mm: numa: Do not group on RO pages
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 833
4b96a29b
PZ
834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
598f0ec0
MG
837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
3a7053b3
MG
882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
6fe6b2d6 889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 890
8c8a743c
PZ
891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
e29cf08b 896 pid_t gid;
8c8a743c
PZ
897 struct list_head task_list;
898
899 struct rcu_head rcu;
900 atomic_long_t faults[0];
901};
902
e29cf08b
MG
903pid_t task_numa_group_id(struct task_struct *p)
904{
905 return p->numa_group ? p->numa_group->gid : 0;
906}
907
ac8e895b
MG
908static inline int task_faults_idx(int nid, int priv)
909{
910 return 2 * nid + priv;
911}
912
913static inline unsigned long task_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_faults)
916 return 0;
917
918 return p->numa_faults[task_faults_idx(nid, 0)] +
919 p->numa_faults[task_faults_idx(nid, 1)];
920}
921
e6628d5b 922static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
923static unsigned long source_load(int cpu, int type);
924static unsigned long target_load(int cpu, int type);
925static unsigned long power_of(int cpu);
926static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
927
fb13c7ee 928/* Cached statistics for all CPUs within a node */
58d081b5 929struct numa_stats {
fb13c7ee 930 unsigned long nr_running;
58d081b5 931 unsigned long load;
fb13c7ee
MG
932
933 /* Total compute capacity of CPUs on a node */
934 unsigned long power;
935
936 /* Approximate capacity in terms of runnable tasks on a node */
937 unsigned long capacity;
938 int has_capacity;
58d081b5 939};
e6628d5b 940
fb13c7ee
MG
941/*
942 * XXX borrowed from update_sg_lb_stats
943 */
944static void update_numa_stats(struct numa_stats *ns, int nid)
945{
946 int cpu;
947
948 memset(ns, 0, sizeof(*ns));
949 for_each_cpu(cpu, cpumask_of_node(nid)) {
950 struct rq *rq = cpu_rq(cpu);
951
952 ns->nr_running += rq->nr_running;
953 ns->load += weighted_cpuload(cpu);
954 ns->power += power_of(cpu);
955 }
956
957 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
958 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
959 ns->has_capacity = (ns->nr_running < ns->capacity);
960}
961
58d081b5
MG
962struct task_numa_env {
963 struct task_struct *p;
e6628d5b 964
58d081b5
MG
965 int src_cpu, src_nid;
966 int dst_cpu, dst_nid;
e6628d5b 967
58d081b5 968 struct numa_stats src_stats, dst_stats;
e6628d5b 969
fb13c7ee
MG
970 int imbalance_pct, idx;
971
972 struct task_struct *best_task;
973 long best_imp;
58d081b5
MG
974 int best_cpu;
975};
976
fb13c7ee
MG
977static void task_numa_assign(struct task_numa_env *env,
978 struct task_struct *p, long imp)
979{
980 if (env->best_task)
981 put_task_struct(env->best_task);
982 if (p)
983 get_task_struct(p);
984
985 env->best_task = p;
986 env->best_imp = imp;
987 env->best_cpu = env->dst_cpu;
988}
989
990/*
991 * This checks if the overall compute and NUMA accesses of the system would
992 * be improved if the source tasks was migrated to the target dst_cpu taking
993 * into account that it might be best if task running on the dst_cpu should
994 * be exchanged with the source task
995 */
996static void task_numa_compare(struct task_numa_env *env, long imp)
997{
998 struct rq *src_rq = cpu_rq(env->src_cpu);
999 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1000 struct task_struct *cur;
1001 long dst_load, src_load;
1002 long load;
1003
1004 rcu_read_lock();
1005 cur = ACCESS_ONCE(dst_rq->curr);
1006 if (cur->pid == 0) /* idle */
1007 cur = NULL;
1008
1009 /*
1010 * "imp" is the fault differential for the source task between the
1011 * source and destination node. Calculate the total differential for
1012 * the source task and potential destination task. The more negative
1013 * the value is, the more rmeote accesses that would be expected to
1014 * be incurred if the tasks were swapped.
1015 */
1016 if (cur) {
1017 /* Skip this swap candidate if cannot move to the source cpu */
1018 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1019 goto unlock;
1020
1021 imp += task_faults(cur, env->src_nid) -
1022 task_faults(cur, env->dst_nid);
1023 }
1024
1025 if (imp < env->best_imp)
1026 goto unlock;
1027
1028 if (!cur) {
1029 /* Is there capacity at our destination? */
1030 if (env->src_stats.has_capacity &&
1031 !env->dst_stats.has_capacity)
1032 goto unlock;
1033
1034 goto balance;
1035 }
1036
1037 /* Balance doesn't matter much if we're running a task per cpu */
1038 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1039 goto assign;
1040
1041 /*
1042 * In the overloaded case, try and keep the load balanced.
1043 */
1044balance:
1045 dst_load = env->dst_stats.load;
1046 src_load = env->src_stats.load;
1047
1048 /* XXX missing power terms */
1049 load = task_h_load(env->p);
1050 dst_load += load;
1051 src_load -= load;
1052
1053 if (cur) {
1054 load = task_h_load(cur);
1055 dst_load -= load;
1056 src_load += load;
1057 }
1058
1059 /* make src_load the smaller */
1060 if (dst_load < src_load)
1061 swap(dst_load, src_load);
1062
1063 if (src_load * env->imbalance_pct < dst_load * 100)
1064 goto unlock;
1065
1066assign:
1067 task_numa_assign(env, cur, imp);
1068unlock:
1069 rcu_read_unlock();
1070}
1071
2c8a50aa
MG
1072static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1073{
1074 int cpu;
1075
1076 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1077 /* Skip this CPU if the source task cannot migrate */
1078 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1079 continue;
1080
1081 env->dst_cpu = cpu;
1082 task_numa_compare(env, imp);
1083 }
1084}
1085
58d081b5
MG
1086static int task_numa_migrate(struct task_struct *p)
1087{
58d081b5
MG
1088 struct task_numa_env env = {
1089 .p = p,
fb13c7ee 1090
58d081b5
MG
1091 .src_cpu = task_cpu(p),
1092 .src_nid = cpu_to_node(task_cpu(p)),
fb13c7ee
MG
1093
1094 .imbalance_pct = 112,
1095
1096 .best_task = NULL,
1097 .best_imp = 0,
1098 .best_cpu = -1
58d081b5
MG
1099 };
1100 struct sched_domain *sd;
fb13c7ee 1101 unsigned long faults;
2c8a50aa
MG
1102 int nid, ret;
1103 long imp;
e6628d5b 1104
58d081b5 1105 /*
fb13c7ee
MG
1106 * Pick the lowest SD_NUMA domain, as that would have the smallest
1107 * imbalance and would be the first to start moving tasks about.
1108 *
1109 * And we want to avoid any moving of tasks about, as that would create
1110 * random movement of tasks -- counter the numa conditions we're trying
1111 * to satisfy here.
