sched/fair: Apply more PELT fixes
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
7dc603c9
PZ
693static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 695static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
696static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
697
2b8c41da
YD
698/*
699 * With new tasks being created, their initial util_avgs are extrapolated
700 * based on the cfs_rq's current util_avg:
701 *
702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
703 *
704 * However, in many cases, the above util_avg does not give a desired
705 * value. Moreover, the sum of the util_avgs may be divergent, such
706 * as when the series is a harmonic series.
707 *
708 * To solve this problem, we also cap the util_avg of successive tasks to
709 * only 1/2 of the left utilization budget:
710 *
711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
712 *
713 * where n denotes the nth task.
714 *
715 * For example, a simplest series from the beginning would be like:
716 *
717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
719 *
720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721 * if util_avg > util_avg_cap.
722 */
723void post_init_entity_util_avg(struct sched_entity *se)
724{
725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 struct sched_avg *sa = &se->avg;
172895e6 727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 728 u64 now = cfs_rq_clock_task(cfs_rq);
3d30544f 729 int tg_update;
2b8c41da
YD
730
731 if (cap > 0) {
732 if (cfs_rq->avg.util_avg != 0) {
733 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
734 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
735
736 if (sa->util_avg > cap)
737 sa->util_avg = cap;
738 } else {
739 sa->util_avg = cap;
740 }
741 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
742 }
7dc603c9
PZ
743
744 if (entity_is_task(se)) {
745 struct task_struct *p = task_of(se);
746 if (p->sched_class != &fair_sched_class) {
747 /*
748 * For !fair tasks do:
749 *
750 update_cfs_rq_load_avg(now, cfs_rq, false);
751 attach_entity_load_avg(cfs_rq, se);
752 switched_from_fair(rq, p);
753 *
754 * such that the next switched_to_fair() has the
755 * expected state.
756 */
757 se->avg.last_update_time = now;
758 return;
759 }
760 }
761
3d30544f 762 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 763 attach_entity_load_avg(cfs_rq, se);
3d30544f
PZ
764 if (tg_update)
765 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
766}
767
7dc603c9 768#else /* !CONFIG_SMP */
540247fb 769void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
770{
771}
2b8c41da
YD
772void post_init_entity_util_avg(struct sched_entity *se)
773{
774}
3d30544f
PZ
775static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
776{
777}
7dc603c9 778#endif /* CONFIG_SMP */
a75cdaa9 779
bf0f6f24 780/*
9dbdb155 781 * Update the current task's runtime statistics.
bf0f6f24 782 */
b7cc0896 783static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 784{
429d43bc 785 struct sched_entity *curr = cfs_rq->curr;
78becc27 786 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 787 u64 delta_exec;
bf0f6f24
IM
788
789 if (unlikely(!curr))
790 return;
791
9dbdb155
PZ
792 delta_exec = now - curr->exec_start;
793 if (unlikely((s64)delta_exec <= 0))
34f28ecd 794 return;
bf0f6f24 795
8ebc91d9 796 curr->exec_start = now;
d842de87 797
9dbdb155
PZ
798 schedstat_set(curr->statistics.exec_max,
799 max(delta_exec, curr->statistics.exec_max));
800
801 curr->sum_exec_runtime += delta_exec;
802 schedstat_add(cfs_rq, exec_clock, delta_exec);
803
804 curr->vruntime += calc_delta_fair(delta_exec, curr);
805 update_min_vruntime(cfs_rq);
806
d842de87
SV
807 if (entity_is_task(curr)) {
808 struct task_struct *curtask = task_of(curr);
809
f977bb49 810 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 811 cpuacct_charge(curtask, delta_exec);
f06febc9 812 account_group_exec_runtime(curtask, delta_exec);
d842de87 813 }
ec12cb7f
PT
814
815 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
816}
817
6e998916
SG
818static void update_curr_fair(struct rq *rq)
819{
820 update_curr(cfs_rq_of(&rq->curr->se));
821}
822
3ea94de1 823#ifdef CONFIG_SCHEDSTATS
bf0f6f24 824static inline void
5870db5b 825update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 826{
3ea94de1
JP
827 u64 wait_start = rq_clock(rq_of(cfs_rq));
828
829 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
830 likely(wait_start > se->statistics.wait_start))
831 wait_start -= se->statistics.wait_start;
832
833 se->statistics.wait_start = wait_start;
bf0f6f24
IM
834}
835
3ea94de1
JP
836static void
837update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
838{
839 struct task_struct *p;
cb251765
MG
840 u64 delta;
841
842 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
843
844 if (entity_is_task(se)) {
845 p = task_of(se);
846 if (task_on_rq_migrating(p)) {
847 /*
848 * Preserve migrating task's wait time so wait_start
849 * time stamp can be adjusted to accumulate wait time
850 * prior to migration.
851 */
852 se->statistics.wait_start = delta;
853 return;
854 }
855 trace_sched_stat_wait(p, delta);
856 }
857
858 se->statistics.wait_max = max(se->statistics.wait_max, delta);
859 se->statistics.wait_count++;
860 se->statistics.wait_sum += delta;
861 se->statistics.wait_start = 0;
862}
3ea94de1 863
bf0f6f24
IM
864/*
865 * Task is being enqueued - update stats:
866 */
cb251765
MG
867static inline void
868update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 869{
bf0f6f24
IM
870 /*
871 * Are we enqueueing a waiting task? (for current tasks
872 * a dequeue/enqueue event is a NOP)
873 */
429d43bc 874 if (se != cfs_rq->curr)
5870db5b 875 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
876}
877
bf0f6f24 878static inline void
cb251765 879update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 880{
bf0f6f24
IM
881 /*
882 * Mark the end of the wait period if dequeueing a
883 * waiting task:
884 */
429d43bc 885 if (se != cfs_rq->curr)
9ef0a961 886 update_stats_wait_end(cfs_rq, se);
cb251765
MG
887
888 if (flags & DEQUEUE_SLEEP) {
889 if (entity_is_task(se)) {
890 struct task_struct *tsk = task_of(se);
891
892 if (tsk->state & TASK_INTERRUPTIBLE)
893 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
894 if (tsk->state & TASK_UNINTERRUPTIBLE)
895 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
896 }
897 }
898
899}
900#else
901static inline void
902update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
903{
904}
905
906static inline void
907update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
908{
909}
910
911static inline void
912update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
913{
914}
915
916static inline void
917update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
918{
bf0f6f24 919}
cb251765 920#endif
bf0f6f24
IM
921
922/*
923 * We are picking a new current task - update its stats:
924 */
925static inline void
79303e9e 926update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
927{
928 /*
929 * We are starting a new run period:
930 */
78becc27 931 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
932}
933
bf0f6f24
IM
934/**************************************************
935 * Scheduling class queueing methods:
936 */
937
cbee9f88
PZ
938#ifdef CONFIG_NUMA_BALANCING
939/*
598f0ec0
MG
940 * Approximate time to scan a full NUMA task in ms. The task scan period is
941 * calculated based on the tasks virtual memory size and
942 * numa_balancing_scan_size.
cbee9f88 943 */
598f0ec0
MG
944unsigned int sysctl_numa_balancing_scan_period_min = 1000;
945unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
946
947/* Portion of address space to scan in MB */
948unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 949
4b96a29b
PZ
950/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
951unsigned int sysctl_numa_balancing_scan_delay = 1000;
952
598f0ec0
MG
953static unsigned int task_nr_scan_windows(struct task_struct *p)
954{
955 unsigned long rss = 0;
956 unsigned long nr_scan_pages;
957
958 /*
959 * Calculations based on RSS as non-present and empty pages are skipped
960 * by the PTE scanner and NUMA hinting faults should be trapped based
961 * on resident pages
962 */
963 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
964 rss = get_mm_rss(p->mm);
965 if (!rss)
966 rss = nr_scan_pages;
967
968 rss = round_up(rss, nr_scan_pages);
969 return rss / nr_scan_pages;
970}
971
972/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
973#define MAX_SCAN_WINDOW 2560
974
975static unsigned int task_scan_min(struct task_struct *p)
976{
316c1608 977 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
978 unsigned int scan, floor;
979 unsigned int windows = 1;
980
64192658
KT
981 if (scan_size < MAX_SCAN_WINDOW)
982 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
983 floor = 1000 / windows;
984
985 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
986 return max_t(unsigned int, floor, scan);
987}
988
989static unsigned int task_scan_max(struct task_struct *p)
990{
991 unsigned int smin = task_scan_min(p);
992 unsigned int smax;
993
994 /* Watch for min being lower than max due to floor calculations */
995 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
996 return max(smin, smax);
997}
998
0ec8aa00
PZ
999static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1000{
1001 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1002 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1003}
1004
1005static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1006{
1007 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1008 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1009}
1010
8c8a743c
PZ
1011struct numa_group {
1012 atomic_t refcount;
1013
1014 spinlock_t lock; /* nr_tasks, tasks */
1015 int nr_tasks;
e29cf08b 1016 pid_t gid;
4142c3eb 1017 int active_nodes;
8c8a743c
PZ
1018
1019 struct rcu_head rcu;
989348b5 1020 unsigned long total_faults;
4142c3eb 1021 unsigned long max_faults_cpu;
7e2703e6
RR
1022 /*
1023 * Faults_cpu is used to decide whether memory should move
1024 * towards the CPU. As a consequence, these stats are weighted
1025 * more by CPU use than by memory faults.
1026 */
50ec8a40 1027 unsigned long *faults_cpu;
989348b5 1028 unsigned long faults[0];
8c8a743c
PZ
1029};
1030
be1e4e76
RR
1031/* Shared or private faults. */
1032#define NR_NUMA_HINT_FAULT_TYPES 2
1033
1034/* Memory and CPU locality */
1035#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1036
1037/* Averaged statistics, and temporary buffers. */
1038#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1039
e29cf08b
MG
1040pid_t task_numa_group_id(struct task_struct *p)
1041{
1042 return p->numa_group ? p->numa_group->gid : 0;
1043}
1044
44dba3d5
IM
1045/*
1046 * The averaged statistics, shared & private, memory & cpu,
1047 * occupy the first half of the array. The second half of the
1048 * array is for current counters, which are averaged into the
1049 * first set by task_numa_placement.
1050 */
1051static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1052{
44dba3d5 1053 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1054}
1055
1056static inline unsigned long task_faults(struct task_struct *p, int nid)
1057{
44dba3d5 1058 if (!p->numa_faults)
ac8e895b
MG
1059 return 0;
1060
44dba3d5
IM
1061 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1062 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1063}
1064
83e1d2cd
MG
1065static inline unsigned long group_faults(struct task_struct *p, int nid)
1066{
1067 if (!p->numa_group)
1068 return 0;
1069
44dba3d5
IM
1070 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1071 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1072}
1073
20e07dea
RR
1074static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1075{
44dba3d5
IM
1076 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1077 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1078}
1079
4142c3eb
RR
1080/*
1081 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1082 * considered part of a numa group's pseudo-interleaving set. Migrations
1083 * between these nodes are slowed down, to allow things to settle down.
1084 */
1085#define ACTIVE_NODE_FRACTION 3
1086
1087static bool numa_is_active_node(int nid, struct numa_group *ng)
1088{
1089 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1090}
1091
6c6b1193
RR
1092/* Handle placement on systems where not all nodes are directly connected. */
1093static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1094 int maxdist, bool task)
1095{
1096 unsigned long score = 0;
1097 int node;
1098
1099 /*
1100 * All nodes are directly connected, and the same distance
1101 * from each other. No need for fancy placement algorithms.
1102 */
1103 if (sched_numa_topology_type == NUMA_DIRECT)
1104 return 0;
1105
1106 /*
1107 * This code is called for each node, introducing N^2 complexity,
1108 * which should be ok given the number of nodes rarely exceeds 8.
1109 */
1110 for_each_online_node(node) {
1111 unsigned long faults;
1112 int dist = node_distance(nid, node);
1113
1114 /*
1115 * The furthest away nodes in the system are not interesting
1116 * for placement; nid was already counted.
1117 */
1118 if (dist == sched_max_numa_distance || node == nid)
1119 continue;
1120
1121 /*
1122 * On systems with a backplane NUMA topology, compare groups
1123 * of nodes, and move tasks towards the group with the most
1124 * memory accesses. When comparing two nodes at distance
1125 * "hoplimit", only nodes closer by than "hoplimit" are part
1126 * of each group. Skip other nodes.
1127 */
1128 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1129 dist > maxdist)
1130 continue;
1131
1132 /* Add up the faults from nearby nodes. */
1133 if (task)
1134 faults = task_faults(p, node);
1135 else
1136 faults = group_faults(p, node);
1137
1138 /*
1139 * On systems with a glueless mesh NUMA topology, there are
1140 * no fixed "groups of nodes". Instead, nodes that are not
1141 * directly connected bounce traffic through intermediate
1142 * nodes; a numa_group can occupy any set of nodes.
1143 * The further away a node is, the less the faults count.
1144 * This seems to result in good task placement.
1145 */
1146 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1147 faults *= (sched_max_numa_distance - dist);
1148 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1149 }
1150
1151 score += faults;
1152 }
1153
1154 return score;
1155}
1156
83e1d2cd
MG
1157/*
1158 * These return the fraction of accesses done by a particular task, or
1159 * task group, on a particular numa node. The group weight is given a
1160 * larger multiplier, in order to group tasks together that are almost
1161 * evenly spread out between numa nodes.
1162 */
7bd95320
RR
1163static inline unsigned long task_weight(struct task_struct *p, int nid,
1164 int dist)
83e1d2cd 1165{
7bd95320 1166 unsigned long faults, total_faults;
83e1d2cd 1167
44dba3d5 1168 if (!p->numa_faults)
83e1d2cd
MG
1169 return 0;
1170
1171 total_faults = p->total_numa_faults;
1172
1173 if (!total_faults)
1174 return 0;
1175
7bd95320 1176 faults = task_faults(p, nid);
6c6b1193
RR
1177 faults += score_nearby_nodes(p, nid, dist, true);
1178
7bd95320 1179 return 1000 * faults / total_faults;
83e1d2cd
MG
1180}
1181
7bd95320
RR
1182static inline unsigned long group_weight(struct task_struct *p, int nid,
1183 int dist)
83e1d2cd 1184{
7bd95320
RR
1185 unsigned long faults, total_faults;
1186
1187 if (!p->numa_group)
1188 return 0;
1189
1190 total_faults = p->numa_group->total_faults;
1191
1192 if (!total_faults)
83e1d2cd
MG
1193 return 0;
1194
7bd95320 1195 faults = group_faults(p, nid);
6c6b1193
RR
1196 faults += score_nearby_nodes(p, nid, dist, false);
1197
7bd95320 1198 return 1000 * faults / total_faults;
83e1d2cd
MG
1199}
1200
10f39042
RR
1201bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1202 int src_nid, int dst_cpu)
1203{
1204 struct numa_group *ng = p->numa_group;
1205 int dst_nid = cpu_to_node(dst_cpu);
1206 int last_cpupid, this_cpupid;
1207
1208 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1209
1210 /*
1211 * Multi-stage node selection is used in conjunction with a periodic
1212 * migration fault to build a temporal task<->page relation. By using
1213 * a two-stage filter we remove short/unlikely relations.
1214 *
1215 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1216 * a task's usage of a particular page (n_p) per total usage of this
1217 * page (n_t) (in a given time-span) to a probability.
1218 *
1219 * Our periodic faults will sample this probability and getting the
1220 * same result twice in a row, given these samples are fully
1221 * independent, is then given by P(n)^2, provided our sample period
1222 * is sufficiently short compared to the usage pattern.
1223 *
1224 * This quadric squishes small probabilities, making it less likely we
1225 * act on an unlikely task<->page relation.
1226 */
1227 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1228 if (!cpupid_pid_unset(last_cpupid) &&
1229 cpupid_to_nid(last_cpupid) != dst_nid)
1230 return false;
1231
1232 /* Always allow migrate on private faults */
1233 if (cpupid_match_pid(p, last_cpupid))
1234 return true;
1235
1236 /* A shared fault, but p->numa_group has not been set up yet. */
1237 if (!ng)
1238 return true;
1239
1240 /*
4142c3eb
RR
1241 * Destination node is much more heavily used than the source
1242 * node? Allow migration.
10f39042 1243 */
4142c3eb
RR
1244 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1245 ACTIVE_NODE_FRACTION)
10f39042
RR
1246 return true;
1247
1248 /*
4142c3eb
RR
1249 * Distribute memory according to CPU & memory use on each node,
1250 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1251 *
1252 * faults_cpu(dst) 3 faults_cpu(src)
1253 * --------------- * - > ---------------
1254 * faults_mem(dst) 4 faults_mem(src)
10f39042 1255 */
4142c3eb
RR
1256 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1257 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1258}
1259
e6628d5b 1260static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1261static unsigned long source_load(int cpu, int type);
1262static unsigned long target_load(int cpu, int type);
ced549fa 1263static unsigned long capacity_of(int cpu);
58d081b5
MG
1264static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1265
fb13c7ee 1266/* Cached statistics for all CPUs within a node */
58d081b5 1267struct numa_stats {
fb13c7ee 1268 unsigned long nr_running;
58d081b5 1269 unsigned long load;
fb13c7ee
MG
1270
1271 /* Total compute capacity of CPUs on a node */
5ef20ca1 1272 unsigned long compute_capacity;
fb13c7ee
MG
1273
1274 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1275 unsigned long task_capacity;
1b6a7495 1276 int has_free_capacity;
58d081b5 1277};
e6628d5b 1278
fb13c7ee
MG
1279/*
1280 * XXX borrowed from update_sg_lb_stats
1281 */
1282static void update_numa_stats(struct numa_stats *ns, int nid)
1283{
83d7f242
RR
1284 int smt, cpu, cpus = 0;
1285 unsigned long capacity;
fb13c7ee
MG
1286
1287 memset(ns, 0, sizeof(*ns));
1288 for_each_cpu(cpu, cpumask_of_node(nid)) {
1289 struct rq *rq = cpu_rq(cpu);
1290
1291 ns->nr_running += rq->nr_running;
1292 ns->load += weighted_cpuload(cpu);
ced549fa 1293 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1294
1295 cpus++;
fb13c7ee
MG
1296 }
1297
5eca82a9
PZ
1298 /*
1299 * If we raced with hotplug and there are no CPUs left in our mask
1300 * the @ns structure is NULL'ed and task_numa_compare() will
1301 * not find this node attractive.
1302 *
1b6a7495
NP
1303 * We'll either bail at !has_free_capacity, or we'll detect a huge
1304 * imbalance and bail there.
5eca82a9
PZ
1305 */
1306 if (!cpus)
1307 return;
1308
83d7f242
RR
1309 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1310 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1311 capacity = cpus / smt; /* cores */
1312
1313 ns->task_capacity = min_t(unsigned, capacity,
1314 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1315 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1316}
1317
58d081b5
MG
1318struct task_numa_env {
1319 struct task_struct *p;
e6628d5b 1320
58d081b5
MG
1321 int src_cpu, src_nid;
1322 int dst_cpu, dst_nid;
e6628d5b 1323
58d081b5 1324 struct numa_stats src_stats, dst_stats;
e6628d5b 1325
40ea2b42 1326 int imbalance_pct;
7bd95320 1327 int dist;
fb13c7ee
MG
1328
1329 struct task_struct *best_task;
1330 long best_imp;
58d081b5
MG
1331 int best_cpu;
1332};
1333
fb13c7ee
MG
1334static void task_numa_assign(struct task_numa_env *env,
1335 struct task_struct *p, long imp)
1336{
1337 if (env->best_task)
1338 put_task_struct(env->best_task);
bac78573
ON
1339 if (p)
1340 get_task_struct(p);
fb13c7ee
MG
1341
1342 env->best_task = p;
1343 env->best_imp = imp;
1344 env->best_cpu = env->dst_cpu;
1345}
1346
28a21745 1347static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1348 struct task_numa_env *env)
1349{
e4991b24
RR
1350 long imb, old_imb;
1351 long orig_src_load, orig_dst_load;
28a21745
RR
1352 long src_capacity, dst_capacity;
1353
1354 /*
1355 * The load is corrected for the CPU capacity available on each node.
1356 *
1357 * src_load dst_load
1358 * ------------ vs ---------
1359 * src_capacity dst_capacity
1360 */
1361 src_capacity = env->src_stats.compute_capacity;
1362 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1363
1364 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1365 if (dst_load < src_load)
1366 swap(dst_load, src_load);
e63da036
RR
1367
1368 /* Is the difference below the threshold? */
e4991b24
RR
1369 imb = dst_load * src_capacity * 100 -
1370 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1371 if (imb <= 0)
1372 return false;
1373
1374 /*
1375 * The imbalance is above the allowed threshold.
e4991b24 1376 * Compare it with the old imbalance.
e63da036 1377 */
28a21745 1378 orig_src_load = env->src_stats.load;
e4991b24 1379 orig_dst_load = env->dst_stats.load;
28a21745 1380
e4991b24
RR
1381 if (orig_dst_load < orig_src_load)
1382 swap(orig_dst_load, orig_src_load);
e63da036 1383
e4991b24
RR
1384 old_imb = orig_dst_load * src_capacity * 100 -
1385 orig_src_load * dst_capacity * env->imbalance_pct;
1386
1387 /* Would this change make things worse? */
1388 return (imb > old_imb);
e63da036
RR
1389}
1390
fb13c7ee
MG
1391/*
1392 * This checks if the overall compute and NUMA accesses of the system would
1393 * be improved if the source tasks was migrated to the target dst_cpu taking
1394 * into account that it might be best if task running on the dst_cpu should
1395 * be exchanged with the source task
1396 */
887c290e
RR
1397static void task_numa_compare(struct task_numa_env *env,
1398 long taskimp, long groupimp)
fb13c7ee
MG
1399{
1400 struct rq *src_rq = cpu_rq(env->src_cpu);
1401 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1402 struct task_struct *cur;
28a21745 1403 long src_load, dst_load;
fb13c7ee 1404 long load;
1c5d3eb3 1405 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1406 long moveimp = imp;
7bd95320 1407 int dist = env->dist;
fb13c7ee
MG
1408
1409 rcu_read_lock();
bac78573
ON
1410 cur = task_rcu_dereference(&dst_rq->curr);
1411 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1412 cur = NULL;
1413
7af68335
PZ
1414 /*
1415 * Because we have preemption enabled we can get migrated around and
1416 * end try selecting ourselves (current == env->p) as a swap candidate.
1417 */
1418 if (cur == env->p)
1419 goto unlock;
1420
fb13c7ee
MG
1421 /*
1422 * "imp" is the fault differential for the source task between the
1423 * source and destination node. Calculate the total differential for
1424 * the source task and potential destination task. The more negative
1425 * the value is, the more rmeote accesses that would be expected to
1426 * be incurred if the tasks were swapped.
1427 */
1428 if (cur) {
1429 /* Skip this swap candidate if cannot move to the source cpu */
1430 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1431 goto unlock;
1432
887c290e
RR
1433 /*
1434 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1435 * in any group then look only at task weights.
887c290e 1436 */
ca28aa53 1437 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1438 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1439 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1440 /*
1441 * Add some hysteresis to prevent swapping the
1442 * tasks within a group over tiny differences.
1443 */
1444 if (cur->numa_group)
1445 imp -= imp/16;
887c290e 1446 } else {
ca28aa53
RR
1447 /*
1448 * Compare the group weights. If a task is all by
1449 * itself (not part of a group), use the task weight
1450 * instead.
1451 */
ca28aa53 1452 if (cur->numa_group)
7bd95320
RR
1453 imp += group_weight(cur, env->src_nid, dist) -
1454 group_weight(cur, env->dst_nid, dist);
ca28aa53 1455 else
7bd95320
RR
1456 imp += task_weight(cur, env->src_nid, dist) -
1457 task_weight(cur, env->dst_nid, dist);
887c290e 1458 }
fb13c7ee
MG
1459 }
1460
0132c3e1 1461 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1462 goto unlock;
1463
1464 if (!cur) {
1465 /* Is there capacity at our destination? */
b932c03c 1466 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1467 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1468 goto unlock;
1469
1470 goto balance;
1471 }
1472
1473 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1474 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1475 dst_rq->nr_running == 1)
fb13c7ee
MG
1476 goto assign;
1477
1478 /*
1479 * In the overloaded case, try and keep the load balanced.
1480 */
1481balance:
e720fff6
PZ
1482 load = task_h_load(env->p);
1483 dst_load = env->dst_stats.load + load;
1484 src_load = env->src_stats.load - load;
fb13c7ee 1485
0132c3e1
RR
1486 if (moveimp > imp && moveimp > env->best_imp) {
1487 /*
1488 * If the improvement from just moving env->p direction is
1489 * better than swapping tasks around, check if a move is
1490 * possible. Store a slightly smaller score than moveimp,
1491 * so an actually idle CPU will win.
1492 */
1493 if (!load_too_imbalanced(src_load, dst_load, env)) {
1494 imp = moveimp - 1;
1495 cur = NULL;
1496 goto assign;
1497 }
1498 }
1499
1500 if (imp <= env->best_imp)
1501 goto unlock;
1502
fb13c7ee 1503 if (cur) {
e720fff6
PZ
1504 load = task_h_load(cur);
1505 dst_load -= load;
1506 src_load += load;
fb13c7ee
MG
1507 }
1508
28a21745 1509 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1510 goto unlock;
1511
ba7e5a27
RR
1512 /*
1513 * One idle CPU per node is evaluated for a task numa move.
1514 * Call select_idle_sibling to maybe find a better one.
1515 */
1516 if (!cur)
1517 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1518
fb13c7ee
MG
1519assign:
1520 task_numa_assign(env, cur, imp);
1521unlock:
1522 rcu_read_unlock();
1523}
1524
887c290e
RR
1525static void task_numa_find_cpu(struct task_numa_env *env,
1526 long taskimp, long groupimp)
2c8a50aa
MG
1527{
1528 int cpu;
1529
1530 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1531 /* Skip this CPU if the source task cannot migrate */
1532 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1533 continue;
1534
1535 env->dst_cpu = cpu;
887c290e 1536 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1537 }
1538}
1539
6f9aad0b
RR
1540/* Only move tasks to a NUMA node less busy than the current node. */
1541static bool numa_has_capacity(struct task_numa_env *env)
1542{
1543 struct numa_stats *src = &env->src_stats;
1544 struct numa_stats *dst = &env->dst_stats;
1545
1546 if (src->has_free_capacity && !dst->has_free_capacity)
1547 return false;
1548
1549 /*
1550 * Only consider a task move if the source has a higher load
1551 * than the destination, corrected for CPU capacity on each node.
1552 *
1553 * src->load dst->load
1554 * --------------------- vs ---------------------
1555 * src->compute_capacity dst->compute_capacity
1556 */
44dcb04f
SD
1557 if (src->load * dst->compute_capacity * env->imbalance_pct >
1558
1559 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1560 return true;
1561
1562 return false;
1563}
1564
58d081b5
MG
1565static int task_numa_migrate(struct task_struct *p)
1566{
58d081b5
MG
1567 struct task_numa_env env = {
1568 .p = p,
fb13c7ee 1569
58d081b5 1570 .src_cpu = task_cpu(p),
b32e86b4 1571 .src_nid = task_node(p),
fb13c7ee
MG
1572
1573 .imbalance_pct = 112,
1574
1575 .best_task = NULL,
1576 .best_imp = 0,
4142c3eb 1577 .best_cpu = -1,
58d081b5
MG
1578 };
1579 struct sched_domain *sd;
887c290e 1580 unsigned long taskweight, groupweight;
7bd95320 1581 int nid, ret, dist;
887c290e 1582 long taskimp, groupimp;
e6628d5b 1583
58d081b5 1584 /*
fb13c7ee
MG
1585 * Pick the lowest SD_NUMA domain, as that would have the smallest
1586 * imbalance and would be the first to start moving tasks about.
1587 *
1588 * And we want to avoid any moving of tasks about, as that would create
1589 * random movement of tasks -- counter the numa conditions we're trying
1590 * to satisfy here.
58d081b5
MG
1591 */
1592 rcu_read_lock();
fb13c7ee 1593 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1594 if (sd)
1595 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1596 rcu_read_unlock();
1597
46a73e8a
RR
1598 /*
1599 * Cpusets can break the scheduler domain tree into smaller
1600 * balance domains, some of which do not cross NUMA boundaries.
1601 * Tasks that are "trapped" in such domains cannot be migrated
1602 * elsewhere, so there is no point in (re)trying.
1603 */
1604 if (unlikely(!sd)) {
de1b301a 1605 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1606 return -EINVAL;
1607 }
1608
2c8a50aa 1609 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1610 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1611 taskweight = task_weight(p, env.src_nid, dist);
1612 groupweight = group_weight(p, env.src_nid, dist);
1613 update_numa_stats(&env.src_stats, env.src_nid);
1614 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1615 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1616 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1617
a43455a1 1618 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1619 if (numa_has_capacity(&env))
1620 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1621
9de05d48
RR
1622 /*
1623 * Look at other nodes in these cases:
1624 * - there is no space available on the preferred_nid
1625 * - the task is part of a numa_group that is interleaved across
1626 * multiple NUMA nodes; in order to better consolidate the group,
1627 * we need to check other locations.
1628 */
4142c3eb 1629 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1630 for_each_online_node(nid) {
1631 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1632 continue;
58d081b5 1633
7bd95320 1634 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1635 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1636 dist != env.dist) {
1637 taskweight = task_weight(p, env.src_nid, dist);
1638 groupweight = group_weight(p, env.src_nid, dist);
1639 }
7bd95320 1640
83e1d2cd 1641 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1642 taskimp = task_weight(p, nid, dist) - taskweight;
1643 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1644 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1645 continue;
1646
7bd95320 1647 env.dist = dist;
2c8a50aa
MG
1648 env.dst_nid = nid;
1649 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1650 if (numa_has_capacity(&env))
1651 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1652 }
1653 }
1654
68d1b02a
RR
1655 /*
1656 * If the task is part of a workload that spans multiple NUMA nodes,
1657 * and is migrating into one of the workload's active nodes, remember
1658 * this node as the task's preferred numa node, so the workload can
1659 * settle down.
1660 * A task that migrated to a second choice node will be better off
1661 * trying for a better one later. Do not set the preferred node here.
1662 */
db015dae 1663 if (p->numa_group) {
4142c3eb
RR
1664 struct numa_group *ng = p->numa_group;
1665
db015dae
RR
1666 if (env.best_cpu == -1)
1667 nid = env.src_nid;
1668 else
1669 nid = env.dst_nid;
1670
4142c3eb 1671 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1672 sched_setnuma(p, env.dst_nid);
1673 }
1674
1675 /* No better CPU than the current one was found. */
1676 if (env.best_cpu == -1)
1677 return -EAGAIN;
0ec8aa00 1678
04bb2f94
RR
1679 /*
1680 * Reset the scan period if the task is being rescheduled on an
1681 * alternative node to recheck if the tasks is now properly placed.
