sched/cputime: Clarify vtime symbols and document them
[deliverable/linux.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
abf917cd 6#include <linux/context_tracking.h>
73fbec60
FW
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 14 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 18 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31 sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36 sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
3e1df4f5 47void irqtime_account_irq(struct task_struct *curr)
73fbec60
FW
48{
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76}
3e1df4f5 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
73fbec60
FW
78
79static int irqtime_account_hi_update(void)
80{
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime (0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117{
73fbec60
FW
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
a4f61cc0 124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
73fbec60 125
1966aaf7 126 cpuacct_account_field(p, index, tmp);
73fbec60
FW
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137{
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
d0ea0268 145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
73fbec60
FW
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
6fac4829 151 acct_account_cputime(p);
73fbec60
FW
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162{
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
d0ea0268 172 if (task_nice(p) > 0) {
73fbec60
FW
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191{
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
6fac4829 201 acct_account_cputime(p);
73fbec60
FW
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213{
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
dee08a72
FW
261 u64 steal;
262 cputime_t steal_ct;
73fbec60
FW
263
264 steal = paravirt_steal_clock(smp_processor_id());
265 steal -= this_rq()->prev_steal_time;
266
dee08a72
FW
267 /*
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
271 */
272 steal_ct = nsecs_to_cputime(steal);
273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
73fbec60 274
dee08a72
FW
275 account_steal_time(steal_ct);
276 return steal_ct;
73fbec60
FW
277 }
278#endif
279 return false;
280}
281
a634f933
FW
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288 struct signal_struct *sig = tsk->signal;
6fac4829 289 cputime_t utime, stime;
a634f933 290 struct task_struct *t;
e78c3496 291 unsigned int seq, nextseq;
9c368b5b 292 unsigned long flags;
a634f933
FW
293
294 rcu_read_lock();
e78c3496
RR
295 /* Attempt a lockless read on the first round. */
296 nextseq = 0;
297 do {
298 seq = nextseq;
9c368b5b 299 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
e78c3496
RR
300 times->utime = sig->utime;
301 times->stime = sig->stime;
302 times->sum_exec_runtime = sig->sum_sched_runtime;
303
304 for_each_thread(tsk, t) {
305 task_cputime(t, &utime, &stime);
306 times->utime += utime;
307 times->stime += stime;
308 times->sum_exec_runtime += task_sched_runtime(t);
309 }
310 /* If lockless access failed, take the lock. */
311 nextseq = 1;
312 } while (need_seqretry(&sig->stats_lock, seq));
9c368b5b 313 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
a634f933
FW
314 rcu_read_unlock();
315}
316
73fbec60
FW
317#ifdef CONFIG_IRQ_TIME_ACCOUNTING
318/*
319 * Account a tick to a process and cpustat
320 * @p: the process that the cpu time gets accounted to
321 * @user_tick: is the tick from userspace
322 * @rq: the pointer to rq
323 *
324 * Tick demultiplexing follows the order
325 * - pending hardirq update
326 * - pending softirq update
327 * - user_time
328 * - idle_time
329 * - system time
330 * - check for guest_time
331 * - else account as system_time
332 *
333 * Check for hardirq is done both for system and user time as there is
334 * no timer going off while we are on hardirq and hence we may never get an
335 * opportunity to update it solely in system time.
336 * p->stime and friends are only updated on system time and not on irq
337 * softirq as those do not count in task exec_runtime any more.
338 */
339static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 340 struct rq *rq, int ticks)
73fbec60 341{
2d513868
TG
342 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343 u64 cputime = (__force u64) cputime_one_jiffy;
73fbec60
FW
344 u64 *cpustat = kcpustat_this_cpu->cpustat;
345
346 if (steal_account_process_tick())
347 return;
348
2d513868
TG
349 cputime *= ticks;
350 scaled *= ticks;
351
73fbec60 352 if (irqtime_account_hi_update()) {
2d513868 353 cpustat[CPUTIME_IRQ] += cputime;
73fbec60 354 } else if (irqtime_account_si_update()) {
2d513868 355 cpustat[CPUTIME_SOFTIRQ] += cputime;
73fbec60
FW
356 } else if (this_cpu_ksoftirqd() == p) {
357 /*
358 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 * So, we have to handle it separately here.
360 * Also, p->stime needs to be updated for ksoftirqd.
