seqlock: Add irqsave variant of read_seqbegin_or_lock()
[deliverable/linux.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
abf917cd 6#include <linux/context_tracking.h>
73fbec60
FW
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 14 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 18 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31 sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36 sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
3e1df4f5 47void irqtime_account_irq(struct task_struct *curr)
73fbec60
FW
48{
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76}
3e1df4f5 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
73fbec60
FW
78
79static int irqtime_account_hi_update(void)
80{
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime (0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117{
73fbec60
FW
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
a4f61cc0 124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
73fbec60 125
1966aaf7 126 cpuacct_account_field(p, index, tmp);
73fbec60
FW
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137{
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
d0ea0268 145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
73fbec60
FW
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
6fac4829 151 acct_account_cputime(p);
73fbec60
FW
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162{
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
d0ea0268 172 if (task_nice(p) > 0) {
73fbec60
FW
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191{
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
6fac4829 201 acct_account_cputime(p);
73fbec60
FW
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213{
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
dee08a72
FW
261 u64 steal;
262 cputime_t steal_ct;
73fbec60
FW
263
264 steal = paravirt_steal_clock(smp_processor_id());
265 steal -= this_rq()->prev_steal_time;
266
dee08a72
FW
267 /*
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
271 */
272 steal_ct = nsecs_to_cputime(steal);
273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
73fbec60 274
dee08a72
FW
275 account_steal_time(steal_ct);
276 return steal_ct;
73fbec60
FW
277 }
278#endif
279 return false;
280}
281
a634f933
FW
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288 struct signal_struct *sig = tsk->signal;
6fac4829 289 cputime_t utime, stime;
a634f933 290 struct task_struct *t;
e78c3496 291 unsigned int seq, nextseq;
a634f933
FW
292
293 rcu_read_lock();
e78c3496
RR
294 /* Attempt a lockless read on the first round. */
295 nextseq = 0;
296 do {
297 seq = nextseq;
298 read_seqbegin_or_lock(&sig->stats_lock, &seq);
299 times->utime = sig->utime;
300 times->stime = sig->stime;
301 times->sum_exec_runtime = sig->sum_sched_runtime;
302
303 for_each_thread(tsk, t) {
304 task_cputime(t, &utime, &stime);
305 times->utime += utime;
306 times->stime += stime;
307 times->sum_exec_runtime += task_sched_runtime(t);
308 }
309 /* If lockless access failed, take the lock. */
310 nextseq = 1;
311 } while (need_seqretry(&sig->stats_lock, seq));
312 done_seqretry(&sig->stats_lock, seq);
a634f933
FW
313 rcu_read_unlock();
314}
315
73fbec60
FW
316#ifdef CONFIG_IRQ_TIME_ACCOUNTING
317/*
318 * Account a tick to a process and cpustat
319 * @p: the process that the cpu time gets accounted to
320 * @user_tick: is the tick from userspace
321 * @rq: the pointer to rq
322 *
323 * Tick demultiplexing follows the order
324 * - pending hardirq update
325 * - pending softirq update
326 * - user_time
327 * - idle_time
328 * - system time
329 * - check for guest_time
330 * - else account as system_time
331 *
332 * Check for hardirq is done both for system and user time as there is
333 * no timer going off while we are on hardirq and hence we may never get an
334 * opportunity to update it solely in system time.
335 * p->stime and friends are only updated on system time and not on irq
336 * softirq as those do not count in task exec_runtime any more.
337 */
338static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 339 struct rq *rq, int ticks)
73fbec60 340{
2d513868
TG
341 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
342 u64 cputime = (__force u64) cputime_one_jiffy;
73fbec60
FW
343 u64 *cpustat = kcpustat_this_cpu->cpustat;
344
345 if (steal_account_process_tick())
346 return;
347
2d513868
TG
348 cputime *= ticks;
349 scaled *= ticks;
350
73fbec60 351 if (irqtime_account_hi_update()) {
2d513868 352 cpustat[CPUTIME_IRQ] += cputime;
73fbec60 353 } else if (irqtime_account_si_update()) {
2d513868 354 cpustat[CPUTIME_SOFTIRQ] += cputime;
73fbec60
FW
355 } else if (this_cpu_ksoftirqd() == p) {
356 /*
357 * ksoftirqd time do not get accounted in cpu_softirq_time.
