb 2506#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2507 /*
2508 * Spinlock count overflowing soon?
2509 */
33859f7f
MOS
2510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2511 PREEMPT_MASK - 10);
6cd8a4bb
SR
2512#endif
2513 if (preempt_count() == val)
2514 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2515}
bdb43806 2516EXPORT_SYMBOL(preempt_count_add);
1da177e4 2517
bdb43806 2518void __kprobes preempt_count_sub(int val)
1da177e4 2519{
6cd8a4bb 2520#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2521 /*
2522 * Underflow?
2523 */
01e3eb82 2524 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2525 return;
1da177e4
LT
2526 /*
2527 * Is the spinlock portion underflowing?
2528 */
9a11b49a
IM
2529 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2530 !(preempt_count() & PREEMPT_MASK)))
2531 return;
6cd8a4bb 2532#endif
9a11b49a 2533
6cd8a4bb
SR
2534 if (preempt_count() == val)
2535 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2536 __preempt_count_sub(val);
1da177e4 2537}
bdb43806 2538EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2539
2540#endif
2541
2542/*
dd41f596 2543 * Print scheduling while atomic bug:
1da177e4 2544 */
dd41f596 2545static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2546{
664dfa65
DJ
2547 if (oops_in_progress)
2548 return;
2549
3df0fc5b
PZ
2550 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551 prev->comm, prev->pid, preempt_count());
838225b4 2552
dd41f596 2553 debug_show_held_locks(prev);
e21f5b15 2554 print_modules();
dd41f596
IM
2555 if (irqs_disabled())
2556 print_irqtrace_events(prev);
6135fc1e 2557 dump_stack();
373d4d09 2558 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2559}
1da177e4 2560
dd41f596
IM
2561/*
2562 * Various schedule()-time debugging checks and statistics:
2563 */
2564static inline void schedule_debug(struct task_struct *prev)
2565{
1da177e4 2566 /*
41a2d6cf 2567 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2568 * schedule() atomically, we ignore that path. Otherwise whine
2569 * if we are scheduling when we should not.
1da177e4 2570 */
192301e7 2571 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2572 __schedule_bug(prev);
b3fbab05 2573 rcu_sleep_check();
dd41f596 2574
1da177e4
LT
2575 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2576
2d72376b 2577 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2578}
2579
6cecd084 2580static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2581{
61eadef6 2582 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2583 update_rq_clock(rq);
6cecd084 2584 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2585}
2586
dd41f596
IM
2587/*
2588 * Pick up the highest-prio task:
2589 */
2590static inline struct task_struct *
b67802ea 2591pick_next_task(struct rq *rq)
dd41f596 2592{
5522d5d5 2593 const struct sched_class *class;
dd41f596 2594 struct task_struct *p;
1da177e4
LT
2595
2596 /*
dd41f596
IM
2597 * Optimization: we know that if all tasks are in
2598 * the fair class we can call that function directly:
1da177e4 2599 */
953bfcd1 2600 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2601 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2602 if (likely(p))
2603 return p;
1da177e4
LT
2604 }
2605
34f971f6 2606 for_each_class(class) {
fb8d4724 2607 p = class->pick_next_task(rq);
dd41f596
IM
2608 if (p)
2609 return p;
dd41f596 2610 }
34f971f6
PZ
2611
2612 BUG(); /* the idle class will always have a runnable task */
dd41f596 2613}
1da177e4 2614
dd41f596 2615/*
c259e01a 2616 * __schedule() is the main scheduler function.
edde96ea
PE
2617 *
2618 * The main means of driving the scheduler and thus entering this function are:
2619 *
2620 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2621 *
2622 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623 * paths. For example, see arch/x86/entry_64.S.
2624 *
2625 * To drive preemption between tasks, the scheduler sets the flag in timer
2626 * interrupt handler scheduler_tick().
2627 *
2628 * 3. Wakeups don't really cause entry into schedule(). They add a
2629 * task to the run-queue and that's it.
2630 *
2631 * Now, if the new task added to the run-queue preempts the current
2632 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633 * called on the nearest possible occasion:
2634 *
2635 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2636 *
2637 * - in syscall or exception context, at the next outmost
2638 * preempt_enable(). (this might be as soon as the wake_up()'s
2639 * spin_unlock()!)
2640 *
2641 * - in IRQ context, return from interrupt-handler to
2642 * preemptible context
2643 *
2644 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2645 * then at the next:
2646 *
2647 * - cond_resched() call
2648 * - explicit schedule() call
2649 * - return from syscall or exception to user-space
2650 * - return from interrupt-handler to user-space
dd41f596 2651 */
c259e01a 2652static void __sched __schedule(void)
dd41f596
IM
2653{
2654 struct task_struct *prev, *next;
67ca7bde 2655 unsigned long *switch_count;
dd41f596 2656 struct rq *rq;
31656519 2657 int cpu;
dd41f596 2658
ff743345
PZ
2659need_resched:
2660 preempt_disable();
dd41f596
IM
2661 cpu = smp_processor_id();
2662 rq = cpu_rq(cpu);
25502a6c 2663 rcu_note_context_switch(cpu);
dd41f596 2664 prev = rq->curr;
dd41f596 2665
dd41f596 2666 schedule_debug(prev);
1da177e4 2667
31656519 2668 if (sched_feat(HRTICK))
f333fdc9 2669 hrtick_clear(rq);
8f4d37ec 2670
e0acd0a6
ON
2671 /*
2672 * Make sure that signal_pending_state()->signal_pending() below
2673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674 * done by the caller to avoid the race with signal_wake_up().
2675 */
2676 smp_mb__before_spinlock();
05fa785c 2677 raw_spin_lock_irq(&rq->lock);
1da177e4 2678
246d86b5 2679 switch_count = &prev->nivcsw;
1da177e4 2680 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2681 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2682 prev->state = TASK_RUNNING;
21aa9af0 2683 } else {
2acca55e
PZ
2684 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2685 prev->on_rq = 0;
2686
21aa9af0 2687 /*
2acca55e
PZ
2688 * If a worker went to sleep, notify and ask workqueue
2689 * whether it wants to wake up a task to maintain
2690 * concurrency.
21aa9af0
TH
2691 */
2692 if (prev->flags & PF_WQ_WORKER) {
2693 struct task_struct *to_wakeup;
2694
2695 to_wakeup = wq_worker_sleeping(prev, cpu);
2696 if (to_wakeup)
2697 try_to_wake_up_local(to_wakeup);
2698 }
21aa9af0 2699 }
dd41f596 2700 switch_count = &prev->nvcsw;
1da177e4
LT
2701 }
2702
3f029d3c 2703 pre_schedule(rq, prev);
f65eda4f 2704
dd41f596 2705 if (unlikely(!rq->nr_running))
1da177e4 2706 idle_balance(cpu, rq);
1da177e4 2707
df1c99d4 2708 put_prev_task(rq, prev);
b67802ea 2709 next = pick_next_task(rq);
f26f9aff 2710 clear_tsk_need_resched(prev);
f27dde8d 2711 clear_preempt_need_resched();
f26f9aff 2712 rq->skip_clock_update = 0;
1da177e4 2713
1da177e4 2714 if (likely(prev != next)) {
1da177e4
LT
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
dd41f596 2719 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2720 /*
246d86b5
ON
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
1da177e4 2728 } else
05fa785c 2729 raw_spin_unlock_irq(&rq->lock);
1da177e4 2730
3f029d3c 2731 post_schedule(rq);
1da177e4 2732
ba74c144 2733 sched_preempt_enable_no_resched();
ff743345 2734 if (need_resched())
1da177e4
LT
2735 goto need_resched;
2736}
c259e01a 2737
9c40cef2
TG
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
3c7d5184 2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748}
2749
6ebbe7a0 2750asmlinkage void __sched schedule(void)
c259e01a 2751{
9c40cef2
TG
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
c259e01a
TG
2755 __schedule();
2756}
1da177e4
LT
2757EXPORT_SYMBOL(schedule);
2758
91d1aa43 2759#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2760asmlinkage void __sched schedule_user(void)
2761{
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
91d1aa43 2768 user_exit();
20ab65e3 2769 schedule();
91d1aa43 2770 user_enter();
20ab65e3
FW
2771}
2772#endif
2773
c5491ea7
TG
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
ba74c144 2781 sched_preempt_enable_no_resched();
c5491ea7
TG
2782 schedule();
2783 preempt_disable();
2784}
2785
1da177e4
LT
2786#ifdef CONFIG_PREEMPT
2787/*
2ed6e34f 2788 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2789 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2790 * occur there and call schedule directly.
2791 */
d1f74e20 2792asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2793{
1da177e4
LT
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2796 * we do not want to preempt the current task. Just return..
1da177e4 2797 */
fbb00b56 2798 if (likely(!preemptible()))
1da177e4
LT
2799 return;
2800
3a5c359a 2801 do {
bdb43806 2802 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2803 __schedule();
bdb43806 2804 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2805
3a5c359a
AK
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
5ed0cec0 2811 } while (need_resched());
1da177e4 2812}
1da177e4 2813EXPORT_SYMBOL(preempt_schedule);
32e475d7 2814#endif /* CONFIG_PREEMPT */
1da177e4
LT
2815
2816/*
2ed6e34f 2817 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
b22366cd 2824 enum ctx_state prev_state;
6478d880 2825
2ed6e34f 2826 /* Catch callers which need to be fixed */
f27dde8d 2827 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2828
b22366cd
FW
2829 prev_state = exception_enter();
2830
3a5c359a 2831 do {
bdb43806 2832 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2833 local_irq_enable();
c259e01a 2834 __schedule();
3a5c359a 2835 local_irq_disable();
bdb43806 2836 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2837
3a5c359a
AK
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
5ed0cec0 2843 } while (need_resched());
b22366cd
FW
2844
2845 exception_exit(prev_state);
1da177e4
LT
2846}
2847
63859d4f 2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2849 void *key)
1da177e4 2850{
63859d4f 2851 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2852}
1da177e4
LT
2853EXPORT_SYMBOL(default_wake_function);
2854
8cbbe86d
AK
2855static long __sched
2856sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2857{
0fec171c
IM
2858 unsigned long flags;
2859 wait_queue_t wait;
2860
2861 init_waitqueue_entry(&wait, current);
1da177e4 2862
8cbbe86d 2863 __set_current_state(state);
1da177e4 2864
8cbbe86d
AK
2865 spin_lock_irqsave(&q->lock, flags);
2866 __add_wait_queue(q, &wait);
2867 spin_unlock(&q->lock);
2868 timeout = schedule_timeout(timeout);
2869 spin_lock_irq(&q->lock);
2870 __remove_wait_queue(q, &wait);
2871 spin_unlock_irqrestore(&q->lock, flags);
2872
2873 return timeout;
2874}
2875
2876void __sched interruptible_sleep_on(wait_queue_head_t *q)
2877{
2878 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2879}
1da177e4
LT
2880EXPORT_SYMBOL(interruptible_sleep_on);
2881
0fec171c 2882long __sched
95cdf3b7 2883interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2884{
8cbbe86d 2885 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2886}
1da177e4
LT
2887EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2888
0fec171c 2889void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2890{
8cbbe86d 2891 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2892}
1da177e4
LT
2893EXPORT_SYMBOL(sleep_on);
2894
0fec171c 2895long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2896{
8cbbe86d 2897 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2898}
1da177e4
LT
2899EXPORT_SYMBOL(sleep_on_timeout);
2900
b29739f9
IM
2901#ifdef CONFIG_RT_MUTEXES
2902
2903/*
2904 * rt_mutex_setprio - set the current priority of a task
2905 * @p: task
2906 * @prio: prio value (kernel-internal form)
2907 *
2908 * This function changes the 'effective' priority of a task. It does
2909 * not touch ->normal_prio like __setscheduler().
2910 *
2911 * Used by the rt_mutex code to implement priority inheritance logic.
2912 */
36c8b586 2913void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2914{
2d3d891d 2915 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2916 struct rq *rq;
83ab0aa0 2917 const struct sched_class *prev_class;
b29739f9 2918
aab03e05 2919 BUG_ON(prio > MAX_PRIO);
b29739f9 2920
0122ec5b 2921 rq = __task_rq_lock(p);
b29739f9 2922
1c4dd99b
TG
2923 /*
2924 * Idle task boosting is a nono in general. There is one
2925 * exception, when PREEMPT_RT and NOHZ is active:
2926 *
2927 * The idle task calls get_next_timer_interrupt() and holds
2928 * the timer wheel base->lock on the CPU and another CPU wants
2929 * to access the timer (probably to cancel it). We can safely
2930 * ignore the boosting request, as the idle CPU runs this code
2931 * with interrupts disabled and will complete the lock
2932 * protected section without being interrupted. So there is no
2933 * real need to boost.
2934 */
2935 if (unlikely(p == rq->idle)) {
2936 WARN_ON(p != rq->curr);
2937 WARN_ON(p->pi_blocked_on);
2938 goto out_unlock;
2939 }
2940
a8027073 2941 trace_sched_pi_setprio(p, prio);
2d3d891d 2942 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2943 oldprio = p->prio;
83ab0aa0 2944 prev_class = p->sched_class;
fd2f4419 2945 on_rq = p->on_rq;
051a1d1a 2946 running = task_current(rq, p);
0e1f3483 2947 if (on_rq)
69be72c1 2948 dequeue_task(rq, p, 0);
0e1f3483
HS
2949 if (running)
2950 p->sched_class->put_prev_task(rq, p);
dd41f596 2951
2d3d891d
DF
2952 /*
2953 * Boosting condition are:
2954 * 1. -rt task is running and holds mutex A
2955 * --> -dl task blocks on mutex A
2956 *
2957 * 2. -dl task is running and holds mutex A
2958 * --> -dl task blocks on mutex A and could preempt the
2959 * running task
2960 */
2961 if (dl_prio(prio)) {
2962 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2963 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2964 p->dl.dl_boosted = 1;
2965 p->dl.dl_throttled = 0;
2966 enqueue_flag = ENQUEUE_REPLENISH;
2967 } else
2968 p->dl.dl_boosted = 0;
aab03e05 2969 p->sched_class = &dl_sched_class;
2d3d891d
DF
2970 } else if (rt_prio(prio)) {
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
2973 if (oldprio < prio)
2974 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2975 p->sched_class = &rt_sched_class;
2d3d891d
DF
2976 } else {
2977 if (dl_prio(oldprio))
2978 p->dl.dl_boosted = 0;
dd41f596 2979 p->sched_class = &fair_sched_class;
2d3d891d 2980 }
dd41f596 2981
b29739f9
IM
2982 p->prio = prio;
2983
0e1f3483
HS
2984 if (running)
2985 p->sched_class->set_curr_task(rq);
da7a735e 2986 if (on_rq)
2d3d891d 2987 enqueue_task(rq, p, enqueue_flag);
cb469845 2988
da7a735e 2989 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2990out_unlock:
0122ec5b 2991 __task_rq_unlock(rq);
b29739f9 2992}
b29739f9 2993#endif
d50dde5a 2994
36c8b586 2995void set_user_nice(struct task_struct *p, long nice)
1da177e4 2996{
dd41f596 2997 int old_prio, delta, on_rq;
1da177e4 2998 unsigned long flags;
70b97a7f 2999 struct rq *rq;
1da177e4
LT
3000
3001 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3002 return;
3003 /*
3004 * We have to be careful, if called from sys_setpriority(),
3005 * the task might be in the middle of scheduling on another CPU.
3006 */
3007 rq = task_rq_lock(p, &flags);
3008 /*
3009 * The RT priorities are set via sched_setscheduler(), but we still
3010 * allow the 'normal' nice value to be set - but as expected
3011 * it wont have any effect on scheduling until the task is
aab03e05 3012 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3013 */
aab03e05 3014 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3015 p->static_prio = NICE_TO_PRIO(nice);
3016 goto out_unlock;
3017 }
fd2f4419 3018 on_rq = p->on_rq;
c09595f6 3019 if (on_rq)
69be72c1 3020 dequeue_task(rq, p, 0);
1da177e4 3021
1da177e4 3022 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3023 set_load_weight(p);
b29739f9
IM
3024 old_prio = p->prio;
3025 p->prio = effective_prio(p);
3026 delta = p->prio - old_prio;
1da177e4 3027
dd41f596 3028 if (on_rq) {
371fd7e7 3029 enqueue_task(rq, p, 0);
1da177e4 3030 /*
d5f9f942
AM
3031 * If the task increased its priority or is running and
3032 * lowered its priority, then reschedule its CPU:
1da177e4 3033 */
d5f9f942 3034 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3035 resched_task(rq->curr);
3036 }
3037out_unlock:
0122ec5b 3038 task_rq_unlock(rq, p, &flags);
1da177e4 3039}
1da177e4
LT
3040EXPORT_SYMBOL(set_user_nice);
3041
e43379f1
MM
3042/*
3043 * can_nice - check if a task can reduce its nice value
3044 * @p: task
3045 * @nice: nice value
3046 */
36c8b586 3047int can_nice(const struct task_struct *p, const int nice)
e43379f1 3048{
024f4747
MM
3049 /* convert nice value [19,-20] to rlimit style value [1,40] */
3050 int nice_rlim = 20 - nice;
48f24c4d 3051
78d7d407 3052 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3053 capable(CAP_SYS_NICE));
3054}
3055
1da177e4
LT
3056#ifdef __ARCH_WANT_SYS_NICE
3057
3058/*
3059 * sys_nice - change the priority of the current process.
3060 * @increment: priority increment
3061 *
3062 * sys_setpriority is a more generic, but much slower function that
3063 * does similar things.
3064 */
5add95d4 3065SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3066{
48f24c4d 3067 long nice, retval;
1da177e4
LT
3068
3069 /*
3070 * Setpriority might change our priority at the same moment.
3071 * We don't have to worry. Conceptually one call occurs first
3072 * and we have a single winner.
3073 */
e43379f1
MM
3074 if (increment < -40)
3075 increment = -40;
1da177e4
LT
3076 if (increment > 40)
3077 increment = 40;
3078
2b8f836f 3079 nice = TASK_NICE(current) + increment;
1da177e4
LT
3080 if (nice < -20)
3081 nice = -20;
3082 if (nice > 19)
3083 nice = 19;
3084
e43379f1
MM
3085 if (increment < 0 && !can_nice(current, nice))
3086 return -EPERM;
3087
1da177e4
LT
3088 retval = security_task_setnice(current, nice);
3089 if (retval)
3090 return retval;
3091
3092 set_user_nice(current, nice);
3093 return 0;
3094}
3095
3096#endif
3097
3098/**
3099 * task_prio - return the priority value of a given task.
3100 * @p: the task in question.
3101 *
e69f6186 3102 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3103 * RT tasks are offset by -200. Normal tasks are centered
3104 * around 0, value goes from -16 to +15.
3105 */
36c8b586 3106int task_prio(const struct task_struct *p)
1da177e4
LT
3107{
3108 return p->prio - MAX_RT_PRIO;
3109}
3110
3111/**
3112 * task_nice - return the nice value of a given task.
3113 * @p: the task in question.
e69f6186
YB
3114 *
3115 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3116 */
36c8b586 3117int task_nice(const struct task_struct *p)
1da177e4
LT
3118{
3119 return TASK_NICE(p);
3120}
150d8bed 3121EXPORT_SYMBOL(task_nice);
1da177e4
LT
3122
3123/**
3124 * idle_cpu - is a given cpu idle currently?
3125 * @cpu: the processor in question.
e69f6186
YB
3126 *
3127 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3128 */
3129int idle_cpu(int cpu)
3130{
908a3283
TG
3131 struct rq *rq = cpu_rq(cpu);
3132
3133 if (rq->curr != rq->idle)
3134 return 0;
3135
3136 if (rq->nr_running)
3137 return 0;
3138
3139#ifdef CONFIG_SMP
3140 if (!llist_empty(&rq->wake_list))
3141 return 0;
3142#endif
3143
3144 return 1;
1da177e4
LT
3145}
3146
1da177e4
LT
3147/**
3148 * idle_task - return the idle task for a given cpu.
3149 * @cpu: the processor in question.
e69f6186
YB
3150 *
3151 * Return: The idle task for the cpu @cpu.
1da177e4 3152 */
36c8b586 3153struct task_struct *idle_task(int cpu)
1da177e4
LT
3154{
3155 return cpu_rq(cpu)->idle;
3156}
3157
3158/**
3159 * find_process_by_pid - find a process with a matching PID value.
3160 * @pid: the pid in question.
e69f6186
YB
3161 *
3162 * The task of @pid, if found. %NULL otherwise.
1da177e4 3163 */
a9957449 3164static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3165{
228ebcbe 3166 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3167}
3168
aab03e05
DF
3169/*
3170 * This function initializes the sched_dl_entity of a newly becoming
3171 * SCHED_DEADLINE task.
3172 *
3173 * Only the static values are considered here, the actual runtime and the
3174 * absolute deadline will be properly calculated when the task is enqueued
3175 * for the first time with its new policy.