1682 */
1683 p->numa_scan_period = task_scan_min(p);
1684
fb13c7ee 1685 if (env.best_task == NULL) {
286549dc
MG
1686 ret = migrate_task_to(p, env.best_cpu);
1687 if (ret != 0)
1688 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1689 return ret;
1690 }
1691
1692 ret = migrate_swap(p, env.best_task);
286549dc
MG
1693 if (ret != 0)
1694 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1695 put_task_struct(env.best_task);
1696 return ret;
e6628d5b
MG
1697}
1698
6b9a7460
MG
1699/* Attempt to migrate a task to a CPU on the preferred node. */
1700static void numa_migrate_preferred(struct task_struct *p)
1701{
5085e2a3
RR
1702 unsigned long interval = HZ;
1703
2739d3ee 1704 /* This task has no NUMA fault statistics yet */
44dba3d5 1705 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1706 return;
1707
2739d3ee 1708 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1709 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1710 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1711
1712 /* Success if task is already running on preferred CPU */
de1b301a 1713 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1714 return;
1715
1716 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1717 task_numa_migrate(p);
6b9a7460
MG
1718}
1719
20e07dea 1720/*
4142c3eb 1721 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1722 * tracking the nodes from which NUMA hinting faults are triggered. This can
1723 * be different from the set of nodes where the workload's memory is currently
1724 * located.
20e07dea 1725 */
4142c3eb 1726static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1727{
1728 unsigned long faults, max_faults = 0;
4142c3eb 1729 int nid, active_nodes = 0;
20e07dea
RR
1730
1731 for_each_online_node(nid) {
1732 faults = group_faults_cpu(numa_group, nid);
1733 if (faults > max_faults)
1734 max_faults = faults;
1735 }
1736
1737 for_each_online_node(nid) {
1738 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1739 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1740 active_nodes++;
20e07dea 1741 }
4142c3eb
RR
1742
1743 numa_group->max_faults_cpu = max_faults;
1744 numa_group->active_nodes = active_nodes;
20e07dea
RR
1745}
1746
04bb2f94
RR
1747/*
1748 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1749 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1750 * period will be for the next scan window. If local/(local+remote) ratio is
1751 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1752 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1753 */
1754#define NUMA_PERIOD_SLOTS 10
a22b4b01 1755#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1756
1757/*
1758 * Increase the scan period (slow down scanning) if the majority of
1759 * our memory is already on our local node, or if the majority of
1760 * the page accesses are shared with other processes.
1761 * Otherwise, decrease the scan period.
1762 */
1763static void update_task_scan_period(struct task_struct *p,
1764 unsigned long shared, unsigned long private)
1765{
1766 unsigned int period_slot;
1767 int ratio;
1768 int diff;
1769
1770 unsigned long remote = p->numa_faults_locality[0];
1771 unsigned long local = p->numa_faults_locality[1];
1772
1773 /*
1774 * If there were no record hinting faults then either the task is
1775 * completely idle or all activity is areas that are not of interest
074c2381
MG
1776 * to automatic numa balancing. Related to that, if there were failed
1777 * migration then it implies we are migrating too quickly or the local
1778 * node is overloaded. In either case, scan slower
04bb2f94 1779 */
074c2381 1780 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1781 p->numa_scan_period = min(p->numa_scan_period_max,
1782 p->numa_scan_period << 1);
1783
1784 p->mm->numa_next_scan = jiffies +
1785 msecs_to_jiffies(p->numa_scan_period);
1786
1787 return;
1788 }
1789
1790 /*
1791 * Prepare to scale scan period relative to the current period.
1792 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1793 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1794 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1795 */
1796 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1797 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1798 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1799 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1800 if (!slot)
1801 slot = 1;
1802 diff = slot * period_slot;
1803 } else {
1804 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1805
1806 /*
1807 * Scale scan rate increases based on sharing. There is an
1808 * inverse relationship between the degree of sharing and
1809 * the adjustment made to the scanning period. Broadly
1810 * speaking the intent is that there is little point
1811 * scanning faster if shared accesses dominate as it may
1812 * simply bounce migrations uselessly
1813 */
2847c90e 1814 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1815 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1816 }
1817
1818 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1819 task_scan_min(p), task_scan_max(p));
1820 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1821}
1822
7e2703e6
RR
1823/*
1824 * Get the fraction of time the task has been running since the last
1825 * NUMA placement cycle. The scheduler keeps similar statistics, but
1826 * decays those on a 32ms period, which is orders of magnitude off
1827 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1828 * stats only if the task is so new there are no NUMA statistics yet.
1829 */
1830static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1831{
1832 u64 runtime, delta, now;
1833 /* Use the start of this time slice to avoid calculations. */
1834 now = p->se.exec_start;
1835 runtime = p->se.sum_exec_runtime;
1836
1837 if (p->last_task_numa_placement) {
1838 delta = runtime - p->last_sum_exec_runtime;
1839 *period = now - p->last_task_numa_placement;
1840 } else {
9d89c257
YD
1841 delta = p->se.avg.load_sum / p->se.load.weight;
1842 *period = LOAD_AVG_MAX;
7e2703e6
RR
1843 }
1844
1845 p->last_sum_exec_runtime = runtime;
1846 p->last_task_numa_placement = now;
1847
1848 return delta;
1849}
1850
54009416
RR
1851/*
1852 * Determine the preferred nid for a task in a numa_group. This needs to
1853 * be done in a way that produces consistent results with group_weight,
1854 * otherwise workloads might not converge.
1855 */
1856static int preferred_group_nid(struct task_struct *p, int nid)
1857{
1858 nodemask_t nodes;
1859 int dist;
1860
1861 /* Direct connections between all NUMA nodes. */
1862 if (sched_numa_topology_type == NUMA_DIRECT)
1863 return nid;
1864
1865 /*
1866 * On a system with glueless mesh NUMA topology, group_weight
1867 * scores nodes according to the number of NUMA hinting faults on
1868 * both the node itself, and on nearby nodes.
1869 */
1870 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1871 unsigned long score, max_score = 0;
1872 int node, max_node = nid;
1873
1874 dist = sched_max_numa_distance;
1875
1876 for_each_online_node(node) {
1877 score = group_weight(p, node, dist);
1878 if (score > max_score) {
1879 max_score = score;
1880 max_node = node;
1881 }
1882 }
1883 return max_node;
1884 }
1885
1886 /*
1887 * Finding the preferred nid in a system with NUMA backplane
1888 * interconnect topology is more involved. The goal is to locate
1889 * tasks from numa_groups near each other in the system, and
1890 * untangle workloads from different sides of the system. This requires
1891 * searching down the hierarchy of node groups, recursively searching
1892 * inside the highest scoring group of nodes. The nodemask tricks
1893 * keep the complexity of the search down.
1894 */
1895 nodes = node_online_map;
1896 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1897 unsigned long max_faults = 0;
81907478 1898 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1899 int a, b;
1900
1901 /* Are there nodes at this distance from each other? */
1902 if (!find_numa_distance(dist))
1903 continue;
1904
1905 for_each_node_mask(a, nodes) {
1906 unsigned long faults = 0;
1907 nodemask_t this_group;
1908 nodes_clear(this_group);
1909
1910 /* Sum group's NUMA faults; includes a==b case. */
1911 for_each_node_mask(b, nodes) {
1912 if (node_distance(a, b) < dist) {
1913 faults += group_faults(p, b);
1914 node_set(b, this_group);
1915 node_clear(b, nodes);
1916 }
1917 }
1918
1919 /* Remember the top group. */
1920 if (faults > max_faults) {
1921 max_faults = faults;
1922 max_group = this_group;
1923 /*
1924 * subtle: at the smallest distance there is
1925 * just one node left in each "group", the
1926 * winner is the preferred nid.
1927 */
1928 nid = a;
1929 }
1930 }
1931 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1932 if (!max_faults)
1933 break;
54009416
RR
1934 nodes = max_group;
1935 }
1936 return nid;
1937}
1938
cbee9f88
PZ
1939static void task_numa_placement(struct task_struct *p)
1940{
83e1d2cd
MG
1941 int seq, nid, max_nid = -1, max_group_nid = -1;
1942 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1943 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1944 unsigned long total_faults;
1945 u64 runtime, period;
7dbd13ed 1946 spinlock_t *group_lock = NULL;
cbee9f88 1947
7e5a2c17
JL
1948 /*
1949 * The p->mm->numa_scan_seq field gets updated without
1950 * exclusive access. Use READ_ONCE() here to ensure
1951 * that the field is read in a single access:
1952 */
316c1608 1953 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1954 if (p->numa_scan_seq == seq)
1955 return;
1956 p->numa_scan_seq = seq;
598f0ec0 1957 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1958
7e2703e6
RR
1959 total_faults = p->numa_faults_locality[0] +
1960 p->numa_faults_locality[1];
1961 runtime = numa_get_avg_runtime(p, &period);
1962
7dbd13ed
MG
1963 /* If the task is part of a group prevent parallel updates to group stats */
1964 if (p->numa_group) {
1965 group_lock = &p->numa_group->lock;
60e69eed 1966 spin_lock_irq(group_lock);
7dbd13ed
MG
1967 }
1968
688b7585
MG
1969 /* Find the node with the highest number of faults */
1970 for_each_online_node(nid) {
44dba3d5
IM
1971 /* Keep track of the offsets in numa_faults array */
1972 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1973 unsigned long faults = 0, group_faults = 0;
44dba3d5 1974 int priv;
745d6147 1975
be1e4e76 1976 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1977 long diff, f_diff, f_weight;
8c8a743c 1978
44dba3d5
IM
1979 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1980 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1981 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1982 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1983
ac8e895b 1984 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1985 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1986 fault_types[priv] += p->numa_faults[membuf_idx];
1987 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1988
7e2703e6
RR
1989 /*
1990 * Normalize the faults_from, so all tasks in a group
1991 * count according to CPU use, instead of by the raw
1992 * number of faults. Tasks with little runtime have
1993 * little over-all impact on throughput, and thus their
1994 * faults are less important.
1995 */
1996 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1997 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1998 (total_faults + 1);
44dba3d5
IM
1999 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2000 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2001
44dba3d5
IM
2002 p->numa_faults[mem_idx] += diff;
2003 p->numa_faults[cpu_idx] += f_diff;
2004 faults += p->numa_faults[mem_idx];
83e1d2cd 2005 p->total_numa_faults += diff;
8c8a743c 2006 if (p->numa_group) {
44dba3d5
IM
2007 /*
2008 * safe because we can only change our own group
2009 *
2010 * mem_idx represents the offset for a given
2011 * nid and priv in a specific region because it
2012 * is at the beginning of the numa_faults array.
2013 */
2014 p->numa_group->faults[mem_idx] += diff;
2015 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2016 p->numa_group->total_faults += diff;
44dba3d5 2017 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2018 }
ac8e895b
MG
2019 }
2020
688b7585
MG
2021 if (faults > max_faults) {
2022 max_faults = faults;
2023 max_nid = nid;
2024 }
83e1d2cd
MG
2025
2026 if (group_faults > max_group_faults) {
2027 max_group_faults = group_faults;
2028 max_group_nid = nid;
2029 }
2030 }
2031
04bb2f94
RR
2032 update_task_scan_period(p, fault_types[0], fault_types[1]);
2033
7dbd13ed 2034 if (p->numa_group) {
4142c3eb 2035 numa_group_count_active_nodes(p->numa_group);
60e69eed 2036 spin_unlock_irq(group_lock);
54009416 2037 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2038 }
2039
bb97fc31
RR
2040 if (max_faults) {
2041 /* Set the new preferred node */
2042 if (max_nid != p->numa_preferred_nid)
2043 sched_setnuma(p, max_nid);
2044
2045 if (task_node(p) != p->numa_preferred_nid)
2046 numa_migrate_preferred(p);
3a7053b3 2047 }
cbee9f88
PZ
2048}
2049
8c8a743c
PZ
2050static inline int get_numa_group(struct numa_group *grp)
2051{
2052 return atomic_inc_not_zero(&grp->refcount);
2053}
2054
2055static inline void put_numa_group(struct numa_group *grp)
2056{
2057 if (atomic_dec_and_test(&grp->refcount))
2058 kfree_rcu(grp, rcu);
2059}
2060
3e6a9418
MG
2061static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2062 int *priv)
8c8a743c
PZ
2063{
2064 struct numa_group *grp, *my_grp;
2065 struct task_struct *tsk;
2066 bool join = false;
2067 int cpu = cpupid_to_cpu(cpupid);
2068 int i;
2069
2070 if (unlikely(!p->numa_group)) {
2071 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2072 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2073
2074 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2075 if (!grp)
2076 return;
2077
2078 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2079 grp->active_nodes = 1;
2080 grp->max_faults_cpu = 0;
8c8a743c 2081 spin_lock_init(&grp->lock);
e29cf08b 2082 grp->gid = p->pid;
50ec8a40 2083 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2084 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2085 nr_node_ids;
8c8a743c 2086
be1e4e76 2087 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2088 grp->faults[i] = p->numa_faults[i];
8c8a743c 2089
989348b5 2090 grp->total_faults = p->total_numa_faults;
83e1d2cd 2091
8c8a743c
PZ
2092 grp->nr_tasks++;
2093 rcu_assign_pointer(p->numa_group, grp);
2094 }
2095
2096 rcu_read_lock();
316c1608 2097 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2098
2099 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2100 goto no_join;
8c8a743c
PZ
2101
2102 grp = rcu_dereference(tsk->numa_group);
2103 if (!grp)
3354781a 2104 goto no_join;
8c8a743c
PZ
2105
2106 my_grp = p->numa_group;
2107 if (grp == my_grp)
3354781a 2108 goto no_join;
8c8a743c
PZ
2109
2110 /*
2111 * Only join the other group if its bigger; if we're the bigger group,
2112 * the other task will join us.
2113 */
2114 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2115 goto no_join;
8c8a743c
PZ
2116
2117 /*
2118 * Tie-break on the grp address.
2119 */
2120 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2121 goto no_join;
8c8a743c 2122
dabe1d99
RR
2123 /* Always join threads in the same process. */
2124 if (tsk->mm == current->mm)
2125 join = true;
2126
2127 /* Simple filter to avoid false positives due to PID collisions */
2128 if (flags & TNF_SHARED)
2129 join = true;
8c8a743c 2130
3e6a9418
MG
2131 /* Update priv based on whether false sharing was detected */
2132 *priv = !join;
2133
dabe1d99 2134 if (join && !get_numa_group(grp))
3354781a 2135 goto no_join;
8c8a743c 2136
8c8a743c
PZ
2137 rcu_read_unlock();
2138
2139 if (!join)
2140 return;
2141
60e69eed
MG
2142 BUG_ON(irqs_disabled());
2143 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2144
be1e4e76 2145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2146 my_grp->faults[i] -= p->numa_faults[i];
2147 grp->faults[i] += p->numa_faults[i];
8c8a743c 2148 }
989348b5
MG
2149 my_grp->total_faults -= p->total_numa_faults;
2150 grp->total_faults += p->total_numa_faults;
8c8a743c 2151
8c8a743c
PZ
2152 my_grp->nr_tasks--;
2153 grp->nr_tasks++;
2154
2155 spin_unlock(&my_grp->lock);
60e69eed 2156 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2157
2158 rcu_assign_pointer(p->numa_group, grp);
2159
2160 put_numa_group(my_grp);
3354781a
PZ
2161 return;
2162
2163no_join:
2164 rcu_read_unlock();
2165 return;
8c8a743c
PZ
2166}
2167
2168void task_numa_free(struct task_struct *p)
2169{
2170 struct numa_group *grp = p->numa_group;
44dba3d5 2171 void *numa_faults = p->numa_faults;
e9dd685c
SR
2172 unsigned long flags;
2173 int i;
8c8a743c
PZ
2174
2175 if (grp) {
e9dd685c 2176 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2177 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2178 grp->faults[i] -= p->numa_faults[i];
989348b5 2179 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2180
8c8a743c 2181 grp->nr_tasks--;
e9dd685c 2182 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2183 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2184 put_numa_group(grp);
2185 }
2186
44dba3d5 2187 p->numa_faults = NULL;
82727018 2188 kfree(numa_faults);
8c8a743c
PZ
2189}
2190
cbee9f88
PZ
2191/*
2192 * Got a PROT_NONE fault for a page on @node.
2193 */
58b46da3 2194void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2195{
2196 struct task_struct *p = current;
6688cc05 2197 bool migrated = flags & TNF_MIGRATED;
58b46da3 2198 int cpu_node = task_node(current);
792568ec 2199 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2200 struct numa_group *ng;
ac8e895b 2201 int priv;
cbee9f88 2202
2a595721 2203 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2204 return;
2205
9ff1d9ff
MG
2206 /* for example, ksmd faulting in a user's mm */
2207 if (!p->mm)
2208 return;
2209
f809ca9a 2210 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2211 if (unlikely(!p->numa_faults)) {
2212 int size = sizeof(*p->numa_faults) *
be1e4e76 2213 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2214
44dba3d5
IM
2215 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2216 if (!p->numa_faults)
f809ca9a 2217 return;
745d6147 2218
83e1d2cd 2219 p->total_numa_faults = 0;
04bb2f94 2220 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2221 }
cbee9f88 2222
8c8a743c
PZ
2223 /*
2224 * First accesses are treated as private, otherwise consider accesses
2225 * to be private if the accessing pid has not changed
2226 */
2227 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2228 priv = 1;
2229 } else {
2230 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2231 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2232 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2233 }
2234
792568ec
RR
2235 /*
2236 * If a workload spans multiple NUMA nodes, a shared fault that
2237 * occurs wholly within the set of nodes that the workload is
2238 * actively using should be counted as local. This allows the
2239 * scan rate to slow down when a workload has settled down.
2240 */
4142c3eb
RR
2241 ng = p->numa_group;
2242 if (!priv && !local && ng && ng->active_nodes > 1 &&
2243 numa_is_active_node(cpu_node, ng) &&
2244 numa_is_active_node(mem_node, ng))
792568ec
RR
2245 local = 1;
2246
cbee9f88 2247 task_numa_placement(p);
f809ca9a 2248
2739d3ee
RR
2249 /*
2250 * Retry task to preferred node migration periodically, in case it
2251 * case it previously failed, or the scheduler moved us.
2252 */
2253 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2254 numa_migrate_preferred(p);
2255
b32e86b4
IM
2256 if (migrated)
2257 p->numa_pages_migrated += pages;
074c2381
MG
2258 if (flags & TNF_MIGRATE_FAIL)
2259 p->numa_faults_locality[2] += pages;
b32e86b4 2260
44dba3d5
IM
2261 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2262 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2263 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2264}
2265
6e5fb223
PZ
2266static void reset_ptenuma_scan(struct task_struct *p)
2267{
7e5a2c17
JL
2268 /*
2269 * We only did a read acquisition of the mmap sem, so
2270 * p->mm->numa_scan_seq is written to without exclusive access
2271 * and the update is not guaranteed to be atomic. That's not
2272 * much of an issue though, since this is just used for
2273 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2274 * expensive, to avoid any form of compiler optimizations:
2275 */
316c1608 2276 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2277 p->mm->numa_scan_offset = 0;
2278}
2279
cbee9f88
PZ
2280/*
2281 * The expensive part of numa migration is done from task_work context.
2282 * Triggered from task_tick_numa().
2283 */
2284void task_numa_work(struct callback_head *work)
2285{
2286 unsigned long migrate, next_scan, now = jiffies;
2287 struct task_struct *p = current;
2288 struct mm_struct *mm = p->mm;
51170840 2289 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2290 struct vm_area_struct *vma;
9f40604c 2291 unsigned long start, end;
598f0ec0 2292 unsigned long nr_pte_updates = 0;
4620f8c1 2293 long pages, virtpages;
cbee9f88
PZ
2294
2295 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2296
2297 work->next = work; /* protect against double add */
2298 /*
2299 * Who cares about NUMA placement when they're dying.
2300 *
2301 * NOTE: make sure not to dereference p->mm before this check,
2302 * exit_task_work() happens _after_ exit_mm() so we could be called
2303 * without p->mm even though we still had it when we enqueued this
2304 * work.
2305 */
2306 if (p->flags & PF_EXITING)
2307 return;
2308
930aa174 2309 if (!mm->numa_next_scan) {
7e8d16b6
MG
2310 mm->numa_next_scan = now +
2311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2312 }
2313
cbee9f88
PZ
2314 /*
2315 * Enforce maximal scan/migration frequency..
2316 */
2317 migrate = mm->numa_next_scan;
2318 if (time_before(now, migrate))
2319 return;
2320
598f0ec0
MG
2321 if (p->numa_scan_period == 0) {
2322 p->numa_scan_period_max = task_scan_max(p);
2323 p->numa_scan_period = task_scan_min(p);
2324 }
cbee9f88 2325
fb003b80 2326 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2327 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2328 return;
2329
19a78d11
PZ
2330 /*
2331 * Delay this task enough that another task of this mm will likely win
2332 * the next time around.
2333 */
2334 p->node_stamp += 2 * TICK_NSEC;
2335
9f40604c
MG
2336 start = mm->numa_scan_offset;
2337 pages = sysctl_numa_balancing_scan_size;
2338 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2339 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2340 if (!pages)
2341 return;
cbee9f88 2342
4620f8c1 2343
6e5fb223 2344 down_read(&mm->mmap_sem);
9f40604c 2345 vma = find_vma(mm, start);
6e5fb223
PZ
2346 if (!vma) {
2347 reset_ptenuma_scan(p);
9f40604c 2348 start = 0;
6e5fb223
PZ
2349 vma = mm->mmap;
2350 }
9f40604c 2351 for (; vma; vma = vma->vm_next) {
6b79c57b 2352 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2353 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2354 continue;
6b79c57b 2355 }
6e5fb223 2356
4591ce4f
MG
2357 /*
2358 * Shared library pages mapped by multiple processes are not
2359 * migrated as it is expected they are cache replicated. Avoid
2360 * hinting faults in read-only file-backed mappings or the vdso
2361 * as migrating the pages will be of marginal benefit.
2362 */
2363 if (!vma->vm_mm ||
2364 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2365 continue;
2366
3c67f474
MG
2367 /*
2368 * Skip inaccessible VMAs to avoid any confusion between
2369 * PROT_NONE and NUMA hinting ptes
2370 */
2371 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2372 continue;
4591ce4f 2373
9f40604c
MG
2374 do {
2375 start = max(start, vma->vm_start);
2376 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2377 end = min(end, vma->vm_end);
4620f8c1 2378 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2379
2380 /*
4620f8c1
RR
2381 * Try to scan sysctl_numa_balancing_size worth of
2382 * hpages that have at least one present PTE that
2383 * is not already pte-numa. If the VMA contains
2384 * areas that are unused or already full of prot_numa
2385 * PTEs, scan up to virtpages, to skip through those
2386 * areas faster.
598f0ec0
MG
2387 */
2388 if (nr_pte_updates)
2389 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2390 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2391
9f40604c 2392 start = end;
4620f8c1 2393 if (pages <= 0 || virtpages <= 0)
9f40604c 2394 goto out;
3cf1962c
RR
2395
2396 cond_resched();
9f40604c 2397 } while (end != vma->vm_end);
cbee9f88 2398 }
6e5fb223 2399
9f40604c 2400out:
6e5fb223 2401 /*
c69307d5
PZ
2402 * It is possible to reach the end of the VMA list but the last few
2403 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2404 * would find the !migratable VMA on the next scan but not reset the
2405 * scanner to the start so check it now.
6e5fb223
PZ
2406 */
2407 if (vma)
9f40604c 2408 mm->numa_scan_offset = start;
6e5fb223
PZ
2409 else
2410 reset_ptenuma_scan(p);
2411 up_read(&mm->mmap_sem);
51170840
RR
2412
2413 /*
2414 * Make sure tasks use at least 32x as much time to run other code
2415 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2416 * Usually update_task_scan_period slows down scanning enough; on an
2417 * overloaded system we need to limit overhead on a per task basis.
2418 */
2419 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2420 u64 diff = p->se.sum_exec_runtime - runtime;
2421 p->node_stamp += 32 * diff;
2422 }
cbee9f88
PZ
2423}
2424
2425/*
2426 * Drive the periodic memory faults..
2427 */
2428void task_tick_numa(struct rq *rq, struct task_struct *curr)
2429{
2430 struct callback_head *work = &curr->numa_work;
2431 u64 period, now;
2432
2433 /*
2434 * We don't care about NUMA placement if we don't have memory.
2435 */
2436 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2437 return;
2438
2439 /*
2440 * Using runtime rather than walltime has the dual advantage that
2441 * we (mostly) drive the selection from busy threads and that the
2442 * task needs to have done some actual work before we bother with
2443 * NUMA placement.
2444 */
2445 now = curr->se.sum_exec_runtime;
2446 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2447
25b3e5a3 2448 if (now > curr->node_stamp + period) {
4b96a29b 2449 if (!curr->node_stamp)
598f0ec0 2450 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2451 curr->node_stamp += period;
cbee9f88
PZ
2452
2453 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2454 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2455 task_work_add(curr, work, true);
2456 }
2457 }
2458}
2459#else
2460static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2461{
2462}
0ec8aa00
PZ
2463
2464static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2465{
2466}
2467
2468static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2469{
2470}
cbee9f88
PZ
2471#endif /* CONFIG_NUMA_BALANCING */
2472
30cfdcfc
DA
2473static void
2474account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2475{
2476 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2477 if (!parent_entity(se))
029632fb 2478 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2479#ifdef CONFIG_SMP
0ec8aa00
PZ
2480 if (entity_is_task(se)) {
2481 struct rq *rq = rq_of(cfs_rq);
2482
2483 account_numa_enqueue(rq, task_of(se));
2484 list_add(&se->group_node, &rq->cfs_tasks);
2485 }
367456c7 2486#endif
30cfdcfc 2487 cfs_rq->nr_running++;
30cfdcfc
DA
2488}
2489
2490static void
2491account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2492{
2493 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2494 if (!parent_entity(se))
029632fb 2495 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2496#ifdef CONFIG_SMP
0ec8aa00
PZ
2497 if (entity_is_task(se)) {
2498 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2499 list_del_init(&se->group_node);
0ec8aa00 2500 }
bfdb198c 2501#endif
30cfdcfc 2502 cfs_rq->nr_running--;
30cfdcfc
DA
2503}
2504
3ff6dcac
YZ
2505#ifdef CONFIG_FAIR_GROUP_SCHED
2506# ifdef CONFIG_SMP
ea1dc6fc 2507static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2508{
ea1dc6fc 2509 long tg_weight, load, shares;
cf5f0acf
PZ
2510
2511 /*
ea1dc6fc
PZ
2512 * This really should be: cfs_rq->avg.load_avg, but instead we use
2513 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2514 * the shares for small weight interactive tasks.
cf5f0acf 2515 */
ea1dc6fc 2516 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2517
ea1dc6fc 2518 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2519
ea1dc6fc
PZ
2520 /* Ensure tg_weight >= load */
2521 tg_weight -= cfs_rq->tg_load_avg_contrib;
2522 tg_weight += load;
3ff6dcac 2523
3ff6dcac 2524 shares = (tg->shares * load);
cf5f0acf
PZ
2525 if (tg_weight)
2526 shares /= tg_weight;
3ff6dcac
YZ
2527
2528 if (shares < MIN_SHARES)
2529 shares = MIN_SHARES;
2530 if (shares > tg->shares)
2531 shares = tg->shares;
2532
2533 return shares;
2534}
3ff6dcac 2535# else /* CONFIG_SMP */
6d5ab293 2536static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2537{
2538 return tg->shares;
2539}
3ff6dcac 2540# endif /* CONFIG_SMP */
ea1dc6fc 2541
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
7b20b916
YD
2605/*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613};
2614
9d85f21c
PT
2615/*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619static __always_inline u64 decay_load(u64 val, u64 n)
2620{
5b51f2f8
PT
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2641 }
2642
9d89c257
YD
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
5b51f2f8
PT
2645}
2646
2647/*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654static u32 __compute_runnable_contrib(u64 n)
2655{
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
7b20b916
YD
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2668}
2669
54a21385 2670#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2671
9d85f21c
PT
2672/*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
9d89c257
YD
2700static __always_inline int
2701__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2703{
e0f5f3af 2704 u64 delta, scaled_delta, periods;
9d89c257 2705 u32 contrib;
6115c793 2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2707 unsigned long scale_freq, scale_cpu;
9d85f21c 2708
9d89c257 2709 delta = now - sa->last_update_time;
9d85f21c
PT
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
9d89c257 2715 sa->last_update_time = now;
9d85f21c
PT
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
9d89c257 2726 sa->last_update_time = now;
9d85f21c 2727
6f2b0452
DE
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
9d85f21c 2731 /* delta_w is the amount already accumulated against our next period */
9d89c257 2732 delta_w = sa->period_contrib;
9d85f21c 2733 if (delta + delta_w >= 1024) {
9d85f21c
PT
2734 decayed = 1;
2735
9d89c257
YD
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
9d85f21c
PT
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
54a21385 2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2746 if (weight) {
e0f5f3af
DE
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
13962234 2752 }
36ee28e4 2753 if (running)
006cdf02 2754 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
9d89c257 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
9d89c257 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2770 contrib = __compute_runnable_contrib(periods);
54a21385 2771 contrib = cap_scale(contrib, scale_freq);
13962234 2772 if (weight) {
9d89c257 2773 sa->load_sum += weight * contrib;
13962234
YD
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
36ee28e4 2777 if (running)
006cdf02 2778 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
54a21385 2782 scaled_delta = cap_scale(delta, scale_freq);
13962234 2783 if (weight) {
e0f5f3af 2784 sa->load_sum += weight * scaled_delta;
13962234 2785 if (cfs_rq)
e0f5f3af 2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2787 }
36ee28e4 2788 if (running)
006cdf02 2789 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2790
9d89c257 2791 sa->period_contrib += delta;
9ee474f5 2792
9d89c257
YD
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
006cdf02 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2800 }
aff3e498 2801
9d89c257 2802 return decayed;
9ee474f5
PT
2803}
2804
c566e8e9 2805#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2806/*
9d89c257
YD
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
bb17f655 2809 */
9d89c257 2810static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2811{
9d89c257 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2813
aa0b7ae0
WL
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
9d89c257
YD
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2823 }
8165e145 2824}
f5f9739d 2825
ad936d86
BP
2826/*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833{
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848#ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863#else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866#endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871}
6e83125c 2872#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2873static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2874#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2875
a2c6c91f
SM
2876static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2877{
2878 struct rq *rq = rq_of(cfs_rq);
2879 int cpu = cpu_of(rq);
2880
2881 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2882 unsigned long max = rq->cpu_capacity_orig;
2883
2884 /*
2885 * There are a few boundary cases this might miss but it should
2886 * get called often enough that that should (hopefully) not be
2887 * a real problem -- added to that it only calls on the local
2888 * CPU, so if we enqueue remotely we'll miss an update, but
2889 * the next tick/schedule should update.
2890 *
2891 * It will not get called when we go idle, because the idle
2892 * thread is a different class (!fair), nor will the utilization
2893 * number include things like RT tasks.
2894 *
2895 * As is, the util number is not freq-invariant (we'd have to
2896 * implement arch_scale_freq_capacity() for that).
2897 *
2898 * See cpu_util().
2899 */
2900 cpufreq_update_util(rq_clock(rq),
2901 min(cfs_rq->avg.util_avg, max), max);
2902 }
2903}
2904
89741892
PZ
2905/*
2906 * Unsigned subtract and clamp on underflow.
2907 *
2908 * Explicitly do a load-store to ensure the intermediate value never hits
2909 * memory. This allows lockless observations without ever seeing the negative
2910 * values.
2911 */
2912#define sub_positive(_ptr, _val) do { \
2913 typeof(_ptr) ptr = (_ptr); \
2914 typeof(*ptr) val = (_val); \
2915 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2916 res = var - val; \
2917 if (res > var) \
2918 res = 0; \
2919 WRITE_ONCE(*ptr, res); \
2920} while (0)
2921
3d30544f
PZ
2922/**
2923 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2924 * @now: current time, as per cfs_rq_clock_task()
2925 * @cfs_rq: cfs_rq to update
2926 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2927 *
2928 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2929 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2930 * post_init_entity_util_avg().