358 * So, we have to handle it separately here.
359 * Also, p->stime needs to be updated for ksoftirqd.
360 */
2d513868 361 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
73fbec60 362 } else if (user_tick) {
2d513868 363 account_user_time(p, cputime, scaled);
73fbec60 364 } else if (p == rq->idle) {
2d513868 365 account_idle_time(cputime);
73fbec60 366 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2d513868 367 account_guest_time(p, cputime, scaled);
73fbec60 368 } else {
2d513868 369 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
73fbec60
FW
370 }
371}
372
373static void irqtime_account_idle_ticks(int ticks)
374{
73fbec60
FW
375 struct rq *rq = this_rq();
376
2d513868 377 irqtime_account_process_tick(current, 0, rq, ticks);
73fbec60
FW
378}
379#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3f4724ea
FW
380static inline void irqtime_account_idle_ticks(int ticks) {}
381static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 382 struct rq *rq, int nr_ticks) {}
73fbec60
FW
383#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
384
73fbec60
FW
385/*
386 * Use precise platform statistics if available:
387 */
388#ifdef CONFIG_VIRT_CPU_ACCOUNTING
a7e1a9e3 389
e3942ba0 390#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
b0493406 391void vtime_common_task_switch(struct task_struct *prev)
e3942ba0
FW
392{
393 if (is_idle_task(prev))
394 vtime_account_idle(prev);
395 else
396 vtime_account_system(prev);
397
abf917cd 398#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
e3942ba0 399 vtime_account_user(prev);
abf917cd 400#endif
e3942ba0
FW
401 arch_vtime_task_switch(prev);
402}
403#endif
11113334 404
a7e1a9e3
FW
405/*
406 * Archs that account the whole time spent in the idle task
407 * (outside irq) as idle time can rely on this and just implement
fd25b4c2 408 * vtime_account_system() and vtime_account_idle(). Archs that
a7e1a9e3
FW
409 * have other meaning of the idle time (s390 only includes the
410 * time spent by the CPU when it's in low power mode) must override
411 * vtime_account().
412 */
413#ifndef __ARCH_HAS_VTIME_ACCOUNT
b0493406 414void vtime_common_account_irq_enter(struct task_struct *tsk)
a7e1a9e3 415{
abf917cd
FW
416 if (!in_interrupt()) {
417 /*
418 * If we interrupted user, context_tracking_in_user()
419 * is 1 because the context tracking don't hook
420 * on irq entry/exit. This way we know if
421 * we need to flush user time on kernel entry.
422 */
423 if (context_tracking_in_user()) {
424 vtime_account_user(tsk);
425 return;
426 }
427
428 if (is_idle_task(tsk)) {
429 vtime_account_idle(tsk);
430 return;
431 }
432 }
433 vtime_account_system(tsk);
a7e1a9e3 434}
b0493406 435EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
a7e1a9e3 436#endif /* __ARCH_HAS_VTIME_ACCOUNT */
9fbc42ea
FW
437#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
438
439
440#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
441void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
442{
443 *ut = p->utime;
444 *st = p->stime;
445}
a7e1a9e3 446
9fbc42ea
FW
447void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
448{
449 struct task_cputime cputime;
73fbec60 450
9fbc42ea
FW
451 thread_group_cputime(p, &cputime);
452
453 *ut = cputime.utime;
454 *st = cputime.stime;
455}
456#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
457/*
458 * Account a single tick of cpu time.
459 * @p: the process that the cpu time gets accounted to
460 * @user_tick: indicates if the tick is a user or a system tick
461 */
462void account_process_tick(struct task_struct *p, int user_tick)
73fbec60 463{
9fbc42ea
FW
464 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
465 struct rq *rq = this_rq();
73fbec60 466
9fbc42ea
FW
467 if (vtime_accounting_enabled())
468 return;
469
470 if (sched_clock_irqtime) {
2d513868 471 irqtime_account_process_tick(p, user_tick, rq, 1);
9fbc42ea
FW
472 return;
473 }
474
475 if (steal_account_process_tick())
476 return;
73fbec60 477
9fbc42ea
FW
478 if (user_tick)
479 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
480 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
481 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
482 one_jiffy_scaled);
73fbec60 483 else
9fbc42ea
FW
484 account_idle_time(cputime_one_jiffy);
485}
73fbec60 486
9fbc42ea
FW
487/*
488 * Account multiple ticks of steal time.