58d081b5
MG
1112 */
1113 rcu_read_lock();
fb13c7ee
MG
1114 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1115 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1116 rcu_read_unlock();
1117
fb13c7ee
MG
1118 faults = task_faults(p, env.src_nid);
1119 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa
MG
1120 env.dst_nid = p->numa_preferred_nid;
1121 imp = task_faults(env.p, env.dst_nid) - faults;
1122 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1123
e1dda8a7
RR
1124 /* If the preferred nid has capacity, try to use it. */
1125 if (env.dst_stats.has_capacity)
2c8a50aa 1126 task_numa_find_cpu(&env, imp);
e1dda8a7
RR
1127
1128 /* No space available on the preferred nid. Look elsewhere. */
1129 if (env.best_cpu == -1) {
2c8a50aa
MG
1130 for_each_online_node(nid) {
1131 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1132 continue;
58d081b5 1133
2c8a50aa
MG
1134 /* Only consider nodes that recorded more faults */
1135 imp = task_faults(env.p, nid) - faults;
1136 if (imp < 0)
fb13c7ee
MG
1137 continue;
1138
2c8a50aa
MG
1139 env.dst_nid = nid;
1140 update_numa_stats(&env.dst_stats, env.dst_nid);
1141 task_numa_find_cpu(&env, imp);
58d081b5
MG
1142 }
1143 }
1144
fb13c7ee
MG
1145 /* No better CPU than the current one was found. */
1146 if (env.best_cpu == -1)
1147 return -EAGAIN;
1148
1149 if (env.best_task == NULL) {
1150 int ret = migrate_task_to(p, env.best_cpu);
1151 return ret;
1152 }
1153
1154 ret = migrate_swap(p, env.best_task);
1155 put_task_struct(env.best_task);
1156 return ret;
e6628d5b
MG
1157}
1158
6b9a7460
MG
1159/* Attempt to migrate a task to a CPU on the preferred node. */
1160static void numa_migrate_preferred(struct task_struct *p)
1161{
1162 /* Success if task is already running on preferred CPU */
1163 p->numa_migrate_retry = 0;
06ea5e03
RR
1164 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1165 /*
1166 * If migration is temporarily disabled due to a task migration
1167 * then re-enable it now as the task is running on its
1168 * preferred node and memory should migrate locally
1169 */
1170 if (!p->numa_migrate_seq)
1171 p->numa_migrate_seq++;
6b9a7460 1172 return;
06ea5e03 1173 }
6b9a7460
MG
1174
1175 /* This task has no NUMA fault statistics yet */
1176 if (unlikely(p->numa_preferred_nid == -1))
1177 return;
1178
1179 /* Otherwise, try migrate to a CPU on the preferred node */
1180 if (task_numa_migrate(p) != 0)
1181 p->numa_migrate_retry = jiffies + HZ*5;
1182}
1183
cbee9f88
PZ
1184static void task_numa_placement(struct task_struct *p)
1185{
688b7585
MG
1186 int seq, nid, max_nid = -1;
1187 unsigned long max_faults = 0;
cbee9f88 1188
2832bc19 1189 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1190 if (p->numa_scan_seq == seq)
1191 return;
1192 p->numa_scan_seq = seq;
3a7053b3 1193 p->numa_migrate_seq++;
598f0ec0 1194 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1195
688b7585
MG
1196 /* Find the node with the highest number of faults */
1197 for_each_online_node(nid) {
fb13c7ee 1198 unsigned long faults = 0;
ac8e895b 1199 int priv, i;
745d6147 1200
ac8e895b 1201 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1202 long diff;
1203
ac8e895b 1204 i = task_faults_idx(nid, priv);
8c8a743c 1205 diff = -p->numa_faults[i];
745d6147 1206
ac8e895b
MG
1207 /* Decay existing window, copy faults since last scan */
1208 p->numa_faults[i] >>= 1;
1209 p->numa_faults[i] += p->numa_faults_buffer[i];
1210 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1211
1212 faults += p->numa_faults[i];
8c8a743c
PZ
1213 diff += p->numa_faults[i];
1214 if (p->numa_group) {
1215 /* safe because we can only change our own group */
1216 atomic_long_add(diff, &p->numa_group->faults[i]);
1217 }
ac8e895b
MG
1218 }
1219
688b7585
MG
1220 if (faults > max_faults) {
1221 max_faults = faults;
1222 max_nid = nid;
1223 }
1224 }
1225
6b9a7460 1226 /* Preferred node as the node with the most faults */
3a7053b3 1227 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1228 /* Update the preferred nid and migrate task if possible */
688b7585 1229 p->numa_preferred_nid = max_nid;
6fe6b2d6 1230 p->numa_migrate_seq = 1;
6b9a7460 1231 numa_migrate_preferred(p);
3a7053b3 1232 }
cbee9f88
PZ
1233}
1234
8c8a743c
PZ
1235static inline int get_numa_group(struct numa_group *grp)
1236{
1237 return atomic_inc_not_zero(&grp->refcount);
1238}
1239
1240static inline void put_numa_group(struct numa_group *grp)
1241{
1242 if (atomic_dec_and_test(&grp->refcount))
1243 kfree_rcu(grp, rcu);
1244}
1245
1246static void double_lock(spinlock_t *l1, spinlock_t *l2)
1247{
1248 if (l1 > l2)
1249 swap(l1, l2);
1250
1251 spin_lock(l1);
1252 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1253}
1254
1255static void task_numa_group(struct task_struct *p, int cpupid)
1256{
1257 struct numa_group *grp, *my_grp;
1258 struct task_struct *tsk;
1259 bool join = false;
1260 int cpu = cpupid_to_cpu(cpupid);
1261 int i;
1262
1263 if (unlikely(!p->numa_group)) {
1264 unsigned int size = sizeof(struct numa_group) +
1265 2*nr_node_ids*sizeof(atomic_long_t);
1266
1267 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1268 if (!grp)
1269 return;
1270
1271 atomic_set(&grp->refcount, 1);
1272 spin_lock_init(&grp->lock);
1273 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1274 grp->gid = p->pid;
8c8a743c
PZ
1275
1276 for (i = 0; i < 2*nr_node_ids; i++)
1277 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1278
1279 list_add(&p->numa_entry, &grp->task_list);
1280 grp->nr_tasks++;
1281 rcu_assign_pointer(p->numa_group, grp);
1282 }
1283
1284 rcu_read_lock();
1285 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1286
1287 if (!cpupid_match_pid(tsk, cpupid))
1288 goto unlock;
1289
1290 grp = rcu_dereference(tsk->numa_group);
1291 if (!grp)
1292 goto unlock;
1293
1294 my_grp = p->numa_group;
1295 if (grp == my_grp)
1296 goto unlock;
1297
1298 /*
1299 * Only join the other group if its bigger; if we're the bigger group,
1300 * the other task will join us.
1301 */
1302 if (my_grp->nr_tasks > grp->nr_tasks)
1303 goto unlock;
1304
1305 /*
1306 * Tie-break on the grp address.
1307 */
1308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1309 goto unlock;
1310
1311 if (!get_numa_group(grp))
1312 goto unlock;
1313
1314 join = true;
1315
1316unlock:
1317 rcu_read_unlock();
1318
1319 if (!join)
1320 return;
1321
1322 for (i = 0; i < 2*nr_node_ids; i++) {
1323 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1324 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1325 }
1326
1327 double_lock(&my_grp->lock, &grp->lock);
1328
1329 list_move(&p->numa_entry, &grp->task_list);
1330 my_grp->nr_tasks--;
1331 grp->nr_tasks++;
1332
1333 spin_unlock(&my_grp->lock);
1334 spin_unlock(&grp->lock);
1335
1336 rcu_assign_pointer(p->numa_group, grp);
1337
1338 put_numa_group(my_grp);
1339}
1340
1341void task_numa_free(struct task_struct *p)
1342{
1343 struct numa_group *grp = p->numa_group;
1344 int i;
1345
1346 if (grp) {
1347 for (i = 0; i < 2*nr_node_ids; i++)
1348 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1349
1350 spin_lock(&grp->lock);
1351 list_del(&p->numa_entry);
1352 grp->nr_tasks--;
1353 spin_unlock(&grp->lock);
1354 rcu_assign_pointer(p->numa_group, NULL);
1355 put_numa_group(grp);
1356 }
1357
1358 kfree(p->numa_faults);
1359}
1360
cbee9f88
PZ
1361/*
1362 * Got a PROT_NONE fault for a page on @node.
1363 */
6688cc05 1364void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1365{
1366 struct task_struct *p = current;
6688cc05 1367 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1368 int priv;
cbee9f88 1369
10e84b97 1370 if (!numabalancing_enabled)
1a687c2e
MG
1371 return;
1372
9ff1d9ff
MG
1373 /* for example, ksmd faulting in a user's mm */
1374 if (!p->mm)
1375 return;
1376
f809ca9a
MG
1377 /* Allocate buffer to track faults on a per-node basis */
1378 if (unlikely(!p->numa_faults)) {
ac8e895b 1379 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1380
745d6147
MG
1381 /* numa_faults and numa_faults_buffer share the allocation */
1382 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1383 if (!p->numa_faults)
1384 return;
745d6147
MG
1385
1386 BUG_ON(p->numa_faults_buffer);
ac8e895b 1387 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
f809ca9a 1388 }
cbee9f88 1389
8c8a743c
PZ
1390 /*
1391 * First accesses are treated as private, otherwise consider accesses
1392 * to be private if the accessing pid has not changed
1393 */
1394 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1395 priv = 1;
1396 } else {
1397 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1398 if (!priv && !(flags & TNF_NO_GROUP))
8c8a743c
PZ
1399 task_numa_group(p, last_cpupid);
1400 }
1401
fb003b80 1402 /*
b8593bfd
MG
1403 * If pages are properly placed (did not migrate) then scan slower.
1404 * This is reset periodically in case of phase changes
fb003b80 1405 */
598f0ec0
MG
1406 if (!migrated) {
1407 /* Initialise if necessary */
1408 if (!p->numa_scan_period_max)
1409 p->numa_scan_period_max = task_scan_max(p);
1410
1411 p->numa_scan_period = min(p->numa_scan_period_max,
1412 p->numa_scan_period + 10);
1413 }
fb003b80 1414
cbee9f88 1415 task_numa_placement(p);
f809ca9a 1416
6b9a7460
MG
1417 /* Retry task to preferred node migration if it previously failed */
1418 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1419 numa_migrate_preferred(p);
1420
ac8e895b 1421 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
cbee9f88
PZ
1422}
1423
6e5fb223
PZ
1424static void reset_ptenuma_scan(struct task_struct *p)
1425{
1426 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1427 p->mm->numa_scan_offset = 0;
1428}
1429
cbee9f88
PZ
1430/*
1431 * The expensive part of numa migration is done from task_work context.
1432 * Triggered from task_tick_numa().
1433 */
1434void task_numa_work(struct callback_head *work)
1435{
1436 unsigned long migrate, next_scan, now = jiffies;
1437 struct task_struct *p = current;
1438 struct mm_struct *mm = p->mm;
6e5fb223 1439 struct vm_area_struct *vma;
9f40604c 1440 unsigned long start, end;
598f0ec0 1441 unsigned long nr_pte_updates = 0;
9f40604c 1442 long pages;
cbee9f88
PZ
1443
1444 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1445
1446 work->next = work; /* protect against double add */
1447 /*
1448 * Who cares about NUMA placement when they're dying.
1449 *
1450 * NOTE: make sure not to dereference p->mm before this check,
1451 * exit_task_work() happens _after_ exit_mm() so we could be called
1452 * without p->mm even though we still had it when we enqueued this
1453 * work.