361 */
2d513868 362 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
73fbec60 363 } else if (user_tick) {
2d513868 364 account_user_time(p, cputime, scaled);
73fbec60 365 } else if (p == rq->idle) {
2d513868 366 account_idle_time(cputime);
73fbec60 367 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2d513868 368 account_guest_time(p, cputime, scaled);
73fbec60 369 } else {
2d513868 370 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
73fbec60
FW
371 }
372}
373
374static void irqtime_account_idle_ticks(int ticks)
375{
73fbec60
FW
376 struct rq *rq = this_rq();
377
2d513868 378 irqtime_account_process_tick(current, 0, rq, ticks);
73fbec60
FW
379}
380#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3f4724ea
FW
381static inline void irqtime_account_idle_ticks(int ticks) {}
382static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 383 struct rq *rq, int nr_ticks) {}
73fbec60
FW
384#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385
73fbec60
FW
386/*
387 * Use precise platform statistics if available:
388 */
389#ifdef CONFIG_VIRT_CPU_ACCOUNTING
a7e1a9e3 390
e3942ba0 391#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
b0493406 392void vtime_common_task_switch(struct task_struct *prev)
e3942ba0
FW
393{
394 if (is_idle_task(prev))
395 vtime_account_idle(prev);
396 else
397 vtime_account_system(prev);
398
abf917cd 399#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
e3942ba0 400 vtime_account_user(prev);
abf917cd 401#endif
e3942ba0
FW
402 arch_vtime_task_switch(prev);
403}
404#endif
11113334 405
a7e1a9e3
FW
406/*
407 * Archs that account the whole time spent in the idle task
408 * (outside irq) as idle time can rely on this and just implement
fd25b4c2 409 * vtime_account_system() and vtime_account_idle(). Archs that
a7e1a9e3
FW
410 * have other meaning of the idle time (s390 only includes the
411 * time spent by the CPU when it's in low power mode) must override
412 * vtime_account().
413 */
414#ifndef __ARCH_HAS_VTIME_ACCOUNT
b0493406 415void vtime_common_account_irq_enter(struct task_struct *tsk)
a7e1a9e3 416{
abf917cd
FW
417 if (!in_interrupt()) {
418 /*
419 * If we interrupted user, context_tracking_in_user()
420 * is 1 because the context tracking don't hook
421 * on irq entry/exit. This way we know if
422 * we need to flush user time on kernel entry.
423 */
424 if (context_tracking_in_user()) {
425 vtime_account_user(tsk);
426 return;
427 }
428
429 if (is_idle_task(tsk)) {
430 vtime_account_idle(tsk);
431 return;
432 }
433 }
434 vtime_account_system(tsk);
a7e1a9e3 435}
b0493406 436EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
a7e1a9e3 437#endif /* __ARCH_HAS_VTIME_ACCOUNT */
9fbc42ea
FW
438#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439
440
441#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443{
444 *ut = p->utime;
445 *st = p->stime;
446}
9eec50b8 447EXPORT_SYMBOL_GPL(task_cputime_adjusted);
a7e1a9e3 448
9fbc42ea
FW
449void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
450{
451 struct task_cputime cputime;
73fbec60 452
9fbc42ea
FW
453 thread_group_cputime(p, &cputime);
454
455 *ut = cputime.utime;
456 *st = cputime.stime;
457}
458#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
459/*
460 * Account a single tick of cpu time.
461 * @p: the process that the cpu time gets accounted to
462 * @user_tick: indicates if the tick is a user or a system tick
463 */
464void account_process_tick(struct task_struct *p, int user_tick)
73fbec60 465{
9fbc42ea
FW
466 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
467 struct rq *rq = this_rq();
73fbec60 468
9fbc42ea
FW
469 if (vtime_accounting_enabled())
470 return;
471
472 if (sched_clock_irqtime) {
2d513868 473 irqtime_account_process_tick(p, user_tick, rq, 1);
9fbc42ea
FW
474 return;
475 }
476
477 if (steal_account_process_tick())
478 return;
73fbec60 479
9fbc42ea
FW
480 if (user_tick)
481 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
482 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
483 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
484 one_jiffy_scaled);
73fbec60 485 else
9fbc42ea
FW
486 account_idle_time(cputime_one_jiffy);
487}
73fbec60 488
9fbc42ea
FW
489/*
490 * Account multiple ticks of steal time.
491 * @p: the process from which the cpu time has been stolen
492 * @ticks: number of stolen ticks
493 */
494void account_steal_ticks(unsigned long ticks)
495{
496 account_steal_time(jiffies_to_cputime(ticks));
497}
498
499/*
500 * Account multiple ticks of idle time.