489 * @p: the process from which the cpu time has been stolen
490 * @ticks: number of stolen ticks
491 */
492void account_steal_ticks(unsigned long ticks)
493{
494 account_steal_time(jiffies_to_cputime(ticks));
495}
496
497/*
498 * Account multiple ticks of idle time.
499 * @ticks: number of stolen ticks
500 */
501void account_idle_ticks(unsigned long ticks)
502{
503
504 if (sched_clock_irqtime) {
505 irqtime_account_idle_ticks(ticks);
506 return;
507 }
508
509 account_idle_time(jiffies_to_cputime(ticks));
510}
73fbec60 511
d9a3c982 512/*
55eaa7c1
SG
513 * Perform (stime * rtime) / total, but avoid multiplication overflow by
514 * loosing precision when the numbers are big.
d9a3c982
FW
515 */
516static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
73fbec60 517{
55eaa7c1 518 u64 scaled;
73fbec60 519
55eaa7c1
SG
520 for (;;) {
521 /* Make sure "rtime" is the bigger of stime/rtime */
84f9f3a1
SG
522 if (stime > rtime)
523 swap(rtime, stime);
55eaa7c1
SG
524
525 /* Make sure 'total' fits in 32 bits */
526 if (total >> 32)
527 goto drop_precision;
528
529 /* Does rtime (and thus stime) fit in 32 bits? */
530 if (!(rtime >> 32))
531 break;
532
533 /* Can we just balance rtime/stime rather than dropping bits? */
534 if (stime >> 31)
535 goto drop_precision;
536
537 /* We can grow stime and shrink rtime and try to make them both fit */
538 stime <<= 1;
539 rtime >>= 1;
540 continue;
541
542drop_precision:
543 /* We drop from rtime, it has more bits than stime */
544 rtime >>= 1;
545 total >>= 1;
d9a3c982 546 }
73fbec60 547
55eaa7c1
SG
548 /*
549 * Make sure gcc understands that this is a 32x32->64 multiply,
550 * followed by a 64/32->64 divide.
551 */
552 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
d9a3c982 553 return (__force cputime_t) scaled;
73fbec60
FW
554}
555
fa092057
FW
556/*
557 * Adjust tick based cputime random precision against scheduler
558 * runtime accounting.
559 */
d37f761d
FW
560static void cputime_adjust(struct task_cputime *curr,
561 struct cputime *prev,
562 cputime_t *ut, cputime_t *st)
73fbec60 563{
5a8e01f8 564 cputime_t rtime, stime, utime;
fa092057 565
73fbec60 566 /*
fa092057
FW
567 * Tick based cputime accounting depend on random scheduling
568 * timeslices of a task to be interrupted or not by the timer.
569 * Depending on these circumstances, the number of these interrupts
570 * may be over or under-optimistic, matching the real user and system
571 * cputime with a variable precision.
572 *
573 * Fix this by scaling these tick based values against the total
574 * runtime accounted by the CFS scheduler.
73fbec60 575 */
d37f761d 576 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
73fbec60 577
772c808a
SG
578 /*
579 * Update userspace visible utime/stime values only if actual execution
580 * time is bigger than already exported. Note that can happen, that we
581 * provided bigger values due to scaling inaccuracy on big numbers.
582 */
583 if (prev->stime + prev->utime >= rtime)
584 goto out;
585
5a8e01f8
SG
586 stime = curr->stime;
587 utime = curr->utime;
588
589 if (utime == 0) {
590 stime = rtime;
591 } else if (stime == 0) {
592 utime = rtime;
593 } else {
594 cputime_t total = stime + utime;
595
d9a3c982
FW
596 stime = scale_stime((__force u64)stime,
597 (__force u64)rtime, (__force u64)total);
68aa8efc 598 utime = rtime - stime;
d9a3c982 599 }
73fbec60
FW
600
601 /*
fa092057
FW
602 * If the tick based count grows faster than the scheduler one,
603 * the result of the scaling may go backward.