3176 */
3177static void
3178__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3179{
3180 struct sched_dl_entity *dl_se = &p->dl;
3181
3182 init_dl_task_timer(dl_se);
3183 dl_se->dl_runtime = attr->sched_runtime;
3184 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3185 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3186 dl_se->flags = attr->sched_flags;
332ac17e 3187 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3188 dl_se->dl_throttled = 0;
3189 dl_se->dl_new = 1;
3190}
3191
d50dde5a
DF
3192/* Actually do priority change: must hold pi & rq lock. */
3193static void __setscheduler(struct rq *rq, struct task_struct *p,
3194 const struct sched_attr *attr)
1da177e4 3195{
d50dde5a
DF
3196 int policy = attr->sched_policy;
3197
39fd8fd2
PZ
3198 if (policy == -1) /* setparam */
3199 policy = p->policy;
3200
1da177e4 3201 p->policy = policy;
d50dde5a 3202
aab03e05
DF
3203 if (dl_policy(policy))
3204 __setparam_dl(p, attr);
39fd8fd2 3205 else if (fair_policy(policy))
d50dde5a
DF
3206 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3207
39fd8fd2
PZ
3208 /*
3209 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210 * !rt_policy. Always setting this ensures that things like
3211 * getparam()/getattr() don't report silly values for !rt tasks.
3212 */
3213 p->rt_priority = attr->sched_priority;
3214
b29739f9 3215 p->normal_prio = normal_prio(p);
b29739f9 3216 p->prio = rt_mutex_getprio(p);
d50dde5a 3217
aab03e05
DF
3218 if (dl_prio(p->prio))
3219 p->sched_class = &dl_sched_class;
3220 else if (rt_prio(p->prio))
ffd44db5
PZ
3221 p->sched_class = &rt_sched_class;
3222 else
3223 p->sched_class = &fair_sched_class;
d50dde5a 3224
2dd73a4f 3225 set_load_weight(p);
1da177e4 3226}
aab03e05
DF
3227
3228static void
3229__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3230{
3231 struct sched_dl_entity *dl_se = &p->dl;
3232
3233 attr->sched_priority = p->rt_priority;
3234 attr->sched_runtime = dl_se->dl_runtime;
3235 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3236 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3237 attr->sched_flags = dl_se->flags;
3238}
3239
3240/*
3241 * This function validates the new parameters of a -deadline task.
3242 * We ask for the deadline not being zero, and greater or equal
755378a4 3243 * than the runtime, as well as the period of being zero or
332ac17e
DF
3244 * greater than deadline. Furthermore, we have to be sure that
3245 * user parameters are above the internal resolution (1us); we
3246 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3247 */
3248static bool
3249__checkparam_dl(const struct sched_attr *attr)
3250{
3251 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3252 (attr->sched_period == 0 ||
3253 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3254 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3255 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3256}
3257
c69e8d9c
DH
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
9c806aa0
EB
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3270 rcu_read_unlock();
3271 return match;
3272}
3273
d50dde5a
DF
3274static int __sched_setscheduler(struct task_struct *p,
3275 const struct sched_attr *attr,
3276 bool user)
1da177e4 3277{
83b699ed 3278 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3279 int policy = attr->sched_policy;
1da177e4 3280 unsigned long flags;
83ab0aa0 3281 const struct sched_class *prev_class;
70b97a7f 3282 struct rq *rq;
ca94c442 3283 int reset_on_fork;
1da177e4 3284
66e5393a
SR
3285 /* may grab non-irq protected spin_locks */
3286 BUG_ON(in_interrupt());
1da177e4
LT
3287recheck:
3288 /* double check policy once rq lock held */
ca94c442
LP
3289 if (policy < 0) {
3290 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3291 policy = oldpolicy = p->policy;
ca94c442 3292 } else {
7479f3c9 3293 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3294
aab03e05
DF
3295 if (policy != SCHED_DEADLINE &&
3296 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3297 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298 policy != SCHED_IDLE)
3299 return -EINVAL;
3300 }
3301
7479f3c9
PZ
3302 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3303 return -EINVAL;
3304
1da177e4
LT
3305 /*
3306 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3309 */
0bb040a4 3310 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3311 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3312 return -EINVAL;
aab03e05
DF
3313 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3314 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3315 return -EINVAL;
3316
37e4ab3f
OC
3317 /*
3318 * Allow unprivileged RT tasks to decrease priority:
3319 */
961ccddd 3320 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3321 if (fair_policy(policy)) {
eaad4513
PZ
3322 if (attr->sched_nice < TASK_NICE(p) &&
3323 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3324 return -EPERM;
3325 }
3326
e05606d3 3327 if (rt_policy(policy)) {
a44702e8
ON
3328 unsigned long rlim_rtprio =
3329 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3330
3331 /* can't set/change the rt policy */
3332 if (policy != p->policy && !rlim_rtprio)
3333 return -EPERM;
3334
3335 /* can't increase priority */
d50dde5a
DF
3336 if (attr->sched_priority > p->rt_priority &&
3337 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3338 return -EPERM;
3339 }
c02aa73b 3340
dd41f596 3341 /*
c02aa73b
DH
3342 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3343 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3344 */
c02aa73b
DH
3345 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3346 if (!can_nice(p, TASK_NICE(p)))
3347 return -EPERM;
3348 }
5fe1d75f 3349
37e4ab3f 3350 /* can't change other user's priorities */
c69e8d9c 3351 if (!check_same_owner(p))
37e4ab3f 3352 return -EPERM;
ca94c442
LP
3353
3354 /* Normal users shall not reset the sched_reset_on_fork flag */
3355 if (p->sched_reset_on_fork && !reset_on_fork)
3356 return -EPERM;
37e4ab3f 3357 }
1da177e4 3358
725aad24 3359 if (user) {
b0ae1981 3360 retval = security_task_setscheduler(p);
725aad24
JF
3361 if (retval)
3362 return retval;
3363 }
3364
b29739f9
IM
3365 /*
3366 * make sure no PI-waiters arrive (or leave) while we are
3367 * changing the priority of the task:
0122ec5b 3368 *
25985edc 3369 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3370 * runqueue lock must be held.
3371 */
0122ec5b 3372 rq = task_rq_lock(p, &flags);
dc61b1d6 3373
34f971f6
PZ
3374 /*
3375 * Changing the policy of the stop threads its a very bad idea
3376 */
3377 if (p == rq->stop) {
0122ec5b 3378 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3379 return -EINVAL;
3380 }
3381
a51e9198
DF
3382 /*
3383 * If not changing anything there's no need to proceed further:
3384 */
d50dde5a
DF
3385 if (unlikely(policy == p->policy)) {
3386 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3387 goto change;
3388 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3389 goto change;
aab03e05
DF
3390 if (dl_policy(policy))
3391 goto change;
d50dde5a 3392
45afb173 3393 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3394 return 0;
3395 }
d50dde5a 3396change:
a51e9198 3397
dc61b1d6 3398 if (user) {
332ac17e 3399#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3400 /*
3401 * Do not allow realtime tasks into groups that have no runtime
3402 * assigned.
3403 */
3404 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3405 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3406 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3407 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3408 return -EPERM;
3409 }
dc61b1d6 3410#endif
332ac17e
DF
3411#ifdef CONFIG_SMP
3412 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3413 cpumask_t *span = rq->rd->span;
332ac17e
DF
3414
3415 /*
3416 * Don't allow tasks with an affinity mask smaller than
3417 * the entire root_domain to become SCHED_DEADLINE. We
3418 * will also fail if there's no bandwidth available.
3419 */
e4099a5e
PZ
3420 if (!cpumask_subset(span, &p->cpus_allowed) ||
3421 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3422 task_rq_unlock(rq, p, &flags);
3423 return -EPERM;
3424 }
3425 }
3426#endif
3427 }
dc61b1d6 3428
1da177e4
LT
3429 /* recheck policy now with rq lock held */
3430 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3431 policy = oldpolicy = -1;
0122ec5b 3432 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3433 goto recheck;
3434 }
332ac17e
DF
3435
3436 /*
3437 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3438 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3439 * is available.
3440 */
e4099a5e 3441 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3442 task_rq_unlock(rq, p, &flags);
3443 return -EBUSY;
3444 }
3445
fd2f4419 3446 on_rq = p->on_rq;
051a1d1a 3447 running = task_current(rq, p);
0e1f3483 3448 if (on_rq)
4ca9b72b 3449 dequeue_task(rq, p, 0);
0e1f3483
HS
3450 if (running)
3451 p->sched_class->put_prev_task(rq, p);
f6b53205 3452
ca94c442
LP
3453 p->sched_reset_on_fork = reset_on_fork;
3454
1da177e4 3455 oldprio = p->prio;
83ab0aa0 3456 prev_class = p->sched_class;
d50dde5a 3457 __setscheduler(rq, p, attr);
f6b53205 3458
0e1f3483
HS
3459 if (running)
3460 p->sched_class->set_curr_task(rq);
da7a735e 3461 if (on_rq)
4ca9b72b 3462 enqueue_task(rq, p, 0);
cb469845 3463
da7a735e 3464 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3465 task_rq_unlock(rq, p, &flags);
b29739f9 3466
95e02ca9
TG
3467 rt_mutex_adjust_pi(p);
3468
1da177e4
LT
3469 return 0;
3470}
961ccddd 3471
7479f3c9
PZ
3472static int _sched_setscheduler(struct task_struct *p, int policy,
3473 const struct sched_param *param, bool check)
3474{
3475 struct sched_attr attr = {
3476 .sched_policy = policy,
3477 .sched_priority = param->sched_priority,
3478 .sched_nice = PRIO_TO_NICE(p->static_prio),
3479 };
3480
3481 /*
3482 * Fixup the legacy SCHED_RESET_ON_FORK hack
3483 */
3484 if (policy & SCHED_RESET_ON_FORK) {
3485 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3486 policy &= ~SCHED_RESET_ON_FORK;
3487 attr.sched_policy = policy;
3488 }
3489
3490 return __sched_setscheduler(p, &attr, check);
3491}
961ccddd
RR
3492/**
3493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3494 * @p: the task in question.
3495 * @policy: new policy.
3496 * @param: structure containing the new RT priority.
3497 *
e69f6186
YB
3498 * Return: 0 on success. An error code otherwise.
3499 *
961ccddd
RR
3500 * NOTE that the task may be already dead.
3501 */
3502int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3503 const struct sched_param *param)
961ccddd 3504{
7479f3c9 3505 return _sched_setscheduler(p, policy, param, true);
961ccddd 3506}
1da177e4
LT
3507EXPORT_SYMBOL_GPL(sched_setscheduler);
3508
d50dde5a
DF
3509int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3510{
3511 return __sched_setscheduler(p, attr, true);
3512}
3513EXPORT_SYMBOL_GPL(sched_setattr);
3514
961ccddd
RR
3515/**
3516 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3517 * @p: the task in question.
3518 * @policy: new policy.
3519 * @param: structure containing the new RT priority.
3520 *
3521 * Just like sched_setscheduler, only don't bother checking if the
3522 * current context has permission. For example, this is needed in
3523 * stop_machine(): we create temporary high priority worker threads,
3524 * but our caller might not have that capability.
e69f6186
YB
3525 *
3526 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3527 */
3528int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3529 const struct sched_param *param)
961ccddd 3530{
7479f3c9 3531 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3532}
3533
95cdf3b7
IM
3534static int
3535do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3536{
1da177e4
LT
3537 struct sched_param lparam;
3538 struct task_struct *p;
36c8b586 3539 int retval;
1da177e4
LT
3540
3541 if (!param || pid < 0)
3542 return -EINVAL;
3543 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3544 return -EFAULT;
5fe1d75f
ON
3545
3546 rcu_read_lock();
3547 retval = -ESRCH;
1da177e4 3548 p = find_process_by_pid(pid);
5fe1d75f
ON
3549 if (p != NULL)
3550 retval = sched_setscheduler(p, policy, &lparam);
3551 rcu_read_unlock();
36c8b586 3552
1da177e4
LT
3553 return retval;
3554}
3555
d50dde5a
DF
3556/*
3557 * Mimics kernel/events/core.c perf_copy_attr().
3558 */
3559static int sched_copy_attr(struct sched_attr __user *uattr,
3560 struct sched_attr *attr)
3561{
3562 u32 size;
3563 int ret;
3564
3565 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3566 return -EFAULT;
3567
3568 /*
3569 * zero the full structure, so that a short copy will be nice.
3570 */
3571 memset(attr, 0, sizeof(*attr));
3572
3573 ret = get_user(size, &uattr->size);
3574 if (ret)
3575 return ret;
3576
3577 if (size > PAGE_SIZE) /* silly large */
3578 goto err_size;
3579
3580 if (!size) /* abi compat */
3581 size = SCHED_ATTR_SIZE_VER0;
3582
3583 if (size < SCHED_ATTR_SIZE_VER0)
3584 goto err_size;
3585
3586 /*
3587 * If we're handed a bigger struct than we know of,
3588 * ensure all the unknown bits are 0 - i.e. new
3589 * user-space does not rely on any kernel feature
3590 * extensions we dont know about yet.
3591 */
3592 if (size > sizeof(*attr)) {
3593 unsigned char __user *addr;
3594 unsigned char __user *end;
3595 unsigned char val;
3596
3597 addr = (void __user *)uattr + sizeof(*attr);
3598 end = (void __user *)uattr + size;
3599
3600 for (; addr < end; addr++) {
3601 ret = get_user(val, addr);
3602 if (ret)
3603 return ret;
3604 if (val)
3605 goto err_size;
3606 }
3607 size = sizeof(*attr);
3608 }
3609
3610 ret = copy_from_user(attr, uattr, size);
3611 if (ret)
3612 return -EFAULT;
3613
3614 /*
3615 * XXX: do we want to be lenient like existing syscalls; or do we want
3616 * to be strict and return an error on out-of-bounds values?
3617 */
3618 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3619
3620out:
3621 return ret;
3622
3623err_size:
3624 put_user(sizeof(*attr), &uattr->size);
3625 ret = -E2BIG;
3626 goto out;
3627}
3628
1da177e4
LT
3629/**
3630 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3631 * @pid: the pid in question.
3632 * @policy: new policy.
3633 * @param: structure containing the new RT priority.
e69f6186
YB
3634 *
3635 * Return: 0 on success. An error code otherwise.
1da177e4 3636 */
5add95d4
HC
3637SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3638 struct sched_param __user *, param)
1da177e4 3639{
c21761f1
JB
3640 /* negative values for policy are not valid */
3641 if (policy < 0)
3642 return -EINVAL;
3643
1da177e4
LT
3644 return do_sched_setscheduler(pid, policy, param);
3645}
3646
3647/**
3648 * sys_sched_setparam - set/change the RT priority of a thread
3649 * @pid: the pid in question.
3650 * @param: structure containing the new RT priority.
e69f6186
YB
3651 *
3652 * Return: 0 on success. An error code otherwise.
1da177e4 3653 */
5add95d4 3654SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3655{
3656 return do_sched_setscheduler(pid, -1, param);
3657}
3658
d50dde5a
DF
3659/**
3660 * sys_sched_setattr - same as above, but with extended sched_attr
3661 * @pid: the pid in question.
5778fccf 3662 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3663 */
3664SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3665{
3666 struct sched_attr attr;
3667 struct task_struct *p;
3668 int retval;
3669
3670 if (!uattr || pid < 0)
3671 return -EINVAL;
3672
3673 if (sched_copy_attr(uattr, &attr))
3674 return -EFAULT;
3675
3676 rcu_read_lock();
3677 retval = -ESRCH;
3678 p = find_process_by_pid(pid);
3679 if (p != NULL)
3680 retval = sched_setattr(p, &attr);
3681 rcu_read_unlock();
3682
3683 return retval;
3684}
3685
1da177e4
LT
3686/**
3687 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3688 * @pid: the pid in question.
e69f6186
YB
3689 *
3690 * Return: On success, the policy of the thread. Otherwise, a negative error
3691 * code.
1da177e4 3692 */
5add95d4 3693SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3694{
36c8b586 3695 struct task_struct *p;
3a5c359a 3696 int retval;
1da177e4
LT
3697
3698 if (pid < 0)
3a5c359a 3699 return -EINVAL;
1da177e4
LT
3700
3701 retval = -ESRCH;
5fe85be0 3702 rcu_read_lock();
1da177e4
LT
3703 p = find_process_by_pid(pid);
3704 if (p) {
3705 retval = security_task_getscheduler(p);
3706 if (!retval)
ca94c442
LP
3707 retval = p->policy
3708 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3709 }
5fe85be0 3710 rcu_read_unlock();
1da177e4
LT
3711 return retval;
3712}
3713
3714/**
ca94c442 3715 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3716 * @pid: the pid in question.
3717 * @param: structure containing the RT priority.
e69f6186
YB
3718 *
3719 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3720 * code.
1da177e4 3721 */
5add95d4 3722SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3723{
3724 struct sched_param lp;
36c8b586 3725 struct task_struct *p;
3a5c359a 3726 int retval;
1da177e4
LT
3727
3728 if (!param || pid < 0)
3a5c359a 3729 return -EINVAL;
1da177e4 3730
5fe85be0 3731 rcu_read_lock();
1da177e4
LT
3732 p = find_process_by_pid(pid);
3733 retval = -ESRCH;
3734 if (!p)
3735 goto out_unlock;
3736
3737 retval = security_task_getscheduler(p);
3738 if (retval)
3739 goto out_unlock;
3740
aab03e05
DF
3741 if (task_has_dl_policy(p)) {
3742 retval = -EINVAL;
3743 goto out_unlock;
3744 }
1da177e4 3745 lp.sched_priority = p->rt_priority;
5fe85be0 3746 rcu_read_unlock();
1da177e4
LT
3747
3748 /*
3749 * This one might sleep, we cannot do it with a spinlock held ...
3750 */
3751 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3752
1da177e4
LT
3753 return retval;
3754
3755out_unlock:
5fe85be0 3756 rcu_read_unlock();
1da177e4
LT
3757 return retval;
3758}
3759
d50dde5a
DF
3760static int sched_read_attr(struct sched_attr __user *uattr,
3761 struct sched_attr *attr,
3762 unsigned int usize)
3763{
3764 int ret;
3765
3766 if (!access_ok(VERIFY_WRITE, uattr, usize))
3767 return -EFAULT;
3768
3769 /*
3770 * If we're handed a smaller struct than we know of,
3771 * ensure all the unknown bits are 0 - i.e. old
3772 * user-space does not get uncomplete information.
3773 */
3774 if (usize < sizeof(*attr)) {
3775 unsigned char *addr;
3776 unsigned char *end;
3777
3778 addr = (void *)attr + usize;
3779 end = (void *)attr + sizeof(*attr);
3780
3781 for (; addr < end; addr++) {
3782 if (*addr)
3783 goto err_size;
3784 }
3785
3786 attr->size = usize;
3787 }
3788
3789 ret = copy_to_user(uattr, attr, usize);
3790 if (ret)
3791 return -EFAULT;
3792
3793out:
3794 return ret;
3795
3796err_size:
3797 ret = -E2BIG;
3798 goto out;
3799}
3800
3801/**
aab03e05 3802 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3803 * @pid: the pid in question.
5778fccf 3804 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3805 * @size: sizeof(attr) for fwd/bwd comp.
3806 */
3807SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3808 unsigned int, size)
3809{
3810 struct sched_attr attr = {
3811 .size = sizeof(struct sched_attr),
3812 };
3813 struct task_struct *p;
3814 int retval;
3815
3816 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3817 size < SCHED_ATTR_SIZE_VER0)
3818 return -EINVAL;
3819
3820 rcu_read_lock();
3821 p = find_process_by_pid(pid);
3822 retval = -ESRCH;
3823 if (!p)
3824 goto out_unlock;
3825
3826 retval = security_task_getscheduler(p);
3827 if (retval)
3828 goto out_unlock;
3829
3830 attr.sched_policy = p->policy;
7479f3c9
PZ
3831 if (p->sched_reset_on_fork)
3832 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3833 if (task_has_dl_policy(p))
3834 __getparam_dl(p, &attr);
3835 else if (task_has_rt_policy(p))
d50dde5a
DF
3836 attr.sched_priority = p->rt_priority;
3837 else
3838 attr.sched_nice = TASK_NICE(p);
3839
3840 rcu_read_unlock();
3841
3842 retval = sched_read_attr(uattr, &attr, size);
3843 return retval;
3844
3845out_unlock:
3846 rcu_read_unlock();
3847 return retval;
3848}
3849
96f874e2 3850long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3851{
5a16f3d3 3852 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3853 struct task_struct *p;
3854 int retval;
1da177e4 3855
23f5d142 3856 rcu_read_lock();
1da177e4
LT
3857
3858 p = find_process_by_pid(pid);
3859 if (!p) {
23f5d142 3860 rcu_read_unlock();
1da177e4
LT
3861 return -ESRCH;
3862 }
3863
23f5d142 3864 /* Prevent p going away */
1da177e4 3865 get_task_struct(p);
23f5d142 3866 rcu_read_unlock();
1da177e4 3867
14a40ffc
TH
3868 if (p->flags & PF_NO_SETAFFINITY) {
3869 retval = -EINVAL;
3870 goto out_put_task;
3871 }
5a16f3d3
RR
3872 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3873 retval = -ENOMEM;
3874 goto out_put_task;
3875 }
3876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3877 retval = -ENOMEM;
3878 goto out_free_cpus_allowed;
3879 }
1da177e4 3880 retval = -EPERM;
4c44aaaf
EB
3881 if (!check_same_owner(p)) {
3882 rcu_read_lock();
3883 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3884 rcu_read_unlock();
3885 goto out_unlock;
3886 }
3887 rcu_read_unlock();
3888 }
1da177e4 3889
b0ae1981 3890 retval = security_task_setscheduler(p);
e7834f8f
DQ
3891 if (retval)
3892 goto out_unlock;
3893
e4099a5e
PZ
3894
3895 cpuset_cpus_allowed(p, cpus_allowed);
3896 cpumask_and(new_mask, in_mask, cpus_allowed);
3897
332ac17e
DF
3898 /*
3899 * Since bandwidth control happens on root_domain basis,
3900 * if admission test is enabled, we only admit -deadline
3901 * tasks allowed to run on all the CPUs in the task's
3902 * root_domain.
