Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
7dc603c9
PZ
693static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 695static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
696static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
697
2b8c41da
YD
698/*
699 * With new tasks being created, their initial util_avgs are extrapolated
700 * based on the cfs_rq's current util_avg:
701 *
702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
703 *
704 * However, in many cases, the above util_avg does not give a desired
705 * value. Moreover, the sum of the util_avgs may be divergent, such
706 * as when the series is a harmonic series.
707 *
708 * To solve this problem, we also cap the util_avg of successive tasks to
709 * only 1/2 of the left utilization budget:
710 *
711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
712 *
713 * where n denotes the nth task.
714 *
715 * For example, a simplest series from the beginning would be like:
716 *
717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
719 *
720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721 * if util_avg > util_avg_cap.
722 */
723void post_init_entity_util_avg(struct sched_entity *se)
724{
725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 struct sched_avg *sa = &se->avg;
172895e6 727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 728 u64 now = cfs_rq_clock_task(cfs_rq);
3d30544f 729 int tg_update;
2b8c41da
YD
730
731 if (cap > 0) {
732 if (cfs_rq->avg.util_avg != 0) {
733 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
734 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
735
736 if (sa->util_avg > cap)
737 sa->util_avg = cap;
738 } else {
739 sa->util_avg = cap;
740 }
741 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
742 }
7dc603c9
PZ
743
744 if (entity_is_task(se)) {
745 struct task_struct *p = task_of(se);
746 if (p->sched_class != &fair_sched_class) {
747 /*
748 * For !fair tasks do:
749 *
750 update_cfs_rq_load_avg(now, cfs_rq, false);
751 attach_entity_load_avg(cfs_rq, se);
752 switched_from_fair(rq, p);
753 *
754 * such that the next switched_to_fair() has the
755 * expected state.
756 */
757 se->avg.last_update_time = now;
758 return;
759 }
760 }
761
3d30544f 762 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 763 attach_entity_load_avg(cfs_rq, se);
3d30544f
PZ
764 if (tg_update)
765 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
766}
767
7dc603c9 768#else /* !CONFIG_SMP */
540247fb 769void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
770{
771}
2b8c41da
YD
772void post_init_entity_util_avg(struct sched_entity *se)
773{
774}
3d30544f
PZ
775static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
776{
777}
7dc603c9 778#endif /* CONFIG_SMP */
a75cdaa9 779
bf0f6f24 780/*
9dbdb155 781 * Update the current task's runtime statistics.
bf0f6f24 782 */
b7cc0896 783static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 784{
429d43bc 785 struct sched_entity *curr = cfs_rq->curr;
78becc27 786 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 787 u64 delta_exec;
bf0f6f24
IM
788
789 if (unlikely(!curr))
790 return;
791
9dbdb155
PZ
792 delta_exec = now - curr->exec_start;
793 if (unlikely((s64)delta_exec <= 0))
34f28ecd 794 return;
bf0f6f24 795
8ebc91d9 796 curr->exec_start = now;
d842de87 797
9dbdb155
PZ
798 schedstat_set(curr->statistics.exec_max,
799 max(delta_exec, curr->statistics.exec_max));
800
801 curr->sum_exec_runtime += delta_exec;
802 schedstat_add(cfs_rq, exec_clock, delta_exec);
803
804 curr->vruntime += calc_delta_fair(delta_exec, curr);
805 update_min_vruntime(cfs_rq);
806
d842de87
SV
807 if (entity_is_task(curr)) {
808 struct task_struct *curtask = task_of(curr);
809
f977bb49 810 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 811 cpuacct_charge(curtask, delta_exec);
f06febc9 812 account_group_exec_runtime(curtask, delta_exec);
d842de87 813 }
ec12cb7f
PT
814
815 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
816}
817
6e998916
SG
818static void update_curr_fair(struct rq *rq)
819{
820 update_curr(cfs_rq_of(&rq->curr->se));
821}
822
3ea94de1 823#ifdef CONFIG_SCHEDSTATS
bf0f6f24 824static inline void
5870db5b 825update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 826{
3ea94de1
JP
827 u64 wait_start = rq_clock(rq_of(cfs_rq));
828
829 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
830 likely(wait_start > se->statistics.wait_start))
831 wait_start -= se->statistics.wait_start;
832
833 se->statistics.wait_start = wait_start;
bf0f6f24
IM
834}
835
3ea94de1
JP
836static void
837update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
838{
839 struct task_struct *p;
cb251765
MG
840 u64 delta;
841
842 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
843
844 if (entity_is_task(se)) {
845 p = task_of(se);
846 if (task_on_rq_migrating(p)) {
847 /*
848 * Preserve migrating task's wait time so wait_start
849 * time stamp can be adjusted to accumulate wait time
850 * prior to migration.
851 */
852 se->statistics.wait_start = delta;
853 return;
854 }
855 trace_sched_stat_wait(p, delta);
856 }
857
858 se->statistics.wait_max = max(se->statistics.wait_max, delta);
859 se->statistics.wait_count++;
860 se->statistics.wait_sum += delta;
861 se->statistics.wait_start = 0;
862}
3ea94de1 863
bf0f6f24
IM
864/*
865 * Task is being enqueued - update stats:
866 */
cb251765
MG
867static inline void
868update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 869{
bf0f6f24
IM
870 /*
871 * Are we enqueueing a waiting task? (for current tasks
872 * a dequeue/enqueue event is a NOP)
873 */
429d43bc 874 if (se != cfs_rq->curr)
5870db5b 875 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
876}
877
bf0f6f24 878static inline void
cb251765 879update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 880{
bf0f6f24
IM
881 /*
882 * Mark the end of the wait period if dequeueing a
883 * waiting task:
884 */
429d43bc 885 if (se != cfs_rq->curr)
9ef0a961 886 update_stats_wait_end(cfs_rq, se);
cb251765
MG
887
888 if (flags & DEQUEUE_SLEEP) {
889 if (entity_is_task(se)) {
890 struct task_struct *tsk = task_of(se);
891
892 if (tsk->state & TASK_INTERRUPTIBLE)
893 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
894 if (tsk->state & TASK_UNINTERRUPTIBLE)
895 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
896 }
897 }
898
899}
900#else
901static inline void
902update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
903{
904}
905
906static inline void
907update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
908{
909}
910
911static inline void
912update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
913{
914}
915
916static inline void
917update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
918{
bf0f6f24 919}
cb251765 920#endif
bf0f6f24
IM
921
922/*
923 * We are picking a new current task - update its stats:
924 */
925static inline void
79303e9e 926update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
927{
928 /*
929 * We are starting a new run period:
930 */
78becc27 931 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
932}
933
bf0f6f24
IM
934/**************************************************
935 * Scheduling class queueing methods:
936 */
937
cbee9f88
PZ
938#ifdef CONFIG_NUMA_BALANCING
939/*
598f0ec0
MG
940 * Approximate time to scan a full NUMA task in ms. The task scan period is
941 * calculated based on the tasks virtual memory size and
942 * numa_balancing_scan_size.
cbee9f88 943 */
598f0ec0
MG
944unsigned int sysctl_numa_balancing_scan_period_min = 1000;
945unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
946
947/* Portion of address space to scan in MB */
948unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 949
4b96a29b
PZ
950/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
951unsigned int sysctl_numa_balancing_scan_delay = 1000;
952
598f0ec0
MG
953static unsigned int task_nr_scan_windows(struct task_struct *p)
954{
955 unsigned long rss = 0;
956 unsigned long nr_scan_pages;
957
958 /*
959 * Calculations based on RSS as non-present and empty pages are skipped
960 * by the PTE scanner and NUMA hinting faults should be trapped based
961 * on resident pages
962 */
963 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
964 rss = get_mm_rss(p->mm);
965 if (!rss)
966 rss = nr_scan_pages;
967
968 rss = round_up(rss, nr_scan_pages);
969 return rss / nr_scan_pages;
970}
971
972/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
973#define MAX_SCAN_WINDOW 2560
974
975static unsigned int task_scan_min(struct task_struct *p)
976{
316c1608 977 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
978 unsigned int scan, floor;
979 unsigned int windows = 1;
980
64192658
KT
981 if (scan_size < MAX_SCAN_WINDOW)
982 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
983 floor = 1000 / windows;
984
985 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
986 return max_t(unsigned int, floor, scan);
987}
988
989static unsigned int task_scan_max(struct task_struct *p)
990{
991 unsigned int smin = task_scan_min(p);
992 unsigned int smax;
993
994 /* Watch for min being lower than max due to floor calculations */
995 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
996 return max(smin, smax);
997}
998
0ec8aa00
PZ
999static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1000{
1001 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1002 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1003}
1004
1005static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1006{
1007 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1008 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1009}
1010
8c8a743c
PZ
1011struct numa_group {
1012 atomic_t refcount;
1013
1014 spinlock_t lock; /* nr_tasks, tasks */
1015 int nr_tasks;
e29cf08b 1016 pid_t gid;
4142c3eb 1017 int active_nodes;
8c8a743c
PZ
1018
1019 struct rcu_head rcu;
989348b5 1020 unsigned long total_faults;
4142c3eb 1021 unsigned long max_faults_cpu;
7e2703e6
RR
1022 /*
1023 * Faults_cpu is used to decide whether memory should move
1024 * towards the CPU. As a consequence, these stats are weighted
1025 * more by CPU use than by memory faults.
1026 */
50ec8a40 1027 unsigned long *faults_cpu;
989348b5 1028 unsigned long faults[0];
8c8a743c
PZ
1029};
1030
be1e4e76
RR
1031/* Shared or private faults. */
1032#define NR_NUMA_HINT_FAULT_TYPES 2
1033
1034/* Memory and CPU locality */
1035#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1036
1037/* Averaged statistics, and temporary buffers. */
1038#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1039
e29cf08b
MG
1040pid_t task_numa_group_id(struct task_struct *p)
1041{
1042 return p->numa_group ? p->numa_group->gid : 0;
1043}
1044
44dba3d5
IM
1045/*
1046 * The averaged statistics, shared & private, memory & cpu,
1047 * occupy the first half of the array. The second half of the
1048 * array is for current counters, which are averaged into the
1049 * first set by task_numa_placement.
1050 */
1051static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1052{
44dba3d5 1053 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1054}
1055
1056static inline unsigned long task_faults(struct task_struct *p, int nid)
1057{
44dba3d5 1058 if (!p->numa_faults)
ac8e895b
MG
1059 return 0;
1060
44dba3d5
IM
1061 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1062 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1063}
1064
83e1d2cd
MG
1065static inline unsigned long group_faults(struct task_struct *p, int nid)
1066{
1067 if (!p->numa_group)
1068 return 0;
1069
44dba3d5
IM
1070 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1071 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1072}
1073
20e07dea
RR
1074static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1075{
44dba3d5
IM
1076 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1077 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1078}
1079
4142c3eb
RR
1080/*
1081 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1082 * considered part of a numa group's pseudo-interleaving set. Migrations
1083 * between these nodes are slowed down, to allow things to settle down.
1084 */
1085#define ACTIVE_NODE_FRACTION 3
1086
1087static bool numa_is_active_node(int nid, struct numa_group *ng)
1088{
1089 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1090}
1091
6c6b1193
RR
1092/* Handle placement on systems where not all nodes are directly connected. */
1093static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1094 int maxdist, bool task)
1095{
1096 unsigned long score = 0;
1097 int node;
1098
1099 /*
1100 * All nodes are directly connected, and the same distance
1101 * from each other. No need for fancy placement algorithms.
1102 */
1103 if (sched_numa_topology_type == NUMA_DIRECT)
1104 return 0;
1105
1106 /*
1107 * This code is called for each node, introducing N^2 complexity,
1108 * which should be ok given the number of nodes rarely exceeds 8.
1109 */
1110 for_each_online_node(node) {
1111 unsigned long faults;
1112 int dist = node_distance(nid, node);
1113
1114 /*
1115 * The furthest away nodes in the system are not interesting
1116 * for placement; nid was already counted.
1117 */
1118 if (dist == sched_max_numa_distance || node == nid)
1119 continue;
1120
1121 /*
1122 * On systems with a backplane NUMA topology, compare groups
1123 * of nodes, and move tasks towards the group with the most
1124 * memory accesses. When comparing two nodes at distance
1125 * "hoplimit", only nodes closer by than "hoplimit" are part
1126 * of each group. Skip other nodes.
1127 */
1128 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1129 dist > maxdist)
1130 continue;
1131
1132 /* Add up the faults from nearby nodes. */
1133 if (task)
1134 faults = task_faults(p, node);
1135 else
1136 faults = group_faults(p, node);
1137
1138 /*
1139 * On systems with a glueless mesh NUMA topology, there are
1140 * no fixed "groups of nodes". Instead, nodes that are not
1141 * directly connected bounce traffic through intermediate
1142 * nodes; a numa_group can occupy any set of nodes.
1143 * The further away a node is, the less the faults count.
1144 * This seems to result in good task placement.
1145 */
1146 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1147 faults *= (sched_max_numa_distance - dist);
1148 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1149 }
1150
1151 score += faults;
1152 }
1153
1154 return score;
1155}
1156
83e1d2cd
MG
1157/*
1158 * These return the fraction of accesses done by a particular task, or
1159 * task group, on a particular numa node. The group weight is given a
1160 * larger multiplier, in order to group tasks together that are almost
1161 * evenly spread out between numa nodes.
1162 */
7bd95320
RR
1163static inline unsigned long task_weight(struct task_struct *p, int nid,
1164 int dist)
83e1d2cd 1165{
7bd95320 1166 unsigned long faults, total_faults;
83e1d2cd 1167
44dba3d5 1168 if (!p->numa_faults)
83e1d2cd
MG
1169 return 0;
1170
1171 total_faults = p->total_numa_faults;
1172
1173 if (!total_faults)
1174 return 0;
1175
7bd95320 1176 faults = task_faults(p, nid);
6c6b1193
RR
1177 faults += score_nearby_nodes(p, nid, dist, true);
1178
7bd95320 1179 return 1000 * faults / total_faults;
83e1d2cd
MG
1180}
1181
7bd95320
RR
1182static inline unsigned long group_weight(struct task_struct *p, int nid,
1183 int dist)
83e1d2cd 1184{
7bd95320
RR
1185 unsigned long faults, total_faults;
1186
1187 if (!p->numa_group)
1188 return 0;
1189
1190 total_faults = p->numa_group->total_faults;
1191
1192 if (!total_faults)
83e1d2cd
MG
1193 return 0;
1194
7bd95320 1195 faults = group_faults(p, nid);
6c6b1193
RR
1196 faults += score_nearby_nodes(p, nid, dist, false);
1197
7bd95320 1198 return 1000 * faults / total_faults;
83e1d2cd
MG
1199}
1200
10f39042
RR
1201bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1202 int src_nid, int dst_cpu)
1203{
1204 struct numa_group *ng = p->numa_group;
1205 int dst_nid = cpu_to_node(dst_cpu);
1206 int last_cpupid, this_cpupid;
1207
1208 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1209
1210 /*
1211 * Multi-stage node selection is used in conjunction with a periodic
1212 * migration fault to build a temporal task<->page relation. By using
1213 * a two-stage filter we remove short/unlikely relations.
1214 *
1215 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1216 * a task's usage of a particular page (n_p) per total usage of this
1217 * page (n_t) (in a given time-span) to a probability.
1218 *
1219 * Our periodic faults will sample this probability and getting the
1220 * same result twice in a row, given these samples are fully
1221 * independent, is then given by P(n)^2, provided our sample period
1222 * is sufficiently short compared to the usage pattern.
1223 *
1224 * This quadric squishes small probabilities, making it less likely we
1225 * act on an unlikely task<->page relation.
1226 */
1227 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1228 if (!cpupid_pid_unset(last_cpupid) &&
1229 cpupid_to_nid(last_cpupid) != dst_nid)
1230 return false;
1231
1232 /* Always allow migrate on private faults */
1233 if (cpupid_match_pid(p, last_cpupid))
1234 return true;
1235
1236 /* A shared fault, but p->numa_group has not been set up yet. */
1237 if (!ng)
1238 return true;
1239
1240 /*
4142c3eb
RR
1241 * Destination node is much more heavily used than the source
1242 * node? Allow migration.
10f39042 1243 */
4142c3eb
RR
1244 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1245 ACTIVE_NODE_FRACTION)
10f39042
RR
1246 return true;
1247
1248 /*
4142c3eb
RR
1249 * Distribute memory according to CPU & memory use on each node,
1250 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1251 *
1252 * faults_cpu(dst) 3 faults_cpu(src)
1253 * --------------- * - > ---------------
1254 * faults_mem(dst) 4 faults_mem(src)
10f39042 1255 */
4142c3eb
RR
1256 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1257 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1258}
1259
e6628d5b 1260static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1261static unsigned long source_load(int cpu, int type);
1262static unsigned long target_load(int cpu, int type);
ced549fa 1263static unsigned long capacity_of(int cpu);
58d081b5
MG
1264static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1265
fb13c7ee 1266/* Cached statistics for all CPUs within a node */
58d081b5 1267struct numa_stats {
fb13c7ee 1268 unsigned long nr_running;
58d081b5 1269 unsigned long load;
fb13c7ee
MG
1270
1271 /* Total compute capacity of CPUs on a node */
5ef20ca1 1272 unsigned long compute_capacity;
fb13c7ee
MG
1273
1274 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1275 unsigned long task_capacity;
1b6a7495 1276 int has_free_capacity;
58d081b5 1277};
e6628d5b 1278
fb13c7ee
MG
1279/*
1280 * XXX borrowed from update_sg_lb_stats
1281 */
1282static void update_numa_stats(struct numa_stats *ns, int nid)
1283{
83d7f242
RR
1284 int smt, cpu, cpus = 0;
1285 unsigned long capacity;
fb13c7ee
MG
1286
1287 memset(ns, 0, sizeof(*ns));
1288 for_each_cpu(cpu, cpumask_of_node(nid)) {
1289 struct rq *rq = cpu_rq(cpu);
1290
1291 ns->nr_running += rq->nr_running;
1292 ns->load += weighted_cpuload(cpu);
ced549fa 1293 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1294
1295 cpus++;
fb13c7ee
MG
1296 }
1297
5eca82a9
PZ
1298 /*
1299 * If we raced with hotplug and there are no CPUs left in our mask
1300 * the @ns structure is NULL'ed and task_numa_compare() will
1301 * not find this node attractive.
1302 *
1b6a7495
NP
1303 * We'll either bail at !has_free_capacity, or we'll detect a huge
1304 * imbalance and bail there.
5eca82a9
PZ
1305 */
1306 if (!cpus)
1307 return;
1308
83d7f242
RR
1309 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1310 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1311 capacity = cpus / smt; /* cores */
1312
1313 ns->task_capacity = min_t(unsigned, capacity,
1314 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1315 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1316}
1317
58d081b5
MG
1318struct task_numa_env {
1319 struct task_struct *p;
e6628d5b 1320
58d081b5
MG
1321 int src_cpu, src_nid;
1322 int dst_cpu, dst_nid;
e6628d5b 1323
58d081b5 1324 struct numa_stats src_stats, dst_stats;
e6628d5b 1325
40ea2b42 1326 int imbalance_pct;
7bd95320 1327 int dist;
fb13c7ee
MG
1328
1329 struct task_struct *best_task;
1330 long best_imp;
58d081b5
MG
1331 int best_cpu;
1332};
1333
fb13c7ee
MG
1334static void task_numa_assign(struct task_numa_env *env,
1335 struct task_struct *p, long imp)
1336{
1337 if (env->best_task)
1338 put_task_struct(env->best_task);
bac78573
ON
1339 if (p)
1340 get_task_struct(p);
fb13c7ee
MG
1341
1342 env->best_task = p;
1343 env->best_imp = imp;
1344 env->best_cpu = env->dst_cpu;
1345}
1346
28a21745 1347static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1348 struct task_numa_env *env)
1349{
e4991b24
RR
1350 long imb, old_imb;
1351 long orig_src_load, orig_dst_load;
28a21745
RR
1352 long src_capacity, dst_capacity;
1353
1354 /*
1355 * The load is corrected for the CPU capacity available on each node.
1356 *
1357 * src_load dst_load
1358 * ------------ vs ---------
1359 * src_capacity dst_capacity
1360 */
1361 src_capacity = env->src_stats.compute_capacity;
1362 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1363
1364 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1365 if (dst_load < src_load)
1366 swap(dst_load, src_load);
e63da036
RR
1367
1368 /* Is the difference below the threshold? */
e4991b24
RR
1369 imb = dst_load * src_capacity * 100 -
1370 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1371 if (imb <= 0)
1372 return false;
1373
1374 /*
1375 * The imbalance is above the allowed threshold.
e4991b24 1376 * Compare it with the old imbalance.
e63da036 1377 */
28a21745 1378 orig_src_load = env->src_stats.load;
e4991b24 1379 orig_dst_load = env->dst_stats.load;
28a21745 1380
e4991b24
RR
1381 if (orig_dst_load < orig_src_load)
1382 swap(orig_dst_load, orig_src_load);
e63da036 1383
e4991b24
RR
1384 old_imb = orig_dst_load * src_capacity * 100 -
1385 orig_src_load * dst_capacity * env->imbalance_pct;
1386
1387 /* Would this change make things worse? */
1388 return (imb > old_imb);
e63da036
RR
1389}
1390
fb13c7ee
MG
1391/*
1392 * This checks if the overall compute and NUMA accesses of the system would
1393 * be improved if the source tasks was migrated to the target dst_cpu taking
1394 * into account that it might be best if task running on the dst_cpu should
1395 * be exchanged with the source task
1396 */
887c290e
RR
1397static void task_numa_compare(struct task_numa_env *env,
1398 long taskimp, long groupimp)
fb13c7ee
MG
1399{
1400 struct rq *src_rq = cpu_rq(env->src_cpu);
1401 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1402 struct task_struct *cur;
28a21745 1403 long src_load, dst_load;
fb13c7ee 1404 long load;
1c5d3eb3 1405 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1406 long moveimp = imp;
7bd95320 1407 int dist = env->dist;
fb13c7ee
MG
1408
1409 rcu_read_lock();
bac78573
ON
1410 cur = task_rcu_dereference(&dst_rq->curr);
1411 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1412 cur = NULL;
1413
7af68335
PZ
1414 /*
1415 * Because we have preemption enabled we can get migrated around and
1416 * end try selecting ourselves (current == env->p) as a swap candidate.
1417 */
1418 if (cur == env->p)
1419 goto unlock;
1420
fb13c7ee
MG
1421 /*
1422 * "imp" is the fault differential for the source task between the
1423 * source and destination node. Calculate the total differential for
1424 * the source task and potential destination task. The more negative
1425 * the value is, the more rmeote accesses that would be expected to
1426 * be incurred if the tasks were swapped.
1427 */
1428 if (cur) {
1429 /* Skip this swap candidate if cannot move to the source cpu */
1430 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1431 goto unlock;
1432
887c290e
RR
1433 /*
1434 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1435 * in any group then look only at task weights.
887c290e 1436 */
ca28aa53 1437 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1438 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1439 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1440 /*
1441 * Add some hysteresis to prevent swapping the
1442 * tasks within a group over tiny differences.
1443 */
1444 if (cur->numa_group)
1445 imp -= imp/16;
887c290e 1446 } else {
ca28aa53
RR
1447 /*
1448 * Compare the group weights. If a task is all by
1449 * itself (not part of a group), use the task weight
1450 * instead.
1451 */
ca28aa53 1452 if (cur->numa_group)
7bd95320
RR
1453 imp += group_weight(cur, env->src_nid, dist) -
1454 group_weight(cur, env->dst_nid, dist);
ca28aa53 1455 else
7bd95320
RR
1456 imp += task_weight(cur, env->src_nid, dist) -
1457 task_weight(cur, env->dst_nid, dist);
887c290e 1458 }
fb13c7ee
MG
1459 }
1460
0132c3e1 1461 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1462 goto unlock;
1463
1464 if (!cur) {
1465 /* Is there capacity at our destination? */
b932c03c 1466 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1467 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1468 goto unlock;
1469
1470 goto balance;
1471 }
1472
1473 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1474 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1475 dst_rq->nr_running == 1)
fb13c7ee
MG
1476 goto assign;
1477
1478 /*
1479 * In the overloaded case, try and keep the load balanced.
1480 */
1481balance:
e720fff6
PZ
1482 load = task_h_load(env->p);
1483 dst_load = env->dst_stats.load + load;
1484 src_load = env->src_stats.load - load;
fb13c7ee 1485
0132c3e1
RR
1486 if (moveimp > imp && moveimp > env->best_imp) {
1487 /*
1488 * If the improvement from just moving env->p direction is
1489 * better than swapping tasks around, check if a move is
1490 * possible. Store a slightly smaller score than moveimp,
1491 * so an actually idle CPU will win.
1492 */
1493 if (!load_too_imbalanced(src_load, dst_load, env)) {
1494 imp = moveimp - 1;
1495 cur = NULL;
1496 goto assign;
1497 }
1498 }
1499
1500 if (imp <= env->best_imp)
1501 goto unlock;
1502
fb13c7ee 1503 if (cur) {
e720fff6
PZ
1504 load = task_h_load(cur);
1505 dst_load -= load;
1506 src_load += load;
fb13c7ee
MG
1507 }
1508
28a21745 1509 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1510 goto unlock;
1511
ba7e5a27
RR
1512 /*
1513 * One idle CPU per node is evaluated for a task numa move.
1514 * Call select_idle_sibling to maybe find a better one.
1515 */
1516 if (!cur)
1517 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1518
fb13c7ee
MG
1519assign:
1520 task_numa_assign(env, cur, imp);
1521unlock:
1522 rcu_read_unlock();
1523}
1524
887c290e
RR
1525static void task_numa_find_cpu(struct task_numa_env *env,
1526 long taskimp, long groupimp)
2c8a50aa
MG
1527{
1528 int cpu;
1529
1530 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1531 /* Skip this CPU if the source task cannot migrate */
1532 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1533 continue;
1534
1535 env->dst_cpu = cpu;
887c290e 1536 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1537 }
1538}
1539
6f9aad0b
RR
1540/* Only move tasks to a NUMA node less busy than the current node. */
1541static bool numa_has_capacity(struct task_numa_env *env)
1542{
1543 struct numa_stats *src = &env->src_stats;
1544 struct numa_stats *dst = &env->dst_stats;
1545
1546 if (src->has_free_capacity && !dst->has_free_capacity)
1547 return false;
1548
1549 /*
1550 * Only consider a task move if the source has a higher load
1551 * than the destination, corrected for CPU capacity on each node.
1552 *
1553 * src->load dst->load
1554 * --------------------- vs ---------------------
1555 * src->compute_capacity dst->compute_capacity
1556 */
44dcb04f
SD
1557 if (src->load * dst->compute_capacity * env->imbalance_pct >
1558
1559 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1560 return true;
1561
1562 return false;
1563}
1564
58d081b5
MG
1565static int task_numa_migrate(struct task_struct *p)
1566{
58d081b5
MG
1567 struct task_numa_env env = {
1568 .p = p,
fb13c7ee 1569
58d081b5 1570 .src_cpu = task_cpu(p),
b32e86b4 1571 .src_nid = task_node(p),
fb13c7ee
MG
1572
1573 .imbalance_pct = 112,
1574
1575 .best_task = NULL,
1576 .best_imp = 0,
4142c3eb 1577 .best_cpu = -1,
58d081b5
MG
1578 };
1579 struct sched_domain *sd;
887c290e 1580 unsigned long taskweight, groupweight;
7bd95320 1581 int nid, ret, dist;
887c290e 1582 long taskimp, groupimp;
e6628d5b 1583
58d081b5 1584 /*
fb13c7ee
MG
1585 * Pick the lowest SD_NUMA domain, as that would have the smallest
1586 * imbalance and would be the first to start moving tasks about.
1587 *
1588 * And we want to avoid any moving of tasks about, as that would create
1589 * random movement of tasks -- counter the numa conditions we're trying
1590 * to satisfy here.
58d081b5
MG
1591 */
1592 rcu_read_lock();
fb13c7ee 1593 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1594 if (sd)
1595 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1596 rcu_read_unlock();
1597
46a73e8a
RR
1598 /*
1599 * Cpusets can break the scheduler domain tree into smaller
1600 * balance domains, some of which do not cross NUMA boundaries.
1601 * Tasks that are "trapped" in such domains cannot be migrated
1602 * elsewhere, so there is no point in (re)trying.
1603 */
1604 if (unlikely(!sd)) {
de1b301a 1605 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1606 return -EINVAL;
1607 }
1608
2c8a50aa 1609 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1610 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1611 taskweight = task_weight(p, env.src_nid, dist);
1612 groupweight = group_weight(p, env.src_nid, dist);
1613 update_numa_stats(&env.src_stats, env.src_nid);
1614 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1615 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1616 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1617
a43455a1 1618 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1619 if (numa_has_capacity(&env))
1620 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1621
9de05d48
RR
1622 /*
1623 * Look at other nodes in these cases:
1624 * - there is no space available on the preferred_nid
1625 * - the task is part of a numa_group that is interleaved across
1626 * multiple NUMA nodes; in order to better consolidate the group,
1627 * we need to check other locations.
1628 */
4142c3eb 1629 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1630 for_each_online_node(nid) {
1631 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1632 continue;
58d081b5 1633
7bd95320 1634 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1635 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1636 dist != env.dist) {
1637 taskweight = task_weight(p, env.src_nid, dist);
1638 groupweight = group_weight(p, env.src_nid, dist);
1639 }
7bd95320 1640
83e1d2cd 1641 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1642 taskimp = task_weight(p, nid, dist) - taskweight;
1643 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1644 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1645 continue;
1646
7bd95320 1647 env.dist = dist;
2c8a50aa
MG
1648 env.dst_nid = nid;
1649 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1650 if (numa_has_capacity(&env))
1651 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1652 }
1653 }
1654
68d1b02a
RR
1655 /*
1656 * If the task is part of a workload that spans multiple NUMA nodes,
1657 * and is migrating into one of the workload's active nodes, remember
1658 * this node as the task's preferred numa node, so the workload can
1659 * settle down.
1660 * A task that migrated to a second choice node will be better off
1661 * trying for a better one later. Do not set the preferred node here.
1662 */
db015dae 1663 if (p->numa_group) {
4142c3eb
RR
1664 struct numa_group *ng = p->numa_group;
1665
db015dae
RR
1666 if (env.best_cpu == -1)
1667 nid = env.src_nid;
1668 else
1669 nid = env.dst_nid;
1670
4142c3eb 1671 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1672 sched_setnuma(p, env.dst_nid);
1673 }
1674
1675 /* No better CPU than the current one was found. */
1676 if (env.best_cpu == -1)
1677 return -EAGAIN;
0ec8aa00 1678
04bb2f94
RR
1679 /*
1680 * Reset the scan period if the task is being rescheduled on an
1681 * alternative node to recheck if the tasks is now properly placed.
