sched: Avoid cputime scaling overflow
[deliverable/linux.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
abf917cd 6#include <linux/context_tracking.h>
73fbec60
FW
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 14 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 18 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31 sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36 sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
3e1df4f5 47void irqtime_account_irq(struct task_struct *curr)
73fbec60
FW
48{
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76}
3e1df4f5 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
73fbec60
FW
78
79static int irqtime_account_hi_update(void)
80{
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime (0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117{
73fbec60
FW
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
124 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
125
1966aaf7 126 cpuacct_account_field(p, index, tmp);
73fbec60
FW
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137{
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
145 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
6fac4829 151 acct_account_cputime(p);
73fbec60
FW
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162{
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
172 if (TASK_NICE(p) > 0) {
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191{
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
6fac4829 201 acct_account_cputime(p);
73fbec60
FW
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213{
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
261 u64 steal, st = 0;
262
263 steal = paravirt_steal_clock(smp_processor_id());
264 steal -= this_rq()->prev_steal_time;
265
266 st = steal_ticks(steal);
267 this_rq()->prev_steal_time += st * TICK_NSEC;
268
269 account_steal_time(st);
270 return st;
271 }
272#endif
273 return false;
274}
275
a634f933
FW
276/*
277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
278 * tasks (sum on group iteration) belonging to @tsk's group.
279 */
280void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
281{
282 struct signal_struct *sig = tsk->signal;
6fac4829 283 cputime_t utime, stime;
a634f933
FW
284 struct task_struct *t;
285
286 times->utime = sig->utime;
287 times->stime = sig->stime;
288 times->sum_exec_runtime = sig->sum_sched_runtime;
289
290 rcu_read_lock();
291 /* make sure we can trust tsk->thread_group list */
292 if (!likely(pid_alive(tsk)))
293 goto out;
294
295 t = tsk;
296 do {
6fac4829
FW
297 task_cputime(tsk, &utime, &stime);
298 times->utime += utime;
299 times->stime += stime;
a634f933
FW
300 times->sum_exec_runtime += task_sched_runtime(t);
301 } while_each_thread(tsk, t);
302out:
303 rcu_read_unlock();
304}
305
73fbec60
FW
306#ifdef CONFIG_IRQ_TIME_ACCOUNTING
307/*
308 * Account a tick to a process and cpustat
309 * @p: the process that the cpu time gets accounted to
310 * @user_tick: is the tick from userspace
311 * @rq: the pointer to rq
312 *
313 * Tick demultiplexing follows the order
314 * - pending hardirq update
315 * - pending softirq update
316 * - user_time
317 * - idle_time
318 * - system time
319 * - check for guest_time
320 * - else account as system_time
321 *
322 * Check for hardirq is done both for system and user time as there is
323 * no timer going off while we are on hardirq and hence we may never get an
324 * opportunity to update it solely in system time.
325 * p->stime and friends are only updated on system time and not on irq
326 * softirq as those do not count in task exec_runtime any more.
327 */
328static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
329 struct rq *rq)
330{
331 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
332 u64 *cpustat = kcpustat_this_cpu->cpustat;
333
334 if (steal_account_process_tick())
335 return;
336
337 if (irqtime_account_hi_update()) {
338 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
339 } else if (irqtime_account_si_update()) {
340 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
341 } else if (this_cpu_ksoftirqd() == p) {
342 /*
343 * ksoftirqd time do not get accounted in cpu_softirq_time.
344 * So, we have to handle it separately here.
345 * Also, p->stime needs to be updated for ksoftirqd.
346 */
347 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
348 CPUTIME_SOFTIRQ);
349 } else if (user_tick) {
350 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
351 } else if (p == rq->idle) {
352 account_idle_time(cputime_one_jiffy);
353 } else if (p->flags & PF_VCPU) { /* System time or guest time */
354 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
355 } else {
356 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
357 CPUTIME_SYSTEM);
358 }
359}
360
361static void irqtime_account_idle_ticks(int ticks)
362{
363 int i;
364 struct rq *rq = this_rq();
365
366 for (i = 0; i < ticks; i++)
367 irqtime_account_process_tick(current, 0, rq);
368}
369#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3f4724ea
FW
370static inline void irqtime_account_idle_ticks(int ticks) {}
371static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
73fbec60
FW
372 struct rq *rq) {}
373#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374
73fbec60
FW
375/*
376 * Use precise platform statistics if available:
377 */
378#ifdef CONFIG_VIRT_CPU_ACCOUNTING
a7e1a9e3 379
e3942ba0
FW
380#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381void vtime_task_switch(struct task_struct *prev)
382{
3f4724ea
FW
383 if (!vtime_accounting_enabled())
384 return;
385
e3942ba0
FW
386 if (is_idle_task(prev))
387 vtime_account_idle(prev);
388 else
389 vtime_account_system(prev);
390
abf917cd 391#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
e3942ba0 392 vtime_account_user(prev);
abf917cd 393#endif
e3942ba0
FW
394 arch_vtime_task_switch(prev);
395}
396#endif
11113334 397
a7e1a9e3
FW
398/*
399 * Archs that account the whole time spent in the idle task
400 * (outside irq) as idle time can rely on this and just implement
fd25b4c2 401 * vtime_account_system() and vtime_account_idle(). Archs that
a7e1a9e3
FW
402 * have other meaning of the idle time (s390 only includes the
403 * time spent by the CPU when it's in low power mode) must override
404 * vtime_account().