2931 *
2932 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2933 *
2934 * Returns true if the load decayed or we removed utilization. It is expected
2935 * that one calls update_tg_load_avg() on this condition, but after you've
2936 * modified the cfs_rq avg (attach/detach), such that we propagate the new
2937 * avg up.
2938 */
a2c6c91f
SM
2939static inline int
2940update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2941{
9d89c257 2942 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2943 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2944
9d89c257 2945 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2946 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2947 sub_positive(&sa->load_avg, r);
2948 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2949 removed_load = 1;
8165e145 2950 }
2dac754e 2951
9d89c257
YD
2952 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2953 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2954 sub_positive(&sa->util_avg, r);
2955 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2956 removed_util = 1;
9d89c257 2957 }
36ee28e4 2958
a2c6c91f 2959 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2960 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2961
9d89c257
YD
2962#ifndef CONFIG_64BIT
2963 smp_wmb();
2964 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2965#endif
36ee28e4 2966
a2c6c91f
SM
2967 if (update_freq && (decayed || removed_util))
2968 cfs_rq_util_change(cfs_rq);
21e96f88 2969
41e0d37f 2970 return decayed || removed_load;
21e96f88
SM
2971}
2972
2973/* Update task and its cfs_rq load average */
2974static inline void update_load_avg(struct sched_entity *se, int update_tg)
2975{
2976 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2977 u64 now = cfs_rq_clock_task(cfs_rq);
2978 struct rq *rq = rq_of(cfs_rq);
2979 int cpu = cpu_of(rq);
2980
2981 /*
2982 * Track task load average for carrying it to new CPU after migrated, and
2983 * track group sched_entity load average for task_h_load calc in migration
2984 */
2985 __update_load_avg(now, cpu, &se->avg,
2986 se->on_rq * scale_load_down(se->load.weight),
2987 cfs_rq->curr == se, NULL);
2988
a2c6c91f 2989 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2990 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2991}
2992
3d30544f
PZ
2993/**
2994 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
2995 * @cfs_rq: cfs_rq to attach to
2996 * @se: sched_entity to attach
2997 *
2998 * Must call update_cfs_rq_load_avg() before this, since we rely on
2999 * cfs_rq->avg.last_update_time being current.
3000 */
a05e8c51
BP
3001static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002{
a9280514
PZ
3003 if (!sched_feat(ATTACH_AGE_LOAD))
3004 goto skip_aging;
3005
6efdb105
BP
3006 /*
3007 * If we got migrated (either between CPUs or between cgroups) we'll
3008 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3009 *
3010 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3011 */
3012 if (se->avg.last_update_time) {
3013 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3014 &se->avg, 0, 0, NULL);
3015
3016 /*
3017 * XXX: we could have just aged the entire load away if we've been
3018 * absent from the fair class for too long.
3019 */
3020 }
3021
a9280514 3022skip_aging:
a05e8c51
BP
3023 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3024 cfs_rq->avg.load_avg += se->avg.load_avg;
3025 cfs_rq->avg.load_sum += se->avg.load_sum;
3026 cfs_rq->avg.util_avg += se->avg.util_avg;
3027 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3028
3029 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3030}
3031
3d30544f
PZ
3032/**
3033 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3034 * @cfs_rq: cfs_rq to detach from
3035 * @se: sched_entity to detach
3036 *
3037 * Must call update_cfs_rq_load_avg() before this, since we rely on
3038 * cfs_rq->avg.last_update_time being current.
3039 */
a05e8c51
BP
3040static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3041{
3042 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3043 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3044 cfs_rq->curr == se, NULL);
3045
89741892
PZ
3046 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3047 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3048 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3049 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3050
3051 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3052}
3053
9d89c257
YD
3054/* Add the load generated by se into cfs_rq's load average */
3055static inline void
3056enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3057{
9d89c257
YD
3058 struct sched_avg *sa = &se->avg;
3059 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3060 int migrated, decayed;
9ee474f5 3061
a05e8c51
BP
3062 migrated = !sa->last_update_time;
3063 if (!migrated) {
9d89c257 3064 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3065 se->on_rq * scale_load_down(se->load.weight),
3066 cfs_rq->curr == se, NULL);
aff3e498 3067 }
c566e8e9 3068
a2c6c91f 3069 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3070
13962234
YD
3071 cfs_rq->runnable_load_avg += sa->load_avg;
3072 cfs_rq->runnable_load_sum += sa->load_sum;
3073
a05e8c51
BP
3074 if (migrated)
3075 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3076
9d89c257
YD
3077 if (decayed || migrated)
3078 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3079}
3080
13962234
YD
3081/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3082static inline void
3083dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3084{
3085 update_load_avg(se, 1);
3086
3087 cfs_rq->runnable_load_avg =
3088 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3089 cfs_rq->runnable_load_sum =
a05e8c51 3090 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3091}
3092
9d89c257 3093#ifndef CONFIG_64BIT
0905f04e
YD
3094static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3095{
9d89c257 3096 u64 last_update_time_copy;
0905f04e 3097 u64 last_update_time;
9ee474f5 3098
9d89c257
YD
3099 do {
3100 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3101 smp_rmb();
3102 last_update_time = cfs_rq->avg.last_update_time;
3103 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3104
3105 return last_update_time;
3106}
9d89c257 3107#else
0905f04e
YD
3108static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3109{
3110 return cfs_rq->avg.last_update_time;
3111}
9d89c257
YD
3112#endif
3113
0905f04e
YD
3114/*
3115 * Task first catches up with cfs_rq, and then subtract
3116 * itself from the cfs_rq (task must be off the queue now).
3117 */
3118void remove_entity_load_avg(struct sched_entity *se)
3119{
3120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3121 u64 last_update_time;
3122
3123 /*
7dc603c9
PZ
3124 * tasks cannot exit without having gone through wake_up_new_task() ->
3125 * post_init_entity_util_avg() which will have added things to the
3126 * cfs_rq, so we can remove unconditionally.
3127 *
3128 * Similarly for groups, they will have passed through
3129 * post_init_entity_util_avg() before unregister_sched_fair_group()
3130 * calls this.
0905f04e 3131 */
0905f04e
YD
3132
3133 last_update_time = cfs_rq_last_update_time(cfs_rq);
3134
13962234 3135 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3136 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3137 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3138}
642dbc39 3139
7ea241af
YD
3140static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3141{
3142 return cfs_rq->runnable_load_avg;
3143}
3144
3145static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3146{
3147 return cfs_rq->avg.load_avg;
3148}
3149
6e83125c
PZ
3150static int idle_balance(struct rq *this_rq);
3151
38033c37
PZ
3152#else /* CONFIG_SMP */
3153
01011473
PZ
3154static inline int
3155update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3156{
3157 return 0;
3158}
3159
536bd00c
RW
3160static inline void update_load_avg(struct sched_entity *se, int not_used)
3161{
3162 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3163 struct rq *rq = rq_of(cfs_rq);
3164
3165 cpufreq_trigger_update(rq_clock(rq));
3166}
3167
9d89c257
YD
3168static inline void
3169enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3170static inline void
3171dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3172static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3173
a05e8c51
BP
3174static inline void
3175attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3176static inline void
3177detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3178
6e83125c
PZ
3179static inline int idle_balance(struct rq *rq)
3180{
3181 return 0;
3182}
3183
38033c37 3184#endif /* CONFIG_SMP */
9d85f21c 3185
2396af69 3186static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3187{
bf0f6f24 3188#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3189 struct task_struct *tsk = NULL;
3190
3191 if (entity_is_task(se))
3192 tsk = task_of(se);
3193
41acab88 3194 if (se->statistics.sleep_start) {
78becc27 3195 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3196
3197 if ((s64)delta < 0)
3198 delta = 0;
3199
41acab88
LDM
3200 if (unlikely(delta > se->statistics.sleep_max))
3201 se->statistics.sleep_max = delta;
bf0f6f24 3202
8c79a045 3203 se->statistics.sleep_start = 0;
41acab88 3204 se->statistics.sum_sleep_runtime += delta;
9745512c 3205
768d0c27 3206 if (tsk) {
e414314c 3207 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3208 trace_sched_stat_sleep(tsk, delta);
3209 }
bf0f6f24 3210 }
41acab88 3211 if (se->statistics.block_start) {
78becc27 3212 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3213
3214 if ((s64)delta < 0)
3215 delta = 0;
3216
41acab88
LDM
3217 if (unlikely(delta > se->statistics.block_max))
3218 se->statistics.block_max = delta;
bf0f6f24 3219
8c79a045 3220 se->statistics.block_start = 0;
41acab88 3221 se->statistics.sum_sleep_runtime += delta;
30084fbd 3222
e414314c 3223 if (tsk) {
8f0dfc34 3224 if (tsk->in_iowait) {
41acab88
LDM
3225 se->statistics.iowait_sum += delta;
3226 se->statistics.iowait_count++;
768d0c27 3227 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3228 }
3229
b781a602
AV
3230 trace_sched_stat_blocked(tsk, delta);
3231
e414314c
PZ
3232 /*
3233 * Blocking time is in units of nanosecs, so shift by
3234 * 20 to get a milliseconds-range estimation of the
3235 * amount of time that the task spent sleeping:
3236 */
3237 if (unlikely(prof_on == SLEEP_PROFILING)) {
3238 profile_hits(SLEEP_PROFILING,
3239 (void *)get_wchan(tsk),
3240 delta >> 20);
3241 }
3242 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3243 }
bf0f6f24
IM
3244 }
3245#endif
3246}
3247
ddc97297
PZ
3248static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3249{
3250#ifdef CONFIG_SCHED_DEBUG
3251 s64 d = se->vruntime - cfs_rq->min_vruntime;
3252
3253 if (d < 0)
3254 d = -d;
3255
3256 if (d > 3*sysctl_sched_latency)
3257 schedstat_inc(cfs_rq, nr_spread_over);
3258#endif
3259}
3260
aeb73b04
PZ
3261static void
3262place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3263{
1af5f730 3264 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3265
2cb8600e
PZ
3266 /*
3267 * The 'current' period is already promised to the current tasks,
3268 * however the extra weight of the new task will slow them down a
3269 * little, place the new task so that it fits in the slot that
3270 * stays open at the end.
3271 */
94dfb5e7 3272 if (initial && sched_feat(START_DEBIT))
f9c0b095 3273 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3274
a2e7a7eb 3275 /* sleeps up to a single latency don't count. */
5ca9880c 3276 if (!initial) {
a2e7a7eb 3277 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3278
a2e7a7eb
MG
3279 /*
3280 * Halve their sleep time's effect, to allow
3281 * for a gentler effect of sleepers:
3282 */
3283 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3284 thresh >>= 1;
51e0304c 3285
a2e7a7eb 3286 vruntime -= thresh;
aeb73b04
PZ
3287 }
3288
b5d9d734 3289 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3290 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3291}
3292
d3d9dc33
PT
3293static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3294
cb251765
MG
3295static inline void check_schedstat_required(void)
3296{
3297#ifdef CONFIG_SCHEDSTATS
3298 if (schedstat_enabled())
3299 return;
3300
3301 /* Force schedstat enabled if a dependent tracepoint is active */
3302 if (trace_sched_stat_wait_enabled() ||
3303 trace_sched_stat_sleep_enabled() ||
3304 trace_sched_stat_iowait_enabled() ||
3305 trace_sched_stat_blocked_enabled() ||
3306 trace_sched_stat_runtime_enabled()) {
eda8dca5 3307 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3308 "stat_blocked and stat_runtime require the "
3309 "kernel parameter schedstats=enabled or "
3310 "kernel.sched_schedstats=1\n");
3311 }
3312#endif
3313}
3314
b5179ac7
PZ
3315
3316/*
3317 * MIGRATION
3318 *
3319 * dequeue
3320 * update_curr()
3321 * update_min_vruntime()
3322 * vruntime -= min_vruntime
3323 *
3324 * enqueue
3325 * update_curr()
3326 * update_min_vruntime()
3327 * vruntime += min_vruntime
3328 *
3329 * this way the vruntime transition between RQs is done when both
3330 * min_vruntime are up-to-date.
3331 *
3332 * WAKEUP (remote)
3333 *
59efa0ba 3334 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3335 * vruntime -= min_vruntime
3336 *
3337 * enqueue
3338 * update_curr()
3339 * update_min_vruntime()
3340 * vruntime += min_vruntime
3341 *
3342 * this way we don't have the most up-to-date min_vruntime on the originating
3343 * CPU and an up-to-date min_vruntime on the destination CPU.
3344 */
3345
bf0f6f24 3346static void
88ec22d3 3347enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3348{
2f950354
PZ
3349 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3350 bool curr = cfs_rq->curr == se;
3351
88ec22d3 3352 /*
2f950354
PZ
3353 * If we're the current task, we must renormalise before calling
3354 * update_curr().
88ec22d3 3355 */
2f950354 3356 if (renorm && curr)
88ec22d3
PZ
3357 se->vruntime += cfs_rq->min_vruntime;
3358
2f950354
PZ
3359 update_curr(cfs_rq);
3360
bf0f6f24 3361 /*
2f950354
PZ
3362 * Otherwise, renormalise after, such that we're placed at the current
3363 * moment in time, instead of some random moment in the past. Being
3364 * placed in the past could significantly boost this task to the
3365 * fairness detriment of existing tasks.
bf0f6f24 3366 */
2f950354
PZ
3367 if (renorm && !curr)
3368 se->vruntime += cfs_rq->min_vruntime;
3369
9d89c257 3370 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3371 account_entity_enqueue(cfs_rq, se);
3372 update_cfs_shares(cfs_rq);
bf0f6f24 3373
88ec22d3 3374 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3375 place_entity(cfs_rq, se, 0);
cb251765
MG
3376 if (schedstat_enabled())
3377 enqueue_sleeper(cfs_rq, se);
e9acbff6 3378 }
bf0f6f24 3379
cb251765
MG
3380 check_schedstat_required();
3381 if (schedstat_enabled()) {
3382 update_stats_enqueue(cfs_rq, se);
3383 check_spread(cfs_rq, se);
3384 }
2f950354 3385 if (!curr)
83b699ed 3386 __enqueue_entity(cfs_rq, se);
2069dd75 3387 se->on_rq = 1;
3d4b47b4 3388
d3d9dc33 3389 if (cfs_rq->nr_running == 1) {
3d4b47b4 3390 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3391 check_enqueue_throttle(cfs_rq);
3392 }
bf0f6f24
IM
3393}
3394
2c13c919 3395static void __clear_buddies_last(struct sched_entity *se)
2002c695 3396{
2c13c919
RR
3397 for_each_sched_entity(se) {
3398 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3399 if (cfs_rq->last != se)
2c13c919 3400 break;
f1044799
PZ
3401
3402 cfs_rq->last = NULL;
2c13c919
RR
3403 }
3404}
2002c695 3405
2c13c919
RR
3406static void __clear_buddies_next(struct sched_entity *se)
3407{
3408 for_each_sched_entity(se) {
3409 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3410 if (cfs_rq->next != se)
2c13c919 3411 break;
f1044799
PZ
3412
3413 cfs_rq->next = NULL;
2c13c919 3414 }
2002c695
PZ
3415}
3416
ac53db59
RR
3417static void __clear_buddies_skip(struct sched_entity *se)
3418{
3419 for_each_sched_entity(se) {
3420 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3421 if (cfs_rq->skip != se)
ac53db59 3422 break;
f1044799
PZ
3423
3424 cfs_rq->skip = NULL;
ac53db59
RR
3425 }
3426}
3427
a571bbea
PZ
3428static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3429{
2c13c919
RR
3430 if (cfs_rq->last == se)
3431 __clear_buddies_last(se);
3432
3433 if (cfs_rq->next == se)
3434 __clear_buddies_next(se);
ac53db59
RR
3435
3436 if (cfs_rq->skip == se)
3437 __clear_buddies_skip(se);
a571bbea
PZ
3438}
3439
6c16a6dc 3440static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3441
bf0f6f24 3442static void
371fd7e7 3443dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3444{
a2a2d680
DA
3445 /*
3446 * Update run-time statistics of the 'current'.
3447 */
3448 update_curr(cfs_rq);
13962234 3449 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3450
cb251765
MG
3451 if (schedstat_enabled())
3452 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3453
2002c695 3454 clear_buddies(cfs_rq, se);
4793241b 3455
83b699ed 3456 if (se != cfs_rq->curr)
30cfdcfc 3457 __dequeue_entity(cfs_rq, se);
17bc14b7 3458 se->on_rq = 0;
30cfdcfc 3459 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3460
3461 /*
3462 * Normalize the entity after updating the min_vruntime because the
3463 * update can refer to the ->curr item and we need to reflect this
3464 * movement in our normalized position.
3465 */
371fd7e7 3466 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3467 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3468
d8b4986d
PT
3469 /* return excess runtime on last dequeue */
3470 return_cfs_rq_runtime(cfs_rq);
3471
1e876231 3472 update_min_vruntime(cfs_rq);
17bc14b7 3473 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3474}
3475
3476/*
3477 * Preempt the current task with a newly woken task if needed:
3478 */
7c92e54f 3479static void
2e09bf55 3480check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3481{
11697830 3482 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3483 struct sched_entity *se;
3484 s64 delta;
11697830 3485
6d0f0ebd 3486 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3487 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3488 if (delta_exec > ideal_runtime) {
8875125e 3489 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3490 /*
3491 * The current task ran long enough, ensure it doesn't get
3492 * re-elected due to buddy favours.
3493 */
3494 clear_buddies(cfs_rq, curr);
f685ceac
MG
3495 return;
3496 }
3497
3498 /*
3499 * Ensure that a task that missed wakeup preemption by a
3500 * narrow margin doesn't have to wait for a full slice.
3501 * This also mitigates buddy induced latencies under load.
3502 */
f685ceac
MG
3503 if (delta_exec < sysctl_sched_min_granularity)
3504 return;
3505
f4cfb33e
WX
3506 se = __pick_first_entity(cfs_rq);
3507 delta = curr->vruntime - se->vruntime;
f685ceac 3508
f4cfb33e
WX
3509 if (delta < 0)
3510 return;
d7d82944 3511
f4cfb33e 3512 if (delta > ideal_runtime)
8875125e 3513 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3514}
3515
83b699ed 3516static void
8494f412 3517set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3518{
83b699ed
SV
3519 /* 'current' is not kept within the tree. */
3520 if (se->on_rq) {
3521 /*
3522 * Any task has to be enqueued before it get to execute on
3523 * a CPU. So account for the time it spent waiting on the
3524 * runqueue.
3525 */
cb251765
MG
3526 if (schedstat_enabled())
3527 update_stats_wait_end(cfs_rq, se);
83b699ed 3528 __dequeue_entity(cfs_rq, se);
9d89c257 3529 update_load_avg(se, 1);
83b699ed
SV
3530 }
3531
79303e9e 3532 update_stats_curr_start(cfs_rq, se);
429d43bc 3533 cfs_rq->curr = se;
eba1ed4b
IM
3534#ifdef CONFIG_SCHEDSTATS
3535 /*
3536 * Track our maximum slice length, if the CPU's load is at
3537 * least twice that of our own weight (i.e. dont track it
3538 * when there are only lesser-weight tasks around):
3539 */
cb251765 3540 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3541 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3542 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3543 }
3544#endif
4a55b450 3545 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3546}
3547
3f3a4904
PZ
3548static int
3549wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3550
ac53db59
RR
3551/*
3552 * Pick the next process, keeping these things in mind, in this order:
3553 * 1) keep things fair between processes/task groups
3554 * 2) pick the "next" process, since someone really wants that to run
3555 * 3) pick the "last" process, for cache locality
3556 * 4) do not run the "skip" process, if something else is available
3557 */
678d5718
PZ
3558static struct sched_entity *
3559pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3560{
678d5718
PZ
3561 struct sched_entity *left = __pick_first_entity(cfs_rq);
3562 struct sched_entity *se;
3563
3564 /*
3565 * If curr is set we have to see if its left of the leftmost entity
3566 * still in the tree, provided there was anything in the tree at all.
3567 */
3568 if (!left || (curr && entity_before(curr, left)))
3569 left = curr;
3570
3571 se = left; /* ideally we run the leftmost entity */
f4b6755f 3572
ac53db59
RR
3573 /*
3574 * Avoid running the skip buddy, if running something else can
3575 * be done without getting too unfair.
3576 */
3577 if (cfs_rq->skip == se) {
678d5718
PZ
3578 struct sched_entity *second;
3579
3580 if (se == curr) {
3581 second = __pick_first_entity(cfs_rq);
3582 } else {
3583 second = __pick_next_entity(se);
3584 if (!second || (curr && entity_before(curr, second)))
3585 second = curr;
3586 }
3587
ac53db59
RR
3588 if (second && wakeup_preempt_entity(second, left) < 1)
3589 se = second;
3590 }
aa2ac252 3591
f685ceac
MG
3592 /*
3593 * Prefer last buddy, try to return the CPU to a preempted task.
3594 */
3595 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3596 se = cfs_rq->last;
3597
ac53db59
RR
3598 /*
3599 * Someone really wants this to run. If it's not unfair, run it.
3600 */
3601 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3602 se = cfs_rq->next;
3603
f685ceac 3604 clear_buddies(cfs_rq, se);
4793241b
PZ
3605
3606 return se;
aa2ac252
PZ
3607}
3608
678d5718 3609static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3610
ab6cde26 3611static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3612{
3613 /*
3614 * If still on the runqueue then deactivate_task()
3615 * was not called and update_curr() has to be done:
3616 */
3617 if (prev->on_rq)
b7cc0896 3618 update_curr(cfs_rq);
bf0f6f24 3619
d3d9dc33
PT
3620 /* throttle cfs_rqs exceeding runtime */
3621 check_cfs_rq_runtime(cfs_rq);
3622
cb251765
MG
3623 if (schedstat_enabled()) {
3624 check_spread(cfs_rq, prev);
3625 if (prev->on_rq)
3626 update_stats_wait_start(cfs_rq, prev);
3627 }
3628
30cfdcfc 3629 if (prev->on_rq) {
30cfdcfc
DA
3630 /* Put 'current' back into the tree. */
3631 __enqueue_entity(cfs_rq, prev);
9d85f21c 3632 /* in !on_rq case, update occurred at dequeue */
9d89c257 3633 update_load_avg(prev, 0);
30cfdcfc 3634 }
429d43bc 3635 cfs_rq->curr = NULL;
bf0f6f24
IM
3636}
3637
8f4d37ec
PZ
3638static void
3639entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3640{
bf0f6f24 3641 /*
30cfdcfc 3642 * Update run-time statistics of the 'current'.
bf0f6f24 3643 */
30cfdcfc 3644 update_curr(cfs_rq);
bf0f6f24 3645
9d85f21c
PT
3646 /*
3647 * Ensure that runnable average is periodically updated.
3648 */
9d89c257 3649 update_load_avg(curr, 1);
bf0bd948 3650 update_cfs_shares(cfs_rq);
9d85f21c 3651
8f4d37ec
PZ
3652#ifdef CONFIG_SCHED_HRTICK
3653 /*
3654 * queued ticks are scheduled to match the slice, so don't bother
3655 * validating it and just reschedule.
3656 */
983ed7a6 3657 if (queued) {
8875125e 3658 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3659 return;
3660 }
8f4d37ec
PZ
3661 /*
3662 * don't let the period tick interfere with the hrtick preemption
3663 */
3664 if (!sched_feat(DOUBLE_TICK) &&
3665 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3666 return;
3667#endif
3668
2c2efaed 3669 if (cfs_rq->nr_running > 1)
2e09bf55 3670 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3671}
3672
ab84d31e
PT
3673
3674/**************************************************
3675 * CFS bandwidth control machinery
3676 */
3677
3678#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3679
3680#ifdef HAVE_JUMP_LABEL
c5905afb 3681static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3682
3683static inline bool cfs_bandwidth_used(void)
3684{
c5905afb 3685 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3686}
3687
1ee14e6c 3688void cfs_bandwidth_usage_inc(void)
029632fb 3689{
1ee14e6c
BS
3690 static_key_slow_inc(&__cfs_bandwidth_used);
3691}
3692
3693void cfs_bandwidth_usage_dec(void)
3694{
3695 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3696}
3697#else /* HAVE_JUMP_LABEL */
3698static bool cfs_bandwidth_used(void)
3699{
3700 return true;
3701}
3702
1ee14e6c
BS
3703void cfs_bandwidth_usage_inc(void) {}
3704void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3705#endif /* HAVE_JUMP_LABEL */
3706
ab84d31e
PT
3707/*
3708 * default period for cfs group bandwidth.
3709 * default: 0.1s, units: nanoseconds
3710 */
3711static inline u64 default_cfs_period(void)
3712{
3713 return 100000000ULL;
3714}
ec12cb7f
PT
3715
3716static inline u64 sched_cfs_bandwidth_slice(void)
3717{
3718 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3719}
3720
a9cf55b2
PT
3721/*
3722 * Replenish runtime according to assigned quota and update expiration time.
3723 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3724 * additional synchronization around rq->lock.
3725 *
3726 * requires cfs_b->lock
3727 */
029632fb 3728void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3729{
3730 u64 now;
3731
3732 if (cfs_b->quota == RUNTIME_INF)
3733 return;
3734
3735 now = sched_clock_cpu(smp_processor_id());
3736 cfs_b->runtime = cfs_b->quota;
3737 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3738}
3739
029632fb
PZ
3740static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3741{
3742 return &tg->cfs_bandwidth;
3743}
3744
f1b17280
PT
3745/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3746static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3747{
3748 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3749 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3750
78becc27 3751 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3752}
3753
85dac906
PT
3754/* returns 0 on failure to allocate runtime */
3755static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3756{
3757 struct task_group *tg = cfs_rq->tg;
3758 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3759 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3760
3761 /* note: this is a positive sum as runtime_remaining <= 0 */
3762 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3763
3764 raw_spin_lock(&cfs_b->lock);
3765 if (cfs_b->quota == RUNTIME_INF)
3766 amount = min_amount;
58088ad0 3767 else {
77a4d1a1 3768 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3769
3770 if (cfs_b->runtime > 0) {
3771 amount = min(cfs_b->runtime, min_amount);
3772 cfs_b->runtime -= amount;
3773 cfs_b->idle = 0;
3774 }
ec12cb7f 3775 }
a9cf55b2 3776 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3777 raw_spin_unlock(&cfs_b->lock);
3778
3779 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3780 /*
3781 * we may have advanced our local expiration to account for allowed
3782 * spread between our sched_clock and the one on which runtime was
3783 * issued.
3784 */
3785 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3786 cfs_rq->runtime_expires = expires;
85dac906
PT
3787
3788 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3789}
3790
a9cf55b2
PT
3791/*
3792 * Note: This depends on the synchronization provided by sched_clock and the
3793 * fact that rq->clock snapshots this value.
3794 */
3795static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3796{
a9cf55b2 3797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3798
3799 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3800 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3801 return;
3802
a9cf55b2
PT
3803 if (cfs_rq->runtime_remaining < 0)
3804 return;
3805
3806 /*
3807 * If the local deadline has passed we have to consider the
3808 * possibility that our sched_clock is 'fast' and the global deadline
3809 * has not truly expired.
3810 *
3811 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3812 * whether the global deadline has advanced. It is valid to compare
3813 * cfs_b->runtime_expires without any locks since we only care about
3814 * exact equality, so a partial write will still work.
a9cf55b2
PT
3815 */
3816
51f2176d 3817 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3818 /* extend local deadline, drift is bounded above by 2 ticks */
3819 cfs_rq->runtime_expires += TICK_NSEC;
3820 } else {
3821 /* global deadline is ahead, expiration has passed */
3822 cfs_rq->runtime_remaining = 0;
3823 }
3824}
3825
9dbdb155 3826static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3827{
3828 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3829 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3830 expire_cfs_rq_runtime(cfs_rq);
3831
3832 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3833 return;
3834
85dac906
PT
3835 /*
3836 * if we're unable to extend our runtime we resched so that the active
3837 * hierarchy can be throttled
3838 */
3839 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3840 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3841}
3842
6c16a6dc 3843static __always_inline
9dbdb155 3844void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3845{
56f570e5 3846 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3847 return;
3848
3849 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3850}
3851
85dac906
PT
3852static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3853{
56f570e5 3854 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3855}
3856
64660c86
PT
3857/* check whether cfs_rq, or any parent, is throttled */
3858static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3859{
56f570e5 3860 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3861}
3862
3863/*
3864 * Ensure that neither of the group entities corresponding to src_cpu or
3865 * dest_cpu are members of a throttled hierarchy when performing group
3866 * load-balance operations.
3867 */
3868static inline int throttled_lb_pair(struct task_group *tg,
3869 int src_cpu, int dest_cpu)
3870{
3871 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3872
3873 src_cfs_rq = tg->cfs_rq[src_cpu];
3874 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3875
3876 return throttled_hierarchy(src_cfs_rq) ||
3877 throttled_hierarchy(dest_cfs_rq);
3878}
3879
3880/* updated child weight may affect parent so we have to do this bottom up */
3881static int tg_unthrottle_up(struct task_group *tg, void *data)
3882{
3883 struct rq *rq = data;
3884 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3885
3886 cfs_rq->throttle_count--;
64660c86 3887 if (!cfs_rq->throttle_count) {
f1b17280 3888 /* adjust cfs_rq_clock_task() */
78becc27 3889 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3890 cfs_rq->throttled_clock_task;
64660c86 3891 }
64660c86
PT
3892
3893 return 0;
3894}
3895
3896static int tg_throttle_down(struct task_group *tg, void *data)
3897{
3898 struct rq *rq = data;
3899 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3900
82958366
PT
3901 /* group is entering throttled state, stop time */
3902 if (!cfs_rq->throttle_count)
78becc27 3903 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3904 cfs_rq->throttle_count++;
3905
3906 return 0;
3907}
3908
d3d9dc33 3909static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3910{
3911 struct rq *rq = rq_of(cfs_rq);
3912 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3913 struct sched_entity *se;
3914 long task_delta, dequeue = 1;
77a4d1a1 3915 bool empty;
85dac906
PT
3916
3917 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3918
f1b17280 3919 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3920 rcu_read_lock();
3921 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3922 rcu_read_unlock();
85dac906
PT
3923
3924 task_delta = cfs_rq->h_nr_running;
3925 for_each_sched_entity(se) {
3926 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3927 /* throttled entity or throttle-on-deactivate */
3928 if (!se->on_rq)
3929 break;
3930
3931 if (dequeue)
3932 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3933 qcfs_rq->h_nr_running -= task_delta;
3934
3935 if (qcfs_rq->load.weight)
3936 dequeue = 0;
3937 }
3938
3939 if (!se)
72465447 3940 sub_nr_running(rq, task_delta);
85dac906
PT
3941
3942 cfs_rq->throttled = 1;
78becc27 3943 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3944 raw_spin_lock(&cfs_b->lock);
d49db342 3945 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3946
c06f04c7
BS
3947 /*
3948 * Add to the _head_ of the list, so that an already-started
3949 * distribute_cfs_runtime will not see us
3950 */
3951 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3952
3953 /*
3954 * If we're the first throttled task, make sure the bandwidth
3955 * timer is running.