1682 */
1683 p->numa_scan_period = task_scan_min(p);
1684
fb13c7ee 1685 if (env.best_task == NULL) {
286549dc
MG
1686 ret = migrate_task_to(p, env.best_cpu);
1687 if (ret != 0)
1688 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1689 return ret;
1690 }
1691
1692 ret = migrate_swap(p, env.best_task);
286549dc
MG
1693 if (ret != 0)
1694 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1695 put_task_struct(env.best_task);
1696 return ret;
e6628d5b
MG
1697}
1698
6b9a7460
MG
1699/* Attempt to migrate a task to a CPU on the preferred node. */
1700static void numa_migrate_preferred(struct task_struct *p)
1701{
5085e2a3
RR
1702 unsigned long interval = HZ;
1703
2739d3ee 1704 /* This task has no NUMA fault statistics yet */
44dba3d5 1705 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1706 return;
1707
2739d3ee 1708 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1709 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1710 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1711
1712 /* Success if task is already running on preferred CPU */
de1b301a 1713 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1714 return;
1715
1716 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1717 task_numa_migrate(p);
6b9a7460
MG
1718}
1719
20e07dea 1720/*
4142c3eb 1721 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1722 * tracking the nodes from which NUMA hinting faults are triggered. This can
1723 * be different from the set of nodes where the workload's memory is currently
1724 * located.
20e07dea 1725 */
4142c3eb 1726static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1727{
1728 unsigned long faults, max_faults = 0;
4142c3eb 1729 int nid, active_nodes = 0;
20e07dea
RR
1730
1731 for_each_online_node(nid) {
1732 faults = group_faults_cpu(numa_group, nid);
1733 if (faults > max_faults)
1734 max_faults = faults;
1735 }
1736
1737 for_each_online_node(nid) {
1738 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1739 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1740 active_nodes++;
20e07dea 1741 }
4142c3eb
RR
1742
1743 numa_group->max_faults_cpu = max_faults;
1744 numa_group->active_nodes = active_nodes;
20e07dea
RR
1745}
1746
04bb2f94
RR
1747/*
1748 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1749 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1750 * period will be for the next scan window. If local/(local+remote) ratio is
1751 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1752 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1753 */
1754#define NUMA_PERIOD_SLOTS 10
a22b4b01 1755#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1756
1757/*
1758 * Increase the scan period (slow down scanning) if the majority of
1759 * our memory is already on our local node, or if the majority of
1760 * the page accesses are shared with other processes.
1761 * Otherwise, decrease the scan period.
1762 */
1763static void update_task_scan_period(struct task_struct *p,
1764 unsigned long shared, unsigned long private)
1765{
1766 unsigned int period_slot;
1767 int ratio;
1768 int diff;
1769
1770 unsigned long remote = p->numa_faults_locality[0];
1771 unsigned long local = p->numa_faults_locality[1];
1772
1773 /*
1774 * If there were no record hinting faults then either the task is
1775 * completely idle or all activity is areas that are not of interest
074c2381
MG
1776 * to automatic numa balancing. Related to that, if there were failed
1777 * migration then it implies we are migrating too quickly or the local
1778 * node is overloaded. In either case, scan slower
04bb2f94 1779 */
074c2381 1780 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1781 p->numa_scan_period = min(p->numa_scan_period_max,
1782 p->numa_scan_period << 1);
1783
1784 p->mm->numa_next_scan = jiffies +
1785 msecs_to_jiffies(p->numa_scan_period);
1786
1787 return;
1788 }
1789
1790 /*
1791 * Prepare to scale scan period relative to the current period.
1792 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1793 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1794 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1795 */
1796 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1797 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1798 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1799 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1800 if (!slot)
1801 slot = 1;
1802 diff = slot * period_slot;
1803 } else {
1804 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1805
1806 /*
1807 * Scale scan rate increases based on sharing. There is an
1808 * inverse relationship between the degree of sharing and
1809 * the adjustment made to the scanning period. Broadly
1810 * speaking the intent is that there is little point
1811 * scanning faster if shared accesses dominate as it may
1812 * simply bounce migrations uselessly
1813 */
2847c90e 1814 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1815 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1816 }
1817
1818 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1819 task_scan_min(p), task_scan_max(p));
1820 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1821}
1822
7e2703e6
RR
1823/*
1824 * Get the fraction of time the task has been running since the last
1825 * NUMA placement cycle. The scheduler keeps similar statistics, but
1826 * decays those on a 32ms period, which is orders of magnitude off
1827 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1828 * stats only if the task is so new there are no NUMA statistics yet.
1829 */
1830static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1831{
1832 u64 runtime, delta, now;
1833 /* Use the start of this time slice to avoid calculations. */
1834 now = p->se.exec_start;
1835 runtime = p->se.sum_exec_runtime;
1836
1837 if (p->last_task_numa_placement) {
1838 delta = runtime - p->last_sum_exec_runtime;
1839 *period = now - p->last_task_numa_placement;
1840 } else {
9d89c257
YD
1841 delta = p->se.avg.load_sum / p->se.load.weight;
1842 *period = LOAD_AVG_MAX;
7e2703e6
RR
1843 }
1844
1845 p->last_sum_exec_runtime = runtime;
1846 p->last_task_numa_placement = now;
1847
1848 return delta;
1849}
1850
54009416
RR
1851/*
1852 * Determine the preferred nid for a task in a numa_group. This needs to
1853 * be done in a way that produces consistent results with group_weight,
1854 * otherwise workloads might not converge.
1855 */
1856static int preferred_group_nid(struct task_struct *p, int nid)
1857{
1858 nodemask_t nodes;
1859 int dist;
1860
1861 /* Direct connections between all NUMA nodes. */
1862 if (sched_numa_topology_type == NUMA_DIRECT)
1863 return nid;
1864
1865 /*
1866 * On a system with glueless mesh NUMA topology, group_weight
1867 * scores nodes according to the number of NUMA hinting faults on
1868 * both the node itself, and on nearby nodes.
1869 */
1870 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1871 unsigned long score, max_score = 0;
1872 int node, max_node = nid;
1873
1874 dist = sched_max_numa_distance;
1875
1876 for_each_online_node(node) {
1877 score = group_weight(p, node, dist);
1878 if (score > max_score) {
1879 max_score = score;
1880 max_node = node;
1881 }
1882 }
1883 return max_node;
1884 }
1885
1886 /*
1887 * Finding the preferred nid in a system with NUMA backplane
1888 * interconnect topology is more involved. The goal is to locate
1889 * tasks from numa_groups near each other in the system, and
1890 * untangle workloads from different sides of the system. This requires
1891 * searching down the hierarchy of node groups, recursively searching
1892 * inside the highest scoring group of nodes. The nodemask tricks
1893 * keep the complexity of the search down.
1894 */
1895 nodes = node_online_map;
1896 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1897 unsigned long max_faults = 0;
81907478 1898 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1899 int a, b;
1900
1901 /* Are there nodes at this distance from each other? */
1902 if (!find_numa_distance(dist))
1903 continue;
1904
1905 for_each_node_mask(a, nodes) {
1906 unsigned long faults = 0;
1907 nodemask_t this_group;
1908 nodes_clear(this_group);
1909
1910 /* Sum group's NUMA faults; includes a==b case. */
1911 for_each_node_mask(b, nodes) {
1912 if (node_distance(a, b) < dist) {
1913 faults += group_faults(p, b);
1914 node_set(b, this_group);
1915 node_clear(b, nodes);
1916 }
1917 }
1918
1919 /* Remember the top group. */
1920 if (faults > max_faults) {
1921 max_faults = faults;
1922 max_group = this_group;
1923 /*
1924 * subtle: at the smallest distance there is
1925 * just one node left in each "group", the
1926 * winner is the preferred nid.
1927 */
1928 nid = a;
1929 }
1930 }
1931 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1932 if (!max_faults)
1933 break;
54009416
RR
1934 nodes = max_group;
1935 }
1936 return nid;
1937}
1938
cbee9f88
PZ
1939static void task_numa_placement(struct task_struct *p)
1940{
83e1d2cd
MG
1941 int seq, nid, max_nid = -1, max_group_nid = -1;
1942 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1943 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1944 unsigned long total_faults;
1945 u64 runtime, period;
7dbd13ed 1946 spinlock_t *group_lock = NULL;
cbee9f88 1947
7e5a2c17
JL
1948 /*
1949 * The p->mm->numa_scan_seq field gets updated without
1950 * exclusive access. Use READ_ONCE() here to ensure
1951 * that the field is read in a single access:
1952 */
316c1608 1953 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1954 if (p->numa_scan_seq == seq)
1955 return;
1956 p->numa_scan_seq = seq;
598f0ec0 1957 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1958
7e2703e6
RR
1959 total_faults = p->numa_faults_locality[0] +
1960 p->numa_faults_locality[1];
1961 runtime = numa_get_avg_runtime(p, &period);
1962
7dbd13ed
MG
1963 /* If the task is part of a group prevent parallel updates to group stats */
1964 if (p->numa_group) {
1965 group_lock = &p->numa_group->lock;
60e69eed 1966 spin_lock_irq(group_lock);
7dbd13ed
MG
1967 }
1968
688b7585
MG
1969 /* Find the node with the highest number of faults */
1970 for_each_online_node(nid) {
44dba3d5
IM
1971 /* Keep track of the offsets in numa_faults array */
1972 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1973 unsigned long faults = 0, group_faults = 0;
44dba3d5 1974 int priv;
745d6147 1975
be1e4e76 1976 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1977 long diff, f_diff, f_weight;
8c8a743c 1978
44dba3d5
IM
1979 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1980 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1981 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1982 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1983
ac8e895b 1984 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1985 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1986 fault_types[priv] += p->numa_faults[membuf_idx];
1987 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1988
7e2703e6
RR
1989 /*
1990 * Normalize the faults_from, so all tasks in a group
1991 * count according to CPU use, instead of by the raw
1992 * number of faults. Tasks with little runtime have
1993 * little over-all impact on throughput, and thus their
1994 * faults are less important.
1995 */
1996 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1997 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1998 (total_faults + 1);
44dba3d5
IM
1999 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2000 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2001
44dba3d5
IM
2002 p->numa_faults[mem_idx] += diff;
2003 p->numa_faults[cpu_idx] += f_diff;
2004 faults += p->numa_faults[mem_idx];
83e1d2cd 2005 p->total_numa_faults += diff;
8c8a743c 2006 if (p->numa_group) {
44dba3d5
IM
2007 /*
2008 * safe because we can only change our own group
2009 *
2010 * mem_idx represents the offset for a given
2011 * nid and priv in a specific region because it
2012 * is at the beginning of the numa_faults array.
2013 */
2014 p->numa_group->faults[mem_idx] += diff;
2015 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2016 p->numa_group->total_faults += diff;
44dba3d5 2017 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2018 }
ac8e895b
MG
2019 }
2020
688b7585
MG
2021 if (faults > max_faults) {
2022 max_faults = faults;
2023 max_nid = nid;
2024 }
83e1d2cd
MG
2025
2026 if (group_faults > max_group_faults) {
2027 max_group_faults = group_faults;
2028 max_group_nid = nid;
2029 }
2030 }
2031
04bb2f94
RR
2032 update_task_scan_period(p, fault_types[0], fault_types[1]);
2033
7dbd13ed 2034 if (p->numa_group) {
4142c3eb 2035 numa_group_count_active_nodes(p->numa_group);
60e69eed 2036 spin_unlock_irq(group_lock);
54009416 2037 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2038 }
2039
bb97fc31
RR
2040 if (max_faults) {
2041 /* Set the new preferred node */
2042 if (max_nid != p->numa_preferred_nid)
2043 sched_setnuma(p, max_nid);
2044
2045 if (task_node(p) != p->numa_preferred_nid)
2046 numa_migrate_preferred(p);
3a7053b3 2047 }
cbee9f88
PZ
2048}
2049
8c8a743c
PZ
2050static inline int get_numa_group(struct numa_group *grp)
2051{
2052 return atomic_inc_not_zero(&grp->refcount);
2053}
2054
2055static inline void put_numa_group(struct numa_group *grp)
2056{
2057 if (atomic_dec_and_test(&grp->refcount))
2058 kfree_rcu(grp, rcu);
2059}
2060
3e6a9418
MG
2061static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2062 int *priv)
8c8a743c
PZ
2063{
2064 struct numa_group *grp, *my_grp;
2065 struct task_struct *tsk;
2066 bool join = false;
2067 int cpu = cpupid_to_cpu(cpupid);
2068 int i;
2069
2070 if (unlikely(!p->numa_group)) {
2071 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2072 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2073
2074 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2075 if (!grp)
2076 return;
2077
2078 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2079 grp->active_nodes = 1;
2080 grp->max_faults_cpu = 0;
8c8a743c 2081 spin_lock_init(&grp->lock);
e29cf08b 2082 grp->gid = p->pid;
50ec8a40 2083 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2084 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2085 nr_node_ids;
8c8a743c 2086
be1e4e76 2087 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2088 grp->faults[i] = p->numa_faults[i];
8c8a743c 2089
989348b5 2090 grp->total_faults = p->total_numa_faults;
83e1d2cd 2091
8c8a743c
PZ
2092 grp->nr_tasks++;
2093 rcu_assign_pointer(p->numa_group, grp);
2094 }
2095
2096 rcu_read_lock();
316c1608 2097 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2098
2099 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2100 goto no_join;
8c8a743c
PZ
2101
2102 grp = rcu_dereference(tsk->numa_group);
2103 if (!grp)
3354781a 2104 goto no_join;
8c8a743c
PZ
2105
2106 my_grp = p->numa_group;
2107 if (grp == my_grp)
3354781a 2108 goto no_join;
8c8a743c
PZ
2109
2110 /*
2111 * Only join the other group if its bigger; if we're the bigger group,
2112 * the other task will join us.
2113 */
2114 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2115 goto no_join;
8c8a743c
PZ
2116
2117 /*
2118 * Tie-break on the grp address.
2119 */
2120 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2121 goto no_join;
8c8a743c 2122
dabe1d99
RR
2123 /* Always join threads in the same process. */
2124 if (tsk->mm == current->mm)
2125 join = true;
2126
2127 /* Simple filter to avoid false positives due to PID collisions */
2128 if (flags & TNF_SHARED)
2129 join = true;
8c8a743c 2130
3e6a9418
MG
2131 /* Update priv based on whether false sharing was detected */
2132 *priv = !join;
2133
dabe1d99 2134 if (join && !get_numa_group(grp))
3354781a 2135 goto no_join;
8c8a743c 2136
8c8a743c
PZ
2137 rcu_read_unlock();
2138
2139 if (!join)
2140 return;
2141
60e69eed
MG
2142 BUG_ON(irqs_disabled());
2143 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2144
be1e4e76 2145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2146 my_grp->faults[i] -= p->numa_faults[i];
2147 grp->faults[i] += p->numa_faults[i];
8c8a743c 2148 }
989348b5
MG
2149 my_grp->total_faults -= p->total_numa_faults;
2150 grp->total_faults += p->total_numa_faults;
8c8a743c 2151
8c8a743c
PZ
2152 my_grp->nr_tasks--;
2153 grp->nr_tasks++;
2154
2155 spin_unlock(&my_grp->lock);
60e69eed 2156 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2157
2158 rcu_assign_pointer(p->numa_group, grp);
2159
2160 put_numa_group(my_grp);
3354781a
PZ
2161 return;
2162
2163no_join:
2164 rcu_read_unlock();
2165 return;
8c8a743c
PZ
2166}
2167
2168void task_numa_free(struct task_struct *p)
2169{
2170 struct numa_group *grp = p->numa_group;
44dba3d5 2171 void *numa_faults = p->numa_faults;
e9dd685c
SR
2172 unsigned long flags;
2173 int i;
8c8a743c
PZ
2174
2175 if (grp) {
e9dd685c 2176 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2177 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2178 grp->faults[i] -= p->numa_faults[i];
989348b5 2179 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2180
8c8a743c 2181 grp->nr_tasks--;
e9dd685c 2182 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2183 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2184 put_numa_group(grp);
2185 }
2186
44dba3d5 2187 p->numa_faults = NULL;
82727018 2188 kfree(numa_faults);
8c8a743c
PZ
2189}
2190
cbee9f88
PZ
2191/*
2192 * Got a PROT_NONE fault for a page on @node.
2193 */
58b46da3 2194void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2195{
2196 struct task_struct *p = current;
6688cc05 2197 bool migrated = flags & TNF_MIGRATED;
58b46da3 2198 int cpu_node = task_node(current);
792568ec 2199 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2200 struct numa_group *ng;
ac8e895b 2201 int priv;
cbee9f88 2202
2a595721 2203 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2204 return;
2205
9ff1d9ff
MG
2206 /* for example, ksmd faulting in a user's mm */
2207 if (!p->mm)
2208 return;
2209
f809ca9a 2210 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2211 if (unlikely(!p->numa_faults)) {
2212 int size = sizeof(*p->numa_faults) *
be1e4e76 2213 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2214
44dba3d5
IM
2215 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2216 if (!p->numa_faults)
f809ca9a 2217 return;
745d6147 2218
83e1d2cd 2219 p->total_numa_faults = 0;
04bb2f94 2220 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2221 }
cbee9f88 2222
8c8a743c
PZ
2223 /*
2224 * First accesses are treated as private, otherwise consider accesses
2225 * to be private if the accessing pid has not changed
2226 */
2227 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2228 priv = 1;
2229 } else {
2230 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2231 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2232 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2233 }
2234
792568ec
RR
2235 /*
2236 * If a workload spans multiple NUMA nodes, a shared fault that
2237 * occurs wholly within the set of nodes that the workload is
2238 * actively using should be counted as local. This allows the
2239 * scan rate to slow down when a workload has settled down.
2240 */
4142c3eb
RR
2241 ng = p->numa_group;
2242 if (!priv && !local && ng && ng->active_nodes > 1 &&
2243 numa_is_active_node(cpu_node, ng) &&
2244 numa_is_active_node(mem_node, ng))
792568ec
RR
2245 local = 1;
2246
cbee9f88 2247 task_numa_placement(p);
f809ca9a 2248
2739d3ee
RR
2249 /*
2250 * Retry task to preferred node migration periodically, in case it
2251 * case it previously failed, or the scheduler moved us.
2252 */
2253 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2254 numa_migrate_preferred(p);
2255
b32e86b4
IM
2256 if (migrated)
2257 p->numa_pages_migrated += pages;
074c2381
MG
2258 if (flags & TNF_MIGRATE_FAIL)
2259 p->numa_faults_locality[2] += pages;
b32e86b4 2260
44dba3d5
IM
2261 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2262 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2263 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2264}
2265
6e5fb223
PZ
2266static void reset_ptenuma_scan(struct task_struct *p)
2267{
7e5a2c17
JL
2268 /*
2269 * We only did a read acquisition of the mmap sem, so
2270 * p->mm->numa_scan_seq is written to without exclusive access
2271 * and the update is not guaranteed to be atomic. That's not
2272 * much of an issue though, since this is just used for
2273 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2274 * expensive, to avoid any form of compiler optimizations:
2275 */
316c1608 2276 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2277 p->mm->numa_scan_offset = 0;
2278}
2279
cbee9f88
PZ
2280/*
2281 * The expensive part of numa migration is done from task_work context.
2282 * Triggered from task_tick_numa().
2283 */
2284void task_numa_work(struct callback_head *work)
2285{
2286 unsigned long migrate, next_scan, now = jiffies;
2287 struct task_struct *p = current;
2288 struct mm_struct *mm = p->mm;
51170840 2289 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2290 struct vm_area_struct *vma;
9f40604c 2291 unsigned long start, end;
598f0ec0 2292 unsigned long nr_pte_updates = 0;
4620f8c1 2293 long pages, virtpages;
cbee9f88
PZ
2294
2295 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2296
2297 work->next = work; /* protect against double add */
2298 /*
2299 * Who cares about NUMA placement when they're dying.
2300 *
2301 * NOTE: make sure not to dereference p->mm before this check,
2302 * exit_task_work() happens _after_ exit_mm() so we could be called
2303 * without p->mm even though we still had it when we enqueued this
2304 * work.
2305 */
2306 if (p->flags & PF_EXITING)
2307 return;
2308
930aa174 2309 if (!mm->numa_next_scan) {
7e8d16b6
MG
2310 mm->numa_next_scan = now +
2311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2312 }
2313
cbee9f88
PZ
2314 /*
2315 * Enforce maximal scan/migration frequency..
2316 */
2317 migrate = mm->numa_next_scan;
2318 if (time_before(now, migrate))
2319 return;
2320
598f0ec0
MG
2321 if (p->numa_scan_period == 0) {
2322 p->numa_scan_period_max = task_scan_max(p);
2323 p->numa_scan_period = task_scan_min(p);
2324 }
cbee9f88 2325
fb003b80 2326 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2327 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2328 return;
2329
19a78d11
PZ
2330 /*
2331 * Delay this task enough that another task of this mm will likely win
2332 * the next time around.
2333 */
2334 p->node_stamp += 2 * TICK_NSEC;
2335
9f40604c
MG
2336 start = mm->numa_scan_offset;
2337 pages = sysctl_numa_balancing_scan_size;
2338 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2339 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2340 if (!pages)
2341 return;
cbee9f88 2342
4620f8c1 2343
6e5fb223 2344 down_read(&mm->mmap_sem);
9f40604c 2345 vma = find_vma(mm, start);
6e5fb223
PZ
2346 if (!vma) {
2347 reset_ptenuma_scan(p);
9f40604c 2348 start = 0;
6e5fb223
PZ
2349 vma = mm->mmap;
2350 }
9f40604c 2351 for (; vma; vma = vma->vm_next) {
6b79c57b 2352 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2353 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2354 continue;
6b79c57b 2355 }
6e5fb223 2356
4591ce4f
MG
2357 /*
2358 * Shared library pages mapped by multiple processes are not
2359 * migrated as it is expected they are cache replicated. Avoid
2360 * hinting faults in read-only file-backed mappings or the vdso
2361 * as migrating the pages will be of marginal benefit.
2362 */
2363 if (!vma->vm_mm ||
2364 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2365 continue;
2366
3c67f474
MG
2367 /*
2368 * Skip inaccessible VMAs to avoid any confusion between
2369 * PROT_NONE and NUMA hinting ptes
2370 */
2371 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2372 continue;
4591ce4f 2373
9f40604c
MG
2374 do {
2375 start = max(start, vma->vm_start);
2376 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2377 end = min(end, vma->vm_end);
4620f8c1 2378 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2379
2380 /*
4620f8c1
RR
2381 * Try to scan sysctl_numa_balancing_size worth of
2382 * hpages that have at least one present PTE that
2383 * is not already pte-numa. If the VMA contains
2384 * areas that are unused or already full of prot_numa
2385 * PTEs, scan up to virtpages, to skip through those
2386 * areas faster.
598f0ec0
MG
2387 */
2388 if (nr_pte_updates)
2389 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2390 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2391
9f40604c 2392 start = end;
4620f8c1 2393 if (pages <= 0 || virtpages <= 0)
9f40604c 2394 goto out;
3cf1962c
RR
2395
2396 cond_resched();
9f40604c 2397 } while (end != vma->vm_end);
cbee9f88 2398 }
6e5fb223 2399
9f40604c 2400out:
6e5fb223 2401 /*
c69307d5
PZ
2402 * It is possible to reach the end of the VMA list but the last few
2403 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2404 * would find the !migratable VMA on the next scan but not reset the
2405 * scanner to the start so check it now.
6e5fb223
PZ
2406 */
2407 if (vma)
9f40604c 2408 mm->numa_scan_offset = start;
6e5fb223
PZ
2409 else
2410 reset_ptenuma_scan(p);
2411 up_read(&mm->mmap_sem);
51170840
RR
2412
2413 /*
2414 * Make sure tasks use at least 32x as much time to run other code
2415 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2416 * Usually update_task_scan_period slows down scanning enough; on an
2417 * overloaded system we need to limit overhead on a per task basis.
2418 */
2419 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2420 u64 diff = p->se.sum_exec_runtime - runtime;
2421 p->node_stamp += 32 * diff;
2422 }
cbee9f88
PZ
2423}
2424
2425/*
2426 * Drive the periodic memory faults..
2427 */
2428void task_tick_numa(struct rq *rq, struct task_struct *curr)
2429{
2430 struct callback_head *work = &curr->numa_work;
2431 u64 period, now;
2432
2433 /*
2434 * We don't care about NUMA placement if we don't have memory.
2435 */
2436 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2437 return;
2438
2439 /*
2440 * Using runtime rather than walltime has the dual advantage that
2441 * we (mostly) drive the selection from busy threads and that the
2442 * task needs to have done some actual work before we bother with
2443 * NUMA placement.
2444 */
2445 now = curr->se.sum_exec_runtime;
2446 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2447
25b3e5a3 2448 if (now > curr->node_stamp + period) {
4b96a29b 2449 if (!curr->node_stamp)
598f0ec0 2450 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2451 curr->node_stamp += period;
cbee9f88
PZ
2452
2453 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2454 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2455 task_work_add(curr, work, true);
2456 }
2457 }
2458}
2459#else
2460static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2461{
2462}
0ec8aa00
PZ
2463
2464static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2465{
2466}
2467
2468static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2469{
2470}
cbee9f88
PZ
2471#endif /* CONFIG_NUMA_BALANCING */
2472
30cfdcfc
DA
2473static void
2474account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2475{
2476 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2477 if (!parent_entity(se))
029632fb 2478 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2479#ifdef CONFIG_SMP
0ec8aa00
PZ
2480 if (entity_is_task(se)) {
2481 struct rq *rq = rq_of(cfs_rq);
2482
2483 account_numa_enqueue(rq, task_of(se));
2484 list_add(&se->group_node, &rq->cfs_tasks);
2485 }
367456c7 2486#endif
30cfdcfc 2487 cfs_rq->nr_running++;
30cfdcfc
DA
2488}
2489
2490static void
2491account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2492{
2493 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2494 if (!parent_entity(se))
029632fb 2495 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2496#ifdef CONFIG_SMP
0ec8aa00
PZ
2497 if (entity_is_task(se)) {
2498 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2499 list_del_init(&se->group_node);
0ec8aa00 2500 }
bfdb198c 2501#endif
30cfdcfc 2502 cfs_rq->nr_running--;
30cfdcfc
DA
2503}
2504
3ff6dcac
YZ
2505#ifdef CONFIG_FAIR_GROUP_SCHED
2506# ifdef CONFIG_SMP
ea1dc6fc 2507static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2508{
ea1dc6fc 2509 long tg_weight, load, shares;
cf5f0acf
PZ
2510
2511 /*
ea1dc6fc
PZ
2512 * This really should be: cfs_rq->avg.load_avg, but instead we use
2513 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2514 * the shares for small weight interactive tasks.
cf5f0acf 2515 */
ea1dc6fc 2516 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2517
ea1dc6fc 2518 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2519
ea1dc6fc
PZ
2520 /* Ensure tg_weight >= load */
2521 tg_weight -= cfs_rq->tg_load_avg_contrib;
2522 tg_weight += load;
3ff6dcac 2523
3ff6dcac 2524 shares = (tg->shares * load);
cf5f0acf
PZ
2525 if (tg_weight)
2526 shares /= tg_weight;
3ff6dcac
YZ
2527
2528 if (shares < MIN_SHARES)
2529 shares = MIN_SHARES;
2530 if (shares > tg->shares)
2531 shares = tg->shares;
2532
2533 return shares;
2534}
3ff6dcac 2535# else /* CONFIG_SMP */
6d5ab293 2536static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2537{
2538 return tg->shares;
2539}
3ff6dcac 2540# endif /* CONFIG_SMP */
ea1dc6fc 2541
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
7b20b916
YD
2605/*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613};
2614
9d85f21c
PT
2615/*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619static __always_inline u64 decay_load(u64 val, u64 n)
2620{
5b51f2f8
PT
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2641 }
2642
9d89c257
YD
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
5b51f2f8
PT
2645}
2646
2647/*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654static u32 __compute_runnable_contrib(u64 n)
2655{
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
7b20b916
YD
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2668}
2669
54a21385 2670#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2671
9d85f21c
PT
2672/*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
9d89c257
YD
2700static __always_inline int
2701__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2703{
e0f5f3af 2704 u64 delta, scaled_delta, periods;
9d89c257 2705 u32 contrib;
6115c793 2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2707 unsigned long scale_freq, scale_cpu;
9d85f21c 2708
9d89c257 2709 delta = now - sa->last_update_time;
9d85f21c
PT
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
9d89c257 2715 sa->last_update_time = now;
9d85f21c
PT
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
9d89c257 2726 sa->last_update_time = now;
9d85f21c 2727
6f2b0452
DE
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
9d85f21c 2731 /* delta_w is the amount already accumulated against our next period */
9d89c257 2732 delta_w = sa->period_contrib;
9d85f21c 2733 if (delta + delta_w >= 1024) {
9d85f21c
PT
2734 decayed = 1;
2735
9d89c257
YD
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
9d85f21c
PT
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
54a21385 2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2746 if (weight) {
e0f5f3af
DE
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
13962234 2752 }
36ee28e4 2753 if (running)
006cdf02 2754 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
9d89c257 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
9d89c257 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2770 contrib = __compute_runnable_contrib(periods);
54a21385 2771 contrib = cap_scale(contrib, scale_freq);
13962234 2772 if (weight) {
9d89c257 2773 sa->load_sum += weight * contrib;
13962234
YD
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
36ee28e4 2777 if (running)
006cdf02 2778 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
54a21385 2782 scaled_delta = cap_scale(delta, scale_freq);
13962234 2783 if (weight) {
e0f5f3af 2784 sa->load_sum += weight * scaled_delta;
13962234 2785 if (cfs_rq)
e0f5f3af 2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2787 }
36ee28e4 2788 if (running)
006cdf02 2789 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2790
9d89c257 2791 sa->period_contrib += delta;
9ee474f5 2792
9d89c257
YD
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
006cdf02 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2800 }
aff3e498 2801
9d89c257 2802 return decayed;
9ee474f5
PT
2803}
2804
c566e8e9 2805#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2806/*
9d89c257
YD
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
bb17f655 2809 */
9d89c257 2810static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2811{
9d89c257 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2813
aa0b7ae0
WL
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
9d89c257
YD
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2823 }
8165e145 2824}
f5f9739d 2825
ad936d86
BP
2826/*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833{
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848#ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863#else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866#endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871}
6e83125c 2872#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2873static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2874#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2875
a2c6c91f
SM
2876static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2877{
58919e83 2878 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
2879 /*
2880 * There are a few boundary cases this might miss but it should
2881 * get called often enough that that should (hopefully) not be
2882 * a real problem -- added to that it only calls on the local
2883 * CPU, so if we enqueue remotely we'll miss an update, but
2884 * the next tick/schedule should update.
2885 *
2886 * It will not get called when we go idle, because the idle
2887 * thread is a different class (!fair), nor will the utilization
2888 * number include things like RT tasks.
2889 *
2890 * As is, the util number is not freq-invariant (we'd have to
2891 * implement arch_scale_freq_capacity() for that).
2892 *
2893 * See cpu_util().
2894 */
12bde33d 2895 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
2896 }
2897}
2898
89741892
PZ
2899/*
2900 * Unsigned subtract and clamp on underflow.
2901 *
2902 * Explicitly do a load-store to ensure the intermediate value never hits
2903 * memory. This allows lockless observations without ever seeing the negative
2904 * values.
2905 */
2906#define sub_positive(_ptr, _val) do { \
2907 typeof(_ptr) ptr = (_ptr); \
2908 typeof(*ptr) val = (_val); \
2909 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2910 res = var - val; \
2911 if (res > var) \
2912 res = 0; \
2913 WRITE_ONCE(*ptr, res); \
2914} while (0)
2915
3d30544f
PZ
2916/**
2917 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2918 * @now: current time, as per cfs_rq_clock_task()
2919 * @cfs_rq: cfs_rq to update
2920 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2921 *
2922 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2923 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2924 * post_init_entity_util_avg().