3903 */
3904#ifdef CONFIG_SMP
3905 if (task_has_dl_policy(p)) {
3906 const struct cpumask *span = task_rq(p)->rd->span;
3907
e4099a5e 3908 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3909 retval = -EBUSY;
3910 goto out_unlock;
3911 }
3912 }
3913#endif
49246274 3914again:
5a16f3d3 3915 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3916
8707d8b8 3917 if (!retval) {
5a16f3d3
RR
3918 cpuset_cpus_allowed(p, cpus_allowed);
3919 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3920 /*
3921 * We must have raced with a concurrent cpuset
3922 * update. Just reset the cpus_allowed to the
3923 * cpuset's cpus_allowed
3924 */
5a16f3d3 3925 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3926 goto again;
3927 }
3928 }
1da177e4 3929out_unlock:
5a16f3d3
RR
3930 free_cpumask_var(new_mask);
3931out_free_cpus_allowed:
3932 free_cpumask_var(cpus_allowed);
3933out_put_task:
1da177e4 3934 put_task_struct(p);
1da177e4
LT
3935 return retval;
3936}
3937
3938static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3939 struct cpumask *new_mask)
1da177e4 3940{
96f874e2
RR
3941 if (len < cpumask_size())
3942 cpumask_clear(new_mask);
3943 else if (len > cpumask_size())
3944 len = cpumask_size();
3945
1da177e4
LT
3946 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3947}
3948
3949/**
3950 * sys_sched_setaffinity - set the cpu affinity of a process
3951 * @pid: pid of the process
3952 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3953 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3954 *
3955 * Return: 0 on success. An error code otherwise.
1da177e4 3956 */
5add95d4
HC
3957SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3958 unsigned long __user *, user_mask_ptr)
1da177e4 3959{
5a16f3d3 3960 cpumask_var_t new_mask;
1da177e4
LT
3961 int retval;
3962
5a16f3d3
RR
3963 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3964 return -ENOMEM;
1da177e4 3965
5a16f3d3
RR
3966 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3967 if (retval == 0)
3968 retval = sched_setaffinity(pid, new_mask);
3969 free_cpumask_var(new_mask);
3970 return retval;
1da177e4
LT
3971}
3972
96f874e2 3973long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3974{
36c8b586 3975 struct task_struct *p;
31605683 3976 unsigned long flags;
1da177e4 3977 int retval;
1da177e4 3978
23f5d142 3979 rcu_read_lock();
1da177e4
LT
3980
3981 retval = -ESRCH;
3982 p = find_process_by_pid(pid);
3983 if (!p)
3984 goto out_unlock;
3985
e7834f8f
DQ
3986 retval = security_task_getscheduler(p);
3987 if (retval)
3988 goto out_unlock;
3989
013fdb80 3990 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3991 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3992 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3993
3994out_unlock:
23f5d142 3995 rcu_read_unlock();
1da177e4 3996
9531b62f 3997 return retval;
1da177e4
LT
3998}
3999
4000/**
4001 * sys_sched_getaffinity - get the cpu affinity of a process
4002 * @pid: pid of the process
4003 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4004 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4005 *
4006 * Return: 0 on success. An error code otherwise.
1da177e4 4007 */
5add95d4
HC
4008SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4009 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4010{
4011 int ret;
f17c8607 4012 cpumask_var_t mask;
1da177e4 4013
84fba5ec 4014 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4015 return -EINVAL;
4016 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4017 return -EINVAL;
4018
f17c8607
RR
4019 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4020 return -ENOMEM;
1da177e4 4021
f17c8607
RR
4022 ret = sched_getaffinity(pid, mask);
4023 if (ret == 0) {
8bc037fb 4024 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4025
4026 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4027 ret = -EFAULT;
4028 else
cd3d8031 4029 ret = retlen;
f17c8607
RR
4030 }
4031 free_cpumask_var(mask);
1da177e4 4032
f17c8607 4033 return ret;
1da177e4
LT
4034}
4035
4036/**
4037 * sys_sched_yield - yield the current processor to other threads.
4038 *
dd41f596
IM
4039 * This function yields the current CPU to other tasks. If there are no
4040 * other threads running on this CPU then this function will return.
e69f6186
YB
4041 *
4042 * Return: 0.
1da177e4 4043 */
5add95d4 4044SYSCALL_DEFINE0(sched_yield)
1da177e4 4045{
70b97a7f 4046 struct rq *rq = this_rq_lock();
1da177e4 4047
2d72376b 4048 schedstat_inc(rq, yld_count);
4530d7ab 4049 current->sched_class->yield_task(rq);
1da177e4
LT
4050
4051 /*
4052 * Since we are going to call schedule() anyway, there's
4053 * no need to preempt or enable interrupts:
4054 */
4055 __release(rq->lock);
8a25d5de 4056 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4057 do_raw_spin_unlock(&rq->lock);
ba74c144 4058 sched_preempt_enable_no_resched();
1da177e4
LT
4059
4060 schedule();
4061
4062 return 0;
4063}
4064
e7b38404 4065static void __cond_resched(void)
1da177e4 4066{
bdb43806 4067 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4068 __schedule();
bdb43806 4069 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4070}
4071
02b67cc3 4072int __sched _cond_resched(void)
1da177e4 4073{
d86ee480 4074 if (should_resched()) {
1da177e4
LT
4075 __cond_resched();
4076 return 1;
4077 }
4078 return 0;
4079}
02b67cc3 4080EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4081
4082/*
613afbf8 4083 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4084 * call schedule, and on return reacquire the lock.
4085 *
41a2d6cf 4086 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4087 * operations here to prevent schedule() from being called twice (once via
4088 * spin_unlock(), once by hand).
4089 */
613afbf8 4090int __cond_resched_lock(spinlock_t *lock)
1da177e4 4091{
d86ee480 4092 int resched = should_resched();
6df3cecb
JK
4093 int ret = 0;
4094
f607c668
PZ
4095 lockdep_assert_held(lock);
4096
95c354fe 4097 if (spin_needbreak(lock) || resched) {
1da177e4 4098 spin_unlock(lock);
d86ee480 4099 if (resched)
95c354fe
NP
4100 __cond_resched();
4101 else
4102 cpu_relax();
6df3cecb 4103 ret = 1;
1da177e4 4104 spin_lock(lock);
1da177e4 4105 }
6df3cecb 4106 return ret;
1da177e4 4107}
613afbf8 4108EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4109
613afbf8 4110int __sched __cond_resched_softirq(void)
1da177e4
LT
4111{
4112 BUG_ON(!in_softirq());
4113
d86ee480 4114 if (should_resched()) {
98d82567 4115 local_bh_enable();
1da177e4
LT
4116 __cond_resched();
4117 local_bh_disable();
4118 return 1;
4119 }
4120 return 0;
4121}
613afbf8 4122EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4123
1da177e4
LT
4124/**
4125 * yield - yield the current processor to other threads.
4126 *
8e3fabfd
PZ
4127 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4128 *
4129 * The scheduler is at all times free to pick the calling task as the most
4130 * eligible task to run, if removing the yield() call from your code breaks
4131 * it, its already broken.
4132 *
4133 * Typical broken usage is:
4134 *
4135 * while (!event)
4136 * yield();
4137 *
4138 * where one assumes that yield() will let 'the other' process run that will
4139 * make event true. If the current task is a SCHED_FIFO task that will never
4140 * happen. Never use yield() as a progress guarantee!!
4141 *
4142 * If you want to use yield() to wait for something, use wait_event().
4143 * If you want to use yield() to be 'nice' for others, use cond_resched().
4144 * If you still want to use yield(), do not!
1da177e4
LT
4145 */
4146void __sched yield(void)
4147{
4148 set_current_state(TASK_RUNNING);
4149 sys_sched_yield();
4150}
1da177e4
LT
4151EXPORT_SYMBOL(yield);
4152
d95f4122
MG
4153/**
4154 * yield_to - yield the current processor to another thread in
4155 * your thread group, or accelerate that thread toward the
4156 * processor it's on.
16addf95
RD
4157 * @p: target task
4158 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4159 *
4160 * It's the caller's job to ensure that the target task struct
4161 * can't go away on us before we can do any checks.
4162 *
e69f6186 4163 * Return:
7b270f60
PZ
4164 * true (>0) if we indeed boosted the target task.
4165 * false (0) if we failed to boost the target.
4166 * -ESRCH if there's no task to yield to.
d95f4122
MG
4167 */
4168bool __sched yield_to(struct task_struct *p, bool preempt)
4169{
4170 struct task_struct *curr = current;
4171 struct rq *rq, *p_rq;
4172 unsigned long flags;
c3c18640 4173 int yielded = 0;
d95f4122
MG
4174
4175 local_irq_save(flags);
4176 rq = this_rq();
4177
4178again:
4179 p_rq = task_rq(p);
7b270f60
PZ
4180 /*
4181 * If we're the only runnable task on the rq and target rq also
4182 * has only one task, there's absolutely no point in yielding.
4183 */
4184 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4185 yielded = -ESRCH;
4186 goto out_irq;
4187 }
4188
d95f4122 4189 double_rq_lock(rq, p_rq);
39e24d8f 4190 if (task_rq(p) != p_rq) {
d95f4122
MG
4191 double_rq_unlock(rq, p_rq);
4192 goto again;
4193 }
4194
4195 if (!curr->sched_class->yield_to_task)
7b270f60 4196 goto out_unlock;
d95f4122
MG
4197
4198 if (curr->sched_class != p->sched_class)
7b270f60 4199 goto out_unlock;
d95f4122
MG
4200
4201 if (task_running(p_rq, p) || p->state)
7b270f60 4202 goto out_unlock;
d95f4122
MG
4203
4204 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4205 if (yielded) {
d95f4122 4206 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4207 /*
4208 * Make p's CPU reschedule; pick_next_entity takes care of
4209 * fairness.
4210 */
4211 if (preempt && rq != p_rq)
4212 resched_task(p_rq->curr);
4213 }
d95f4122 4214
7b270f60 4215out_unlock:
d95f4122 4216 double_rq_unlock(rq, p_rq);
7b270f60 4217out_irq:
d95f4122
MG
4218 local_irq_restore(flags);
4219
7b270f60 4220 if (yielded > 0)
d95f4122
MG
4221 schedule();
4222
4223 return yielded;
4224}
4225EXPORT_SYMBOL_GPL(yield_to);
4226
1da177e4 4227/*
41a2d6cf 4228 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4229 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4230 */
4231void __sched io_schedule(void)
4232{
54d35f29 4233 struct rq *rq = raw_rq();
1da177e4 4234
0ff92245 4235 delayacct_blkio_start();
1da177e4 4236 atomic_inc(&rq->nr_iowait);
73c10101 4237 blk_flush_plug(current);
8f0dfc34 4238 current->in_iowait = 1;
1da177e4 4239 schedule();
8f0dfc34 4240 current->in_iowait = 0;
1da177e4 4241 atomic_dec(&rq->nr_iowait);
0ff92245 4242 delayacct_blkio_end();
1da177e4 4243}
1da177e4
LT
4244EXPORT_SYMBOL(io_schedule);
4245
4246long __sched io_schedule_timeout(long timeout)
4247{
54d35f29 4248 struct rq *rq = raw_rq();
1da177e4
LT
4249 long ret;
4250
0ff92245 4251 delayacct_blkio_start();
1da177e4 4252 atomic_inc(&rq->nr_iowait);
73c10101 4253 blk_flush_plug(current);
8f0dfc34 4254 current->in_iowait = 1;
1da177e4 4255 ret = schedule_timeout(timeout);
8f0dfc34 4256 current->in_iowait = 0;
1da177e4 4257 atomic_dec(&rq->nr_iowait);
0ff92245 4258 delayacct_blkio_end();
1da177e4
LT
4259 return ret;
4260}
4261
4262/**
4263 * sys_sched_get_priority_max - return maximum RT priority.
4264 * @policy: scheduling class.
4265 *
e69f6186
YB
4266 * Return: On success, this syscall returns the maximum
4267 * rt_priority that can be used by a given scheduling class.
4268 * On failure, a negative error code is returned.
1da177e4 4269 */
5add95d4 4270SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4271{
4272 int ret = -EINVAL;
4273
4274 switch (policy) {
4275 case SCHED_FIFO:
4276 case SCHED_RR:
4277 ret = MAX_USER_RT_PRIO-1;
4278 break;
aab03e05 4279 case SCHED_DEADLINE:
1da177e4 4280 case SCHED_NORMAL:
b0a9499c 4281 case SCHED_BATCH:
dd41f596 4282 case SCHED_IDLE:
1da177e4
LT
4283 ret = 0;
4284 break;
4285 }
4286 return ret;
4287}
4288
4289/**
4290 * sys_sched_get_priority_min - return minimum RT priority.
4291 * @policy: scheduling class.
4292 *
e69f6186
YB
4293 * Return: On success, this syscall returns the minimum
4294 * rt_priority that can be used by a given scheduling class.
4295 * On failure, a negative error code is returned.
1da177e4 4296 */
5add95d4 4297SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4298{
4299 int ret = -EINVAL;
4300
4301 switch (policy) {
4302 case SCHED_FIFO:
4303 case SCHED_RR:
4304 ret = 1;
4305 break;
aab03e05 4306 case SCHED_DEADLINE:
1da177e4 4307 case SCHED_NORMAL:
b0a9499c 4308 case SCHED_BATCH:
dd41f596 4309 case SCHED_IDLE:
1da177e4
LT
4310 ret = 0;
4311 }
4312 return ret;
4313}
4314
4315/**
4316 * sys_sched_rr_get_interval - return the default timeslice of a process.
4317 * @pid: pid of the process.
4318 * @interval: userspace pointer to the timeslice value.
4319 *
4320 * this syscall writes the default timeslice value of a given process
4321 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4322 *
4323 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4324 * an error code.
1da177e4 4325 */
17da2bd9 4326SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4327 struct timespec __user *, interval)
1da177e4 4328{
36c8b586 4329 struct task_struct *p;
a4ec24b4 4330 unsigned int time_slice;
dba091b9
TG
4331 unsigned long flags;
4332 struct rq *rq;
3a5c359a 4333 int retval;
1da177e4 4334 struct timespec t;
1da177e4
LT
4335
4336 if (pid < 0)
3a5c359a 4337 return -EINVAL;
1da177e4
LT
4338
4339 retval = -ESRCH;
1a551ae7 4340 rcu_read_lock();
1da177e4
LT
4341 p = find_process_by_pid(pid);
4342 if (!p)
4343 goto out_unlock;
4344
4345 retval = security_task_getscheduler(p);
4346 if (retval)
4347 goto out_unlock;
4348
dba091b9 4349 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4350 time_slice = 0;
4351 if (p->sched_class->get_rr_interval)
4352 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4353 task_rq_unlock(rq, p, &flags);
a4ec24b4 4354
1a551ae7 4355 rcu_read_unlock();
a4ec24b4 4356 jiffies_to_timespec(time_slice, &t);
1da177e4 4357 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4358 return retval;
3a5c359a 4359
1da177e4 4360out_unlock:
1a551ae7 4361 rcu_read_unlock();
1da177e4
LT
4362 return retval;
4363}
4364
7c731e0a 4365static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4366
82a1fcb9 4367void sched_show_task(struct task_struct *p)
1da177e4 4368{
1da177e4 4369 unsigned long free = 0;
4e79752c 4370 int ppid;
36c8b586 4371 unsigned state;
1da177e4 4372
1da177e4 4373 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4374 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4375 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4376#if BITS_PER_LONG == 32
1da177e4 4377 if (state == TASK_RUNNING)
3df0fc5b 4378 printk(KERN_CONT " running ");
1da177e4 4379 else
3df0fc5b 4380 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4381#else
4382 if (state == TASK_RUNNING)
3df0fc5b 4383 printk(KERN_CONT " running task ");
1da177e4 4384 else
3df0fc5b 4385 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4386#endif
4387#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4388 free = stack_not_used(p);
1da177e4 4389#endif
4e79752c
PM
4390 rcu_read_lock();
4391 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4392 rcu_read_unlock();
3df0fc5b 4393 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4394 task_pid_nr(p), ppid,
aa47b7e0 4395 (unsigned long)task_thread_info(p)->flags);
1da177e4 4396
3d1cb205 4397 print_worker_info(KERN_INFO, p);
5fb5e6de 4398 show_stack(p, NULL);
1da177e4
LT
4399}
4400
e59e2ae2 4401void show_state_filter(unsigned long state_filter)
1da177e4 4402{
36c8b586 4403 struct task_struct *g, *p;
1da177e4 4404
4bd77321 4405#if BITS_PER_LONG == 32
3df0fc5b
PZ
4406 printk(KERN_INFO
4407 " task PC stack pid father\n");
1da177e4 4408#else
3df0fc5b
PZ
4409 printk(KERN_INFO
4410 " task PC stack pid father\n");
1da177e4 4411#endif
510f5acc 4412 rcu_read_lock();
1da177e4
LT
4413 do_each_thread(g, p) {
4414 /*
4415 * reset the NMI-timeout, listing all files on a slow
25985edc 4416 * console might take a lot of time:
1da177e4
LT
4417 */
4418 touch_nmi_watchdog();
39bc89fd 4419 if (!state_filter || (p->state & state_filter))
82a1fcb9 4420 sched_show_task(p);
1da177e4
LT
4421 } while_each_thread(g, p);
4422
04c9167f
JF
4423 touch_all_softlockup_watchdogs();
4424
dd41f596
IM
4425#ifdef CONFIG_SCHED_DEBUG
4426 sysrq_sched_debug_show();
4427#endif
510f5acc 4428 rcu_read_unlock();
e59e2ae2
IM
4429 /*
4430 * Only show locks if all tasks are dumped:
4431 */
93335a21 4432 if (!state_filter)
e59e2ae2 4433 debug_show_all_locks();
1da177e4
LT
4434}
4435
0db0628d 4436void init_idle_bootup_task(struct task_struct *idle)
1df21055 4437{
dd41f596 4438 idle->sched_class = &idle_sched_class;
1df21055
IM
4439}
4440
f340c0d1
IM
4441/**
4442 * init_idle - set up an idle thread for a given CPU
4443 * @idle: task in question
4444 * @cpu: cpu the idle task belongs to
4445 *
4446 * NOTE: this function does not set the idle thread's NEED_RESCHED
4447 * flag, to make booting more robust.
4448 */
0db0628d 4449void init_idle(struct task_struct *idle, int cpu)
1da177e4 4450{
70b97a7f 4451 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4452 unsigned long flags;
4453
05fa785c 4454 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4455
5e1576ed 4456 __sched_fork(0, idle);
06b83b5f 4457 idle->state = TASK_RUNNING;
dd41f596
IM
4458 idle->se.exec_start = sched_clock();
4459
1e1b6c51 4460 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4461 /*
4462 * We're having a chicken and egg problem, even though we are
4463 * holding rq->lock, the cpu isn't yet set to this cpu so the
4464 * lockdep check in task_group() will fail.
4465 *
4466 * Similar case to sched_fork(). / Alternatively we could
4467 * use task_rq_lock() here and obtain the other rq->lock.
4468 *
4469 * Silence PROVE_RCU
4470 */
4471 rcu_read_lock();
dd41f596 4472 __set_task_cpu(idle, cpu);
6506cf6c 4473 rcu_read_unlock();
1da177e4 4474
1da177e4 4475 rq->curr = rq->idle = idle;
3ca7a440
PZ
4476#if defined(CONFIG_SMP)
4477 idle->on_cpu = 1;
4866cde0 4478#endif
05fa785c 4479 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4480
4481 /* Set the preempt count _outside_ the spinlocks! */
01028747 4482 init_idle_preempt_count(idle, cpu);
55cd5340 4483
dd41f596
IM
4484 /*
4485 * The idle tasks have their own, simple scheduling class:
4486 */
4487 idle->sched_class = &idle_sched_class;
868baf07 4488 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4489 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4490#if defined(CONFIG_SMP)
4491 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4492#endif
19978ca6
IM
4493}
4494
1da177e4 4495#ifdef CONFIG_SMP
1e1b6c51
KM
4496void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4497{
4498 if (p->sched_class && p->sched_class->set_cpus_allowed)
4499 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4500
4501 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4502 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4503}
4504
1da177e4
LT
4505/*
4506 * This is how migration works:
4507 *
969c7921
TH
4508 * 1) we invoke migration_cpu_stop() on the target CPU using
4509 * stop_one_cpu().