1454 */
1455 if (p->flags & PF_EXITING)
1456 return;
1457
7e8d16b6
MG
1458 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1459 mm->numa_next_scan = now +
1460 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1461 mm->numa_next_reset = now +
1462 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1463 }
1464
b8593bfd
MG
1465 /*
1466 * Reset the scan period if enough time has gone by. Objective is that
1467 * scanning will be reduced if pages are properly placed. As tasks
1468 * can enter different phases this needs to be re-examined. Lacking
1469 * proper tracking of reference behaviour, this blunt hammer is used.
1470 */
1471 migrate = mm->numa_next_reset;
1472 if (time_after(now, migrate)) {
598f0ec0 1473 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1474 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1475 xchg(&mm->numa_next_reset, next_scan);
1476 }
1477
cbee9f88
PZ
1478 /*
1479 * Enforce maximal scan/migration frequency..
1480 */
1481 migrate = mm->numa_next_scan;
1482 if (time_before(now, migrate))
1483 return;
1484
598f0ec0
MG
1485 if (p->numa_scan_period == 0) {
1486 p->numa_scan_period_max = task_scan_max(p);
1487 p->numa_scan_period = task_scan_min(p);
1488 }
cbee9f88 1489
fb003b80 1490 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1491 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1492 return;
1493
19a78d11
PZ
1494 /*
1495 * Delay this task enough that another task of this mm will likely win
1496 * the next time around.
1497 */
1498 p->node_stamp += 2 * TICK_NSEC;
1499
9f40604c
MG
1500 start = mm->numa_scan_offset;
1501 pages = sysctl_numa_balancing_scan_size;
1502 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1503 if (!pages)
1504 return;
cbee9f88 1505
6e5fb223 1506 down_read(&mm->mmap_sem);
9f40604c 1507 vma = find_vma(mm, start);
6e5fb223
PZ
1508 if (!vma) {
1509 reset_ptenuma_scan(p);
9f40604c 1510 start = 0;
6e5fb223
PZ
1511 vma = mm->mmap;
1512 }
9f40604c 1513 for (; vma; vma = vma->vm_next) {
fc314724 1514 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1515 continue;
1516
4591ce4f
MG
1517 /*
1518 * Shared library pages mapped by multiple processes are not
1519 * migrated as it is expected they are cache replicated. Avoid
1520 * hinting faults in read-only file-backed mappings or the vdso
1521 * as migrating the pages will be of marginal benefit.
1522 */
1523 if (!vma->vm_mm ||
1524 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1525 continue;
1526
9f40604c
MG
1527 do {
1528 start = max(start, vma->vm_start);
1529 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1530 end = min(end, vma->vm_end);
598f0ec0
MG
1531 nr_pte_updates += change_prot_numa(vma, start, end);
1532
1533 /*
1534 * Scan sysctl_numa_balancing_scan_size but ensure that
1535 * at least one PTE is updated so that unused virtual
1536 * address space is quickly skipped.
1537 */
1538 if (nr_pte_updates)
1539 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1540
9f40604c
MG
1541 start = end;
1542 if (pages <= 0)
1543 goto out;
1544 } while (end != vma->vm_end);
cbee9f88 1545 }
6e5fb223 1546
9f40604c 1547out:
f307cd1a
MG
1548 /*
1549 * If the whole process was scanned without updates then no NUMA
1550 * hinting faults are being recorded and scan rate should be lower.
1551 */
1552 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1553 p->numa_scan_period = min(p->numa_scan_period_max,
1554 p->numa_scan_period << 1);
1555
1556 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1557 mm->numa_next_scan = next_scan;
1558 }
1559
6e5fb223 1560 /*
c69307d5
PZ
1561 * It is possible to reach the end of the VMA list but the last few
1562 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1563 * would find the !migratable VMA on the next scan but not reset the
1564 * scanner to the start so check it now.
6e5fb223
PZ
1565 */
1566 if (vma)
9f40604c 1567 mm->numa_scan_offset = start;
6e5fb223
PZ
1568 else
1569 reset_ptenuma_scan(p);
1570 up_read(&mm->mmap_sem);
cbee9f88
PZ
1571}
1572
1573/*
1574 * Drive the periodic memory faults..
1575 */
1576void task_tick_numa(struct rq *rq, struct task_struct *curr)
1577{
1578 struct callback_head *work = &curr->numa_work;
1579 u64 period, now;
1580
1581 /*
1582 * We don't care about NUMA placement if we don't have memory.
1583 */
1584 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1585 return;
1586
1587 /*
1588 * Using runtime rather than walltime has the dual advantage that
1589 * we (mostly) drive the selection from busy threads and that the
1590 * task needs to have done some actual work before we bother with
1591 * NUMA placement.
1592 */
1593 now = curr->se.sum_exec_runtime;
1594 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1595
1596 if (now - curr->node_stamp > period) {
4b96a29b 1597 if (!curr->node_stamp)
598f0ec0 1598 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1599 curr->node_stamp += period;
cbee9f88
PZ
1600
1601 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1602 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1603 task_work_add(curr, work, true);
1604 }
1605 }
1606}
1607#else
1608static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1609{
1610}
1611#endif /* CONFIG_NUMA_BALANCING */
1612
30cfdcfc
DA
1613static void
1614account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1615{
1616 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1617 if (!parent_entity(se))
029632fb 1618 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1619#ifdef CONFIG_SMP
1620 if (entity_is_task(se))
eb95308e 1621 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1622#endif
30cfdcfc 1623 cfs_rq->nr_running++;
30cfdcfc
DA
1624}
1625
1626static void
1627account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1628{
1629 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1630 if (!parent_entity(se))
029632fb 1631 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1632 if (entity_is_task(se))
b87f1724 1633 list_del_init(&se->group_node);
30cfdcfc 1634 cfs_rq->nr_running--;
30cfdcfc
DA
1635}
1636
3ff6dcac
YZ
1637#ifdef CONFIG_FAIR_GROUP_SCHED
1638# ifdef CONFIG_SMP
cf5f0acf
PZ
1639static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1640{
1641 long tg_weight;
1642
1643 /*
1644 * Use this CPU's actual weight instead of the last load_contribution
1645 * to gain a more accurate current total weight. See
1646 * update_cfs_rq_load_contribution().
1647 */
bf5b986e 1648 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1649 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1650 tg_weight += cfs_rq->load.weight;
1651
1652 return tg_weight;
1653}
1654
6d5ab293 1655static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1656{
cf5f0acf 1657 long tg_weight, load, shares;
3ff6dcac 1658
cf5f0acf 1659 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1660 load = cfs_rq->load.weight;
3ff6dcac 1661
3ff6dcac 1662 shares = (tg->shares * load);
cf5f0acf
PZ
1663 if (tg_weight)
1664 shares /= tg_weight;
3ff6dcac
YZ
1665
1666 if (shares < MIN_SHARES)
1667 shares = MIN_SHARES;
1668 if (shares > tg->shares)
1669 shares = tg->shares;
1670
1671 return shares;
1672}
3ff6dcac 1673# else /* CONFIG_SMP */
6d5ab293 1674static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1675{
1676 return tg->shares;
1677}
3ff6dcac 1678# endif /* CONFIG_SMP */
2069dd75
PZ
1679static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1680 unsigned long weight)
1681{
19e5eebb
PT
1682 if (se->on_rq) {
1683 /* commit outstanding execution time */
1684 if (cfs_rq->curr == se)
1685 update_curr(cfs_rq);
2069dd75 1686 account_entity_dequeue(cfs_rq, se);
19e5eebb 1687 }
2069dd75
PZ
1688
1689 update_load_set(&se->load, weight);
1690
1691 if (se->on_rq)
1692 account_entity_enqueue(cfs_rq, se);
1693}
1694
82958366
PT
1695static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1696
6d5ab293 1697static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1698{
1699 struct task_group *tg;
1700 struct sched_entity *se;
3ff6dcac 1701 long shares;
2069dd75 1702
2069dd75
PZ
1703 tg = cfs_rq->tg;
1704 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1705 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1706 return;
3ff6dcac
YZ
1707#ifndef CONFIG_SMP
1708 if (likely(se->load.weight == tg->shares))
1709 return;
1710#endif
6d5ab293 1711 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1712
1713 reweight_entity(cfs_rq_of(se), se, shares);
1714}
1715#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1716static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1717{
1718}
1719#endif /* CONFIG_FAIR_GROUP_SCHED */
1720
141965c7 1721#ifdef CONFIG_SMP
5b51f2f8
PT
1722/*
1723 * We choose a half-life close to 1 scheduling period.
1724 * Note: The tables below are dependent on this value.
1725 */
1726#define LOAD_AVG_PERIOD 32
1727#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1728#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1729
1730/* Precomputed fixed inverse multiplies for multiplication by y^n */
1731static const u32 runnable_avg_yN_inv[] = {
1732 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1733 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1734 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1735 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1736 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1737 0x85aac367, 0x82cd8698,
1738};
1739
1740/*
1741 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1742 * over-estimates when re-combining.
1743 */
1744static const u32 runnable_avg_yN_sum[] = {
1745 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1746 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1747 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1748};
1749
9d85f21c
PT
1750/*
1751 * Approximate:
1752 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1753 */
1754static __always_inline u64 decay_load(u64 val, u64 n)
1755{
5b51f2f8
PT
1756 unsigned int local_n;
1757
1758 if (!n)
1759 return val;
1760 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1761 return 0;
1762
1763 /* after bounds checking we can collapse to 32-bit */
1764 local_n = n;
1765
1766 /*
1767 * As y^PERIOD = 1/2, we can combine
1768 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1769 * With a look-up table which covers k^n (n<PERIOD)
1770 *
1771 * To achieve constant time decay_load.