2925 *
2926 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2927 *
2928 * Returns true if the load decayed or we removed utilization. It is expected
2929 * that one calls update_tg_load_avg() on this condition, but after you've
2930 * modified the cfs_rq avg (attach/detach), such that we propagate the new
2931 * avg up.
2932 */
a2c6c91f
SM
2933static inline int
2934update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2935{
9d89c257 2936 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2937 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2938
9d89c257 2939 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2940 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2941 sub_positive(&sa->load_avg, r);
2942 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2943 removed_load = 1;
8165e145 2944 }
2dac754e 2945
9d89c257
YD
2946 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2947 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2948 sub_positive(&sa->util_avg, r);
2949 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2950 removed_util = 1;
9d89c257 2951 }
36ee28e4 2952
a2c6c91f 2953 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2954 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2955
9d89c257
YD
2956#ifndef CONFIG_64BIT
2957 smp_wmb();
2958 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2959#endif
36ee28e4 2960
a2c6c91f
SM
2961 if (update_freq && (decayed || removed_util))
2962 cfs_rq_util_change(cfs_rq);
21e96f88 2963
41e0d37f 2964 return decayed || removed_load;
21e96f88
SM
2965}
2966
2967/* Update task and its cfs_rq load average */
2968static inline void update_load_avg(struct sched_entity *se, int update_tg)
2969{
2970 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2971 u64 now = cfs_rq_clock_task(cfs_rq);
2972 struct rq *rq = rq_of(cfs_rq);
2973 int cpu = cpu_of(rq);
2974
2975 /*
2976 * Track task load average for carrying it to new CPU after migrated, and
2977 * track group sched_entity load average for task_h_load calc in migration
2978 */
2979 __update_load_avg(now, cpu, &se->avg,
2980 se->on_rq * scale_load_down(se->load.weight),
2981 cfs_rq->curr == se, NULL);
2982
a2c6c91f 2983 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2984 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2985}
2986
3d30544f
PZ
2987/**
2988 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
2989 * @cfs_rq: cfs_rq to attach to
2990 * @se: sched_entity to attach
2991 *
2992 * Must call update_cfs_rq_load_avg() before this, since we rely on
2993 * cfs_rq->avg.last_update_time being current.
2994 */
a05e8c51
BP
2995static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2996{
a9280514
PZ
2997 if (!sched_feat(ATTACH_AGE_LOAD))
2998 goto skip_aging;
2999
6efdb105
BP
3000 /*
3001 * If we got migrated (either between CPUs or between cgroups) we'll
3002 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3003 *
3004 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3005 */
3006 if (se->avg.last_update_time) {
3007 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3008 &se->avg, 0, 0, NULL);
3009
3010 /*
3011 * XXX: we could have just aged the entire load away if we've been
3012 * absent from the fair class for too long.
3013 */
3014 }
3015
a9280514 3016skip_aging:
a05e8c51
BP
3017 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3018 cfs_rq->avg.load_avg += se->avg.load_avg;
3019 cfs_rq->avg.load_sum += se->avg.load_sum;
3020 cfs_rq->avg.util_avg += se->avg.util_avg;
3021 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3022
3023 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3024}
3025
3d30544f
PZ
3026/**
3027 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3028 * @cfs_rq: cfs_rq to detach from
3029 * @se: sched_entity to detach
3030 *
3031 * Must call update_cfs_rq_load_avg() before this, since we rely on
3032 * cfs_rq->avg.last_update_time being current.
3033 */
a05e8c51
BP
3034static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3035{
3036 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3037 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3038 cfs_rq->curr == se, NULL);
3039
89741892
PZ
3040 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3041 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3042 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3043 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3044
3045 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3046}
3047
9d89c257
YD
3048/* Add the load generated by se into cfs_rq's load average */
3049static inline void
3050enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3051{
9d89c257
YD
3052 struct sched_avg *sa = &se->avg;
3053 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3054 int migrated, decayed;
9ee474f5 3055
a05e8c51
BP
3056 migrated = !sa->last_update_time;
3057 if (!migrated) {
9d89c257 3058 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3059 se->on_rq * scale_load_down(se->load.weight),
3060 cfs_rq->curr == se, NULL);
aff3e498 3061 }
c566e8e9 3062
a2c6c91f 3063 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3064
13962234
YD
3065 cfs_rq->runnable_load_avg += sa->load_avg;
3066 cfs_rq->runnable_load_sum += sa->load_sum;
3067
a05e8c51
BP
3068 if (migrated)
3069 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3070
9d89c257
YD
3071 if (decayed || migrated)
3072 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3073}
3074
13962234
YD
3075/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3076static inline void
3077dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078{
3079 update_load_avg(se, 1);
3080
3081 cfs_rq->runnable_load_avg =
3082 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3083 cfs_rq->runnable_load_sum =
a05e8c51 3084 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3085}
3086
9d89c257 3087#ifndef CONFIG_64BIT
0905f04e
YD
3088static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3089{
9d89c257 3090 u64 last_update_time_copy;
0905f04e 3091 u64 last_update_time;
9ee474f5 3092
9d89c257
YD
3093 do {
3094 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3095 smp_rmb();
3096 last_update_time = cfs_rq->avg.last_update_time;
3097 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3098
3099 return last_update_time;
3100}
9d89c257 3101#else
0905f04e
YD
3102static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3103{
3104 return cfs_rq->avg.last_update_time;
3105}
9d89c257
YD
3106#endif
3107
0905f04e
YD
3108/*
3109 * Task first catches up with cfs_rq, and then subtract
3110 * itself from the cfs_rq (task must be off the queue now).
3111 */
3112void remove_entity_load_avg(struct sched_entity *se)
3113{
3114 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3115 u64 last_update_time;
3116
3117 /*
7dc603c9
PZ
3118 * tasks cannot exit without having gone through wake_up_new_task() ->
3119 * post_init_entity_util_avg() which will have added things to the
3120 * cfs_rq, so we can remove unconditionally.
3121 *
3122 * Similarly for groups, they will have passed through
3123 * post_init_entity_util_avg() before unregister_sched_fair_group()
3124 * calls this.
0905f04e 3125 */
0905f04e
YD
3126
3127 last_update_time = cfs_rq_last_update_time(cfs_rq);
3128
13962234 3129 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3130 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3131 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3132}
642dbc39 3133
7ea241af
YD
3134static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3135{
3136 return cfs_rq->runnable_load_avg;
3137}
3138
3139static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3140{
3141 return cfs_rq->avg.load_avg;
3142}
3143
6e83125c
PZ
3144static int idle_balance(struct rq *this_rq);
3145
38033c37
PZ
3146#else /* CONFIG_SMP */
3147
01011473
PZ
3148static inline int
3149update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3150{
3151 return 0;
3152}
3153
536bd00c
RW
3154static inline void update_load_avg(struct sched_entity *se, int not_used)
3155{
12bde33d 3156 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3157}
3158
9d89c257
YD
3159static inline void
3160enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3161static inline void
3162dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3163static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3164
a05e8c51
BP
3165static inline void
3166attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3167static inline void
3168detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3169
6e83125c
PZ
3170static inline int idle_balance(struct rq *rq)
3171{
3172 return 0;
3173}
3174
38033c37 3175#endif /* CONFIG_SMP */
9d85f21c 3176
2396af69 3177static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3178{
bf0f6f24 3179#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3180 struct task_struct *tsk = NULL;
3181
3182 if (entity_is_task(se))
3183 tsk = task_of(se);
3184
41acab88 3185 if (se->statistics.sleep_start) {
78becc27 3186 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3187
3188 if ((s64)delta < 0)
3189 delta = 0;
3190
41acab88
LDM
3191 if (unlikely(delta > se->statistics.sleep_max))
3192 se->statistics.sleep_max = delta;
bf0f6f24 3193
8c79a045 3194 se->statistics.sleep_start = 0;
41acab88 3195 se->statistics.sum_sleep_runtime += delta;
9745512c 3196
768d0c27 3197 if (tsk) {
e414314c 3198 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3199 trace_sched_stat_sleep(tsk, delta);
3200 }
bf0f6f24 3201 }
41acab88 3202 if (se->statistics.block_start) {
78becc27 3203 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3204
3205 if ((s64)delta < 0)
3206 delta = 0;
3207
41acab88
LDM
3208 if (unlikely(delta > se->statistics.block_max))
3209 se->statistics.block_max = delta;
bf0f6f24 3210
8c79a045 3211 se->statistics.block_start = 0;
41acab88 3212 se->statistics.sum_sleep_runtime += delta;
30084fbd 3213
e414314c 3214 if (tsk) {
8f0dfc34 3215 if (tsk->in_iowait) {
41acab88
LDM
3216 se->statistics.iowait_sum += delta;
3217 se->statistics.iowait_count++;
768d0c27 3218 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3219 }
3220
b781a602
AV
3221 trace_sched_stat_blocked(tsk, delta);
3222
e414314c
PZ
3223 /*
3224 * Blocking time is in units of nanosecs, so shift by
3225 * 20 to get a milliseconds-range estimation of the
3226 * amount of time that the task spent sleeping:
3227 */
3228 if (unlikely(prof_on == SLEEP_PROFILING)) {
3229 profile_hits(SLEEP_PROFILING,
3230 (void *)get_wchan(tsk),
3231 delta >> 20);
3232 }
3233 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3234 }
bf0f6f24
IM
3235 }
3236#endif
3237}
3238
ddc97297
PZ
3239static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3240{
3241#ifdef CONFIG_SCHED_DEBUG
3242 s64 d = se->vruntime - cfs_rq->min_vruntime;
3243
3244 if (d < 0)
3245 d = -d;
3246
3247 if (d > 3*sysctl_sched_latency)
3248 schedstat_inc(cfs_rq, nr_spread_over);
3249#endif
3250}
3251
aeb73b04
PZ
3252static void
3253place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3254{
1af5f730 3255 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3256
2cb8600e
PZ
3257 /*
3258 * The 'current' period is already promised to the current tasks,
3259 * however the extra weight of the new task will slow them down a
3260 * little, place the new task so that it fits in the slot that
3261 * stays open at the end.
3262 */
94dfb5e7 3263 if (initial && sched_feat(START_DEBIT))
f9c0b095 3264 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3265
a2e7a7eb 3266 /* sleeps up to a single latency don't count. */
5ca9880c 3267 if (!initial) {
a2e7a7eb 3268 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3269
a2e7a7eb
MG
3270 /*
3271 * Halve their sleep time's effect, to allow
3272 * for a gentler effect of sleepers:
3273 */
3274 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3275 thresh >>= 1;
51e0304c 3276
a2e7a7eb 3277 vruntime -= thresh;
aeb73b04
PZ
3278 }
3279
b5d9d734 3280 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3281 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3282}
3283
d3d9dc33
PT
3284static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3285
cb251765
MG
3286static inline void check_schedstat_required(void)
3287{
3288#ifdef CONFIG_SCHEDSTATS
3289 if (schedstat_enabled())
3290 return;
3291
3292 /* Force schedstat enabled if a dependent tracepoint is active */
3293 if (trace_sched_stat_wait_enabled() ||
3294 trace_sched_stat_sleep_enabled() ||
3295 trace_sched_stat_iowait_enabled() ||
3296 trace_sched_stat_blocked_enabled() ||
3297 trace_sched_stat_runtime_enabled()) {
eda8dca5 3298 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3299 "stat_blocked and stat_runtime require the "
3300 "kernel parameter schedstats=enabled or "
3301 "kernel.sched_schedstats=1\n");
3302 }
3303#endif
3304}
3305
b5179ac7
PZ
3306
3307/*
3308 * MIGRATION
3309 *
3310 * dequeue
3311 * update_curr()
3312 * update_min_vruntime()
3313 * vruntime -= min_vruntime
3314 *
3315 * enqueue
3316 * update_curr()
3317 * update_min_vruntime()
3318 * vruntime += min_vruntime
3319 *
3320 * this way the vruntime transition between RQs is done when both
3321 * min_vruntime are up-to-date.
3322 *
3323 * WAKEUP (remote)
3324 *
59efa0ba 3325 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3326 * vruntime -= min_vruntime
3327 *
3328 * enqueue
3329 * update_curr()
3330 * update_min_vruntime()
3331 * vruntime += min_vruntime
3332 *
3333 * this way we don't have the most up-to-date min_vruntime on the originating
3334 * CPU and an up-to-date min_vruntime on the destination CPU.
3335 */
3336
bf0f6f24 3337static void
88ec22d3 3338enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3339{
2f950354
PZ
3340 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3341 bool curr = cfs_rq->curr == se;
3342
88ec22d3 3343 /*
2f950354
PZ
3344 * If we're the current task, we must renormalise before calling
3345 * update_curr().
88ec22d3 3346 */
2f950354 3347 if (renorm && curr)
88ec22d3
PZ
3348 se->vruntime += cfs_rq->min_vruntime;
3349
2f950354
PZ
3350 update_curr(cfs_rq);
3351
bf0f6f24 3352 /*
2f950354
PZ
3353 * Otherwise, renormalise after, such that we're placed at the current
3354 * moment in time, instead of some random moment in the past. Being
3355 * placed in the past could significantly boost this task to the
3356 * fairness detriment of existing tasks.
bf0f6f24 3357 */
2f950354
PZ
3358 if (renorm && !curr)
3359 se->vruntime += cfs_rq->min_vruntime;
3360
9d89c257 3361 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3362 account_entity_enqueue(cfs_rq, se);
3363 update_cfs_shares(cfs_rq);
bf0f6f24 3364
88ec22d3 3365 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3366 place_entity(cfs_rq, se, 0);
cb251765
MG
3367 if (schedstat_enabled())
3368 enqueue_sleeper(cfs_rq, se);
e9acbff6 3369 }
bf0f6f24 3370
cb251765
MG
3371 check_schedstat_required();
3372 if (schedstat_enabled()) {
3373 update_stats_enqueue(cfs_rq, se);
3374 check_spread(cfs_rq, se);
3375 }
2f950354 3376 if (!curr)
83b699ed 3377 __enqueue_entity(cfs_rq, se);
2069dd75 3378 se->on_rq = 1;
3d4b47b4 3379
d3d9dc33 3380 if (cfs_rq->nr_running == 1) {
3d4b47b4 3381 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3382 check_enqueue_throttle(cfs_rq);
3383 }
bf0f6f24
IM
3384}
3385
2c13c919 3386static void __clear_buddies_last(struct sched_entity *se)
2002c695 3387{
2c13c919
RR
3388 for_each_sched_entity(se) {
3389 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3390 if (cfs_rq->last != se)
2c13c919 3391 break;
f1044799
PZ
3392
3393 cfs_rq->last = NULL;
2c13c919
RR
3394 }
3395}
2002c695 3396
2c13c919
RR
3397static void __clear_buddies_next(struct sched_entity *se)
3398{
3399 for_each_sched_entity(se) {
3400 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3401 if (cfs_rq->next != se)
2c13c919 3402 break;
f1044799
PZ
3403
3404 cfs_rq->next = NULL;
2c13c919 3405 }
2002c695
PZ
3406}
3407
ac53db59
RR
3408static void __clear_buddies_skip(struct sched_entity *se)
3409{
3410 for_each_sched_entity(se) {
3411 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3412 if (cfs_rq->skip != se)
ac53db59 3413 break;
f1044799
PZ
3414
3415 cfs_rq->skip = NULL;
ac53db59
RR
3416 }
3417}
3418
a571bbea
PZ
3419static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3420{
2c13c919
RR
3421 if (cfs_rq->last == se)
3422 __clear_buddies_last(se);
3423
3424 if (cfs_rq->next == se)
3425 __clear_buddies_next(se);
ac53db59
RR
3426
3427 if (cfs_rq->skip == se)
3428 __clear_buddies_skip(se);
a571bbea
PZ
3429}
3430
6c16a6dc 3431static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3432
bf0f6f24 3433static void
371fd7e7 3434dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3435{
a2a2d680
DA
3436 /*
3437 * Update run-time statistics of the 'current'.
3438 */
3439 update_curr(cfs_rq);
13962234 3440 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3441
cb251765
MG
3442 if (schedstat_enabled())
3443 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3444
2002c695 3445 clear_buddies(cfs_rq, se);
4793241b 3446
83b699ed 3447 if (se != cfs_rq->curr)
30cfdcfc 3448 __dequeue_entity(cfs_rq, se);
17bc14b7 3449 se->on_rq = 0;
30cfdcfc 3450 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3451
3452 /*
3453 * Normalize the entity after updating the min_vruntime because the
3454 * update can refer to the ->curr item and we need to reflect this
3455 * movement in our normalized position.
3456 */
371fd7e7 3457 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3458 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3459
d8b4986d
PT
3460 /* return excess runtime on last dequeue */
3461 return_cfs_rq_runtime(cfs_rq);
3462
1e876231 3463 update_min_vruntime(cfs_rq);
17bc14b7 3464 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3465}
3466
3467/*
3468 * Preempt the current task with a newly woken task if needed:
3469 */
7c92e54f 3470static void
2e09bf55 3471check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3472{
11697830 3473 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3474 struct sched_entity *se;
3475 s64 delta;
11697830 3476
6d0f0ebd 3477 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3478 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3479 if (delta_exec > ideal_runtime) {
8875125e 3480 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3481 /*
3482 * The current task ran long enough, ensure it doesn't get
3483 * re-elected due to buddy favours.
3484 */
3485 clear_buddies(cfs_rq, curr);
f685ceac
MG
3486 return;
3487 }
3488
3489 /*
3490 * Ensure that a task that missed wakeup preemption by a
3491 * narrow margin doesn't have to wait for a full slice.
3492 * This also mitigates buddy induced latencies under load.
3493 */
f685ceac
MG
3494 if (delta_exec < sysctl_sched_min_granularity)
3495 return;
3496
f4cfb33e
WX
3497 se = __pick_first_entity(cfs_rq);
3498 delta = curr->vruntime - se->vruntime;
f685ceac 3499
f4cfb33e
WX
3500 if (delta < 0)
3501 return;
d7d82944 3502
f4cfb33e 3503 if (delta > ideal_runtime)
8875125e 3504 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3505}
3506
83b699ed 3507static void
8494f412 3508set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3509{
83b699ed
SV
3510 /* 'current' is not kept within the tree. */
3511 if (se->on_rq) {
3512 /*
3513 * Any task has to be enqueued before it get to execute on
3514 * a CPU. So account for the time it spent waiting on the
3515 * runqueue.
3516 */
cb251765
MG
3517 if (schedstat_enabled())
3518 update_stats_wait_end(cfs_rq, se);
83b699ed 3519 __dequeue_entity(cfs_rq, se);
9d89c257 3520 update_load_avg(se, 1);
83b699ed
SV
3521 }
3522
79303e9e 3523 update_stats_curr_start(cfs_rq, se);
429d43bc 3524 cfs_rq->curr = se;
eba1ed4b
IM
3525#ifdef CONFIG_SCHEDSTATS
3526 /*
3527 * Track our maximum slice length, if the CPU's load is at
3528 * least twice that of our own weight (i.e. dont track it
3529 * when there are only lesser-weight tasks around):
3530 */
cb251765 3531 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3532 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3533 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3534 }
3535#endif
4a55b450 3536 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3537}
3538
3f3a4904
PZ
3539static int
3540wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3541
ac53db59
RR
3542/*
3543 * Pick the next process, keeping these things in mind, in this order:
3544 * 1) keep things fair between processes/task groups
3545 * 2) pick the "next" process, since someone really wants that to run
3546 * 3) pick the "last" process, for cache locality
3547 * 4) do not run the "skip" process, if something else is available
3548 */
678d5718
PZ
3549static struct sched_entity *
3550pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3551{
678d5718
PZ
3552 struct sched_entity *left = __pick_first_entity(cfs_rq);
3553 struct sched_entity *se;
3554
3555 /*
3556 * If curr is set we have to see if its left of the leftmost entity
3557 * still in the tree, provided there was anything in the tree at all.
3558 */
3559 if (!left || (curr && entity_before(curr, left)))
3560 left = curr;
3561
3562 se = left; /* ideally we run the leftmost entity */
f4b6755f 3563
ac53db59
RR
3564 /*
3565 * Avoid running the skip buddy, if running something else can
3566 * be done without getting too unfair.
3567 */
3568 if (cfs_rq->skip == se) {
678d5718
PZ
3569 struct sched_entity *second;
3570
3571 if (se == curr) {
3572 second = __pick_first_entity(cfs_rq);
3573 } else {
3574 second = __pick_next_entity(se);
3575 if (!second || (curr && entity_before(curr, second)))
3576 second = curr;
3577 }
3578
ac53db59
RR
3579 if (second && wakeup_preempt_entity(second, left) < 1)
3580 se = second;
3581 }
aa2ac252 3582
f685ceac
MG
3583 /*
3584 * Prefer last buddy, try to return the CPU to a preempted task.
3585 */
3586 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3587 se = cfs_rq->last;
3588
ac53db59
RR
3589 /*
3590 * Someone really wants this to run. If it's not unfair, run it.
3591 */
3592 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3593 se = cfs_rq->next;
3594
f685ceac 3595 clear_buddies(cfs_rq, se);
4793241b
PZ
3596
3597 return se;
aa2ac252
PZ
3598}
3599
678d5718 3600static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3601
ab6cde26 3602static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3603{
3604 /*
3605 * If still on the runqueue then deactivate_task()
3606 * was not called and update_curr() has to be done:
3607 */
3608 if (prev->on_rq)
b7cc0896 3609 update_curr(cfs_rq);
bf0f6f24 3610
d3d9dc33
PT
3611 /* throttle cfs_rqs exceeding runtime */
3612 check_cfs_rq_runtime(cfs_rq);
3613
cb251765
MG
3614 if (schedstat_enabled()) {
3615 check_spread(cfs_rq, prev);
3616 if (prev->on_rq)
3617 update_stats_wait_start(cfs_rq, prev);
3618 }
3619
30cfdcfc 3620 if (prev->on_rq) {
30cfdcfc
DA
3621 /* Put 'current' back into the tree. */
3622 __enqueue_entity(cfs_rq, prev);
9d85f21c 3623 /* in !on_rq case, update occurred at dequeue */
9d89c257 3624 update_load_avg(prev, 0);
30cfdcfc 3625 }
429d43bc 3626 cfs_rq->curr = NULL;
bf0f6f24
IM
3627}
3628
8f4d37ec
PZ
3629static void
3630entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3631{
bf0f6f24 3632 /*
30cfdcfc 3633 * Update run-time statistics of the 'current'.
bf0f6f24 3634 */
30cfdcfc 3635 update_curr(cfs_rq);
bf0f6f24 3636
9d85f21c
PT
3637 /*
3638 * Ensure that runnable average is periodically updated.
3639 */
9d89c257 3640 update_load_avg(curr, 1);
bf0bd948 3641 update_cfs_shares(cfs_rq);
9d85f21c 3642
8f4d37ec
PZ
3643#ifdef CONFIG_SCHED_HRTICK
3644 /*
3645 * queued ticks are scheduled to match the slice, so don't bother
3646 * validating it and just reschedule.
3647 */
983ed7a6 3648 if (queued) {
8875125e 3649 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3650 return;
3651 }
8f4d37ec
PZ
3652 /*
3653 * don't let the period tick interfere with the hrtick preemption
3654 */
3655 if (!sched_feat(DOUBLE_TICK) &&
3656 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3657 return;
3658#endif
3659
2c2efaed 3660 if (cfs_rq->nr_running > 1)
2e09bf55 3661 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3662}
3663
ab84d31e
PT
3664
3665/**************************************************
3666 * CFS bandwidth control machinery
3667 */
3668
3669#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3670
3671#ifdef HAVE_JUMP_LABEL
c5905afb 3672static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3673
3674static inline bool cfs_bandwidth_used(void)
3675{
c5905afb 3676 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3677}
3678
1ee14e6c 3679void cfs_bandwidth_usage_inc(void)
029632fb 3680{
1ee14e6c
BS
3681 static_key_slow_inc(&__cfs_bandwidth_used);
3682}
3683
3684void cfs_bandwidth_usage_dec(void)
3685{
3686 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3687}
3688#else /* HAVE_JUMP_LABEL */
3689static bool cfs_bandwidth_used(void)
3690{
3691 return true;
3692}
3693
1ee14e6c
BS
3694void cfs_bandwidth_usage_inc(void) {}
3695void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3696#endif /* HAVE_JUMP_LABEL */
3697
ab84d31e
PT
3698/*
3699 * default period for cfs group bandwidth.
3700 * default: 0.1s, units: nanoseconds
3701 */
3702static inline u64 default_cfs_period(void)
3703{
3704 return 100000000ULL;
3705}
ec12cb7f
PT
3706
3707static inline u64 sched_cfs_bandwidth_slice(void)
3708{
3709 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3710}
3711
a9cf55b2
PT
3712/*
3713 * Replenish runtime according to assigned quota and update expiration time.
3714 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3715 * additional synchronization around rq->lock.
3716 *
3717 * requires cfs_b->lock
3718 */
029632fb 3719void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3720{
3721 u64 now;
3722
3723 if (cfs_b->quota == RUNTIME_INF)
3724 return;
3725
3726 now = sched_clock_cpu(smp_processor_id());
3727 cfs_b->runtime = cfs_b->quota;
3728 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3729}
3730
029632fb
PZ
3731static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3732{
3733 return &tg->cfs_bandwidth;
3734}
3735
f1b17280
PT
3736/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3737static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3738{
3739 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3740 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3741
78becc27 3742 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3743}
3744
85dac906
PT
3745/* returns 0 on failure to allocate runtime */
3746static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3747{
3748 struct task_group *tg = cfs_rq->tg;
3749 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3750 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3751
3752 /* note: this is a positive sum as runtime_remaining <= 0 */
3753 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3754
3755 raw_spin_lock(&cfs_b->lock);
3756 if (cfs_b->quota == RUNTIME_INF)
3757 amount = min_amount;
58088ad0 3758 else {
77a4d1a1 3759 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3760
3761 if (cfs_b->runtime > 0) {
3762 amount = min(cfs_b->runtime, min_amount);
3763 cfs_b->runtime -= amount;
3764 cfs_b->idle = 0;
3765 }
ec12cb7f 3766 }
a9cf55b2 3767 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3768 raw_spin_unlock(&cfs_b->lock);
3769
3770 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3771 /*
3772 * we may have advanced our local expiration to account for allowed
3773 * spread between our sched_clock and the one on which runtime was
3774 * issued.
3775 */
3776 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3777 cfs_rq->runtime_expires = expires;
85dac906
PT
3778
3779 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3780}
3781
a9cf55b2
PT
3782/*
3783 * Note: This depends on the synchronization provided by sched_clock and the
3784 * fact that rq->clock snapshots this value.
3785 */
3786static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3787{
a9cf55b2 3788 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3789
3790 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3791 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3792 return;
3793
a9cf55b2
PT
3794 if (cfs_rq->runtime_remaining < 0)
3795 return;
3796
3797 /*
3798 * If the local deadline has passed we have to consider the
3799 * possibility that our sched_clock is 'fast' and the global deadline
3800 * has not truly expired.
3801 *
3802 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3803 * whether the global deadline has advanced. It is valid to compare
3804 * cfs_b->runtime_expires without any locks since we only care about
3805 * exact equality, so a partial write will still work.
a9cf55b2
PT
3806 */
3807
51f2176d 3808 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3809 /* extend local deadline, drift is bounded above by 2 ticks */
3810 cfs_rq->runtime_expires += TICK_NSEC;
3811 } else {
3812 /* global deadline is ahead, expiration has passed */
3813 cfs_rq->runtime_remaining = 0;
3814 }
3815}
3816
9dbdb155 3817static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3818{
3819 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3820 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3821 expire_cfs_rq_runtime(cfs_rq);
3822
3823 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3824 return;
3825
85dac906
PT
3826 /*
3827 * if we're unable to extend our runtime we resched so that the active
3828 * hierarchy can be throttled
3829 */
3830 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3831 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3832}
3833
6c16a6dc 3834static __always_inline
9dbdb155 3835void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3836{
56f570e5 3837 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3838 return;
3839
3840 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3841}
3842
85dac906
PT
3843static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3844{
56f570e5 3845 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3846}
3847
64660c86
PT
3848/* check whether cfs_rq, or any parent, is throttled */
3849static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3850{
56f570e5 3851 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3852}
3853
3854/*
3855 * Ensure that neither of the group entities corresponding to src_cpu or
3856 * dest_cpu are members of a throttled hierarchy when performing group
3857 * load-balance operations.
3858 */
3859static inline int throttled_lb_pair(struct task_group *tg,
3860 int src_cpu, int dest_cpu)
3861{
3862 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3863
3864 src_cfs_rq = tg->cfs_rq[src_cpu];
3865 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3866
3867 return throttled_hierarchy(src_cfs_rq) ||
3868 throttled_hierarchy(dest_cfs_rq);
3869}
3870
3871/* updated child weight may affect parent so we have to do this bottom up */
3872static int tg_unthrottle_up(struct task_group *tg, void *data)
3873{
3874 struct rq *rq = data;
3875 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3876
3877 cfs_rq->throttle_count--;
64660c86 3878 if (!cfs_rq->throttle_count) {
f1b17280 3879 /* adjust cfs_rq_clock_task() */
78becc27 3880 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3881 cfs_rq->throttled_clock_task;
64660c86 3882 }
64660c86
PT
3883
3884 return 0;
3885}
3886
3887static int tg_throttle_down(struct task_group *tg, void *data)
3888{
3889 struct rq *rq = data;
3890 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3891
82958366
PT
3892 /* group is entering throttled state, stop time */
3893 if (!cfs_rq->throttle_count)
78becc27 3894 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3895 cfs_rq->throttle_count++;
3896
3897 return 0;
3898}
3899
d3d9dc33 3900static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3901{
3902 struct rq *rq = rq_of(cfs_rq);
3903 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3904 struct sched_entity *se;
3905 long task_delta, dequeue = 1;
77a4d1a1 3906 bool empty;
85dac906
PT
3907
3908 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3909
f1b17280 3910 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3911 rcu_read_lock();
3912 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3913 rcu_read_unlock();
85dac906
PT
3914
3915 task_delta = cfs_rq->h_nr_running;
3916 for_each_sched_entity(se) {
3917 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3918 /* throttled entity or throttle-on-deactivate */
3919 if (!se->on_rq)
3920 break;
3921
3922 if (dequeue)
3923 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3924 qcfs_rq->h_nr_running -= task_delta;
3925
3926 if (qcfs_rq->load.weight)
3927 dequeue = 0;
3928 }
3929
3930 if (!se)
72465447 3931 sub_nr_running(rq, task_delta);
85dac906
PT
3932
3933 cfs_rq->throttled = 1;
78becc27 3934 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3935 raw_spin_lock(&cfs_b->lock);
d49db342 3936 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3937
c06f04c7
BS
3938 /*
3939 * Add to the _head_ of the list, so that an already-started
3940 * distribute_cfs_runtime will not see us
3941 */
3942 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3943
3944 /*
3945 * If we're the first throttled task, make sure the bandwidth
3946 * timer is running.