405 */
406#ifndef __ARCH_HAS_VTIME_ACCOUNT
6a61671b 407void vtime_account_irq_enter(struct task_struct *tsk)
a7e1a9e3 408{
3f4724ea
FW
409 if (!vtime_accounting_enabled())
410 return;
411
abf917cd
FW
412 if (!in_interrupt()) {
413 /*
414 * If we interrupted user, context_tracking_in_user()
415 * is 1 because the context tracking don't hook
416 * on irq entry/exit. This way we know if
417 * we need to flush user time on kernel entry.
418 */
419 if (context_tracking_in_user()) {
420 vtime_account_user(tsk);
421 return;
422 }
423
424 if (is_idle_task(tsk)) {
425 vtime_account_idle(tsk);
426 return;
427 }
428 }
429 vtime_account_system(tsk);
a7e1a9e3 430}
6a61671b 431EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
a7e1a9e3 432#endif /* __ARCH_HAS_VTIME_ACCOUNT */
9fbc42ea
FW
433#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
435
436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438{
439 *ut = p->utime;
440 *st = p->stime;
441}
a7e1a9e3 442
9fbc42ea
FW
443void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444{
445 struct task_cputime cputime;
446
447 thread_group_cputime(p, &cputime);
448
449 *ut = cputime.utime;
450 *st = cputime.stime;
451}
452#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453/*
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
457 */
458void account_process_tick(struct task_struct *p, int user_tick)
459{
460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461 struct rq *rq = this_rq();
462
463 if (vtime_accounting_enabled())
464 return;
465
466 if (sched_clock_irqtime) {
467 irqtime_account_process_tick(p, user_tick, rq);
468 return;
469 }
470
471 if (steal_account_process_tick())
472 return;
473
474 if (user_tick)
475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478 one_jiffy_scaled);
479 else
480 account_idle_time(cputime_one_jiffy);
481}
482
483/*
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
487 */
488void account_steal_ticks(unsigned long ticks)
489{
490 account_steal_time(jiffies_to_cputime(ticks));
491}
492
493/*
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
496 */
497void account_idle_ticks(unsigned long ticks)
498{
499
500 if (sched_clock_irqtime) {
501 irqtime_account_idle_ticks(ticks);
502 return;
503 }
504
505 account_idle_time(jiffies_to_cputime(ticks));
506}
73fbec60 507
d9a3c982 508/*
55eaa7c1
SG
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
d9a3c982
FW
511 */
512static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
73fbec60 513{
55eaa7c1 514 u64 scaled;
73fbec60 515
55eaa7c1
SG
516 for (;;) {
517 /* Make sure "rtime" is the bigger of stime/rtime */
518 if (stime > rtime) {
519 u64 tmp = rtime; rtime = stime; stime = tmp;
520 }
521
522 /* Make sure 'total' fits in 32 bits */
523 if (total >> 32)
524 goto drop_precision;
525
526 /* Does rtime (and thus stime) fit in 32 bits? */
527 if (!(rtime >> 32))
528 break;
529
530 /* Can we just balance rtime/stime rather than dropping bits? */
531 if (stime >> 31)
532 goto drop_precision;
533
534 /* We can grow stime and shrink rtime and try to make them both fit */
535 stime <<= 1;
536 rtime >>= 1;
537 continue;
538
539drop_precision:
540 /* We drop from rtime, it has more bits than stime */
541 rtime >>= 1;
542 total >>= 1;
d9a3c982 543 }
73fbec60 544
55eaa7c1
SG
545 /*
546 * Make sure gcc understands that this is a 32x32->64 multiply,
547 * followed by a 64/32->64 divide.
548 */
549 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
d9a3c982 550 return (__force cputime_t) scaled;
73fbec60
FW
551}
552
fa092057
FW
553/*
554 * Adjust tick based cputime random precision against scheduler
555 * runtime accounting.