501 * @ticks: number of stolen ticks
502 */
503void account_idle_ticks(unsigned long ticks)
504{
505
506 if (sched_clock_irqtime) {
507 irqtime_account_idle_ticks(ticks);
508 return;
509 }
510
511 account_idle_time(jiffies_to_cputime(ticks));
512}
73fbec60 513
d9a3c982 514/*
55eaa7c1
SG
515 * Perform (stime * rtime) / total, but avoid multiplication overflow by
516 * loosing precision when the numbers are big.
d9a3c982
FW
517 */
518static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
73fbec60 519{
55eaa7c1 520 u64 scaled;
73fbec60 521
55eaa7c1
SG
522 for (;;) {
523 /* Make sure "rtime" is the bigger of stime/rtime */
84f9f3a1
SG
524 if (stime > rtime)
525 swap(rtime, stime);
55eaa7c1
SG
526
527 /* Make sure 'total' fits in 32 bits */
528 if (total >> 32)
529 goto drop_precision;
530
531 /* Does rtime (and thus stime) fit in 32 bits? */
532 if (!(rtime >> 32))
533 break;
534
535 /* Can we just balance rtime/stime rather than dropping bits? */
536 if (stime >> 31)
537 goto drop_precision;
538
539 /* We can grow stime and shrink rtime and try to make them both fit */
540 stime <<= 1;
541 rtime >>= 1;
542 continue;
543
544drop_precision:
545 /* We drop from rtime, it has more bits than stime */
546 rtime >>= 1;
547 total >>= 1;
d9a3c982 548 }
73fbec60 549
55eaa7c1
SG
550 /*
551 * Make sure gcc understands that this is a 32x32->64 multiply,
552 * followed by a 64/32->64 divide.
553 */
554 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
d9a3c982 555 return (__force cputime_t) scaled;
73fbec60
FW
556}
557
347abad9 558/*
9d7fb042
PZ
559 * Adjust tick based cputime random precision against scheduler runtime
560 * accounting.
347abad9 561 *
9d7fb042
PZ
562 * Tick based cputime accounting depend on random scheduling timeslices of a
563 * task to be interrupted or not by the timer. Depending on these
564 * circumstances, the number of these interrupts may be over or
565 * under-optimistic, matching the real user and system cputime with a variable
566 * precision.
567 *
568 * Fix this by scaling these tick based values against the total runtime
569 * accounted by the CFS scheduler.
570 *
571 * This code provides the following guarantees:
572 *
573 * stime + utime == rtime
574 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
575 *
576 * Assuming that rtime_i+1 >= rtime_i.
fa092057 577 */
d37f761d 578static void cputime_adjust(struct task_cputime *curr,
9d7fb042 579 struct prev_cputime *prev,
d37f761d 580 cputime_t *ut, cputime_t *st)
73fbec60 581{
5a8e01f8 582 cputime_t rtime, stime, utime;
9d7fb042 583 unsigned long flags;
fa092057 584
9d7fb042
PZ
585 /* Serialize concurrent callers such that we can honour our guarantees */
586 raw_spin_lock_irqsave(&prev->lock, flags);
d37f761d 587 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
73fbec60 588
772c808a 589 /*
9d7fb042
PZ
590 * This is possible under two circumstances:
591 * - rtime isn't monotonic after all (a bug);
592 * - we got reordered by the lock.
593 *
594 * In both cases this acts as a filter such that the rest of the code
595 * can assume it is monotonic regardless of anything else.
772c808a
SG
596 */
597 if (prev->stime + prev->utime >= rtime)
598 goto out;
599
5a8e01f8
SG
600 stime = curr->stime;
601 utime = curr->utime;
602
603 if (utime == 0) {
604 stime = rtime;
9d7fb042
PZ
605 goto update;
606 }
5a8e01f8 607
9d7fb042
PZ
608 if (stime == 0) {
609 utime = rtime;
610 goto update;
d9a3c982 611 }
73fbec60 612
9d7fb042
PZ
613 stime = scale_stime((__force u64)stime, (__force u64)rtime,
614 (__force u64)(stime + utime));
615
616 /*
617 * Make sure stime doesn't go backwards; this preserves monotonicity
618 * for utime because rtime is monotonic.
619 *
620 * utime_i+1 = rtime_i+1 - stime_i
621 * = rtime_i+1 - (rtime_i - utime_i)
622 * = (rtime_i+1 - rtime_i) + utime_i
623 * >= utime_i
624 */
625 if (stime < prev->stime)
626 stime = prev->stime;
627 utime = rtime - stime;
628
629 /*
630 * Make sure utime doesn't go backwards; this still preserves
631 * monotonicity for stime, analogous argument to above.