4510 * 2) stopper starts to run (implicitly forcing the migrated thread
4511 * off the CPU)
4512 * 3) it checks whether the migrated task is still in the wrong runqueue.
4513 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4514 * it and puts it into the right queue.
969c7921
TH
4515 * 5) stopper completes and stop_one_cpu() returns and the migration
4516 * is done.
1da177e4
LT
4517 */
4518
4519/*
4520 * Change a given task's CPU affinity. Migrate the thread to a
4521 * proper CPU and schedule it away if the CPU it's executing on
4522 * is removed from the allowed bitmask.
4523 *
4524 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4525 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4526 * call is not atomic; no spinlocks may be held.
4527 */
96f874e2 4528int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4529{
4530 unsigned long flags;
70b97a7f 4531 struct rq *rq;
969c7921 4532 unsigned int dest_cpu;
48f24c4d 4533 int ret = 0;
1da177e4
LT
4534
4535 rq = task_rq_lock(p, &flags);
e2912009 4536
db44fc01
YZ
4537 if (cpumask_equal(&p->cpus_allowed, new_mask))
4538 goto out;
4539
6ad4c188 4540 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4541 ret = -EINVAL;
4542 goto out;
4543 }
4544
1e1b6c51 4545 do_set_cpus_allowed(p, new_mask);
73fe6aae 4546
1da177e4 4547 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4548 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4549 goto out;
4550
969c7921 4551 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4552 if (p->on_rq) {
969c7921 4553 struct migration_arg arg = { p, dest_cpu };
1da177e4 4554 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4555 task_rq_unlock(rq, p, &flags);
969c7921 4556 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4557 tlb_migrate_finish(p->mm);
4558 return 0;
4559 }
4560out:
0122ec5b 4561 task_rq_unlock(rq, p, &flags);
48f24c4d 4562
1da177e4
LT
4563 return ret;
4564}
cd8ba7cd 4565EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4566
4567/*
41a2d6cf 4568 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4569 * this because either it can't run here any more (set_cpus_allowed()
4570 * away from this CPU, or CPU going down), or because we're
4571 * attempting to rebalance this task on exec (sched_exec).
4572 *
4573 * So we race with normal scheduler movements, but that's OK, as long
4574 * as the task is no longer on this CPU.
efc30814
KK
4575 *
4576 * Returns non-zero if task was successfully migrated.
1da177e4 4577 */
efc30814 4578static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4579{
70b97a7f 4580 struct rq *rq_dest, *rq_src;
e2912009 4581 int ret = 0;
1da177e4 4582
e761b772 4583 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4584 return ret;
1da177e4
LT
4585
4586 rq_src = cpu_rq(src_cpu);
4587 rq_dest = cpu_rq(dest_cpu);
4588
0122ec5b 4589 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4590 double_rq_lock(rq_src, rq_dest);
4591 /* Already moved. */
4592 if (task_cpu(p) != src_cpu)
b1e38734 4593 goto done;
1da177e4 4594 /* Affinity changed (again). */
fa17b507 4595 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4596 goto fail;
1da177e4 4597
e2912009
PZ
4598 /*
4599 * If we're not on a rq, the next wake-up will ensure we're
4600 * placed properly.
4601 */
fd2f4419 4602 if (p->on_rq) {
4ca9b72b 4603 dequeue_task(rq_src, p, 0);
e2912009 4604 set_task_cpu(p, dest_cpu);
4ca9b72b 4605 enqueue_task(rq_dest, p, 0);
15afe09b 4606 check_preempt_curr(rq_dest, p, 0);
1da177e4 4607 }
b1e38734 4608done:
efc30814 4609 ret = 1;
b1e38734 4610fail:
1da177e4 4611 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4612 raw_spin_unlock(&p->pi_lock);
efc30814 4613 return ret;
1da177e4
LT
4614}
4615
e6628d5b
MG
4616#ifdef CONFIG_NUMA_BALANCING
4617/* Migrate current task p to target_cpu */
4618int migrate_task_to(struct task_struct *p, int target_cpu)
4619{
4620 struct migration_arg arg = { p, target_cpu };
4621 int curr_cpu = task_cpu(p);
4622
4623 if (curr_cpu == target_cpu)
4624 return 0;
4625
4626 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4627 return -EINVAL;
4628
4629 /* TODO: This is not properly updating schedstats */
4630
286549dc 4631 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4632 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4633}
0ec8aa00
PZ
4634
4635/*
4636 * Requeue a task on a given node and accurately track the number of NUMA
4637 * tasks on the runqueues
4638 */
4639void sched_setnuma(struct task_struct *p, int nid)
4640{
4641 struct rq *rq;
4642 unsigned long flags;
4643 bool on_rq, running;
4644
4645 rq = task_rq_lock(p, &flags);
4646 on_rq = p->on_rq;
4647 running = task_current(rq, p);
4648
4649 if (on_rq)
4650 dequeue_task(rq, p, 0);
4651 if (running)
4652 p->sched_class->put_prev_task(rq, p);
4653
4654 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4655
4656 if (running)
4657 p->sched_class->set_curr_task(rq);
4658 if (on_rq)
4659 enqueue_task(rq, p, 0);
4660 task_rq_unlock(rq, p, &flags);
4661}
e6628d5b
MG
4662#endif
4663
1da177e4 4664/*
969c7921
TH
4665 * migration_cpu_stop - this will be executed by a highprio stopper thread
4666 * and performs thread migration by bumping thread off CPU then
4667 * 'pushing' onto another runqueue.
1da177e4 4668 */
969c7921 4669static int migration_cpu_stop(void *data)
1da177e4 4670{
969c7921 4671 struct migration_arg *arg = data;
f7b4cddc 4672
969c7921
TH
4673 /*
4674 * The original target cpu might have gone down and we might
4675 * be on another cpu but it doesn't matter.
4676 */
f7b4cddc 4677 local_irq_disable();
969c7921 4678 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4679 local_irq_enable();
1da177e4 4680 return 0;
f7b4cddc
ON
4681}
4682
1da177e4 4683#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4684
054b9108 4685/*
48c5ccae
PZ
4686 * Ensures that the idle task is using init_mm right before its cpu goes
4687 * offline.
054b9108 4688 */
48c5ccae 4689void idle_task_exit(void)
1da177e4 4690{
48c5ccae 4691 struct mm_struct *mm = current->active_mm;
e76bd8d9 4692
48c5ccae 4693 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4694
48c5ccae
PZ
4695 if (mm != &init_mm)
4696 switch_mm(mm, &init_mm, current);
4697 mmdrop(mm);
1da177e4
LT
4698}
4699
4700/*
5d180232
PZ
4701 * Since this CPU is going 'away' for a while, fold any nr_active delta
4702 * we might have. Assumes we're called after migrate_tasks() so that the
4703 * nr_active count is stable.
4704 *
4705 * Also see the comment "Global load-average calculations".
1da177e4 4706 */
5d180232 4707static void calc_load_migrate(struct rq *rq)
1da177e4 4708{
5d180232
PZ
4709 long delta = calc_load_fold_active(rq);
4710 if (delta)
4711 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4712}
4713
48f24c4d 4714/*
48c5ccae
PZ
4715 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4716 * try_to_wake_up()->select_task_rq().
4717 *
4718 * Called with rq->lock held even though we'er in stop_machine() and
4719 * there's no concurrency possible, we hold the required locks anyway
4720 * because of lock validation efforts.
1da177e4 4721 */
48c5ccae 4722static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4723{
70b97a7f 4724 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4725 struct task_struct *next, *stop = rq->stop;
4726 int dest_cpu;
1da177e4
LT
4727
4728 /*
48c5ccae
PZ
4729 * Fudge the rq selection such that the below task selection loop
4730 * doesn't get stuck on the currently eligible stop task.
4731 *
4732 * We're currently inside stop_machine() and the rq is either stuck
4733 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4734 * either way we should never end up calling schedule() until we're
4735 * done here.
1da177e4 4736 */
48c5ccae 4737 rq->stop = NULL;
48f24c4d 4738
77bd3970
FW
4739 /*
4740 * put_prev_task() and pick_next_task() sched
4741 * class method both need to have an up-to-date
4742 * value of rq->clock[_task]
4743 */
4744 update_rq_clock(rq);
4745
dd41f596 4746 for ( ; ; ) {
48c5ccae
PZ
4747 /*
4748 * There's this thread running, bail when that's the only
4749 * remaining thread.
4750 */
4751 if (rq->nr_running == 1)
dd41f596 4752 break;
48c5ccae 4753
b67802ea 4754 next = pick_next_task(rq);
48c5ccae 4755 BUG_ON(!next);
79c53799 4756 next->sched_class->put_prev_task(rq, next);
e692ab53 4757
48c5ccae
PZ
4758 /* Find suitable destination for @next, with force if needed. */
4759 dest_cpu = select_fallback_rq(dead_cpu, next);
4760 raw_spin_unlock(&rq->lock);
4761
4762 __migrate_task(next, dead_cpu, dest_cpu);
4763
4764 raw_spin_lock(&rq->lock);
1da177e4 4765 }
dce48a84 4766
48c5ccae 4767 rq->stop = stop;
dce48a84 4768}
48c5ccae 4769
1da177e4
LT
4770#endif /* CONFIG_HOTPLUG_CPU */
4771
e692ab53
NP
4772#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4773
4774static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4775 {
4776 .procname = "sched_domain",
c57baf1e 4777 .mode = 0555,
e0361851 4778 },
56992309 4779 {}
e692ab53
NP
4780};
4781
4782static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4783 {
4784 .procname = "kernel",
c57baf1e 4785 .mode = 0555,
e0361851
AD
4786 .child = sd_ctl_dir,
4787 },
56992309 4788 {}
e692ab53
NP
4789};
4790
4791static struct ctl_table *sd_alloc_ctl_entry(int n)
4792{
4793 struct ctl_table *entry =
5cf9f062 4794 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4795
e692ab53
NP
4796 return entry;
4797}
4798
6382bc90
MM
4799static void sd_free_ctl_entry(struct ctl_table **tablep)
4800{
cd790076 4801 struct ctl_table *entry;
6382bc90 4802
cd790076
MM
4803 /*
4804 * In the intermediate directories, both the child directory and
4805 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4806 * will always be set. In the lowest directory the names are
cd790076
MM
4807 * static strings and all have proc handlers.
4808 */
4809 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4810 if (entry->child)
4811 sd_free_ctl_entry(&entry->child);
cd790076
MM
4812 if (entry->proc_handler == NULL)
4813 kfree(entry->procname);
4814 }
6382bc90
MM
4815
4816 kfree(*tablep);
4817 *tablep = NULL;
4818}
4819
201c373e 4820static int min_load_idx = 0;
fd9b86d3 4821static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4822
e692ab53 4823static void
e0361851 4824set_table_entry(struct ctl_table *entry,
e692ab53 4825 const char *procname, void *data, int maxlen,
201c373e
NK
4826 umode_t mode, proc_handler *proc_handler,
4827 bool load_idx)
e692ab53 4828{
e692ab53
NP
4829 entry->procname = procname;
4830 entry->data = data;
4831 entry->maxlen = maxlen;
4832 entry->mode = mode;
4833 entry->proc_handler = proc_handler;
201c373e
NK
4834
4835 if (load_idx) {
4836 entry->extra1 = &min_load_idx;
4837 entry->extra2 = &max_load_idx;
4838 }
e692ab53
NP
4839}
4840
4841static struct ctl_table *
4842sd_alloc_ctl_domain_table(struct sched_domain *sd)
4843{
a5d8c348 4844 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4845
ad1cdc1d
MM
4846 if (table == NULL)
4847 return NULL;
4848
e0361851 4849 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4850 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4851 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4852 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4853 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4854 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4855 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4856 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4857 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4858 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4859 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4860 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4861 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4862 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4863 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4864 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4865 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4866 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4867 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4868 &sd->cache_nice_tries,
201c373e 4869 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4870 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4871 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4872 set_table_entry(&table[11], "name", sd->name,
201c373e 4873 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4874 /* &table[12] is terminator */
e692ab53
NP
4875
4876 return table;
4877}
4878
be7002e6 4879static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4880{
4881 struct ctl_table *entry, *table;
4882 struct sched_domain *sd;
4883 int domain_num = 0, i;
4884 char buf[32];
4885
4886 for_each_domain(cpu, sd)
4887 domain_num++;
4888 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4889 if (table == NULL)
4890 return NULL;
e692ab53
NP
4891
4892 i = 0;
4893 for_each_domain(cpu, sd) {
4894 snprintf(buf, 32, "domain%d", i);
e692ab53 4895 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4896 entry->mode = 0555;
e692ab53
NP
4897 entry->child = sd_alloc_ctl_domain_table(sd);
4898 entry++;
4899 i++;
4900 }
4901 return table;
4902}
4903
4904static struct ctl_table_header *sd_sysctl_header;
6382bc90 4905static void register_sched_domain_sysctl(void)
e692ab53 4906{
6ad4c188 4907 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4908 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4909 char buf[32];
4910
7378547f
MM
4911 WARN_ON(sd_ctl_dir[0].child);
4912 sd_ctl_dir[0].child = entry;
4913
ad1cdc1d
MM
4914 if (entry == NULL)
4915 return;
4916
6ad4c188 4917 for_each_possible_cpu(i) {
e692ab53 4918 snprintf(buf, 32, "cpu%d", i);
e692ab53 4919 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4920 entry->mode = 0555;
e692ab53 4921 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4922 entry++;
e692ab53 4923 }
7378547f
MM
4924
4925 WARN_ON(sd_sysctl_header);
e692ab53
NP
4926 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4927}
6382bc90 4928
7378547f 4929/* may be called multiple times per register */
6382bc90
MM
4930static void unregister_sched_domain_sysctl(void)
4931{
7378547f
MM
4932 if (sd_sysctl_header)
4933 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4934 sd_sysctl_header = NULL;
7378547f
MM
4935 if (sd_ctl_dir[0].child)
4936 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4937}
e692ab53 4938#else
6382bc90
MM
4939static void register_sched_domain_sysctl(void)
4940{
4941}
4942static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4943{
4944}
4945#endif
4946
1f11eb6a
GH
4947static void set_rq_online(struct rq *rq)
4948{
4949 if (!rq->online) {
4950 const struct sched_class *class;
4951
c6c4927b 4952 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4953 rq->online = 1;
4954
4955 for_each_class(class) {
4956 if (class->rq_online)
4957 class->rq_online(rq);
4958 }
4959 }
4960}
4961
4962static void set_rq_offline(struct rq *rq)
4963{
4964 if (rq->online) {
4965 const struct sched_class *class;
4966
4967 for_each_class(class) {
4968 if (class->rq_offline)
4969 class->rq_offline(rq);
4970 }
4971
c6c4927b 4972 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4973 rq->online = 0;
4974 }
4975}
4976
1da177e4
LT
4977/*
4978 * migration_call - callback that gets triggered when a CPU is added.
4979 * Here we can start up the necessary migration thread for the new CPU.
4980 */
0db0628d 4981static int
48f24c4d 4982migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4983{
48f24c4d 4984 int cpu = (long)hcpu;
1da177e4 4985 unsigned long flags;
969c7921 4986 struct rq *rq = cpu_rq(cpu);
1da177e4 4987
48c5ccae 4988 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4989
1da177e4 4990 case CPU_UP_PREPARE:
a468d389 4991 rq->calc_load_update = calc_load_update;
1da177e4 4992 break;
48f24c4d 4993
1da177e4 4994 case CPU_ONLINE:
1f94ef59 4995 /* Update our root-domain */
05fa785c 4996 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4997 if (rq->rd) {
c6c4927b 4998 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4999
5000 set_rq_online(rq);
1f94ef59 5001 }
05fa785c 5002 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5003 break;
48f24c4d 5004
1da177e4 5005#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5006 case CPU_DYING:
317f3941 5007 sched_ttwu_pending();
57d885fe 5008 /* Update our root-domain */
05fa785c 5009 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5010 if (rq->rd) {
c6c4927b 5011 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5012 set_rq_offline(rq);
57d885fe 5013 }
48c5ccae
PZ
5014 migrate_tasks(cpu);
5015 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5016 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5017 break;
48c5ccae 5018
5d180232 5019 case CPU_DEAD:
f319da0c 5020 calc_load_migrate(rq);
57d885fe 5021 break;
1da177e4
LT
5022#endif
5023 }
49c022e6
PZ
5024
5025 update_max_interval();
5026
1da177e4
LT
5027 return NOTIFY_OK;
5028}
5029
f38b0820
PM
5030/*
5031 * Register at high priority so that task migration (migrate_all_tasks)
5032 * happens before everything else. This has to be lower priority than
cdd6c482 5033 * the notifier in the perf_event subsystem, though.
1da177e4 5034 */
0db0628d 5035static struct notifier_block migration_notifier = {
1da177e4 5036 .notifier_call = migration_call,
50a323b7 5037 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5038};
5039
0db0628d 5040static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5041 unsigned long action, void *hcpu)
5042{
5043 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5044 case CPU_STARTING:
3a101d05
TH
5045 case CPU_DOWN_FAILED:
5046 set_cpu_active((long)hcpu, true);
5047 return NOTIFY_OK;
5048 default:
5049 return NOTIFY_DONE;
5050 }
5051}
5052
0db0628d 5053static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5054 unsigned long action, void *hcpu)
5055{
de212f18
PZ
5056 unsigned long flags;
5057 long cpu = (long)hcpu;
5058
3a101d05
TH
5059 switch (action & ~CPU_TASKS_FROZEN) {
5060 case CPU_DOWN_PREPARE:
de212f18
PZ
5061 set_cpu_active(cpu, false);
5062
5063 /* explicitly allow suspend */
5064 if (!(action & CPU_TASKS_FROZEN)) {
5065 struct dl_bw *dl_b = dl_bw_of(cpu);
5066 bool overflow;
5067 int cpus;
5068
5069 raw_spin_lock_irqsave(&dl_b->lock, flags);
5070 cpus = dl_bw_cpus(cpu);
5071 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5072 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5073
5074 if (overflow)
5075 return notifier_from_errno(-EBUSY);
5076 }
3a101d05 5077 return NOTIFY_OK;
3a101d05 5078 }
de212f18
PZ
5079
5080 return NOTIFY_DONE;
3a101d05
TH
5081}
5082
7babe8db 5083static int __init migration_init(void)
1da177e4
LT
5084{
5085 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5086 int err;
48f24c4d 5087
3a101d05 5088 /* Initialize migration for the boot CPU */
07dccf33
AM
5089 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5090 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5091 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5092 register_cpu_notifier(&migration_notifier);
7babe8db 5093
3a101d05
TH
5094 /* Register cpu active notifiers */
5095 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5096 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5097
a004cd42 5098 return 0;
1da177e4 5099}
7babe8db 5100early_initcall(migration_init);
1da177e4
LT
5101#endif
5102
5103#ifdef CONFIG_SMP
476f3534 5104
4cb98839
PZ
5105static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5106
3e9830dc 5107#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5108
d039ac60 5109static __read_mostly int sched_debug_enabled;
f6630114 5110
d039ac60 5111static int __init sched_debug_setup(char *str)
f6630114 5112{
d039ac60 5113 sched_debug_enabled = 1;
f6630114
MT
5114
5115 return 0;
5116}
d039ac60
PZ
5117early_param("sched_debug", sched_debug_setup);
5118
5119static inline bool sched_debug(void)
5120{
5121 return sched_debug_enabled;
5122}
f6630114 5123
7c16ec58 5124static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5125 struct cpumask *groupmask)
1da177e4 5126{
4dcf6aff 5127 struct sched_group *group = sd->groups;
434d53b0 5128 char str[256];
1da177e4 5129
968ea6d8 5130 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5131 cpumask_clear(groupmask);
4dcf6aff
IM
5132
5133 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5134
5135 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5136 printk("does not load-balance\n");
4dcf6aff 5137 if (sd->parent)
3df0fc5b
PZ
5138 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5139 " has parent");
4dcf6aff 5140 return -1;
41c7ce9a
NP
5141 }
5142
3df0fc5b 5143 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5144
758b2cdc 5145 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5146 printk(KERN_ERR "ERROR: domain->span does not contain "
5147 "CPU%d\n", cpu);
4dcf6aff 5148 }
758b2cdc 5149 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5150 printk(KERN_ERR "ERROR: domain->groups does not contain"
5151 " CPU%d\n", cpu);
4dcf6aff 5152 }
1da177e4 5153
4dcf6aff 5154 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5155 do {
4dcf6aff 5156 if (!group) {
3df0fc5b
PZ
5157 printk("\n");
5158 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5159 break;
5160 }
5161
c3decf0d
PZ
5162 /*
5163 * Even though we initialize ->power to something semi-sane,
5164 * we leave power_orig unset. This allows us to detect if
5165 * domain iteration is still funny without causing /0 traps.