3947 */
3948 if (empty)
3949 start_cfs_bandwidth(cfs_b);
3950
85dac906
PT
3951 raw_spin_unlock(&cfs_b->lock);
3952}
3953
029632fb 3954void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3955{
3956 struct rq *rq = rq_of(cfs_rq);
3957 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3958 struct sched_entity *se;
3959 int enqueue = 1;
3960 long task_delta;
3961
22b958d8 3962 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3963
3964 cfs_rq->throttled = 0;
1a55af2e
FW
3965
3966 update_rq_clock(rq);
3967
671fd9da 3968 raw_spin_lock(&cfs_b->lock);
78becc27 3969 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3970 list_del_rcu(&cfs_rq->throttled_list);
3971 raw_spin_unlock(&cfs_b->lock);
3972
64660c86
PT
3973 /* update hierarchical throttle state */
3974 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3975
671fd9da
PT
3976 if (!cfs_rq->load.weight)
3977 return;
3978
3979 task_delta = cfs_rq->h_nr_running;
3980 for_each_sched_entity(se) {
3981 if (se->on_rq)
3982 enqueue = 0;
3983
3984 cfs_rq = cfs_rq_of(se);
3985 if (enqueue)
3986 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3987 cfs_rq->h_nr_running += task_delta;
3988
3989 if (cfs_rq_throttled(cfs_rq))
3990 break;
3991 }
3992
3993 if (!se)
72465447 3994 add_nr_running(rq, task_delta);
671fd9da
PT
3995
3996 /* determine whether we need to wake up potentially idle cpu */
3997 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3998 resched_curr(rq);
671fd9da
PT
3999}
4000
4001static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4002 u64 remaining, u64 expires)
4003{
4004 struct cfs_rq *cfs_rq;
c06f04c7
BS
4005 u64 runtime;
4006 u64 starting_runtime = remaining;
671fd9da
PT
4007
4008 rcu_read_lock();
4009 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4010 throttled_list) {
4011 struct rq *rq = rq_of(cfs_rq);
4012
4013 raw_spin_lock(&rq->lock);
4014 if (!cfs_rq_throttled(cfs_rq))
4015 goto next;
4016
4017 runtime = -cfs_rq->runtime_remaining + 1;
4018 if (runtime > remaining)
4019 runtime = remaining;
4020 remaining -= runtime;
4021
4022 cfs_rq->runtime_remaining += runtime;
4023 cfs_rq->runtime_expires = expires;
4024
4025 /* we check whether we're throttled above */
4026 if (cfs_rq->runtime_remaining > 0)
4027 unthrottle_cfs_rq(cfs_rq);
4028
4029next:
4030 raw_spin_unlock(&rq->lock);
4031
4032 if (!remaining)
4033 break;
4034 }
4035 rcu_read_unlock();
4036
c06f04c7 4037 return starting_runtime - remaining;
671fd9da
PT
4038}
4039
58088ad0
PT
4040/*
4041 * Responsible for refilling a task_group's bandwidth and unthrottling its
4042 * cfs_rqs as appropriate. If there has been no activity within the last
4043 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4044 * used to track this state.
4045 */
4046static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4047{
671fd9da 4048 u64 runtime, runtime_expires;
51f2176d 4049 int throttled;
58088ad0 4050
58088ad0
PT
4051 /* no need to continue the timer with no bandwidth constraint */
4052 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4053 goto out_deactivate;
58088ad0 4054
671fd9da 4055 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4056 cfs_b->nr_periods += overrun;
671fd9da 4057
51f2176d
BS
4058 /*
4059 * idle depends on !throttled (for the case of a large deficit), and if
4060 * we're going inactive then everything else can be deferred
4061 */
4062 if (cfs_b->idle && !throttled)
4063 goto out_deactivate;
a9cf55b2
PT
4064
4065 __refill_cfs_bandwidth_runtime(cfs_b);
4066
671fd9da
PT
4067 if (!throttled) {
4068 /* mark as potentially idle for the upcoming period */
4069 cfs_b->idle = 1;
51f2176d 4070 return 0;
671fd9da
PT
4071 }
4072
e8da1b18
NR
4073 /* account preceding periods in which throttling occurred */
4074 cfs_b->nr_throttled += overrun;
4075
671fd9da 4076 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4077
4078 /*
c06f04c7
BS
4079 * This check is repeated as we are holding onto the new bandwidth while
4080 * we unthrottle. This can potentially race with an unthrottled group
4081 * trying to acquire new bandwidth from the global pool. This can result
4082 * in us over-using our runtime if it is all used during this loop, but
4083 * only by limited amounts in that extreme case.
671fd9da 4084 */
c06f04c7
BS
4085 while (throttled && cfs_b->runtime > 0) {
4086 runtime = cfs_b->runtime;
671fd9da
PT
4087 raw_spin_unlock(&cfs_b->lock);
4088 /* we can't nest cfs_b->lock while distributing bandwidth */
4089 runtime = distribute_cfs_runtime(cfs_b, runtime,
4090 runtime_expires);
4091 raw_spin_lock(&cfs_b->lock);
4092
4093 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4094
4095 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4096 }
58088ad0 4097
671fd9da
PT
4098 /*
4099 * While we are ensured activity in the period following an
4100 * unthrottle, this also covers the case in which the new bandwidth is
4101 * insufficient to cover the existing bandwidth deficit. (Forcing the
4102 * timer to remain active while there are any throttled entities.)
4103 */
4104 cfs_b->idle = 0;
58088ad0 4105
51f2176d
BS
4106 return 0;
4107
4108out_deactivate:
51f2176d 4109 return 1;
58088ad0 4110}
d3d9dc33 4111
d8b4986d
PT
4112/* a cfs_rq won't donate quota below this amount */
4113static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4114/* minimum remaining period time to redistribute slack quota */
4115static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4116/* how long we wait to gather additional slack before distributing */
4117static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4118
db06e78c
BS
4119/*
4120 * Are we near the end of the current quota period?
4121 *
4122 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4123 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4124 * migrate_hrtimers, base is never cleared, so we are fine.
4125 */
d8b4986d
PT
4126static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4127{
4128 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4129 u64 remaining;
4130
4131 /* if the call-back is running a quota refresh is already occurring */
4132 if (hrtimer_callback_running(refresh_timer))
4133 return 1;
4134
4135 /* is a quota refresh about to occur? */
4136 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4137 if (remaining < min_expire)
4138 return 1;
4139
4140 return 0;
4141}
4142
4143static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4144{
4145 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4146
4147 /* if there's a quota refresh soon don't bother with slack */
4148 if (runtime_refresh_within(cfs_b, min_left))
4149 return;
4150
4cfafd30
PZ
4151 hrtimer_start(&cfs_b->slack_timer,
4152 ns_to_ktime(cfs_bandwidth_slack_period),
4153 HRTIMER_MODE_REL);
d8b4986d
PT
4154}
4155
4156/* we know any runtime found here is valid as update_curr() precedes return */
4157static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4158{
4159 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4160 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4161
4162 if (slack_runtime <= 0)
4163 return;
4164
4165 raw_spin_lock(&cfs_b->lock);
4166 if (cfs_b->quota != RUNTIME_INF &&
4167 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4168 cfs_b->runtime += slack_runtime;
4169
4170 /* we are under rq->lock, defer unthrottling using a timer */
4171 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4172 !list_empty(&cfs_b->throttled_cfs_rq))
4173 start_cfs_slack_bandwidth(cfs_b);
4174 }
4175 raw_spin_unlock(&cfs_b->lock);
4176
4177 /* even if it's not valid for return we don't want to try again */
4178 cfs_rq->runtime_remaining -= slack_runtime;
4179}
4180
4181static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4182{
56f570e5
PT
4183 if (!cfs_bandwidth_used())
4184 return;
4185
fccfdc6f 4186 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4187 return;
4188
4189 __return_cfs_rq_runtime(cfs_rq);
4190}
4191
4192/*
4193 * This is done with a timer (instead of inline with bandwidth return) since
4194 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4195 */
4196static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4197{
4198 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4199 u64 expires;
4200
4201 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4202 raw_spin_lock(&cfs_b->lock);
4203 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4204 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4205 return;
db06e78c 4206 }
d8b4986d 4207
c06f04c7 4208 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4209 runtime = cfs_b->runtime;
c06f04c7 4210
d8b4986d
PT
4211 expires = cfs_b->runtime_expires;
4212 raw_spin_unlock(&cfs_b->lock);
4213
4214 if (!runtime)
4215 return;
4216
4217 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4218
4219 raw_spin_lock(&cfs_b->lock);
4220 if (expires == cfs_b->runtime_expires)
c06f04c7 4221 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4222 raw_spin_unlock(&cfs_b->lock);
4223}
4224
d3d9dc33
PT
4225/*
4226 * When a group wakes up we want to make sure that its quota is not already
4227 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4228 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4229 */
4230static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4231{
56f570e5
PT
4232 if (!cfs_bandwidth_used())
4233 return;
4234
d3d9dc33
PT
4235 /* an active group must be handled by the update_curr()->put() path */
4236 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4237 return;
4238
4239 /* ensure the group is not already throttled */
4240 if (cfs_rq_throttled(cfs_rq))
4241 return;
4242
4243 /* update runtime allocation */
4244 account_cfs_rq_runtime(cfs_rq, 0);
4245 if (cfs_rq->runtime_remaining <= 0)
4246 throttle_cfs_rq(cfs_rq);
4247}
4248
55e16d30
PZ
4249static void sync_throttle(struct task_group *tg, int cpu)
4250{
4251 struct cfs_rq *pcfs_rq, *cfs_rq;
4252
4253 if (!cfs_bandwidth_used())
4254 return;
4255
4256 if (!tg->parent)
4257 return;
4258
4259 cfs_rq = tg->cfs_rq[cpu];
4260 pcfs_rq = tg->parent->cfs_rq[cpu];
4261
4262 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4263 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4264}
4265
d3d9dc33 4266/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4267static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4268{
56f570e5 4269 if (!cfs_bandwidth_used())
678d5718 4270 return false;
56f570e5 4271
d3d9dc33 4272 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4273 return false;
d3d9dc33
PT
4274
4275 /*
4276 * it's possible for a throttled entity to be forced into a running
4277 * state (e.g. set_curr_task), in this case we're finished.
4278 */
4279 if (cfs_rq_throttled(cfs_rq))
678d5718 4280 return true;
d3d9dc33
PT
4281
4282 throttle_cfs_rq(cfs_rq);
678d5718 4283 return true;
d3d9dc33 4284}
029632fb 4285
029632fb
PZ
4286static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4287{
4288 struct cfs_bandwidth *cfs_b =
4289 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4290
029632fb
PZ
4291 do_sched_cfs_slack_timer(cfs_b);
4292
4293 return HRTIMER_NORESTART;
4294}
4295
4296static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4297{
4298 struct cfs_bandwidth *cfs_b =
4299 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4300 int overrun;
4301 int idle = 0;
4302
51f2176d 4303 raw_spin_lock(&cfs_b->lock);
029632fb 4304 for (;;) {
77a4d1a1 4305 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4306 if (!overrun)
4307 break;
4308
4309 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4310 }
4cfafd30
PZ
4311 if (idle)
4312 cfs_b->period_active = 0;
51f2176d 4313 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4314
4315 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4316}
4317
4318void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4319{
4320 raw_spin_lock_init(&cfs_b->lock);
4321 cfs_b->runtime = 0;
4322 cfs_b->quota = RUNTIME_INF;
4323 cfs_b->period = ns_to_ktime(default_cfs_period());
4324
4325 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4326 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4327 cfs_b->period_timer.function = sched_cfs_period_timer;
4328 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4329 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4330}
4331
4332static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4333{
4334 cfs_rq->runtime_enabled = 0;
4335 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4336}
4337
77a4d1a1 4338void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4339{
4cfafd30 4340 lockdep_assert_held(&cfs_b->lock);
029632fb 4341
4cfafd30
PZ
4342 if (!cfs_b->period_active) {
4343 cfs_b->period_active = 1;
4344 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4345 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4346 }
029632fb
PZ
4347}
4348
4349static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4350{
7f1a169b
TH
4351 /* init_cfs_bandwidth() was not called */
4352 if (!cfs_b->throttled_cfs_rq.next)
4353 return;
4354
029632fb
PZ
4355 hrtimer_cancel(&cfs_b->period_timer);
4356 hrtimer_cancel(&cfs_b->slack_timer);
4357}
4358
0e59bdae
KT
4359static void __maybe_unused update_runtime_enabled(struct rq *rq)
4360{
4361 struct cfs_rq *cfs_rq;
4362
4363 for_each_leaf_cfs_rq(rq, cfs_rq) {
4364 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4365
4366 raw_spin_lock(&cfs_b->lock);
4367 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4368 raw_spin_unlock(&cfs_b->lock);
4369 }
4370}
4371
38dc3348 4372static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4373{
4374 struct cfs_rq *cfs_rq;
4375
4376 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4377 if (!cfs_rq->runtime_enabled)
4378 continue;
4379
4380 /*
4381 * clock_task is not advancing so we just need to make sure
4382 * there's some valid quota amount
4383 */
51f2176d 4384 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4385 /*
4386 * Offline rq is schedulable till cpu is completely disabled
4387 * in take_cpu_down(), so we prevent new cfs throttling here.
4388 */
4389 cfs_rq->runtime_enabled = 0;
4390
029632fb
PZ
4391 if (cfs_rq_throttled(cfs_rq))
4392 unthrottle_cfs_rq(cfs_rq);
4393 }
4394}
4395
4396#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4397static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4398{
78becc27 4399 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4400}
4401
9dbdb155 4402static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4403static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4404static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4405static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4406static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4407
4408static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4409{
4410 return 0;
4411}
64660c86
PT
4412
4413static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4414{
4415 return 0;
4416}
4417
4418static inline int throttled_lb_pair(struct task_group *tg,
4419 int src_cpu, int dest_cpu)
4420{
4421 return 0;
4422}
029632fb
PZ
4423
4424void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4425
4426#ifdef CONFIG_FAIR_GROUP_SCHED
4427static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4428#endif
4429
029632fb
PZ
4430static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4431{
4432 return NULL;
4433}
4434static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4435static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4436static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4437
4438#endif /* CONFIG_CFS_BANDWIDTH */
4439
bf0f6f24
IM
4440/**************************************************
4441 * CFS operations on tasks:
4442 */
4443
8f4d37ec
PZ
4444#ifdef CONFIG_SCHED_HRTICK
4445static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4446{
8f4d37ec
PZ
4447 struct sched_entity *se = &p->se;
4448 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4449
4450 WARN_ON(task_rq(p) != rq);
4451
b39e66ea 4452 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4453 u64 slice = sched_slice(cfs_rq, se);
4454 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4455 s64 delta = slice - ran;
4456
4457 if (delta < 0) {
4458 if (rq->curr == p)
8875125e 4459 resched_curr(rq);
8f4d37ec
PZ
4460 return;
4461 }
31656519 4462 hrtick_start(rq, delta);
8f4d37ec
PZ
4463 }
4464}
a4c2f00f
PZ
4465
4466/*
4467 * called from enqueue/dequeue and updates the hrtick when the
4468 * current task is from our class and nr_running is low enough
4469 * to matter.
4470 */
4471static void hrtick_update(struct rq *rq)
4472{
4473 struct task_struct *curr = rq->curr;
4474
b39e66ea 4475 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4476 return;
4477
4478 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4479 hrtick_start_fair(rq, curr);
4480}
55e12e5e 4481#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4482static inline void
4483hrtick_start_fair(struct rq *rq, struct task_struct *p)
4484{
4485}
a4c2f00f
PZ
4486
4487static inline void hrtick_update(struct rq *rq)
4488{
4489}
8f4d37ec
PZ
4490#endif
4491
bf0f6f24
IM
4492/*
4493 * The enqueue_task method is called before nr_running is
4494 * increased. Here we update the fair scheduling stats and
4495 * then put the task into the rbtree:
4496 */
ea87bb78 4497static void
371fd7e7 4498enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4499{
4500 struct cfs_rq *cfs_rq;
62fb1851 4501 struct sched_entity *se = &p->se;
bf0f6f24
IM
4502
4503 for_each_sched_entity(se) {
62fb1851 4504 if (se->on_rq)
bf0f6f24
IM
4505 break;
4506 cfs_rq = cfs_rq_of(se);
88ec22d3 4507 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4508
4509 /*
4510 * end evaluation on encountering a throttled cfs_rq
4511 *
4512 * note: in the case of encountering a throttled cfs_rq we will
4513 * post the final h_nr_running increment below.
e210bffd 4514 */
85dac906
PT
4515 if (cfs_rq_throttled(cfs_rq))
4516 break;
953bfcd1 4517 cfs_rq->h_nr_running++;
85dac906 4518
88ec22d3 4519 flags = ENQUEUE_WAKEUP;
bf0f6f24 4520 }
8f4d37ec 4521
2069dd75 4522 for_each_sched_entity(se) {
0f317143 4523 cfs_rq = cfs_rq_of(se);
953bfcd1 4524 cfs_rq->h_nr_running++;
2069dd75 4525
85dac906
PT
4526 if (cfs_rq_throttled(cfs_rq))
4527 break;
4528
9d89c257 4529 update_load_avg(se, 1);
17bc14b7 4530 update_cfs_shares(cfs_rq);
2069dd75
PZ
4531 }
4532
cd126afe 4533 if (!se)
72465447 4534 add_nr_running(rq, 1);
cd126afe 4535
a4c2f00f 4536 hrtick_update(rq);
bf0f6f24
IM
4537}
4538
2f36825b
VP
4539static void set_next_buddy(struct sched_entity *se);
4540
bf0f6f24
IM
4541/*
4542 * The dequeue_task method is called before nr_running is
4543 * decreased. We remove the task from the rbtree and
4544 * update the fair scheduling stats:
4545 */
371fd7e7 4546static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4547{
4548 struct cfs_rq *cfs_rq;
62fb1851 4549 struct sched_entity *se = &p->se;
2f36825b 4550 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4551
4552 for_each_sched_entity(se) {
4553 cfs_rq = cfs_rq_of(se);
371fd7e7 4554 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4555
4556 /*
4557 * end evaluation on encountering a throttled cfs_rq
4558 *
4559 * note: in the case of encountering a throttled cfs_rq we will
4560 * post the final h_nr_running decrement below.
4561 */
4562 if (cfs_rq_throttled(cfs_rq))
4563 break;
953bfcd1 4564 cfs_rq->h_nr_running--;
2069dd75 4565
bf0f6f24 4566 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4567 if (cfs_rq->load.weight) {
754bd598
KK
4568 /* Avoid re-evaluating load for this entity: */
4569 se = parent_entity(se);
2f36825b
VP
4570 /*
4571 * Bias pick_next to pick a task from this cfs_rq, as
4572 * p is sleeping when it is within its sched_slice.
4573 */
754bd598
KK
4574 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4575 set_next_buddy(se);
bf0f6f24 4576 break;
2f36825b 4577 }
371fd7e7 4578 flags |= DEQUEUE_SLEEP;
bf0f6f24 4579 }
8f4d37ec 4580
2069dd75 4581 for_each_sched_entity(se) {
0f317143 4582 cfs_rq = cfs_rq_of(se);
953bfcd1 4583 cfs_rq->h_nr_running--;
2069dd75 4584
85dac906
PT
4585 if (cfs_rq_throttled(cfs_rq))
4586 break;
4587
9d89c257 4588 update_load_avg(se, 1);
17bc14b7 4589 update_cfs_shares(cfs_rq);
2069dd75
PZ
4590 }
4591
cd126afe 4592 if (!se)
72465447 4593 sub_nr_running(rq, 1);
cd126afe 4594
a4c2f00f 4595 hrtick_update(rq);
bf0f6f24
IM
4596}
4597
e7693a36 4598#ifdef CONFIG_SMP
9fd81dd5 4599#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4600/*
4601 * per rq 'load' arrray crap; XXX kill this.
4602 */
4603
4604/*
d937cdc5 4605 * The exact cpuload calculated at every tick would be:
3289bdb4 4606 *
d937cdc5
PZ
4607 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4608 *
4609 * If a cpu misses updates for n ticks (as it was idle) and update gets
4610 * called on the n+1-th tick when cpu may be busy, then we have:
4611 *
4612 * load_n = (1 - 1/2^i)^n * load_0
4613 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4614 *
4615 * decay_load_missed() below does efficient calculation of
3289bdb4 4616 *
d937cdc5
PZ
4617 * load' = (1 - 1/2^i)^n * load
4618 *
4619 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4620 * This allows us to precompute the above in said factors, thereby allowing the
4621 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4622 * fixed_power_int())
3289bdb4 4623 *
d937cdc5 4624 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4625 */
4626#define DEGRADE_SHIFT 7
d937cdc5
PZ
4627
4628static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4629static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4630 { 0, 0, 0, 0, 0, 0, 0, 0 },
4631 { 64, 32, 8, 0, 0, 0, 0, 0 },
4632 { 96, 72, 40, 12, 1, 0, 0, 0 },
4633 { 112, 98, 75, 43, 15, 1, 0, 0 },
4634 { 120, 112, 98, 76, 45, 16, 2, 0 }
4635};
3289bdb4
PZ
4636
4637/*
4638 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4639 * would be when CPU is idle and so we just decay the old load without
4640 * adding any new load.
4641 */
4642static unsigned long
4643decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4644{
4645 int j = 0;
4646
4647 if (!missed_updates)
4648 return load;
4649
4650 if (missed_updates >= degrade_zero_ticks[idx])
4651 return 0;
4652
4653 if (idx == 1)
4654 return load >> missed_updates;
4655
4656 while (missed_updates) {
4657 if (missed_updates % 2)
4658 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4659
4660 missed_updates >>= 1;
4661 j++;
4662 }
4663 return load;
4664}
9fd81dd5 4665#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4666
59543275 4667/**
cee1afce 4668 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4669 * @this_rq: The rq to update statistics for
4670 * @this_load: The current load
4671 * @pending_updates: The number of missed updates
59543275 4672 *
3289bdb4 4673 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4674 * scheduler tick (TICK_NSEC).
4675 *
4676 * This function computes a decaying average:
4677 *
4678 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4679 *
4680 * Because of NOHZ it might not get called on every tick which gives need for
4681 * the @pending_updates argument.
4682 *
4683 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4684 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4685 * = A * (A * load[i]_n-2 + B) + B
4686 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4687 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4688 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4689 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4690 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4691 *
4692 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4693 * any change in load would have resulted in the tick being turned back on.
4694 *
4695 * For regular NOHZ, this reduces to:
4696 *
4697 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4698 *
4699 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4700 * term.
3289bdb4 4701 */
1f41906a
FW
4702static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4703 unsigned long pending_updates)
3289bdb4 4704{
9fd81dd5 4705 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4706 int i, scale;
4707
4708 this_rq->nr_load_updates++;
4709
4710 /* Update our load: */
4711 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4712 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4713 unsigned long old_load, new_load;
4714
4715 /* scale is effectively 1 << i now, and >> i divides by scale */
4716
7400d3bb 4717 old_load = this_rq->cpu_load[i];
9fd81dd5 4718#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4719 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4720 if (tickless_load) {
4721 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4722 /*
4723 * old_load can never be a negative value because a
4724 * decayed tickless_load cannot be greater than the
4725 * original tickless_load.
4726 */
4727 old_load += tickless_load;
4728 }
9fd81dd5 4729#endif
3289bdb4
PZ
4730 new_load = this_load;
4731 /*
4732 * Round up the averaging division if load is increasing. This
4733 * prevents us from getting stuck on 9 if the load is 10, for
4734 * example.
4735 */
4736 if (new_load > old_load)
4737 new_load += scale - 1;
4738
4739 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4740 }
4741
4742 sched_avg_update(this_rq);
4743}
4744
7ea241af
YD
4745/* Used instead of source_load when we know the type == 0 */
4746static unsigned long weighted_cpuload(const int cpu)
4747{
4748 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4749}
4750
3289bdb4 4751#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4752/*
4753 * There is no sane way to deal with nohz on smp when using jiffies because the
4754 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4755 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4756 *
4757 * Therefore we need to avoid the delta approach from the regular tick when
4758 * possible since that would seriously skew the load calculation. This is why we
4759 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4760 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4761 * loop exit, nohz_idle_balance, nohz full exit...)
4762 *
4763 * This means we might still be one tick off for nohz periods.
4764 */
4765
4766static void cpu_load_update_nohz(struct rq *this_rq,
4767 unsigned long curr_jiffies,
4768 unsigned long load)
be68a682
FW
4769{
4770 unsigned long pending_updates;
4771
4772 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4773 if (pending_updates) {
4774 this_rq->last_load_update_tick = curr_jiffies;
4775 /*
4776 * In the regular NOHZ case, we were idle, this means load 0.
4777 * In the NOHZ_FULL case, we were non-idle, we should consider
4778 * its weighted load.
4779 */
1f41906a 4780 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4781 }
4782}
4783
3289bdb4
PZ
4784/*
4785 * Called from nohz_idle_balance() to update the load ratings before doing the
4786 * idle balance.
4787 */
cee1afce 4788static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4789{
3289bdb4
PZ
4790 /*
4791 * bail if there's load or we're actually up-to-date.
4792 */
be68a682 4793 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4794 return;
4795
1f41906a 4796 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4797}
4798
4799/*
1f41906a
FW
4800 * Record CPU load on nohz entry so we know the tickless load to account
4801 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4802 * than other cpu_load[idx] but it should be fine as cpu_load readers
4803 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4804 */
1f41906a 4805void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4806{
4807 struct rq *this_rq = this_rq();
1f41906a
FW
4808
4809 /*
4810 * This is all lockless but should be fine. If weighted_cpuload changes
4811 * concurrently we'll exit nohz. And cpu_load write can race with
4812 * cpu_load_update_idle() but both updater would be writing the same.
4813 */
4814 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4815}
4816
4817/*
4818 * Account the tickless load in the end of a nohz frame.
4819 */
4820void cpu_load_update_nohz_stop(void)
4821{
316c1608 4822 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4823 struct rq *this_rq = this_rq();
4824 unsigned long load;
3289bdb4
PZ
4825
4826 if (curr_jiffies == this_rq->last_load_update_tick)
4827 return;
4828
1f41906a 4829 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4830 raw_spin_lock(&this_rq->lock);
b52fad2d 4831 update_rq_clock(this_rq);
1f41906a 4832 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4833 raw_spin_unlock(&this_rq->lock);
4834}
1f41906a
FW
4835#else /* !CONFIG_NO_HZ_COMMON */
4836static inline void cpu_load_update_nohz(struct rq *this_rq,
4837 unsigned long curr_jiffies,
4838 unsigned long load) { }
4839#endif /* CONFIG_NO_HZ_COMMON */
4840
4841static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4842{
9fd81dd5 4843#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4844 /* See the mess around cpu_load_update_nohz(). */
4845 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4846#endif
1f41906a
FW
4847 cpu_load_update(this_rq, load, 1);
4848}
3289bdb4
PZ
4849
4850/*
4851 * Called from scheduler_tick()
4852 */
cee1afce 4853void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4854{
7ea241af 4855 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4856
4857 if (tick_nohz_tick_stopped())
4858 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4859 else
4860 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4861}
4862
029632fb
PZ
4863/*
4864 * Return a low guess at the load of a migration-source cpu weighted
4865 * according to the scheduling class and "nice" value.
4866 *
4867 * We want to under-estimate the load of migration sources, to
4868 * balance conservatively.
4869 */
4870static unsigned long source_load(int cpu, int type)
4871{
4872 struct rq *rq = cpu_rq(cpu);
4873 unsigned long total = weighted_cpuload(cpu);
4874
4875 if (type == 0 || !sched_feat(LB_BIAS))
4876 return total;
4877
4878 return min(rq->cpu_load[type-1], total);
4879}
4880
4881/*
4882 * Return a high guess at the load of a migration-target cpu weighted
4883 * according to the scheduling class and "nice" value.
4884 */
4885static unsigned long target_load(int cpu, int type)
4886{
4887 struct rq *rq = cpu_rq(cpu);
4888 unsigned long total = weighted_cpuload(cpu);
4889
4890 if (type == 0 || !sched_feat(LB_BIAS))
4891 return total;
4892
4893 return max(rq->cpu_load[type-1], total);
4894}
4895
ced549fa 4896static unsigned long capacity_of(int cpu)
029632fb 4897{
ced549fa 4898 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4899}
4900
ca6d75e6
VG
4901static unsigned long capacity_orig_of(int cpu)
4902{
4903 return cpu_rq(cpu)->cpu_capacity_orig;
4904}
4905
029632fb
PZ
4906static unsigned long cpu_avg_load_per_task(int cpu)
4907{
4908 struct rq *rq = cpu_rq(cpu);
316c1608 4909 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4910 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4911
4912 if (nr_running)
b92486cb 4913 return load_avg / nr_running;
029632fb
PZ
4914
4915 return 0;
4916}
4917
bb3469ac 4918#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4919/*
4920 * effective_load() calculates the load change as seen from the root_task_group
4921 *
4922 * Adding load to a group doesn't make a group heavier, but can cause movement
4923 * of group shares between cpus. Assuming the shares were perfectly aligned one
4924 * can calculate the shift in shares.
cf5f0acf
PZ
4925 *
4926 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4927 * on this @cpu and results in a total addition (subtraction) of @wg to the
4928 * total group weight.
4929 *
4930 * Given a runqueue weight distribution (rw_i) we can compute a shares
4931 * distribution (s_i) using:
4932 *
4933 * s_i = rw_i / \Sum rw_j (1)
4934 *
4935 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4936 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4937 * shares distribution (s_i):
4938 *
4939 * rw_i = { 2, 4, 1, 0 }
4940 * s_i = { 2/7, 4/7, 1/7, 0 }
4941 *
4942 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4943 * task used to run on and the CPU the waker is running on), we need to
4944 * compute the effect of waking a task on either CPU and, in case of a sync
4945 * wakeup, compute the effect of the current task going to sleep.
4946 *
4947 * So for a change of @wl to the local @cpu with an overall group weight change
4948 * of @wl we can compute the new shares distribution (s'_i) using:
4949 *
4950 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4951 *
4952 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4953 * differences in waking a task to CPU 0. The additional task changes the
4954 * weight and shares distributions like:
4955 *
4956 * rw'_i = { 3, 4, 1, 0 }
4957 * s'_i = { 3/8, 4/8, 1/8, 0 }
4958 *
4959 * We can then compute the difference in effective weight by using:
4960 *
4961 * dw_i = S * (s'_i - s_i) (3)
4962 *
4963 * Where 'S' is the group weight as seen by its parent.
4964 *
4965 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4966 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4967 * 4/7) times the weight of the group.
f5bfb7d9 4968 */
2069dd75 4969static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4970{
4be9daaa 4971 struct sched_entity *se = tg->se[cpu];
f1d239f7 4972
9722c2da 4973 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4974 return wl;
4975
4be9daaa 4976 for_each_sched_entity(se) {
7dd49125
PZ
4977 struct cfs_rq *cfs_rq = se->my_q;
4978 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4979
7dd49125 4980 tg = cfs_rq->tg;
bb3469ac 4981
cf5f0acf
PZ
4982 /*
4983 * W = @wg + \Sum rw_j
4984 */
7dd49125
PZ
4985 W = wg + atomic_long_read(&tg->load_avg);
4986
4987 /* Ensure \Sum rw_j >= rw_i */
4988 W -= cfs_rq->tg_load_avg_contrib;
4989 W += w;
4be9daaa 4990
cf5f0acf
PZ
4991 /*
4992 * w = rw_i + @wl
4993 */
7dd49125 4994 w += wl;
940959e9 4995
cf5f0acf
PZ
4996 /*
4997 * wl = S * s'_i; see (2)
4998 */
4999 if (W > 0 && w < W)
32a8df4e 5000 wl = (w * (long)tg->shares) / W;
977dda7c
PT
5001 else
5002 wl = tg->shares;
940959e9 5003
cf5f0acf
PZ
5004 /*
5005 * Per the above, wl is the new se->load.weight value; since
5006 * those are clipped to [MIN_SHARES, ...) do so now. See
5007 * calc_cfs_shares().