1772 */
1773 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1774 val >>= local_n / LOAD_AVG_PERIOD;
1775 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1776 }
1777
5b51f2f8
PT
1778 val *= runnable_avg_yN_inv[local_n];
1779 /* We don't use SRR here since we always want to round down. */
1780 return val >> 32;
1781}
1782
1783/*
1784 * For updates fully spanning n periods, the contribution to runnable
1785 * average will be: \Sum 1024*y^n
1786 *
1787 * We can compute this reasonably efficiently by combining:
1788 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1789 */
1790static u32 __compute_runnable_contrib(u64 n)
1791{
1792 u32 contrib = 0;
1793
1794 if (likely(n <= LOAD_AVG_PERIOD))
1795 return runnable_avg_yN_sum[n];
1796 else if (unlikely(n >= LOAD_AVG_MAX_N))
1797 return LOAD_AVG_MAX;
1798
1799 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1800 do {
1801 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1802 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1803
1804 n -= LOAD_AVG_PERIOD;
1805 } while (n > LOAD_AVG_PERIOD);
1806
1807 contrib = decay_load(contrib, n);
1808 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1809}
1810
1811/*
1812 * We can represent the historical contribution to runnable average as the
1813 * coefficients of a geometric series. To do this we sub-divide our runnable
1814 * history into segments of approximately 1ms (1024us); label the segment that
1815 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1816 *
1817 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1818 * p0 p1 p2
1819 * (now) (~1ms ago) (~2ms ago)
1820 *
1821 * Let u_i denote the fraction of p_i that the entity was runnable.
1822 *
1823 * We then designate the fractions u_i as our co-efficients, yielding the
1824 * following representation of historical load:
1825 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1826 *
1827 * We choose y based on the with of a reasonably scheduling period, fixing:
1828 * y^32 = 0.5
1829 *
1830 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1831 * approximately half as much as the contribution to load within the last ms
1832 * (u_0).
1833 *
1834 * When a period "rolls over" and we have new u_0`, multiplying the previous
1835 * sum again by y is sufficient to update:
1836 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1837 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1838 */
1839static __always_inline int __update_entity_runnable_avg(u64 now,
1840 struct sched_avg *sa,
1841 int runnable)
1842{
5b51f2f8
PT
1843 u64 delta, periods;
1844 u32 runnable_contrib;
9d85f21c
PT
1845 int delta_w, decayed = 0;
1846
1847 delta = now - sa->last_runnable_update;
1848 /*
1849 * This should only happen when time goes backwards, which it
1850 * unfortunately does during sched clock init when we swap over to TSC.
1851 */
1852 if ((s64)delta < 0) {
1853 sa->last_runnable_update = now;
1854 return 0;
1855 }
1856
1857 /*
1858 * Use 1024ns as the unit of measurement since it's a reasonable
1859 * approximation of 1us and fast to compute.
1860 */
1861 delta >>= 10;
1862 if (!delta)
1863 return 0;
1864 sa->last_runnable_update = now;
1865
1866 /* delta_w is the amount already accumulated against our next period */
1867 delta_w = sa->runnable_avg_period % 1024;
1868 if (delta + delta_w >= 1024) {
1869 /* period roll-over */
1870 decayed = 1;
1871
1872 /*
1873 * Now that we know we're crossing a period boundary, figure
1874 * out how much from delta we need to complete the current
1875 * period and accrue it.
1876 */
1877 delta_w = 1024 - delta_w;
5b51f2f8
PT
1878 if (runnable)
1879 sa->runnable_avg_sum += delta_w;
1880 sa->runnable_avg_period += delta_w;
1881
1882 delta -= delta_w;
1883
1884 /* Figure out how many additional periods this update spans */
1885 periods = delta / 1024;
1886 delta %= 1024;
1887
1888 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1889 periods + 1);
1890 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1891 periods + 1);
1892
1893 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1894 runnable_contrib = __compute_runnable_contrib(periods);
1895 if (runnable)
1896 sa->runnable_avg_sum += runnable_contrib;
1897 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1898 }
1899
1900 /* Remainder of delta accrued against u_0` */
1901 if (runnable)
1902 sa->runnable_avg_sum += delta;
1903 sa->runnable_avg_period += delta;
1904
1905 return decayed;
1906}
1907
9ee474f5 1908/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1909static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1910{
1911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1912 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1913
1914 decays -= se->avg.decay_count;
1915 if (!decays)
aff3e498 1916 return 0;
9ee474f5
PT
1917
1918 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1919 se->avg.decay_count = 0;
aff3e498
PT
1920
1921 return decays;
9ee474f5
PT
1922}
1923
c566e8e9
PT
1924#ifdef CONFIG_FAIR_GROUP_SCHED
1925static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1926 int force_update)
1927{
1928 struct task_group *tg = cfs_rq->tg;
bf5b986e 1929 long tg_contrib;
c566e8e9
PT
1930
1931 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1932 tg_contrib -= cfs_rq->tg_load_contrib;
1933
bf5b986e
AS
1934 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1935 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1936 cfs_rq->tg_load_contrib += tg_contrib;
1937 }
1938}
8165e145 1939
bb17f655
PT
1940/*
1941 * Aggregate cfs_rq runnable averages into an equivalent task_group
1942 * representation for computing load contributions.
1943 */
1944static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1945 struct cfs_rq *cfs_rq)
1946{
1947 struct task_group *tg = cfs_rq->tg;
1948 long contrib;
1949
1950 /* The fraction of a cpu used by this cfs_rq */
1951 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1952 sa->runnable_avg_period + 1);
1953 contrib -= cfs_rq->tg_runnable_contrib;
1954
1955 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1956 atomic_add(contrib, &tg->runnable_avg);
1957 cfs_rq->tg_runnable_contrib += contrib;
1958 }
1959}
1960
8165e145
PT
1961static inline void __update_group_entity_contrib(struct sched_entity *se)
1962{
1963 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1964 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1965 int runnable_avg;
1966
8165e145
PT
1967 u64 contrib;
1968
1969 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1970 se->avg.load_avg_contrib = div_u64(contrib,
1971 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1972
1973 /*
1974 * For group entities we need to compute a correction term in the case
1975 * that they are consuming <1 cpu so that we would contribute the same
1976 * load as a task of equal weight.
1977 *
1978 * Explicitly co-ordinating this measurement would be expensive, but
1979 * fortunately the sum of each cpus contribution forms a usable
1980 * lower-bound on the true value.
1981 *
1982 * Consider the aggregate of 2 contributions. Either they are disjoint
1983 * (and the sum represents true value) or they are disjoint and we are
1984 * understating by the aggregate of their overlap.
1985 *
1986 * Extending this to N cpus, for a given overlap, the maximum amount we
1987 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1988 * cpus that overlap for this interval and w_i is the interval width.
1989 *
1990 * On a small machine; the first term is well-bounded which bounds the
1991 * total error since w_i is a subset of the period. Whereas on a
1992 * larger machine, while this first term can be larger, if w_i is the
1993 * of consequential size guaranteed to see n_i*w_i quickly converge to
1994 * our upper bound of 1-cpu.
1995 */
1996 runnable_avg = atomic_read(&tg->runnable_avg);
1997 if (runnable_avg < NICE_0_LOAD) {
1998 se->avg.load_avg_contrib *= runnable_avg;
1999 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2000 }
8165e145 2001}
c566e8e9
PT
2002#else
2003static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2004 int force_update) {}
bb17f655
PT
2005static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2006 struct cfs_rq *cfs_rq) {}
8165e145 2007static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2008#endif
2009
8165e145
PT
2010static inline void __update_task_entity_contrib(struct sched_entity *se)
2011{
2012 u32 contrib;
2013
2014 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2015 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2016 contrib /= (se->avg.runnable_avg_period + 1);
2017 se->avg.load_avg_contrib = scale_load(contrib);
2018}
2019
2dac754e
PT
2020/* Compute the current contribution to load_avg by se, return any delta */
2021static long __update_entity_load_avg_contrib(struct sched_entity *se)
2022{
2023 long old_contrib = se->avg.load_avg_contrib;
2024
8165e145
PT
2025 if (entity_is_task(se)) {
2026 __update_task_entity_contrib(se);
2027 } else {
bb17f655 2028 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2029 __update_group_entity_contrib(se);
2030 }
2dac754e
PT
2031
2032 return se->avg.load_avg_contrib - old_contrib;
2033}
2034
9ee474f5
PT
2035static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2036 long load_contrib)
2037{
2038 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2039 cfs_rq->blocked_load_avg -= load_contrib;
2040 else
2041 cfs_rq->blocked_load_avg = 0;
2042}
2043
f1b17280
PT
2044static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2045
9d85f21c 2046/* Update a sched_entity's runnable average */
9ee474f5
PT
2047static inline void update_entity_load_avg(struct sched_entity *se,
2048 int update_cfs_rq)
9d85f21c 2049{
2dac754e
PT
2050 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2051 long contrib_delta;
f1b17280 2052 u64 now;
2dac754e 2053
f1b17280
PT
2054 /*
2055 * For a group entity we need to use their owned cfs_rq_clock_task() in
2056 * case they are the parent of a throttled hierarchy.