556 */
d37f761d
FW
557static void cputime_adjust(struct task_cputime *curr,
558 struct cputime *prev,
559 cputime_t *ut, cputime_t *st)
73fbec60 560{
62188451 561 cputime_t rtime, stime, total;
73fbec60 562
9fbc42ea
FW
563 if (vtime_accounting_enabled()) {
564 *ut = curr->utime;
565 *st = curr->stime;
566 return;
567 }
568
62188451
FW
569 stime = curr->stime;
570 total = stime + curr->utime;
fa092057 571
73fbec60 572 /*
fa092057
FW
573 * Tick based cputime accounting depend on random scheduling
574 * timeslices of a task to be interrupted or not by the timer.
575 * Depending on these circumstances, the number of these interrupts
576 * may be over or under-optimistic, matching the real user and system
577 * cputime with a variable precision.
578 *
579 * Fix this by scaling these tick based values against the total
580 * runtime accounted by the CFS scheduler.
73fbec60 581 */
d37f761d 582 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
73fbec60 583
d9a3c982
FW
584 if (!rtime) {
585 stime = 0;
586 } else if (!total) {
62188451 587 stime = rtime;
d9a3c982
FW
588 } else {
589 stime = scale_stime((__force u64)stime,
590 (__force u64)rtime, (__force u64)total);
591 }
73fbec60
FW
592
593 /*
fa092057
FW
594 * If the tick based count grows faster than the scheduler one,
595 * the result of the scaling may go backward.
596 * Let's enforce monotonicity.
73fbec60 597 */
62188451
FW
598 prev->stime = max(prev->stime, stime);
599 prev->utime = max(prev->utime, rtime - prev->stime);
d37f761d
FW
600
601 *ut = prev->utime;
602 *st = prev->stime;
603}
73fbec60 604
d37f761d
FW
605void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
606{
607 struct task_cputime cputime = {
d37f761d
FW
608 .sum_exec_runtime = p->se.sum_exec_runtime,
609 };
610
6fac4829 611 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 612 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60
FW
613}
614
615/*
616 * Must be called with siglock held.
617 */
e80d0a1a 618void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
73fbec60 619{
73fbec60 620 struct task_cputime cputime;
73fbec60
FW
621
622 thread_group_cputime(p, &cputime);
d37f761d 623 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 624}
9fbc42ea 625#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
626
627#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
6a61671b
FW
628static unsigned long long vtime_delta(struct task_struct *tsk)
629{
630 unsigned long long clock;
631
7f6575f1 632 clock = local_clock();
6a61671b
FW
633 if (clock < tsk->vtime_snap)
634 return 0;
abf917cd 635
6a61671b
FW
636 return clock - tsk->vtime_snap;
637}
638
639static cputime_t get_vtime_delta(struct task_struct *tsk)
abf917cd 640{
6a61671b 641 unsigned long long delta = vtime_delta(tsk);
abf917cd 642
6a61671b
FW
643 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
644 tsk->vtime_snap += delta;
abf917cd
FW
645
646 /* CHECKME: always safe to convert nsecs to cputime? */
647 return nsecs_to_cputime(delta);
648}
649
6a61671b
FW
650static void __vtime_account_system(struct task_struct *tsk)
651{
652 cputime_t delta_cpu = get_vtime_delta(tsk);
653
654 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
655}
656
abf917cd
FW
657void vtime_account_system(struct task_struct *tsk)
658{
6a61671b
FW
659 if (!vtime_accounting_enabled())
660 return;
661
662 write_seqlock(&tsk->vtime_seqlock);
663 __vtime_account_system(tsk);
664 write_sequnlock(&tsk->vtime_seqlock);
665}
3f4724ea 666
6a61671b
FW
667void vtime_account_irq_exit(struct task_struct *tsk)
668{
3f4724ea
FW
669 if (!vtime_accounting_enabled())
670 return;
abf917cd 671
6a61671b
FW
672 write_seqlock(&tsk->vtime_seqlock);
673 if (context_tracking_in_user())
674 tsk->vtime_snap_whence = VTIME_USER;
675 __vtime_account_system(tsk);
676 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
677}
678
679void vtime_account_user(struct task_struct *tsk)
680{
3f4724ea
FW
681 cputime_t delta_cpu;
682
683 if (!vtime_accounting_enabled())
684 return;
685
6a61671b 686 delta_cpu = get_vtime_delta(tsk);
abf917cd 687
6a61671b
FW
688 write_seqlock(&tsk->vtime_seqlock);