632 */
633 if (utime < prev->utime) {
634 utime = prev->utime;
635 stime = rtime - utime;
636 }
d37f761d 637
9d7fb042
PZ
638update:
639 prev->stime = stime;
640 prev->utime = utime;
772c808a 641out:
d37f761d
FW
642 *ut = prev->utime;
643 *st = prev->stime;
9d7fb042 644 raw_spin_unlock_irqrestore(&prev->lock, flags);
d37f761d 645}
73fbec60 646
d37f761d
FW
647void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
648{
649 struct task_cputime cputime = {
d37f761d
FW
650 .sum_exec_runtime = p->se.sum_exec_runtime,
651 };
652
6fac4829 653 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 654 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60 655}
9eec50b8 656EXPORT_SYMBOL_GPL(task_cputime_adjusted);
73fbec60 657
e80d0a1a 658void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
73fbec60 659{
73fbec60 660 struct task_cputime cputime;
73fbec60
FW
661
662 thread_group_cputime(p, &cputime);
d37f761d 663 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 664}
9fbc42ea 665#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
666
667#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
6a61671b
FW
668static unsigned long long vtime_delta(struct task_struct *tsk)
669{
670 unsigned long long clock;
671
7f6575f1 672 clock = local_clock();
6a61671b
FW
673 if (clock < tsk->vtime_snap)
674 return 0;
abf917cd 675
6a61671b
FW
676 return clock - tsk->vtime_snap;
677}
678
679static cputime_t get_vtime_delta(struct task_struct *tsk)
abf917cd 680{
6a61671b 681 unsigned long long delta = vtime_delta(tsk);
abf917cd 682
7098c1ea 683 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
6a61671b 684 tsk->vtime_snap += delta;
abf917cd
FW
685
686 /* CHECKME: always safe to convert nsecs to cputime? */
687 return nsecs_to_cputime(delta);
688}
689
6a61671b
FW
690static void __vtime_account_system(struct task_struct *tsk)
691{
692 cputime_t delta_cpu = get_vtime_delta(tsk);
693
694 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
695}
696
abf917cd
FW
697void vtime_account_system(struct task_struct *tsk)
698{
6a61671b
FW
699 write_seqlock(&tsk->vtime_seqlock);
700 __vtime_account_system(tsk);
701 write_sequnlock(&tsk->vtime_seqlock);
702}
3f4724ea 703
b0493406 704void vtime_gen_account_irq_exit(struct task_struct *tsk)
6a61671b 705{
6a61671b 706 write_seqlock(&tsk->vtime_seqlock);
af2350bd 707 __vtime_account_system(tsk);
6a61671b
FW
708 if (context_tracking_in_user())
709 tsk->vtime_snap_whence = VTIME_USER;
6a61671b 710 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
711}
712
713void vtime_account_user(struct task_struct *tsk)
714{
3f4724ea
FW
715 cputime_t delta_cpu;
716
6a61671b 717 write_seqlock(&tsk->vtime_seqlock);
54461562 718 delta_cpu = get_vtime_delta(tsk);
6a61671b 719 tsk->vtime_snap_whence = VTIME_SYS;
abf917cd 720 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
6a61671b
FW
721 write_sequnlock(&tsk->vtime_seqlock);
722}
723
724void vtime_user_enter(struct task_struct *tsk)
725{
6a61671b 726 write_seqlock(&tsk->vtime_seqlock);
6a61671b 727 __vtime_account_system(tsk);
af2350bd 728 tsk->vtime_snap_whence = VTIME_USER;
6a61671b
FW
729 write_sequnlock(&tsk->vtime_seqlock);
730}
731
732void vtime_guest_enter(struct task_struct *tsk)
733{
5b206d48
FW
734 /*
735 * The flags must be updated under the lock with
736 * the vtime_snap flush and update.
737 * That enforces a right ordering and update sequence
738 * synchronization against the reader (task_gtime())
739 * that can thus safely catch up with a tickless delta.