5008 */
977dda7c
PT
5009 if (wl < MIN_SHARES)
5010 wl = MIN_SHARES;
cf5f0acf
PZ
5011
5012 /*
5013 * wl = dw_i = S * (s'_i - s_i); see (3)
5014 */
9d89c257 5015 wl -= se->avg.load_avg;
cf5f0acf
PZ
5016
5017 /*
5018 * Recursively apply this logic to all parent groups to compute
5019 * the final effective load change on the root group. Since
5020 * only the @tg group gets extra weight, all parent groups can
5021 * only redistribute existing shares. @wl is the shift in shares
5022 * resulting from this level per the above.
5023 */
4be9daaa 5024 wg = 0;
4be9daaa 5025 }
bb3469ac 5026
4be9daaa 5027 return wl;
bb3469ac
PZ
5028}
5029#else
4be9daaa 5030
58d081b5 5031static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5032{
83378269 5033 return wl;
bb3469ac 5034}
4be9daaa 5035
bb3469ac
PZ
5036#endif
5037
c58d25f3
PZ
5038static void record_wakee(struct task_struct *p)
5039{
5040 /*
5041 * Only decay a single time; tasks that have less then 1 wakeup per
5042 * jiffy will not have built up many flips.
5043 */
5044 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5045 current->wakee_flips >>= 1;
5046 current->wakee_flip_decay_ts = jiffies;
5047 }
5048
5049 if (current->last_wakee != p) {
5050 current->last_wakee = p;
5051 current->wakee_flips++;
5052 }
5053}
5054
63b0e9ed
MG
5055/*
5056 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5057 *
63b0e9ed 5058 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5059 * at a frequency roughly N times higher than one of its wakees.
5060 *
5061 * In order to determine whether we should let the load spread vs consolidating
5062 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5063 * partner, and a factor of lls_size higher frequency in the other.
5064 *
5065 * With both conditions met, we can be relatively sure that the relationship is
5066 * non-monogamous, with partner count exceeding socket size.
5067 *
5068 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5069 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5070 * socket size.
63b0e9ed 5071 */
62470419
MW
5072static int wake_wide(struct task_struct *p)
5073{
63b0e9ed
MG
5074 unsigned int master = current->wakee_flips;
5075 unsigned int slave = p->wakee_flips;
7d9ffa89 5076 int factor = this_cpu_read(sd_llc_size);
62470419 5077
63b0e9ed
MG
5078 if (master < slave)
5079 swap(master, slave);
5080 if (slave < factor || master < slave * factor)
5081 return 0;
5082 return 1;
62470419
MW
5083}
5084
c88d5910 5085static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5086{
e37b6a7b 5087 s64 this_load, load;
bd61c98f 5088 s64 this_eff_load, prev_eff_load;
c88d5910 5089 int idx, this_cpu, prev_cpu;
c88d5910 5090 struct task_group *tg;
83378269 5091 unsigned long weight;
b3137bc8 5092 int balanced;
098fb9db 5093
c88d5910
PZ
5094 idx = sd->wake_idx;
5095 this_cpu = smp_processor_id();
5096 prev_cpu = task_cpu(p);
5097 load = source_load(prev_cpu, idx);
5098 this_load = target_load(this_cpu, idx);
098fb9db 5099
b3137bc8
MG
5100 /*
5101 * If sync wakeup then subtract the (maximum possible)
5102 * effect of the currently running task from the load
5103 * of the current CPU:
5104 */
83378269
PZ
5105 if (sync) {
5106 tg = task_group(current);
9d89c257 5107 weight = current->se.avg.load_avg;
83378269 5108
c88d5910 5109 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5110 load += effective_load(tg, prev_cpu, 0, -weight);
5111 }
b3137bc8 5112
83378269 5113 tg = task_group(p);
9d89c257 5114 weight = p->se.avg.load_avg;
b3137bc8 5115
71a29aa7
PZ
5116 /*
5117 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5118 * due to the sync cause above having dropped this_load to 0, we'll
5119 * always have an imbalance, but there's really nothing you can do
5120 * about that, so that's good too.
71a29aa7
PZ
5121 *
5122 * Otherwise check if either cpus are near enough in load to allow this
5123 * task to be woken on this_cpu.
5124 */
bd61c98f
VG
5125 this_eff_load = 100;
5126 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5127
bd61c98f
VG
5128 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5129 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5130
bd61c98f 5131 if (this_load > 0) {
e51fd5e2
PZ
5132 this_eff_load *= this_load +
5133 effective_load(tg, this_cpu, weight, weight);
5134
e51fd5e2 5135 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5136 }
e51fd5e2 5137
bd61c98f 5138 balanced = this_eff_load <= prev_eff_load;
098fb9db 5139
41acab88 5140 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5141
05bfb65f
VG
5142 if (!balanced)
5143 return 0;
098fb9db 5144
05bfb65f
VG
5145 schedstat_inc(sd, ttwu_move_affine);
5146 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5147
5148 return 1;
098fb9db
IM
5149}
5150
aaee1203
PZ
5151/*
5152 * find_idlest_group finds and returns the least busy CPU group within the
5153 * domain.
5154 */
5155static struct sched_group *
78e7ed53 5156find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5157 int this_cpu, int sd_flag)
e7693a36 5158{
b3bd3de6 5159 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5160 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5161 int load_idx = sd->forkexec_idx;
aaee1203 5162 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5163
c44f2a02
VG
5164 if (sd_flag & SD_BALANCE_WAKE)
5165 load_idx = sd->wake_idx;
5166
aaee1203
PZ
5167 do {
5168 unsigned long load, avg_load;
5169 int local_group;
5170 int i;
e7693a36 5171
aaee1203
PZ
5172 /* Skip over this group if it has no CPUs allowed */
5173 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5174 tsk_cpus_allowed(p)))
aaee1203
PZ
5175 continue;
5176
5177 local_group = cpumask_test_cpu(this_cpu,
5178 sched_group_cpus(group));
5179
5180 /* Tally up the load of all CPUs in the group */
5181 avg_load = 0;
5182
5183 for_each_cpu(i, sched_group_cpus(group)) {
5184 /* Bias balancing toward cpus of our domain */
5185 if (local_group)
5186 load = source_load(i, load_idx);
5187 else
5188 load = target_load(i, load_idx);
5189
5190 avg_load += load;
5191 }
5192
63b2ca30 5193 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5194 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5195
5196 if (local_group) {
5197 this_load = avg_load;
aaee1203
PZ
5198 } else if (avg_load < min_load) {
5199 min_load = avg_load;
5200 idlest = group;
5201 }
5202 } while (group = group->next, group != sd->groups);
5203
5204 if (!idlest || 100*this_load < imbalance*min_load)
5205 return NULL;
5206 return idlest;
5207}
5208
5209/*
5210 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5211 */
5212static int
5213find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5214{
5215 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5216 unsigned int min_exit_latency = UINT_MAX;
5217 u64 latest_idle_timestamp = 0;
5218 int least_loaded_cpu = this_cpu;
5219 int shallowest_idle_cpu = -1;
aaee1203
PZ
5220 int i;
5221
5222 /* Traverse only the allowed CPUs */
fa17b507 5223 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5224 if (idle_cpu(i)) {
5225 struct rq *rq = cpu_rq(i);
5226 struct cpuidle_state *idle = idle_get_state(rq);
5227 if (idle && idle->exit_latency < min_exit_latency) {
5228 /*
5229 * We give priority to a CPU whose idle state
5230 * has the smallest exit latency irrespective
5231 * of any idle timestamp.
5232 */
5233 min_exit_latency = idle->exit_latency;
5234 latest_idle_timestamp = rq->idle_stamp;
5235 shallowest_idle_cpu = i;
5236 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5237 rq->idle_stamp > latest_idle_timestamp) {
5238 /*
5239 * If equal or no active idle state, then
5240 * the most recently idled CPU might have
5241 * a warmer cache.
5242 */
5243 latest_idle_timestamp = rq->idle_stamp;
5244 shallowest_idle_cpu = i;
5245 }
9f96742a 5246 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5247 load = weighted_cpuload(i);
5248 if (load < min_load || (load == min_load && i == this_cpu)) {
5249 min_load = load;
5250 least_loaded_cpu = i;
5251 }
e7693a36
GH
5252 }
5253 }
5254
83a0a96a 5255 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5256}
e7693a36 5257
a50bde51
PZ
5258/*
5259 * Try and locate an idle CPU in the sched_domain.
5260 */
99bd5e2f 5261static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5262{
99bd5e2f 5263 struct sched_domain *sd;
37407ea7 5264 struct sched_group *sg;
e0a79f52 5265 int i = task_cpu(p);
a50bde51 5266
e0a79f52
MG
5267 if (idle_cpu(target))
5268 return target;
99bd5e2f
SS
5269
5270 /*
e0a79f52 5271 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5272 */
e0a79f52
MG
5273 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5274 return i;
a50bde51
PZ
5275
5276 /*
d4335581
MF
5277 * Otherwise, iterate the domains and find an eligible idle cpu.
5278 *
5279 * A completely idle sched group at higher domains is more
5280 * desirable than an idle group at a lower level, because lower
5281 * domains have smaller groups and usually share hardware
5282 * resources which causes tasks to contend on them, e.g. x86
5283 * hyperthread siblings in the lowest domain (SMT) can contend
5284 * on the shared cpu pipeline.
5285 *
5286 * However, while we prefer idle groups at higher domains
5287 * finding an idle cpu at the lowest domain is still better than
5288 * returning 'target', which we've already established, isn't
5289 * idle.
a50bde51 5290 */
518cd623 5291 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5292 for_each_lower_domain(sd) {
37407ea7
LT
5293 sg = sd->groups;
5294 do {
5295 if (!cpumask_intersects(sched_group_cpus(sg),
5296 tsk_cpus_allowed(p)))
5297 goto next;
5298
d4335581 5299 /* Ensure the entire group is idle */
37407ea7 5300 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5301 if (i == target || !idle_cpu(i))
37407ea7
LT
5302 goto next;
5303 }
970e1789 5304
d4335581
MF
5305 /*
5306 * It doesn't matter which cpu we pick, the
5307 * whole group is idle.
5308 */
37407ea7
LT
5309 target = cpumask_first_and(sched_group_cpus(sg),
5310 tsk_cpus_allowed(p));
5311 goto done;
5312next:
5313 sg = sg->next;
5314 } while (sg != sd->groups);
5315 }
5316done:
a50bde51
PZ
5317 return target;
5318}
231678b7 5319
8bb5b00c 5320/*
9e91d61d 5321 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5322 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5323 * compare the utilization with the capacity of the CPU that is available for
5324 * CFS task (ie cpu_capacity).
231678b7
DE
5325 *
5326 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5327 * recent utilization of currently non-runnable tasks on a CPU. It represents
5328 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5329 * capacity_orig is the cpu_capacity available at the highest frequency
5330 * (arch_scale_freq_capacity()).
5331 * The utilization of a CPU converges towards a sum equal to or less than the
5332 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5333 * the running time on this CPU scaled by capacity_curr.
5334 *
5335 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5336 * higher than capacity_orig because of unfortunate rounding in
5337 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5338 * the average stabilizes with the new running time. We need to check that the
5339 * utilization stays within the range of [0..capacity_orig] and cap it if
5340 * necessary. Without utilization capping, a group could be seen as overloaded
5341 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5342 * available capacity. We allow utilization to overshoot capacity_curr (but not
5343 * capacity_orig) as it useful for predicting the capacity required after task
5344 * migrations (scheduler-driven DVFS).
8bb5b00c 5345 */
9e91d61d 5346static int cpu_util(int cpu)
8bb5b00c 5347{
9e91d61d 5348 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5349 unsigned long capacity = capacity_orig_of(cpu);
5350
231678b7 5351 return (util >= capacity) ? capacity : util;
8bb5b00c 5352}
a50bde51 5353
aaee1203 5354/*
de91b9cb
MR
5355 * select_task_rq_fair: Select target runqueue for the waking task in domains
5356 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5357 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5358 *
de91b9cb
MR
5359 * Balances load by selecting the idlest cpu in the idlest group, or under
5360 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5361 *
de91b9cb 5362 * Returns the target cpu number.
aaee1203
PZ
5363 *
5364 * preempt must be disabled.
5365 */
0017d735 5366static int
ac66f547 5367select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5368{
29cd8bae 5369 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5370 int cpu = smp_processor_id();
63b0e9ed 5371 int new_cpu = prev_cpu;
99bd5e2f 5372 int want_affine = 0;
5158f4e4 5373 int sync = wake_flags & WF_SYNC;
c88d5910 5374
c58d25f3
PZ
5375 if (sd_flag & SD_BALANCE_WAKE) {
5376 record_wakee(p);
63b0e9ed 5377 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5378 }
aaee1203 5379
dce840a0 5380 rcu_read_lock();
aaee1203 5381 for_each_domain(cpu, tmp) {
e4f42888 5382 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5383 break;
e4f42888 5384
fe3bcfe1 5385 /*
99bd5e2f
SS
5386 * If both cpu and prev_cpu are part of this domain,
5387 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5388 */
99bd5e2f
SS
5389 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5390 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5391 affine_sd = tmp;
29cd8bae 5392 break;
f03542a7 5393 }
29cd8bae 5394
f03542a7 5395 if (tmp->flags & sd_flag)
29cd8bae 5396 sd = tmp;
63b0e9ed
MG
5397 else if (!want_affine)
5398 break;
29cd8bae
PZ
5399 }
5400
63b0e9ed
MG
5401 if (affine_sd) {
5402 sd = NULL; /* Prefer wake_affine over balance flags */
5403 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5404 new_cpu = cpu;
8b911acd 5405 }
e7693a36 5406
63b0e9ed
MG
5407 if (!sd) {
5408 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5409 new_cpu = select_idle_sibling(p, new_cpu);
5410
5411 } else while (sd) {
aaee1203 5412 struct sched_group *group;
c88d5910 5413 int weight;
098fb9db 5414
0763a660 5415 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5416 sd = sd->child;
5417 continue;
5418 }
098fb9db 5419
c44f2a02 5420 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5421 if (!group) {
5422 sd = sd->child;
5423 continue;
5424 }
4ae7d5ce 5425
d7c33c49 5426 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5427 if (new_cpu == -1 || new_cpu == cpu) {
5428 /* Now try balancing at a lower domain level of cpu */
5429 sd = sd->child;
5430 continue;
e7693a36 5431 }
aaee1203
PZ
5432
5433 /* Now try balancing at a lower domain level of new_cpu */
5434 cpu = new_cpu;
669c55e9 5435 weight = sd->span_weight;
aaee1203
PZ
5436 sd = NULL;
5437 for_each_domain(cpu, tmp) {
669c55e9 5438 if (weight <= tmp->span_weight)
aaee1203 5439 break;
0763a660 5440 if (tmp->flags & sd_flag)
aaee1203
PZ
5441 sd = tmp;
5442 }
5443 /* while loop will break here if sd == NULL */
e7693a36 5444 }
dce840a0 5445 rcu_read_unlock();
e7693a36 5446
c88d5910 5447 return new_cpu;
e7693a36 5448}
0a74bef8
PT
5449
5450/*
5451 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5452 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5453 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5454 */
5a4fd036 5455static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5456{
59efa0ba
PZ
5457 /*
5458 * As blocked tasks retain absolute vruntime the migration needs to
5459 * deal with this by subtracting the old and adding the new
5460 * min_vruntime -- the latter is done by enqueue_entity() when placing
5461 * the task on the new runqueue.
5462 */
5463 if (p->state == TASK_WAKING) {
5464 struct sched_entity *se = &p->se;
5465 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5466 u64 min_vruntime;
5467
5468#ifndef CONFIG_64BIT
5469 u64 min_vruntime_copy;
5470
5471 do {
5472 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5473 smp_rmb();
5474 min_vruntime = cfs_rq->min_vruntime;
5475 } while (min_vruntime != min_vruntime_copy);
5476#else
5477 min_vruntime = cfs_rq->min_vruntime;
5478#endif
5479
5480 se->vruntime -= min_vruntime;
5481 }
5482
aff3e498 5483 /*
9d89c257
YD
5484 * We are supposed to update the task to "current" time, then its up to date
5485 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5486 * what current time is, so simply throw away the out-of-date time. This
5487 * will result in the wakee task is less decayed, but giving the wakee more
5488 * load sounds not bad.
aff3e498 5489 */
9d89c257
YD
5490 remove_entity_load_avg(&p->se);
5491
5492 /* Tell new CPU we are migrated */
5493 p->se.avg.last_update_time = 0;
3944a927
BS
5494
5495 /* We have migrated, no longer consider this task hot */
9d89c257 5496 p->se.exec_start = 0;
0a74bef8 5497}
12695578
YD
5498
5499static void task_dead_fair(struct task_struct *p)
5500{
5501 remove_entity_load_avg(&p->se);
5502}
e7693a36
GH
5503#endif /* CONFIG_SMP */
5504
e52fb7c0
PZ
5505static unsigned long
5506wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5507{
5508 unsigned long gran = sysctl_sched_wakeup_granularity;
5509
5510 /*
e52fb7c0
PZ
5511 * Since its curr running now, convert the gran from real-time
5512 * to virtual-time in his units.
13814d42
MG
5513 *
5514 * By using 'se' instead of 'curr' we penalize light tasks, so
5515 * they get preempted easier. That is, if 'se' < 'curr' then
5516 * the resulting gran will be larger, therefore penalizing the
5517 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5518 * be smaller, again penalizing the lighter task.
5519 *
5520 * This is especially important for buddies when the leftmost
5521 * task is higher priority than the buddy.
0bbd3336 5522 */
f4ad9bd2 5523 return calc_delta_fair(gran, se);
0bbd3336
PZ
5524}
5525
464b7527
PZ
5526/*
5527 * Should 'se' preempt 'curr'.
5528 *
5529 * |s1
5530 * |s2
5531 * |s3
5532 * g
5533 * |<--->|c
5534 *
5535 * w(c, s1) = -1
5536 * w(c, s2) = 0
5537 * w(c, s3) = 1
5538 *
5539 */
5540static int
5541wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5542{
5543 s64 gran, vdiff = curr->vruntime - se->vruntime;
5544
5545 if (vdiff <= 0)
5546 return -1;
5547
e52fb7c0 5548 gran = wakeup_gran(curr, se);
464b7527
PZ
5549 if (vdiff > gran)
5550 return 1;
5551
5552 return 0;
5553}
5554
02479099
PZ
5555static void set_last_buddy(struct sched_entity *se)
5556{
69c80f3e
VP
5557 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5558 return;
5559
5560 for_each_sched_entity(se)
5561 cfs_rq_of(se)->last = se;
02479099
PZ
5562}
5563
5564static void set_next_buddy(struct sched_entity *se)
5565{
69c80f3e
VP
5566 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5567 return;
5568
5569 for_each_sched_entity(se)
5570 cfs_rq_of(se)->next = se;
02479099
PZ
5571}
5572
ac53db59
RR
5573static void set_skip_buddy(struct sched_entity *se)
5574{
69c80f3e
VP
5575 for_each_sched_entity(se)
5576 cfs_rq_of(se)->skip = se;
ac53db59
RR
5577}
5578
bf0f6f24
IM
5579/*
5580 * Preempt the current task with a newly woken task if needed:
5581 */
5a9b86f6 5582static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5583{
5584 struct task_struct *curr = rq->curr;
8651a86c 5585 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5586 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5587 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5588 int next_buddy_marked = 0;
bf0f6f24 5589
4ae7d5ce
IM
5590 if (unlikely(se == pse))
5591 return;
5592
5238cdd3 5593 /*
163122b7 5594 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5595 * unconditionally check_prempt_curr() after an enqueue (which may have
5596 * lead to a throttle). This both saves work and prevents false
5597 * next-buddy nomination below.
5598 */
5599 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5600 return;
5601
2f36825b 5602 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5603 set_next_buddy(pse);
2f36825b
VP
5604 next_buddy_marked = 1;
5605 }
57fdc26d 5606
aec0a514
BR
5607 /*
5608 * We can come here with TIF_NEED_RESCHED already set from new task
5609 * wake up path.
5238cdd3
PT
5610 *
5611 * Note: this also catches the edge-case of curr being in a throttled
5612 * group (e.g. via set_curr_task), since update_curr() (in the
5613 * enqueue of curr) will have resulted in resched being set. This
5614 * prevents us from potentially nominating it as a false LAST_BUDDY
5615 * below.
aec0a514
BR
5616 */
5617 if (test_tsk_need_resched(curr))
5618 return;
5619
a2f5c9ab
DH
5620 /* Idle tasks are by definition preempted by non-idle tasks. */
5621 if (unlikely(curr->policy == SCHED_IDLE) &&
5622 likely(p->policy != SCHED_IDLE))
5623 goto preempt;
5624
91c234b4 5625 /*
a2f5c9ab
DH
5626 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5627 * is driven by the tick):
91c234b4 5628 */
8ed92e51 5629 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5630 return;
bf0f6f24 5631
464b7527 5632 find_matching_se(&se, &pse);
9bbd7374 5633 update_curr(cfs_rq_of(se));
002f128b 5634 BUG_ON(!pse);
2f36825b
VP
5635 if (wakeup_preempt_entity(se, pse) == 1) {
5636 /*
5637 * Bias pick_next to pick the sched entity that is
5638 * triggering this preemption.
5639 */
5640 if (!next_buddy_marked)
5641 set_next_buddy(pse);
3a7e73a2 5642 goto preempt;
2f36825b 5643 }
464b7527 5644
3a7e73a2 5645 return;
a65ac745 5646
3a7e73a2 5647preempt:
8875125e 5648 resched_curr(rq);
3a7e73a2
PZ
5649 /*
5650 * Only set the backward buddy when the current task is still
5651 * on the rq. This can happen when a wakeup gets interleaved
5652 * with schedule on the ->pre_schedule() or idle_balance()
5653 * point, either of which can * drop the rq lock.
5654 *
5655 * Also, during early boot the idle thread is in the fair class,
5656 * for obvious reasons its a bad idea to schedule back to it.
5657 */
5658 if (unlikely(!se->on_rq || curr == rq->idle))
5659 return;
5660
5661 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5662 set_last_buddy(se);
bf0f6f24
IM
5663}
5664
606dba2e 5665static struct task_struct *
e7904a28 5666pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5667{
5668 struct cfs_rq *cfs_rq = &rq->cfs;
5669 struct sched_entity *se;
678d5718 5670 struct task_struct *p;
37e117c0 5671 int new_tasks;
678d5718 5672
6e83125c 5673again:
678d5718
PZ
5674#ifdef CONFIG_FAIR_GROUP_SCHED
5675 if (!cfs_rq->nr_running)
38033c37 5676 goto idle;
678d5718 5677
3f1d2a31 5678 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5679 goto simple;
5680
5681 /*
5682 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5683 * likely that a next task is from the same cgroup as the current.
5684 *
5685 * Therefore attempt to avoid putting and setting the entire cgroup
5686 * hierarchy, only change the part that actually changes.
5687 */
5688
5689 do {
5690 struct sched_entity *curr = cfs_rq->curr;
5691
5692 /*
5693 * Since we got here without doing put_prev_entity() we also
5694 * have to consider cfs_rq->curr. If it is still a runnable
5695 * entity, update_curr() will update its vruntime, otherwise
5696 * forget we've ever seen it.
5697 */
54d27365
BS
5698 if (curr) {
5699 if (curr->on_rq)
5700 update_curr(cfs_rq);
5701 else
5702 curr = NULL;
678d5718 5703
54d27365
BS
5704 /*
5705 * This call to check_cfs_rq_runtime() will do the
5706 * throttle and dequeue its entity in the parent(s).
5707 * Therefore the 'simple' nr_running test will indeed
5708 * be correct.
5709 */
5710 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5711 goto simple;
5712 }
678d5718
PZ
5713
5714 se = pick_next_entity(cfs_rq, curr);
5715 cfs_rq = group_cfs_rq(se);
5716 } while (cfs_rq);
5717
5718 p = task_of(se);
5719
5720 /*
5721 * Since we haven't yet done put_prev_entity and if the selected task
5722 * is a different task than we started out with, try and touch the
5723 * least amount of cfs_rqs.
5724 */
5725 if (prev != p) {
5726 struct sched_entity *pse = &prev->se;
5727
5728 while (!(cfs_rq = is_same_group(se, pse))) {
5729 int se_depth = se->depth;
5730 int pse_depth = pse->depth;
5731
5732 if (se_depth <= pse_depth) {
5733 put_prev_entity(cfs_rq_of(pse), pse);
5734 pse = parent_entity(pse);
5735 }
5736 if (se_depth >= pse_depth) {
5737 set_next_entity(cfs_rq_of(se), se);
5738 se = parent_entity(se);
5739 }
5740 }
5741
5742 put_prev_entity(cfs_rq, pse);
5743 set_next_entity(cfs_rq, se);
5744 }
5745
5746 if (hrtick_enabled(rq))
5747 hrtick_start_fair(rq, p);
5748
5749 return p;
5750simple:
5751 cfs_rq = &rq->cfs;
5752#endif
bf0f6f24 5753
36ace27e 5754 if (!cfs_rq->nr_running)
38033c37 5755 goto idle;
bf0f6f24 5756
3f1d2a31 5757 put_prev_task(rq, prev);
606dba2e 5758
bf0f6f24 5759 do {
678d5718 5760 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5761 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5762 cfs_rq = group_cfs_rq(se);
5763 } while (cfs_rq);
5764
8f4d37ec 5765 p = task_of(se);
678d5718 5766
b39e66ea
MG
5767 if (hrtick_enabled(rq))
5768 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5769
5770 return p;
38033c37
PZ
5771
5772idle:
cbce1a68
PZ
5773 /*
5774 * This is OK, because current is on_cpu, which avoids it being picked
5775 * for load-balance and preemption/IRQs are still disabled avoiding
5776 * further scheduler activity on it and we're being very careful to
5777 * re-start the picking loop.
5778 */
e7904a28 5779 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5780 new_tasks = idle_balance(rq);
e7904a28 5781 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5782 /*
5783 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5784 * possible for any higher priority task to appear. In that case we
5785 * must re-start the pick_next_entity() loop.
5786 */
e4aa358b 5787 if (new_tasks < 0)
37e117c0
PZ
5788 return RETRY_TASK;
5789
e4aa358b 5790 if (new_tasks > 0)
38033c37 5791 goto again;
38033c37
PZ
5792
5793 return NULL;
bf0f6f24
IM
5794}
5795
5796/*
5797 * Account for a descheduled task:
5798 */
31ee529c 5799static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5800{
5801 struct sched_entity *se = &prev->se;
5802 struct cfs_rq *cfs_rq;
5803
5804 for_each_sched_entity(se) {
5805 cfs_rq = cfs_rq_of(se);
ab6cde26 5806 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5807 }
5808}
5809
ac53db59
RR
5810/*
5811 * sched_yield() is very simple
5812 *
5813 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5814 */
5815static void yield_task_fair(struct rq *rq)
5816{
5817 struct task_struct *curr = rq->curr;
5818 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5819 struct sched_entity *se = &curr->se;
5820
5821 /*
5822 * Are we the only task in the tree?
5823 */
5824 if (unlikely(rq->nr_running == 1))
5825 return;
5826
5827 clear_buddies(cfs_rq, se);
5828
5829 if (curr->policy != SCHED_BATCH) {
5830 update_rq_clock(rq);
5831 /*
5832 * Update run-time statistics of the 'current'.
5833 */
5834 update_curr(cfs_rq);
916671c0
MG
5835 /*
5836 * Tell update_rq_clock() that we've just updated,
5837 * so we don't do microscopic update in schedule()
5838 * and double the fastpath cost.
5839 */
9edfbfed 5840 rq_clock_skip_update(rq, true);
ac53db59
RR
5841 }
5842
5843 set_skip_buddy(se);
5844}
5845
d95f4122
MG
5846static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5847{
5848 struct sched_entity *se = &p->se;
5849
5238cdd3
PT
5850 /* throttled hierarchies are not runnable */
5851 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5852 return false;
5853
5854 /* Tell the scheduler that we'd really like pse to run next. */
5855 set_next_buddy(se);
5856
d95f4122
MG
5857 yield_task_fair(rq);
5858
5859 return true;
5860}
5861
681f3e68 5862#ifdef CONFIG_SMP
bf0f6f24 5863/**************************************************
e9c84cb8
PZ
5864 * Fair scheduling class load-balancing methods.
5865 *
5866 * BASICS
5867 *
5868 * The purpose of load-balancing is to achieve the same basic fairness the
5869 * per-cpu scheduler provides, namely provide a proportional amount of compute
5870 * time to each task. This is expressed in the following equation:
5871 *
5872 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5873 *
5874 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5875 * W_i,0 is defined as:
5876 *
5877 * W_i,0 = \Sum_j w_i,j (2)
5878 *
5879 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5880 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5881 *
5882 * The weight average is an exponential decay average of the instantaneous
5883 * weight:
5884 *
5885 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5886 *
ced549fa 5887 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5888 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5889 * can also include other factors [XXX].
5890 *
5891 * To achieve this balance we define a measure of imbalance which follows
5892 * directly from (1):
5893 *
ced549fa 5894 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5895 *
5896 * We them move tasks around to minimize the imbalance. In the continuous
5897 * function space it is obvious this converges, in the discrete case we get
5898 * a few fun cases generally called infeasible weight scenarios.
5899 *
5900 * [XXX expand on:
5901 * - infeasible weights;
5902 * - local vs global optima in the discrete case. ]
5903 *
5904 *
5905 * SCHED DOMAINS
5906 *
5907 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5908 * for all i,j solution, we create a tree of cpus that follows the hardware
5909 * topology where each level pairs two lower groups (or better). This results
5910 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5911 * tree to only the first of the previous level and we decrease the frequency
5912 * of load-balance at each level inv. proportional to the number of cpus in
5913 * the groups.
5914 *
5915 * This yields:
5916 *
5917 * log_2 n 1 n
5918 * \Sum { --- * --- * 2^i } = O(n) (5)
5919 * i = 0 2^i 2^i
5920 * `- size of each group
5921 * | | `- number of cpus doing load-balance
5922 * | `- freq
5923 * `- sum over all levels
5924 *
5925 * Coupled with a limit on how many tasks we can migrate every balance pass,
5926 * this makes (5) the runtime complexity of the balancer.
5927 *
5928 * An important property here is that each CPU is still (indirectly) connected
5929 * to every other cpu in at most O(log n) steps:
5930 *
5931 * The adjacency matrix of the resulting graph is given by:
5932 *
5933 * log_2 n
5934 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5935 * k = 0
5936 *
5937 * And you'll find that:
5938 *
5939 * A^(log_2 n)_i,j != 0 for all i,j (7)
5940 *
5941 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5942 * The task movement gives a factor of O(m), giving a convergence complexity
5943 * of:
5944 *
5945 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5946 *
5947 *
5948 * WORK CONSERVING
5949 *
5950 * In order to avoid CPUs going idle while there's still work to do, new idle
5951 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5952 * tree itself instead of relying on other CPUs to bring it work.
5953 *
5954 * This adds some complexity to both (5) and (8) but it reduces the total idle
5955 * time.
5956 *
5957 * [XXX more?]