3956 */
3957 if (empty)
3958 start_cfs_bandwidth(cfs_b);
3959
85dac906
PT
3960 raw_spin_unlock(&cfs_b->lock);
3961}
3962
029632fb 3963void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3964{
3965 struct rq *rq = rq_of(cfs_rq);
3966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3967 struct sched_entity *se;
3968 int enqueue = 1;
3969 long task_delta;
3970
22b958d8 3971 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3972
3973 cfs_rq->throttled = 0;
1a55af2e
FW
3974
3975 update_rq_clock(rq);
3976
671fd9da 3977 raw_spin_lock(&cfs_b->lock);
78becc27 3978 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3979 list_del_rcu(&cfs_rq->throttled_list);
3980 raw_spin_unlock(&cfs_b->lock);
3981
64660c86
PT
3982 /* update hierarchical throttle state */
3983 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3984
671fd9da
PT
3985 if (!cfs_rq->load.weight)
3986 return;
3987
3988 task_delta = cfs_rq->h_nr_running;
3989 for_each_sched_entity(se) {
3990 if (se->on_rq)
3991 enqueue = 0;
3992
3993 cfs_rq = cfs_rq_of(se);
3994 if (enqueue)
3995 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3996 cfs_rq->h_nr_running += task_delta;
3997
3998 if (cfs_rq_throttled(cfs_rq))
3999 break;
4000 }
4001
4002 if (!se)
72465447 4003 add_nr_running(rq, task_delta);
671fd9da
PT
4004
4005 /* determine whether we need to wake up potentially idle cpu */
4006 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4007 resched_curr(rq);
671fd9da
PT
4008}
4009
4010static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4011 u64 remaining, u64 expires)
4012{
4013 struct cfs_rq *cfs_rq;
c06f04c7
BS
4014 u64 runtime;
4015 u64 starting_runtime = remaining;
671fd9da
PT
4016
4017 rcu_read_lock();
4018 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4019 throttled_list) {
4020 struct rq *rq = rq_of(cfs_rq);
4021
4022 raw_spin_lock(&rq->lock);
4023 if (!cfs_rq_throttled(cfs_rq))
4024 goto next;
4025
4026 runtime = -cfs_rq->runtime_remaining + 1;
4027 if (runtime > remaining)
4028 runtime = remaining;
4029 remaining -= runtime;
4030
4031 cfs_rq->runtime_remaining += runtime;
4032 cfs_rq->runtime_expires = expires;
4033
4034 /* we check whether we're throttled above */
4035 if (cfs_rq->runtime_remaining > 0)
4036 unthrottle_cfs_rq(cfs_rq);
4037
4038next:
4039 raw_spin_unlock(&rq->lock);
4040
4041 if (!remaining)
4042 break;
4043 }
4044 rcu_read_unlock();
4045
c06f04c7 4046 return starting_runtime - remaining;
671fd9da
PT
4047}
4048
58088ad0
PT
4049/*
4050 * Responsible for refilling a task_group's bandwidth and unthrottling its
4051 * cfs_rqs as appropriate. If there has been no activity within the last
4052 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4053 * used to track this state.
4054 */
4055static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4056{
671fd9da 4057 u64 runtime, runtime_expires;
51f2176d 4058 int throttled;
58088ad0 4059
58088ad0
PT
4060 /* no need to continue the timer with no bandwidth constraint */
4061 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4062 goto out_deactivate;
58088ad0 4063
671fd9da 4064 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4065 cfs_b->nr_periods += overrun;
671fd9da 4066
51f2176d
BS
4067 /*
4068 * idle depends on !throttled (for the case of a large deficit), and if
4069 * we're going inactive then everything else can be deferred
4070 */
4071 if (cfs_b->idle && !throttled)
4072 goto out_deactivate;
a9cf55b2
PT
4073
4074 __refill_cfs_bandwidth_runtime(cfs_b);
4075
671fd9da
PT
4076 if (!throttled) {
4077 /* mark as potentially idle for the upcoming period */
4078 cfs_b->idle = 1;
51f2176d 4079 return 0;
671fd9da
PT
4080 }
4081
e8da1b18
NR
4082 /* account preceding periods in which throttling occurred */
4083 cfs_b->nr_throttled += overrun;
4084
671fd9da 4085 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4086
4087 /*
c06f04c7
BS
4088 * This check is repeated as we are holding onto the new bandwidth while
4089 * we unthrottle. This can potentially race with an unthrottled group
4090 * trying to acquire new bandwidth from the global pool. This can result
4091 * in us over-using our runtime if it is all used during this loop, but
4092 * only by limited amounts in that extreme case.
671fd9da 4093 */
c06f04c7
BS
4094 while (throttled && cfs_b->runtime > 0) {
4095 runtime = cfs_b->runtime;
671fd9da
PT
4096 raw_spin_unlock(&cfs_b->lock);
4097 /* we can't nest cfs_b->lock while distributing bandwidth */
4098 runtime = distribute_cfs_runtime(cfs_b, runtime,
4099 runtime_expires);
4100 raw_spin_lock(&cfs_b->lock);
4101
4102 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4103
4104 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4105 }
58088ad0 4106
671fd9da
PT
4107 /*
4108 * While we are ensured activity in the period following an
4109 * unthrottle, this also covers the case in which the new bandwidth is
4110 * insufficient to cover the existing bandwidth deficit. (Forcing the
4111 * timer to remain active while there are any throttled entities.)
4112 */
4113 cfs_b->idle = 0;
58088ad0 4114
51f2176d
BS
4115 return 0;
4116
4117out_deactivate:
51f2176d 4118 return 1;
58088ad0 4119}
d3d9dc33 4120
d8b4986d
PT
4121/* a cfs_rq won't donate quota below this amount */
4122static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4123/* minimum remaining period time to redistribute slack quota */
4124static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4125/* how long we wait to gather additional slack before distributing */
4126static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4127
db06e78c
BS
4128/*
4129 * Are we near the end of the current quota period?
4130 *
4131 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4132 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4133 * migrate_hrtimers, base is never cleared, so we are fine.
4134 */
d8b4986d
PT
4135static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4136{
4137 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4138 u64 remaining;
4139
4140 /* if the call-back is running a quota refresh is already occurring */
4141 if (hrtimer_callback_running(refresh_timer))
4142 return 1;
4143
4144 /* is a quota refresh about to occur? */
4145 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4146 if (remaining < min_expire)
4147 return 1;
4148
4149 return 0;
4150}
4151
4152static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4153{
4154 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4155
4156 /* if there's a quota refresh soon don't bother with slack */
4157 if (runtime_refresh_within(cfs_b, min_left))
4158 return;
4159
4cfafd30
PZ
4160 hrtimer_start(&cfs_b->slack_timer,
4161 ns_to_ktime(cfs_bandwidth_slack_period),
4162 HRTIMER_MODE_REL);
d8b4986d
PT
4163}
4164
4165/* we know any runtime found here is valid as update_curr() precedes return */
4166static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4167{
4168 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4169 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4170
4171 if (slack_runtime <= 0)
4172 return;
4173
4174 raw_spin_lock(&cfs_b->lock);
4175 if (cfs_b->quota != RUNTIME_INF &&
4176 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4177 cfs_b->runtime += slack_runtime;
4178
4179 /* we are under rq->lock, defer unthrottling using a timer */
4180 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4181 !list_empty(&cfs_b->throttled_cfs_rq))
4182 start_cfs_slack_bandwidth(cfs_b);
4183 }
4184 raw_spin_unlock(&cfs_b->lock);
4185
4186 /* even if it's not valid for return we don't want to try again */
4187 cfs_rq->runtime_remaining -= slack_runtime;
4188}
4189
4190static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4191{
56f570e5
PT
4192 if (!cfs_bandwidth_used())
4193 return;
4194
fccfdc6f 4195 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4196 return;
4197
4198 __return_cfs_rq_runtime(cfs_rq);
4199}
4200
4201/*
4202 * This is done with a timer (instead of inline with bandwidth return) since
4203 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4204 */
4205static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4206{
4207 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4208 u64 expires;
4209
4210 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4211 raw_spin_lock(&cfs_b->lock);
4212 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4213 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4214 return;
db06e78c 4215 }
d8b4986d 4216
c06f04c7 4217 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4218 runtime = cfs_b->runtime;
c06f04c7 4219
d8b4986d
PT
4220 expires = cfs_b->runtime_expires;
4221 raw_spin_unlock(&cfs_b->lock);
4222
4223 if (!runtime)
4224 return;
4225
4226 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4227
4228 raw_spin_lock(&cfs_b->lock);
4229 if (expires == cfs_b->runtime_expires)
c06f04c7 4230 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4231 raw_spin_unlock(&cfs_b->lock);
4232}
4233
d3d9dc33
PT
4234/*
4235 * When a group wakes up we want to make sure that its quota is not already
4236 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4237 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4238 */
4239static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4240{
56f570e5
PT
4241 if (!cfs_bandwidth_used())
4242 return;
4243
094f4691
KK
4244 /* Synchronize hierarchical throttle counter: */
4245 if (unlikely(!cfs_rq->throttle_uptodate)) {
4246 struct rq *rq = rq_of(cfs_rq);
4247 struct cfs_rq *pcfs_rq;
4248 struct task_group *tg;
4249
4250 cfs_rq->throttle_uptodate = 1;
4251
4252 /* Get closest up-to-date node, because leaves go first: */
4253 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4254 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4255 if (pcfs_rq->throttle_uptodate)
4256 break;
4257 }
4258 if (tg) {
4259 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4260 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4261 }
4262 }
4263
d3d9dc33
PT
4264 /* an active group must be handled by the update_curr()->put() path */
4265 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4266 return;
4267
4268 /* ensure the group is not already throttled */
4269 if (cfs_rq_throttled(cfs_rq))
4270 return;
4271
4272 /* update runtime allocation */
4273 account_cfs_rq_runtime(cfs_rq, 0);
4274 if (cfs_rq->runtime_remaining <= 0)
4275 throttle_cfs_rq(cfs_rq);
4276}
4277
4278/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4279static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4280{
56f570e5 4281 if (!cfs_bandwidth_used())
678d5718 4282 return false;
56f570e5 4283
d3d9dc33 4284 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4285 return false;
d3d9dc33
PT
4286
4287 /*
4288 * it's possible for a throttled entity to be forced into a running
4289 * state (e.g. set_curr_task), in this case we're finished.
4290 */
4291 if (cfs_rq_throttled(cfs_rq))
678d5718 4292 return true;
d3d9dc33
PT
4293
4294 throttle_cfs_rq(cfs_rq);
678d5718 4295 return true;
d3d9dc33 4296}
029632fb 4297
029632fb
PZ
4298static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4299{
4300 struct cfs_bandwidth *cfs_b =
4301 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4302
029632fb
PZ
4303 do_sched_cfs_slack_timer(cfs_b);
4304
4305 return HRTIMER_NORESTART;
4306}
4307
4308static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4309{
4310 struct cfs_bandwidth *cfs_b =
4311 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4312 int overrun;
4313 int idle = 0;
4314
51f2176d 4315 raw_spin_lock(&cfs_b->lock);
029632fb 4316 for (;;) {
77a4d1a1 4317 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4318 if (!overrun)
4319 break;
4320
4321 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4322 }
4cfafd30
PZ
4323 if (idle)
4324 cfs_b->period_active = 0;
51f2176d 4325 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4326
4327 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4328}
4329
4330void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4331{
4332 raw_spin_lock_init(&cfs_b->lock);
4333 cfs_b->runtime = 0;
4334 cfs_b->quota = RUNTIME_INF;
4335 cfs_b->period = ns_to_ktime(default_cfs_period());
4336
4337 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4338 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4339 cfs_b->period_timer.function = sched_cfs_period_timer;
4340 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4341 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4342}
4343
4344static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4345{
4346 cfs_rq->runtime_enabled = 0;
4347 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4348}
4349
77a4d1a1 4350void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4351{
4cfafd30 4352 lockdep_assert_held(&cfs_b->lock);
029632fb 4353
4cfafd30
PZ
4354 if (!cfs_b->period_active) {
4355 cfs_b->period_active = 1;
4356 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4357 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4358 }
029632fb
PZ
4359}
4360
4361static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4362{
7f1a169b
TH
4363 /* init_cfs_bandwidth() was not called */
4364 if (!cfs_b->throttled_cfs_rq.next)
4365 return;
4366
029632fb
PZ
4367 hrtimer_cancel(&cfs_b->period_timer);
4368 hrtimer_cancel(&cfs_b->slack_timer);
4369}
4370
0e59bdae
KT
4371static void __maybe_unused update_runtime_enabled(struct rq *rq)
4372{
4373 struct cfs_rq *cfs_rq;
4374
4375 for_each_leaf_cfs_rq(rq, cfs_rq) {
4376 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4377
4378 raw_spin_lock(&cfs_b->lock);
4379 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4380 raw_spin_unlock(&cfs_b->lock);
4381 }
4382}
4383
38dc3348 4384static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4385{
4386 struct cfs_rq *cfs_rq;
4387
4388 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4389 if (!cfs_rq->runtime_enabled)
4390 continue;
4391
4392 /*
4393 * clock_task is not advancing so we just need to make sure
4394 * there's some valid quota amount
4395 */
51f2176d 4396 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4397 /*
4398 * Offline rq is schedulable till cpu is completely disabled
4399 * in take_cpu_down(), so we prevent new cfs throttling here.
4400 */
4401 cfs_rq->runtime_enabled = 0;
4402
029632fb
PZ
4403 if (cfs_rq_throttled(cfs_rq))
4404 unthrottle_cfs_rq(cfs_rq);
4405 }
4406}
4407
4408#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4409static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4410{
78becc27 4411 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4412}
4413
9dbdb155 4414static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4415static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4416static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4417static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4418
4419static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4420{
4421 return 0;
4422}
64660c86
PT
4423
4424static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4425{
4426 return 0;
4427}
4428
4429static inline int throttled_lb_pair(struct task_group *tg,
4430 int src_cpu, int dest_cpu)
4431{
4432 return 0;
4433}
029632fb
PZ
4434
4435void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4436
4437#ifdef CONFIG_FAIR_GROUP_SCHED
4438static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4439#endif
4440
029632fb
PZ
4441static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4442{
4443 return NULL;
4444}
4445static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4446static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4447static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4448
4449#endif /* CONFIG_CFS_BANDWIDTH */
4450
bf0f6f24
IM
4451/**************************************************
4452 * CFS operations on tasks:
4453 */
4454
8f4d37ec
PZ
4455#ifdef CONFIG_SCHED_HRTICK
4456static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4457{
8f4d37ec
PZ
4458 struct sched_entity *se = &p->se;
4459 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4460
4461 WARN_ON(task_rq(p) != rq);
4462
b39e66ea 4463 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4464 u64 slice = sched_slice(cfs_rq, se);
4465 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4466 s64 delta = slice - ran;
4467
4468 if (delta < 0) {
4469 if (rq->curr == p)
8875125e 4470 resched_curr(rq);
8f4d37ec
PZ
4471 return;
4472 }
31656519 4473 hrtick_start(rq, delta);
8f4d37ec
PZ
4474 }
4475}
a4c2f00f
PZ
4476
4477/*
4478 * called from enqueue/dequeue and updates the hrtick when the
4479 * current task is from our class and nr_running is low enough
4480 * to matter.
4481 */
4482static void hrtick_update(struct rq *rq)
4483{
4484 struct task_struct *curr = rq->curr;
4485
b39e66ea 4486 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4487 return;
4488
4489 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4490 hrtick_start_fair(rq, curr);
4491}
55e12e5e 4492#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4493static inline void
4494hrtick_start_fair(struct rq *rq, struct task_struct *p)
4495{
4496}
a4c2f00f
PZ
4497
4498static inline void hrtick_update(struct rq *rq)
4499{
4500}
8f4d37ec
PZ
4501#endif
4502
bf0f6f24
IM
4503/*
4504 * The enqueue_task method is called before nr_running is
4505 * increased. Here we update the fair scheduling stats and
4506 * then put the task into the rbtree:
4507 */
ea87bb78 4508static void
371fd7e7 4509enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4510{
4511 struct cfs_rq *cfs_rq;
62fb1851 4512 struct sched_entity *se = &p->se;
bf0f6f24
IM
4513
4514 for_each_sched_entity(se) {
62fb1851 4515 if (se->on_rq)
bf0f6f24
IM
4516 break;
4517 cfs_rq = cfs_rq_of(se);
88ec22d3 4518 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4519
4520 /*
4521 * end evaluation on encountering a throttled cfs_rq
4522 *
4523 * note: in the case of encountering a throttled cfs_rq we will
4524 * post the final h_nr_running increment below.
e210bffd 4525 */
85dac906
PT
4526 if (cfs_rq_throttled(cfs_rq))
4527 break;
953bfcd1 4528 cfs_rq->h_nr_running++;
85dac906 4529
88ec22d3 4530 flags = ENQUEUE_WAKEUP;
bf0f6f24 4531 }
8f4d37ec 4532
2069dd75 4533 for_each_sched_entity(se) {
0f317143 4534 cfs_rq = cfs_rq_of(se);
953bfcd1 4535 cfs_rq->h_nr_running++;
2069dd75 4536
85dac906
PT
4537 if (cfs_rq_throttled(cfs_rq))
4538 break;
4539
9d89c257 4540 update_load_avg(se, 1);
17bc14b7 4541 update_cfs_shares(cfs_rq);
2069dd75
PZ
4542 }
4543
cd126afe 4544 if (!se)
72465447 4545 add_nr_running(rq, 1);
cd126afe 4546
a4c2f00f 4547 hrtick_update(rq);
bf0f6f24
IM
4548}
4549
2f36825b
VP
4550static void set_next_buddy(struct sched_entity *se);
4551
bf0f6f24
IM
4552/*
4553 * The dequeue_task method is called before nr_running is
4554 * decreased. We remove the task from the rbtree and
4555 * update the fair scheduling stats:
4556 */
371fd7e7 4557static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4558{
4559 struct cfs_rq *cfs_rq;
62fb1851 4560 struct sched_entity *se = &p->se;
2f36825b 4561 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4562
4563 for_each_sched_entity(se) {
4564 cfs_rq = cfs_rq_of(se);
371fd7e7 4565 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4566
4567 /*
4568 * end evaluation on encountering a throttled cfs_rq
4569 *
4570 * note: in the case of encountering a throttled cfs_rq we will
4571 * post the final h_nr_running decrement below.
4572 */
4573 if (cfs_rq_throttled(cfs_rq))
4574 break;
953bfcd1 4575 cfs_rq->h_nr_running--;
2069dd75 4576
bf0f6f24 4577 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4578 if (cfs_rq->load.weight) {
754bd598
KK
4579 /* Avoid re-evaluating load for this entity: */
4580 se = parent_entity(se);
2f36825b
VP
4581 /*
4582 * Bias pick_next to pick a task from this cfs_rq, as
4583 * p is sleeping when it is within its sched_slice.
4584 */
754bd598
KK
4585 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4586 set_next_buddy(se);
bf0f6f24 4587 break;
2f36825b 4588 }
371fd7e7 4589 flags |= DEQUEUE_SLEEP;
bf0f6f24 4590 }
8f4d37ec 4591
2069dd75 4592 for_each_sched_entity(se) {
0f317143 4593 cfs_rq = cfs_rq_of(se);
953bfcd1 4594 cfs_rq->h_nr_running--;
2069dd75 4595
85dac906
PT
4596 if (cfs_rq_throttled(cfs_rq))
4597 break;
4598
9d89c257 4599 update_load_avg(se, 1);
17bc14b7 4600 update_cfs_shares(cfs_rq);
2069dd75
PZ
4601 }
4602
cd126afe 4603 if (!se)
72465447 4604 sub_nr_running(rq, 1);
cd126afe 4605
a4c2f00f 4606 hrtick_update(rq);
bf0f6f24
IM
4607}
4608
e7693a36 4609#ifdef CONFIG_SMP
9fd81dd5 4610#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4611/*
4612 * per rq 'load' arrray crap; XXX kill this.
4613 */
4614
4615/*
d937cdc5 4616 * The exact cpuload calculated at every tick would be:
3289bdb4 4617 *
d937cdc5
PZ
4618 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4619 *
4620 * If a cpu misses updates for n ticks (as it was idle) and update gets
4621 * called on the n+1-th tick when cpu may be busy, then we have:
4622 *
4623 * load_n = (1 - 1/2^i)^n * load_0
4624 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4625 *
4626 * decay_load_missed() below does efficient calculation of
3289bdb4 4627 *
d937cdc5
PZ
4628 * load' = (1 - 1/2^i)^n * load
4629 *
4630 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4631 * This allows us to precompute the above in said factors, thereby allowing the
4632 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4633 * fixed_power_int())
3289bdb4 4634 *
d937cdc5 4635 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4636 */
4637#define DEGRADE_SHIFT 7
d937cdc5
PZ
4638
4639static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4640static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4641 { 0, 0, 0, 0, 0, 0, 0, 0 },
4642 { 64, 32, 8, 0, 0, 0, 0, 0 },
4643 { 96, 72, 40, 12, 1, 0, 0, 0 },
4644 { 112, 98, 75, 43, 15, 1, 0, 0 },
4645 { 120, 112, 98, 76, 45, 16, 2, 0 }
4646};
3289bdb4
PZ
4647
4648/*
4649 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4650 * would be when CPU is idle and so we just decay the old load without
4651 * adding any new load.
4652 */
4653static unsigned long
4654decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4655{
4656 int j = 0;
4657
4658 if (!missed_updates)
4659 return load;
4660
4661 if (missed_updates >= degrade_zero_ticks[idx])
4662 return 0;
4663
4664 if (idx == 1)
4665 return load >> missed_updates;
4666
4667 while (missed_updates) {
4668 if (missed_updates % 2)
4669 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4670
4671 missed_updates >>= 1;
4672 j++;
4673 }
4674 return load;
4675}
9fd81dd5 4676#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4677
59543275 4678/**
cee1afce 4679 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4680 * @this_rq: The rq to update statistics for
4681 * @this_load: The current load
4682 * @pending_updates: The number of missed updates
59543275 4683 *
3289bdb4 4684 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4685 * scheduler tick (TICK_NSEC).
4686 *
4687 * This function computes a decaying average:
4688 *
4689 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4690 *
4691 * Because of NOHZ it might not get called on every tick which gives need for
4692 * the @pending_updates argument.
4693 *
4694 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4695 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4696 * = A * (A * load[i]_n-2 + B) + B
4697 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4698 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4699 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4700 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4701 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4702 *
4703 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4704 * any change in load would have resulted in the tick being turned back on.
4705 *
4706 * For regular NOHZ, this reduces to:
4707 *
4708 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4709 *
4710 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4711 * term.
3289bdb4 4712 */
1f41906a
FW
4713static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4714 unsigned long pending_updates)
3289bdb4 4715{
9fd81dd5 4716 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4717 int i, scale;
4718
4719 this_rq->nr_load_updates++;
4720
4721 /* Update our load: */
4722 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4723 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4724 unsigned long old_load, new_load;
4725
4726 /* scale is effectively 1 << i now, and >> i divides by scale */
4727
7400d3bb 4728 old_load = this_rq->cpu_load[i];
9fd81dd5 4729#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4730 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4731 if (tickless_load) {
4732 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4733 /*
4734 * old_load can never be a negative value because a
4735 * decayed tickless_load cannot be greater than the
4736 * original tickless_load.
4737 */
4738 old_load += tickless_load;
4739 }
9fd81dd5 4740#endif
3289bdb4
PZ
4741 new_load = this_load;
4742 /*
4743 * Round up the averaging division if load is increasing. This
4744 * prevents us from getting stuck on 9 if the load is 10, for
4745 * example.
4746 */
4747 if (new_load > old_load)
4748 new_load += scale - 1;
4749
4750 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4751 }
4752
4753 sched_avg_update(this_rq);
4754}
4755
7ea241af
YD
4756/* Used instead of source_load when we know the type == 0 */
4757static unsigned long weighted_cpuload(const int cpu)
4758{
4759 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4760}
4761
3289bdb4 4762#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4763/*
4764 * There is no sane way to deal with nohz on smp when using jiffies because the
4765 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4766 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4767 *
4768 * Therefore we need to avoid the delta approach from the regular tick when
4769 * possible since that would seriously skew the load calculation. This is why we
4770 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4771 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4772 * loop exit, nohz_idle_balance, nohz full exit...)
4773 *
4774 * This means we might still be one tick off for nohz periods.
4775 */
4776
4777static void cpu_load_update_nohz(struct rq *this_rq,
4778 unsigned long curr_jiffies,
4779 unsigned long load)
be68a682
FW
4780{
4781 unsigned long pending_updates;
4782
4783 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4784 if (pending_updates) {
4785 this_rq->last_load_update_tick = curr_jiffies;
4786 /*
4787 * In the regular NOHZ case, we were idle, this means load 0.
4788 * In the NOHZ_FULL case, we were non-idle, we should consider
4789 * its weighted load.
4790 */
1f41906a 4791 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4792 }
4793}
4794
3289bdb4
PZ
4795/*
4796 * Called from nohz_idle_balance() to update the load ratings before doing the
4797 * idle balance.
4798 */
cee1afce 4799static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4800{
3289bdb4
PZ
4801 /*
4802 * bail if there's load or we're actually up-to-date.
4803 */
be68a682 4804 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4805 return;
4806
1f41906a 4807 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4808}
4809
4810/*
1f41906a
FW
4811 * Record CPU load on nohz entry so we know the tickless load to account
4812 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4813 * than other cpu_load[idx] but it should be fine as cpu_load readers
4814 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4815 */
1f41906a 4816void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4817{
4818 struct rq *this_rq = this_rq();
1f41906a
FW
4819
4820 /*
4821 * This is all lockless but should be fine. If weighted_cpuload changes
4822 * concurrently we'll exit nohz. And cpu_load write can race with
4823 * cpu_load_update_idle() but both updater would be writing the same.
4824 */
4825 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4826}
4827
4828/*
4829 * Account the tickless load in the end of a nohz frame.
4830 */
4831void cpu_load_update_nohz_stop(void)
4832{
316c1608 4833 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4834 struct rq *this_rq = this_rq();
4835 unsigned long load;
3289bdb4
PZ
4836
4837 if (curr_jiffies == this_rq->last_load_update_tick)
4838 return;
4839
1f41906a 4840 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4841 raw_spin_lock(&this_rq->lock);
b52fad2d 4842 update_rq_clock(this_rq);
1f41906a 4843 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4844 raw_spin_unlock(&this_rq->lock);
4845}
1f41906a
FW
4846#else /* !CONFIG_NO_HZ_COMMON */
4847static inline void cpu_load_update_nohz(struct rq *this_rq,
4848 unsigned long curr_jiffies,
4849 unsigned long load) { }
4850#endif /* CONFIG_NO_HZ_COMMON */
4851
4852static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4853{
9fd81dd5 4854#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4855 /* See the mess around cpu_load_update_nohz(). */
4856 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4857#endif
1f41906a
FW
4858 cpu_load_update(this_rq, load, 1);
4859}
3289bdb4
PZ
4860
4861/*
4862 * Called from scheduler_tick()
4863 */
cee1afce 4864void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4865{
7ea241af 4866 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4867
4868 if (tick_nohz_tick_stopped())
4869 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4870 else
4871 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4872}
4873
029632fb
PZ
4874/*
4875 * Return a low guess at the load of a migration-source cpu weighted
4876 * according to the scheduling class and "nice" value.
4877 *
4878 * We want to under-estimate the load of migration sources, to
4879 * balance conservatively.
4880 */
4881static unsigned long source_load(int cpu, int type)
4882{
4883 struct rq *rq = cpu_rq(cpu);
4884 unsigned long total = weighted_cpuload(cpu);
4885
4886 if (type == 0 || !sched_feat(LB_BIAS))
4887 return total;
4888
4889 return min(rq->cpu_load[type-1], total);
4890}
4891
4892/*
4893 * Return a high guess at the load of a migration-target cpu weighted
4894 * according to the scheduling class and "nice" value.
4895 */
4896static unsigned long target_load(int cpu, int type)
4897{
4898 struct rq *rq = cpu_rq(cpu);
4899 unsigned long total = weighted_cpuload(cpu);
4900
4901 if (type == 0 || !sched_feat(LB_BIAS))
4902 return total;
4903
4904 return max(rq->cpu_load[type-1], total);
4905}
4906
ced549fa 4907static unsigned long capacity_of(int cpu)
029632fb 4908{
ced549fa 4909 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4910}
4911
ca6d75e6
VG
4912static unsigned long capacity_orig_of(int cpu)
4913{
4914 return cpu_rq(cpu)->cpu_capacity_orig;
4915}
4916
029632fb
PZ
4917static unsigned long cpu_avg_load_per_task(int cpu)
4918{
4919 struct rq *rq = cpu_rq(cpu);
316c1608 4920 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4921 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4922
4923 if (nr_running)
b92486cb 4924 return load_avg / nr_running;
029632fb
PZ
4925
4926 return 0;
4927}
4928
bb3469ac 4929#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4930/*
4931 * effective_load() calculates the load change as seen from the root_task_group
4932 *
4933 * Adding load to a group doesn't make a group heavier, but can cause movement
4934 * of group shares between cpus. Assuming the shares were perfectly aligned one
4935 * can calculate the shift in shares.
cf5f0acf
PZ
4936 *
4937 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4938 * on this @cpu and results in a total addition (subtraction) of @wg to the
4939 * total group weight.
4940 *
4941 * Given a runqueue weight distribution (rw_i) we can compute a shares
4942 * distribution (s_i) using:
4943 *
4944 * s_i = rw_i / \Sum rw_j (1)
4945 *
4946 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4947 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4948 * shares distribution (s_i):
4949 *
4950 * rw_i = { 2, 4, 1, 0 }
4951 * s_i = { 2/7, 4/7, 1/7, 0 }
4952 *
4953 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4954 * task used to run on and the CPU the waker is running on), we need to
4955 * compute the effect of waking a task on either CPU and, in case of a sync
4956 * wakeup, compute the effect of the current task going to sleep.
4957 *
4958 * So for a change of @wl to the local @cpu with an overall group weight change
4959 * of @wl we can compute the new shares distribution (s'_i) using:
4960 *
4961 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4962 *
4963 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4964 * differences in waking a task to CPU 0. The additional task changes the
4965 * weight and shares distributions like:
4966 *
4967 * rw'_i = { 3, 4, 1, 0 }
4968 * s'_i = { 3/8, 4/8, 1/8, 0 }
4969 *
4970 * We can then compute the difference in effective weight by using:
4971 *
4972 * dw_i = S * (s'_i - s_i) (3)
4973 *
4974 * Where 'S' is the group weight as seen by its parent.
4975 *
4976 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4977 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4978 * 4/7) times the weight of the group.
f5bfb7d9 4979 */
2069dd75 4980static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4981{
4be9daaa 4982 struct sched_entity *se = tg->se[cpu];
f1d239f7 4983
9722c2da 4984 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4985 return wl;
4986
4be9daaa 4987 for_each_sched_entity(se) {
7dd49125
PZ
4988 struct cfs_rq *cfs_rq = se->my_q;
4989 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4990
7dd49125 4991 tg = cfs_rq->tg;
bb3469ac 4992
cf5f0acf
PZ
4993 /*
4994 * W = @wg + \Sum rw_j
4995 */
7dd49125
PZ
4996 W = wg + atomic_long_read(&tg->load_avg);
4997
4998 /* Ensure \Sum rw_j >= rw_i */
4999 W -= cfs_rq->tg_load_avg_contrib;
5000 W += w;
4be9daaa 5001
cf5f0acf
PZ
5002 /*
5003 * w = rw_i + @wl
5004 */
7dd49125 5005 w += wl;
940959e9 5006
cf5f0acf
PZ
5007 /*
5008 * wl = S * s'_i; see (2)
5009 */
5010 if (W > 0 && w < W)
32a8df4e 5011 wl = (w * (long)tg->shares) / W;
977dda7c
PT
5012 else
5013 wl = tg->shares;
940959e9 5014
cf5f0acf
PZ
5015 /*
5016 * Per the above, wl is the new se->load.weight value; since
5017 * those are clipped to [MIN_SHARES, ...) do so now. See
5018 * calc_cfs_shares().