604 * Let's enforce monotonicity.
eb1b4af0 605 * Atomic exchange protects against concurrent cputime_adjust().
73fbec60 606 */
eb1b4af0
RR
607 while (stime > (rtime = ACCESS_ONCE(prev->stime)))
608 cmpxchg(&prev->stime, rtime, stime);
609 while (utime > (rtime = ACCESS_ONCE(prev->utime)))
610 cmpxchg(&prev->utime, rtime, utime);
d37f761d 611
772c808a 612out:
d37f761d
FW
613 *ut = prev->utime;
614 *st = prev->stime;
615}
73fbec60 616
d37f761d
FW
617void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
618{
619 struct task_cputime cputime = {
d37f761d
FW
620 .sum_exec_runtime = p->se.sum_exec_runtime,
621 };
622
6fac4829 623 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 624 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60
FW
625}
626
e80d0a1a 627void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
73fbec60 628{
73fbec60 629 struct task_cputime cputime;
73fbec60
FW
630
631 thread_group_cputime(p, &cputime);
d37f761d 632 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 633}
9fbc42ea 634#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
635
636#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
6a61671b
FW
637static unsigned long long vtime_delta(struct task_struct *tsk)
638{
639 unsigned long long clock;
640
7f6575f1 641 clock = local_clock();
6a61671b
FW
642 if (clock < tsk->vtime_snap)
643 return 0;
abf917cd 644
6a61671b
FW
645 return clock - tsk->vtime_snap;
646}
647
648static cputime_t get_vtime_delta(struct task_struct *tsk)
abf917cd 649{
6a61671b 650 unsigned long long delta = vtime_delta(tsk);
abf917cd 651
6a61671b
FW
652 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
653 tsk->vtime_snap += delta;
abf917cd
FW
654
655 /* CHECKME: always safe to convert nsecs to cputime? */
656 return nsecs_to_cputime(delta);
657}
658
6a61671b
FW
659static void __vtime_account_system(struct task_struct *tsk)
660{
661 cputime_t delta_cpu = get_vtime_delta(tsk);
662
663 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
664}
665
abf917cd
FW
666void vtime_account_system(struct task_struct *tsk)
667{
6a61671b
FW
668 write_seqlock(&tsk->vtime_seqlock);
669 __vtime_account_system(tsk);
670 write_sequnlock(&tsk->vtime_seqlock);
671}
3f4724ea 672
b0493406 673void vtime_gen_account_irq_exit(struct task_struct *tsk)
6a61671b 674{
6a61671b 675 write_seqlock(&tsk->vtime_seqlock);
af2350bd 676 __vtime_account_system(tsk);
6a61671b
FW
677 if (context_tracking_in_user())
678 tsk->vtime_snap_whence = VTIME_USER;
6a61671b 679 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
680}
681
682void vtime_account_user(struct task_struct *tsk)
683{
3f4724ea
FW
684 cputime_t delta_cpu;
685
6a61671b 686 write_seqlock(&tsk->vtime_seqlock);
54461562 687 delta_cpu = get_vtime_delta(tsk);
6a61671b 688 tsk->vtime_snap_whence = VTIME_SYS;
abf917cd 689 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
6a61671b
FW
690 write_sequnlock(&tsk->vtime_seqlock);
691}
692
693void vtime_user_enter(struct task_struct *tsk)
694{
6a61671b 695 write_seqlock(&tsk->vtime_seqlock);
6a61671b 696 __vtime_account_system(tsk);
af2350bd 697 tsk->vtime_snap_whence = VTIME_USER;
6a61671b
FW
698 write_sequnlock(&tsk->vtime_seqlock);
699}
700
701void vtime_guest_enter(struct task_struct *tsk)
702{
5b206d48
FW
703 /*
704 * The flags must be updated under the lock with
705 * the vtime_snap flush and update.
706 * That enforces a right ordering and update sequence
707 * synchronization against the reader (task_gtime())
708 * that can thus safely catch up with a tickless delta.