2057 */
2058 if (entity_is_task(se))
2059 now = cfs_rq_clock_task(cfs_rq);
2060 else
2061 now = cfs_rq_clock_task(group_cfs_rq(se));
2062
2063 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2064 return;
2065
2066 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2067
2068 if (!update_cfs_rq)
2069 return;
2070
2dac754e
PT
2071 if (se->on_rq)
2072 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2073 else
2074 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2075}
2076
2077/*
2078 * Decay the load contributed by all blocked children and account this so that
2079 * their contribution may appropriately discounted when they wake up.
2080 */
aff3e498 2081static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2082{
f1b17280 2083 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2084 u64 decays;
2085
2086 decays = now - cfs_rq->last_decay;
aff3e498 2087 if (!decays && !force_update)
9ee474f5
PT
2088 return;
2089
2509940f
AS
2090 if (atomic_long_read(&cfs_rq->removed_load)) {
2091 unsigned long removed_load;
2092 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2093 subtract_blocked_load_contrib(cfs_rq, removed_load);
2094 }
9ee474f5 2095
aff3e498
PT
2096 if (decays) {
2097 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2098 decays);
2099 atomic64_add(decays, &cfs_rq->decay_counter);
2100 cfs_rq->last_decay = now;
2101 }
c566e8e9
PT
2102
2103 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2104}
18bf2805
BS
2105
2106static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2107{
78becc27 2108 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2109 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2110}
2dac754e
PT
2111
2112/* Add the load generated by se into cfs_rq's child load-average */
2113static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2114 struct sched_entity *se,
2115 int wakeup)
2dac754e 2116{
aff3e498
PT
2117 /*
2118 * We track migrations using entity decay_count <= 0, on a wake-up
2119 * migration we use a negative decay count to track the remote decays
2120 * accumulated while sleeping.
a75cdaa9
AS
2121 *
2122 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2123 * are seen by enqueue_entity_load_avg() as a migration with an already
2124 * constructed load_avg_contrib.
aff3e498
PT
2125 */
2126 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2127 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2128 if (se->avg.decay_count) {
2129 /*
2130 * In a wake-up migration we have to approximate the
2131 * time sleeping. This is because we can't synchronize
2132 * clock_task between the two cpus, and it is not
2133 * guaranteed to be read-safe. Instead, we can
2134 * approximate this using our carried decays, which are
2135 * explicitly atomically readable.
2136 */
2137 se->avg.last_runnable_update -= (-se->avg.decay_count)
2138 << 20;
2139 update_entity_load_avg(se, 0);
2140 /* Indicate that we're now synchronized and on-rq */
2141 se->avg.decay_count = 0;
2142 }
9ee474f5
PT
2143 wakeup = 0;
2144 } else {
282cf499
AS
2145 /*
2146 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2147 * would have made count negative); we must be careful to avoid
2148 * double-accounting blocked time after synchronizing decays.
2149 */
2150 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2151 << 20;
9ee474f5
PT
2152 }
2153
aff3e498
PT
2154 /* migrated tasks did not contribute to our blocked load */
2155 if (wakeup) {
9ee474f5 2156 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2157 update_entity_load_avg(se, 0);
2158 }
9ee474f5 2159
2dac754e 2160 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2161 /* we force update consideration on load-balancer moves */
2162 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2163}
2164
9ee474f5
PT
2165/*
2166 * Remove se's load from this cfs_rq child load-average, if the entity is
2167 * transitioning to a blocked state we track its projected decay using
2168 * blocked_load_avg.
2169 */
2dac754e 2170static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2171 struct sched_entity *se,
2172 int sleep)
2dac754e 2173{
9ee474f5 2174 update_entity_load_avg(se, 1);
aff3e498
PT
2175 /* we force update consideration on load-balancer moves */
2176 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2177
2dac754e 2178 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2179 if (sleep) {
2180 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2181 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2182 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2183}
642dbc39
VG
2184
2185/*
2186 * Update the rq's load with the elapsed running time before entering
2187 * idle. if the last scheduled task is not a CFS task, idle_enter will
2188 * be the only way to update the runnable statistic.
2189 */
2190void idle_enter_fair(struct rq *this_rq)
2191{
2192 update_rq_runnable_avg(this_rq, 1);
2193}
2194
2195/*
2196 * Update the rq's load with the elapsed idle time before a task is
2197 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2198 * be the only way to update the runnable statistic.
2199 */
2200void idle_exit_fair(struct rq *this_rq)
2201{
2202 update_rq_runnable_avg(this_rq, 0);
2203}
2204
9d85f21c 2205#else
9ee474f5
PT
2206static inline void update_entity_load_avg(struct sched_entity *se,
2207 int update_cfs_rq) {}
18bf2805 2208static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2209static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2210 struct sched_entity *se,
2211 int wakeup) {}
2dac754e 2212static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2213 struct sched_entity *se,
2214 int sleep) {}
aff3e498
PT
2215static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2216 int force_update) {}
9d85f21c
PT
2217#endif
2218
2396af69 2219static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2220{
bf0f6f24 2221#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2222 struct task_struct *tsk = NULL;
2223
2224 if (entity_is_task(se))
2225 tsk = task_of(se);
2226
41acab88 2227 if (se->statistics.sleep_start) {
78becc27 2228 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2229
2230 if ((s64)delta < 0)
2231 delta = 0;
2232
41acab88
LDM
2233 if (unlikely(delta > se->statistics.sleep_max))
2234 se->statistics.sleep_max = delta;
bf0f6f24 2235
8c79a045 2236 se->statistics.sleep_start = 0;
41acab88 2237 se->statistics.sum_sleep_runtime += delta;
9745512c 2238
768d0c27 2239 if (tsk) {
e414314c 2240 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2241 trace_sched_stat_sleep(tsk, delta);
2242 }
bf0f6f24 2243 }
41acab88 2244 if (se->statistics.block_start) {
78becc27 2245 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2246
2247 if ((s64)delta < 0)
2248 delta = 0;
2249
41acab88
LDM
2250 if (unlikely(delta > se->statistics.block_max))
2251 se->statistics.block_max = delta;
bf0f6f24 2252
8c79a045 2253 se->statistics.block_start = 0;
41acab88 2254 se->statistics.sum_sleep_runtime += delta;
30084fbd 2255
e414314c 2256 if (tsk) {
8f0dfc34 2257 if (tsk->in_iowait) {
41acab88
LDM
2258 se->statistics.iowait_sum += delta;
2259 se->statistics.iowait_count++;
768d0c27 2260 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2261 }
2262
b781a602
AV
2263 trace_sched_stat_blocked(tsk, delta);
2264
e414314c
PZ
2265 /*
2266 * Blocking time is in units of nanosecs, so shift by
2267 * 20 to get a milliseconds-range estimation of the
2268 * amount of time that the task spent sleeping:
2269 */
2270 if (unlikely(prof_on == SLEEP_PROFILING)) {
2271 profile_hits(SLEEP_PROFILING,
2272 (void *)get_wchan(tsk),
2273 delta >> 20);
2274 }
2275 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2276 }
bf0f6f24
IM
2277 }
2278#endif
2279}
2280
ddc97297
PZ
2281static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2282{
2283#ifdef CONFIG_SCHED_DEBUG
2284 s64 d = se->vruntime - cfs_rq->min_vruntime;
2285
2286 if (d < 0)
2287 d = -d;
2288
2289 if (d > 3*sysctl_sched_latency)
2290 schedstat_inc(cfs_rq, nr_spread_over);
2291#endif
2292}
2293
aeb73b04
PZ
2294static void
2295place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2296{
1af5f730 2297 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2298
2cb8600e
PZ
2299 /*
2300 * The 'current' period is already promised to the current tasks,
2301 * however the extra weight of the new task will slow them down a
2302 * little, place the new task so that it fits in the slot that
2303 * stays open at the end.
2304 */
94dfb5e7 2305 if (initial && sched_feat(START_DEBIT))
f9c0b095 2306 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2307
a2e7a7eb 2308 /* sleeps up to a single latency don't count. */
5ca9880c 2309 if (!initial) {
a2e7a7eb 2310 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2311
a2e7a7eb
MG
2312 /*
2313 * Halve their sleep time's effect, to allow
2314 * for a gentler effect of sleepers:
2315 */
2316 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2317 thresh >>= 1;
51e0304c 2318
a2e7a7eb 2319 vruntime -= thresh;
aeb73b04
PZ
2320 }
2321
b5d9d734 2322 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2323 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2324}
2325
d3d9dc33
PT
2326static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2327
bf0f6f24 2328static void
88ec22d3 2329enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2330{
88ec22d3
PZ
2331 /*
2332 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2333 * through calling update_curr().