5958 *
5959 *
5960 * CGROUPS
5961 *
5962 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5963 *
5964 * s_k,i
5965 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5966 * S_k
5967 *
5968 * Where
5969 *
5970 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5971 *
5972 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5973 *
5974 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5975 * property.
5976 *
5977 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5978 * rewrite all of this once again.]
5979 */
bf0f6f24 5980
ed387b78
HS
5981static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5982
0ec8aa00
PZ
5983enum fbq_type { regular, remote, all };
5984
ddcdf6e7 5985#define LBF_ALL_PINNED 0x01
367456c7 5986#define LBF_NEED_BREAK 0x02
6263322c
PZ
5987#define LBF_DST_PINNED 0x04
5988#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5989
5990struct lb_env {
5991 struct sched_domain *sd;
5992
ddcdf6e7 5993 struct rq *src_rq;
85c1e7da 5994 int src_cpu;
ddcdf6e7
PZ
5995
5996 int dst_cpu;
5997 struct rq *dst_rq;
5998
88b8dac0
SV
5999 struct cpumask *dst_grpmask;
6000 int new_dst_cpu;
ddcdf6e7 6001 enum cpu_idle_type idle;
bd939f45 6002 long imbalance;
b9403130
MW
6003 /* The set of CPUs under consideration for load-balancing */
6004 struct cpumask *cpus;
6005
ddcdf6e7 6006 unsigned int flags;
367456c7
PZ
6007
6008 unsigned int loop;
6009 unsigned int loop_break;
6010 unsigned int loop_max;
0ec8aa00
PZ
6011
6012 enum fbq_type fbq_type;
163122b7 6013 struct list_head tasks;
ddcdf6e7
PZ
6014};
6015
029632fb
PZ
6016/*
6017 * Is this task likely cache-hot:
6018 */
5d5e2b1b 6019static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6020{
6021 s64 delta;
6022
e5673f28
KT
6023 lockdep_assert_held(&env->src_rq->lock);
6024
029632fb
PZ
6025 if (p->sched_class != &fair_sched_class)
6026 return 0;
6027
6028 if (unlikely(p->policy == SCHED_IDLE))
6029 return 0;
6030
6031 /*
6032 * Buddy candidates are cache hot:
6033 */
5d5e2b1b 6034 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6035 (&p->se == cfs_rq_of(&p->se)->next ||
6036 &p->se == cfs_rq_of(&p->se)->last))
6037 return 1;
6038
6039 if (sysctl_sched_migration_cost == -1)
6040 return 1;
6041 if (sysctl_sched_migration_cost == 0)
6042 return 0;
6043
5d5e2b1b 6044 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6045
6046 return delta < (s64)sysctl_sched_migration_cost;
6047}
6048
3a7053b3 6049#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6050/*
2a1ed24c
SD
6051 * Returns 1, if task migration degrades locality
6052 * Returns 0, if task migration improves locality i.e migration preferred.
6053 * Returns -1, if task migration is not affected by locality.
c1ceac62 6054 */
2a1ed24c 6055static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6056{
b1ad065e 6057 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6058 unsigned long src_faults, dst_faults;
3a7053b3
MG
6059 int src_nid, dst_nid;
6060
2a595721 6061 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6062 return -1;
6063
c3b9bc5b 6064 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6065 return -1;
7a0f3083
MG
6066
6067 src_nid = cpu_to_node(env->src_cpu);
6068 dst_nid = cpu_to_node(env->dst_cpu);
6069
83e1d2cd 6070 if (src_nid == dst_nid)
2a1ed24c 6071 return -1;
7a0f3083 6072
2a1ed24c
SD
6073 /* Migrating away from the preferred node is always bad. */
6074 if (src_nid == p->numa_preferred_nid) {
6075 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6076 return 1;
6077 else
6078 return -1;
6079 }
b1ad065e 6080
c1ceac62
RR
6081 /* Encourage migration to the preferred node. */
6082 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6083 return 0;
b1ad065e 6084
c1ceac62
RR
6085 if (numa_group) {
6086 src_faults = group_faults(p, src_nid);
6087 dst_faults = group_faults(p, dst_nid);
6088 } else {
6089 src_faults = task_faults(p, src_nid);
6090 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6091 }
6092
c1ceac62 6093 return dst_faults < src_faults;
7a0f3083
MG
6094}
6095
3a7053b3 6096#else
2a1ed24c 6097static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6098 struct lb_env *env)
6099{
2a1ed24c 6100 return -1;
7a0f3083 6101}
3a7053b3
MG
6102#endif
6103
1e3c88bd
PZ
6104/*
6105 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6106 */
6107static
8e45cb54 6108int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6109{
2a1ed24c 6110 int tsk_cache_hot;
e5673f28
KT
6111
6112 lockdep_assert_held(&env->src_rq->lock);
6113
1e3c88bd
PZ
6114 /*
6115 * We do not migrate tasks that are:
d3198084 6116 * 1) throttled_lb_pair, or
1e3c88bd 6117 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6118 * 3) running (obviously), or
6119 * 4) are cache-hot on their current CPU.
1e3c88bd 6120 */
d3198084
JK
6121 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6122 return 0;
6123
ddcdf6e7 6124 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6125 int cpu;
88b8dac0 6126
41acab88 6127 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6128
6263322c
PZ
6129 env->flags |= LBF_SOME_PINNED;
6130
88b8dac0
SV
6131 /*
6132 * Remember if this task can be migrated to any other cpu in
6133 * our sched_group. We may want to revisit it if we couldn't
6134 * meet load balance goals by pulling other tasks on src_cpu.
6135 *
6136 * Also avoid computing new_dst_cpu if we have already computed
6137 * one in current iteration.
6138 */
6263322c 6139 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6140 return 0;
6141
e02e60c1
JK
6142 /* Prevent to re-select dst_cpu via env's cpus */
6143 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6144 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6145 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6146 env->new_dst_cpu = cpu;
6147 break;
6148 }
88b8dac0 6149 }
e02e60c1 6150
1e3c88bd
PZ
6151 return 0;
6152 }
88b8dac0
SV
6153
6154 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6155 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6156
ddcdf6e7 6157 if (task_running(env->src_rq, p)) {
41acab88 6158 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6159 return 0;
6160 }
6161
6162 /*
6163 * Aggressive migration if:
3a7053b3
MG
6164 * 1) destination numa is preferred
6165 * 2) task is cache cold, or
6166 * 3) too many balance attempts have failed.
1e3c88bd 6167 */
2a1ed24c
SD
6168 tsk_cache_hot = migrate_degrades_locality(p, env);
6169 if (tsk_cache_hot == -1)
6170 tsk_cache_hot = task_hot(p, env);
3a7053b3 6171
2a1ed24c 6172 if (tsk_cache_hot <= 0 ||
7a96c231 6173 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6174 if (tsk_cache_hot == 1) {
3a7053b3
MG
6175 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6176 schedstat_inc(p, se.statistics.nr_forced_migrations);
6177 }
1e3c88bd
PZ
6178 return 1;
6179 }
6180
4e2dcb73
ZH
6181 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6182 return 0;
1e3c88bd
PZ
6183}
6184
897c395f 6185/*
163122b7
KT
6186 * detach_task() -- detach the task for the migration specified in env
6187 */
6188static void detach_task(struct task_struct *p, struct lb_env *env)
6189{
6190 lockdep_assert_held(&env->src_rq->lock);
6191
163122b7 6192 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6193 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6194 set_task_cpu(p, env->dst_cpu);
6195}
6196
897c395f 6197/*
e5673f28 6198 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6199 * part of active balancing operations within "domain".
897c395f 6200 *
e5673f28 6201 * Returns a task if successful and NULL otherwise.
897c395f 6202 */
e5673f28 6203static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6204{
6205 struct task_struct *p, *n;
897c395f 6206
e5673f28
KT
6207 lockdep_assert_held(&env->src_rq->lock);
6208
367456c7 6209 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6210 if (!can_migrate_task(p, env))
6211 continue;
897c395f 6212
163122b7 6213 detach_task(p, env);
e5673f28 6214
367456c7 6215 /*
e5673f28 6216 * Right now, this is only the second place where
163122b7 6217 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6218 * so we can safely collect stats here rather than
163122b7 6219 * inside detach_tasks().
367456c7
PZ
6220 */
6221 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6222 return p;
897c395f 6223 }
e5673f28 6224 return NULL;
897c395f
PZ
6225}
6226
eb95308e
PZ
6227static const unsigned int sched_nr_migrate_break = 32;
6228
5d6523eb 6229/*
163122b7
KT
6230 * detach_tasks() -- tries to detach up to imbalance weighted load from
6231 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6232 *
163122b7 6233 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6234 */
163122b7 6235static int detach_tasks(struct lb_env *env)
1e3c88bd 6236{
5d6523eb
PZ
6237 struct list_head *tasks = &env->src_rq->cfs_tasks;
6238 struct task_struct *p;
367456c7 6239 unsigned long load;
163122b7
KT
6240 int detached = 0;
6241
6242 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6243
bd939f45 6244 if (env->imbalance <= 0)
5d6523eb 6245 return 0;
1e3c88bd 6246
5d6523eb 6247 while (!list_empty(tasks)) {
985d3a4c
YD
6248 /*
6249 * We don't want to steal all, otherwise we may be treated likewise,
6250 * which could at worst lead to a livelock crash.
6251 */
6252 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6253 break;
6254
5d6523eb 6255 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6256
367456c7
PZ
6257 env->loop++;
6258 /* We've more or less seen every task there is, call it quits */
5d6523eb 6259 if (env->loop > env->loop_max)
367456c7 6260 break;
5d6523eb
PZ
6261
6262 /* take a breather every nr_migrate tasks */
367456c7 6263 if (env->loop > env->loop_break) {
eb95308e 6264 env->loop_break += sched_nr_migrate_break;
8e45cb54 6265 env->flags |= LBF_NEED_BREAK;
ee00e66f 6266 break;
a195f004 6267 }
1e3c88bd 6268
d3198084 6269 if (!can_migrate_task(p, env))
367456c7
PZ
6270 goto next;
6271
6272 load = task_h_load(p);
5d6523eb 6273
eb95308e 6274 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6275 goto next;
6276
bd939f45 6277 if ((load / 2) > env->imbalance)
367456c7 6278 goto next;
1e3c88bd 6279
163122b7
KT
6280 detach_task(p, env);
6281 list_add(&p->se.group_node, &env->tasks);
6282
6283 detached++;
bd939f45 6284 env->imbalance -= load;
1e3c88bd
PZ
6285
6286#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6287 /*
6288 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6289 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6290 * the critical section.
6291 */
5d6523eb 6292 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6293 break;
1e3c88bd
PZ
6294#endif
6295
ee00e66f
PZ
6296 /*
6297 * We only want to steal up to the prescribed amount of
6298 * weighted load.
6299 */
bd939f45 6300 if (env->imbalance <= 0)
ee00e66f 6301 break;
367456c7
PZ
6302
6303 continue;
6304next:
5d6523eb 6305 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6306 }
5d6523eb 6307
1e3c88bd 6308 /*
163122b7
KT
6309 * Right now, this is one of only two places we collect this stat
6310 * so we can safely collect detach_one_task() stats here rather
6311 * than inside detach_one_task().
1e3c88bd 6312 */
163122b7 6313 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6314
163122b7
KT
6315 return detached;
6316}
6317
6318/*
6319 * attach_task() -- attach the task detached by detach_task() to its new rq.
6320 */
6321static void attach_task(struct rq *rq, struct task_struct *p)
6322{
6323 lockdep_assert_held(&rq->lock);
6324
6325 BUG_ON(task_rq(p) != rq);
163122b7 6326 activate_task(rq, p, 0);
3ea94de1 6327 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6328 check_preempt_curr(rq, p, 0);
6329}
6330
6331/*
6332 * attach_one_task() -- attaches the task returned from detach_one_task() to
6333 * its new rq.
6334 */
6335static void attach_one_task(struct rq *rq, struct task_struct *p)
6336{
6337 raw_spin_lock(&rq->lock);
6338 attach_task(rq, p);
6339 raw_spin_unlock(&rq->lock);
6340}
6341
6342/*
6343 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6344 * new rq.
6345 */
6346static void attach_tasks(struct lb_env *env)
6347{
6348 struct list_head *tasks = &env->tasks;
6349 struct task_struct *p;
6350
6351 raw_spin_lock(&env->dst_rq->lock);
6352
6353 while (!list_empty(tasks)) {
6354 p = list_first_entry(tasks, struct task_struct, se.group_node);
6355 list_del_init(&p->se.group_node);
1e3c88bd 6356
163122b7
KT
6357 attach_task(env->dst_rq, p);
6358 }
6359
6360 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6361}
6362
230059de 6363#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6364static void update_blocked_averages(int cpu)
9e3081ca 6365{
9e3081ca 6366 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6367 struct cfs_rq *cfs_rq;
6368 unsigned long flags;
9e3081ca 6369
48a16753
PT
6370 raw_spin_lock_irqsave(&rq->lock, flags);
6371 update_rq_clock(rq);
9d89c257 6372
9763b67f
PZ
6373 /*
6374 * Iterates the task_group tree in a bottom up fashion, see
6375 * list_add_leaf_cfs_rq() for details.
6376 */
64660c86 6377 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6378 /* throttled entities do not contribute to load */
6379 if (throttled_hierarchy(cfs_rq))
6380 continue;
48a16753 6381
a2c6c91f 6382 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6383 update_tg_load_avg(cfs_rq, 0);
6384 }
48a16753 6385 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6386}
6387
9763b67f 6388/*
68520796 6389 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6390 * This needs to be done in a top-down fashion because the load of a child
6391 * group is a fraction of its parents load.
6392 */
68520796 6393static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6394{
68520796
VD
6395 struct rq *rq = rq_of(cfs_rq);
6396 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6397 unsigned long now = jiffies;
68520796 6398 unsigned long load;
a35b6466 6399
68520796 6400 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6401 return;
6402
68520796
VD
6403 cfs_rq->h_load_next = NULL;
6404 for_each_sched_entity(se) {
6405 cfs_rq = cfs_rq_of(se);
6406 cfs_rq->h_load_next = se;
6407 if (cfs_rq->last_h_load_update == now)
6408 break;
6409 }
a35b6466 6410
68520796 6411 if (!se) {
7ea241af 6412 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6413 cfs_rq->last_h_load_update = now;
6414 }
6415
6416 while ((se = cfs_rq->h_load_next) != NULL) {
6417 load = cfs_rq->h_load;
7ea241af
YD
6418 load = div64_ul(load * se->avg.load_avg,
6419 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6420 cfs_rq = group_cfs_rq(se);
6421 cfs_rq->h_load = load;
6422 cfs_rq->last_h_load_update = now;
6423 }
9763b67f
PZ
6424}
6425
367456c7 6426static unsigned long task_h_load(struct task_struct *p)
230059de 6427{
367456c7 6428 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6429
68520796 6430 update_cfs_rq_h_load(cfs_rq);
9d89c257 6431 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6432 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6433}
6434#else
48a16753 6435static inline void update_blocked_averages(int cpu)
9e3081ca 6436{
6c1d47c0
VG
6437 struct rq *rq = cpu_rq(cpu);
6438 struct cfs_rq *cfs_rq = &rq->cfs;
6439 unsigned long flags;
6440
6441 raw_spin_lock_irqsave(&rq->lock, flags);
6442 update_rq_clock(rq);
a2c6c91f 6443 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6444 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6445}
6446
367456c7 6447static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6448{
9d89c257 6449 return p->se.avg.load_avg;
1e3c88bd 6450}
230059de 6451#endif
1e3c88bd 6452
1e3c88bd 6453/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6454
6455enum group_type {
6456 group_other = 0,
6457 group_imbalanced,
6458 group_overloaded,
6459};
6460
1e3c88bd
PZ
6461/*
6462 * sg_lb_stats - stats of a sched_group required for load_balancing
6463 */
6464struct sg_lb_stats {
6465 unsigned long avg_load; /*Avg load across the CPUs of the group */
6466 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6467 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6468 unsigned long load_per_task;
63b2ca30 6469 unsigned long group_capacity;
9e91d61d 6470 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6471 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6472 unsigned int idle_cpus;
6473 unsigned int group_weight;
caeb178c 6474 enum group_type group_type;
ea67821b 6475 int group_no_capacity;
0ec8aa00
PZ
6476#ifdef CONFIG_NUMA_BALANCING
6477 unsigned int nr_numa_running;
6478 unsigned int nr_preferred_running;
6479#endif
1e3c88bd
PZ
6480};
6481
56cf515b
JK
6482/*
6483 * sd_lb_stats - Structure to store the statistics of a sched_domain
6484 * during load balancing.
6485 */
6486struct sd_lb_stats {
6487 struct sched_group *busiest; /* Busiest group in this sd */
6488 struct sched_group *local; /* Local group in this sd */
6489 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6490 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6491 unsigned long avg_load; /* Average load across all groups in sd */
6492
56cf515b 6493 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6494 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6495};
6496
147c5fc2
PZ
6497static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6498{
6499 /*
6500 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6501 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6502 * We must however clear busiest_stat::avg_load because
6503 * update_sd_pick_busiest() reads this before assignment.
6504 */
6505 *sds = (struct sd_lb_stats){
6506 .busiest = NULL,
6507 .local = NULL,
6508 .total_load = 0UL,
63b2ca30 6509 .total_capacity = 0UL,
147c5fc2
PZ
6510 .busiest_stat = {
6511 .avg_load = 0UL,
caeb178c
RR
6512 .sum_nr_running = 0,
6513 .group_type = group_other,
147c5fc2
PZ
6514 },
6515 };
6516}
6517
1e3c88bd
PZ
6518/**
6519 * get_sd_load_idx - Obtain the load index for a given sched domain.
6520 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6521 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6522 *
6523 * Return: The load index.
1e3c88bd
PZ
6524 */
6525static inline int get_sd_load_idx(struct sched_domain *sd,
6526 enum cpu_idle_type idle)
6527{
6528 int load_idx;
6529
6530 switch (idle) {
6531 case CPU_NOT_IDLE:
6532 load_idx = sd->busy_idx;
6533 break;
6534
6535 case CPU_NEWLY_IDLE:
6536 load_idx = sd->newidle_idx;
6537 break;
6538 default:
6539 load_idx = sd->idle_idx;
6540 break;
6541 }
6542
6543 return load_idx;
6544}
6545
ced549fa 6546static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6547{
6548 struct rq *rq = cpu_rq(cpu);
b5b4860d 6549 u64 total, used, age_stamp, avg;
cadefd3d 6550 s64 delta;
1e3c88bd 6551
b654f7de
PZ
6552 /*
6553 * Since we're reading these variables without serialization make sure
6554 * we read them once before doing sanity checks on them.
6555 */
316c1608
JL
6556 age_stamp = READ_ONCE(rq->age_stamp);
6557 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6558 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6559
cadefd3d
PZ
6560 if (unlikely(delta < 0))
6561 delta = 0;
6562
6563 total = sched_avg_period() + delta;
aa483808 6564
b5b4860d 6565 used = div_u64(avg, total);
1e3c88bd 6566
b5b4860d
VG
6567 if (likely(used < SCHED_CAPACITY_SCALE))
6568 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6569
b5b4860d 6570 return 1;
1e3c88bd
PZ
6571}
6572
ced549fa 6573static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6574{
8cd5601c 6575 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6576 struct sched_group *sdg = sd->groups;
6577
ca6d75e6 6578 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6579
ced549fa 6580 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6581 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6582
ced549fa
NP
6583 if (!capacity)
6584 capacity = 1;
1e3c88bd 6585
ced549fa
NP
6586 cpu_rq(cpu)->cpu_capacity = capacity;
6587 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6588}
6589
63b2ca30 6590void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6591{
6592 struct sched_domain *child = sd->child;
6593 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6594 unsigned long capacity;
4ec4412e
VG
6595 unsigned long interval;
6596
6597 interval = msecs_to_jiffies(sd->balance_interval);
6598 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6599 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6600
6601 if (!child) {
ced549fa 6602 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6603 return;
6604 }
6605
dc7ff76e 6606 capacity = 0;
1e3c88bd 6607
74a5ce20
PZ
6608 if (child->flags & SD_OVERLAP) {
6609 /*
6610 * SD_OVERLAP domains cannot assume that child groups
6611 * span the current group.
6612 */
6613
863bffc8 6614 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6615 struct sched_group_capacity *sgc;
9abf24d4 6616 struct rq *rq = cpu_rq(cpu);
863bffc8 6617
9abf24d4 6618 /*
63b2ca30 6619 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6620 * gets here before we've attached the domains to the
6621 * runqueues.
6622 *
ced549fa
NP
6623 * Use capacity_of(), which is set irrespective of domains
6624 * in update_cpu_capacity().
9abf24d4 6625 *
dc7ff76e 6626 * This avoids capacity from being 0 and
9abf24d4 6627 * causing divide-by-zero issues on boot.
9abf24d4
SD
6628 */
6629 if (unlikely(!rq->sd)) {
ced549fa 6630 capacity += capacity_of(cpu);
9abf24d4
SD
6631 continue;
6632 }
863bffc8 6633
63b2ca30 6634 sgc = rq->sd->groups->sgc;
63b2ca30 6635 capacity += sgc->capacity;
863bffc8 6636 }
74a5ce20
PZ
6637 } else {
6638 /*
6639 * !SD_OVERLAP domains can assume that child groups
6640 * span the current group.
6641 */
6642
6643 group = child->groups;
6644 do {
63b2ca30 6645 capacity += group->sgc->capacity;
74a5ce20
PZ
6646 group = group->next;
6647 } while (group != child->groups);
6648 }
1e3c88bd 6649
63b2ca30 6650 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6651}
6652
9d5efe05 6653/*
ea67821b
VG
6654 * Check whether the capacity of the rq has been noticeably reduced by side
6655 * activity. The imbalance_pct is used for the threshold.
6656 * Return true is the capacity is reduced
9d5efe05
SV
6657 */
6658static inline int
ea67821b 6659check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6660{
ea67821b
VG
6661 return ((rq->cpu_capacity * sd->imbalance_pct) <
6662 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6663}
6664
30ce5dab
PZ
6665/*
6666 * Group imbalance indicates (and tries to solve) the problem where balancing
6667 * groups is inadequate due to tsk_cpus_allowed() constraints.
6668 *
6669 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6670 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6671 * Something like:
6672 *
6673 * { 0 1 2 3 } { 4 5 6 7 }
6674 * * * * *
6675 *
6676 * If we were to balance group-wise we'd place two tasks in the first group and
6677 * two tasks in the second group. Clearly this is undesired as it will overload
6678 * cpu 3 and leave one of the cpus in the second group unused.
6679 *
6680 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6681 * by noticing the lower domain failed to reach balance and had difficulty
6682 * moving tasks due to affinity constraints.
30ce5dab
PZ
6683 *
6684 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6685 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6686 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6687 * to create an effective group imbalance.
6688 *
6689 * This is a somewhat tricky proposition since the next run might not find the
6690 * group imbalance and decide the groups need to be balanced again. A most
6691 * subtle and fragile situation.
6692 */
6693
6263322c 6694static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6695{
63b2ca30 6696 return group->sgc->imbalance;
30ce5dab
PZ
6697}
6698
b37d9316 6699/*
ea67821b
VG
6700 * group_has_capacity returns true if the group has spare capacity that could
6701 * be used by some tasks.
6702 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6703 * smaller than the number of CPUs or if the utilization is lower than the
6704 * available capacity for CFS tasks.
ea67821b
VG
6705 * For the latter, we use a threshold to stabilize the state, to take into
6706 * account the variance of the tasks' load and to return true if the available
6707 * capacity in meaningful for the load balancer.
6708 * As an example, an available capacity of 1% can appear but it doesn't make
6709 * any benefit for the load balance.
b37d9316 6710 */
ea67821b
VG
6711static inline bool
6712group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6713{
ea67821b
VG
6714 if (sgs->sum_nr_running < sgs->group_weight)
6715 return true;
c61037e9 6716
ea67821b 6717 if ((sgs->group_capacity * 100) >
9e91d61d 6718 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6719 return true;
b37d9316 6720
ea67821b
VG
6721 return false;
6722}
6723
6724/*
6725 * group_is_overloaded returns true if the group has more tasks than it can
6726 * handle.
6727 * group_is_overloaded is not equals to !group_has_capacity because a group
6728 * with the exact right number of tasks, has no more spare capacity but is not
6729 * overloaded so both group_has_capacity and group_is_overloaded return
6730 * false.
6731 */
6732static inline bool
6733group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6734{
6735 if (sgs->sum_nr_running <= sgs->group_weight)
6736 return false;
b37d9316 6737
ea67821b 6738 if ((sgs->group_capacity * 100) <
9e91d61d 6739 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6740 return true;
b37d9316 6741
ea67821b 6742 return false;
b37d9316
PZ
6743}
6744
79a89f92
LY
6745static inline enum
6746group_type group_classify(struct sched_group *group,
6747 struct sg_lb_stats *sgs)
caeb178c 6748{
ea67821b 6749 if (sgs->group_no_capacity)
caeb178c
RR
6750 return group_overloaded;
6751
6752 if (sg_imbalanced(group))
6753 return group_imbalanced;
6754
6755 return group_other;
6756}
6757
1e3c88bd
PZ
6758/**
6759 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6760 * @env: The load balancing environment.
1e3c88bd 6761 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6762 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6763 * @local_group: Does group contain this_cpu.
1e3c88bd 6764 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6765 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6766 */
bd939f45
PZ
6767static inline void update_sg_lb_stats(struct lb_env *env,
6768 struct sched_group *group, int load_idx,
4486edd1
TC
6769 int local_group, struct sg_lb_stats *sgs,
6770 bool *overload)
1e3c88bd 6771{
30ce5dab 6772 unsigned long load;
a426f99c 6773 int i, nr_running;
1e3c88bd 6774
b72ff13c
PZ
6775 memset(sgs, 0, sizeof(*sgs));
6776
b9403130 6777 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6778 struct rq *rq = cpu_rq(i);
6779
1e3c88bd 6780 /* Bias balancing toward cpus of our domain */
6263322c 6781 if (local_group)
04f733b4 6782 load = target_load(i, load_idx);
6263322c 6783 else
1e3c88bd 6784 load = source_load(i, load_idx);
1e3c88bd
PZ
6785
6786 sgs->group_load += load;
9e91d61d 6787 sgs->group_util += cpu_util(i);
65fdac08 6788 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6789
a426f99c
WL
6790 nr_running = rq->nr_running;
6791 if (nr_running > 1)
4486edd1
TC
6792 *overload = true;
6793
0ec8aa00
PZ
6794#ifdef CONFIG_NUMA_BALANCING
6795 sgs->nr_numa_running += rq->nr_numa_running;
6796 sgs->nr_preferred_running += rq->nr_preferred_running;
6797#endif
1e3c88bd 6798 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6799 /*
6800 * No need to call idle_cpu() if nr_running is not 0
6801 */
6802 if (!nr_running && idle_cpu(i))
aae6d3dd 6803 sgs->idle_cpus++;
1e3c88bd
PZ
6804 }
6805
63b2ca30
NP
6806 /* Adjust by relative CPU capacity of the group */
6807 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6808 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6809
dd5feea1 6810 if (sgs->sum_nr_running)
38d0f770 6811 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6812
aae6d3dd 6813 sgs->group_weight = group->group_weight;
b37d9316 6814
ea67821b 6815 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6816 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6817}
6818
532cb4c4
MN
6819/**
6820 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6821 * @env: The load balancing environment.
532cb4c4
MN
6822 * @sds: sched_domain statistics
6823 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6824 * @sgs: sched_group statistics
532cb4c4
MN
6825 *
6826 * Determine if @sg is a busier group than the previously selected
6827 * busiest group.
e69f6186
YB
6828 *
6829 * Return: %true if @sg is a busier group than the previously selected
6830 * busiest group. %false otherwise.
532cb4c4 6831 */
bd939f45 6832static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6833 struct sd_lb_stats *sds,
6834 struct sched_group *sg,
bd939f45 6835 struct sg_lb_stats *sgs)
532cb4c4 6836{
caeb178c 6837 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6838
caeb178c 6839 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6840 return true;
6841
caeb178c
RR
6842 if (sgs->group_type < busiest->group_type)
6843 return false;
6844
6845 if (sgs->avg_load <= busiest->avg_load)
6846 return false;
6847
6848 /* This is the busiest node in its class. */
6849 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6850 return true;
6851
1f621e02
SD
6852 /* No ASYM_PACKING if target cpu is already busy */
6853 if (env->idle == CPU_NOT_IDLE)
6854 return true;
532cb4c4
MN
6855 /*
6856 * ASYM_PACKING needs to move all the work to the lowest
6857 * numbered CPUs in the group, therefore mark all groups
6858 * higher than ourself as busy.
6859 */
caeb178c 6860 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6861 if (!sds->busiest)
6862 return true;
6863
1f621e02
SD
6864 /* Prefer to move from highest possible cpu's work */
6865 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6866 return true;
6867 }
6868
6869 return false;
6870}
6871
0ec8aa00
PZ
6872#ifdef CONFIG_NUMA_BALANCING
6873static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6874{
6875 if (sgs->sum_nr_running > sgs->nr_numa_running)
6876 return regular;
6877 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6878 return remote;
6879 return all;
6880}
6881
6882static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6883{
6884 if (rq->nr_running > rq->nr_numa_running)
6885 return regular;
6886 if (rq->nr_running > rq->nr_preferred_running)
6887 return remote;
6888 return all;
6889}
6890#else
6891static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6892{
6893 return all;
6894}
6895
6896static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6897{
6898 return regular;
6899}
6900#endif /* CONFIG_NUMA_BALANCING */
6901
1e3c88bd 6902/**
461819ac 6903 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6904 * @env: The load balancing environment.
1e3c88bd
PZ
6905 * @sds: variable to hold the statistics for this sched_domain.
6906 */
0ec8aa00 6907static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6908{
bd939f45
PZ
6909 struct sched_domain *child = env->sd->child;
6910 struct sched_group *sg = env->sd->groups;
56cf515b 6911 struct sg_lb_stats tmp_sgs;
1e3c88bd 6912 int load_idx, prefer_sibling = 0;
4486edd1 6913 bool overload = false;
1e3c88bd
PZ
6914
6915 if (child && child->flags & SD_PREFER_SIBLING)
6916 prefer_sibling = 1;
6917
bd939f45 6918 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6919
6920 do {
56cf515b 6921 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6922 int local_group;
6923
bd939f45 6924 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6925 if (local_group) {
6926 sds->local = sg;
6927 sgs = &sds->local_stat;
b72ff13c
PZ
6928
6929 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6930 time_after_eq(jiffies, sg->sgc->next_update))
6931 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6932 }
1e3c88bd 6933
4486edd1
TC
6934 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6935 &overload);
1e3c88bd 6936
b72ff13c
PZ
6937 if (local_group)
6938 goto next_group;
6939
1e3c88bd
PZ
6940 /*
6941 * In case the child domain prefers tasks go to siblings
ea67821b 6942 * first, lower the sg capacity so that we'll try
75dd321d
NR
6943 * and move all the excess tasks away. We lower the capacity
6944 * of a group only if the local group has the capacity to fit
ea67821b
VG
6945 * these excess tasks. The extra check prevents the case where
6946 * you always pull from the heaviest group when it is already
6947 * under-utilized (possible with a large weight task outweighs
6948 * the tasks on the system).