740 */
6a61671b
FW
741 write_seqlock(&tsk->vtime_seqlock);
742 __vtime_account_system(tsk);
743 current->flags |= PF_VCPU;
744 write_sequnlock(&tsk->vtime_seqlock);
745}
48d6a816 746EXPORT_SYMBOL_GPL(vtime_guest_enter);
6a61671b
FW
747
748void vtime_guest_exit(struct task_struct *tsk)
749{
750 write_seqlock(&tsk->vtime_seqlock);
751 __vtime_account_system(tsk);
752 current->flags &= ~PF_VCPU;
753 write_sequnlock(&tsk->vtime_seqlock);
abf917cd 754}
48d6a816 755EXPORT_SYMBOL_GPL(vtime_guest_exit);
abf917cd
FW
756
757void vtime_account_idle(struct task_struct *tsk)
758{
6a61671b 759 cputime_t delta_cpu = get_vtime_delta(tsk);
abf917cd
FW
760
761 account_idle_time(delta_cpu);
762}
3f4724ea 763
6a61671b
FW
764void arch_vtime_task_switch(struct task_struct *prev)
765{
766 write_seqlock(&prev->vtime_seqlock);
7098c1ea 767 prev->vtime_snap_whence = VTIME_INACTIVE;
6a61671b
FW
768 write_sequnlock(&prev->vtime_seqlock);
769
770 write_seqlock(&current->vtime_seqlock);
771 current->vtime_snap_whence = VTIME_SYS;
45eacc69 772 current->vtime_snap = sched_clock_cpu(smp_processor_id());
6a61671b
FW
773 write_sequnlock(&current->vtime_seqlock);
774}
775
45eacc69 776void vtime_init_idle(struct task_struct *t, int cpu)
6a61671b
FW
777{
778 unsigned long flags;
779
780 write_seqlock_irqsave(&t->vtime_seqlock, flags);
781 t->vtime_snap_whence = VTIME_SYS;
45eacc69 782 t->vtime_snap = sched_clock_cpu(cpu);
6a61671b
FW
783 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
784}
785
786cputime_t task_gtime(struct task_struct *t)
787{
6a61671b
FW
788 unsigned int seq;
789 cputime_t gtime;
790
2541117b
HS
791 if (!context_tracking_is_enabled())
792 return t->gtime;
793
6a61671b 794 do {
cdc4e86b 795 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
796
797 gtime = t->gtime;
798 if (t->flags & PF_VCPU)
799 gtime += vtime_delta(t);
800
cdc4e86b 801 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
802
803 return gtime;
804}
805
806/*
807 * Fetch cputime raw values from fields of task_struct and
808 * add up the pending nohz execution time since the last
809 * cputime snapshot.
810 */
811static void
812fetch_task_cputime(struct task_struct *t,
813 cputime_t *u_dst, cputime_t *s_dst,
814 cputime_t *u_src, cputime_t *s_src,
815 cputime_t *udelta, cputime_t *sdelta)
816{
6a61671b
FW
817 unsigned int seq;
818 unsigned long long delta;
819
820 do {
821 *udelta = 0;
822 *sdelta = 0;
823
cdc4e86b 824 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
825
826 if (u_dst)
827 *u_dst = *u_src;
828 if (s_dst)
829 *s_dst = *s_src;
830
831 /* Task is sleeping, nothing to add */
7098c1ea 832 if (t->vtime_snap_whence == VTIME_INACTIVE ||
6a61671b
FW
833 is_idle_task(t))
834 continue;
835
836 delta = vtime_delta(t);
837
838 /*
839 * Task runs either in user or kernel space, add pending nohz time to
840 * the right place.
841 */
842 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
843 *udelta = delta;
844 } else {
845 if (t->vtime_snap_whence == VTIME_SYS)
846 *sdelta = delta;
847 }
cdc4e86b 848 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
849}
850
851
852void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
853{
854 cputime_t udelta, sdelta;
855
7877a0ba
HS
856 if (!context_tracking_is_enabled()) {
857 if (utime)
858 *utime = t->utime;
859 if (stime)
860 *stime = t->stime;
861 return;
862 }
863
6a61671b
FW
864 fetch_task_cputime(t, utime, stime, &t->utime,
865 &t->stime, &udelta, &sdelta);
866 if (utime)
867 *utime += udelta;
868 if (stime)
869 *stime += sdelta;
870}
871
872void task_cputime_scaled(struct task_struct *t,
873 cputime_t *utimescaled, cputime_t *stimescaled)
874{
875 cputime_t udelta, sdelta;
876
7877a0ba
HS
877 if (!context_tracking_is_enabled()) {
878 if (utimescaled)
879 *utimescaled = t->utimescaled;
880 if (stimescaled)
881 *stimescaled = t->stimescaled;
882 return;
883 }
884
6a61671b
FW
885 fetch_task_cputime(t, utimescaled, stimescaled,
886 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
887 if (utimescaled)
888 *utimescaled += cputime_to_scaled(udelta);
889 if (stimescaled)
890 *stimescaled += cputime_to_scaled(sdelta);
891}
abf917cd 892#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.168171 seconds and 5 git commands to generate.