88ec22d3 2334 */
371fd7e7 2335 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2336 se->vruntime += cfs_rq->min_vruntime;
2337
bf0f6f24 2338 /*
a2a2d680 2339 * Update run-time statistics of the 'current'.
bf0f6f24 2340 */
b7cc0896 2341 update_curr(cfs_rq);
f269ae04 2342 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2343 account_entity_enqueue(cfs_rq, se);
2344 update_cfs_shares(cfs_rq);
bf0f6f24 2345
88ec22d3 2346 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2347 place_entity(cfs_rq, se, 0);
2396af69 2348 enqueue_sleeper(cfs_rq, se);
e9acbff6 2349 }
bf0f6f24 2350
d2417e5a 2351 update_stats_enqueue(cfs_rq, se);
ddc97297 2352 check_spread(cfs_rq, se);
83b699ed
SV
2353 if (se != cfs_rq->curr)
2354 __enqueue_entity(cfs_rq, se);
2069dd75 2355 se->on_rq = 1;
3d4b47b4 2356
d3d9dc33 2357 if (cfs_rq->nr_running == 1) {
3d4b47b4 2358 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2359 check_enqueue_throttle(cfs_rq);
2360 }
bf0f6f24
IM
2361}
2362
2c13c919 2363static void __clear_buddies_last(struct sched_entity *se)
2002c695 2364{
2c13c919
RR
2365 for_each_sched_entity(se) {
2366 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2367 if (cfs_rq->last == se)
2368 cfs_rq->last = NULL;
2369 else
2370 break;
2371 }
2372}
2002c695 2373
2c13c919
RR
2374static void __clear_buddies_next(struct sched_entity *se)
2375{
2376 for_each_sched_entity(se) {
2377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2378 if (cfs_rq->next == se)
2379 cfs_rq->next = NULL;
2380 else
2381 break;
2382 }
2002c695
PZ
2383}
2384
ac53db59
RR
2385static void __clear_buddies_skip(struct sched_entity *se)
2386{
2387 for_each_sched_entity(se) {
2388 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2389 if (cfs_rq->skip == se)
2390 cfs_rq->skip = NULL;
2391 else
2392 break;
2393 }
2394}
2395
a571bbea
PZ
2396static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2397{
2c13c919
RR
2398 if (cfs_rq->last == se)
2399 __clear_buddies_last(se);
2400
2401 if (cfs_rq->next == se)
2402 __clear_buddies_next(se);
ac53db59
RR
2403
2404 if (cfs_rq->skip == se)
2405 __clear_buddies_skip(se);
a571bbea
PZ
2406}
2407
6c16a6dc 2408static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2409
bf0f6f24 2410static void
371fd7e7 2411dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2412{
a2a2d680
DA
2413 /*
2414 * Update run-time statistics of the 'current'.
2415 */
2416 update_curr(cfs_rq);
17bc14b7 2417 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2418
19b6a2e3 2419 update_stats_dequeue(cfs_rq, se);
371fd7e7 2420 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2421#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2422 if (entity_is_task(se)) {
2423 struct task_struct *tsk = task_of(se);
2424
2425 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2426 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2427 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2428 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2429 }
db36cc7d 2430#endif
67e9fb2a
PZ
2431 }
2432
2002c695 2433 clear_buddies(cfs_rq, se);
4793241b 2434
83b699ed 2435 if (se != cfs_rq->curr)
30cfdcfc 2436 __dequeue_entity(cfs_rq, se);
17bc14b7 2437 se->on_rq = 0;
30cfdcfc 2438 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2439
2440 /*
2441 * Normalize the entity after updating the min_vruntime because the
2442 * update can refer to the ->curr item and we need to reflect this
2443 * movement in our normalized position.
2444 */
371fd7e7 2445 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2446 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2447
d8b4986d
PT
2448 /* return excess runtime on last dequeue */
2449 return_cfs_rq_runtime(cfs_rq);
2450
1e876231 2451 update_min_vruntime(cfs_rq);
17bc14b7 2452 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2453}
2454
2455/*
2456 * Preempt the current task with a newly woken task if needed:
2457 */
7c92e54f 2458static void
2e09bf55 2459check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2460{
11697830 2461 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2462 struct sched_entity *se;
2463 s64 delta;
11697830 2464
6d0f0ebd 2465 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2466 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2467 if (delta_exec > ideal_runtime) {
bf0f6f24 2468 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2469 /*
2470 * The current task ran long enough, ensure it doesn't get
2471 * re-elected due to buddy favours.
2472 */
2473 clear_buddies(cfs_rq, curr);
f685ceac
MG
2474 return;
2475 }
2476
2477 /*
2478 * Ensure that a task that missed wakeup preemption by a
2479 * narrow margin doesn't have to wait for a full slice.
2480 * This also mitigates buddy induced latencies under load.
2481 */
f685ceac
MG
2482 if (delta_exec < sysctl_sched_min_granularity)
2483 return;
2484
f4cfb33e
WX
2485 se = __pick_first_entity(cfs_rq);
2486 delta = curr->vruntime - se->vruntime;
f685ceac 2487
f4cfb33e
WX
2488 if (delta < 0)
2489 return;
d7d82944 2490
f4cfb33e
WX
2491 if (delta > ideal_runtime)
2492 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2493}
2494
83b699ed 2495static void
8494f412 2496set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2497{
83b699ed
SV
2498 /* 'current' is not kept within the tree. */
2499 if (se->on_rq) {
2500 /*
2501 * Any task has to be enqueued before it get to execute on
2502 * a CPU. So account for the time it spent waiting on the
2503 * runqueue.
2504 */
2505 update_stats_wait_end(cfs_rq, se);
2506 __dequeue_entity(cfs_rq, se);
2507 }
2508
79303e9e 2509 update_stats_curr_start(cfs_rq, se);
429d43bc 2510 cfs_rq->curr = se;
eba1ed4b
IM
2511#ifdef CONFIG_SCHEDSTATS
2512 /*
2513 * Track our maximum slice length, if the CPU's load is at
2514 * least twice that of our own weight (i.e. dont track it
2515 * when there are only lesser-weight tasks around):
2516 */
495eca49 2517 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2518 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2519 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2520 }
2521#endif
4a55b450 2522 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2523}
2524
3f3a4904
PZ
2525static int
2526wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2527
ac53db59
RR
2528/*
2529 * Pick the next process, keeping these things in mind, in this order:
2530 * 1) keep things fair between processes/task groups
2531 * 2) pick the "next" process, since someone really wants that to run
2532 * 3) pick the "last" process, for cache locality
2533 * 4) do not run the "skip" process, if something else is available
2534 */
f4b6755f 2535static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2536{
ac53db59 2537 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2538 struct sched_entity *left = se;
f4b6755f 2539
ac53db59
RR
2540 /*
2541 * Avoid running the skip buddy, if running something else can
2542 * be done without getting too unfair.
2543 */
2544 if (cfs_rq->skip == se) {
2545 struct sched_entity *second = __pick_next_entity(se);
2546 if (second && wakeup_preempt_entity(second, left) < 1)
2547 se = second;
2548 }
aa2ac252 2549
f685ceac
MG
2550 /*
2551 * Prefer last buddy, try to return the CPU to a preempted task.
2552 */
2553 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2554 se = cfs_rq->last;
2555
ac53db59
RR
2556 /*
2557 * Someone really wants this to run. If it's not unfair, run it.
2558 */
2559 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2560 se = cfs_rq->next;
2561
f685ceac 2562 clear_buddies(cfs_rq, se);
4793241b
PZ
2563
2564 return se;
aa2ac252
PZ
2565}
2566
d3d9dc33
PT
2567static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2568
ab6cde26 2569static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2570{
2571 /*
2572 * If still on the runqueue then deactivate_task()
2573 * was not called and update_curr() has to be done:
2574 */
2575 if (prev->on_rq)
b7cc0896 2576 update_curr(cfs_rq);
bf0f6f24 2577
d3d9dc33
PT
2578 /* throttle cfs_rqs exceeding runtime */
2579 check_cfs_rq_runtime(cfs_rq);
2580
ddc97297 2581 check_spread(cfs_rq, prev);
30cfdcfc 2582 if (prev->on_rq) {
5870db5b 2583 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2584 /* Put 'current' back into the tree. */
2585 __enqueue_entity(cfs_rq, prev);
9d85f21c 2586 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2587 update_entity_load_avg(prev, 1);
30cfdcfc 2588 }
429d43bc 2589 cfs_rq->curr = NULL;
bf0f6f24
IM
2590}
2591
8f4d37ec
PZ
2592static void
2593entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2594{
bf0f6f24 2595 /*
30cfdcfc 2596 * Update run-time statistics of the 'current'.
bf0f6f24 2597 */
30cfdcfc 2598 update_curr(cfs_rq);
bf0f6f24 2599
9d85f21c
PT
2600 /*
2601 * Ensure that runnable average is periodically updated.
2602 */
9ee474f5 2603 update_entity_load_avg(curr, 1);
aff3e498 2604 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2605 update_cfs_shares(cfs_rq);
9d85f21c 2606
8f4d37ec
PZ
2607#ifdef CONFIG_SCHED_HRTICK
2608 /*
2609 * queued ticks are scheduled to match the slice, so don't bother
2610 * validating it and just reschedule.