5019 */
977dda7c
PT
5020 if (wl < MIN_SHARES)
5021 wl = MIN_SHARES;
cf5f0acf
PZ
5022
5023 /*
5024 * wl = dw_i = S * (s'_i - s_i); see (3)
5025 */
9d89c257 5026 wl -= se->avg.load_avg;
cf5f0acf
PZ
5027
5028 /*
5029 * Recursively apply this logic to all parent groups to compute
5030 * the final effective load change on the root group. Since
5031 * only the @tg group gets extra weight, all parent groups can
5032 * only redistribute existing shares. @wl is the shift in shares
5033 * resulting from this level per the above.
5034 */
4be9daaa 5035 wg = 0;
4be9daaa 5036 }
bb3469ac 5037
4be9daaa 5038 return wl;
bb3469ac
PZ
5039}
5040#else
4be9daaa 5041
58d081b5 5042static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5043{
83378269 5044 return wl;
bb3469ac 5045}
4be9daaa 5046
bb3469ac
PZ
5047#endif
5048
c58d25f3
PZ
5049static void record_wakee(struct task_struct *p)
5050{
5051 /*
5052 * Only decay a single time; tasks that have less then 1 wakeup per
5053 * jiffy will not have built up many flips.
5054 */
5055 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5056 current->wakee_flips >>= 1;
5057 current->wakee_flip_decay_ts = jiffies;
5058 }
5059
5060 if (current->last_wakee != p) {
5061 current->last_wakee = p;
5062 current->wakee_flips++;
5063 }
5064}
5065
63b0e9ed
MG
5066/*
5067 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5068 *
63b0e9ed 5069 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5070 * at a frequency roughly N times higher than one of its wakees.
5071 *
5072 * In order to determine whether we should let the load spread vs consolidating
5073 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5074 * partner, and a factor of lls_size higher frequency in the other.
5075 *
5076 * With both conditions met, we can be relatively sure that the relationship is
5077 * non-monogamous, with partner count exceeding socket size.
5078 *
5079 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5080 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5081 * socket size.
63b0e9ed 5082 */
62470419
MW
5083static int wake_wide(struct task_struct *p)
5084{
63b0e9ed
MG
5085 unsigned int master = current->wakee_flips;
5086 unsigned int slave = p->wakee_flips;
7d9ffa89 5087 int factor = this_cpu_read(sd_llc_size);
62470419 5088
63b0e9ed
MG
5089 if (master < slave)
5090 swap(master, slave);
5091 if (slave < factor || master < slave * factor)
5092 return 0;
5093 return 1;
62470419
MW
5094}
5095
c88d5910 5096static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5097{
e37b6a7b 5098 s64 this_load, load;
bd61c98f 5099 s64 this_eff_load, prev_eff_load;
c88d5910 5100 int idx, this_cpu, prev_cpu;
c88d5910 5101 struct task_group *tg;
83378269 5102 unsigned long weight;
b3137bc8 5103 int balanced;
098fb9db 5104
c88d5910
PZ
5105 idx = sd->wake_idx;
5106 this_cpu = smp_processor_id();
5107 prev_cpu = task_cpu(p);
5108 load = source_load(prev_cpu, idx);
5109 this_load = target_load(this_cpu, idx);
098fb9db 5110
b3137bc8
MG
5111 /*
5112 * If sync wakeup then subtract the (maximum possible)
5113 * effect of the currently running task from the load
5114 * of the current CPU:
5115 */
83378269
PZ
5116 if (sync) {
5117 tg = task_group(current);
9d89c257 5118 weight = current->se.avg.load_avg;
83378269 5119
c88d5910 5120 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5121 load += effective_load(tg, prev_cpu, 0, -weight);
5122 }
b3137bc8 5123
83378269 5124 tg = task_group(p);
9d89c257 5125 weight = p->se.avg.load_avg;
b3137bc8 5126
71a29aa7
PZ
5127 /*
5128 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5129 * due to the sync cause above having dropped this_load to 0, we'll
5130 * always have an imbalance, but there's really nothing you can do
5131 * about that, so that's good too.
71a29aa7
PZ
5132 *
5133 * Otherwise check if either cpus are near enough in load to allow this
5134 * task to be woken on this_cpu.
5135 */
bd61c98f
VG
5136 this_eff_load = 100;
5137 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5138
bd61c98f
VG
5139 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5140 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5141
bd61c98f 5142 if (this_load > 0) {
e51fd5e2
PZ
5143 this_eff_load *= this_load +
5144 effective_load(tg, this_cpu, weight, weight);
5145
e51fd5e2 5146 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5147 }
e51fd5e2 5148
bd61c98f 5149 balanced = this_eff_load <= prev_eff_load;
098fb9db 5150
41acab88 5151 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5152
05bfb65f
VG
5153 if (!balanced)
5154 return 0;
098fb9db 5155
05bfb65f
VG
5156 schedstat_inc(sd, ttwu_move_affine);
5157 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5158
5159 return 1;
098fb9db
IM
5160}
5161
aaee1203
PZ
5162/*
5163 * find_idlest_group finds and returns the least busy CPU group within the
5164 * domain.
5165 */
5166static struct sched_group *
78e7ed53 5167find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5168 int this_cpu, int sd_flag)
e7693a36 5169{
b3bd3de6 5170 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5171 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5172 int load_idx = sd->forkexec_idx;
aaee1203 5173 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5174
c44f2a02
VG
5175 if (sd_flag & SD_BALANCE_WAKE)
5176 load_idx = sd->wake_idx;
5177
aaee1203
PZ
5178 do {
5179 unsigned long load, avg_load;
5180 int local_group;
5181 int i;
e7693a36 5182
aaee1203
PZ
5183 /* Skip over this group if it has no CPUs allowed */
5184 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5185 tsk_cpus_allowed(p)))
aaee1203
PZ
5186 continue;
5187
5188 local_group = cpumask_test_cpu(this_cpu,
5189 sched_group_cpus(group));
5190
5191 /* Tally up the load of all CPUs in the group */
5192 avg_load = 0;
5193
5194 for_each_cpu(i, sched_group_cpus(group)) {
5195 /* Bias balancing toward cpus of our domain */
5196 if (local_group)
5197 load = source_load(i, load_idx);
5198 else
5199 load = target_load(i, load_idx);
5200
5201 avg_load += load;
5202 }
5203
63b2ca30 5204 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5205 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5206
5207 if (local_group) {
5208 this_load = avg_load;
aaee1203
PZ
5209 } else if (avg_load < min_load) {
5210 min_load = avg_load;
5211 idlest = group;
5212 }
5213 } while (group = group->next, group != sd->groups);
5214
5215 if (!idlest || 100*this_load < imbalance*min_load)
5216 return NULL;
5217 return idlest;
5218}
5219
5220/*
5221 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5222 */
5223static int
5224find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5225{
5226 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5227 unsigned int min_exit_latency = UINT_MAX;
5228 u64 latest_idle_timestamp = 0;
5229 int least_loaded_cpu = this_cpu;
5230 int shallowest_idle_cpu = -1;
aaee1203
PZ
5231 int i;
5232
5233 /* Traverse only the allowed CPUs */
fa17b507 5234 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5235 if (idle_cpu(i)) {
5236 struct rq *rq = cpu_rq(i);
5237 struct cpuidle_state *idle = idle_get_state(rq);
5238 if (idle && idle->exit_latency < min_exit_latency) {
5239 /*
5240 * We give priority to a CPU whose idle state
5241 * has the smallest exit latency irrespective
5242 * of any idle timestamp.
5243 */
5244 min_exit_latency = idle->exit_latency;
5245 latest_idle_timestamp = rq->idle_stamp;
5246 shallowest_idle_cpu = i;
5247 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5248 rq->idle_stamp > latest_idle_timestamp) {
5249 /*
5250 * If equal or no active idle state, then
5251 * the most recently idled CPU might have
5252 * a warmer cache.
5253 */
5254 latest_idle_timestamp = rq->idle_stamp;
5255 shallowest_idle_cpu = i;
5256 }
9f96742a 5257 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5258 load = weighted_cpuload(i);
5259 if (load < min_load || (load == min_load && i == this_cpu)) {
5260 min_load = load;
5261 least_loaded_cpu = i;
5262 }
e7693a36
GH
5263 }
5264 }
5265
83a0a96a 5266 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5267}
e7693a36 5268
a50bde51
PZ
5269/*
5270 * Try and locate an idle CPU in the sched_domain.
5271 */
99bd5e2f 5272static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5273{
99bd5e2f 5274 struct sched_domain *sd;
37407ea7 5275 struct sched_group *sg;
e0a79f52 5276 int i = task_cpu(p);
a50bde51 5277
e0a79f52
MG
5278 if (idle_cpu(target))
5279 return target;
99bd5e2f
SS
5280
5281 /*
e0a79f52 5282 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5283 */
e0a79f52
MG
5284 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5285 return i;
a50bde51
PZ
5286
5287 /*
d4335581
MF
5288 * Otherwise, iterate the domains and find an eligible idle cpu.
5289 *
5290 * A completely idle sched group at higher domains is more
5291 * desirable than an idle group at a lower level, because lower
5292 * domains have smaller groups and usually share hardware
5293 * resources which causes tasks to contend on them, e.g. x86
5294 * hyperthread siblings in the lowest domain (SMT) can contend
5295 * on the shared cpu pipeline.
5296 *
5297 * However, while we prefer idle groups at higher domains
5298 * finding an idle cpu at the lowest domain is still better than
5299 * returning 'target', which we've already established, isn't
5300 * idle.
a50bde51 5301 */
518cd623 5302 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5303 for_each_lower_domain(sd) {
37407ea7
LT
5304 sg = sd->groups;
5305 do {
5306 if (!cpumask_intersects(sched_group_cpus(sg),
5307 tsk_cpus_allowed(p)))
5308 goto next;
5309
d4335581 5310 /* Ensure the entire group is idle */
37407ea7 5311 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5312 if (i == target || !idle_cpu(i))
37407ea7
LT
5313 goto next;
5314 }
970e1789 5315
d4335581
MF
5316 /*
5317 * It doesn't matter which cpu we pick, the
5318 * whole group is idle.
5319 */
37407ea7
LT
5320 target = cpumask_first_and(sched_group_cpus(sg),
5321 tsk_cpus_allowed(p));
5322 goto done;
5323next:
5324 sg = sg->next;
5325 } while (sg != sd->groups);
5326 }
5327done:
a50bde51
PZ
5328 return target;
5329}
231678b7 5330
8bb5b00c 5331/*
9e91d61d 5332 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5333 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5334 * compare the utilization with the capacity of the CPU that is available for
5335 * CFS task (ie cpu_capacity).
231678b7
DE
5336 *
5337 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5338 * recent utilization of currently non-runnable tasks on a CPU. It represents
5339 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5340 * capacity_orig is the cpu_capacity available at the highest frequency
5341 * (arch_scale_freq_capacity()).
5342 * The utilization of a CPU converges towards a sum equal to or less than the
5343 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5344 * the running time on this CPU scaled by capacity_curr.
5345 *
5346 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5347 * higher than capacity_orig because of unfortunate rounding in
5348 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5349 * the average stabilizes with the new running time. We need to check that the
5350 * utilization stays within the range of [0..capacity_orig] and cap it if
5351 * necessary. Without utilization capping, a group could be seen as overloaded
5352 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5353 * available capacity. We allow utilization to overshoot capacity_curr (but not
5354 * capacity_orig) as it useful for predicting the capacity required after task
5355 * migrations (scheduler-driven DVFS).
8bb5b00c 5356 */
9e91d61d 5357static int cpu_util(int cpu)
8bb5b00c 5358{
9e91d61d 5359 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5360 unsigned long capacity = capacity_orig_of(cpu);
5361
231678b7 5362 return (util >= capacity) ? capacity : util;
8bb5b00c 5363}
a50bde51 5364
aaee1203 5365/*
de91b9cb
MR
5366 * select_task_rq_fair: Select target runqueue for the waking task in domains
5367 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5368 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5369 *
de91b9cb
MR
5370 * Balances load by selecting the idlest cpu in the idlest group, or under
5371 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5372 *
de91b9cb 5373 * Returns the target cpu number.
aaee1203
PZ
5374 *
5375 * preempt must be disabled.
5376 */
0017d735 5377static int
ac66f547 5378select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5379{
29cd8bae 5380 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5381 int cpu = smp_processor_id();
63b0e9ed 5382 int new_cpu = prev_cpu;
99bd5e2f 5383 int want_affine = 0;
5158f4e4 5384 int sync = wake_flags & WF_SYNC;
c88d5910 5385
c58d25f3
PZ
5386 if (sd_flag & SD_BALANCE_WAKE) {
5387 record_wakee(p);
63b0e9ed 5388 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5389 }
aaee1203 5390
dce840a0 5391 rcu_read_lock();
aaee1203 5392 for_each_domain(cpu, tmp) {
e4f42888 5393 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5394 break;
e4f42888 5395
fe3bcfe1 5396 /*
99bd5e2f
SS
5397 * If both cpu and prev_cpu are part of this domain,
5398 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5399 */
99bd5e2f
SS
5400 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5401 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5402 affine_sd = tmp;
29cd8bae 5403 break;
f03542a7 5404 }
29cd8bae 5405
f03542a7 5406 if (tmp->flags & sd_flag)
29cd8bae 5407 sd = tmp;
63b0e9ed
MG
5408 else if (!want_affine)
5409 break;
29cd8bae
PZ
5410 }
5411
63b0e9ed
MG
5412 if (affine_sd) {
5413 sd = NULL; /* Prefer wake_affine over balance flags */
5414 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5415 new_cpu = cpu;
8b911acd 5416 }
e7693a36 5417
63b0e9ed
MG
5418 if (!sd) {
5419 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5420 new_cpu = select_idle_sibling(p, new_cpu);
5421
5422 } else while (sd) {
aaee1203 5423 struct sched_group *group;
c88d5910 5424 int weight;
098fb9db 5425
0763a660 5426 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5427 sd = sd->child;
5428 continue;
5429 }
098fb9db 5430
c44f2a02 5431 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5432 if (!group) {
5433 sd = sd->child;
5434 continue;
5435 }
4ae7d5ce 5436
d7c33c49 5437 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5438 if (new_cpu == -1 || new_cpu == cpu) {
5439 /* Now try balancing at a lower domain level of cpu */
5440 sd = sd->child;
5441 continue;
e7693a36 5442 }
aaee1203
PZ
5443
5444 /* Now try balancing at a lower domain level of new_cpu */
5445 cpu = new_cpu;
669c55e9 5446 weight = sd->span_weight;
aaee1203
PZ
5447 sd = NULL;
5448 for_each_domain(cpu, tmp) {
669c55e9 5449 if (weight <= tmp->span_weight)
aaee1203 5450 break;
0763a660 5451 if (tmp->flags & sd_flag)
aaee1203
PZ
5452 sd = tmp;
5453 }
5454 /* while loop will break here if sd == NULL */
e7693a36 5455 }
dce840a0 5456 rcu_read_unlock();
e7693a36 5457
c88d5910 5458 return new_cpu;
e7693a36 5459}
0a74bef8
PT
5460
5461/*
5462 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5463 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5464 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5465 */
5a4fd036 5466static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5467{
59efa0ba
PZ
5468 /*
5469 * As blocked tasks retain absolute vruntime the migration needs to
5470 * deal with this by subtracting the old and adding the new
5471 * min_vruntime -- the latter is done by enqueue_entity() when placing
5472 * the task on the new runqueue.
5473 */
5474 if (p->state == TASK_WAKING) {
5475 struct sched_entity *se = &p->se;
5476 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5477 u64 min_vruntime;
5478
5479#ifndef CONFIG_64BIT
5480 u64 min_vruntime_copy;
5481
5482 do {
5483 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5484 smp_rmb();
5485 min_vruntime = cfs_rq->min_vruntime;
5486 } while (min_vruntime != min_vruntime_copy);
5487#else
5488 min_vruntime = cfs_rq->min_vruntime;
5489#endif
5490
5491 se->vruntime -= min_vruntime;
5492 }
5493
aff3e498 5494 /*
9d89c257
YD
5495 * We are supposed to update the task to "current" time, then its up to date
5496 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5497 * what current time is, so simply throw away the out-of-date time. This
5498 * will result in the wakee task is less decayed, but giving the wakee more
5499 * load sounds not bad.
aff3e498 5500 */
9d89c257
YD
5501 remove_entity_load_avg(&p->se);
5502
5503 /* Tell new CPU we are migrated */
5504 p->se.avg.last_update_time = 0;
3944a927
BS
5505
5506 /* We have migrated, no longer consider this task hot */
9d89c257 5507 p->se.exec_start = 0;
0a74bef8 5508}
12695578
YD
5509
5510static void task_dead_fair(struct task_struct *p)
5511{
5512 remove_entity_load_avg(&p->se);
5513}
e7693a36
GH
5514#endif /* CONFIG_SMP */
5515
e52fb7c0
PZ
5516static unsigned long
5517wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5518{
5519 unsigned long gran = sysctl_sched_wakeup_granularity;
5520
5521 /*
e52fb7c0
PZ
5522 * Since its curr running now, convert the gran from real-time
5523 * to virtual-time in his units.
13814d42
MG
5524 *
5525 * By using 'se' instead of 'curr' we penalize light tasks, so
5526 * they get preempted easier. That is, if 'se' < 'curr' then
5527 * the resulting gran will be larger, therefore penalizing the
5528 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5529 * be smaller, again penalizing the lighter task.
5530 *
5531 * This is especially important for buddies when the leftmost
5532 * task is higher priority than the buddy.
0bbd3336 5533 */
f4ad9bd2 5534 return calc_delta_fair(gran, se);
0bbd3336
PZ
5535}
5536
464b7527
PZ
5537/*
5538 * Should 'se' preempt 'curr'.
5539 *
5540 * |s1
5541 * |s2
5542 * |s3
5543 * g
5544 * |<--->|c
5545 *
5546 * w(c, s1) = -1
5547 * w(c, s2) = 0
5548 * w(c, s3) = 1
5549 *
5550 */
5551static int
5552wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5553{
5554 s64 gran, vdiff = curr->vruntime - se->vruntime;
5555
5556 if (vdiff <= 0)
5557 return -1;
5558
e52fb7c0 5559 gran = wakeup_gran(curr, se);
464b7527
PZ
5560 if (vdiff > gran)
5561 return 1;
5562
5563 return 0;
5564}
5565
02479099
PZ
5566static void set_last_buddy(struct sched_entity *se)
5567{
69c80f3e
VP
5568 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5569 return;
5570
5571 for_each_sched_entity(se)
5572 cfs_rq_of(se)->last = se;
02479099
PZ
5573}
5574
5575static void set_next_buddy(struct sched_entity *se)
5576{
69c80f3e
VP
5577 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5578 return;
5579
5580 for_each_sched_entity(se)
5581 cfs_rq_of(se)->next = se;
02479099
PZ
5582}
5583
ac53db59
RR
5584static void set_skip_buddy(struct sched_entity *se)
5585{
69c80f3e
VP
5586 for_each_sched_entity(se)
5587 cfs_rq_of(se)->skip = se;
ac53db59
RR
5588}
5589
bf0f6f24
IM
5590/*
5591 * Preempt the current task with a newly woken task if needed:
5592 */
5a9b86f6 5593static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5594{
5595 struct task_struct *curr = rq->curr;
8651a86c 5596 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5597 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5598 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5599 int next_buddy_marked = 0;
bf0f6f24 5600
4ae7d5ce
IM
5601 if (unlikely(se == pse))
5602 return;
5603
5238cdd3 5604 /*
163122b7 5605 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5606 * unconditionally check_prempt_curr() after an enqueue (which may have
5607 * lead to a throttle). This both saves work and prevents false
5608 * next-buddy nomination below.
5609 */
5610 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5611 return;
5612
2f36825b 5613 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5614 set_next_buddy(pse);
2f36825b
VP
5615 next_buddy_marked = 1;
5616 }
57fdc26d 5617
aec0a514
BR
5618 /*
5619 * We can come here with TIF_NEED_RESCHED already set from new task
5620 * wake up path.
5238cdd3
PT
5621 *
5622 * Note: this also catches the edge-case of curr being in a throttled
5623 * group (e.g. via set_curr_task), since update_curr() (in the
5624 * enqueue of curr) will have resulted in resched being set. This
5625 * prevents us from potentially nominating it as a false LAST_BUDDY
5626 * below.
aec0a514
BR
5627 */
5628 if (test_tsk_need_resched(curr))
5629 return;
5630
a2f5c9ab
DH
5631 /* Idle tasks are by definition preempted by non-idle tasks. */
5632 if (unlikely(curr->policy == SCHED_IDLE) &&
5633 likely(p->policy != SCHED_IDLE))
5634 goto preempt;
5635
91c234b4 5636 /*
a2f5c9ab
DH
5637 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5638 * is driven by the tick):
91c234b4 5639 */
8ed92e51 5640 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5641 return;
bf0f6f24 5642
464b7527 5643 find_matching_se(&se, &pse);
9bbd7374 5644 update_curr(cfs_rq_of(se));
002f128b 5645 BUG_ON(!pse);
2f36825b
VP
5646 if (wakeup_preempt_entity(se, pse) == 1) {
5647 /*
5648 * Bias pick_next to pick the sched entity that is
5649 * triggering this preemption.
5650 */
5651 if (!next_buddy_marked)
5652 set_next_buddy(pse);
3a7e73a2 5653 goto preempt;
2f36825b 5654 }
464b7527 5655
3a7e73a2 5656 return;
a65ac745 5657
3a7e73a2 5658preempt:
8875125e 5659 resched_curr(rq);
3a7e73a2
PZ
5660 /*
5661 * Only set the backward buddy when the current task is still
5662 * on the rq. This can happen when a wakeup gets interleaved
5663 * with schedule on the ->pre_schedule() or idle_balance()
5664 * point, either of which can * drop the rq lock.
5665 *
5666 * Also, during early boot the idle thread is in the fair class,
5667 * for obvious reasons its a bad idea to schedule back to it.
5668 */
5669 if (unlikely(!se->on_rq || curr == rq->idle))
5670 return;
5671
5672 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5673 set_last_buddy(se);
bf0f6f24
IM
5674}
5675
606dba2e 5676static struct task_struct *
e7904a28 5677pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5678{
5679 struct cfs_rq *cfs_rq = &rq->cfs;
5680 struct sched_entity *se;
678d5718 5681 struct task_struct *p;
37e117c0 5682 int new_tasks;
678d5718 5683
6e83125c 5684again:
678d5718
PZ
5685#ifdef CONFIG_FAIR_GROUP_SCHED
5686 if (!cfs_rq->nr_running)
38033c37 5687 goto idle;
678d5718 5688
3f1d2a31 5689 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5690 goto simple;
5691
5692 /*
5693 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5694 * likely that a next task is from the same cgroup as the current.
5695 *
5696 * Therefore attempt to avoid putting and setting the entire cgroup
5697 * hierarchy, only change the part that actually changes.
5698 */
5699
5700 do {
5701 struct sched_entity *curr = cfs_rq->curr;
5702
5703 /*
5704 * Since we got here without doing put_prev_entity() we also
5705 * have to consider cfs_rq->curr. If it is still a runnable
5706 * entity, update_curr() will update its vruntime, otherwise
5707 * forget we've ever seen it.
5708 */
54d27365
BS
5709 if (curr) {
5710 if (curr->on_rq)
5711 update_curr(cfs_rq);
5712 else
5713 curr = NULL;
678d5718 5714
54d27365
BS
5715 /*
5716 * This call to check_cfs_rq_runtime() will do the
5717 * throttle and dequeue its entity in the parent(s).
5718 * Therefore the 'simple' nr_running test will indeed
5719 * be correct.
5720 */
5721 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5722 goto simple;
5723 }
678d5718
PZ
5724
5725 se = pick_next_entity(cfs_rq, curr);
5726 cfs_rq = group_cfs_rq(se);
5727 } while (cfs_rq);
5728
5729 p = task_of(se);
5730
5731 /*
5732 * Since we haven't yet done put_prev_entity and if the selected task
5733 * is a different task than we started out with, try and touch the
5734 * least amount of cfs_rqs.
5735 */
5736 if (prev != p) {
5737 struct sched_entity *pse = &prev->se;
5738
5739 while (!(cfs_rq = is_same_group(se, pse))) {
5740 int se_depth = se->depth;
5741 int pse_depth = pse->depth;
5742
5743 if (se_depth <= pse_depth) {
5744 put_prev_entity(cfs_rq_of(pse), pse);
5745 pse = parent_entity(pse);
5746 }
5747 if (se_depth >= pse_depth) {
5748 set_next_entity(cfs_rq_of(se), se);
5749 se = parent_entity(se);
5750 }
5751 }
5752
5753 put_prev_entity(cfs_rq, pse);
5754 set_next_entity(cfs_rq, se);
5755 }
5756
5757 if (hrtick_enabled(rq))
5758 hrtick_start_fair(rq, p);
5759
5760 return p;
5761simple:
5762 cfs_rq = &rq->cfs;
5763#endif
bf0f6f24 5764
36ace27e 5765 if (!cfs_rq->nr_running)
38033c37 5766 goto idle;
bf0f6f24 5767
3f1d2a31 5768 put_prev_task(rq, prev);
606dba2e 5769
bf0f6f24 5770 do {
678d5718 5771 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5772 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5773 cfs_rq = group_cfs_rq(se);
5774 } while (cfs_rq);
5775
8f4d37ec 5776 p = task_of(se);
678d5718 5777
b39e66ea
MG
5778 if (hrtick_enabled(rq))
5779 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5780
5781 return p;
38033c37
PZ
5782
5783idle:
cbce1a68
PZ
5784 /*
5785 * This is OK, because current is on_cpu, which avoids it being picked
5786 * for load-balance and preemption/IRQs are still disabled avoiding
5787 * further scheduler activity on it and we're being very careful to
5788 * re-start the picking loop.
5789 */
e7904a28 5790 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5791 new_tasks = idle_balance(rq);
e7904a28 5792 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5793 /*
5794 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5795 * possible for any higher priority task to appear. In that case we
5796 * must re-start the pick_next_entity() loop.
5797 */
e4aa358b 5798 if (new_tasks < 0)
37e117c0
PZ
5799 return RETRY_TASK;
5800
e4aa358b 5801 if (new_tasks > 0)
38033c37 5802 goto again;
38033c37
PZ
5803
5804 return NULL;
bf0f6f24
IM
5805}
5806
5807/*
5808 * Account for a descheduled task:
5809 */
31ee529c 5810static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5811{
5812 struct sched_entity *se = &prev->se;
5813 struct cfs_rq *cfs_rq;
5814
5815 for_each_sched_entity(se) {
5816 cfs_rq = cfs_rq_of(se);
ab6cde26 5817 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5818 }
5819}
5820
ac53db59
RR
5821/*
5822 * sched_yield() is very simple
5823 *
5824 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5825 */
5826static void yield_task_fair(struct rq *rq)
5827{
5828 struct task_struct *curr = rq->curr;
5829 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5830 struct sched_entity *se = &curr->se;
5831
5832 /*
5833 * Are we the only task in the tree?
5834 */
5835 if (unlikely(rq->nr_running == 1))
5836 return;
5837
5838 clear_buddies(cfs_rq, se);
5839
5840 if (curr->policy != SCHED_BATCH) {
5841 update_rq_clock(rq);
5842 /*
5843 * Update run-time statistics of the 'current'.
5844 */
5845 update_curr(cfs_rq);
916671c0
MG
5846 /*
5847 * Tell update_rq_clock() that we've just updated,
5848 * so we don't do microscopic update in schedule()
5849 * and double the fastpath cost.
5850 */
9edfbfed 5851 rq_clock_skip_update(rq, true);
ac53db59
RR
5852 }
5853
5854 set_skip_buddy(se);
5855}
5856
d95f4122
MG
5857static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5858{
5859 struct sched_entity *se = &p->se;
5860
5238cdd3
PT
5861 /* throttled hierarchies are not runnable */
5862 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5863 return false;
5864
5865 /* Tell the scheduler that we'd really like pse to run next. */
5866 set_next_buddy(se);
5867
d95f4122
MG
5868 yield_task_fair(rq);
5869
5870 return true;
5871}
5872
681f3e68 5873#ifdef CONFIG_SMP
bf0f6f24 5874/**************************************************
e9c84cb8
PZ
5875 * Fair scheduling class load-balancing methods.
5876 *
5877 * BASICS
5878 *
5879 * The purpose of load-balancing is to achieve the same basic fairness the
5880 * per-cpu scheduler provides, namely provide a proportional amount of compute
5881 * time to each task. This is expressed in the following equation:
5882 *
5883 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5884 *
5885 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5886 * W_i,0 is defined as:
5887 *
5888 * W_i,0 = \Sum_j w_i,j (2)
5889 *
5890 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5891 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5892 *
5893 * The weight average is an exponential decay average of the instantaneous
5894 * weight:
5895 *
5896 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5897 *
ced549fa 5898 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5899 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5900 * can also include other factors [XXX].
5901 *
5902 * To achieve this balance we define a measure of imbalance which follows
5903 * directly from (1):
5904 *
ced549fa 5905 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5906 *
5907 * We them move tasks around to minimize the imbalance. In the continuous
5908 * function space it is obvious this converges, in the discrete case we get
5909 * a few fun cases generally called infeasible weight scenarios.
5910 *
5911 * [XXX expand on:
5912 * - infeasible weights;
5913 * - local vs global optima in the discrete case. ]
5914 *
5915 *
5916 * SCHED DOMAINS
5917 *
5918 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5919 * for all i,j solution, we create a tree of cpus that follows the hardware
5920 * topology where each level pairs two lower groups (or better). This results
5921 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5922 * tree to only the first of the previous level and we decrease the frequency
5923 * of load-balance at each level inv. proportional to the number of cpus in
5924 * the groups.
5925 *
5926 * This yields:
5927 *
5928 * log_2 n 1 n
5929 * \Sum { --- * --- * 2^i } = O(n) (5)
5930 * i = 0 2^i 2^i
5931 * `- size of each group
5932 * | | `- number of cpus doing load-balance
5933 * | `- freq
5934 * `- sum over all levels
5935 *
5936 * Coupled with a limit on how many tasks we can migrate every balance pass,
5937 * this makes (5) the runtime complexity of the balancer.
5938 *
5939 * An important property here is that each CPU is still (indirectly) connected
5940 * to every other cpu in at most O(log n) steps:
5941 *
5942 * The adjacency matrix of the resulting graph is given by:
5943 *
5944 * log_2 n
5945 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5946 * k = 0
5947 *
5948 * And you'll find that:
5949 *
5950 * A^(log_2 n)_i,j != 0 for all i,j (7)
5951 *
5952 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5953 * The task movement gives a factor of O(m), giving a convergence complexity
5954 * of:
5955 *
5956 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5957 *
5958 *
5959 * WORK CONSERVING
5960 *
5961 * In order to avoid CPUs going idle while there's still work to do, new idle
5962 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5963 * tree itself instead of relying on other CPUs to bring it work.