689 tsk->vtime_snap_whence = VTIME_SYS;
abf917cd 690 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
6a61671b
FW
691 write_sequnlock(&tsk->vtime_seqlock);
692}
693
694void vtime_user_enter(struct task_struct *tsk)
695{
696 if (!vtime_accounting_enabled())
697 return;
698
699 write_seqlock(&tsk->vtime_seqlock);
700 tsk->vtime_snap_whence = VTIME_USER;
701 __vtime_account_system(tsk);
702 write_sequnlock(&tsk->vtime_seqlock);
703}
704
705void vtime_guest_enter(struct task_struct *tsk)
706{
707 write_seqlock(&tsk->vtime_seqlock);
708 __vtime_account_system(tsk);
709 current->flags |= PF_VCPU;
710 write_sequnlock(&tsk->vtime_seqlock);
711}
712
713void vtime_guest_exit(struct task_struct *tsk)
714{
715 write_seqlock(&tsk->vtime_seqlock);
716 __vtime_account_system(tsk);
717 current->flags &= ~PF_VCPU;
718 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
719}
720
721void vtime_account_idle(struct task_struct *tsk)
722{
6a61671b 723 cputime_t delta_cpu = get_vtime_delta(tsk);
abf917cd
FW
724
725 account_idle_time(delta_cpu);
726}
3f4724ea
FW
727
728bool vtime_accounting_enabled(void)
729{
730 return context_tracking_active();
731}
6a61671b
FW
732
733void arch_vtime_task_switch(struct task_struct *prev)
734{
735 write_seqlock(&prev->vtime_seqlock);
736 prev->vtime_snap_whence = VTIME_SLEEPING;
737 write_sequnlock(&prev->vtime_seqlock);
738
739 write_seqlock(&current->vtime_seqlock);
740 current->vtime_snap_whence = VTIME_SYS;
741 current->vtime_snap = sched_clock();
742 write_sequnlock(&current->vtime_seqlock);
743}
744
745void vtime_init_idle(struct task_struct *t)
746{
747 unsigned long flags;
748
749 write_seqlock_irqsave(&t->vtime_seqlock, flags);
750 t->vtime_snap_whence = VTIME_SYS;
751 t->vtime_snap = sched_clock();
752 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
753}
754
755cputime_t task_gtime(struct task_struct *t)
756{
6a61671b
FW
757 unsigned int seq;
758 cputime_t gtime;
759
760 do {
cdc4e86b 761 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
762
763 gtime = t->gtime;
764 if (t->flags & PF_VCPU)
765 gtime += vtime_delta(t);
766
cdc4e86b 767 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
768
769 return gtime;
770}
771
772/*
773 * Fetch cputime raw values from fields of task_struct and
774 * add up the pending nohz execution time since the last
775 * cputime snapshot.
776 */
777static void
778fetch_task_cputime(struct task_struct *t,
779 cputime_t *u_dst, cputime_t *s_dst,
780 cputime_t *u_src, cputime_t *s_src,
781 cputime_t *udelta, cputime_t *sdelta)
782{
6a61671b
FW
783 unsigned int seq;
784 unsigned long long delta;
785
786 do {
787 *udelta = 0;
788 *sdelta = 0;
789
cdc4e86b 790 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
791
792 if (u_dst)
793 *u_dst = *u_src;
794 if (s_dst)
795 *s_dst = *s_src;
796
797 /* Task is sleeping, nothing to add */
798 if (t->vtime_snap_whence == VTIME_SLEEPING ||
799 is_idle_task(t))
800 continue;
801
802 delta = vtime_delta(t);
803
804 /*
805 * Task runs either in user or kernel space, add pending nohz time to
806 * the right place.
807 */
808 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
809 *udelta = delta;
810 } else {
811 if (t->vtime_snap_whence == VTIME_SYS)
812 *sdelta = delta;
813 }
cdc4e86b 814 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
815}
816
817
818void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
819{
820 cputime_t udelta, sdelta;
821
822 fetch_task_cputime(t, utime, stime, &t->utime,
823 &t->stime, &udelta, &sdelta);
824 if (utime)
825 *utime += udelta;
826 if (stime)
827 *stime += sdelta;
828}
829
830void task_cputime_scaled(struct task_struct *t,
831 cputime_t *utimescaled, cputime_t *stimescaled)
832{
833 cputime_t udelta, sdelta;
834
835 fetch_task_cputime(t, utimescaled, stimescaled,
836 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
837 if (utimescaled)
838 *utimescaled += cputime_to_scaled(udelta);
839 if (stimescaled)
840 *stimescaled += cputime_to_scaled(sdelta);
841}
abf917cd 842#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.081411 seconds and 5 git commands to generate.