2611 */
983ed7a6
HH
2612 if (queued) {
2613 resched_task(rq_of(cfs_rq)->curr);
2614 return;
2615 }
8f4d37ec
PZ
2616 /*
2617 * don't let the period tick interfere with the hrtick preemption
2618 */
2619 if (!sched_feat(DOUBLE_TICK) &&
2620 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2621 return;
2622#endif
2623
2c2efaed 2624 if (cfs_rq->nr_running > 1)
2e09bf55 2625 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2626}
2627
ab84d31e
PT
2628
2629/**************************************************
2630 * CFS bandwidth control machinery
2631 */
2632
2633#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2634
2635#ifdef HAVE_JUMP_LABEL
c5905afb 2636static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2637
2638static inline bool cfs_bandwidth_used(void)
2639{
c5905afb 2640 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2641}
2642
2643void account_cfs_bandwidth_used(int enabled, int was_enabled)
2644{
2645 /* only need to count groups transitioning between enabled/!enabled */
2646 if (enabled && !was_enabled)
c5905afb 2647 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2648 else if (!enabled && was_enabled)
c5905afb 2649 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2650}
2651#else /* HAVE_JUMP_LABEL */
2652static bool cfs_bandwidth_used(void)
2653{
2654 return true;
2655}
2656
2657void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2658#endif /* HAVE_JUMP_LABEL */
2659
ab84d31e
PT
2660/*
2661 * default period for cfs group bandwidth.
2662 * default: 0.1s, units: nanoseconds
2663 */
2664static inline u64 default_cfs_period(void)
2665{
2666 return 100000000ULL;
2667}
ec12cb7f
PT
2668
2669static inline u64 sched_cfs_bandwidth_slice(void)
2670{
2671 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2672}
2673
a9cf55b2
PT
2674/*
2675 * Replenish runtime according to assigned quota and update expiration time.
2676 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2677 * additional synchronization around rq->lock.
2678 *
2679 * requires cfs_b->lock
2680 */
029632fb 2681void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2682{
2683 u64 now;
2684
2685 if (cfs_b->quota == RUNTIME_INF)
2686 return;
2687
2688 now = sched_clock_cpu(smp_processor_id());
2689 cfs_b->runtime = cfs_b->quota;
2690 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2691}
2692
029632fb
PZ
2693static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2694{
2695 return &tg->cfs_bandwidth;
2696}
2697
f1b17280
PT
2698/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2699static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2700{
2701 if (unlikely(cfs_rq->throttle_count))
2702 return cfs_rq->throttled_clock_task;
2703
78becc27 2704 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2705}
2706
85dac906
PT
2707/* returns 0 on failure to allocate runtime */
2708static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2709{
2710 struct task_group *tg = cfs_rq->tg;
2711 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2712 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2713
2714 /* note: this is a positive sum as runtime_remaining <= 0 */
2715 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2716
2717 raw_spin_lock(&cfs_b->lock);
2718 if (cfs_b->quota == RUNTIME_INF)
2719 amount = min_amount;
58088ad0 2720 else {
a9cf55b2
PT
2721 /*
2722 * If the bandwidth pool has become inactive, then at least one
2723 * period must have elapsed since the last consumption.
2724 * Refresh the global state and ensure bandwidth timer becomes
2725 * active.
2726 */
2727 if (!cfs_b->timer_active) {
2728 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2729 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2730 }
58088ad0
PT
2731
2732 if (cfs_b->runtime > 0) {
2733 amount = min(cfs_b->runtime, min_amount);
2734 cfs_b->runtime -= amount;
2735 cfs_b->idle = 0;
2736 }
ec12cb7f 2737 }
a9cf55b2 2738 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2739 raw_spin_unlock(&cfs_b->lock);
2740
2741 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2742 /*
2743 * we may have advanced our local expiration to account for allowed
2744 * spread between our sched_clock and the one on which runtime was
2745 * issued.
2746 */
2747 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2748 cfs_rq->runtime_expires = expires;
85dac906
PT
2749
2750 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2751}
2752
a9cf55b2
PT
2753/*
2754 * Note: This depends on the synchronization provided by sched_clock and the
2755 * fact that rq->clock snapshots this value.
2756 */
2757static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2758{
a9cf55b2 2759 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2760
2761 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2762 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2763 return;
2764
a9cf55b2
PT
2765 if (cfs_rq->runtime_remaining < 0)
2766 return;
2767
2768 /*
2769 * If the local deadline has passed we have to consider the
2770 * possibility that our sched_clock is 'fast' and the global deadline
2771 * has not truly expired.
2772 *
2773 * Fortunately we can check determine whether this the case by checking
2774 * whether the global deadline has advanced.
2775 */
2776
2777 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2778 /* extend local deadline, drift is bounded above by 2 ticks */
2779 cfs_rq->runtime_expires += TICK_NSEC;
2780 } else {
2781 /* global deadline is ahead, expiration has passed */
2782 cfs_rq->runtime_remaining = 0;
2783 }
2784}
2785
2786static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2787 unsigned long delta_exec)
2788{
2789 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2790 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2791 expire_cfs_rq_runtime(cfs_rq);
2792
2793 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2794 return;
2795
85dac906
PT
2796 /*
2797 * if we're unable to extend our runtime we resched so that the active
2798 * hierarchy can be throttled
2799 */
2800 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2801 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2802}
2803
6c16a6dc
PZ
2804static __always_inline
2805void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2806{
56f570e5 2807 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2808 return;
2809
2810 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2811}
2812
85dac906
PT
2813static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2814{
56f570e5 2815 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2816}
2817
64660c86
PT
2818/* check whether cfs_rq, or any parent, is throttled */
2819static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2820{
56f570e5 2821 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2822}
2823
2824/*
2825 * Ensure that neither of the group entities corresponding to src_cpu or
2826 * dest_cpu are members of a throttled hierarchy when performing group
2827 * load-balance operations.
2828 */
2829static inline int throttled_lb_pair(struct task_group *tg,
2830 int src_cpu, int dest_cpu)
2831{
2832 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2833
2834 src_cfs_rq = tg->cfs_rq[src_cpu];
2835 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2836
2837 return throttled_hierarchy(src_cfs_rq) ||
2838 throttled_hierarchy(dest_cfs_rq);
2839}
2840
2841/* updated child weight may affect parent so we have to do this bottom up */
2842static int tg_unthrottle_up(struct task_group *tg, void *data)
2843{
2844 struct rq *rq = data;
2845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2846
2847 cfs_rq->throttle_count--;
2848#ifdef CONFIG_SMP
2849 if (!cfs_rq->throttle_count) {
f1b17280 2850 /* adjust cfs_rq_clock_task() */
78becc27 2851 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2852 cfs_rq->throttled_clock_task;
64660c86
PT
2853 }
2854#endif
2855
2856 return 0;
2857}
2858
2859static int tg_throttle_down(struct task_group *tg, void *data)
2860{
2861 struct rq *rq = data;
2862 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2863
82958366
PT
2864 /* group is entering throttled state, stop time */
2865 if (!cfs_rq->throttle_count)
78becc27 2866 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2867 cfs_rq->throttle_count++;
2868
2869 return 0;
2870}
2871
d3d9dc33 2872static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2873{
2874 struct rq *rq = rq_of(cfs_rq);
2875 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2876 struct sched_entity *se;
2877 long task_delta, dequeue = 1;
2878
2879 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2880
f1b17280 2881 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2882 rcu_read_lock();
2883 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2884 rcu_read_unlock();
85dac906
PT
2885
2886 task_delta = cfs_rq->h_nr_running;
2887 for_each_sched_entity(se) {
2888 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2889 /* throttled entity or throttle-on-deactivate */
2890 if (!se->on_rq)
2891 break;
2892
2893 if (dequeue)
2894 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2895 qcfs_rq->h_nr_running -= task_delta;
2896
2897 if (qcfs_rq->load.weight)
2898 dequeue = 0;
2899 }
2900
2901 if (!se)
2902 rq->nr_running -= task_delta;
2903
2904 cfs_rq->throttled = 1;
78becc27 2905 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2906 raw_spin_lock(&cfs_b->lock);
2907 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2908 raw_spin_unlock(&cfs_b->lock);
2909}
2910
029632fb 2911void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2912{
2913 struct rq *rq = rq_of(cfs_rq);
2914 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2915 struct sched_entity *se;
2916 int enqueue = 1;
2917 long task_delta;
2918
22b958d8 2919 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2920
2921 cfs_rq->throttled = 0;
1a55af2e
FW
2922
2923 update_rq_clock(rq);
2924
671fd9da 2925 raw_spin_lock(&cfs_b->lock);
78becc27 2926 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2927 list_del_rcu(&cfs_rq->throttled_list);
2928 raw_spin_unlock(&cfs_b->lock);
2929
64660c86
PT
2930 /* update hierarchical throttle state */
2931 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2932
671fd9da
PT
2933 if (!cfs_rq->load.weight)
2934 return;
2935
2936 task_delta = cfs_rq->h_nr_running;
2937 for_each_sched_entity(se) {
2938 if (se->on_rq)
2939 enqueue = 0;
2940
2941 cfs_rq = cfs_rq_of(se);
2942 if (enqueue)
2943 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2944 cfs_rq->h_nr_running += task_delta;
2945
2946 if (cfs_rq_throttled(cfs_rq))
2947 break;
2948 }
2949
2950 if (!se)
2951 rq->nr_running += task_delta;
2952
2953 /* determine whether we need to wake up potentially idle cpu */
2954 if (rq->curr == rq->idle && rq->cfs.nr_running)
2955 resched_task(rq->curr);
2956}
2957
2958static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2959 u64 remaining, u64 expires)
2960{
2961 struct cfs_rq *cfs_rq;
2962 u64 runtime = remaining;
2963
2964 rcu_read_lock();
2965 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2966 throttled_list) {
2967 struct rq *rq = rq_of(cfs_rq);
2968
2969 raw_spin_lock(&rq->lock);
2970 if (!cfs_rq_throttled(cfs_rq))
2971 goto next;
2972
2973 runtime = -cfs_rq->runtime_remaining + 1;
2974 if (runtime > remaining)
2975 runtime = remaining;
2976 remaining -= runtime;
2977
2978 cfs_rq->runtime_remaining += runtime;
2979 cfs_rq->runtime_expires = expires;
2980
2981 /* we check whether we're throttled above */
2982 if (cfs_rq->runtime_remaining > 0)
2983 unthrottle_cfs_rq(cfs_rq);
2984
2985next:
2986 raw_spin_unlock(&rq->lock);
2987
2988 if (!remaining)
2989 break;
2990 }
2991 rcu_read_unlock();
2992
2993 return remaining;
2994}
2995
58088ad0
PT
2996/*
2997 * Responsible for refilling a task_group's bandwidth and unthrottling its
2998 * cfs_rqs as appropriate. If there has been no activity within the last
2999 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3000 * used to track this state.