1e3c88bd 6949 */
b72ff13c 6950 if (prefer_sibling && sds->local &&
ea67821b
VG
6951 group_has_capacity(env, &sds->local_stat) &&
6952 (sgs->sum_nr_running > 1)) {
6953 sgs->group_no_capacity = 1;
79a89f92 6954 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6955 }
1e3c88bd 6956
b72ff13c 6957 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6958 sds->busiest = sg;
56cf515b 6959 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6960 }
6961
b72ff13c
PZ
6962next_group:
6963 /* Now, start updating sd_lb_stats */
6964 sds->total_load += sgs->group_load;
63b2ca30 6965 sds->total_capacity += sgs->group_capacity;
b72ff13c 6966
532cb4c4 6967 sg = sg->next;
bd939f45 6968 } while (sg != env->sd->groups);
0ec8aa00
PZ
6969
6970 if (env->sd->flags & SD_NUMA)
6971 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6972
6973 if (!env->sd->parent) {
6974 /* update overload indicator if we are at root domain */
6975 if (env->dst_rq->rd->overload != overload)
6976 env->dst_rq->rd->overload = overload;
6977 }
6978
532cb4c4
MN
6979}
6980
532cb4c4
MN
6981/**
6982 * check_asym_packing - Check to see if the group is packed into the
6983 * sched doman.
6984 *
6985 * This is primarily intended to used at the sibling level. Some
6986 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6987 * case of POWER7, it can move to lower SMT modes only when higher
6988 * threads are idle. When in lower SMT modes, the threads will
6989 * perform better since they share less core resources. Hence when we
6990 * have idle threads, we want them to be the higher ones.
6991 *
6992 * This packing function is run on idle threads. It checks to see if
6993 * the busiest CPU in this domain (core in the P7 case) has a higher
6994 * CPU number than the packing function is being run on. Here we are
6995 * assuming lower CPU number will be equivalent to lower a SMT thread
6996 * number.
6997 *
e69f6186 6998 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6999 * this CPU. The amount of the imbalance is returned in *imbalance.
7000 *
cd96891d 7001 * @env: The load balancing environment.
532cb4c4 7002 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7003 */
bd939f45 7004static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7005{
7006 int busiest_cpu;
7007
bd939f45 7008 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7009 return 0;
7010
1f621e02
SD
7011 if (env->idle == CPU_NOT_IDLE)
7012 return 0;
7013
532cb4c4
MN
7014 if (!sds->busiest)
7015 return 0;
7016
7017 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7018 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7019 return 0;
7020
bd939f45 7021 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7022 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7023 SCHED_CAPACITY_SCALE);
bd939f45 7024
532cb4c4 7025 return 1;
1e3c88bd
PZ
7026}
7027
7028/**
7029 * fix_small_imbalance - Calculate the minor imbalance that exists
7030 * amongst the groups of a sched_domain, during
7031 * load balancing.
cd96891d 7032 * @env: The load balancing environment.
1e3c88bd 7033 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7034 */
bd939f45
PZ
7035static inline
7036void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7037{
63b2ca30 7038 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7039 unsigned int imbn = 2;
dd5feea1 7040 unsigned long scaled_busy_load_per_task;
56cf515b 7041 struct sg_lb_stats *local, *busiest;
1e3c88bd 7042
56cf515b
JK
7043 local = &sds->local_stat;
7044 busiest = &sds->busiest_stat;
1e3c88bd 7045
56cf515b
JK
7046 if (!local->sum_nr_running)
7047 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7048 else if (busiest->load_per_task > local->load_per_task)
7049 imbn = 1;
dd5feea1 7050
56cf515b 7051 scaled_busy_load_per_task =
ca8ce3d0 7052 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7053 busiest->group_capacity;
56cf515b 7054
3029ede3
VD
7055 if (busiest->avg_load + scaled_busy_load_per_task >=
7056 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7057 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7058 return;
7059 }
7060
7061 /*
7062 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7063 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7064 * moving them.
7065 */
7066
63b2ca30 7067 capa_now += busiest->group_capacity *
56cf515b 7068 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7069 capa_now += local->group_capacity *
56cf515b 7070 min(local->load_per_task, local->avg_load);
ca8ce3d0 7071 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7072
7073 /* Amount of load we'd subtract */
a2cd4260 7074 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7075 capa_move += busiest->group_capacity *
56cf515b 7076 min(busiest->load_per_task,
a2cd4260 7077 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7078 }
1e3c88bd
PZ
7079
7080 /* Amount of load we'd add */
63b2ca30 7081 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7082 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7083 tmp = (busiest->avg_load * busiest->group_capacity) /
7084 local->group_capacity;
56cf515b 7085 } else {
ca8ce3d0 7086 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7087 local->group_capacity;
56cf515b 7088 }
63b2ca30 7089 capa_move += local->group_capacity *
3ae11c90 7090 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7091 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7092
7093 /* Move if we gain throughput */
63b2ca30 7094 if (capa_move > capa_now)
56cf515b 7095 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7096}
7097
7098/**
7099 * calculate_imbalance - Calculate the amount of imbalance present within the
7100 * groups of a given sched_domain during load balance.
bd939f45 7101 * @env: load balance environment
1e3c88bd 7102 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7103 */
bd939f45 7104static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7105{
dd5feea1 7106 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7107 struct sg_lb_stats *local, *busiest;
7108
7109 local = &sds->local_stat;
56cf515b 7110 busiest = &sds->busiest_stat;
dd5feea1 7111
caeb178c 7112 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7113 /*
7114 * In the group_imb case we cannot rely on group-wide averages
7115 * to ensure cpu-load equilibrium, look at wider averages. XXX
7116 */
56cf515b
JK
7117 busiest->load_per_task =
7118 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7119 }
7120
1e3c88bd 7121 /*
885e542c
DE
7122 * Avg load of busiest sg can be less and avg load of local sg can
7123 * be greater than avg load across all sgs of sd because avg load
7124 * factors in sg capacity and sgs with smaller group_type are
7125 * skipped when updating the busiest sg:
1e3c88bd 7126 */
b1885550
VD
7127 if (busiest->avg_load <= sds->avg_load ||
7128 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7129 env->imbalance = 0;
7130 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7131 }
7132
9a5d9ba6
PZ
7133 /*
7134 * If there aren't any idle cpus, avoid creating some.
7135 */
7136 if (busiest->group_type == group_overloaded &&
7137 local->group_type == group_overloaded) {
1be0eb2a 7138 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7139 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7140 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7141 load_above_capacity *= NICE_0_LOAD;
7142 load_above_capacity /= busiest->group_capacity;
7143 } else
ea67821b 7144 load_above_capacity = ~0UL;
dd5feea1
SS
7145 }
7146
7147 /*
7148 * We're trying to get all the cpus to the average_load, so we don't
7149 * want to push ourselves above the average load, nor do we wish to
7150 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7151 * we also don't want to reduce the group load below the group
7152 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7153 */
30ce5dab 7154 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7155
7156 /* How much load to actually move to equalise the imbalance */
56cf515b 7157 env->imbalance = min(
63b2ca30
NP
7158 max_pull * busiest->group_capacity,
7159 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7160 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7161
7162 /*
7163 * if *imbalance is less than the average load per runnable task
25985edc 7164 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7165 * a think about bumping its value to force at least one task to be
7166 * moved
7167 */
56cf515b 7168 if (env->imbalance < busiest->load_per_task)
bd939f45 7169 return fix_small_imbalance(env, sds);
1e3c88bd 7170}
fab47622 7171
1e3c88bd
PZ
7172/******* find_busiest_group() helpers end here *********************/
7173
7174/**
7175 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7176 * if there is an imbalance.
1e3c88bd
PZ
7177 *
7178 * Also calculates the amount of weighted load which should be moved
7179 * to restore balance.
7180 *
cd96891d 7181 * @env: The load balancing environment.
1e3c88bd 7182 *
e69f6186 7183 * Return: - The busiest group if imbalance exists.
1e3c88bd 7184 */
56cf515b 7185static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7186{
56cf515b 7187 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7188 struct sd_lb_stats sds;
7189
147c5fc2 7190 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7191
7192 /*
7193 * Compute the various statistics relavent for load balancing at
7194 * this level.
7195 */
23f0d209 7196 update_sd_lb_stats(env, &sds);
56cf515b
JK
7197 local = &sds.local_stat;
7198 busiest = &sds.busiest_stat;
1e3c88bd 7199
ea67821b 7200 /* ASYM feature bypasses nice load balance check */
1f621e02 7201 if (check_asym_packing(env, &sds))
532cb4c4
MN
7202 return sds.busiest;
7203
cc57aa8f 7204 /* There is no busy sibling group to pull tasks from */
56cf515b 7205 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7206 goto out_balanced;
7207
ca8ce3d0
NP
7208 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7209 / sds.total_capacity;
b0432d8f 7210
866ab43e
PZ
7211 /*
7212 * If the busiest group is imbalanced the below checks don't
30ce5dab 7213 * work because they assume all things are equal, which typically
866ab43e
PZ
7214 * isn't true due to cpus_allowed constraints and the like.
7215 */
caeb178c 7216 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7217 goto force_balance;
7218
cc57aa8f 7219 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7220 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7221 busiest->group_no_capacity)
fab47622
NR
7222 goto force_balance;
7223
cc57aa8f 7224 /*
9c58c79a 7225 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7226 * don't try and pull any tasks.
7227 */
56cf515b 7228 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7229 goto out_balanced;
7230
cc57aa8f
PZ
7231 /*
7232 * Don't pull any tasks if this group is already above the domain
7233 * average load.
7234 */
56cf515b 7235 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7236 goto out_balanced;
7237
bd939f45 7238 if (env->idle == CPU_IDLE) {
aae6d3dd 7239 /*
43f4d666
VG
7240 * This cpu is idle. If the busiest group is not overloaded
7241 * and there is no imbalance between this and busiest group
7242 * wrt idle cpus, it is balanced. The imbalance becomes
7243 * significant if the diff is greater than 1 otherwise we
7244 * might end up to just move the imbalance on another group
aae6d3dd 7245 */
43f4d666
VG
7246 if ((busiest->group_type != group_overloaded) &&
7247 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7248 goto out_balanced;
c186fafe
PZ
7249 } else {
7250 /*
7251 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7252 * imbalance_pct to be conservative.
7253 */
56cf515b
JK
7254 if (100 * busiest->avg_load <=
7255 env->sd->imbalance_pct * local->avg_load)
c186fafe 7256 goto out_balanced;
aae6d3dd 7257 }
1e3c88bd 7258
fab47622 7259force_balance:
1e3c88bd 7260 /* Looks like there is an imbalance. Compute it */
bd939f45 7261 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7262 return sds.busiest;
7263
7264out_balanced:
bd939f45 7265 env->imbalance = 0;
1e3c88bd
PZ
7266 return NULL;
7267}
7268
7269/*
7270 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7271 */
bd939f45 7272static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7273 struct sched_group *group)
1e3c88bd
PZ
7274{
7275 struct rq *busiest = NULL, *rq;
ced549fa 7276 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7277 int i;
7278
6906a408 7279 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7280 unsigned long capacity, wl;
0ec8aa00
PZ
7281 enum fbq_type rt;
7282
7283 rq = cpu_rq(i);
7284 rt = fbq_classify_rq(rq);
1e3c88bd 7285
0ec8aa00
PZ
7286 /*
7287 * We classify groups/runqueues into three groups:
7288 * - regular: there are !numa tasks
7289 * - remote: there are numa tasks that run on the 'wrong' node
7290 * - all: there is no distinction
7291 *
7292 * In order to avoid migrating ideally placed numa tasks,
7293 * ignore those when there's better options.
7294 *
7295 * If we ignore the actual busiest queue to migrate another
7296 * task, the next balance pass can still reduce the busiest
7297 * queue by moving tasks around inside the node.
7298 *
7299 * If we cannot move enough load due to this classification
7300 * the next pass will adjust the group classification and
7301 * allow migration of more tasks.
7302 *
7303 * Both cases only affect the total convergence complexity.
7304 */
7305 if (rt > env->fbq_type)
7306 continue;
7307
ced549fa 7308 capacity = capacity_of(i);
9d5efe05 7309
6e40f5bb 7310 wl = weighted_cpuload(i);
1e3c88bd 7311
6e40f5bb
TG
7312 /*
7313 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7314 * which is not scaled with the cpu capacity.
6e40f5bb 7315 */
ea67821b
VG
7316
7317 if (rq->nr_running == 1 && wl > env->imbalance &&
7318 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7319 continue;
7320
6e40f5bb
TG
7321 /*
7322 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7323 * the weighted_cpuload() scaled with the cpu capacity, so
7324 * that the load can be moved away from the cpu that is
7325 * potentially running at a lower capacity.
95a79b80 7326 *
ced549fa 7327 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7328 * multiplication to rid ourselves of the division works out
ced549fa
NP
7329 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7330 * our previous maximum.
6e40f5bb 7331 */
ced549fa 7332 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7333 busiest_load = wl;
ced549fa 7334 busiest_capacity = capacity;
1e3c88bd
PZ
7335 busiest = rq;
7336 }
7337 }
7338
7339 return busiest;
7340}
7341
7342/*
7343 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7344 * so long as it is large enough.
7345 */
7346#define MAX_PINNED_INTERVAL 512
7347
7348/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7349DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7350
bd939f45 7351static int need_active_balance(struct lb_env *env)
1af3ed3d 7352{
bd939f45
PZ
7353 struct sched_domain *sd = env->sd;
7354
7355 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7356
7357 /*
7358 * ASYM_PACKING needs to force migrate tasks from busy but
7359 * higher numbered CPUs in order to pack all tasks in the
7360 * lowest numbered CPUs.
7361 */
bd939f45 7362 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7363 return 1;
1af3ed3d
PZ
7364 }
7365
1aaf90a4
VG
7366 /*
7367 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7368 * It's worth migrating the task if the src_cpu's capacity is reduced
7369 * because of other sched_class or IRQs if more capacity stays
7370 * available on dst_cpu.
7371 */
7372 if ((env->idle != CPU_NOT_IDLE) &&
7373 (env->src_rq->cfs.h_nr_running == 1)) {
7374 if ((check_cpu_capacity(env->src_rq, sd)) &&
7375 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7376 return 1;
7377 }
7378
1af3ed3d
PZ
7379 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7380}
7381
969c7921
TH
7382static int active_load_balance_cpu_stop(void *data);
7383
23f0d209
JK
7384static int should_we_balance(struct lb_env *env)
7385{
7386 struct sched_group *sg = env->sd->groups;
7387 struct cpumask *sg_cpus, *sg_mask;
7388 int cpu, balance_cpu = -1;
7389
7390 /*
7391 * In the newly idle case, we will allow all the cpu's
7392 * to do the newly idle load balance.
7393 */
7394 if (env->idle == CPU_NEWLY_IDLE)
7395 return 1;
7396
7397 sg_cpus = sched_group_cpus(sg);
7398 sg_mask = sched_group_mask(sg);
7399 /* Try to find first idle cpu */
7400 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7401 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7402 continue;
7403
7404 balance_cpu = cpu;
7405 break;
7406 }
7407
7408 if (balance_cpu == -1)
7409 balance_cpu = group_balance_cpu(sg);
7410
7411 /*
7412 * First idle cpu or the first cpu(busiest) in this sched group
7413 * is eligible for doing load balancing at this and above domains.
7414 */
b0cff9d8 7415 return balance_cpu == env->dst_cpu;
23f0d209
JK
7416}
7417
1e3c88bd
PZ
7418/*
7419 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7420 * tasks if there is an imbalance.
7421 */
7422static int load_balance(int this_cpu, struct rq *this_rq,
7423 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7424 int *continue_balancing)
1e3c88bd 7425{
88b8dac0 7426 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7427 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7428 struct sched_group *group;
1e3c88bd
PZ
7429 struct rq *busiest;
7430 unsigned long flags;
4ba29684 7431 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7432
8e45cb54
PZ
7433 struct lb_env env = {
7434 .sd = sd,
ddcdf6e7
PZ
7435 .dst_cpu = this_cpu,
7436 .dst_rq = this_rq,
88b8dac0 7437 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7438 .idle = idle,
eb95308e 7439 .loop_break = sched_nr_migrate_break,
b9403130 7440 .cpus = cpus,
0ec8aa00 7441 .fbq_type = all,
163122b7 7442 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7443 };
7444
cfc03118
JK
7445 /*
7446 * For NEWLY_IDLE load_balancing, we don't need to consider
7447 * other cpus in our group
7448 */
e02e60c1 7449 if (idle == CPU_NEWLY_IDLE)
cfc03118 7450 env.dst_grpmask = NULL;
cfc03118 7451
1e3c88bd
PZ
7452 cpumask_copy(cpus, cpu_active_mask);
7453
1e3c88bd
PZ
7454 schedstat_inc(sd, lb_count[idle]);
7455
7456redo:
23f0d209
JK
7457 if (!should_we_balance(&env)) {
7458 *continue_balancing = 0;
1e3c88bd 7459 goto out_balanced;
23f0d209 7460 }
1e3c88bd 7461
23f0d209 7462 group = find_busiest_group(&env);
1e3c88bd
PZ
7463 if (!group) {
7464 schedstat_inc(sd, lb_nobusyg[idle]);
7465 goto out_balanced;
7466 }
7467
b9403130 7468 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7469 if (!busiest) {
7470 schedstat_inc(sd, lb_nobusyq[idle]);
7471 goto out_balanced;
7472 }
7473
78feefc5 7474 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7475
bd939f45 7476 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7477
1aaf90a4
VG
7478 env.src_cpu = busiest->cpu;
7479 env.src_rq = busiest;
7480
1e3c88bd
PZ
7481 ld_moved = 0;
7482 if (busiest->nr_running > 1) {
7483 /*
7484 * Attempt to move tasks. If find_busiest_group has found
7485 * an imbalance but busiest->nr_running <= 1, the group is
7486 * still unbalanced. ld_moved simply stays zero, so it is
7487 * correctly treated as an imbalance.
7488 */
8e45cb54 7489 env.flags |= LBF_ALL_PINNED;
c82513e5 7490 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7491
5d6523eb 7492more_balance:
163122b7 7493 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7494
7495 /*
7496 * cur_ld_moved - load moved in current iteration
7497 * ld_moved - cumulative load moved across iterations
7498 */
163122b7 7499 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7500
7501 /*
163122b7
KT
7502 * We've detached some tasks from busiest_rq. Every
7503 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7504 * unlock busiest->lock, and we are able to be sure
7505 * that nobody can manipulate the tasks in parallel.
7506 * See task_rq_lock() family for the details.
1e3c88bd 7507 */
163122b7
KT
7508
7509 raw_spin_unlock(&busiest->lock);
7510
7511 if (cur_ld_moved) {
7512 attach_tasks(&env);
7513 ld_moved += cur_ld_moved;
7514 }
7515
1e3c88bd 7516 local_irq_restore(flags);
88b8dac0 7517
f1cd0858
JK
7518 if (env.flags & LBF_NEED_BREAK) {
7519 env.flags &= ~LBF_NEED_BREAK;
7520 goto more_balance;
7521 }
7522
88b8dac0
SV
7523 /*
7524 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7525 * us and move them to an alternate dst_cpu in our sched_group
7526 * where they can run. The upper limit on how many times we
7527 * iterate on same src_cpu is dependent on number of cpus in our
7528 * sched_group.
7529 *
7530 * This changes load balance semantics a bit on who can move
7531 * load to a given_cpu. In addition to the given_cpu itself
7532 * (or a ilb_cpu acting on its behalf where given_cpu is
7533 * nohz-idle), we now have balance_cpu in a position to move
7534 * load to given_cpu. In rare situations, this may cause
7535 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7536 * _independently_ and at _same_ time to move some load to
7537 * given_cpu) causing exceess load to be moved to given_cpu.
7538 * This however should not happen so much in practice and
7539 * moreover subsequent load balance cycles should correct the
7540 * excess load moved.
7541 */
6263322c 7542 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7543
7aff2e3a
VD
7544 /* Prevent to re-select dst_cpu via env's cpus */
7545 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7546
78feefc5 7547 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7548 env.dst_cpu = env.new_dst_cpu;
6263322c 7549 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7550 env.loop = 0;
7551 env.loop_break = sched_nr_migrate_break;
e02e60c1 7552
88b8dac0
SV
7553 /*
7554 * Go back to "more_balance" rather than "redo" since we
7555 * need to continue with same src_cpu.
7556 */
7557 goto more_balance;
7558 }
1e3c88bd 7559
6263322c
PZ
7560 /*
7561 * We failed to reach balance because of affinity.
7562 */
7563 if (sd_parent) {
63b2ca30 7564 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7565
afdeee05 7566 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7567 *group_imbalance = 1;
6263322c
PZ
7568 }
7569
1e3c88bd 7570 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7571 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7572 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7573 if (!cpumask_empty(cpus)) {
7574 env.loop = 0;
7575 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7576 goto redo;
bbf18b19 7577 }
afdeee05 7578 goto out_all_pinned;
1e3c88bd
PZ
7579 }
7580 }
7581
7582 if (!ld_moved) {
7583 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7584 /*
7585 * Increment the failure counter only on periodic balance.
7586 * We do not want newidle balance, which can be very
7587 * frequent, pollute the failure counter causing
7588 * excessive cache_hot migrations and active balances.
7589 */
7590 if (idle != CPU_NEWLY_IDLE)
7591 sd->nr_balance_failed++;
1e3c88bd 7592
bd939f45 7593 if (need_active_balance(&env)) {
1e3c88bd
PZ
7594 raw_spin_lock_irqsave(&busiest->lock, flags);
7595
969c7921
TH
7596 /* don't kick the active_load_balance_cpu_stop,
7597 * if the curr task on busiest cpu can't be
7598 * moved to this_cpu
1e3c88bd
PZ
7599 */
7600 if (!cpumask_test_cpu(this_cpu,
fa17b507 7601 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7602 raw_spin_unlock_irqrestore(&busiest->lock,
7603 flags);
8e45cb54 7604 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7605 goto out_one_pinned;
7606 }
7607
969c7921
TH
7608 /*
7609 * ->active_balance synchronizes accesses to
7610 * ->active_balance_work. Once set, it's cleared
7611 * only after active load balance is finished.
7612 */
1e3c88bd
PZ
7613 if (!busiest->active_balance) {
7614 busiest->active_balance = 1;
7615 busiest->push_cpu = this_cpu;
7616 active_balance = 1;
7617 }
7618 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7619
bd939f45 7620 if (active_balance) {
969c7921
TH
7621 stop_one_cpu_nowait(cpu_of(busiest),
7622 active_load_balance_cpu_stop, busiest,
7623 &busiest->active_balance_work);
bd939f45 7624 }
1e3c88bd 7625
d02c0711 7626 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7627 sd->nr_balance_failed = sd->cache_nice_tries+1;
7628 }
7629 } else
7630 sd->nr_balance_failed = 0;
7631
7632 if (likely(!active_balance)) {
7633 /* We were unbalanced, so reset the balancing interval */
7634 sd->balance_interval = sd->min_interval;
7635 } else {
7636 /*
7637 * If we've begun active balancing, start to back off. This
7638 * case may not be covered by the all_pinned logic if there
7639 * is only 1 task on the busy runqueue (because we don't call
163122b7 7640 * detach_tasks).
1e3c88bd
PZ
7641 */
7642 if (sd->balance_interval < sd->max_interval)
7643 sd->balance_interval *= 2;
7644 }
7645
1e3c88bd
PZ
7646 goto out;
7647
7648out_balanced:
afdeee05
VG
7649 /*
7650 * We reach balance although we may have faced some affinity
7651 * constraints. Clear the imbalance flag if it was set.
7652 */
7653 if (sd_parent) {
7654 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7655
7656 if (*group_imbalance)
7657 *group_imbalance = 0;
7658 }
7659
7660out_all_pinned:
7661 /*
7662 * We reach balance because all tasks are pinned at this level so
7663 * we can't migrate them. Let the imbalance flag set so parent level
7664 * can try to migrate them.
7665 */
1e3c88bd
PZ
7666 schedstat_inc(sd, lb_balanced[idle]);
7667
7668 sd->nr_balance_failed = 0;
7669
7670out_one_pinned:
7671 /* tune up the balancing interval */
8e45cb54 7672 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7673 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7674 (sd->balance_interval < sd->max_interval))
7675 sd->balance_interval *= 2;
7676
46e49b38 7677 ld_moved = 0;
1e3c88bd 7678out:
1e3c88bd
PZ
7679 return ld_moved;
7680}
7681
52a08ef1
JL
7682static inline unsigned long
7683get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7684{
7685 unsigned long interval = sd->balance_interval;
7686
7687 if (cpu_busy)
7688 interval *= sd->busy_factor;
7689
7690 /* scale ms to jiffies */
7691 interval = msecs_to_jiffies(interval);
7692 interval = clamp(interval, 1UL, max_load_balance_interval);
7693
7694 return interval;
7695}
7696
7697static inline void
7698update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7699{
7700 unsigned long interval, next;
7701
7702 interval = get_sd_balance_interval(sd, cpu_busy);
7703 next = sd->last_balance + interval;
7704
7705 if (time_after(*next_balance, next))
7706 *next_balance = next;
7707}
7708
1e3c88bd
PZ
7709/*
7710 * idle_balance is called by schedule() if this_cpu is about to become
7711 * idle. Attempts to pull tasks from other CPUs.
7712 */
6e83125c 7713static int idle_balance(struct rq *this_rq)
1e3c88bd 7714{
52a08ef1
JL
7715 unsigned long next_balance = jiffies + HZ;
7716 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7717 struct sched_domain *sd;
7718 int pulled_task = 0;
9bd721c5 7719 u64 curr_cost = 0;
1e3c88bd 7720
6e83125c
PZ
7721 /*
7722 * We must set idle_stamp _before_ calling idle_balance(), such that we
7723 * measure the duration of idle_balance() as idle time.
7724 */
7725 this_rq->idle_stamp = rq_clock(this_rq);
7726
4486edd1
TC
7727 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7728 !this_rq->rd->overload) {
52a08ef1
JL
7729 rcu_read_lock();
7730 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7731 if (sd)
7732 update_next_balance(sd, 0, &next_balance);
7733 rcu_read_unlock();
7734
6e83125c 7735 goto out;
52a08ef1 7736 }
1e3c88bd 7737
f492e12e
PZ
7738 raw_spin_unlock(&this_rq->lock);
7739
48a16753 7740 update_blocked_averages(this_cpu);
dce840a0 7741 rcu_read_lock();
1e3c88bd 7742 for_each_domain(this_cpu, sd) {
23f0d209 7743 int continue_balancing = 1;
9bd721c5 7744 u64 t0, domain_cost;
1e3c88bd
PZ
7745
7746 if (!(sd->flags & SD_LOAD_BALANCE))
7747 continue;
7748
52a08ef1
JL
7749 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7750 update_next_balance(sd, 0, &next_balance);
9bd721c5 7751 break;
52a08ef1 7752 }
9bd721c5 7753
f492e12e 7754 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7755 t0 = sched_clock_cpu(this_cpu);
7756
f492e12e 7757 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7758 sd, CPU_NEWLY_IDLE,
7759 &continue_balancing);
9bd721c5
JL
7760
7761 domain_cost = sched_clock_cpu(this_cpu) - t0;
7762 if (domain_cost > sd->max_newidle_lb_cost)
7763 sd->max_newidle_lb_cost = domain_cost;
7764
7765 curr_cost += domain_cost;
f492e12e 7766 }
1e3c88bd 7767
52a08ef1 7768 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7769
7770 /*
7771 * Stop searching for tasks to pull if there are
7772 * now runnable tasks on this rq.
7773 */
7774 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7775 break;
1e3c88bd 7776 }
dce840a0 7777 rcu_read_unlock();
f492e12e
PZ
7778
7779 raw_spin_lock(&this_rq->lock);
7780
0e5b5337
JL
7781 if (curr_cost > this_rq->max_idle_balance_cost)
7782 this_rq->max_idle_balance_cost = curr_cost;
7783
e5fc6611 7784 /*
0e5b5337
JL
7785 * While browsing the domains, we released the rq lock, a task could
7786 * have been enqueued in the meantime. Since we're not going idle,
7787 * pretend we pulled a task.
e5fc6611 7788 */
0e5b5337 7789 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7790 pulled_task = 1;
e5fc6611 7791
52a08ef1
JL
7792out:
7793 /* Move the next balance forward */
7794 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7795 this_rq->next_balance = next_balance;
9bd721c5 7796
e4aa358b 7797 /* Is there a task of a high priority class? */
46383648 7798 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7799 pulled_task = -1;
7800
38c6ade2 7801 if (pulled_task)
6e83125c
PZ
7802 this_rq->idle_stamp = 0;
7803
3c4017c1 7804 return pulled_task;
1e3c88bd
PZ
7805}
7806
7807/*
969c7921
TH
7808 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7809 * running tasks off the busiest CPU onto idle CPUs. It requires at
7810 * least 1 task to be running on each physical CPU where possible, and
7811 * avoids physical / logical imbalances.
1e3c88bd 7812 */
969c7921 7813static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7814{
969c7921
TH
7815 struct rq *busiest_rq = data;
7816 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7817 int target_cpu = busiest_rq->push_cpu;
969c7921 7818 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7819 struct sched_domain *sd;
e5673f28 7820 struct task_struct *p = NULL;
969c7921
TH
7821
7822 raw_spin_lock_irq(&busiest_rq->lock);
7823
7824 /* make sure the requested cpu hasn't gone down in the meantime */
7825 if (unlikely(busiest_cpu != smp_processor_id() ||
7826 !busiest_rq->active_balance))
7827 goto out_unlock;
1e3c88bd
PZ
7828
7829 /* Is there any task to move? */
7830 if (busiest_rq->nr_running <= 1)
969c7921 7831 goto out_unlock;
1e3c88bd
PZ
7832
7833 /*
7834 * This condition is "impossible", if it occurs
7835 * we need to fix it. Originally reported by
7836 * Bjorn Helgaas on a 128-cpu setup.
7837 */
7838 BUG_ON(busiest_rq == target_rq);
7839
1e3c88bd 7840 /* Search for an sd spanning us and the target CPU. */
dce840a0 7841 rcu_read_lock();
1e3c88bd
PZ
7842 for_each_domain(target_cpu, sd) {
7843 if ((sd->flags & SD_LOAD_BALANCE) &&
7844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7845 break;
7846 }
7847
7848 if (likely(sd)) {
8e45cb54
PZ
7849 struct lb_env env = {
7850 .sd = sd,
ddcdf6e7
PZ
7851 .dst_cpu = target_cpu,
7852 .dst_rq = target_rq,
7853 .src_cpu = busiest_rq->cpu,
7854 .src_rq = busiest_rq,
8e45cb54
PZ
7855 .idle = CPU_IDLE,
7856 };
7857
1e3c88bd
PZ
7858 schedstat_inc(sd, alb_count);
7859
e5673f28 7860 p = detach_one_task(&env);
d02c0711 7861 if (p) {
1e3c88bd 7862 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7863 /* Active balancing done, reset the failure counter. */
7864 sd->nr_balance_failed = 0;
7865 } else {
1e3c88bd 7866 schedstat_inc(sd, alb_failed);
d02c0711 7867 }
1e3c88bd 7868 }
dce840a0 7869 rcu_read_unlock();
969c7921
TH
7870out_unlock:
7871 busiest_rq->active_balance = 0;
e5673f28
KT
7872 raw_spin_unlock(&busiest_rq->lock);
7873
7874 if (p)
7875 attach_one_task(target_rq, p);
7876
7877 local_irq_enable();
7878
969c7921 7879 return 0;
1e3c88bd
PZ
7880}
7881
d987fc7f
MG
7882static inline int on_null_domain(struct rq *rq)
7883{
7884 return unlikely(!rcu_dereference_sched(rq->sd));
7885}
7886
3451d024 7887#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7888/*
7889 * idle load balancing details
83cd4fe2
VP
7890 * - When one of the busy CPUs notice that there may be an idle rebalancing
7891 * needed, they will kick the idle load balancer, which then does idle
7892 * load balancing for all the idle CPUs.