5166 */
5167 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5168 printk(KERN_CONT "\n");
5169 printk(KERN_ERR "ERROR: domain->cpu_power not "
5170 "set\n");
4dcf6aff
IM
5171 break;
5172 }
1da177e4 5173
758b2cdc 5174 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5175 printk(KERN_CONT "\n");
5176 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5177 break;
5178 }
1da177e4 5179
cb83b629
PZ
5180 if (!(sd->flags & SD_OVERLAP) &&
5181 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5182 printk(KERN_CONT "\n");
5183 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5184 break;
5185 }
1da177e4 5186
758b2cdc 5187 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5188
968ea6d8 5189 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5190
3df0fc5b 5191 printk(KERN_CONT " %s", str);
9c3f75cb 5192 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5193 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5194 group->sgp->power);
381512cf 5195 }
1da177e4 5196
4dcf6aff
IM
5197 group = group->next;
5198 } while (group != sd->groups);
3df0fc5b 5199 printk(KERN_CONT "\n");
1da177e4 5200
758b2cdc 5201 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5202 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5203
758b2cdc
RR
5204 if (sd->parent &&
5205 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5206 printk(KERN_ERR "ERROR: parent span is not a superset "
5207 "of domain->span\n");
4dcf6aff
IM
5208 return 0;
5209}
1da177e4 5210
4dcf6aff
IM
5211static void sched_domain_debug(struct sched_domain *sd, int cpu)
5212{
5213 int level = 0;
1da177e4 5214
d039ac60 5215 if (!sched_debug_enabled)
f6630114
MT
5216 return;
5217
4dcf6aff
IM
5218 if (!sd) {
5219 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5220 return;
5221 }
1da177e4 5222
4dcf6aff
IM
5223 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5224
5225 for (;;) {
4cb98839 5226 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5227 break;
1da177e4
LT
5228 level++;
5229 sd = sd->parent;
33859f7f 5230 if (!sd)
4dcf6aff
IM
5231 break;
5232 }
1da177e4 5233}
6d6bc0ad 5234#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5235# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5236static inline bool sched_debug(void)
5237{
5238 return false;
5239}
6d6bc0ad 5240#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5241
1a20ff27 5242static int sd_degenerate(struct sched_domain *sd)
245af2c7 5243{
758b2cdc 5244 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5245 return 1;
5246
5247 /* Following flags need at least 2 groups */
5248 if (sd->flags & (SD_LOAD_BALANCE |
5249 SD_BALANCE_NEWIDLE |
5250 SD_BALANCE_FORK |
89c4710e
SS
5251 SD_BALANCE_EXEC |
5252 SD_SHARE_CPUPOWER |
5253 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5254 if (sd->groups != sd->groups->next)
5255 return 0;
5256 }
5257
5258 /* Following flags don't use groups */
c88d5910 5259 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5260 return 0;
5261
5262 return 1;
5263}
5264
48f24c4d
IM
5265static int
5266sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5267{
5268 unsigned long cflags = sd->flags, pflags = parent->flags;
5269
5270 if (sd_degenerate(parent))
5271 return 1;
5272
758b2cdc 5273 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5274 return 0;
5275
245af2c7
SS
5276 /* Flags needing groups don't count if only 1 group in parent */
5277 if (parent->groups == parent->groups->next) {
5278 pflags &= ~(SD_LOAD_BALANCE |
5279 SD_BALANCE_NEWIDLE |
5280 SD_BALANCE_FORK |
89c4710e
SS
5281 SD_BALANCE_EXEC |
5282 SD_SHARE_CPUPOWER |
10866e62
PZ
5283 SD_SHARE_PKG_RESOURCES |
5284 SD_PREFER_SIBLING);
5436499e
KC
5285 if (nr_node_ids == 1)
5286 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5287 }
5288 if (~cflags & pflags)
5289 return 0;
5290
5291 return 1;
5292}
5293
dce840a0 5294static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5295{
dce840a0 5296 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5297
68e74568 5298 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5299 cpudl_cleanup(&rd->cpudl);
1baca4ce 5300 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5301 free_cpumask_var(rd->rto_mask);
5302 free_cpumask_var(rd->online);
5303 free_cpumask_var(rd->span);
5304 kfree(rd);
5305}
5306
57d885fe
GH
5307static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5308{
a0490fa3 5309 struct root_domain *old_rd = NULL;
57d885fe 5310 unsigned long flags;
57d885fe 5311
05fa785c 5312 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5313
5314 if (rq->rd) {
a0490fa3 5315 old_rd = rq->rd;
57d885fe 5316
c6c4927b 5317 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5318 set_rq_offline(rq);
57d885fe 5319
c6c4927b 5320 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5321
a0490fa3 5322 /*
0515973f 5323 * If we dont want to free the old_rd yet then
a0490fa3
IM
5324 * set old_rd to NULL to skip the freeing later
5325 * in this function:
5326 */
5327 if (!atomic_dec_and_test(&old_rd->refcount))
5328 old_rd = NULL;
57d885fe
GH
5329 }
5330
5331 atomic_inc(&rd->refcount);
5332 rq->rd = rd;
5333
c6c4927b 5334 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5335 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5336 set_rq_online(rq);
57d885fe 5337
05fa785c 5338 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5339
5340 if (old_rd)
dce840a0 5341 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5342}
5343
68c38fc3 5344static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5345{
5346 memset(rd, 0, sizeof(*rd));
5347
68c38fc3 5348 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5349 goto out;
68c38fc3 5350 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5351 goto free_span;
1baca4ce 5352 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5353 goto free_online;
1baca4ce
JL
5354 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5355 goto free_dlo_mask;
6e0534f2 5356
332ac17e 5357 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5358 if (cpudl_init(&rd->cpudl) != 0)
5359 goto free_dlo_mask;
332ac17e 5360
68c38fc3 5361 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5362 goto free_rto_mask;
c6c4927b 5363 return 0;
6e0534f2 5364
68e74568
RR
5365free_rto_mask:
5366 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5367free_dlo_mask:
5368 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5369free_online:
5370 free_cpumask_var(rd->online);
5371free_span:
5372 free_cpumask_var(rd->span);
0c910d28 5373out:
c6c4927b 5374 return -ENOMEM;
57d885fe
GH
5375}
5376
029632fb
PZ
5377/*
5378 * By default the system creates a single root-domain with all cpus as
5379 * members (mimicking the global state we have today).
5380 */
5381struct root_domain def_root_domain;
5382
57d885fe
GH
5383static void init_defrootdomain(void)
5384{
68c38fc3 5385 init_rootdomain(&def_root_domain);
c6c4927b 5386
57d885fe
GH
5387 atomic_set(&def_root_domain.refcount, 1);
5388}
5389
dc938520 5390static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5391{
5392 struct root_domain *rd;
5393
5394 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5395 if (!rd)
5396 return NULL;
5397
68c38fc3 5398 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5399 kfree(rd);
5400 return NULL;
5401 }
57d885fe
GH
5402
5403 return rd;
5404}
5405
e3589f6c
PZ
5406static void free_sched_groups(struct sched_group *sg, int free_sgp)
5407{
5408 struct sched_group *tmp, *first;
5409
5410 if (!sg)
5411 return;
5412
5413 first = sg;
5414 do {
5415 tmp = sg->next;
5416
5417 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5418 kfree(sg->sgp);
5419
5420 kfree(sg);
5421 sg = tmp;
5422 } while (sg != first);
5423}
5424
dce840a0
PZ
5425static void free_sched_domain(struct rcu_head *rcu)
5426{
5427 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5428
5429 /*
5430 * If its an overlapping domain it has private groups, iterate and
5431 * nuke them all.
5432 */
5433 if (sd->flags & SD_OVERLAP) {
5434 free_sched_groups(sd->groups, 1);
5435 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5436 kfree(sd->groups->sgp);
dce840a0 5437 kfree(sd->groups);
9c3f75cb 5438 }
dce840a0
PZ
5439 kfree(sd);
5440}
5441
5442static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5443{
5444 call_rcu(&sd->rcu, free_sched_domain);
5445}
5446
5447static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5448{
5449 for (; sd; sd = sd->parent)
5450 destroy_sched_domain(sd, cpu);
5451}
5452
518cd623
PZ
5453/*
5454 * Keep a special pointer to the highest sched_domain that has
5455 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5456 * allows us to avoid some pointer chasing select_idle_sibling().
5457 *
5458 * Also keep a unique ID per domain (we use the first cpu number in
5459 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5460 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5461 */
5462DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5463DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5464DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5465DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5466DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5467DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5468
5469static void update_top_cache_domain(int cpu)
5470{
5471 struct sched_domain *sd;
5d4cf996 5472 struct sched_domain *busy_sd = NULL;
518cd623 5473 int id = cpu;
7d9ffa89 5474 int size = 1;
518cd623
PZ
5475
5476 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5477 if (sd) {
518cd623 5478 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5479 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5480 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5481 }
5d4cf996 5482 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5483
5484 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5485 per_cpu(sd_llc_size, cpu) = size;
518cd623 5486 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5487
5488 sd = lowest_flag_domain(cpu, SD_NUMA);
5489 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5490
5491 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5492 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5493}
5494
1da177e4 5495/*
0eab9146 5496 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5497 * hold the hotplug lock.
5498 */
0eab9146
IM
5499static void
5500cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5501{
70b97a7f 5502 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5503 struct sched_domain *tmp;
5504
5505 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5506 for (tmp = sd; tmp; ) {
245af2c7
SS
5507 struct sched_domain *parent = tmp->parent;
5508 if (!parent)
5509 break;
f29c9b1c 5510
1a848870 5511 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5512 tmp->parent = parent->parent;
1a848870
SS
5513 if (parent->parent)
5514 parent->parent->child = tmp;
10866e62
PZ
5515 /*
5516 * Transfer SD_PREFER_SIBLING down in case of a
5517 * degenerate parent; the spans match for this
5518 * so the property transfers.
5519 */
5520 if (parent->flags & SD_PREFER_SIBLING)
5521 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5522 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5523 } else
5524 tmp = tmp->parent;
245af2c7
SS
5525 }
5526
1a848870 5527 if (sd && sd_degenerate(sd)) {
dce840a0 5528 tmp = sd;
245af2c7 5529 sd = sd->parent;
dce840a0 5530 destroy_sched_domain(tmp, cpu);
1a848870
SS
5531 if (sd)
5532 sd->child = NULL;
5533 }
1da177e4 5534
4cb98839 5535 sched_domain_debug(sd, cpu);
1da177e4 5536
57d885fe 5537 rq_attach_root(rq, rd);
dce840a0 5538 tmp = rq->sd;
674311d5 5539 rcu_assign_pointer(rq->sd, sd);
dce840a0 5540 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5541
5542 update_top_cache_domain(cpu);
1da177e4
LT
5543}
5544
5545/* cpus with isolated domains */
dcc30a35 5546static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5547
5548/* Setup the mask of cpus configured for isolated domains */
5549static int __init isolated_cpu_setup(char *str)
5550{
bdddd296 5551 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5552 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5553 return 1;
5554}
5555
8927f494 5556__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5557
d3081f52
PZ
5558static const struct cpumask *cpu_cpu_mask(int cpu)
5559{
5560 return cpumask_of_node(cpu_to_node(cpu));
5561}
5562
dce840a0
PZ
5563struct sd_data {
5564 struct sched_domain **__percpu sd;
5565 struct sched_group **__percpu sg;
9c3f75cb 5566 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5567};
5568
49a02c51 5569struct s_data {
21d42ccf 5570 struct sched_domain ** __percpu sd;
49a02c51
AH
5571 struct root_domain *rd;
5572};
5573
2109b99e 5574enum s_alloc {
2109b99e 5575 sa_rootdomain,
21d42ccf 5576 sa_sd,
dce840a0 5577 sa_sd_storage,
2109b99e
AH
5578 sa_none,
5579};
5580
54ab4ff4
PZ
5581struct sched_domain_topology_level;
5582
5583typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5584typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5585
e3589f6c
PZ
5586#define SDTL_OVERLAP 0x01
5587
eb7a74e6 5588struct sched_domain_topology_level {
2c402dc3
PZ
5589 sched_domain_init_f init;
5590 sched_domain_mask_f mask;
e3589f6c 5591 int flags;
cb83b629 5592 int numa_level;
54ab4ff4 5593 struct sd_data data;
eb7a74e6
PZ
5594};
5595
c1174876
PZ
5596/*
5597 * Build an iteration mask that can exclude certain CPUs from the upwards
5598 * domain traversal.
5599 *
5600 * Asymmetric node setups can result in situations where the domain tree is of
5601 * unequal depth, make sure to skip domains that already cover the entire
5602 * range.
5603 *
5604 * In that case build_sched_domains() will have terminated the iteration early
5605 * and our sibling sd spans will be empty. Domains should always include the
5606 * cpu they're built on, so check that.
5607 *
5608 */
5609static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5610{
5611 const struct cpumask *span = sched_domain_span(sd);
5612 struct sd_data *sdd = sd->private;
5613 struct sched_domain *sibling;
5614 int i;
5615
5616 for_each_cpu(i, span) {
5617 sibling = *per_cpu_ptr(sdd->sd, i);
5618 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5619 continue;
5620
5621 cpumask_set_cpu(i, sched_group_mask(sg));
5622 }
5623}
5624
5625/*
5626 * Return the canonical balance cpu for this group, this is the first cpu
5627 * of this group that's also in the iteration mask.
5628 */
5629int group_balance_cpu(struct sched_group *sg)
5630{
5631 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5632}
5633
e3589f6c
PZ
5634static int
5635build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5636{
5637 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5638 const struct cpumask *span = sched_domain_span(sd);
5639 struct cpumask *covered = sched_domains_tmpmask;
5640 struct sd_data *sdd = sd->private;
5641 struct sched_domain *child;
5642 int i;
5643
5644 cpumask_clear(covered);
5645
5646 for_each_cpu(i, span) {
5647 struct cpumask *sg_span;
5648
5649 if (cpumask_test_cpu(i, covered))
5650 continue;
5651
c1174876
PZ
5652 child = *per_cpu_ptr(sdd->sd, i);
5653
5654 /* See the comment near build_group_mask(). */
5655 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5656 continue;
5657
e3589f6c 5658 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5659 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5660
5661 if (!sg)
5662 goto fail;
5663
5664 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5665 if (child->child) {
5666 child = child->child;
5667 cpumask_copy(sg_span, sched_domain_span(child));
5668 } else
5669 cpumask_set_cpu(i, sg_span);
5670
5671 cpumask_or(covered, covered, sg_span);
5672
74a5ce20 5673 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5674 if (atomic_inc_return(&sg->sgp->ref) == 1)
5675 build_group_mask(sd, sg);
5676
c3decf0d
PZ
5677 /*
5678 * Initialize sgp->power such that even if we mess up the
5679 * domains and no possible iteration will get us here, we won't
5680 * die on a /0 trap.
5681 */
5682 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5683 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5684
c1174876
PZ
5685 /*
5686 * Make sure the first group of this domain contains the
5687 * canonical balance cpu. Otherwise the sched_domain iteration
5688 * breaks. See update_sg_lb_stats().
5689 */
74a5ce20 5690 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5691 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5692 groups = sg;
5693
5694 if (!first)
5695 first = sg;
5696 if (last)
5697 last->next = sg;
5698 last = sg;
5699 last->next = first;
5700 }
5701 sd->groups = groups;
5702
5703 return 0;
5704
5705fail:
5706 free_sched_groups(first, 0);
5707
5708 return -ENOMEM;
5709}
5710
dce840a0 5711static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5712{
dce840a0
PZ
5713 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5714 struct sched_domain *child = sd->child;
1da177e4 5715
dce840a0
PZ
5716 if (child)
5717 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5718
9c3f75cb 5719 if (sg) {
dce840a0 5720 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5721 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5722 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5723 }
dce840a0
PZ
5724
5725 return cpu;
1e9f28fa 5726}
1e9f28fa 5727
01a08546 5728/*
dce840a0
PZ
5729 * build_sched_groups will build a circular linked list of the groups
5730 * covered by the given span, and will set each group's ->cpumask correctly,
5731 * and ->cpu_power to 0.
e3589f6c
PZ
5732 *
5733 * Assumes the sched_domain tree is fully constructed
01a08546 5734 */
e3589f6c
PZ
5735static int
5736build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5737{
dce840a0
PZ
5738 struct sched_group *first = NULL, *last = NULL;
5739 struct sd_data *sdd = sd->private;
5740 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5741 struct cpumask *covered;
dce840a0 5742 int i;
9c1cfda2 5743
e3589f6c
PZ
5744 get_group(cpu, sdd, &sd->groups);
5745 atomic_inc(&sd->groups->ref);
5746
0936629f 5747 if (cpu != cpumask_first(span))
e3589f6c
PZ
5748 return 0;
5749
f96225fd
PZ
5750 lockdep_assert_held(&sched_domains_mutex);
5751 covered = sched_domains_tmpmask;
5752
dce840a0 5753 cpumask_clear(covered);
6711cab4 5754
dce840a0
PZ
5755 for_each_cpu(i, span) {
5756 struct sched_group *sg;
cd08e923 5757 int group, j;
6711cab4 5758
dce840a0
PZ
5759 if (cpumask_test_cpu(i, covered))
5760 continue;
6711cab4 5761
cd08e923 5762 group = get_group(i, sdd, &sg);
dce840a0 5763 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5764 sg->sgp->power = 0;
c1174876 5765 cpumask_setall(sched_group_mask(sg));
0601a88d 5766
dce840a0
PZ
5767 for_each_cpu(j, span) {
5768 if (get_group(j, sdd, NULL) != group)
5769 continue;
0601a88d 5770
dce840a0
PZ
5771 cpumask_set_cpu(j, covered);
5772 cpumask_set_cpu(j, sched_group_cpus(sg));
5773 }
0601a88d 5774
dce840a0
PZ
5775 if (!first)
5776 first = sg;
5777 if (last)
5778 last->next = sg;
5779 last = sg;
5780 }
5781 last->next = first;
e3589f6c
PZ
5782
5783 return 0;
0601a88d 5784}
51888ca2 5785
89c4710e
SS
5786/*
5787 * Initialize sched groups cpu_power.
5788 *
5789 * cpu_power indicates the capacity of sched group, which is used while
5790 * distributing the load between different sched groups in a sched domain.
5791 * Typically cpu_power for all the groups in a sched domain will be same unless
5792 * there are asymmetries in the topology. If there are asymmetries, group
5793 * having more cpu_power will pickup more load compared to the group having
5794 * less cpu_power.
89c4710e
SS
5795 */
5796static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5797{
e3589f6c 5798 struct sched_group *sg = sd->groups;
89c4710e 5799
94c95ba6 5800 WARN_ON(!sg);
e3589f6c
PZ
5801
5802 do {
5803 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5804 sg = sg->next;
5805 } while (sg != sd->groups);
89c4710e 5806
c1174876 5807 if (cpu != group_balance_cpu(sg))
e3589f6c 5808 return;
aae6d3dd 5809
d274cb30 5810 update_group_power(sd, cpu);
69e1e811 5811 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5812}
5813
029632fb
PZ
5814int __weak arch_sd_sibling_asym_packing(void)
5815{
5816 return 0*SD_ASYM_PACKING;
89c4710e
SS
5817}
5818
7c16ec58
MT
5819/*
5820 * Initializers for schedule domains
5821 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5822 */
5823
a5d8c348
IM
5824#ifdef CONFIG_SCHED_DEBUG
5825# define SD_INIT_NAME(sd, type) sd->name = #type
5826#else
5827# define SD_INIT_NAME(sd, type) do { } while (0)
5828#endif
5829
54ab4ff4
PZ
5830#define SD_INIT_FUNC(type) \
5831static noinline struct sched_domain * \
5832sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5833{ \
5834 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5835 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5836 SD_INIT_NAME(sd, type); \
5837 sd->private = &tl->data; \
5838 return sd; \
7c16ec58
MT
5839}
5840
5841SD_INIT_FUNC(CPU)
7c16ec58
MT
5842#ifdef CONFIG_SCHED_SMT
5843 SD_INIT_FUNC(SIBLING)
5844#endif
5845#ifdef CONFIG_SCHED_MC
5846 SD_INIT_FUNC(MC)
5847#endif
01a08546
HC
5848#ifdef CONFIG_SCHED_BOOK
5849 SD_INIT_FUNC(BOOK)
5850#endif
7c16ec58 5851
1d3504fc 5852static int default_relax_domain_level = -1;
60495e77 5853int sched_domain_level_max;
1d3504fc
HS
5854
5855static int __init setup_relax_domain_level(char *str)
5856{
a841f8ce
DS
5857 if (kstrtoint(str, 0, &default_relax_domain_level))
5858 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5859
1d3504fc
HS
5860 return 1;
5861}
5862__setup("relax_domain_level=", setup_relax_domain_level);
5863
5864static void set_domain_attribute(struct sched_domain *sd,
5865 struct sched_domain_attr *attr)
5866{
5867 int request;
5868
5869 if (!attr || attr->relax_domain_level < 0) {
5870 if (default_relax_domain_level < 0)
5871 return;
5872 else
5873 request = default_relax_domain_level;
5874 } else
5875 request = attr->relax_domain_level;
5876 if (request < sd->level) {
5877 /* turn off idle balance on this domain */
c88d5910 5878 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5879 } else {
5880 /* turn on idle balance on this domain */
c88d5910 5881 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5882 }
5883}
5884
54ab4ff4
PZ
5885static void __sdt_free(const struct cpumask *cpu_map);
5886static int __sdt_alloc(const struct cpumask *cpu_map);
5887
2109b99e
AH
5888static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5889 const struct cpumask *cpu_map)
5890{
5891 switch (what) {
2109b99e 5892 case sa_rootdomain:
822ff793
PZ
5893 if (!atomic_read(&d->rd->refcount))
5894 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5895 case sa_sd:
5896 free_percpu(d->sd); /* fall through */
dce840a0 5897 case sa_sd_storage:
54ab4ff4 5898 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5899 case sa_none:
5900 break;
5901 }
5902}
3404c8d9 5903
2109b99e
AH
5904static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5905 const struct cpumask *cpu_map)
5906{
dce840a0
PZ
5907 memset(d, 0, sizeof(*d));
5908
54ab4ff4
PZ
5909 if (__sdt_alloc(cpu_map))
5910 return sa_sd_storage;
dce840a0
PZ
5911 d->sd = alloc_percpu(struct sched_domain *);
5912 if (!d->sd)
5913 return sa_sd_storage;
2109b99e 5914 d->rd = alloc_rootdomain();
dce840a0 5915 if (!d->rd)
21d42ccf 5916 return sa_sd;
2109b99e
AH
5917 return sa_rootdomain;
5918}
57d885fe 5919
dce840a0
PZ
5920/*
5921 * NULL the sd_data elements we've used to build the sched_domain and
5922 * sched_group structure so that the subsequent __free_domain_allocs()
5923 * will not free the data we're using.