709 */
6a61671b
FW
710 write_seqlock(&tsk->vtime_seqlock);
711 __vtime_account_system(tsk);
712 current->flags |= PF_VCPU;
713 write_sequnlock(&tsk->vtime_seqlock);
714}
48d6a816 715EXPORT_SYMBOL_GPL(vtime_guest_enter);
6a61671b
FW
716
717void vtime_guest_exit(struct task_struct *tsk)
718{
719 write_seqlock(&tsk->vtime_seqlock);
720 __vtime_account_system(tsk);
721 current->flags &= ~PF_VCPU;
722 write_sequnlock(&tsk->vtime_seqlock);
abf917cd 723}
48d6a816 724EXPORT_SYMBOL_GPL(vtime_guest_exit);
abf917cd
FW
725
726void vtime_account_idle(struct task_struct *tsk)
727{
6a61671b 728 cputime_t delta_cpu = get_vtime_delta(tsk);
abf917cd
FW
729
730 account_idle_time(delta_cpu);
731}
3f4724ea 732
6a61671b
FW
733void arch_vtime_task_switch(struct task_struct *prev)
734{
735 write_seqlock(&prev->vtime_seqlock);
736 prev->vtime_snap_whence = VTIME_SLEEPING;
737 write_sequnlock(&prev->vtime_seqlock);
738
739 write_seqlock(&current->vtime_seqlock);
740 current->vtime_snap_whence = VTIME_SYS;
45eacc69 741 current->vtime_snap = sched_clock_cpu(smp_processor_id());
6a61671b
FW
742 write_sequnlock(&current->vtime_seqlock);
743}
744
45eacc69 745void vtime_init_idle(struct task_struct *t, int cpu)
6a61671b
FW
746{
747 unsigned long flags;
748
749 write_seqlock_irqsave(&t->vtime_seqlock, flags);
750 t->vtime_snap_whence = VTIME_SYS;
45eacc69 751 t->vtime_snap = sched_clock_cpu(cpu);
6a61671b
FW
752 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
753}
754
755cputime_t task_gtime(struct task_struct *t)
756{
6a61671b
FW
757 unsigned int seq;
758 cputime_t gtime;
759
760 do {
cdc4e86b 761 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
762
763 gtime = t->gtime;
764 if (t->flags & PF_VCPU)
765 gtime += vtime_delta(t);
766
cdc4e86b 767 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
768
769 return gtime;
770}
771
772/*
773 * Fetch cputime raw values from fields of task_struct and
774 * add up the pending nohz execution time since the last
775 * cputime snapshot.
776 */
777static void
778fetch_task_cputime(struct task_struct *t,
779 cputime_t *u_dst, cputime_t *s_dst,
780 cputime_t *u_src, cputime_t *s_src,
781 cputime_t *udelta, cputime_t *sdelta)
782{
6a61671b
FW
783 unsigned int seq;
784 unsigned long long delta;
785
786 do {
787 *udelta = 0;
788 *sdelta = 0;
789
cdc4e86b 790 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
791
792 if (u_dst)
793 *u_dst = *u_src;
794 if (s_dst)
795 *s_dst = *s_src;
796
797 /* Task is sleeping, nothing to add */
798 if (t->vtime_snap_whence == VTIME_SLEEPING ||
799 is_idle_task(t))
800 continue;
801
802 delta = vtime_delta(t);
803
804 /*
805 * Task runs either in user or kernel space, add pending nohz time to
806 * the right place.
807 */
808 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
809 *udelta = delta;
810 } else {
811 if (t->vtime_snap_whence == VTIME_SYS)
812 *sdelta = delta;
813 }
cdc4e86b 814 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
815}
816
817
818void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
819{
820 cputime_t udelta, sdelta;
821
822 fetch_task_cputime(t, utime, stime, &t->utime,
823 &t->stime, &udelta, &sdelta);
824 if (utime)
825 *utime += udelta;
826 if (stime)
827 *stime += sdelta;
828}
829
830void task_cputime_scaled(struct task_struct *t,
831 cputime_t *utimescaled, cputime_t *stimescaled)
832{
833 cputime_t udelta, sdelta;
834
835 fetch_task_cputime(t, utimescaled, stimescaled,
836 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
837 if (utimescaled)
838 *utimescaled += cputime_to_scaled(udelta);
839 if (stimescaled)
840 *stimescaled += cputime_to_scaled(sdelta);
841}
abf917cd 842#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.126777 seconds and 5 git commands to generate.