5964 *
5965 * This adds some complexity to both (5) and (8) but it reduces the total idle
5966 * time.
5967 *
5968 * [XXX more?]
5969 *
5970 *
5971 * CGROUPS
5972 *
5973 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5974 *
5975 * s_k,i
5976 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5977 * S_k
5978 *
5979 * Where
5980 *
5981 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5982 *
5983 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5984 *
5985 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5986 * property.
5987 *
5988 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5989 * rewrite all of this once again.]
5990 */
bf0f6f24 5991
ed387b78
HS
5992static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5993
0ec8aa00
PZ
5994enum fbq_type { regular, remote, all };
5995
ddcdf6e7 5996#define LBF_ALL_PINNED 0x01
367456c7 5997#define LBF_NEED_BREAK 0x02
6263322c
PZ
5998#define LBF_DST_PINNED 0x04
5999#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6000
6001struct lb_env {
6002 struct sched_domain *sd;
6003
ddcdf6e7 6004 struct rq *src_rq;
85c1e7da 6005 int src_cpu;
ddcdf6e7
PZ
6006
6007 int dst_cpu;
6008 struct rq *dst_rq;
6009
88b8dac0
SV
6010 struct cpumask *dst_grpmask;
6011 int new_dst_cpu;
ddcdf6e7 6012 enum cpu_idle_type idle;
bd939f45 6013 long imbalance;
b9403130
MW
6014 /* The set of CPUs under consideration for load-balancing */
6015 struct cpumask *cpus;
6016
ddcdf6e7 6017 unsigned int flags;
367456c7
PZ
6018
6019 unsigned int loop;
6020 unsigned int loop_break;
6021 unsigned int loop_max;
0ec8aa00
PZ
6022
6023 enum fbq_type fbq_type;
163122b7 6024 struct list_head tasks;
ddcdf6e7
PZ
6025};
6026
029632fb
PZ
6027/*
6028 * Is this task likely cache-hot:
6029 */
5d5e2b1b 6030static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6031{
6032 s64 delta;
6033
e5673f28
KT
6034 lockdep_assert_held(&env->src_rq->lock);
6035
029632fb
PZ
6036 if (p->sched_class != &fair_sched_class)
6037 return 0;
6038
6039 if (unlikely(p->policy == SCHED_IDLE))
6040 return 0;
6041
6042 /*
6043 * Buddy candidates are cache hot:
6044 */
5d5e2b1b 6045 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6046 (&p->se == cfs_rq_of(&p->se)->next ||
6047 &p->se == cfs_rq_of(&p->se)->last))
6048 return 1;
6049
6050 if (sysctl_sched_migration_cost == -1)
6051 return 1;
6052 if (sysctl_sched_migration_cost == 0)
6053 return 0;
6054
5d5e2b1b 6055 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6056
6057 return delta < (s64)sysctl_sched_migration_cost;
6058}
6059
3a7053b3 6060#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6061/*
2a1ed24c
SD
6062 * Returns 1, if task migration degrades locality
6063 * Returns 0, if task migration improves locality i.e migration preferred.
6064 * Returns -1, if task migration is not affected by locality.
c1ceac62 6065 */
2a1ed24c 6066static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6067{
b1ad065e 6068 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6069 unsigned long src_faults, dst_faults;
3a7053b3
MG
6070 int src_nid, dst_nid;
6071
2a595721 6072 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6073 return -1;
6074
c3b9bc5b 6075 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6076 return -1;
7a0f3083
MG
6077
6078 src_nid = cpu_to_node(env->src_cpu);
6079 dst_nid = cpu_to_node(env->dst_cpu);
6080
83e1d2cd 6081 if (src_nid == dst_nid)
2a1ed24c 6082 return -1;
7a0f3083 6083
2a1ed24c
SD
6084 /* Migrating away from the preferred node is always bad. */
6085 if (src_nid == p->numa_preferred_nid) {
6086 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6087 return 1;
6088 else
6089 return -1;
6090 }
b1ad065e 6091
c1ceac62
RR
6092 /* Encourage migration to the preferred node. */
6093 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6094 return 0;
b1ad065e 6095
c1ceac62
RR
6096 if (numa_group) {
6097 src_faults = group_faults(p, src_nid);
6098 dst_faults = group_faults(p, dst_nid);
6099 } else {
6100 src_faults = task_faults(p, src_nid);
6101 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6102 }
6103
c1ceac62 6104 return dst_faults < src_faults;
7a0f3083
MG
6105}
6106
3a7053b3 6107#else
2a1ed24c 6108static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6109 struct lb_env *env)
6110{
2a1ed24c 6111 return -1;
7a0f3083 6112}
3a7053b3
MG
6113#endif
6114
1e3c88bd
PZ
6115/*
6116 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6117 */
6118static
8e45cb54 6119int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6120{
2a1ed24c 6121 int tsk_cache_hot;
e5673f28
KT
6122
6123 lockdep_assert_held(&env->src_rq->lock);
6124
1e3c88bd
PZ
6125 /*
6126 * We do not migrate tasks that are:
d3198084 6127 * 1) throttled_lb_pair, or
1e3c88bd 6128 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6129 * 3) running (obviously), or
6130 * 4) are cache-hot on their current CPU.
1e3c88bd 6131 */
d3198084
JK
6132 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6133 return 0;
6134
ddcdf6e7 6135 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6136 int cpu;
88b8dac0 6137
41acab88 6138 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6139
6263322c
PZ
6140 env->flags |= LBF_SOME_PINNED;
6141
88b8dac0
SV
6142 /*
6143 * Remember if this task can be migrated to any other cpu in
6144 * our sched_group. We may want to revisit it if we couldn't
6145 * meet load balance goals by pulling other tasks on src_cpu.
6146 *
6147 * Also avoid computing new_dst_cpu if we have already computed
6148 * one in current iteration.
6149 */
6263322c 6150 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6151 return 0;
6152
e02e60c1
JK
6153 /* Prevent to re-select dst_cpu via env's cpus */
6154 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6155 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6156 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6157 env->new_dst_cpu = cpu;
6158 break;
6159 }
88b8dac0 6160 }
e02e60c1 6161
1e3c88bd
PZ
6162 return 0;
6163 }
88b8dac0
SV
6164
6165 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6166 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6167
ddcdf6e7 6168 if (task_running(env->src_rq, p)) {
41acab88 6169 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6170 return 0;
6171 }
6172
6173 /*
6174 * Aggressive migration if:
3a7053b3
MG
6175 * 1) destination numa is preferred
6176 * 2) task is cache cold, or
6177 * 3) too many balance attempts have failed.
1e3c88bd 6178 */
2a1ed24c
SD
6179 tsk_cache_hot = migrate_degrades_locality(p, env);
6180 if (tsk_cache_hot == -1)
6181 tsk_cache_hot = task_hot(p, env);
3a7053b3 6182
2a1ed24c 6183 if (tsk_cache_hot <= 0 ||
7a96c231 6184 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6185 if (tsk_cache_hot == 1) {
3a7053b3
MG
6186 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6187 schedstat_inc(p, se.statistics.nr_forced_migrations);
6188 }
1e3c88bd
PZ
6189 return 1;
6190 }
6191
4e2dcb73
ZH
6192 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6193 return 0;
1e3c88bd
PZ
6194}
6195
897c395f 6196/*
163122b7
KT
6197 * detach_task() -- detach the task for the migration specified in env
6198 */
6199static void detach_task(struct task_struct *p, struct lb_env *env)
6200{
6201 lockdep_assert_held(&env->src_rq->lock);
6202
163122b7 6203 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6204 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6205 set_task_cpu(p, env->dst_cpu);
6206}
6207
897c395f 6208/*
e5673f28 6209 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6210 * part of active balancing operations within "domain".
897c395f 6211 *
e5673f28 6212 * Returns a task if successful and NULL otherwise.
897c395f 6213 */
e5673f28 6214static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6215{
6216 struct task_struct *p, *n;
897c395f 6217
e5673f28
KT
6218 lockdep_assert_held(&env->src_rq->lock);
6219
367456c7 6220 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6221 if (!can_migrate_task(p, env))
6222 continue;
897c395f 6223
163122b7 6224 detach_task(p, env);
e5673f28 6225
367456c7 6226 /*
e5673f28 6227 * Right now, this is only the second place where
163122b7 6228 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6229 * so we can safely collect stats here rather than
163122b7 6230 * inside detach_tasks().
367456c7
PZ
6231 */
6232 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6233 return p;
897c395f 6234 }
e5673f28 6235 return NULL;
897c395f
PZ
6236}
6237
eb95308e
PZ
6238static const unsigned int sched_nr_migrate_break = 32;
6239
5d6523eb 6240/*
163122b7
KT
6241 * detach_tasks() -- tries to detach up to imbalance weighted load from
6242 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6243 *
163122b7 6244 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6245 */
163122b7 6246static int detach_tasks(struct lb_env *env)
1e3c88bd 6247{
5d6523eb
PZ
6248 struct list_head *tasks = &env->src_rq->cfs_tasks;
6249 struct task_struct *p;
367456c7 6250 unsigned long load;
163122b7
KT
6251 int detached = 0;
6252
6253 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6254
bd939f45 6255 if (env->imbalance <= 0)
5d6523eb 6256 return 0;
1e3c88bd 6257
5d6523eb 6258 while (!list_empty(tasks)) {
985d3a4c
YD
6259 /*
6260 * We don't want to steal all, otherwise we may be treated likewise,
6261 * which could at worst lead to a livelock crash.
6262 */
6263 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6264 break;
6265
5d6523eb 6266 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6267
367456c7
PZ
6268 env->loop++;
6269 /* We've more or less seen every task there is, call it quits */
5d6523eb 6270 if (env->loop > env->loop_max)
367456c7 6271 break;
5d6523eb
PZ
6272
6273 /* take a breather every nr_migrate tasks */
367456c7 6274 if (env->loop > env->loop_break) {
eb95308e 6275 env->loop_break += sched_nr_migrate_break;
8e45cb54 6276 env->flags |= LBF_NEED_BREAK;
ee00e66f 6277 break;
a195f004 6278 }
1e3c88bd 6279
d3198084 6280 if (!can_migrate_task(p, env))
367456c7
PZ
6281 goto next;
6282
6283 load = task_h_load(p);
5d6523eb 6284
eb95308e 6285 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6286 goto next;
6287
bd939f45 6288 if ((load / 2) > env->imbalance)
367456c7 6289 goto next;
1e3c88bd 6290
163122b7
KT
6291 detach_task(p, env);
6292 list_add(&p->se.group_node, &env->tasks);
6293
6294 detached++;
bd939f45 6295 env->imbalance -= load;
1e3c88bd
PZ
6296
6297#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6298 /*
6299 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6300 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6301 * the critical section.
6302 */
5d6523eb 6303 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6304 break;
1e3c88bd
PZ
6305#endif
6306
ee00e66f
PZ
6307 /*
6308 * We only want to steal up to the prescribed amount of
6309 * weighted load.
6310 */
bd939f45 6311 if (env->imbalance <= 0)
ee00e66f 6312 break;
367456c7
PZ
6313
6314 continue;
6315next:
5d6523eb 6316 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6317 }
5d6523eb 6318
1e3c88bd 6319 /*
163122b7
KT
6320 * Right now, this is one of only two places we collect this stat
6321 * so we can safely collect detach_one_task() stats here rather
6322 * than inside detach_one_task().
1e3c88bd 6323 */
163122b7 6324 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6325
163122b7
KT
6326 return detached;
6327}
6328
6329/*
6330 * attach_task() -- attach the task detached by detach_task() to its new rq.
6331 */
6332static void attach_task(struct rq *rq, struct task_struct *p)
6333{
6334 lockdep_assert_held(&rq->lock);
6335
6336 BUG_ON(task_rq(p) != rq);
163122b7 6337 activate_task(rq, p, 0);
3ea94de1 6338 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6339 check_preempt_curr(rq, p, 0);
6340}
6341
6342/*
6343 * attach_one_task() -- attaches the task returned from detach_one_task() to
6344 * its new rq.
6345 */
6346static void attach_one_task(struct rq *rq, struct task_struct *p)
6347{
6348 raw_spin_lock(&rq->lock);
6349 attach_task(rq, p);
6350 raw_spin_unlock(&rq->lock);
6351}
6352
6353/*
6354 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6355 * new rq.
6356 */
6357static void attach_tasks(struct lb_env *env)
6358{
6359 struct list_head *tasks = &env->tasks;
6360 struct task_struct *p;
6361
6362 raw_spin_lock(&env->dst_rq->lock);
6363
6364 while (!list_empty(tasks)) {
6365 p = list_first_entry(tasks, struct task_struct, se.group_node);
6366 list_del_init(&p->se.group_node);
1e3c88bd 6367
163122b7
KT
6368 attach_task(env->dst_rq, p);
6369 }
6370
6371 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6372}
6373
230059de 6374#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6375static void update_blocked_averages(int cpu)
9e3081ca 6376{
9e3081ca 6377 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6378 struct cfs_rq *cfs_rq;
6379 unsigned long flags;
9e3081ca 6380
48a16753
PT
6381 raw_spin_lock_irqsave(&rq->lock, flags);
6382 update_rq_clock(rq);
9d89c257 6383
9763b67f
PZ
6384 /*
6385 * Iterates the task_group tree in a bottom up fashion, see
6386 * list_add_leaf_cfs_rq() for details.
6387 */
64660c86 6388 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6389 /* throttled entities do not contribute to load */
6390 if (throttled_hierarchy(cfs_rq))
6391 continue;
48a16753 6392
a2c6c91f 6393 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6394 update_tg_load_avg(cfs_rq, 0);
6395 }
48a16753 6396 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6397}
6398
9763b67f 6399/*
68520796 6400 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6401 * This needs to be done in a top-down fashion because the load of a child
6402 * group is a fraction of its parents load.
6403 */
68520796 6404static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6405{
68520796
VD
6406 struct rq *rq = rq_of(cfs_rq);
6407 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6408 unsigned long now = jiffies;
68520796 6409 unsigned long load;
a35b6466 6410
68520796 6411 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6412 return;
6413
68520796
VD
6414 cfs_rq->h_load_next = NULL;
6415 for_each_sched_entity(se) {
6416 cfs_rq = cfs_rq_of(se);
6417 cfs_rq->h_load_next = se;
6418 if (cfs_rq->last_h_load_update == now)
6419 break;
6420 }
a35b6466 6421
68520796 6422 if (!se) {
7ea241af 6423 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6424 cfs_rq->last_h_load_update = now;
6425 }
6426
6427 while ((se = cfs_rq->h_load_next) != NULL) {
6428 load = cfs_rq->h_load;
7ea241af
YD
6429 load = div64_ul(load * se->avg.load_avg,
6430 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6431 cfs_rq = group_cfs_rq(se);
6432 cfs_rq->h_load = load;
6433 cfs_rq->last_h_load_update = now;
6434 }
9763b67f
PZ
6435}
6436
367456c7 6437static unsigned long task_h_load(struct task_struct *p)
230059de 6438{
367456c7 6439 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6440
68520796 6441 update_cfs_rq_h_load(cfs_rq);
9d89c257 6442 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6443 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6444}
6445#else
48a16753 6446static inline void update_blocked_averages(int cpu)
9e3081ca 6447{
6c1d47c0
VG
6448 struct rq *rq = cpu_rq(cpu);
6449 struct cfs_rq *cfs_rq = &rq->cfs;
6450 unsigned long flags;
6451
6452 raw_spin_lock_irqsave(&rq->lock, flags);
6453 update_rq_clock(rq);
a2c6c91f 6454 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6455 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6456}
6457
367456c7 6458static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6459{
9d89c257 6460 return p->se.avg.load_avg;
1e3c88bd 6461}
230059de 6462#endif
1e3c88bd 6463
1e3c88bd 6464/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6465
6466enum group_type {
6467 group_other = 0,
6468 group_imbalanced,
6469 group_overloaded,
6470};
6471
1e3c88bd
PZ
6472/*
6473 * sg_lb_stats - stats of a sched_group required for load_balancing
6474 */
6475struct sg_lb_stats {
6476 unsigned long avg_load; /*Avg load across the CPUs of the group */
6477 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6478 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6479 unsigned long load_per_task;
63b2ca30 6480 unsigned long group_capacity;
9e91d61d 6481 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6482 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6483 unsigned int idle_cpus;
6484 unsigned int group_weight;
caeb178c 6485 enum group_type group_type;
ea67821b 6486 int group_no_capacity;
0ec8aa00
PZ
6487#ifdef CONFIG_NUMA_BALANCING
6488 unsigned int nr_numa_running;
6489 unsigned int nr_preferred_running;
6490#endif
1e3c88bd
PZ
6491};
6492
56cf515b
JK
6493/*
6494 * sd_lb_stats - Structure to store the statistics of a sched_domain
6495 * during load balancing.
6496 */
6497struct sd_lb_stats {
6498 struct sched_group *busiest; /* Busiest group in this sd */
6499 struct sched_group *local; /* Local group in this sd */
6500 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6501 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6502 unsigned long avg_load; /* Average load across all groups in sd */
6503
56cf515b 6504 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6505 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6506};
6507
147c5fc2
PZ
6508static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6509{
6510 /*
6511 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6512 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6513 * We must however clear busiest_stat::avg_load because
6514 * update_sd_pick_busiest() reads this before assignment.
6515 */
6516 *sds = (struct sd_lb_stats){
6517 .busiest = NULL,
6518 .local = NULL,
6519 .total_load = 0UL,
63b2ca30 6520 .total_capacity = 0UL,
147c5fc2
PZ
6521 .busiest_stat = {
6522 .avg_load = 0UL,
caeb178c
RR
6523 .sum_nr_running = 0,
6524 .group_type = group_other,
147c5fc2
PZ
6525 },
6526 };
6527}
6528
1e3c88bd
PZ
6529/**
6530 * get_sd_load_idx - Obtain the load index for a given sched domain.
6531 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6532 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6533 *
6534 * Return: The load index.
1e3c88bd
PZ
6535 */
6536static inline int get_sd_load_idx(struct sched_domain *sd,
6537 enum cpu_idle_type idle)
6538{
6539 int load_idx;
6540
6541 switch (idle) {
6542 case CPU_NOT_IDLE:
6543 load_idx = sd->busy_idx;
6544 break;
6545
6546 case CPU_NEWLY_IDLE:
6547 load_idx = sd->newidle_idx;
6548 break;
6549 default:
6550 load_idx = sd->idle_idx;
6551 break;
6552 }
6553
6554 return load_idx;
6555}
6556
ced549fa 6557static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6558{
6559 struct rq *rq = cpu_rq(cpu);
b5b4860d 6560 u64 total, used, age_stamp, avg;
cadefd3d 6561 s64 delta;
1e3c88bd 6562
b654f7de
PZ
6563 /*
6564 * Since we're reading these variables without serialization make sure
6565 * we read them once before doing sanity checks on them.
6566 */
316c1608
JL
6567 age_stamp = READ_ONCE(rq->age_stamp);
6568 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6569 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6570
cadefd3d
PZ
6571 if (unlikely(delta < 0))
6572 delta = 0;
6573
6574 total = sched_avg_period() + delta;
aa483808 6575
b5b4860d 6576 used = div_u64(avg, total);
1e3c88bd 6577
b5b4860d
VG
6578 if (likely(used < SCHED_CAPACITY_SCALE))
6579 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6580
b5b4860d 6581 return 1;
1e3c88bd
PZ
6582}
6583
ced549fa 6584static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6585{
8cd5601c 6586 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6587 struct sched_group *sdg = sd->groups;
6588
ca6d75e6 6589 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6590
ced549fa 6591 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6592 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6593
ced549fa
NP
6594 if (!capacity)
6595 capacity = 1;
1e3c88bd 6596
ced549fa
NP
6597 cpu_rq(cpu)->cpu_capacity = capacity;
6598 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6599}
6600
63b2ca30 6601void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6602{
6603 struct sched_domain *child = sd->child;
6604 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6605 unsigned long capacity;
4ec4412e
VG
6606 unsigned long interval;
6607
6608 interval = msecs_to_jiffies(sd->balance_interval);
6609 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6610 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6611
6612 if (!child) {
ced549fa 6613 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6614 return;
6615 }
6616
dc7ff76e 6617 capacity = 0;
1e3c88bd 6618
74a5ce20
PZ
6619 if (child->flags & SD_OVERLAP) {
6620 /*
6621 * SD_OVERLAP domains cannot assume that child groups
6622 * span the current group.
6623 */
6624
863bffc8 6625 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6626 struct sched_group_capacity *sgc;
9abf24d4 6627 struct rq *rq = cpu_rq(cpu);
863bffc8 6628
9abf24d4 6629 /*
63b2ca30 6630 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6631 * gets here before we've attached the domains to the
6632 * runqueues.
6633 *
ced549fa
NP
6634 * Use capacity_of(), which is set irrespective of domains
6635 * in update_cpu_capacity().
9abf24d4 6636 *
dc7ff76e 6637 * This avoids capacity from being 0 and
9abf24d4 6638 * causing divide-by-zero issues on boot.
9abf24d4
SD
6639 */
6640 if (unlikely(!rq->sd)) {
ced549fa 6641 capacity += capacity_of(cpu);
9abf24d4
SD
6642 continue;
6643 }
863bffc8 6644
63b2ca30 6645 sgc = rq->sd->groups->sgc;
63b2ca30 6646 capacity += sgc->capacity;
863bffc8 6647 }
74a5ce20
PZ
6648 } else {
6649 /*
6650 * !SD_OVERLAP domains can assume that child groups
6651 * span the current group.
6652 */
6653
6654 group = child->groups;
6655 do {
63b2ca30 6656 capacity += group->sgc->capacity;
74a5ce20
PZ
6657 group = group->next;
6658 } while (group != child->groups);
6659 }
1e3c88bd 6660
63b2ca30 6661 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6662}
6663
9d5efe05 6664/*
ea67821b
VG
6665 * Check whether the capacity of the rq has been noticeably reduced by side
6666 * activity. The imbalance_pct is used for the threshold.
6667 * Return true is the capacity is reduced
9d5efe05
SV
6668 */
6669static inline int
ea67821b 6670check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6671{
ea67821b
VG
6672 return ((rq->cpu_capacity * sd->imbalance_pct) <
6673 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6674}
6675
30ce5dab
PZ
6676/*
6677 * Group imbalance indicates (and tries to solve) the problem where balancing
6678 * groups is inadequate due to tsk_cpus_allowed() constraints.
6679 *
6680 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6681 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6682 * Something like:
6683 *
6684 * { 0 1 2 3 } { 4 5 6 7 }
6685 * * * * *
6686 *
6687 * If we were to balance group-wise we'd place two tasks in the first group and
6688 * two tasks in the second group. Clearly this is undesired as it will overload
6689 * cpu 3 and leave one of the cpus in the second group unused.
6690 *
6691 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6692 * by noticing the lower domain failed to reach balance and had difficulty
6693 * moving tasks due to affinity constraints.
30ce5dab
PZ
6694 *
6695 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6696 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6697 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6698 * to create an effective group imbalance.
6699 *
6700 * This is a somewhat tricky proposition since the next run might not find the
6701 * group imbalance and decide the groups need to be balanced again. A most
6702 * subtle and fragile situation.
6703 */
6704
6263322c 6705static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6706{
63b2ca30 6707 return group->sgc->imbalance;
30ce5dab
PZ
6708}
6709
b37d9316 6710/*
ea67821b
VG
6711 * group_has_capacity returns true if the group has spare capacity that could
6712 * be used by some tasks.
6713 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6714 * smaller than the number of CPUs or if the utilization is lower than the
6715 * available capacity for CFS tasks.
ea67821b
VG
6716 * For the latter, we use a threshold to stabilize the state, to take into
6717 * account the variance of the tasks' load and to return true if the available
6718 * capacity in meaningful for the load balancer.
6719 * As an example, an available capacity of 1% can appear but it doesn't make
6720 * any benefit for the load balance.
b37d9316 6721 */
ea67821b
VG
6722static inline bool
6723group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6724{
ea67821b
VG
6725 if (sgs->sum_nr_running < sgs->group_weight)
6726 return true;
c61037e9 6727
ea67821b 6728 if ((sgs->group_capacity * 100) >
9e91d61d 6729 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6730 return true;
b37d9316 6731
ea67821b
VG
6732 return false;
6733}
6734
6735/*
6736 * group_is_overloaded returns true if the group has more tasks than it can
6737 * handle.
6738 * group_is_overloaded is not equals to !group_has_capacity because a group
6739 * with the exact right number of tasks, has no more spare capacity but is not
6740 * overloaded so both group_has_capacity and group_is_overloaded return
6741 * false.
6742 */
6743static inline bool
6744group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6745{
6746 if (sgs->sum_nr_running <= sgs->group_weight)
6747 return false;
b37d9316 6748
ea67821b 6749 if ((sgs->group_capacity * 100) <
9e91d61d 6750 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6751 return true;
b37d9316 6752
ea67821b 6753 return false;
b37d9316
PZ
6754}
6755
79a89f92
LY
6756static inline enum
6757group_type group_classify(struct sched_group *group,
6758 struct sg_lb_stats *sgs)
caeb178c 6759{
ea67821b 6760 if (sgs->group_no_capacity)
caeb178c
RR
6761 return group_overloaded;
6762
6763 if (sg_imbalanced(group))
6764 return group_imbalanced;
6765
6766 return group_other;
6767}
6768
1e3c88bd
PZ
6769/**
6770 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6771 * @env: The load balancing environment.
1e3c88bd 6772 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6773 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6774 * @local_group: Does group contain this_cpu.
1e3c88bd 6775 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6776 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6777 */
bd939f45
PZ
6778static inline void update_sg_lb_stats(struct lb_env *env,
6779 struct sched_group *group, int load_idx,
4486edd1
TC
6780 int local_group, struct sg_lb_stats *sgs,
6781 bool *overload)
1e3c88bd 6782{
30ce5dab 6783 unsigned long load;
a426f99c 6784 int i, nr_running;
1e3c88bd 6785
b72ff13c
PZ
6786 memset(sgs, 0, sizeof(*sgs));
6787
b9403130 6788 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6789 struct rq *rq = cpu_rq(i);
6790
1e3c88bd 6791 /* Bias balancing toward cpus of our domain */
6263322c 6792 if (local_group)
04f733b4 6793 load = target_load(i, load_idx);
6263322c 6794 else
1e3c88bd 6795 load = source_load(i, load_idx);
1e3c88bd
PZ
6796
6797 sgs->group_load += load;
9e91d61d 6798 sgs->group_util += cpu_util(i);
65fdac08 6799 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6800
a426f99c
WL
6801 nr_running = rq->nr_running;
6802 if (nr_running > 1)
4486edd1
TC
6803 *overload = true;
6804
0ec8aa00
PZ
6805#ifdef CONFIG_NUMA_BALANCING
6806 sgs->nr_numa_running += rq->nr_numa_running;
6807 sgs->nr_preferred_running += rq->nr_preferred_running;
6808#endif
1e3c88bd 6809 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6810 /*
6811 * No need to call idle_cpu() if nr_running is not 0
6812 */
6813 if (!nr_running && idle_cpu(i))
aae6d3dd 6814 sgs->idle_cpus++;
1e3c88bd
PZ
6815 }
6816
63b2ca30
NP
6817 /* Adjust by relative CPU capacity of the group */
6818 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6819 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6820
dd5feea1 6821 if (sgs->sum_nr_running)
38d0f770 6822 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6823
aae6d3dd 6824 sgs->group_weight = group->group_weight;
b37d9316 6825
ea67821b 6826 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6827 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6828}
6829
532cb4c4
MN
6830/**
6831 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6832 * @env: The load balancing environment.
532cb4c4
MN
6833 * @sds: sched_domain statistics
6834 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6835 * @sgs: sched_group statistics
532cb4c4
MN
6836 *
6837 * Determine if @sg is a busier group than the previously selected
6838 * busiest group.
e69f6186
YB
6839 *
6840 * Return: %true if @sg is a busier group than the previously selected
6841 * busiest group. %false otherwise.
532cb4c4 6842 */
bd939f45 6843static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6844 struct sd_lb_stats *sds,
6845 struct sched_group *sg,
bd939f45 6846 struct sg_lb_stats *sgs)
532cb4c4 6847{
caeb178c 6848 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6849
caeb178c 6850 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6851 return true;
6852
caeb178c
RR
6853 if (sgs->group_type < busiest->group_type)
6854 return false;
6855
6856 if (sgs->avg_load <= busiest->avg_load)
6857 return false;
6858
6859 /* This is the busiest node in its class. */
6860 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6861 return true;
6862
1f621e02
SD
6863 /* No ASYM_PACKING if target cpu is already busy */
6864 if (env->idle == CPU_NOT_IDLE)
6865 return true;
532cb4c4
MN
6866 /*
6867 * ASYM_PACKING needs to move all the work to the lowest
6868 * numbered CPUs in the group, therefore mark all groups
6869 * higher than ourself as busy.
6870 */
caeb178c 6871 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6872 if (!sds->busiest)
6873 return true;
6874
1f621e02
SD
6875 /* Prefer to move from highest possible cpu's work */
6876 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6877 return true;
6878 }
6879
6880 return false;
6881}
6882
0ec8aa00
PZ
6883#ifdef CONFIG_NUMA_BALANCING
6884static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6885{
6886 if (sgs->sum_nr_running > sgs->nr_numa_running)
6887 return regular;
6888 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6889 return remote;
6890 return all;
6891}
6892
6893static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6894{
6895 if (rq->nr_running > rq->nr_numa_running)
6896 return regular;
6897 if (rq->nr_running > rq->nr_preferred_running)
6898 return remote;
6899 return all;
6900}
6901#else
6902static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6903{
6904 return all;
6905}
6906
6907static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6908{
6909 return regular;
6910}
6911#endif /* CONFIG_NUMA_BALANCING */
6912
1e3c88bd 6913/**
461819ac 6914 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6915 * @env: The load balancing environment.
1e3c88bd
PZ
6916 * @sds: variable to hold the statistics for this sched_domain.
6917 */
0ec8aa00 6918static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6919{
bd939f45
PZ
6920 struct sched_domain *child = env->sd->child;
6921 struct sched_group *sg = env->sd->groups;
56cf515b 6922 struct sg_lb_stats tmp_sgs;
1e3c88bd 6923 int load_idx, prefer_sibling = 0;
4486edd1 6924 bool overload = false;
1e3c88bd
PZ
6925
6926 if (child && child->flags & SD_PREFER_SIBLING)
6927 prefer_sibling = 1;
6928
bd939f45 6929 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6930
6931 do {
56cf515b 6932 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6933 int local_group;
6934
bd939f45 6935 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6936 if (local_group) {
6937 sds->local = sg;
6938 sgs = &sds->local_stat;
b72ff13c
PZ
6939
6940 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6941 time_after_eq(jiffies, sg->sgc->next_update))
6942 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6943 }
1e3c88bd 6944
4486edd1
TC
6945 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6946 &overload);
1e3c88bd 6947
b72ff13c
PZ
6948 if (local_group)
6949 goto next_group;
6950
1e3c88bd
PZ
6951 /*
6952 * In case the child domain prefers tasks go to siblings
ea67821b 6953 * first, lower the sg capacity so that we'll try
75dd321d
NR
6954 * and move all the excess tasks away. We lower the capacity
6955 * of a group only if the local group has the capacity to fit
ea67821b
VG
6956 * these excess tasks. The extra check prevents the case where
6957 * you always pull from the heaviest group when it is already
6958 * under-utilized (possible with a large weight task outweighs
6959 * the tasks on the system).