5924 */
5925static void claim_allocations(int cpu, struct sched_domain *sd)
5926{
5927 struct sd_data *sdd = sd->private;
dce840a0
PZ
5928
5929 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5930 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5931
e3589f6c 5932 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5933 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5934
5935 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5936 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5937}
5938
2c402dc3
PZ
5939#ifdef CONFIG_SCHED_SMT
5940static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5941{
2c402dc3 5942 return topology_thread_cpumask(cpu);
3bd65a80 5943}
2c402dc3 5944#endif
7f4588f3 5945
d069b916
PZ
5946/*
5947 * Topology list, bottom-up.
5948 */
2c402dc3 5949static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5950#ifdef CONFIG_SCHED_SMT
5951 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5952#endif
1e9f28fa 5953#ifdef CONFIG_SCHED_MC
2c402dc3 5954 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5955#endif
d069b916
PZ
5956#ifdef CONFIG_SCHED_BOOK
5957 { sd_init_BOOK, cpu_book_mask, },
5958#endif
5959 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5960 { NULL, },
5961};
5962
5963static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5964
27723a68
VK
5965#define for_each_sd_topology(tl) \
5966 for (tl = sched_domain_topology; tl->init; tl++)
5967
cb83b629
PZ
5968#ifdef CONFIG_NUMA
5969
5970static int sched_domains_numa_levels;
cb83b629
PZ
5971static int *sched_domains_numa_distance;
5972static struct cpumask ***sched_domains_numa_masks;
5973static int sched_domains_curr_level;
5974
cb83b629
PZ
5975static inline int sd_local_flags(int level)
5976{
10717dcd 5977 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5978 return 0;
5979
5980 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5981}
5982
5983static struct sched_domain *
5984sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5985{
5986 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5987 int level = tl->numa_level;
5988 int sd_weight = cpumask_weight(
5989 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5990
5991 *sd = (struct sched_domain){
5992 .min_interval = sd_weight,
5993 .max_interval = 2*sd_weight,
5994 .busy_factor = 32,
870a0bb5 5995 .imbalance_pct = 125,
cb83b629
PZ
5996 .cache_nice_tries = 2,
5997 .busy_idx = 3,
5998 .idle_idx = 2,
5999 .newidle_idx = 0,
6000 .wake_idx = 0,
6001 .forkexec_idx = 0,
6002
6003 .flags = 1*SD_LOAD_BALANCE
6004 | 1*SD_BALANCE_NEWIDLE
6005 | 0*SD_BALANCE_EXEC
6006 | 0*SD_BALANCE_FORK
6007 | 0*SD_BALANCE_WAKE
6008 | 0*SD_WAKE_AFFINE
cb83b629 6009 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6010 | 0*SD_SHARE_PKG_RESOURCES
6011 | 1*SD_SERIALIZE
6012 | 0*SD_PREFER_SIBLING
3a7053b3 6013 | 1*SD_NUMA
cb83b629
PZ
6014 | sd_local_flags(level)
6015 ,
6016 .last_balance = jiffies,
6017 .balance_interval = sd_weight,
6018 };
6019 SD_INIT_NAME(sd, NUMA);
6020 sd->private = &tl->data;
6021
6022 /*
6023 * Ugly hack to pass state to sd_numa_mask()...
6024 */
6025 sched_domains_curr_level = tl->numa_level;
6026
6027 return sd;
6028}
6029
6030static const struct cpumask *sd_numa_mask(int cpu)
6031{
6032 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6033}
6034
d039ac60
PZ
6035static void sched_numa_warn(const char *str)
6036{
6037 static int done = false;
6038 int i,j;
6039
6040 if (done)
6041 return;
6042
6043 done = true;
6044
6045 printk(KERN_WARNING "ERROR: %s\n\n", str);
6046
6047 for (i = 0; i < nr_node_ids; i++) {
6048 printk(KERN_WARNING " ");
6049 for (j = 0; j < nr_node_ids; j++)
6050 printk(KERN_CONT "%02d ", node_distance(i,j));
6051 printk(KERN_CONT "\n");
6052 }
6053 printk(KERN_WARNING "\n");
6054}
6055
6056static bool find_numa_distance(int distance)
6057{
6058 int i;
6059
6060 if (distance == node_distance(0, 0))
6061 return true;
6062
6063 for (i = 0; i < sched_domains_numa_levels; i++) {
6064 if (sched_domains_numa_distance[i] == distance)
6065 return true;
6066 }
6067
6068 return false;
6069}
6070
cb83b629
PZ
6071static void sched_init_numa(void)
6072{
6073 int next_distance, curr_distance = node_distance(0, 0);
6074 struct sched_domain_topology_level *tl;
6075 int level = 0;
6076 int i, j, k;
6077
cb83b629
PZ
6078 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6079 if (!sched_domains_numa_distance)
6080 return;
6081
6082 /*
6083 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6084 * unique distances in the node_distance() table.
6085 *
6086 * Assumes node_distance(0,j) includes all distances in
6087 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6088 */
6089 next_distance = curr_distance;
6090 for (i = 0; i < nr_node_ids; i++) {
6091 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6092 for (k = 0; k < nr_node_ids; k++) {
6093 int distance = node_distance(i, k);
6094
6095 if (distance > curr_distance &&
6096 (distance < next_distance ||
6097 next_distance == curr_distance))
6098 next_distance = distance;
6099
6100 /*
6101 * While not a strong assumption it would be nice to know
6102 * about cases where if node A is connected to B, B is not
6103 * equally connected to A.
6104 */
6105 if (sched_debug() && node_distance(k, i) != distance)
6106 sched_numa_warn("Node-distance not symmetric");
6107
6108 if (sched_debug() && i && !find_numa_distance(distance))
6109 sched_numa_warn("Node-0 not representative");
6110 }
6111 if (next_distance != curr_distance) {
6112 sched_domains_numa_distance[level++] = next_distance;
6113 sched_domains_numa_levels = level;
6114 curr_distance = next_distance;
6115 } else break;
cb83b629 6116 }
d039ac60
PZ
6117
6118 /*
6119 * In case of sched_debug() we verify the above assumption.
6120 */
6121 if (!sched_debug())
6122 break;
cb83b629
PZ
6123 }
6124 /*
6125 * 'level' contains the number of unique distances, excluding the
6126 * identity distance node_distance(i,i).
6127 *
28b4a521 6128 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6129 * numbers.
6130 */
6131
5f7865f3
TC
6132 /*
6133 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6134 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6135 * the array will contain less then 'level' members. This could be
6136 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6137 * in other functions.
6138 *
6139 * We reset it to 'level' at the end of this function.
6140 */
6141 sched_domains_numa_levels = 0;
6142
cb83b629
PZ
6143 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6144 if (!sched_domains_numa_masks)
6145 return;
6146
6147 /*
6148 * Now for each level, construct a mask per node which contains all
6149 * cpus of nodes that are that many hops away from us.
6150 */
6151 for (i = 0; i < level; i++) {
6152 sched_domains_numa_masks[i] =
6153 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6154 if (!sched_domains_numa_masks[i])
6155 return;
6156
6157 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6158 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6159 if (!mask)
6160 return;
6161
6162 sched_domains_numa_masks[i][j] = mask;
6163
6164 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6165 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6166 continue;
6167
6168 cpumask_or(mask, mask, cpumask_of_node(k));
6169 }
6170 }
6171 }
6172
6173 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6174 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6175 if (!tl)
6176 return;
6177
6178 /*
6179 * Copy the default topology bits..
6180 */
6181 for (i = 0; default_topology[i].init; i++)
6182 tl[i] = default_topology[i];
6183
6184 /*
6185 * .. and append 'j' levels of NUMA goodness.
6186 */
6187 for (j = 0; j < level; i++, j++) {
6188 tl[i] = (struct sched_domain_topology_level){
6189 .init = sd_numa_init,
6190 .mask = sd_numa_mask,
6191 .flags = SDTL_OVERLAP,
6192 .numa_level = j,
6193 };
6194 }
6195
6196 sched_domain_topology = tl;
5f7865f3
TC
6197
6198 sched_domains_numa_levels = level;
cb83b629 6199}
301a5cba
TC
6200
6201static void sched_domains_numa_masks_set(int cpu)
6202{
6203 int i, j;
6204 int node = cpu_to_node(cpu);
6205
6206 for (i = 0; i < sched_domains_numa_levels; i++) {
6207 for (j = 0; j < nr_node_ids; j++) {
6208 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6209 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6210 }
6211 }
6212}
6213
6214static void sched_domains_numa_masks_clear(int cpu)
6215{
6216 int i, j;
6217 for (i = 0; i < sched_domains_numa_levels; i++) {
6218 for (j = 0; j < nr_node_ids; j++)
6219 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6220 }
6221}
6222
6223/*
6224 * Update sched_domains_numa_masks[level][node] array when new cpus
6225 * are onlined.
6226 */
6227static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6228 unsigned long action,
6229 void *hcpu)
6230{
6231 int cpu = (long)hcpu;
6232
6233 switch (action & ~CPU_TASKS_FROZEN) {
6234 case CPU_ONLINE:
6235 sched_domains_numa_masks_set(cpu);
6236 break;
6237
6238 case CPU_DEAD:
6239 sched_domains_numa_masks_clear(cpu);
6240 break;
6241
6242 default:
6243 return NOTIFY_DONE;
6244 }
6245
6246 return NOTIFY_OK;
cb83b629
PZ
6247}
6248#else
6249static inline void sched_init_numa(void)
6250{
6251}
301a5cba
TC
6252
6253static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6254 unsigned long action,
6255 void *hcpu)
6256{
6257 return 0;
6258}
cb83b629
PZ
6259#endif /* CONFIG_NUMA */
6260
54ab4ff4
PZ
6261static int __sdt_alloc(const struct cpumask *cpu_map)
6262{
6263 struct sched_domain_topology_level *tl;
6264 int j;
6265
27723a68 6266 for_each_sd_topology(tl) {
54ab4ff4
PZ
6267 struct sd_data *sdd = &tl->data;
6268
6269 sdd->sd = alloc_percpu(struct sched_domain *);
6270 if (!sdd->sd)
6271 return -ENOMEM;
6272
6273 sdd->sg = alloc_percpu(struct sched_group *);
6274 if (!sdd->sg)
6275 return -ENOMEM;
6276
9c3f75cb
PZ
6277 sdd->sgp = alloc_percpu(struct sched_group_power *);
6278 if (!sdd->sgp)
6279 return -ENOMEM;
6280
54ab4ff4
PZ
6281 for_each_cpu(j, cpu_map) {
6282 struct sched_domain *sd;
6283 struct sched_group *sg;
9c3f75cb 6284 struct sched_group_power *sgp;
54ab4ff4
PZ
6285
6286 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6287 GFP_KERNEL, cpu_to_node(j));
6288 if (!sd)
6289 return -ENOMEM;
6290
6291 *per_cpu_ptr(sdd->sd, j) = sd;
6292
6293 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6294 GFP_KERNEL, cpu_to_node(j));
6295 if (!sg)
6296 return -ENOMEM;
6297
30b4e9eb
IM
6298 sg->next = sg;
6299
54ab4ff4 6300 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6301
c1174876 6302 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6303 GFP_KERNEL, cpu_to_node(j));
6304 if (!sgp)
6305 return -ENOMEM;
6306
6307 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6308 }
6309 }
6310
6311 return 0;
6312}
6313
6314static void __sdt_free(const struct cpumask *cpu_map)
6315{
6316 struct sched_domain_topology_level *tl;
6317 int j;
6318
27723a68 6319 for_each_sd_topology(tl) {
54ab4ff4
PZ
6320 struct sd_data *sdd = &tl->data;
6321
6322 for_each_cpu(j, cpu_map) {
fb2cf2c6 6323 struct sched_domain *sd;
6324
6325 if (sdd->sd) {
6326 sd = *per_cpu_ptr(sdd->sd, j);
6327 if (sd && (sd->flags & SD_OVERLAP))
6328 free_sched_groups(sd->groups, 0);
6329 kfree(*per_cpu_ptr(sdd->sd, j));
6330 }
6331
6332 if (sdd->sg)
6333 kfree(*per_cpu_ptr(sdd->sg, j));
6334 if (sdd->sgp)
6335 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6336 }
6337 free_percpu(sdd->sd);
fb2cf2c6 6338 sdd->sd = NULL;
54ab4ff4 6339 free_percpu(sdd->sg);
fb2cf2c6 6340 sdd->sg = NULL;
9c3f75cb 6341 free_percpu(sdd->sgp);
fb2cf2c6 6342 sdd->sgp = NULL;
54ab4ff4
PZ
6343 }
6344}
6345
2c402dc3 6346struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6347 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6348 struct sched_domain *child, int cpu)
2c402dc3 6349{
54ab4ff4 6350 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6351 if (!sd)
d069b916 6352 return child;
2c402dc3 6353
2c402dc3 6354 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6355 if (child) {
6356 sd->level = child->level + 1;
6357 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6358 child->parent = sd;
c75e0128 6359 sd->child = child;
60495e77 6360 }
a841f8ce 6361 set_domain_attribute(sd, attr);
2c402dc3
PZ
6362
6363 return sd;
6364}
6365
2109b99e
AH
6366/*
6367 * Build sched domains for a given set of cpus and attach the sched domains
6368 * to the individual cpus
6369 */
dce840a0
PZ
6370static int build_sched_domains(const struct cpumask *cpu_map,
6371 struct sched_domain_attr *attr)
2109b99e 6372{
1c632169 6373 enum s_alloc alloc_state;
dce840a0 6374 struct sched_domain *sd;
2109b99e 6375 struct s_data d;
822ff793 6376 int i, ret = -ENOMEM;
9c1cfda2 6377
2109b99e
AH
6378 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6379 if (alloc_state != sa_rootdomain)
6380 goto error;
9c1cfda2 6381
dce840a0 6382 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6383 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6384 struct sched_domain_topology_level *tl;
6385
3bd65a80 6386 sd = NULL;
27723a68 6387 for_each_sd_topology(tl) {
4a850cbe 6388 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6389 if (tl == sched_domain_topology)
6390 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6391 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6392 sd->flags |= SD_OVERLAP;
d110235d
PZ
6393 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6394 break;
e3589f6c 6395 }
dce840a0
PZ
6396 }
6397
6398 /* Build the groups for the domains */
6399 for_each_cpu(i, cpu_map) {
6400 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6401 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6402 if (sd->flags & SD_OVERLAP) {
6403 if (build_overlap_sched_groups(sd, i))
6404 goto error;
6405 } else {
6406 if (build_sched_groups(sd, i))
6407 goto error;
6408 }
1cf51902 6409 }
a06dadbe 6410 }
9c1cfda2 6411
1da177e4 6412 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6413 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6414 if (!cpumask_test_cpu(i, cpu_map))
6415 continue;
9c1cfda2 6416
dce840a0
PZ
6417 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6418 claim_allocations(i, sd);
cd4ea6ae 6419 init_sched_groups_power(i, sd);
dce840a0 6420 }
f712c0c7 6421 }
9c1cfda2 6422
1da177e4 6423 /* Attach the domains */
dce840a0 6424 rcu_read_lock();
abcd083a 6425 for_each_cpu(i, cpu_map) {
21d42ccf 6426 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6427 cpu_attach_domain(sd, d.rd, i);
1da177e4 6428 }
dce840a0 6429 rcu_read_unlock();
51888ca2 6430
822ff793 6431 ret = 0;
51888ca2 6432error:
2109b99e 6433 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6434 return ret;
1da177e4 6435}
029190c5 6436
acc3f5d7 6437static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6438static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6439static struct sched_domain_attr *dattr_cur;
6440 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6441
6442/*
6443 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6444 * cpumask) fails, then fallback to a single sched domain,
6445 * as determined by the single cpumask fallback_doms.
029190c5 6446 */
4212823f 6447static cpumask_var_t fallback_doms;
029190c5 6448
ee79d1bd
HC
6449/*
6450 * arch_update_cpu_topology lets virtualized architectures update the
6451 * cpu core maps. It is supposed to return 1 if the topology changed
6452 * or 0 if it stayed the same.
6453 */
6454int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6455{
ee79d1bd 6456 return 0;
22e52b07
HC
6457}
6458
acc3f5d7
RR
6459cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6460{
6461 int i;
6462 cpumask_var_t *doms;
6463
6464 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6465 if (!doms)
6466 return NULL;
6467 for (i = 0; i < ndoms; i++) {
6468 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6469 free_sched_domains(doms, i);
6470 return NULL;
6471 }
6472 }
6473 return doms;
6474}
6475
6476void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6477{
6478 unsigned int i;
6479 for (i = 0; i < ndoms; i++)
6480 free_cpumask_var(doms[i]);
6481 kfree(doms);
6482}
6483
1a20ff27 6484/*
41a2d6cf 6485 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6486 * For now this just excludes isolated cpus, but could be used to
6487 * exclude other special cases in the future.
1a20ff27 6488 */
c4a8849a 6489static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6490{
7378547f
MM
6491 int err;
6492
22e52b07 6493 arch_update_cpu_topology();
029190c5 6494 ndoms_cur = 1;
acc3f5d7 6495 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6496 if (!doms_cur)
acc3f5d7
RR
6497 doms_cur = &fallback_doms;
6498 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6499 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6500 register_sched_domain_sysctl();
7378547f
MM
6501
6502 return err;
1a20ff27
DG
6503}
6504
1a20ff27
DG
6505/*
6506 * Detach sched domains from a group of cpus specified in cpu_map
6507 * These cpus will now be attached to the NULL domain
6508 */
96f874e2 6509static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6510{
6511 int i;
6512
dce840a0 6513 rcu_read_lock();
abcd083a 6514 for_each_cpu(i, cpu_map)
57d885fe 6515 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6516 rcu_read_unlock();
1a20ff27
DG
6517}
6518
1d3504fc
HS
6519/* handle null as "default" */
6520static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6521 struct sched_domain_attr *new, int idx_new)
6522{
6523 struct sched_domain_attr tmp;
6524
6525 /* fast path */
6526 if (!new && !cur)
6527 return 1;
6528
6529 tmp = SD_ATTR_INIT;
6530 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6531 new ? (new + idx_new) : &tmp,
6532 sizeof(struct sched_domain_attr));
6533}
6534
029190c5
PJ
6535/*
6536 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6537 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6538 * doms_new[] to the current sched domain partitioning, doms_cur[].
6539 * It destroys each deleted domain and builds each new domain.
6540 *
acc3f5d7 6541 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6542 * The masks don't intersect (don't overlap.) We should setup one
6543 * sched domain for each mask. CPUs not in any of the cpumasks will
6544 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6545 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6546 * it as it is.