7893 */
1e3c88bd 7894static struct {
83cd4fe2 7895 cpumask_var_t idle_cpus_mask;
0b005cf5 7896 atomic_t nr_cpus;
83cd4fe2
VP
7897 unsigned long next_balance; /* in jiffy units */
7898} nohz ____cacheline_aligned;
1e3c88bd 7899
3dd0337d 7900static inline int find_new_ilb(void)
1e3c88bd 7901{
0b005cf5 7902 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7903
786d6dc7
SS
7904 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7905 return ilb;
7906
7907 return nr_cpu_ids;
1e3c88bd 7908}
1e3c88bd 7909
83cd4fe2
VP
7910/*
7911 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7912 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7913 * CPU (if there is one).
7914 */
0aeeeeba 7915static void nohz_balancer_kick(void)
83cd4fe2
VP
7916{
7917 int ilb_cpu;
7918
7919 nohz.next_balance++;
7920
3dd0337d 7921 ilb_cpu = find_new_ilb();
83cd4fe2 7922
0b005cf5
SS
7923 if (ilb_cpu >= nr_cpu_ids)
7924 return;
83cd4fe2 7925
cd490c5b 7926 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7927 return;
7928 /*
7929 * Use smp_send_reschedule() instead of resched_cpu().
7930 * This way we generate a sched IPI on the target cpu which
7931 * is idle. And the softirq performing nohz idle load balance
7932 * will be run before returning from the IPI.
7933 */
7934 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7935 return;
7936}
7937
20a5c8cc 7938void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7939{
7940 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7941 /*
7942 * Completely isolated CPUs don't ever set, so we must test.
7943 */
7944 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7945 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7946 atomic_dec(&nohz.nr_cpus);
7947 }
71325960
SS
7948 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7949 }
7950}
7951
69e1e811
SS
7952static inline void set_cpu_sd_state_busy(void)
7953{
7954 struct sched_domain *sd;
37dc6b50 7955 int cpu = smp_processor_id();
69e1e811 7956
69e1e811 7957 rcu_read_lock();
37dc6b50 7958 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7959
7960 if (!sd || !sd->nohz_idle)
7961 goto unlock;
7962 sd->nohz_idle = 0;
7963
63b2ca30 7964 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7965unlock:
69e1e811
SS
7966 rcu_read_unlock();
7967}
7968
7969void set_cpu_sd_state_idle(void)
7970{
7971 struct sched_domain *sd;
37dc6b50 7972 int cpu = smp_processor_id();
69e1e811 7973
69e1e811 7974 rcu_read_lock();
37dc6b50 7975 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7976
7977 if (!sd || sd->nohz_idle)
7978 goto unlock;
7979 sd->nohz_idle = 1;
7980
63b2ca30 7981 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7982unlock:
69e1e811
SS
7983 rcu_read_unlock();
7984}
7985
1e3c88bd 7986/*
c1cc017c 7987 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7988 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7989 */
c1cc017c 7990void nohz_balance_enter_idle(int cpu)
1e3c88bd 7991{
71325960
SS
7992 /*
7993 * If this cpu is going down, then nothing needs to be done.
7994 */
7995 if (!cpu_active(cpu))
7996 return;
7997
c1cc017c
AS
7998 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7999 return;
1e3c88bd 8000
d987fc7f
MG
8001 /*
8002 * If we're a completely isolated CPU, we don't play.
8003 */
8004 if (on_null_domain(cpu_rq(cpu)))
8005 return;
8006
c1cc017c
AS
8007 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8008 atomic_inc(&nohz.nr_cpus);
8009 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8010}
8011#endif
8012
8013static DEFINE_SPINLOCK(balancing);
8014
49c022e6
PZ
8015/*
8016 * Scale the max load_balance interval with the number of CPUs in the system.
8017 * This trades load-balance latency on larger machines for less cross talk.
8018 */
029632fb 8019void update_max_interval(void)
49c022e6
PZ
8020{
8021 max_load_balance_interval = HZ*num_online_cpus()/10;
8022}
8023
1e3c88bd
PZ
8024/*
8025 * It checks each scheduling domain to see if it is due to be balanced,
8026 * and initiates a balancing operation if so.
8027 *
b9b0853a 8028 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8029 */
f7ed0a89 8030static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8031{
23f0d209 8032 int continue_balancing = 1;
f7ed0a89 8033 int cpu = rq->cpu;
1e3c88bd 8034 unsigned long interval;
04f733b4 8035 struct sched_domain *sd;
1e3c88bd
PZ
8036 /* Earliest time when we have to do rebalance again */
8037 unsigned long next_balance = jiffies + 60*HZ;
8038 int update_next_balance = 0;
f48627e6
JL
8039 int need_serialize, need_decay = 0;
8040 u64 max_cost = 0;
1e3c88bd 8041
48a16753 8042 update_blocked_averages(cpu);
2069dd75 8043
dce840a0 8044 rcu_read_lock();
1e3c88bd 8045 for_each_domain(cpu, sd) {
f48627e6
JL
8046 /*
8047 * Decay the newidle max times here because this is a regular
8048 * visit to all the domains. Decay ~1% per second.
8049 */
8050 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8051 sd->max_newidle_lb_cost =
8052 (sd->max_newidle_lb_cost * 253) / 256;
8053 sd->next_decay_max_lb_cost = jiffies + HZ;
8054 need_decay = 1;
8055 }
8056 max_cost += sd->max_newidle_lb_cost;
8057
1e3c88bd
PZ
8058 if (!(sd->flags & SD_LOAD_BALANCE))
8059 continue;
8060
f48627e6
JL
8061 /*
8062 * Stop the load balance at this level. There is another
8063 * CPU in our sched group which is doing load balancing more
8064 * actively.
8065 */
8066 if (!continue_balancing) {
8067 if (need_decay)
8068 continue;
8069 break;
8070 }
8071
52a08ef1 8072 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8073
8074 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8075 if (need_serialize) {
8076 if (!spin_trylock(&balancing))
8077 goto out;
8078 }
8079
8080 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8081 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8082 /*
6263322c 8083 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8084 * env->dst_cpu, so we can't know our idle
8085 * state even if we migrated tasks. Update it.
1e3c88bd 8086 */
de5eb2dd 8087 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8088 }
8089 sd->last_balance = jiffies;
52a08ef1 8090 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8091 }
8092 if (need_serialize)
8093 spin_unlock(&balancing);
8094out:
8095 if (time_after(next_balance, sd->last_balance + interval)) {
8096 next_balance = sd->last_balance + interval;
8097 update_next_balance = 1;
8098 }
f48627e6
JL
8099 }
8100 if (need_decay) {
1e3c88bd 8101 /*
f48627e6
JL
8102 * Ensure the rq-wide value also decays but keep it at a
8103 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8104 */
f48627e6
JL
8105 rq->max_idle_balance_cost =
8106 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8107 }
dce840a0 8108 rcu_read_unlock();
1e3c88bd
PZ
8109
8110 /*
8111 * next_balance will be updated only when there is a need.
8112 * When the cpu is attached to null domain for ex, it will not be
8113 * updated.
8114 */
c5afb6a8 8115 if (likely(update_next_balance)) {
1e3c88bd 8116 rq->next_balance = next_balance;
c5afb6a8
VG
8117
8118#ifdef CONFIG_NO_HZ_COMMON
8119 /*
8120 * If this CPU has been elected to perform the nohz idle
8121 * balance. Other idle CPUs have already rebalanced with
8122 * nohz_idle_balance() and nohz.next_balance has been
8123 * updated accordingly. This CPU is now running the idle load
8124 * balance for itself and we need to update the
8125 * nohz.next_balance accordingly.
8126 */
8127 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8128 nohz.next_balance = rq->next_balance;
8129#endif
8130 }
1e3c88bd
PZ
8131}
8132
3451d024 8133#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8134/*
3451d024 8135 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8136 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8137 */
208cb16b 8138static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8139{
208cb16b 8140 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8141 struct rq *rq;
8142 int balance_cpu;
c5afb6a8
VG
8143 /* Earliest time when we have to do rebalance again */
8144 unsigned long next_balance = jiffies + 60*HZ;
8145 int update_next_balance = 0;
83cd4fe2 8146
1c792db7
SS
8147 if (idle != CPU_IDLE ||
8148 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8149 goto end;
83cd4fe2
VP
8150
8151 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8152 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8153 continue;
8154
8155 /*
8156 * If this cpu gets work to do, stop the load balancing
8157 * work being done for other cpus. Next load
8158 * balancing owner will pick it up.
8159 */
1c792db7 8160 if (need_resched())
83cd4fe2 8161 break;
83cd4fe2 8162
5ed4f1d9
VG
8163 rq = cpu_rq(balance_cpu);
8164
ed61bbc6
TC
8165 /*
8166 * If time for next balance is due,
8167 * do the balance.
8168 */
8169 if (time_after_eq(jiffies, rq->next_balance)) {
8170 raw_spin_lock_irq(&rq->lock);
8171 update_rq_clock(rq);
cee1afce 8172 cpu_load_update_idle(rq);
ed61bbc6
TC
8173 raw_spin_unlock_irq(&rq->lock);
8174 rebalance_domains(rq, CPU_IDLE);
8175 }
83cd4fe2 8176
c5afb6a8
VG
8177 if (time_after(next_balance, rq->next_balance)) {
8178 next_balance = rq->next_balance;
8179 update_next_balance = 1;
8180 }
83cd4fe2 8181 }
c5afb6a8
VG
8182
8183 /*
8184 * next_balance will be updated only when there is a need.
8185 * When the CPU is attached to null domain for ex, it will not be
8186 * updated.
8187 */
8188 if (likely(update_next_balance))
8189 nohz.next_balance = next_balance;
1c792db7
SS
8190end:
8191 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8192}
8193
8194/*
0b005cf5 8195 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8196 * of an idle cpu in the system.
0b005cf5 8197 * - This rq has more than one task.
1aaf90a4
VG
8198 * - This rq has at least one CFS task and the capacity of the CPU is
8199 * significantly reduced because of RT tasks or IRQs.
8200 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8201 * multiple busy cpu.
0b005cf5
SS
8202 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8203 * domain span are idle.
83cd4fe2 8204 */
1aaf90a4 8205static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8206{
8207 unsigned long now = jiffies;
0b005cf5 8208 struct sched_domain *sd;
63b2ca30 8209 struct sched_group_capacity *sgc;
4a725627 8210 int nr_busy, cpu = rq->cpu;
1aaf90a4 8211 bool kick = false;
83cd4fe2 8212
4a725627 8213 if (unlikely(rq->idle_balance))
1aaf90a4 8214 return false;
83cd4fe2 8215
1c792db7
SS
8216 /*
8217 * We may be recently in ticked or tickless idle mode. At the first
8218 * busy tick after returning from idle, we will update the busy stats.
8219 */
69e1e811 8220 set_cpu_sd_state_busy();
c1cc017c 8221 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8222
8223 /*
8224 * None are in tickless mode and hence no need for NOHZ idle load
8225 * balancing.
8226 */
8227 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8228 return false;
1c792db7
SS
8229
8230 if (time_before(now, nohz.next_balance))
1aaf90a4 8231 return false;
83cd4fe2 8232
0b005cf5 8233 if (rq->nr_running >= 2)
1aaf90a4 8234 return true;
83cd4fe2 8235
067491b7 8236 rcu_read_lock();
37dc6b50 8237 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8238 if (sd) {
63b2ca30
NP
8239 sgc = sd->groups->sgc;
8240 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8241
1aaf90a4
VG
8242 if (nr_busy > 1) {
8243 kick = true;
8244 goto unlock;
8245 }
8246
83cd4fe2 8247 }
37dc6b50 8248
1aaf90a4
VG
8249 sd = rcu_dereference(rq->sd);
8250 if (sd) {
8251 if ((rq->cfs.h_nr_running >= 1) &&
8252 check_cpu_capacity(rq, sd)) {
8253 kick = true;
8254 goto unlock;
8255 }
8256 }
37dc6b50 8257
1aaf90a4 8258 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8259 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8260 sched_domain_span(sd)) < cpu)) {
8261 kick = true;
8262 goto unlock;
8263 }
067491b7 8264
1aaf90a4 8265unlock:
067491b7 8266 rcu_read_unlock();
1aaf90a4 8267 return kick;
83cd4fe2
VP
8268}
8269#else
208cb16b 8270static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8271#endif
8272
8273/*
8274 * run_rebalance_domains is triggered when needed from the scheduler tick.
8275 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8276 */
09dd109d 8277static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8278{
208cb16b 8279 struct rq *this_rq = this_rq();
6eb57e0d 8280 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8281 CPU_IDLE : CPU_NOT_IDLE;
8282
1e3c88bd 8283 /*
83cd4fe2 8284 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8285 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8286 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8287 * give the idle cpus a chance to load balance. Else we may
8288 * load balance only within the local sched_domain hierarchy
8289 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8290 */
208cb16b 8291 nohz_idle_balance(this_rq, idle);
d4573c3e 8292 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8293}
8294
1e3c88bd
PZ
8295/*
8296 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8297 */
7caff66f 8298void trigger_load_balance(struct rq *rq)
1e3c88bd 8299{
1e3c88bd 8300 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8301 if (unlikely(on_null_domain(rq)))
8302 return;
8303
8304 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8305 raise_softirq(SCHED_SOFTIRQ);
3451d024 8306#ifdef CONFIG_NO_HZ_COMMON
c726099e 8307 if (nohz_kick_needed(rq))
0aeeeeba 8308 nohz_balancer_kick();
83cd4fe2 8309#endif
1e3c88bd
PZ
8310}
8311
0bcdcf28
CE
8312static void rq_online_fair(struct rq *rq)
8313{
8314 update_sysctl();
0e59bdae
KT
8315
8316 update_runtime_enabled(rq);
0bcdcf28
CE
8317}
8318
8319static void rq_offline_fair(struct rq *rq)
8320{
8321 update_sysctl();
a4c96ae3
PB
8322
8323 /* Ensure any throttled groups are reachable by pick_next_task */
8324 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8325}
8326
55e12e5e 8327#endif /* CONFIG_SMP */
e1d1484f 8328
bf0f6f24
IM
8329/*
8330 * scheduler tick hitting a task of our scheduling class:
8331 */
8f4d37ec 8332static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8333{
8334 struct cfs_rq *cfs_rq;
8335 struct sched_entity *se = &curr->se;
8336
8337 for_each_sched_entity(se) {
8338 cfs_rq = cfs_rq_of(se);
8f4d37ec 8339 entity_tick(cfs_rq, se, queued);
bf0f6f24 8340 }
18bf2805 8341
b52da86e 8342 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8343 task_tick_numa(rq, curr);
bf0f6f24
IM
8344}
8345
8346/*
cd29fe6f
PZ
8347 * called on fork with the child task as argument from the parent's context
8348 * - child not yet on the tasklist
8349 * - preemption disabled
bf0f6f24 8350 */
cd29fe6f 8351static void task_fork_fair(struct task_struct *p)
bf0f6f24 8352{
4fc420c9
DN
8353 struct cfs_rq *cfs_rq;
8354 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8355 struct rq *rq = this_rq();
bf0f6f24 8356
e210bffd 8357 raw_spin_lock(&rq->lock);
861d034e
PZ
8358 update_rq_clock(rq);
8359
4fc420c9
DN
8360 cfs_rq = task_cfs_rq(current);
8361 curr = cfs_rq->curr;
e210bffd
PZ
8362 if (curr) {
8363 update_curr(cfs_rq);
b5d9d734 8364 se->vruntime = curr->vruntime;
e210bffd 8365 }
aeb73b04 8366 place_entity(cfs_rq, se, 1);
4d78e7b6 8367
cd29fe6f 8368 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8369 /*
edcb60a3
IM
8370 * Upon rescheduling, sched_class::put_prev_task() will place
8371 * 'current' within the tree based on its new key value.
8372 */
4d78e7b6 8373 swap(curr->vruntime, se->vruntime);
8875125e 8374 resched_curr(rq);
4d78e7b6 8375 }
bf0f6f24 8376
88ec22d3 8377 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8378 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8379}
8380
cb469845
SR
8381/*
8382 * Priority of the task has changed. Check to see if we preempt
8383 * the current task.
8384 */
da7a735e
PZ
8385static void
8386prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8387{
da0c1e65 8388 if (!task_on_rq_queued(p))
da7a735e
PZ
8389 return;
8390
cb469845
SR
8391 /*
8392 * Reschedule if we are currently running on this runqueue and
8393 * our priority decreased, or if we are not currently running on
8394 * this runqueue and our priority is higher than the current's
8395 */
da7a735e 8396 if (rq->curr == p) {
cb469845 8397 if (p->prio > oldprio)
8875125e 8398 resched_curr(rq);
cb469845 8399 } else
15afe09b 8400 check_preempt_curr(rq, p, 0);
cb469845
SR
8401}
8402
daa59407 8403static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8404{
8405 struct sched_entity *se = &p->se;
da7a735e
PZ
8406
8407 /*
daa59407
BP
8408 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8409 * the dequeue_entity(.flags=0) will already have normalized the
8410 * vruntime.
8411 */
8412 if (p->on_rq)
8413 return true;
8414
8415 /*
8416 * When !on_rq, vruntime of the task has usually NOT been normalized.
8417 * But there are some cases where it has already been normalized:
da7a735e 8418 *
daa59407
BP
8419 * - A forked child which is waiting for being woken up by
8420 * wake_up_new_task().
8421 * - A task which has been woken up by try_to_wake_up() and
8422 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8423 */
daa59407
BP
8424 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8425 return true;
8426
8427 return false;
8428}
8429
8430static void detach_task_cfs_rq(struct task_struct *p)
8431{
8432 struct sched_entity *se = &p->se;
8433 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8434 u64 now = cfs_rq_clock_task(cfs_rq);
3d30544f 8435 int tg_update;
daa59407
BP
8436
8437 if (!vruntime_normalized(p)) {
da7a735e
PZ
8438 /*
8439 * Fix up our vruntime so that the current sleep doesn't
8440 * cause 'unlimited' sleep bonus.
8441 */
8442 place_entity(cfs_rq, se, 0);
8443 se->vruntime -= cfs_rq->min_vruntime;
8444 }
9ee474f5 8445
9d89c257 8446 /* Catch up with the cfs_rq and remove our load when we leave */
3d30544f 8447 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8448 detach_entity_load_avg(cfs_rq, se);
3d30544f
PZ
8449 if (tg_update)
8450 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8451}
8452
daa59407 8453static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8454{
f36c019c 8455 struct sched_entity *se = &p->se;
daa59407 8456 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8457 u64 now = cfs_rq_clock_task(cfs_rq);
3d30544f 8458 int tg_update;
7855a35a
BP
8459
8460#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8461 /*
8462 * Since the real-depth could have been changed (only FAIR
8463 * class maintain depth value), reset depth properly.
8464 */
8465 se->depth = se->parent ? se->parent->depth + 1 : 0;
8466#endif
7855a35a 8467
6efdb105 8468 /* Synchronize task with its cfs_rq */
3d30544f 8469 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8470 attach_entity_load_avg(cfs_rq, se);
3d30544f
PZ
8471 if (tg_update)
8472 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8473
8474 if (!vruntime_normalized(p))
8475 se->vruntime += cfs_rq->min_vruntime;
8476}
6efdb105 8477
daa59407
BP
8478static void switched_from_fair(struct rq *rq, struct task_struct *p)
8479{
8480 detach_task_cfs_rq(p);
8481}
8482
8483static void switched_to_fair(struct rq *rq, struct task_struct *p)
8484{
8485 attach_task_cfs_rq(p);
7855a35a 8486
daa59407 8487 if (task_on_rq_queued(p)) {
7855a35a 8488 /*
daa59407
BP
8489 * We were most likely switched from sched_rt, so
8490 * kick off the schedule if running, otherwise just see
8491 * if we can still preempt the current task.
7855a35a 8492 */
daa59407
BP
8493 if (rq->curr == p)
8494 resched_curr(rq);
8495 else
8496 check_preempt_curr(rq, p, 0);
7855a35a 8497 }
cb469845
SR
8498}
8499
83b699ed
SV
8500/* Account for a task changing its policy or group.
8501 *
8502 * This routine is mostly called to set cfs_rq->curr field when a task
8503 * migrates between groups/classes.
8504 */
8505static void set_curr_task_fair(struct rq *rq)
8506{
8507 struct sched_entity *se = &rq->curr->se;
8508
ec12cb7f
PT
8509 for_each_sched_entity(se) {
8510 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8511
8512 set_next_entity(cfs_rq, se);
8513 /* ensure bandwidth has been allocated on our new cfs_rq */
8514 account_cfs_rq_runtime(cfs_rq, 0);
8515 }
83b699ed
SV
8516}
8517
029632fb
PZ
8518void init_cfs_rq(struct cfs_rq *cfs_rq)
8519{
8520 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8521 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8522#ifndef CONFIG_64BIT
8523 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8524#endif
141965c7 8525#ifdef CONFIG_SMP
9d89c257
YD
8526 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8527 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8528#endif
029632fb
PZ
8529}
8530
810b3817 8531#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8532static void task_set_group_fair(struct task_struct *p)
8533{
8534 struct sched_entity *se = &p->se;
8535
8536 set_task_rq(p, task_cpu(p));
8537 se->depth = se->parent ? se->parent->depth + 1 : 0;
8538}
8539
bc54da21 8540static void task_move_group_fair(struct task_struct *p)
810b3817 8541{
daa59407 8542 detach_task_cfs_rq(p);
b2b5ce02 8543 set_task_rq(p, task_cpu(p));
6efdb105
BP
8544
8545#ifdef CONFIG_SMP
8546 /* Tell se's cfs_rq has been changed -- migrated */
8547 p->se.avg.last_update_time = 0;
8548#endif
daa59407 8549 attach_task_cfs_rq(p);
810b3817 8550}
029632fb 8551
ea86cb4b
VG
8552static void task_change_group_fair(struct task_struct *p, int type)
8553{
8554 switch (type) {
8555 case TASK_SET_GROUP:
8556 task_set_group_fair(p);
8557 break;
8558
8559 case TASK_MOVE_GROUP:
8560 task_move_group_fair(p);
8561 break;
8562 }
8563}
8564
029632fb
PZ
8565void free_fair_sched_group(struct task_group *tg)
8566{
8567 int i;
8568
8569 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8570
8571 for_each_possible_cpu(i) {
8572 if (tg->cfs_rq)
8573 kfree(tg->cfs_rq[i]);
6fe1f348 8574 if (tg->se)
029632fb
PZ
8575 kfree(tg->se[i]);
8576 }
8577
8578 kfree(tg->cfs_rq);
8579 kfree(tg->se);
8580}
8581
8582int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8583{
029632fb 8584 struct sched_entity *se;
b7fa30c9
PZ
8585 struct cfs_rq *cfs_rq;
8586 struct rq *rq;
029632fb
PZ
8587 int i;
8588
8589 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8590 if (!tg->cfs_rq)
8591 goto err;
8592 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8593 if (!tg->se)
8594 goto err;
8595
8596 tg->shares = NICE_0_LOAD;
8597
8598 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8599
8600 for_each_possible_cpu(i) {
b7fa30c9
PZ
8601 rq = cpu_rq(i);
8602
029632fb
PZ
8603 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8604 GFP_KERNEL, cpu_to_node(i));
8605 if (!cfs_rq)
8606 goto err;
8607
8608 se = kzalloc_node(sizeof(struct sched_entity),
8609 GFP_KERNEL, cpu_to_node(i));
8610 if (!se)
8611 goto err_free_rq;
8612
8613 init_cfs_rq(cfs_rq);
8614 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8615 init_entity_runnable_average(se);
029632fb
PZ
8616 }
8617
8618 return 1;
8619
8620err_free_rq:
8621 kfree(cfs_rq);
8622err:
8623 return 0;
8624}
8625
8663e24d
PZ
8626void online_fair_sched_group(struct task_group *tg)
8627{
8628 struct sched_entity *se;
8629 struct rq *rq;
8630 int i;
8631
8632 for_each_possible_cpu(i) {
8633 rq = cpu_rq(i);
8634 se = tg->se[i];
8635
8636 raw_spin_lock_irq(&rq->lock);
8637 post_init_entity_util_avg(se);
55e16d30 8638 sync_throttle(tg, i);
8663e24d
PZ
8639 raw_spin_unlock_irq(&rq->lock);
8640 }
8641}
8642
6fe1f348 8643void unregister_fair_sched_group(struct task_group *tg)
029632fb 8644{
029632fb 8645 unsigned long flags;
6fe1f348
PZ
8646 struct rq *rq;
8647 int cpu;
029632fb 8648
6fe1f348
PZ
8649 for_each_possible_cpu(cpu) {
8650 if (tg->se[cpu])
8651 remove_entity_load_avg(tg->se[cpu]);
029632fb 8652
6fe1f348
PZ
8653 /*
8654 * Only empty task groups can be destroyed; so we can speculatively
8655 * check on_list without danger of it being re-added.
8656 */
8657 if (!tg->cfs_rq[cpu]->on_list)
8658 continue;
8659
8660 rq = cpu_rq(cpu);
8661
8662 raw_spin_lock_irqsave(&rq->lock, flags);
8663 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8664 raw_spin_unlock_irqrestore(&rq->lock, flags);
8665 }
029632fb
PZ
8666}
8667
8668void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8669 struct sched_entity *se, int cpu,
8670 struct sched_entity *parent)
8671{
8672 struct rq *rq = cpu_rq(cpu);
8673
8674 cfs_rq->tg = tg;
8675 cfs_rq->rq = rq;
029632fb
PZ
8676 init_cfs_rq_runtime(cfs_rq);
8677
8678 tg->cfs_rq[cpu] = cfs_rq;
8679 tg->se[cpu] = se;
8680
8681 /* se could be NULL for root_task_group */
8682 if (!se)
8683 return;
8684
fed14d45 8685 if (!parent) {
029632fb 8686 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8687 se->depth = 0;
8688 } else {
029632fb 8689 se->cfs_rq = parent->my_q;
fed14d45
PZ
8690 se->depth = parent->depth + 1;
8691 }
029632fb
PZ
8692
8693 se->my_q = cfs_rq;
0ac9b1c2
PT
8694 /* guarantee group entities always have weight */
8695 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8696 se->parent = parent;
8697}
8698
8699static DEFINE_MUTEX(shares_mutex);
8700
8701int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8702{
8703 int i;
8704 unsigned long flags;
8705
8706 /*
8707 * We can't change the weight of the root cgroup.
8708 */
8709 if (!tg->se[0])
8710 return -EINVAL;
8711
8712 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8713
8714 mutex_lock(&shares_mutex);
8715 if (tg->shares == shares)
8716 goto done;
8717
8718 tg->shares = shares;
8719 for_each_possible_cpu(i) {
8720 struct rq *rq = cpu_rq(i);
8721 struct sched_entity *se;
8722
8723 se = tg->se[i];
8724 /* Propagate contribution to hierarchy */
8725 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8726
8727 /* Possible calls to update_curr() need rq clock */
8728 update_rq_clock(rq);
17bc14b7 8729 for_each_sched_entity(se)
029632fb
PZ
8730 update_cfs_shares(group_cfs_rq(se));
8731 raw_spin_unlock_irqrestore(&rq->lock, flags);
8732 }
8733
8734done:
8735 mutex_unlock(&shares_mutex);
8736 return 0;
8737}
8738#else /* CONFIG_FAIR_GROUP_SCHED */
8739
8740void free_fair_sched_group(struct task_group *tg) { }
8741
8742int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8743{
8744 return 1;
8745}
8746
8663e24d
PZ
8747void online_fair_sched_group(struct task_group *tg) { }
8748
6fe1f348 8749void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8750
8751#endif /* CONFIG_FAIR_GROUP_SCHED */
8752
810b3817 8753
6d686f45 8754static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8755{
8756 struct sched_entity *se = &task->se;
0d721cea
PW
8757 unsigned int rr_interval = 0;
8758
8759 /*
8760 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8761 * idle runqueue:
8762 */
0d721cea 8763 if (rq->cfs.load.weight)
a59f4e07 8764 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8765
8766 return rr_interval;
8767}
8768
bf0f6f24
IM
8769/*
8770 * All the scheduling class methods:
8771 */
029632fb 8772const struct sched_class fair_sched_class = {
5522d5d5 8773 .next = &idle_sched_class,
bf0f6f24
IM
8774 .enqueue_task = enqueue_task_fair,
8775 .dequeue_task = dequeue_task_fair,
8776 .yield_task = yield_task_fair,
d95f4122 8777 .yield_to_task = yield_to_task_fair,
bf0f6f24 8778
2e09bf55 8779 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8780
8781 .pick_next_task = pick_next_task_fair,
8782 .put_prev_task = put_prev_task_fair,
8783
681f3e68 8784#ifdef CONFIG_SMP
4ce72a2c 8785 .select_task_rq = select_task_rq_fair,
0a74bef8 8786 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8787
0bcdcf28
CE
8788 .rq_online = rq_online_fair,
8789 .rq_offline = rq_offline_fair,
88ec22d3 8790
12695578 8791 .task_dead = task_dead_fair,
c5b28038 8792 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8793#endif
bf0f6f24 8794
83b699ed 8795 .set_curr_task = set_curr_task_fair,
bf0f6f24 8796 .task_tick = task_tick_fair,
cd29fe6f 8797 .task_fork = task_fork_fair,
cb469845
SR
8798
8799 .prio_changed = prio_changed_fair,
da7a735e 8800 .switched_from = switched_from_fair,
cb469845 8801 .switched_to = switched_to_fair,
810b3817 8802
0d721cea
PW
8803 .get_rr_interval = get_rr_interval_fair,
8804
6e998916
SG
8805 .update_curr = update_curr_fair,
8806
810b3817 8807#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8808 .task_change_group = task_change_group_fair,
810b3817 8809#endif
bf0f6f24
IM
8810};
8811
8812#ifdef CONFIG_SCHED_DEBUG
029632fb 8813void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8814{
bf0f6f24
IM
8815 struct cfs_rq *cfs_rq;
8816
5973e5b9 8817 rcu_read_lock();
c3b64f1e 8818 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8819 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8820 rcu_read_unlock();
bf0f6f24 8821}
397f2378
SD
8822
8823#ifdef CONFIG_NUMA_BALANCING
8824void show_numa_stats(struct task_struct *p, struct seq_file *m)
8825{
8826 int node;
8827 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8828
8829 for_each_online_node(node) {
8830 if (p->numa_faults) {
8831 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8832 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8833 }
8834 if (p->numa_group) {
8835 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8836 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8837 }
8838 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8839 }
8840}
8841#endif /* CONFIG_NUMA_BALANCING */
8842#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8843
8844__init void init_sched_fair_class(void)
8845{
8846#ifdef CONFIG_SMP
8847 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8848
3451d024 8849#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8850 nohz.next_balance = jiffies;
029632fb 8851 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8852#endif
8853#endif /* SMP */
8854
8855}
This page took 1.358673 seconds and 5 git commands to generate.