1e3c88bd 6960 */
b72ff13c 6961 if (prefer_sibling && sds->local &&
ea67821b
VG
6962 group_has_capacity(env, &sds->local_stat) &&
6963 (sgs->sum_nr_running > 1)) {
6964 sgs->group_no_capacity = 1;
79a89f92 6965 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6966 }
1e3c88bd 6967
b72ff13c 6968 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6969 sds->busiest = sg;
56cf515b 6970 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6971 }
6972
b72ff13c
PZ
6973next_group:
6974 /* Now, start updating sd_lb_stats */
6975 sds->total_load += sgs->group_load;
63b2ca30 6976 sds->total_capacity += sgs->group_capacity;
b72ff13c 6977
532cb4c4 6978 sg = sg->next;
bd939f45 6979 } while (sg != env->sd->groups);
0ec8aa00
PZ
6980
6981 if (env->sd->flags & SD_NUMA)
6982 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6983
6984 if (!env->sd->parent) {
6985 /* update overload indicator if we are at root domain */
6986 if (env->dst_rq->rd->overload != overload)
6987 env->dst_rq->rd->overload = overload;
6988 }
6989
532cb4c4
MN
6990}
6991
532cb4c4
MN
6992/**
6993 * check_asym_packing - Check to see if the group is packed into the
6994 * sched doman.
6995 *
6996 * This is primarily intended to used at the sibling level. Some
6997 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6998 * case of POWER7, it can move to lower SMT modes only when higher
6999 * threads are idle. When in lower SMT modes, the threads will
7000 * perform better since they share less core resources. Hence when we
7001 * have idle threads, we want them to be the higher ones.
7002 *
7003 * This packing function is run on idle threads. It checks to see if
7004 * the busiest CPU in this domain (core in the P7 case) has a higher
7005 * CPU number than the packing function is being run on. Here we are
7006 * assuming lower CPU number will be equivalent to lower a SMT thread
7007 * number.
7008 *
e69f6186 7009 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7010 * this CPU. The amount of the imbalance is returned in *imbalance.
7011 *
cd96891d 7012 * @env: The load balancing environment.
532cb4c4 7013 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7014 */
bd939f45 7015static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7016{
7017 int busiest_cpu;
7018
bd939f45 7019 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7020 return 0;
7021
1f621e02
SD
7022 if (env->idle == CPU_NOT_IDLE)
7023 return 0;
7024
532cb4c4
MN
7025 if (!sds->busiest)
7026 return 0;
7027
7028 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7029 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7030 return 0;
7031
bd939f45 7032 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7033 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7034 SCHED_CAPACITY_SCALE);
bd939f45 7035
532cb4c4 7036 return 1;
1e3c88bd
PZ
7037}
7038
7039/**
7040 * fix_small_imbalance - Calculate the minor imbalance that exists
7041 * amongst the groups of a sched_domain, during
7042 * load balancing.
cd96891d 7043 * @env: The load balancing environment.
1e3c88bd 7044 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7045 */
bd939f45
PZ
7046static inline
7047void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7048{
63b2ca30 7049 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7050 unsigned int imbn = 2;
dd5feea1 7051 unsigned long scaled_busy_load_per_task;
56cf515b 7052 struct sg_lb_stats *local, *busiest;
1e3c88bd 7053
56cf515b
JK
7054 local = &sds->local_stat;
7055 busiest = &sds->busiest_stat;
1e3c88bd 7056
56cf515b
JK
7057 if (!local->sum_nr_running)
7058 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7059 else if (busiest->load_per_task > local->load_per_task)
7060 imbn = 1;
dd5feea1 7061
56cf515b 7062 scaled_busy_load_per_task =
ca8ce3d0 7063 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7064 busiest->group_capacity;
56cf515b 7065
3029ede3
VD
7066 if (busiest->avg_load + scaled_busy_load_per_task >=
7067 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7068 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7069 return;
7070 }
7071
7072 /*
7073 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7074 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7075 * moving them.
7076 */
7077
63b2ca30 7078 capa_now += busiest->group_capacity *
56cf515b 7079 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7080 capa_now += local->group_capacity *
56cf515b 7081 min(local->load_per_task, local->avg_load);
ca8ce3d0 7082 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7083
7084 /* Amount of load we'd subtract */
a2cd4260 7085 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7086 capa_move += busiest->group_capacity *
56cf515b 7087 min(busiest->load_per_task,
a2cd4260 7088 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7089 }
1e3c88bd
PZ
7090
7091 /* Amount of load we'd add */
63b2ca30 7092 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7093 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7094 tmp = (busiest->avg_load * busiest->group_capacity) /
7095 local->group_capacity;
56cf515b 7096 } else {
ca8ce3d0 7097 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7098 local->group_capacity;
56cf515b 7099 }
63b2ca30 7100 capa_move += local->group_capacity *
3ae11c90 7101 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7102 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7103
7104 /* Move if we gain throughput */
63b2ca30 7105 if (capa_move > capa_now)
56cf515b 7106 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7107}
7108
7109/**
7110 * calculate_imbalance - Calculate the amount of imbalance present within the
7111 * groups of a given sched_domain during load balance.
bd939f45 7112 * @env: load balance environment
1e3c88bd 7113 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7114 */
bd939f45 7115static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7116{
dd5feea1 7117 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7118 struct sg_lb_stats *local, *busiest;
7119
7120 local = &sds->local_stat;
56cf515b 7121 busiest = &sds->busiest_stat;
dd5feea1 7122
caeb178c 7123 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7124 /*
7125 * In the group_imb case we cannot rely on group-wide averages
7126 * to ensure cpu-load equilibrium, look at wider averages. XXX
7127 */
56cf515b
JK
7128 busiest->load_per_task =
7129 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7130 }
7131
1e3c88bd 7132 /*
885e542c
DE
7133 * Avg load of busiest sg can be less and avg load of local sg can
7134 * be greater than avg load across all sgs of sd because avg load
7135 * factors in sg capacity and sgs with smaller group_type are
7136 * skipped when updating the busiest sg:
1e3c88bd 7137 */
b1885550
VD
7138 if (busiest->avg_load <= sds->avg_load ||
7139 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7140 env->imbalance = 0;
7141 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7142 }
7143
9a5d9ba6
PZ
7144 /*
7145 * If there aren't any idle cpus, avoid creating some.
7146 */
7147 if (busiest->group_type == group_overloaded &&
7148 local->group_type == group_overloaded) {
1be0eb2a 7149 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7150 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7151 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7152 load_above_capacity *= NICE_0_LOAD;
7153 load_above_capacity /= busiest->group_capacity;
7154 } else
ea67821b 7155 load_above_capacity = ~0UL;
dd5feea1
SS
7156 }
7157
7158 /*
7159 * We're trying to get all the cpus to the average_load, so we don't
7160 * want to push ourselves above the average load, nor do we wish to
7161 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7162 * we also don't want to reduce the group load below the group
7163 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7164 */
30ce5dab 7165 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7166
7167 /* How much load to actually move to equalise the imbalance */
56cf515b 7168 env->imbalance = min(
63b2ca30
NP
7169 max_pull * busiest->group_capacity,
7170 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7171 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7172
7173 /*
7174 * if *imbalance is less than the average load per runnable task
25985edc 7175 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7176 * a think about bumping its value to force at least one task to be
7177 * moved
7178 */
56cf515b 7179 if (env->imbalance < busiest->load_per_task)
bd939f45 7180 return fix_small_imbalance(env, sds);
1e3c88bd 7181}
fab47622 7182
1e3c88bd
PZ
7183/******* find_busiest_group() helpers end here *********************/
7184
7185/**
7186 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7187 * if there is an imbalance.
1e3c88bd
PZ
7188 *
7189 * Also calculates the amount of weighted load which should be moved
7190 * to restore balance.
7191 *
cd96891d 7192 * @env: The load balancing environment.
1e3c88bd 7193 *
e69f6186 7194 * Return: - The busiest group if imbalance exists.
1e3c88bd 7195 */
56cf515b 7196static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7197{
56cf515b 7198 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7199 struct sd_lb_stats sds;
7200
147c5fc2 7201 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7202
7203 /*
7204 * Compute the various statistics relavent for load balancing at
7205 * this level.
7206 */
23f0d209 7207 update_sd_lb_stats(env, &sds);
56cf515b
JK
7208 local = &sds.local_stat;
7209 busiest = &sds.busiest_stat;
1e3c88bd 7210
ea67821b 7211 /* ASYM feature bypasses nice load balance check */
1f621e02 7212 if (check_asym_packing(env, &sds))
532cb4c4
MN
7213 return sds.busiest;
7214
cc57aa8f 7215 /* There is no busy sibling group to pull tasks from */
56cf515b 7216 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7217 goto out_balanced;
7218
ca8ce3d0
NP
7219 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7220 / sds.total_capacity;
b0432d8f 7221
866ab43e
PZ
7222 /*
7223 * If the busiest group is imbalanced the below checks don't
30ce5dab 7224 * work because they assume all things are equal, which typically
866ab43e
PZ
7225 * isn't true due to cpus_allowed constraints and the like.
7226 */
caeb178c 7227 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7228 goto force_balance;
7229
cc57aa8f 7230 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7231 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7232 busiest->group_no_capacity)
fab47622
NR
7233 goto force_balance;
7234
cc57aa8f 7235 /*
9c58c79a 7236 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7237 * don't try and pull any tasks.
7238 */
56cf515b 7239 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7240 goto out_balanced;
7241
cc57aa8f
PZ
7242 /*
7243 * Don't pull any tasks if this group is already above the domain
7244 * average load.
7245 */
56cf515b 7246 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7247 goto out_balanced;
7248
bd939f45 7249 if (env->idle == CPU_IDLE) {
aae6d3dd 7250 /*
43f4d666
VG
7251 * This cpu is idle. If the busiest group is not overloaded
7252 * and there is no imbalance between this and busiest group
7253 * wrt idle cpus, it is balanced. The imbalance becomes
7254 * significant if the diff is greater than 1 otherwise we
7255 * might end up to just move the imbalance on another group
aae6d3dd 7256 */
43f4d666
VG
7257 if ((busiest->group_type != group_overloaded) &&
7258 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7259 goto out_balanced;
c186fafe
PZ
7260 } else {
7261 /*
7262 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7263 * imbalance_pct to be conservative.
7264 */
56cf515b
JK
7265 if (100 * busiest->avg_load <=
7266 env->sd->imbalance_pct * local->avg_load)
c186fafe 7267 goto out_balanced;
aae6d3dd 7268 }
1e3c88bd 7269
fab47622 7270force_balance:
1e3c88bd 7271 /* Looks like there is an imbalance. Compute it */
bd939f45 7272 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7273 return sds.busiest;
7274
7275out_balanced:
bd939f45 7276 env->imbalance = 0;
1e3c88bd
PZ
7277 return NULL;
7278}
7279
7280/*
7281 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7282 */
bd939f45 7283static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7284 struct sched_group *group)
1e3c88bd
PZ
7285{
7286 struct rq *busiest = NULL, *rq;
ced549fa 7287 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7288 int i;
7289
6906a408 7290 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7291 unsigned long capacity, wl;
0ec8aa00
PZ
7292 enum fbq_type rt;
7293
7294 rq = cpu_rq(i);
7295 rt = fbq_classify_rq(rq);
1e3c88bd 7296
0ec8aa00
PZ
7297 /*
7298 * We classify groups/runqueues into three groups:
7299 * - regular: there are !numa tasks
7300 * - remote: there are numa tasks that run on the 'wrong' node
7301 * - all: there is no distinction
7302 *
7303 * In order to avoid migrating ideally placed numa tasks,
7304 * ignore those when there's better options.
7305 *
7306 * If we ignore the actual busiest queue to migrate another
7307 * task, the next balance pass can still reduce the busiest
7308 * queue by moving tasks around inside the node.
7309 *
7310 * If we cannot move enough load due to this classification
7311 * the next pass will adjust the group classification and
7312 * allow migration of more tasks.
7313 *
7314 * Both cases only affect the total convergence complexity.
7315 */
7316 if (rt > env->fbq_type)
7317 continue;
7318
ced549fa 7319 capacity = capacity_of(i);
9d5efe05 7320
6e40f5bb 7321 wl = weighted_cpuload(i);
1e3c88bd 7322
6e40f5bb
TG
7323 /*
7324 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7325 * which is not scaled with the cpu capacity.
6e40f5bb 7326 */
ea67821b
VG
7327
7328 if (rq->nr_running == 1 && wl > env->imbalance &&
7329 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7330 continue;
7331
6e40f5bb
TG
7332 /*
7333 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7334 * the weighted_cpuload() scaled with the cpu capacity, so
7335 * that the load can be moved away from the cpu that is
7336 * potentially running at a lower capacity.
95a79b80 7337 *
ced549fa 7338 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7339 * multiplication to rid ourselves of the division works out
ced549fa
NP
7340 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7341 * our previous maximum.
6e40f5bb 7342 */
ced549fa 7343 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7344 busiest_load = wl;
ced549fa 7345 busiest_capacity = capacity;
1e3c88bd
PZ
7346 busiest = rq;
7347 }
7348 }
7349
7350 return busiest;
7351}
7352
7353/*
7354 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7355 * so long as it is large enough.
7356 */
7357#define MAX_PINNED_INTERVAL 512
7358
7359/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7360DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7361
bd939f45 7362static int need_active_balance(struct lb_env *env)
1af3ed3d 7363{
bd939f45
PZ
7364 struct sched_domain *sd = env->sd;
7365
7366 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7367
7368 /*
7369 * ASYM_PACKING needs to force migrate tasks from busy but
7370 * higher numbered CPUs in order to pack all tasks in the
7371 * lowest numbered CPUs.
7372 */
bd939f45 7373 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7374 return 1;
1af3ed3d
PZ
7375 }
7376
1aaf90a4
VG
7377 /*
7378 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7379 * It's worth migrating the task if the src_cpu's capacity is reduced
7380 * because of other sched_class or IRQs if more capacity stays
7381 * available on dst_cpu.
7382 */
7383 if ((env->idle != CPU_NOT_IDLE) &&
7384 (env->src_rq->cfs.h_nr_running == 1)) {
7385 if ((check_cpu_capacity(env->src_rq, sd)) &&
7386 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7387 return 1;
7388 }
7389
1af3ed3d
PZ
7390 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7391}
7392
969c7921
TH
7393static int active_load_balance_cpu_stop(void *data);
7394
23f0d209
JK
7395static int should_we_balance(struct lb_env *env)
7396{
7397 struct sched_group *sg = env->sd->groups;
7398 struct cpumask *sg_cpus, *sg_mask;
7399 int cpu, balance_cpu = -1;
7400
7401 /*
7402 * In the newly idle case, we will allow all the cpu's
7403 * to do the newly idle load balance.
7404 */
7405 if (env->idle == CPU_NEWLY_IDLE)
7406 return 1;
7407
7408 sg_cpus = sched_group_cpus(sg);
7409 sg_mask = sched_group_mask(sg);
7410 /* Try to find first idle cpu */
7411 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7412 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7413 continue;
7414
7415 balance_cpu = cpu;
7416 break;
7417 }
7418
7419 if (balance_cpu == -1)
7420 balance_cpu = group_balance_cpu(sg);
7421
7422 /*
7423 * First idle cpu or the first cpu(busiest) in this sched group
7424 * is eligible for doing load balancing at this and above domains.
7425 */
b0cff9d8 7426 return balance_cpu == env->dst_cpu;
23f0d209
JK
7427}
7428
1e3c88bd
PZ
7429/*
7430 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7431 * tasks if there is an imbalance.
7432 */
7433static int load_balance(int this_cpu, struct rq *this_rq,
7434 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7435 int *continue_balancing)
1e3c88bd 7436{
88b8dac0 7437 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7438 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7439 struct sched_group *group;
1e3c88bd
PZ
7440 struct rq *busiest;
7441 unsigned long flags;
4ba29684 7442 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7443
8e45cb54
PZ
7444 struct lb_env env = {
7445 .sd = sd,
ddcdf6e7
PZ
7446 .dst_cpu = this_cpu,
7447 .dst_rq = this_rq,
88b8dac0 7448 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7449 .idle = idle,
eb95308e 7450 .loop_break = sched_nr_migrate_break,
b9403130 7451 .cpus = cpus,
0ec8aa00 7452 .fbq_type = all,
163122b7 7453 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7454 };
7455
cfc03118
JK
7456 /*
7457 * For NEWLY_IDLE load_balancing, we don't need to consider
7458 * other cpus in our group
7459 */
e02e60c1 7460 if (idle == CPU_NEWLY_IDLE)
cfc03118 7461 env.dst_grpmask = NULL;
cfc03118 7462
1e3c88bd
PZ
7463 cpumask_copy(cpus, cpu_active_mask);
7464
1e3c88bd
PZ
7465 schedstat_inc(sd, lb_count[idle]);
7466
7467redo:
23f0d209
JK
7468 if (!should_we_balance(&env)) {
7469 *continue_balancing = 0;
1e3c88bd 7470 goto out_balanced;
23f0d209 7471 }
1e3c88bd 7472
23f0d209 7473 group = find_busiest_group(&env);
1e3c88bd
PZ
7474 if (!group) {
7475 schedstat_inc(sd, lb_nobusyg[idle]);
7476 goto out_balanced;
7477 }
7478
b9403130 7479 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7480 if (!busiest) {
7481 schedstat_inc(sd, lb_nobusyq[idle]);
7482 goto out_balanced;
7483 }
7484
78feefc5 7485 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7486
bd939f45 7487 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7488
1aaf90a4
VG
7489 env.src_cpu = busiest->cpu;
7490 env.src_rq = busiest;
7491
1e3c88bd
PZ
7492 ld_moved = 0;
7493 if (busiest->nr_running > 1) {
7494 /*
7495 * Attempt to move tasks. If find_busiest_group has found
7496 * an imbalance but busiest->nr_running <= 1, the group is
7497 * still unbalanced. ld_moved simply stays zero, so it is
7498 * correctly treated as an imbalance.
7499 */
8e45cb54 7500 env.flags |= LBF_ALL_PINNED;
c82513e5 7501 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7502
5d6523eb 7503more_balance:
163122b7 7504 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7505
7506 /*
7507 * cur_ld_moved - load moved in current iteration
7508 * ld_moved - cumulative load moved across iterations
7509 */
163122b7 7510 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7511
7512 /*
163122b7
KT
7513 * We've detached some tasks from busiest_rq. Every
7514 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7515 * unlock busiest->lock, and we are able to be sure
7516 * that nobody can manipulate the tasks in parallel.
7517 * See task_rq_lock() family for the details.
1e3c88bd 7518 */
163122b7
KT
7519
7520 raw_spin_unlock(&busiest->lock);
7521
7522 if (cur_ld_moved) {
7523 attach_tasks(&env);
7524 ld_moved += cur_ld_moved;
7525 }
7526
1e3c88bd 7527 local_irq_restore(flags);
88b8dac0 7528
f1cd0858
JK
7529 if (env.flags & LBF_NEED_BREAK) {
7530 env.flags &= ~LBF_NEED_BREAK;
7531 goto more_balance;
7532 }
7533
88b8dac0
SV
7534 /*
7535 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7536 * us and move them to an alternate dst_cpu in our sched_group
7537 * where they can run. The upper limit on how many times we
7538 * iterate on same src_cpu is dependent on number of cpus in our
7539 * sched_group.
7540 *
7541 * This changes load balance semantics a bit on who can move
7542 * load to a given_cpu. In addition to the given_cpu itself
7543 * (or a ilb_cpu acting on its behalf where given_cpu is
7544 * nohz-idle), we now have balance_cpu in a position to move
7545 * load to given_cpu. In rare situations, this may cause
7546 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7547 * _independently_ and at _same_ time to move some load to
7548 * given_cpu) causing exceess load to be moved to given_cpu.
7549 * This however should not happen so much in practice and
7550 * moreover subsequent load balance cycles should correct the
7551 * excess load moved.
7552 */
6263322c 7553 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7554
7aff2e3a
VD
7555 /* Prevent to re-select dst_cpu via env's cpus */
7556 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7557
78feefc5 7558 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7559 env.dst_cpu = env.new_dst_cpu;
6263322c 7560 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7561 env.loop = 0;
7562 env.loop_break = sched_nr_migrate_break;
e02e60c1 7563
88b8dac0
SV
7564 /*
7565 * Go back to "more_balance" rather than "redo" since we
7566 * need to continue with same src_cpu.
7567 */
7568 goto more_balance;
7569 }
1e3c88bd 7570
6263322c
PZ
7571 /*
7572 * We failed to reach balance because of affinity.
7573 */
7574 if (sd_parent) {
63b2ca30 7575 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7576
afdeee05 7577 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7578 *group_imbalance = 1;
6263322c
PZ
7579 }
7580
1e3c88bd 7581 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7582 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7583 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7584 if (!cpumask_empty(cpus)) {
7585 env.loop = 0;
7586 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7587 goto redo;
bbf18b19 7588 }
afdeee05 7589 goto out_all_pinned;
1e3c88bd
PZ
7590 }
7591 }
7592
7593 if (!ld_moved) {
7594 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7595 /*
7596 * Increment the failure counter only on periodic balance.
7597 * We do not want newidle balance, which can be very
7598 * frequent, pollute the failure counter causing
7599 * excessive cache_hot migrations and active balances.
7600 */
7601 if (idle != CPU_NEWLY_IDLE)
7602 sd->nr_balance_failed++;
1e3c88bd 7603
bd939f45 7604 if (need_active_balance(&env)) {
1e3c88bd
PZ
7605 raw_spin_lock_irqsave(&busiest->lock, flags);
7606
969c7921
TH
7607 /* don't kick the active_load_balance_cpu_stop,
7608 * if the curr task on busiest cpu can't be
7609 * moved to this_cpu
1e3c88bd
PZ
7610 */
7611 if (!cpumask_test_cpu(this_cpu,
fa17b507 7612 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7613 raw_spin_unlock_irqrestore(&busiest->lock,
7614 flags);
8e45cb54 7615 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7616 goto out_one_pinned;
7617 }
7618
969c7921
TH
7619 /*
7620 * ->active_balance synchronizes accesses to
7621 * ->active_balance_work. Once set, it's cleared
7622 * only after active load balance is finished.
7623 */
1e3c88bd
PZ
7624 if (!busiest->active_balance) {
7625 busiest->active_balance = 1;
7626 busiest->push_cpu = this_cpu;
7627 active_balance = 1;
7628 }
7629 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7630
bd939f45 7631 if (active_balance) {
969c7921
TH
7632 stop_one_cpu_nowait(cpu_of(busiest),
7633 active_load_balance_cpu_stop, busiest,
7634 &busiest->active_balance_work);
bd939f45 7635 }
1e3c88bd 7636
d02c0711 7637 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7638 sd->nr_balance_failed = sd->cache_nice_tries+1;
7639 }
7640 } else
7641 sd->nr_balance_failed = 0;
7642
7643 if (likely(!active_balance)) {
7644 /* We were unbalanced, so reset the balancing interval */
7645 sd->balance_interval = sd->min_interval;
7646 } else {
7647 /*
7648 * If we've begun active balancing, start to back off. This
7649 * case may not be covered by the all_pinned logic if there
7650 * is only 1 task on the busy runqueue (because we don't call
163122b7 7651 * detach_tasks).
1e3c88bd
PZ
7652 */
7653 if (sd->balance_interval < sd->max_interval)
7654 sd->balance_interval *= 2;
7655 }
7656
1e3c88bd
PZ
7657 goto out;
7658
7659out_balanced:
afdeee05
VG
7660 /*
7661 * We reach balance although we may have faced some affinity
7662 * constraints. Clear the imbalance flag if it was set.
7663 */
7664 if (sd_parent) {
7665 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7666
7667 if (*group_imbalance)
7668 *group_imbalance = 0;
7669 }
7670
7671out_all_pinned:
7672 /*
7673 * We reach balance because all tasks are pinned at this level so
7674 * we can't migrate them. Let the imbalance flag set so parent level
7675 * can try to migrate them.
7676 */
1e3c88bd
PZ
7677 schedstat_inc(sd, lb_balanced[idle]);
7678
7679 sd->nr_balance_failed = 0;
7680
7681out_one_pinned:
7682 /* tune up the balancing interval */
8e45cb54 7683 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7684 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7685 (sd->balance_interval < sd->max_interval))
7686 sd->balance_interval *= 2;
7687
46e49b38 7688 ld_moved = 0;
1e3c88bd 7689out:
1e3c88bd
PZ
7690 return ld_moved;
7691}
7692
52a08ef1
JL
7693static inline unsigned long
7694get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7695{
7696 unsigned long interval = sd->balance_interval;
7697
7698 if (cpu_busy)
7699 interval *= sd->busy_factor;
7700
7701 /* scale ms to jiffies */
7702 interval = msecs_to_jiffies(interval);
7703 interval = clamp(interval, 1UL, max_load_balance_interval);
7704
7705 return interval;
7706}
7707
7708static inline void
7709update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7710{
7711 unsigned long interval, next;
7712
7713 interval = get_sd_balance_interval(sd, cpu_busy);
7714 next = sd->last_balance + interval;
7715
7716 if (time_after(*next_balance, next))
7717 *next_balance = next;
7718}
7719
1e3c88bd
PZ
7720/*
7721 * idle_balance is called by schedule() if this_cpu is about to become
7722 * idle. Attempts to pull tasks from other CPUs.
7723 */
6e83125c 7724static int idle_balance(struct rq *this_rq)
1e3c88bd 7725{
52a08ef1
JL
7726 unsigned long next_balance = jiffies + HZ;
7727 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7728 struct sched_domain *sd;
7729 int pulled_task = 0;
9bd721c5 7730 u64 curr_cost = 0;
1e3c88bd 7731
6e83125c
PZ
7732 /*
7733 * We must set idle_stamp _before_ calling idle_balance(), such that we
7734 * measure the duration of idle_balance() as idle time.
7735 */
7736 this_rq->idle_stamp = rq_clock(this_rq);
7737
4486edd1
TC
7738 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7739 !this_rq->rd->overload) {
52a08ef1
JL
7740 rcu_read_lock();
7741 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7742 if (sd)
7743 update_next_balance(sd, 0, &next_balance);
7744 rcu_read_unlock();
7745
6e83125c 7746 goto out;
52a08ef1 7747 }
1e3c88bd 7748
f492e12e
PZ
7749 raw_spin_unlock(&this_rq->lock);
7750
48a16753 7751 update_blocked_averages(this_cpu);
dce840a0 7752 rcu_read_lock();
1e3c88bd 7753 for_each_domain(this_cpu, sd) {
23f0d209 7754 int continue_balancing = 1;
9bd721c5 7755 u64 t0, domain_cost;
1e3c88bd
PZ
7756
7757 if (!(sd->flags & SD_LOAD_BALANCE))
7758 continue;
7759
52a08ef1
JL
7760 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7761 update_next_balance(sd, 0, &next_balance);
9bd721c5 7762 break;
52a08ef1 7763 }
9bd721c5 7764
f492e12e 7765 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7766 t0 = sched_clock_cpu(this_cpu);
7767
f492e12e 7768 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7769 sd, CPU_NEWLY_IDLE,
7770 &continue_balancing);
9bd721c5
JL
7771
7772 domain_cost = sched_clock_cpu(this_cpu) - t0;
7773 if (domain_cost > sd->max_newidle_lb_cost)
7774 sd->max_newidle_lb_cost = domain_cost;
7775
7776 curr_cost += domain_cost;
f492e12e 7777 }
1e3c88bd 7778
52a08ef1 7779 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7780
7781 /*
7782 * Stop searching for tasks to pull if there are
7783 * now runnable tasks on this rq.
7784 */
7785 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7786 break;
1e3c88bd 7787 }
dce840a0 7788 rcu_read_unlock();
f492e12e
PZ
7789
7790 raw_spin_lock(&this_rq->lock);
7791
0e5b5337
JL
7792 if (curr_cost > this_rq->max_idle_balance_cost)
7793 this_rq->max_idle_balance_cost = curr_cost;
7794
e5fc6611 7795 /*
0e5b5337
JL
7796 * While browsing the domains, we released the rq lock, a task could
7797 * have been enqueued in the meantime. Since we're not going idle,
7798 * pretend we pulled a task.
e5fc6611 7799 */
0e5b5337 7800 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7801 pulled_task = 1;
e5fc6611 7802
52a08ef1
JL
7803out:
7804 /* Move the next balance forward */
7805 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7806 this_rq->next_balance = next_balance;
9bd721c5 7807
e4aa358b 7808 /* Is there a task of a high priority class? */
46383648 7809 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7810 pulled_task = -1;
7811
38c6ade2 7812 if (pulled_task)
6e83125c
PZ
7813 this_rq->idle_stamp = 0;
7814
3c4017c1 7815 return pulled_task;
1e3c88bd
PZ
7816}
7817
7818/*
969c7921
TH
7819 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7820 * running tasks off the busiest CPU onto idle CPUs. It requires at
7821 * least 1 task to be running on each physical CPU where possible, and
7822 * avoids physical / logical imbalances.
1e3c88bd 7823 */
969c7921 7824static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7825{
969c7921
TH
7826 struct rq *busiest_rq = data;
7827 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7828 int target_cpu = busiest_rq->push_cpu;
969c7921 7829 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7830 struct sched_domain *sd;
e5673f28 7831 struct task_struct *p = NULL;
969c7921
TH
7832
7833 raw_spin_lock_irq(&busiest_rq->lock);
7834
7835 /* make sure the requested cpu hasn't gone down in the meantime */
7836 if (unlikely(busiest_cpu != smp_processor_id() ||
7837 !busiest_rq->active_balance))
7838 goto out_unlock;
1e3c88bd
PZ
7839
7840 /* Is there any task to move? */
7841 if (busiest_rq->nr_running <= 1)
969c7921 7842 goto out_unlock;
1e3c88bd
PZ
7843
7844 /*
7845 * This condition is "impossible", if it occurs
7846 * we need to fix it. Originally reported by
7847 * Bjorn Helgaas on a 128-cpu setup.
7848 */
7849 BUG_ON(busiest_rq == target_rq);
7850
1e3c88bd 7851 /* Search for an sd spanning us and the target CPU. */
dce840a0 7852 rcu_read_lock();
1e3c88bd
PZ
7853 for_each_domain(target_cpu, sd) {
7854 if ((sd->flags & SD_LOAD_BALANCE) &&
7855 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7856 break;
7857 }
7858
7859 if (likely(sd)) {
8e45cb54
PZ
7860 struct lb_env env = {
7861 .sd = sd,
ddcdf6e7
PZ
7862 .dst_cpu = target_cpu,
7863 .dst_rq = target_rq,
7864 .src_cpu = busiest_rq->cpu,
7865 .src_rq = busiest_rq,
8e45cb54
PZ
7866 .idle = CPU_IDLE,
7867 };
7868
1e3c88bd
PZ
7869 schedstat_inc(sd, alb_count);
7870
e5673f28 7871 p = detach_one_task(&env);
d02c0711 7872 if (p) {
1e3c88bd 7873 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7874 /* Active balancing done, reset the failure counter. */
7875 sd->nr_balance_failed = 0;
7876 } else {
1e3c88bd 7877 schedstat_inc(sd, alb_failed);
d02c0711 7878 }
1e3c88bd 7879 }
dce840a0 7880 rcu_read_unlock();
969c7921
TH
7881out_unlock:
7882 busiest_rq->active_balance = 0;
e5673f28
KT
7883 raw_spin_unlock(&busiest_rq->lock);
7884
7885 if (p)
7886 attach_one_task(target_rq, p);
7887
7888 local_irq_enable();
7889
969c7921 7890 return 0;
1e3c88bd
PZ
7891}
7892
d987fc7f
MG
7893static inline int on_null_domain(struct rq *rq)
7894{
7895 return unlikely(!rcu_dereference_sched(rq->sd));
7896}
7897
3451d024 7898#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7899/*
7900 * idle load balancing details
83cd4fe2
VP
7901 * - When one of the busy CPUs notice that there may be an idle rebalancing
7902 * needed, they will kick the idle load balancer, which then does idle
7903 * load balancing for all the idle CPUs.