6547 *
acc3f5d7
RR
6548 * The passed in 'doms_new' should be allocated using
6549 * alloc_sched_domains. This routine takes ownership of it and will
6550 * free_sched_domains it when done with it. If the caller failed the
6551 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6552 * and partition_sched_domains() will fallback to the single partition
6553 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6554 *
96f874e2 6555 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6556 * ndoms_new == 0 is a special case for destroying existing domains,
6557 * and it will not create the default domain.
dfb512ec 6558 *
029190c5
PJ
6559 * Call with hotplug lock held
6560 */
acc3f5d7 6561void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6562 struct sched_domain_attr *dattr_new)
029190c5 6563{
dfb512ec 6564 int i, j, n;
d65bd5ec 6565 int new_topology;
029190c5 6566
712555ee 6567 mutex_lock(&sched_domains_mutex);
a1835615 6568
7378547f
MM
6569 /* always unregister in case we don't destroy any domains */
6570 unregister_sched_domain_sysctl();
6571
d65bd5ec
HC
6572 /* Let architecture update cpu core mappings. */
6573 new_topology = arch_update_cpu_topology();
6574
dfb512ec 6575 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6576
6577 /* Destroy deleted domains */
6578 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6579 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6580 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6581 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6582 goto match1;
6583 }
6584 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6585 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6586match1:
6587 ;
6588 }
6589
c8d2d47a 6590 n = ndoms_cur;
e761b772 6591 if (doms_new == NULL) {
c8d2d47a 6592 n = 0;
acc3f5d7 6593 doms_new = &fallback_doms;
6ad4c188 6594 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6595 WARN_ON_ONCE(dattr_new);
e761b772
MK
6596 }
6597
029190c5
PJ
6598 /* Build new domains */
6599 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6600 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6601 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6602 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6603 goto match2;
6604 }
6605 /* no match - add a new doms_new */
dce840a0 6606 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6607match2:
6608 ;
6609 }
6610
6611 /* Remember the new sched domains */
acc3f5d7
RR
6612 if (doms_cur != &fallback_doms)
6613 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6614 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6615 doms_cur = doms_new;
1d3504fc 6616 dattr_cur = dattr_new;
029190c5 6617 ndoms_cur = ndoms_new;
7378547f
MM
6618
6619 register_sched_domain_sysctl();
a1835615 6620
712555ee 6621 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6622}
6623
d35be8ba
SB
6624static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6625
1da177e4 6626/*
3a101d05
TH
6627 * Update cpusets according to cpu_active mask. If cpusets are
6628 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6629 * around partition_sched_domains().
d35be8ba
SB
6630 *
6631 * If we come here as part of a suspend/resume, don't touch cpusets because we
6632 * want to restore it back to its original state upon resume anyway.
1da177e4 6633 */
0b2e918a
TH
6634static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6635 void *hcpu)
e761b772 6636{
d35be8ba
SB
6637 switch (action) {
6638 case CPU_ONLINE_FROZEN:
6639 case CPU_DOWN_FAILED_FROZEN:
6640
6641 /*
6642 * num_cpus_frozen tracks how many CPUs are involved in suspend
6643 * resume sequence. As long as this is not the last online
6644 * operation in the resume sequence, just build a single sched
6645 * domain, ignoring cpusets.
6646 */
6647 num_cpus_frozen--;
6648 if (likely(num_cpus_frozen)) {
6649 partition_sched_domains(1, NULL, NULL);
6650 break;
6651 }
6652
6653 /*
6654 * This is the last CPU online operation. So fall through and
6655 * restore the original sched domains by considering the
6656 * cpuset configurations.
6657 */
6658
e761b772 6659 case CPU_ONLINE:
6ad4c188 6660 case CPU_DOWN_FAILED:
7ddf96b0 6661 cpuset_update_active_cpus(true);
d35be8ba 6662 break;
3a101d05
TH
6663 default:
6664 return NOTIFY_DONE;
6665 }
d35be8ba 6666 return NOTIFY_OK;
3a101d05 6667}
e761b772 6668
0b2e918a
TH
6669static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6670 void *hcpu)
3a101d05 6671{
d35be8ba 6672 switch (action) {
3a101d05 6673 case CPU_DOWN_PREPARE:
7ddf96b0 6674 cpuset_update_active_cpus(false);
d35be8ba
SB
6675 break;
6676 case CPU_DOWN_PREPARE_FROZEN:
6677 num_cpus_frozen++;
6678 partition_sched_domains(1, NULL, NULL);
6679 break;
e761b772
MK
6680 default:
6681 return NOTIFY_DONE;
6682 }
d35be8ba 6683 return NOTIFY_OK;
e761b772 6684}
e761b772 6685
1da177e4
LT
6686void __init sched_init_smp(void)
6687{
dcc30a35
RR
6688 cpumask_var_t non_isolated_cpus;
6689
6690 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6691 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6692
cb83b629
PZ
6693 sched_init_numa();
6694
6acce3ef
PZ
6695 /*
6696 * There's no userspace yet to cause hotplug operations; hence all the
6697 * cpu masks are stable and all blatant races in the below code cannot
6698 * happen.
6699 */
712555ee 6700 mutex_lock(&sched_domains_mutex);
c4a8849a 6701 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6702 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6703 if (cpumask_empty(non_isolated_cpus))
6704 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6705 mutex_unlock(&sched_domains_mutex);
e761b772 6706
301a5cba 6707 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6708 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6709 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6710
b328ca18 6711 init_hrtick();
5c1e1767
NP
6712
6713 /* Move init over to a non-isolated CPU */
dcc30a35 6714 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6715 BUG();
19978ca6 6716 sched_init_granularity();
dcc30a35 6717 free_cpumask_var(non_isolated_cpus);
4212823f 6718
0e3900e6 6719 init_sched_rt_class();
1baca4ce 6720 init_sched_dl_class();
1da177e4
LT
6721}
6722#else
6723void __init sched_init_smp(void)
6724{
19978ca6 6725 sched_init_granularity();
1da177e4
LT
6726}
6727#endif /* CONFIG_SMP */
6728
cd1bb94b
AB
6729const_debug unsigned int sysctl_timer_migration = 1;
6730
1da177e4
LT
6731int in_sched_functions(unsigned long addr)
6732{
1da177e4
LT
6733 return in_lock_functions(addr) ||
6734 (addr >= (unsigned long)__sched_text_start
6735 && addr < (unsigned long)__sched_text_end);
6736}
6737
029632fb 6738#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6739/*
6740 * Default task group.
6741 * Every task in system belongs to this group at bootup.
6742 */
029632fb 6743struct task_group root_task_group;
35cf4e50 6744LIST_HEAD(task_groups);
052f1dc7 6745#endif
6f505b16 6746
e6252c3e 6747DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6748
1da177e4
LT
6749void __init sched_init(void)
6750{
dd41f596 6751 int i, j;
434d53b0
MT
6752 unsigned long alloc_size = 0, ptr;
6753
6754#ifdef CONFIG_FAIR_GROUP_SCHED
6755 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6756#endif
6757#ifdef CONFIG_RT_GROUP_SCHED
6758 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6759#endif
df7c8e84 6760#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6761 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6762#endif
434d53b0 6763 if (alloc_size) {
36b7b6d4 6764 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6765
6766#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6767 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6768 ptr += nr_cpu_ids * sizeof(void **);
6769
07e06b01 6770 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6771 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6772
6d6bc0ad 6773#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6774#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6775 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6776 ptr += nr_cpu_ids * sizeof(void **);
6777
07e06b01 6778 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6779 ptr += nr_cpu_ids * sizeof(void **);
6780
6d6bc0ad 6781#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6782#ifdef CONFIG_CPUMASK_OFFSTACK
6783 for_each_possible_cpu(i) {
e6252c3e 6784 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6785 ptr += cpumask_size();
6786 }
6787#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6788 }
dd41f596 6789
332ac17e
DF
6790 init_rt_bandwidth(&def_rt_bandwidth,
6791 global_rt_period(), global_rt_runtime());
6792 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6793 global_rt_period(), global_rt_runtime());
332ac17e 6794
57d885fe
GH
6795#ifdef CONFIG_SMP
6796 init_defrootdomain();
6797#endif
6798
d0b27fa7 6799#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6800 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6801 global_rt_period(), global_rt_runtime());
6d6bc0ad 6802#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6803
7c941438 6804#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6805 list_add(&root_task_group.list, &task_groups);
6806 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6807 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6808 autogroup_init(&init_task);
54c707e9 6809
7c941438 6810#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6811
0a945022 6812 for_each_possible_cpu(i) {
70b97a7f 6813 struct rq *rq;
1da177e4
LT
6814
6815 rq = cpu_rq(i);
05fa785c 6816 raw_spin_lock_init(&rq->lock);
7897986b 6817 rq->nr_running = 0;
dce48a84
TG
6818 rq->calc_load_active = 0;
6819 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6820 init_cfs_rq(&rq->cfs);
6f505b16 6821 init_rt_rq(&rq->rt, rq);
aab03e05 6822 init_dl_rq(&rq->dl, rq);
dd41f596 6823#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6824 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6825 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6826 /*
07e06b01 6827 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6828 *
6829 * In case of task-groups formed thr' the cgroup filesystem, it
6830 * gets 100% of the cpu resources in the system. This overall
6831 * system cpu resource is divided among the tasks of
07e06b01 6832 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6833 * based on each entity's (task or task-group's) weight
6834 * (se->load.weight).
6835 *
07e06b01 6836 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6837 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6838 * then A0's share of the cpu resource is:
6839 *
0d905bca 6840 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6841 *
07e06b01
YZ
6842 * We achieve this by letting root_task_group's tasks sit
6843 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6844 */
ab84d31e 6845 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6846 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6847#endif /* CONFIG_FAIR_GROUP_SCHED */
6848
6849 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6850#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6851 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6852 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6853#endif
1da177e4 6854
dd41f596
IM
6855 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6856 rq->cpu_load[j] = 0;
fdf3e95d
VP
6857
6858 rq->last_load_update_tick = jiffies;
6859
1da177e4 6860#ifdef CONFIG_SMP
41c7ce9a 6861 rq->sd = NULL;
57d885fe 6862 rq->rd = NULL;
1399fa78 6863 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6864 rq->post_schedule = 0;
1da177e4 6865 rq->active_balance = 0;
dd41f596 6866 rq->next_balance = jiffies;
1da177e4 6867 rq->push_cpu = 0;
0a2966b4 6868 rq->cpu = i;
1f11eb6a 6869 rq->online = 0;
eae0c9df
MG
6870 rq->idle_stamp = 0;
6871 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6872 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6873
6874 INIT_LIST_HEAD(&rq->cfs_tasks);
6875
dc938520 6876 rq_attach_root(rq, &def_root_domain);
3451d024 6877#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6878 rq->nohz_flags = 0;
83cd4fe2 6879#endif
265f22a9
FW
6880#ifdef CONFIG_NO_HZ_FULL
6881 rq->last_sched_tick = 0;
6882#endif
1da177e4 6883#endif
8f4d37ec 6884 init_rq_hrtick(rq);
1da177e4 6885 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6886 }
6887
2dd73a4f 6888 set_load_weight(&init_task);
b50f60ce 6889
e107be36
AK
6890#ifdef CONFIG_PREEMPT_NOTIFIERS
6891 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6892#endif
6893
1da177e4
LT
6894 /*
6895 * The boot idle thread does lazy MMU switching as well:
6896 */
6897 atomic_inc(&init_mm.mm_count);
6898 enter_lazy_tlb(&init_mm, current);
6899
6900 /*
6901 * Make us the idle thread. Technically, schedule() should not be
6902 * called from this thread, however somewhere below it might be,
6903 * but because we are the idle thread, we just pick up running again
6904 * when this runqueue becomes "idle".
6905 */
6906 init_idle(current, smp_processor_id());
dce48a84
TG
6907
6908 calc_load_update = jiffies + LOAD_FREQ;
6909
dd41f596
IM
6910 /*
6911 * During early bootup we pretend to be a normal task:
6912 */
6913 current->sched_class = &fair_sched_class;
6892b75e 6914
bf4d83f6 6915#ifdef CONFIG_SMP
4cb98839 6916 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6917 /* May be allocated at isolcpus cmdline parse time */
6918 if (cpu_isolated_map == NULL)
6919 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6920 idle_thread_set_boot_cpu();
029632fb
PZ
6921#endif
6922 init_sched_fair_class();
6a7b3dc3 6923
6892b75e 6924 scheduler_running = 1;
1da177e4
LT
6925}
6926
d902db1e 6927#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6928static inline int preempt_count_equals(int preempt_offset)
6929{
234da7bc 6930 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6931
4ba8216c 6932 return (nested == preempt_offset);
e4aafea2
FW
6933}
6934
d894837f 6935void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6936{
1da177e4
LT
6937 static unsigned long prev_jiffy; /* ratelimiting */
6938
b3fbab05 6939 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6940 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6941 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6942 return;
6943 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6944 return;
6945 prev_jiffy = jiffies;
6946
3df0fc5b
PZ
6947 printk(KERN_ERR
6948 "BUG: sleeping function called from invalid context at %s:%d\n",
6949 file, line);
6950 printk(KERN_ERR
6951 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6952 in_atomic(), irqs_disabled(),
6953 current->pid, current->comm);
aef745fc
IM
6954
6955 debug_show_held_locks(current);
6956 if (irqs_disabled())
6957 print_irqtrace_events(current);
6958 dump_stack();
1da177e4
LT
6959}
6960EXPORT_SYMBOL(__might_sleep);
6961#endif
6962
6963#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6964static void normalize_task(struct rq *rq, struct task_struct *p)
6965{
da7a735e 6966 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6967 struct sched_attr attr = {
6968 .sched_policy = SCHED_NORMAL,
6969 };
da7a735e 6970 int old_prio = p->prio;
3a5e4dc1 6971 int on_rq;
3e51f33f 6972
fd2f4419 6973 on_rq = p->on_rq;
3a5e4dc1 6974 if (on_rq)
4ca9b72b 6975 dequeue_task(rq, p, 0);
d50dde5a 6976 __setscheduler(rq, p, &attr);
3a5e4dc1 6977 if (on_rq) {
4ca9b72b 6978 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6979 resched_task(rq->curr);
6980 }
da7a735e
PZ
6981
6982 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6983}
6984
1da177e4
LT
6985void normalize_rt_tasks(void)
6986{
a0f98a1c 6987 struct task_struct *g, *p;
1da177e4 6988 unsigned long flags;
70b97a7f 6989 struct rq *rq;
1da177e4 6990
4cf5d77a 6991 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6992 do_each_thread(g, p) {
178be793
IM
6993 /*
6994 * Only normalize user tasks:
6995 */
6996 if (!p->mm)
6997 continue;
6998
6cfb0d5d 6999 p->se.exec_start = 0;
6cfb0d5d 7000#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7001 p->se.statistics.wait_start = 0;
7002 p->se.statistics.sleep_start = 0;
7003 p->se.statistics.block_start = 0;
6cfb0d5d 7004#endif
dd41f596 7005
aab03e05 7006 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7007 /*
7008 * Renice negative nice level userspace
7009 * tasks back to 0:
7010 */
7011 if (TASK_NICE(p) < 0 && p->mm)
7012 set_user_nice(p, 0);
1da177e4 7013 continue;
dd41f596 7014 }
1da177e4 7015
1d615482 7016 raw_spin_lock(&p->pi_lock);
b29739f9 7017 rq = __task_rq_lock(p);
1da177e4 7018
178be793 7019 normalize_task(rq, p);
3a5e4dc1 7020
b29739f9 7021 __task_rq_unlock(rq);
1d615482 7022 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7023 } while_each_thread(g, p);
7024
4cf5d77a 7025 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7026}
7027
7028#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7029
67fc4e0c 7030#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7031/*
67fc4e0c 7032 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7033 *
7034 * They can only be called when the whole system has been
7035 * stopped - every CPU needs to be quiescent, and no scheduling
7036 * activity can take place. Using them for anything else would
7037 * be a serious bug, and as a result, they aren't even visible
7038 * under any other configuration.
7039 */
7040
7041/**
7042 * curr_task - return the current task for a given cpu.
7043 * @cpu: the processor in question.
7044 *
7045 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7046 *
7047 * Return: The current task for @cpu.
1df5c10a 7048 */
36c8b586 7049struct task_struct *curr_task(int cpu)
1df5c10a
LT
7050{
7051 return cpu_curr(cpu);
7052}
7053
67fc4e0c
JW
7054#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7055
7056#ifdef CONFIG_IA64
1df5c10a
LT
7057/**
7058 * set_curr_task - set the current task for a given cpu.
7059 * @cpu: the processor in question.
7060 * @p: the task pointer to set.
7061 *
7062 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7063 * are serviced on a separate stack. It allows the architecture to switch the
7064 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7065 * must be called with all CPU's synchronized, and interrupts disabled, the
7066 * and caller must save the original value of the current task (see
7067 * curr_task() above) and restore that value before reenabling interrupts and
7068 * re-starting the system.
7069 *
7070 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7071 */
36c8b586 7072void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7073{
7074 cpu_curr(cpu) = p;
7075}
7076
7077#endif
29f59db3 7078
7c941438 7079#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7080/* task_group_lock serializes the addition/removal of task groups */
7081static DEFINE_SPINLOCK(task_group_lock);
7082
bccbe08a
PZ
7083static void free_sched_group(struct task_group *tg)
7084{
7085 free_fair_sched_group(tg);
7086 free_rt_sched_group(tg);
e9aa1dd1 7087 autogroup_free(tg);
bccbe08a
PZ
7088 kfree(tg);
7089}
7090
7091/* allocate runqueue etc for a new task group */
ec7dc8ac 7092struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7093{
7094 struct task_group *tg;
bccbe08a
PZ
7095
7096 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7097 if (!tg)
7098 return ERR_PTR(-ENOMEM);
7099
ec7dc8ac 7100 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7101 goto err;
7102
ec7dc8ac 7103 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7104 goto err;
7105
ace783b9
LZ
7106 return tg;
7107
7108err:
7109 free_sched_group(tg);
7110 return ERR_PTR(-ENOMEM);
7111}
7112
7113void sched_online_group(struct task_group *tg, struct task_group *parent)
7114{
7115 unsigned long flags;
7116
8ed36996 7117 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7118 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7119
7120 WARN_ON(!parent); /* root should already exist */
7121
7122 tg->parent = parent;
f473aa5e 7123 INIT_LIST_HEAD(&tg->children);
09f2724a 7124 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7125 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7126}
7127
9b5b7751 7128/* rcu callback to free various structures associated with a task group */
6f505b16 7129static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7130{
29f59db3 7131 /* now it should be safe to free those cfs_rqs */
6f505b16 7132 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7133}
7134
9b5b7751 7135/* Destroy runqueue etc associated with a task group */
4cf86d77 7136void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7137{
7138 /* wait for possible concurrent references to cfs_rqs complete */
7139 call_rcu(&tg->rcu, free_sched_group_rcu);
7140}
7141
7142void sched_offline_group(struct task_group *tg)
29f59db3 7143{
8ed36996 7144 unsigned long flags;
9b5b7751 7145 int i;
29f59db3 7146
3d4b47b4
PZ
7147 /* end participation in shares distribution */
7148 for_each_possible_cpu(i)
bccbe08a 7149 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7150
7151 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7152 list_del_rcu(&tg->list);
f473aa5e 7153 list_del_rcu(&tg->siblings);
8ed36996 7154 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7155}
7156
9b5b7751 7157/* change task's runqueue when it moves between groups.
3a252015
IM
7158 * The caller of this function should have put the task in its new group
7159 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7160 * reflect its new group.
9b5b7751
SV
7161 */
7162void sched_move_task(struct task_struct *tsk)
29f59db3 7163{
8323f26c 7164 struct task_group *tg;
29f59db3
SV
7165 int on_rq, running;
7166 unsigned long flags;
7167 struct rq *rq;
7168
7169 rq = task_rq_lock(tsk, &flags);
7170
051a1d1a 7171 running = task_current(rq, tsk);
fd2f4419 7172 on_rq = tsk->on_rq;
29f59db3 7173
0e1f3483 7174 if (on_rq)
29f59db3 7175 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7176 if (unlikely(running))
7177 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7178
8af01f56 7179 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7180 lockdep_is_held(&tsk->sighand->siglock)),
7181 struct task_group, css);
7182 tg = autogroup_task_group(tsk, tg);
7183 tsk->sched_task_group = tg;
7184
810b3817 7185#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7186 if (tsk->sched_class->task_move_group)
7187 tsk->sched_class->task_move_group(tsk, on_rq);
7188 else
810b3817 7189#endif
b2b5ce02 7190 set_task_rq(tsk, task_cpu(tsk));
810b3817 7191
0e1f3483
HS
7192 if (unlikely(running))
7193 tsk->sched_class->set_curr_task(rq);
7194 if (on_rq)
371fd7e7 7195 enqueue_task(rq, tsk, 0);
29f59db3 7196
0122ec5b 7197 task_rq_unlock(rq, tsk, &flags);
29f59db3 7198}
7c941438 7199#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7200
a790de99
PT
7201#ifdef CONFIG_RT_GROUP_SCHED
7202/*
7203 * Ensure that the real time constraints are schedulable.
7204 */
7205static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7206
9a7e0b18
PZ
7207/* Must be called with tasklist_lock held */
7208static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7209{
9a7e0b18 7210 struct task_struct *g, *p;
b40b2e8e 7211
9a7e0b18 7212 do_each_thread(g, p) {
029632fb 7213 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7214 return 1;
7215 } while_each_thread(g, p);
b40b2e8e 7216
9a7e0b18
PZ
7217 return 0;
7218}
b40b2e8e 7219
9a7e0b18
PZ
7220struct rt_schedulable_data {
7221 struct task_group *tg;
7222 u64 rt_period;
7223 u64 rt_runtime;
7224};
b40b2e8e 7225
a790de99 7226static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7227{
7228 struct rt_schedulable_data *d = data;
7229 struct task_group *child;
7230 unsigned long total, sum = 0;
7231 u64 period, runtime;
b40b2e8e 7232
9a7e0b18
PZ
7233 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7234 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7235
9a7e0b18
PZ
7236 if (tg == d->tg) {
7237 period = d->rt_period;
7238 runtime = d->rt_runtime;
b40b2e8e 7239 }
b40b2e8e 7240
4653f803
PZ
7241 /*
7242 * Cannot have more runtime than the period.