7904 */
1e3c88bd 7905static struct {
83cd4fe2 7906 cpumask_var_t idle_cpus_mask;
0b005cf5 7907 atomic_t nr_cpus;
83cd4fe2
VP
7908 unsigned long next_balance; /* in jiffy units */
7909} nohz ____cacheline_aligned;
1e3c88bd 7910
3dd0337d 7911static inline int find_new_ilb(void)
1e3c88bd 7912{
0b005cf5 7913 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7914
786d6dc7
SS
7915 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7916 return ilb;
7917
7918 return nr_cpu_ids;
1e3c88bd 7919}
1e3c88bd 7920
83cd4fe2
VP
7921/*
7922 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7923 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7924 * CPU (if there is one).
7925 */
0aeeeeba 7926static void nohz_balancer_kick(void)
83cd4fe2
VP
7927{
7928 int ilb_cpu;
7929
7930 nohz.next_balance++;
7931
3dd0337d 7932 ilb_cpu = find_new_ilb();
83cd4fe2 7933
0b005cf5
SS
7934 if (ilb_cpu >= nr_cpu_ids)
7935 return;
83cd4fe2 7936
cd490c5b 7937 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7938 return;
7939 /*
7940 * Use smp_send_reschedule() instead of resched_cpu().
7941 * This way we generate a sched IPI on the target cpu which
7942 * is idle. And the softirq performing nohz idle load balance
7943 * will be run before returning from the IPI.
7944 */
7945 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7946 return;
7947}
7948
20a5c8cc 7949void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7950{
7951 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7952 /*
7953 * Completely isolated CPUs don't ever set, so we must test.
7954 */
7955 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7956 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7957 atomic_dec(&nohz.nr_cpus);
7958 }
71325960
SS
7959 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7960 }
7961}
7962
69e1e811
SS
7963static inline void set_cpu_sd_state_busy(void)
7964{
7965 struct sched_domain *sd;
37dc6b50 7966 int cpu = smp_processor_id();
69e1e811 7967
69e1e811 7968 rcu_read_lock();
37dc6b50 7969 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7970
7971 if (!sd || !sd->nohz_idle)
7972 goto unlock;
7973 sd->nohz_idle = 0;
7974
63b2ca30 7975 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7976unlock:
69e1e811
SS
7977 rcu_read_unlock();
7978}
7979
7980void set_cpu_sd_state_idle(void)
7981{
7982 struct sched_domain *sd;
37dc6b50 7983 int cpu = smp_processor_id();
69e1e811 7984
69e1e811 7985 rcu_read_lock();
37dc6b50 7986 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7987
7988 if (!sd || sd->nohz_idle)
7989 goto unlock;
7990 sd->nohz_idle = 1;
7991
63b2ca30 7992 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7993unlock:
69e1e811
SS
7994 rcu_read_unlock();
7995}
7996
1e3c88bd 7997/*
c1cc017c 7998 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7999 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8000 */
c1cc017c 8001void nohz_balance_enter_idle(int cpu)
1e3c88bd 8002{
71325960
SS
8003 /*
8004 * If this cpu is going down, then nothing needs to be done.
8005 */
8006 if (!cpu_active(cpu))
8007 return;
8008
c1cc017c
AS
8009 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8010 return;
1e3c88bd 8011
d987fc7f
MG
8012 /*
8013 * If we're a completely isolated CPU, we don't play.
8014 */
8015 if (on_null_domain(cpu_rq(cpu)))
8016 return;
8017
c1cc017c
AS
8018 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8019 atomic_inc(&nohz.nr_cpus);
8020 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8021}
8022#endif
8023
8024static DEFINE_SPINLOCK(balancing);
8025
49c022e6
PZ
8026/*
8027 * Scale the max load_balance interval with the number of CPUs in the system.
8028 * This trades load-balance latency on larger machines for less cross talk.
8029 */
029632fb 8030void update_max_interval(void)
49c022e6
PZ
8031{
8032 max_load_balance_interval = HZ*num_online_cpus()/10;
8033}
8034
1e3c88bd
PZ
8035/*
8036 * It checks each scheduling domain to see if it is due to be balanced,
8037 * and initiates a balancing operation if so.
8038 *
b9b0853a 8039 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8040 */
f7ed0a89 8041static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8042{
23f0d209 8043 int continue_balancing = 1;
f7ed0a89 8044 int cpu = rq->cpu;
1e3c88bd 8045 unsigned long interval;
04f733b4 8046 struct sched_domain *sd;
1e3c88bd
PZ
8047 /* Earliest time when we have to do rebalance again */
8048 unsigned long next_balance = jiffies + 60*HZ;
8049 int update_next_balance = 0;
f48627e6
JL
8050 int need_serialize, need_decay = 0;
8051 u64 max_cost = 0;
1e3c88bd 8052
48a16753 8053 update_blocked_averages(cpu);
2069dd75 8054
dce840a0 8055 rcu_read_lock();
1e3c88bd 8056 for_each_domain(cpu, sd) {
f48627e6
JL
8057 /*
8058 * Decay the newidle max times here because this is a regular
8059 * visit to all the domains. Decay ~1% per second.
8060 */
8061 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8062 sd->max_newidle_lb_cost =
8063 (sd->max_newidle_lb_cost * 253) / 256;
8064 sd->next_decay_max_lb_cost = jiffies + HZ;
8065 need_decay = 1;
8066 }
8067 max_cost += sd->max_newidle_lb_cost;
8068
1e3c88bd
PZ
8069 if (!(sd->flags & SD_LOAD_BALANCE))
8070 continue;
8071
f48627e6
JL
8072 /*
8073 * Stop the load balance at this level. There is another
8074 * CPU in our sched group which is doing load balancing more
8075 * actively.
8076 */
8077 if (!continue_balancing) {
8078 if (need_decay)
8079 continue;
8080 break;
8081 }
8082
52a08ef1 8083 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8084
8085 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8086 if (need_serialize) {
8087 if (!spin_trylock(&balancing))
8088 goto out;
8089 }
8090
8091 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8092 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8093 /*
6263322c 8094 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8095 * env->dst_cpu, so we can't know our idle
8096 * state even if we migrated tasks. Update it.
1e3c88bd 8097 */
de5eb2dd 8098 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8099 }
8100 sd->last_balance = jiffies;
52a08ef1 8101 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8102 }
8103 if (need_serialize)
8104 spin_unlock(&balancing);
8105out:
8106 if (time_after(next_balance, sd->last_balance + interval)) {
8107 next_balance = sd->last_balance + interval;
8108 update_next_balance = 1;
8109 }
f48627e6
JL
8110 }
8111 if (need_decay) {
1e3c88bd 8112 /*
f48627e6
JL
8113 * Ensure the rq-wide value also decays but keep it at a
8114 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8115 */
f48627e6
JL
8116 rq->max_idle_balance_cost =
8117 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8118 }
dce840a0 8119 rcu_read_unlock();
1e3c88bd
PZ
8120
8121 /*
8122 * next_balance will be updated only when there is a need.
8123 * When the cpu is attached to null domain for ex, it will not be
8124 * updated.
8125 */
c5afb6a8 8126 if (likely(update_next_balance)) {
1e3c88bd 8127 rq->next_balance = next_balance;
c5afb6a8
VG
8128
8129#ifdef CONFIG_NO_HZ_COMMON
8130 /*
8131 * If this CPU has been elected to perform the nohz idle
8132 * balance. Other idle CPUs have already rebalanced with
8133 * nohz_idle_balance() and nohz.next_balance has been
8134 * updated accordingly. This CPU is now running the idle load
8135 * balance for itself and we need to update the
8136 * nohz.next_balance accordingly.
8137 */
8138 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8139 nohz.next_balance = rq->next_balance;
8140#endif
8141 }
1e3c88bd
PZ
8142}
8143
3451d024 8144#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8145/*
3451d024 8146 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8147 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8148 */
208cb16b 8149static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8150{
208cb16b 8151 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8152 struct rq *rq;
8153 int balance_cpu;
c5afb6a8
VG
8154 /* Earliest time when we have to do rebalance again */
8155 unsigned long next_balance = jiffies + 60*HZ;
8156 int update_next_balance = 0;
83cd4fe2 8157
1c792db7
SS
8158 if (idle != CPU_IDLE ||
8159 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8160 goto end;
83cd4fe2
VP
8161
8162 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8163 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8164 continue;
8165
8166 /*
8167 * If this cpu gets work to do, stop the load balancing
8168 * work being done for other cpus. Next load
8169 * balancing owner will pick it up.
8170 */
1c792db7 8171 if (need_resched())
83cd4fe2 8172 break;
83cd4fe2 8173
5ed4f1d9
VG
8174 rq = cpu_rq(balance_cpu);
8175
ed61bbc6
TC
8176 /*
8177 * If time for next balance is due,
8178 * do the balance.
8179 */
8180 if (time_after_eq(jiffies, rq->next_balance)) {
8181 raw_spin_lock_irq(&rq->lock);
8182 update_rq_clock(rq);
cee1afce 8183 cpu_load_update_idle(rq);
ed61bbc6
TC
8184 raw_spin_unlock_irq(&rq->lock);
8185 rebalance_domains(rq, CPU_IDLE);
8186 }
83cd4fe2 8187
c5afb6a8
VG
8188 if (time_after(next_balance, rq->next_balance)) {
8189 next_balance = rq->next_balance;
8190 update_next_balance = 1;
8191 }
83cd4fe2 8192 }
c5afb6a8
VG
8193
8194 /*
8195 * next_balance will be updated only when there is a need.
8196 * When the CPU is attached to null domain for ex, it will not be
8197 * updated.
8198 */
8199 if (likely(update_next_balance))
8200 nohz.next_balance = next_balance;
1c792db7
SS
8201end:
8202 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8203}
8204
8205/*
0b005cf5 8206 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8207 * of an idle cpu in the system.
0b005cf5 8208 * - This rq has more than one task.
1aaf90a4
VG
8209 * - This rq has at least one CFS task and the capacity of the CPU is
8210 * significantly reduced because of RT tasks or IRQs.
8211 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8212 * multiple busy cpu.
0b005cf5
SS
8213 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8214 * domain span are idle.
83cd4fe2 8215 */
1aaf90a4 8216static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8217{
8218 unsigned long now = jiffies;
0b005cf5 8219 struct sched_domain *sd;
63b2ca30 8220 struct sched_group_capacity *sgc;
4a725627 8221 int nr_busy, cpu = rq->cpu;
1aaf90a4 8222 bool kick = false;
83cd4fe2 8223
4a725627 8224 if (unlikely(rq->idle_balance))
1aaf90a4 8225 return false;
83cd4fe2 8226
1c792db7
SS
8227 /*
8228 * We may be recently in ticked or tickless idle mode. At the first
8229 * busy tick after returning from idle, we will update the busy stats.
8230 */
69e1e811 8231 set_cpu_sd_state_busy();
c1cc017c 8232 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8233
8234 /*
8235 * None are in tickless mode and hence no need for NOHZ idle load
8236 * balancing.
8237 */
8238 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8239 return false;
1c792db7
SS
8240
8241 if (time_before(now, nohz.next_balance))
1aaf90a4 8242 return false;
83cd4fe2 8243
0b005cf5 8244 if (rq->nr_running >= 2)
1aaf90a4 8245 return true;
83cd4fe2 8246
067491b7 8247 rcu_read_lock();
37dc6b50 8248 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8249 if (sd) {
63b2ca30
NP
8250 sgc = sd->groups->sgc;
8251 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8252
1aaf90a4
VG
8253 if (nr_busy > 1) {
8254 kick = true;
8255 goto unlock;
8256 }
8257
83cd4fe2 8258 }
37dc6b50 8259
1aaf90a4
VG
8260 sd = rcu_dereference(rq->sd);
8261 if (sd) {
8262 if ((rq->cfs.h_nr_running >= 1) &&
8263 check_cpu_capacity(rq, sd)) {
8264 kick = true;
8265 goto unlock;
8266 }
8267 }
37dc6b50 8268
1aaf90a4 8269 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8270 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8271 sched_domain_span(sd)) < cpu)) {
8272 kick = true;
8273 goto unlock;
8274 }
067491b7 8275
1aaf90a4 8276unlock:
067491b7 8277 rcu_read_unlock();
1aaf90a4 8278 return kick;
83cd4fe2
VP
8279}
8280#else
208cb16b 8281static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8282#endif
8283
8284/*
8285 * run_rebalance_domains is triggered when needed from the scheduler tick.
8286 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8287 */
1e3c88bd
PZ
8288static void run_rebalance_domains(struct softirq_action *h)
8289{
208cb16b 8290 struct rq *this_rq = this_rq();
6eb57e0d 8291 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8292 CPU_IDLE : CPU_NOT_IDLE;
8293
1e3c88bd 8294 /*
83cd4fe2 8295 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8296 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8297 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8298 * give the idle cpus a chance to load balance. Else we may
8299 * load balance only within the local sched_domain hierarchy
8300 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8301 */
208cb16b 8302 nohz_idle_balance(this_rq, idle);
d4573c3e 8303 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8304}
8305
1e3c88bd
PZ
8306/*
8307 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8308 */
7caff66f 8309void trigger_load_balance(struct rq *rq)
1e3c88bd 8310{
1e3c88bd 8311 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8312 if (unlikely(on_null_domain(rq)))
8313 return;
8314
8315 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8316 raise_softirq(SCHED_SOFTIRQ);
3451d024 8317#ifdef CONFIG_NO_HZ_COMMON
c726099e 8318 if (nohz_kick_needed(rq))
0aeeeeba 8319 nohz_balancer_kick();
83cd4fe2 8320#endif
1e3c88bd
PZ
8321}
8322
0bcdcf28
CE
8323static void rq_online_fair(struct rq *rq)
8324{
8325 update_sysctl();
0e59bdae
KT
8326
8327 update_runtime_enabled(rq);
0bcdcf28
CE
8328}
8329
8330static void rq_offline_fair(struct rq *rq)
8331{
8332 update_sysctl();
a4c96ae3
PB
8333
8334 /* Ensure any throttled groups are reachable by pick_next_task */
8335 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8336}
8337
55e12e5e 8338#endif /* CONFIG_SMP */
e1d1484f 8339
bf0f6f24
IM
8340/*
8341 * scheduler tick hitting a task of our scheduling class:
8342 */
8f4d37ec 8343static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8344{
8345 struct cfs_rq *cfs_rq;
8346 struct sched_entity *se = &curr->se;
8347
8348 for_each_sched_entity(se) {
8349 cfs_rq = cfs_rq_of(se);
8f4d37ec 8350 entity_tick(cfs_rq, se, queued);
bf0f6f24 8351 }
18bf2805 8352
b52da86e 8353 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8354 task_tick_numa(rq, curr);
bf0f6f24
IM
8355}
8356
8357/*
cd29fe6f
PZ
8358 * called on fork with the child task as argument from the parent's context
8359 * - child not yet on the tasklist
8360 * - preemption disabled
bf0f6f24 8361 */
cd29fe6f 8362static void task_fork_fair(struct task_struct *p)
bf0f6f24 8363{
4fc420c9
DN
8364 struct cfs_rq *cfs_rq;
8365 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8366 struct rq *rq = this_rq();
bf0f6f24 8367
e210bffd 8368 raw_spin_lock(&rq->lock);
861d034e
PZ
8369 update_rq_clock(rq);
8370
4fc420c9
DN
8371 cfs_rq = task_cfs_rq(current);
8372 curr = cfs_rq->curr;
e210bffd
PZ
8373 if (curr) {
8374 update_curr(cfs_rq);
b5d9d734 8375 se->vruntime = curr->vruntime;
e210bffd 8376 }
aeb73b04 8377 place_entity(cfs_rq, se, 1);
4d78e7b6 8378
cd29fe6f 8379 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8380 /*
edcb60a3
IM
8381 * Upon rescheduling, sched_class::put_prev_task() will place
8382 * 'current' within the tree based on its new key value.
8383 */
4d78e7b6 8384 swap(curr->vruntime, se->vruntime);
8875125e 8385 resched_curr(rq);
4d78e7b6 8386 }
bf0f6f24 8387
88ec22d3 8388 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8389 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8390}
8391
cb469845
SR
8392/*
8393 * Priority of the task has changed. Check to see if we preempt
8394 * the current task.
8395 */
da7a735e
PZ
8396static void
8397prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8398{
da0c1e65 8399 if (!task_on_rq_queued(p))
da7a735e
PZ
8400 return;
8401
cb469845
SR
8402 /*
8403 * Reschedule if we are currently running on this runqueue and
8404 * our priority decreased, or if we are not currently running on
8405 * this runqueue and our priority is higher than the current's
8406 */
da7a735e 8407 if (rq->curr == p) {
cb469845 8408 if (p->prio > oldprio)
8875125e 8409 resched_curr(rq);
cb469845 8410 } else
15afe09b 8411 check_preempt_curr(rq, p, 0);
cb469845
SR
8412}
8413
daa59407 8414static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8415{
8416 struct sched_entity *se = &p->se;
da7a735e
PZ
8417
8418 /*
daa59407
BP
8419 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8420 * the dequeue_entity(.flags=0) will already have normalized the
8421 * vruntime.
8422 */
8423 if (p->on_rq)
8424 return true;
8425
8426 /*
8427 * When !on_rq, vruntime of the task has usually NOT been normalized.
8428 * But there are some cases where it has already been normalized:
da7a735e 8429 *
daa59407
BP
8430 * - A forked child which is waiting for being woken up by
8431 * wake_up_new_task().
8432 * - A task which has been woken up by try_to_wake_up() and
8433 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8434 */
daa59407
BP
8435 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8436 return true;
8437
8438 return false;
8439}
8440
8441static void detach_task_cfs_rq(struct task_struct *p)
8442{
8443 struct sched_entity *se = &p->se;
8444 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8445 u64 now = cfs_rq_clock_task(cfs_rq);
3d30544f 8446 int tg_update;
daa59407
BP
8447
8448 if (!vruntime_normalized(p)) {
da7a735e
PZ
8449 /*
8450 * Fix up our vruntime so that the current sleep doesn't
8451 * cause 'unlimited' sleep bonus.
8452 */
8453 place_entity(cfs_rq, se, 0);
8454 se->vruntime -= cfs_rq->min_vruntime;
8455 }
9ee474f5 8456
9d89c257 8457 /* Catch up with the cfs_rq and remove our load when we leave */
3d30544f 8458 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8459 detach_entity_load_avg(cfs_rq, se);
3d30544f
PZ
8460 if (tg_update)
8461 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8462}
8463
daa59407 8464static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8465{
f36c019c 8466 struct sched_entity *se = &p->se;
daa59407 8467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8468 u64 now = cfs_rq_clock_task(cfs_rq);
3d30544f 8469 int tg_update;
7855a35a
BP
8470
8471#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8472 /*
8473 * Since the real-depth could have been changed (only FAIR
8474 * class maintain depth value), reset depth properly.
8475 */
8476 se->depth = se->parent ? se->parent->depth + 1 : 0;
8477#endif
7855a35a 8478
6efdb105 8479 /* Synchronize task with its cfs_rq */
3d30544f 8480 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8481 attach_entity_load_avg(cfs_rq, se);
3d30544f
PZ
8482 if (tg_update)
8483 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8484
8485 if (!vruntime_normalized(p))
8486 se->vruntime += cfs_rq->min_vruntime;
8487}
6efdb105 8488
daa59407
BP
8489static void switched_from_fair(struct rq *rq, struct task_struct *p)
8490{
8491 detach_task_cfs_rq(p);
8492}
8493
8494static void switched_to_fair(struct rq *rq, struct task_struct *p)
8495{
8496 attach_task_cfs_rq(p);
7855a35a 8497
daa59407 8498 if (task_on_rq_queued(p)) {
7855a35a 8499 /*
daa59407
BP
8500 * We were most likely switched from sched_rt, so
8501 * kick off the schedule if running, otherwise just see
8502 * if we can still preempt the current task.
7855a35a 8503 */
daa59407
BP
8504 if (rq->curr == p)
8505 resched_curr(rq);
8506 else
8507 check_preempt_curr(rq, p, 0);
7855a35a 8508 }
cb469845
SR
8509}
8510
83b699ed
SV
8511/* Account for a task changing its policy or group.
8512 *
8513 * This routine is mostly called to set cfs_rq->curr field when a task
8514 * migrates between groups/classes.
8515 */
8516static void set_curr_task_fair(struct rq *rq)
8517{
8518 struct sched_entity *se = &rq->curr->se;
8519
ec12cb7f
PT
8520 for_each_sched_entity(se) {
8521 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8522
8523 set_next_entity(cfs_rq, se);
8524 /* ensure bandwidth has been allocated on our new cfs_rq */
8525 account_cfs_rq_runtime(cfs_rq, 0);
8526 }
83b699ed
SV
8527}
8528
029632fb
PZ
8529void init_cfs_rq(struct cfs_rq *cfs_rq)
8530{
8531 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8532 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8533#ifndef CONFIG_64BIT
8534 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8535#endif
141965c7 8536#ifdef CONFIG_SMP
9d89c257
YD
8537 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8538 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8539#endif
029632fb
PZ
8540}
8541
810b3817 8542#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8543static void task_set_group_fair(struct task_struct *p)
8544{
8545 struct sched_entity *se = &p->se;
8546
8547 set_task_rq(p, task_cpu(p));
8548 se->depth = se->parent ? se->parent->depth + 1 : 0;
8549}
8550
bc54da21 8551static void task_move_group_fair(struct task_struct *p)
810b3817 8552{
daa59407 8553 detach_task_cfs_rq(p);
b2b5ce02 8554 set_task_rq(p, task_cpu(p));
6efdb105
BP
8555
8556#ifdef CONFIG_SMP
8557 /* Tell se's cfs_rq has been changed -- migrated */
8558 p->se.avg.last_update_time = 0;
8559#endif
daa59407 8560 attach_task_cfs_rq(p);
810b3817 8561}
029632fb 8562
ea86cb4b
VG
8563static void task_change_group_fair(struct task_struct *p, int type)
8564{
8565 switch (type) {
8566 case TASK_SET_GROUP:
8567 task_set_group_fair(p);
8568 break;
8569
8570 case TASK_MOVE_GROUP:
8571 task_move_group_fair(p);
8572 break;
8573 }
8574}
8575
029632fb
PZ
8576void free_fair_sched_group(struct task_group *tg)
8577{
8578 int i;
8579
8580 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8581
8582 for_each_possible_cpu(i) {
8583 if (tg->cfs_rq)
8584 kfree(tg->cfs_rq[i]);
6fe1f348 8585 if (tg->se)
029632fb
PZ
8586 kfree(tg->se[i]);
8587 }
8588
8589 kfree(tg->cfs_rq);
8590 kfree(tg->se);
8591}
8592
8593int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8594{
029632fb 8595 struct sched_entity *se;
b7fa30c9
PZ
8596 struct cfs_rq *cfs_rq;
8597 struct rq *rq;
029632fb
PZ
8598 int i;
8599
8600 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8601 if (!tg->cfs_rq)
8602 goto err;
8603 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8604 if (!tg->se)
8605 goto err;
8606
8607 tg->shares = NICE_0_LOAD;
8608
8609 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8610
8611 for_each_possible_cpu(i) {
b7fa30c9
PZ
8612 rq = cpu_rq(i);
8613
029632fb
PZ
8614 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8615 GFP_KERNEL, cpu_to_node(i));
8616 if (!cfs_rq)
8617 goto err;
8618
8619 se = kzalloc_node(sizeof(struct sched_entity),
8620 GFP_KERNEL, cpu_to_node(i));
8621 if (!se)
8622 goto err_free_rq;
8623
8624 init_cfs_rq(cfs_rq);
8625 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8626 init_entity_runnable_average(se);
b7fa30c9
PZ
8627
8628 raw_spin_lock_irq(&rq->lock);
2b8c41da 8629 post_init_entity_util_avg(se);
b7fa30c9 8630 raw_spin_unlock_irq(&rq->lock);
029632fb
PZ
8631 }
8632
8633 return 1;
8634
8635err_free_rq:
8636 kfree(cfs_rq);
8637err:
8638 return 0;
8639}
8640
6fe1f348 8641void unregister_fair_sched_group(struct task_group *tg)
029632fb 8642{
029632fb 8643 unsigned long flags;
6fe1f348
PZ
8644 struct rq *rq;
8645 int cpu;
029632fb 8646
6fe1f348
PZ
8647 for_each_possible_cpu(cpu) {
8648 if (tg->se[cpu])
8649 remove_entity_load_avg(tg->se[cpu]);
029632fb 8650
6fe1f348
PZ
8651 /*
8652 * Only empty task groups can be destroyed; so we can speculatively
8653 * check on_list without danger of it being re-added.
8654 */
8655 if (!tg->cfs_rq[cpu]->on_list)
8656 continue;
8657
8658 rq = cpu_rq(cpu);
8659
8660 raw_spin_lock_irqsave(&rq->lock, flags);
8661 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8662 raw_spin_unlock_irqrestore(&rq->lock, flags);
8663 }
029632fb
PZ
8664}
8665
8666void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8667 struct sched_entity *se, int cpu,
8668 struct sched_entity *parent)
8669{
8670 struct rq *rq = cpu_rq(cpu);
8671
8672 cfs_rq->tg = tg;
8673 cfs_rq->rq = rq;
029632fb
PZ
8674 init_cfs_rq_runtime(cfs_rq);
8675
8676 tg->cfs_rq[cpu] = cfs_rq;
8677 tg->se[cpu] = se;
8678
8679 /* se could be NULL for root_task_group */
8680 if (!se)
8681 return;
8682
fed14d45 8683 if (!parent) {
029632fb 8684 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8685 se->depth = 0;
8686 } else {
029632fb 8687 se->cfs_rq = parent->my_q;
fed14d45
PZ
8688 se->depth = parent->depth + 1;
8689 }
029632fb
PZ
8690
8691 se->my_q = cfs_rq;
0ac9b1c2
PT
8692 /* guarantee group entities always have weight */
8693 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8694 se->parent = parent;
8695}
8696
8697static DEFINE_MUTEX(shares_mutex);
8698
8699int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8700{
8701 int i;
8702 unsigned long flags;
8703
8704 /*
8705 * We can't change the weight of the root cgroup.
8706 */
8707 if (!tg->se[0])
8708 return -EINVAL;
8709
8710 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8711
8712 mutex_lock(&shares_mutex);
8713 if (tg->shares == shares)
8714 goto done;
8715
8716 tg->shares = shares;
8717 for_each_possible_cpu(i) {
8718 struct rq *rq = cpu_rq(i);
8719 struct sched_entity *se;
8720
8721 se = tg->se[i];
8722 /* Propagate contribution to hierarchy */
8723 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8724
8725 /* Possible calls to update_curr() need rq clock */
8726 update_rq_clock(rq);
17bc14b7 8727 for_each_sched_entity(se)
029632fb
PZ
8728 update_cfs_shares(group_cfs_rq(se));
8729 raw_spin_unlock_irqrestore(&rq->lock, flags);
8730 }
8731
8732done:
8733 mutex_unlock(&shares_mutex);
8734 return 0;
8735}
8736#else /* CONFIG_FAIR_GROUP_SCHED */
8737
8738void free_fair_sched_group(struct task_group *tg) { }
8739
8740int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8741{
8742 return 1;
8743}
8744
6fe1f348 8745void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8746
8747#endif /* CONFIG_FAIR_GROUP_SCHED */
8748
810b3817 8749
6d686f45 8750static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8751{
8752 struct sched_entity *se = &task->se;
0d721cea
PW
8753 unsigned int rr_interval = 0;
8754
8755 /*
8756 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8757 * idle runqueue:
8758 */
0d721cea 8759 if (rq->cfs.load.weight)
a59f4e07 8760 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8761
8762 return rr_interval;
8763}
8764
bf0f6f24
IM
8765/*
8766 * All the scheduling class methods:
8767 */
029632fb 8768const struct sched_class fair_sched_class = {
5522d5d5 8769 .next = &idle_sched_class,
bf0f6f24
IM
8770 .enqueue_task = enqueue_task_fair,
8771 .dequeue_task = dequeue_task_fair,
8772 .yield_task = yield_task_fair,
d95f4122 8773 .yield_to_task = yield_to_task_fair,
bf0f6f24 8774
2e09bf55 8775 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8776
8777 .pick_next_task = pick_next_task_fair,
8778 .put_prev_task = put_prev_task_fair,
8779
681f3e68 8780#ifdef CONFIG_SMP
4ce72a2c 8781 .select_task_rq = select_task_rq_fair,
0a74bef8 8782 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8783
0bcdcf28
CE
8784 .rq_online = rq_online_fair,
8785 .rq_offline = rq_offline_fair,
88ec22d3 8786
12695578 8787 .task_dead = task_dead_fair,
c5b28038 8788 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8789#endif
bf0f6f24 8790
83b699ed 8791 .set_curr_task = set_curr_task_fair,
bf0f6f24 8792 .task_tick = task_tick_fair,
cd29fe6f 8793 .task_fork = task_fork_fair,
cb469845
SR
8794
8795 .prio_changed = prio_changed_fair,
da7a735e 8796 .switched_from = switched_from_fair,
cb469845 8797 .switched_to = switched_to_fair,
810b3817 8798
0d721cea
PW
8799 .get_rr_interval = get_rr_interval_fair,
8800
6e998916
SG
8801 .update_curr = update_curr_fair,
8802
810b3817 8803#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8804 .task_change_group = task_change_group_fair,
810b3817 8805#endif
bf0f6f24
IM
8806};
8807
8808#ifdef CONFIG_SCHED_DEBUG
029632fb 8809void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8810{
bf0f6f24
IM
8811 struct cfs_rq *cfs_rq;
8812
5973e5b9 8813 rcu_read_lock();
c3b64f1e 8814 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8815 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8816 rcu_read_unlock();
bf0f6f24 8817}
397f2378
SD
8818
8819#ifdef CONFIG_NUMA_BALANCING
8820void show_numa_stats(struct task_struct *p, struct seq_file *m)
8821{
8822 int node;
8823 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8824
8825 for_each_online_node(node) {
8826 if (p->numa_faults) {
8827 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8828 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8829 }
8830 if (p->numa_group) {
8831 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8832 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8833 }
8834 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8835 }
8836}
8837#endif /* CONFIG_NUMA_BALANCING */
8838#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8839
8840__init void init_sched_fair_class(void)
8841{
8842#ifdef CONFIG_SMP
8843 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8844
3451d024 8845#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8846 nohz.next_balance = jiffies;
029632fb 8847 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8848#endif
8849#endif /* SMP */
8850
8851}
This page took 1.308885 seconds and 5 git commands to generate.