7243 */
7244 if (runtime > period && runtime != RUNTIME_INF)
7245 return -EINVAL;
6f505b16 7246
4653f803
PZ
7247 /*
7248 * Ensure we don't starve existing RT tasks.
7249 */
9a7e0b18
PZ
7250 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7251 return -EBUSY;
6f505b16 7252
9a7e0b18 7253 total = to_ratio(period, runtime);
6f505b16 7254
4653f803
PZ
7255 /*
7256 * Nobody can have more than the global setting allows.
7257 */
7258 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7259 return -EINVAL;
6f505b16 7260
4653f803
PZ
7261 /*
7262 * The sum of our children's runtime should not exceed our own.
7263 */
9a7e0b18
PZ
7264 list_for_each_entry_rcu(child, &tg->children, siblings) {
7265 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7266 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7267
9a7e0b18
PZ
7268 if (child == d->tg) {
7269 period = d->rt_period;
7270 runtime = d->rt_runtime;
7271 }
6f505b16 7272
9a7e0b18 7273 sum += to_ratio(period, runtime);
9f0c1e56 7274 }
6f505b16 7275
9a7e0b18
PZ
7276 if (sum > total)
7277 return -EINVAL;
7278
7279 return 0;
6f505b16
PZ
7280}
7281
9a7e0b18 7282static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7283{
8277434e
PT
7284 int ret;
7285
9a7e0b18
PZ
7286 struct rt_schedulable_data data = {
7287 .tg = tg,
7288 .rt_period = period,
7289 .rt_runtime = runtime,
7290 };
7291
8277434e
PT
7292 rcu_read_lock();
7293 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7294 rcu_read_unlock();
7295
7296 return ret;
521f1a24
DG
7297}
7298
ab84d31e 7299static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7300 u64 rt_period, u64 rt_runtime)
6f505b16 7301{
ac086bc2 7302 int i, err = 0;
9f0c1e56 7303
9f0c1e56 7304 mutex_lock(&rt_constraints_mutex);
521f1a24 7305 read_lock(&tasklist_lock);
9a7e0b18
PZ
7306 err = __rt_schedulable(tg, rt_period, rt_runtime);
7307 if (err)
9f0c1e56 7308 goto unlock;
ac086bc2 7309
0986b11b 7310 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7311 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7312 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7313
7314 for_each_possible_cpu(i) {
7315 struct rt_rq *rt_rq = tg->rt_rq[i];
7316
0986b11b 7317 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7318 rt_rq->rt_runtime = rt_runtime;
0986b11b 7319 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7320 }
0986b11b 7321 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7322unlock:
521f1a24 7323 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7324 mutex_unlock(&rt_constraints_mutex);
7325
7326 return err;
6f505b16
PZ
7327}
7328
25cc7da7 7329static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7330{
7331 u64 rt_runtime, rt_period;
7332
7333 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7334 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7335 if (rt_runtime_us < 0)
7336 rt_runtime = RUNTIME_INF;
7337
ab84d31e 7338 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7339}
7340
25cc7da7 7341static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7342{
7343 u64 rt_runtime_us;
7344
d0b27fa7 7345 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7346 return -1;
7347
d0b27fa7 7348 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7349 do_div(rt_runtime_us, NSEC_PER_USEC);
7350 return rt_runtime_us;
7351}
d0b27fa7 7352
25cc7da7 7353static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7354{
7355 u64 rt_runtime, rt_period;
7356
7357 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7358 rt_runtime = tg->rt_bandwidth.rt_runtime;
7359
619b0488
R
7360 if (rt_period == 0)
7361 return -EINVAL;
7362
ab84d31e 7363 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7364}
7365
25cc7da7 7366static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7367{
7368 u64 rt_period_us;
7369
7370 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7371 do_div(rt_period_us, NSEC_PER_USEC);
7372 return rt_period_us;
7373}
332ac17e 7374#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7375
332ac17e 7376#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7377static int sched_rt_global_constraints(void)
7378{
7379 int ret = 0;
7380
7381 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7382 read_lock(&tasklist_lock);
4653f803 7383 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7384 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7385 mutex_unlock(&rt_constraints_mutex);
7386
7387 return ret;
7388}
54e99124 7389
25cc7da7 7390static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7391{
7392 /* Don't accept realtime tasks when there is no way for them to run */
7393 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7394 return 0;
7395
7396 return 1;
7397}
7398
6d6bc0ad 7399#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7400static int sched_rt_global_constraints(void)
7401{
ac086bc2 7402 unsigned long flags;
332ac17e 7403 int i, ret = 0;
ec5d4989 7404
0986b11b 7405 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7406 for_each_possible_cpu(i) {
7407 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7408
0986b11b 7409 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7410 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7411 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7412 }
0986b11b 7413 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7414
332ac17e 7415 return ret;
d0b27fa7 7416}
6d6bc0ad 7417#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7418
332ac17e
DF
7419static int sched_dl_global_constraints(void)
7420{
1724813d
PZ
7421 u64 runtime = global_rt_runtime();
7422 u64 period = global_rt_period();
332ac17e 7423 u64 new_bw = to_ratio(period, runtime);
1724813d 7424 int cpu, ret = 0;
332ac17e
DF
7425
7426 /*
7427 * Here we want to check the bandwidth not being set to some
7428 * value smaller than the currently allocated bandwidth in
7429 * any of the root_domains.
7430 *
7431 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7432 * cycling on root_domains... Discussion on different/better
7433 * solutions is welcome!
7434 */
1724813d
PZ
7435 for_each_possible_cpu(cpu) {
7436 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7437
7438 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7439 if (new_bw < dl_b->total_bw)
7440 ret = -EBUSY;
332ac17e 7441 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7442
7443 if (ret)
7444 break;
332ac17e
DF
7445 }
7446
1724813d 7447 return ret;
332ac17e
DF
7448}
7449
1724813d 7450static void sched_dl_do_global(void)
ce0dbbbb 7451{
1724813d
PZ
7452 u64 new_bw = -1;
7453 int cpu;
ce0dbbbb 7454
1724813d
PZ
7455 def_dl_bandwidth.dl_period = global_rt_period();
7456 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7457
7458 if (global_rt_runtime() != RUNTIME_INF)
7459 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7460
7461 /*
7462 * FIXME: As above...
7463 */
7464 for_each_possible_cpu(cpu) {
7465 struct dl_bw *dl_b = dl_bw_of(cpu);
7466
7467 raw_spin_lock(&dl_b->lock);
7468 dl_b->bw = new_bw;
7469 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7470 }
1724813d
PZ
7471}
7472
7473static int sched_rt_global_validate(void)
7474{
7475 if (sysctl_sched_rt_period <= 0)
7476 return -EINVAL;
7477
7478 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7479 return -EINVAL;
7480
7481 return 0;
7482}
7483
7484static void sched_rt_do_global(void)
7485{
7486 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7487 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7488}
7489
d0b27fa7 7490int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7491 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7492 loff_t *ppos)
7493{
d0b27fa7
PZ
7494 int old_period, old_runtime;
7495 static DEFINE_MUTEX(mutex);
1724813d 7496 int ret;
d0b27fa7
PZ
7497
7498 mutex_lock(&mutex);
7499 old_period = sysctl_sched_rt_period;
7500 old_runtime = sysctl_sched_rt_runtime;
7501
8d65af78 7502 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7503
7504 if (!ret && write) {
1724813d
PZ
7505 ret = sched_rt_global_validate();
7506 if (ret)
7507 goto undo;
7508
d0b27fa7 7509 ret = sched_rt_global_constraints();
1724813d
PZ
7510 if (ret)
7511 goto undo;
7512
7513 ret = sched_dl_global_constraints();
7514 if (ret)
7515 goto undo;
7516
7517 sched_rt_do_global();
7518 sched_dl_do_global();
7519 }
7520 if (0) {
7521undo:
7522 sysctl_sched_rt_period = old_period;
7523 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7524 }
7525 mutex_unlock(&mutex);
7526
7527 return ret;
7528}
68318b8e 7529
1724813d 7530int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7531 void __user *buffer, size_t *lenp,
7532 loff_t *ppos)
7533{
7534 int ret;
332ac17e 7535 static DEFINE_MUTEX(mutex);
332ac17e
DF
7536
7537 mutex_lock(&mutex);
332ac17e 7538 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7539 /* make sure that internally we keep jiffies */
7540 /* also, writing zero resets timeslice to default */
332ac17e 7541 if (!ret && write) {
1724813d
PZ
7542 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7543 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7544 }
7545 mutex_unlock(&mutex);
332ac17e
DF
7546 return ret;
7547}
7548
052f1dc7 7549#ifdef CONFIG_CGROUP_SCHED
68318b8e 7550
a7c6d554 7551static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7552{
a7c6d554 7553 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7554}
7555
eb95419b
TH
7556static struct cgroup_subsys_state *
7557cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7558{
eb95419b
TH
7559 struct task_group *parent = css_tg(parent_css);
7560 struct task_group *tg;
68318b8e 7561
eb95419b 7562 if (!parent) {
68318b8e 7563 /* This is early initialization for the top cgroup */
07e06b01 7564 return &root_task_group.css;
68318b8e
SV
7565 }
7566
ec7dc8ac 7567 tg = sched_create_group(parent);
68318b8e
SV
7568 if (IS_ERR(tg))
7569 return ERR_PTR(-ENOMEM);
7570
68318b8e
SV
7571 return &tg->css;
7572}
7573
eb95419b 7574static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7575{
eb95419b
TH
7576 struct task_group *tg = css_tg(css);
7577 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7578
63876986
TH
7579 if (parent)
7580 sched_online_group(tg, parent);
ace783b9
LZ
7581 return 0;
7582}
7583
eb95419b 7584static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7585{
eb95419b 7586 struct task_group *tg = css_tg(css);
68318b8e
SV
7587
7588 sched_destroy_group(tg);
7589}
7590
eb95419b 7591static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7592{
eb95419b 7593 struct task_group *tg = css_tg(css);
ace783b9
LZ
7594
7595 sched_offline_group(tg);
7596}
7597
eb95419b 7598static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7599 struct cgroup_taskset *tset)
68318b8e 7600{
bb9d97b6
TH
7601 struct task_struct *task;
7602
d99c8727 7603 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7604#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7605 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7606 return -EINVAL;
b68aa230 7607#else
bb9d97b6
TH
7608 /* We don't support RT-tasks being in separate groups */
7609 if (task->sched_class != &fair_sched_class)
7610 return -EINVAL;
b68aa230 7611#endif
bb9d97b6 7612 }
be367d09
BB
7613 return 0;
7614}
68318b8e 7615
eb95419b 7616static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7617 struct cgroup_taskset *tset)
68318b8e 7618{
bb9d97b6
TH
7619 struct task_struct *task;
7620
d99c8727 7621 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7622 sched_move_task(task);
68318b8e
SV
7623}
7624
eb95419b
TH
7625static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7626 struct cgroup_subsys_state *old_css,
7627 struct task_struct *task)
068c5cc5
PZ
7628{
7629 /*
7630 * cgroup_exit() is called in the copy_process() failure path.
7631 * Ignore this case since the task hasn't ran yet, this avoids
7632 * trying to poke a half freed task state from generic code.
7633 */
7634 if (!(task->flags & PF_EXITING))
7635 return;
7636
7637 sched_move_task(task);
7638}
7639
052f1dc7 7640#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7641static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7642 struct cftype *cftype, u64 shareval)
68318b8e 7643{
182446d0 7644 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7645}
7646
182446d0
TH
7647static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7648 struct cftype *cft)
68318b8e 7649{
182446d0 7650 struct task_group *tg = css_tg(css);
68318b8e 7651
c8b28116 7652 return (u64) scale_load_down(tg->shares);
68318b8e 7653}
ab84d31e
PT
7654
7655#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7656static DEFINE_MUTEX(cfs_constraints_mutex);
7657
ab84d31e
PT
7658const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7659const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7660
a790de99
PT
7661static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7662
ab84d31e
PT
7663static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7664{
56f570e5 7665 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7666 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7667
7668 if (tg == &root_task_group)
7669 return -EINVAL;
7670
7671 /*
7672 * Ensure we have at some amount of bandwidth every period. This is
7673 * to prevent reaching a state of large arrears when throttled via
7674 * entity_tick() resulting in prolonged exit starvation.
7675 */
7676 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7677 return -EINVAL;
7678
7679 /*
7680 * Likewise, bound things on the otherside by preventing insane quota
7681 * periods. This also allows us to normalize in computing quota
7682 * feasibility.
7683 */
7684 if (period > max_cfs_quota_period)
7685 return -EINVAL;
7686
a790de99
PT
7687 mutex_lock(&cfs_constraints_mutex);
7688 ret = __cfs_schedulable(tg, period, quota);
7689 if (ret)
7690 goto out_unlock;
7691
58088ad0 7692 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7693 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7694 /*
7695 * If we need to toggle cfs_bandwidth_used, off->on must occur
7696 * before making related changes, and on->off must occur afterwards
7697 */
7698 if (runtime_enabled && !runtime_was_enabled)
7699 cfs_bandwidth_usage_inc();
ab84d31e
PT
7700 raw_spin_lock_irq(&cfs_b->lock);
7701 cfs_b->period = ns_to_ktime(period);
7702 cfs_b->quota = quota;
58088ad0 7703
a9cf55b2 7704 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7705 /* restart the period timer (if active) to handle new period expiry */
7706 if (runtime_enabled && cfs_b->timer_active) {
7707 /* force a reprogram */
7708 cfs_b->timer_active = 0;
7709 __start_cfs_bandwidth(cfs_b);
7710 }
ab84d31e
PT
7711 raw_spin_unlock_irq(&cfs_b->lock);
7712
7713 for_each_possible_cpu(i) {
7714 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7715 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7716
7717 raw_spin_lock_irq(&rq->lock);
58088ad0 7718 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7719 cfs_rq->runtime_remaining = 0;
671fd9da 7720
029632fb 7721 if (cfs_rq->throttled)
671fd9da 7722 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7723 raw_spin_unlock_irq(&rq->lock);
7724 }
1ee14e6c
BS
7725 if (runtime_was_enabled && !runtime_enabled)
7726 cfs_bandwidth_usage_dec();
a790de99
PT
7727out_unlock:
7728 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7729
a790de99 7730 return ret;
ab84d31e
PT
7731}
7732
7733int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7734{
7735 u64 quota, period;
7736
029632fb 7737 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7738 if (cfs_quota_us < 0)
7739 quota = RUNTIME_INF;
7740 else
7741 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7742
7743 return tg_set_cfs_bandwidth(tg, period, quota);
7744}
7745
7746long tg_get_cfs_quota(struct task_group *tg)
7747{
7748 u64 quota_us;
7749
029632fb 7750 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7751 return -1;
7752
029632fb 7753 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7754 do_div(quota_us, NSEC_PER_USEC);
7755
7756 return quota_us;
7757}
7758
7759int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7760{
7761 u64 quota, period;
7762
7763 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7764 quota = tg->cfs_bandwidth.quota;
ab84d31e 7765
ab84d31e
PT
7766 return tg_set_cfs_bandwidth(tg, period, quota);
7767}
7768
7769long tg_get_cfs_period(struct task_group *tg)
7770{
7771 u64 cfs_period_us;
7772
029632fb 7773 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7774 do_div(cfs_period_us, NSEC_PER_USEC);
7775
7776 return cfs_period_us;
7777}
7778
182446d0
TH
7779static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7780 struct cftype *cft)
ab84d31e 7781{
182446d0 7782 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7783}
7784
182446d0
TH
7785static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7786 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7787{
182446d0 7788 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7789}
7790
182446d0
TH
7791static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7792 struct cftype *cft)
ab84d31e 7793{
182446d0 7794 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7795}
7796
182446d0
TH
7797static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7798 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7799{
182446d0 7800 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7801}
7802
a790de99
PT
7803struct cfs_schedulable_data {
7804 struct task_group *tg;
7805 u64 period, quota;
7806};
7807
7808/*
7809 * normalize group quota/period to be quota/max_period
7810 * note: units are usecs
7811 */
7812static u64 normalize_cfs_quota(struct task_group *tg,
7813 struct cfs_schedulable_data *d)
7814{
7815 u64 quota, period;
7816
7817 if (tg == d->tg) {
7818 period = d->period;
7819 quota = d->quota;
7820 } else {
7821 period = tg_get_cfs_period(tg);
7822 quota = tg_get_cfs_quota(tg);
7823 }
7824
7825 /* note: these should typically be equivalent */
7826 if (quota == RUNTIME_INF || quota == -1)
7827 return RUNTIME_INF;
7828
7829 return to_ratio(period, quota);
7830}
7831
7832static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7833{
7834 struct cfs_schedulable_data *d = data;
029632fb 7835 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7836 s64 quota = 0, parent_quota = -1;
7837
7838 if (!tg->parent) {
7839 quota = RUNTIME_INF;
7840 } else {
029632fb 7841 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7842
7843 quota = normalize_cfs_quota(tg, d);
7844 parent_quota = parent_b->hierarchal_quota;
7845
7846 /*
7847 * ensure max(child_quota) <= parent_quota, inherit when no
7848 * limit is set
7849 */
7850 if (quota == RUNTIME_INF)
7851 quota = parent_quota;
7852 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7853 return -EINVAL;
7854 }
7855 cfs_b->hierarchal_quota = quota;
7856
7857 return 0;
7858}
7859
7860static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7861{
8277434e 7862 int ret;
a790de99
PT
7863 struct cfs_schedulable_data data = {
7864 .tg = tg,
7865 .period = period,
7866 .quota = quota,
7867 };
7868
7869 if (quota != RUNTIME_INF) {
7870 do_div(data.period, NSEC_PER_USEC);
7871 do_div(data.quota, NSEC_PER_USEC);
7872 }
7873
8277434e
PT
7874 rcu_read_lock();
7875 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7876 rcu_read_unlock();
7877
7878 return ret;
a790de99 7879}
e8da1b18 7880
2da8ca82 7881static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7882{
2da8ca82 7883 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7884 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7885
44ffc75b
TH
7886 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7887 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7888 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7889
7890 return 0;
7891}
ab84d31e 7892#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7893#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7894
052f1dc7 7895#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7896static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7897 struct cftype *cft, s64 val)
6f505b16 7898{
182446d0 7899 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7900}
7901
182446d0
TH
7902static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7903 struct cftype *cft)
6f505b16 7904{
182446d0 7905 return sched_group_rt_runtime(css_tg(css));
6f505b16 7906}
d0b27fa7 7907
182446d0
TH
7908static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7909 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7910{
182446d0 7911 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7912}
7913
182446d0
TH
7914static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7915 struct cftype *cft)
d0b27fa7 7916{
182446d0 7917 return sched_group_rt_period(css_tg(css));
d0b27fa7 7918}
6d6bc0ad 7919#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7920
fe5c7cc2 7921static struct cftype cpu_files[] = {
052f1dc7 7922#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7923 {
7924 .name = "shares",
f4c753b7
PM
7925 .read_u64 = cpu_shares_read_u64,
7926 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7927 },
052f1dc7 7928#endif
ab84d31e
PT
7929#ifdef CONFIG_CFS_BANDWIDTH
7930 {
7931 .name = "cfs_quota_us",
7932 .read_s64 = cpu_cfs_quota_read_s64,
7933 .write_s64 = cpu_cfs_quota_write_s64,
7934 },
7935 {
7936 .name = "cfs_period_us",
7937 .read_u64 = cpu_cfs_period_read_u64,
7938 .write_u64 = cpu_cfs_period_write_u64,
7939 },
e8da1b18
NR
7940 {
7941 .name = "stat",
2da8ca82 7942 .seq_show = cpu_stats_show,
e8da1b18 7943 },
ab84d31e 7944#endif
052f1dc7 7945#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7946 {
9f0c1e56 7947 .name = "rt_runtime_us",
06ecb27c
PM
7948 .read_s64 = cpu_rt_runtime_read,
7949 .write_s64 = cpu_rt_runtime_write,
6f505b16 7950 },
d0b27fa7
PZ
7951 {
7952 .name = "rt_period_us",
f4c753b7
PM
7953 .read_u64 = cpu_rt_period_read_uint,
7954 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7955 },
052f1dc7 7956#endif
4baf6e33 7957 { } /* terminate */
68318b8e
SV
7958};
7959
68318b8e 7960struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7961 .name = "cpu",
92fb9748
TH
7962 .css_alloc = cpu_cgroup_css_alloc,
7963 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7964 .css_online = cpu_cgroup_css_online,
7965 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7966 .can_attach = cpu_cgroup_can_attach,
7967 .attach = cpu_cgroup_attach,
068c5cc5 7968 .exit = cpu_cgroup_exit,
38605cae 7969 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7970 .base_cftypes = cpu_files,
68318b8e
SV
7971 .early_init = 1,
7972};
7973
052f1dc7 7974#endif /* CONFIG_CGROUP_SCHED */
d842de87 7975
b637a328
PM
7976void dump_cpu_task(int cpu)
7977{
7978 pr_info("Task dump for CPU %d:\n", cpu);
7979 sched_show_task(cpu_curr(cpu));
7980}
This page took 2.446274 seconds and 5 git commands to generate.