3001 */
3002static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3003{
671fd9da
PT
3004 u64 runtime, runtime_expires;
3005 int idle = 1, throttled;
58088ad0
PT
3006
3007 raw_spin_lock(&cfs_b->lock);
3008 /* no need to continue the timer with no bandwidth constraint */
3009 if (cfs_b->quota == RUNTIME_INF)
3010 goto out_unlock;
3011
671fd9da
PT
3012 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3013 /* idle depends on !throttled (for the case of a large deficit) */
3014 idle = cfs_b->idle && !throttled;
e8da1b18 3015 cfs_b->nr_periods += overrun;
671fd9da 3016
a9cf55b2
PT
3017 /* if we're going inactive then everything else can be deferred */
3018 if (idle)
3019 goto out_unlock;
3020
3021 __refill_cfs_bandwidth_runtime(cfs_b);
3022
671fd9da
PT
3023 if (!throttled) {
3024 /* mark as potentially idle for the upcoming period */
3025 cfs_b->idle = 1;
3026 goto out_unlock;
3027 }
3028
e8da1b18
NR
3029 /* account preceding periods in which throttling occurred */
3030 cfs_b->nr_throttled += overrun;
3031
671fd9da
PT
3032 /*
3033 * There are throttled entities so we must first use the new bandwidth
3034 * to unthrottle them before making it generally available. This
3035 * ensures that all existing debts will be paid before a new cfs_rq is
3036 * allowed to run.
3037 */
3038 runtime = cfs_b->runtime;
3039 runtime_expires = cfs_b->runtime_expires;
3040 cfs_b->runtime = 0;
3041
3042 /*
3043 * This check is repeated as we are holding onto the new bandwidth
3044 * while we unthrottle. This can potentially race with an unthrottled
3045 * group trying to acquire new bandwidth from the global pool.
3046 */
3047 while (throttled && runtime > 0) {
3048 raw_spin_unlock(&cfs_b->lock);
3049 /* we can't nest cfs_b->lock while distributing bandwidth */
3050 runtime = distribute_cfs_runtime(cfs_b, runtime,
3051 runtime_expires);
3052 raw_spin_lock(&cfs_b->lock);
3053
3054 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3055 }
58088ad0 3056
671fd9da
PT
3057 /* return (any) remaining runtime */
3058 cfs_b->runtime = runtime;
3059 /*
3060 * While we are ensured activity in the period following an
3061 * unthrottle, this also covers the case in which the new bandwidth is
3062 * insufficient to cover the existing bandwidth deficit. (Forcing the
3063 * timer to remain active while there are any throttled entities.)
3064 */
3065 cfs_b->idle = 0;
58088ad0
PT
3066out_unlock:
3067 if (idle)
3068 cfs_b->timer_active = 0;
3069 raw_spin_unlock(&cfs_b->lock);
3070
3071 return idle;
3072}
d3d9dc33 3073
d8b4986d
PT
3074/* a cfs_rq won't donate quota below this amount */
3075static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3076/* minimum remaining period time to redistribute slack quota */
3077static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3078/* how long we wait to gather additional slack before distributing */
3079static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3080
3081/* are we near the end of the current quota period? */
3082static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3083{
3084 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3085 u64 remaining;
3086
3087 /* if the call-back is running a quota refresh is already occurring */
3088 if (hrtimer_callback_running(refresh_timer))
3089 return 1;
3090
3091 /* is a quota refresh about to occur? */
3092 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3093 if (remaining < min_expire)
3094 return 1;
3095
3096 return 0;
3097}
3098
3099static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3100{
3101 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3102
3103 /* if there's a quota refresh soon don't bother with slack */
3104 if (runtime_refresh_within(cfs_b, min_left))
3105 return;
3106
3107 start_bandwidth_timer(&cfs_b->slack_timer,
3108 ns_to_ktime(cfs_bandwidth_slack_period));
3109}
3110
3111/* we know any runtime found here is valid as update_curr() precedes return */
3112static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113{
3114 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3115 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3116
3117 if (slack_runtime <= 0)
3118 return;
3119
3120 raw_spin_lock(&cfs_b->lock);
3121 if (cfs_b->quota != RUNTIME_INF &&
3122 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3123 cfs_b->runtime += slack_runtime;
3124
3125 /* we are under rq->lock, defer unthrottling using a timer */
3126 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3127 !list_empty(&cfs_b->throttled_cfs_rq))
3128 start_cfs_slack_bandwidth(cfs_b);
3129 }
3130 raw_spin_unlock(&cfs_b->lock);
3131
3132 /* even if it's not valid for return we don't want to try again */
3133 cfs_rq->runtime_remaining -= slack_runtime;
3134}
3135
3136static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3137{
56f570e5
PT
3138 if (!cfs_bandwidth_used())
3139 return;
3140
fccfdc6f 3141 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3142 return;
3143
3144 __return_cfs_rq_runtime(cfs_rq);
3145}
3146
3147/*
3148 * This is done with a timer (instead of inline with bandwidth return) since
3149 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3150 */
3151static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3152{
3153 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3154 u64 expires;
3155
3156 /* confirm we're still not at a refresh boundary */
3157 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3158 return;
3159
3160 raw_spin_lock(&cfs_b->lock);
3161 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3162 runtime = cfs_b->runtime;
3163 cfs_b->runtime = 0;
3164 }
3165 expires = cfs_b->runtime_expires;
3166 raw_spin_unlock(&cfs_b->lock);
3167
3168 if (!runtime)
3169 return;
3170
3171 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3172
3173 raw_spin_lock(&cfs_b->lock);
3174 if (expires == cfs_b->runtime_expires)
3175 cfs_b->runtime = runtime;
3176 raw_spin_unlock(&cfs_b->lock);
3177}
3178
d3d9dc33
PT
3179/*
3180 * When a group wakes up we want to make sure that its quota is not already
3181 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3182 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3183 */
3184static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3185{
56f570e5
PT
3186 if (!cfs_bandwidth_used())
3187 return;
3188
d3d9dc33
PT
3189 /* an active group must be handled by the update_curr()->put() path */
3190 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3191 return;
3192
3193 /* ensure the group is not already throttled */
3194 if (cfs_rq_throttled(cfs_rq))
3195 return;
3196
3197 /* update runtime allocation */
3198 account_cfs_rq_runtime(cfs_rq, 0);
3199 if (cfs_rq->runtime_remaining <= 0)
3200 throttle_cfs_rq(cfs_rq);
3201}
3202
3203/* conditionally throttle active cfs_rq's from put_prev_entity() */
3204static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3205{
56f570e5
PT
3206 if (!cfs_bandwidth_used())
3207 return;
3208
d3d9dc33
PT
3209 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3210 return;
3211
3212 /*
3213 * it's possible for a throttled entity to be forced into a running
3214 * state (e.g. set_curr_task), in this case we're finished.
3215 */
3216 if (cfs_rq_throttled(cfs_rq))
3217 return;
3218
3219 throttle_cfs_rq(cfs_rq);
3220}
029632fb 3221
029632fb
PZ
3222static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3223{
3224 struct cfs_bandwidth *cfs_b =
3225 container_of(timer, struct cfs_bandwidth, slack_timer);
3226 do_sched_cfs_slack_timer(cfs_b);
3227
3228 return HRTIMER_NORESTART;
3229}
3230
3231static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3232{
3233 struct cfs_bandwidth *cfs_b =
3234 container_of(timer, struct cfs_bandwidth, period_timer);
3235 ktime_t now;
3236 int overrun;
3237 int idle = 0;
3238
3239 for (;;) {
3240 now = hrtimer_cb_get_time(timer);
3241 overrun = hrtimer_forward(timer, now, cfs_b->period);
3242
3243 if (!overrun)
3244 break;
3245
3246 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3247 }
3248
3249 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3250}
3251
3252void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3253{
3254 raw_spin_lock_init(&cfs_b->lock);
3255 cfs_b->runtime = 0;
3256 cfs_b->quota = RUNTIME_INF;
3257 cfs_b->period = ns_to_ktime(default_cfs_period());
3258
3259 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3260 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3261 cfs_b->period_timer.function = sched_cfs_period_timer;
3262 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3263 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3264}
3265
3266static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3267{
3268 cfs_rq->runtime_enabled = 0;
3269 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3270}
3271
3272/* requires cfs_b->lock, may release to reprogram timer */
3273void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3274{
3275 /*
3276 * The timer may be active because we're trying to set a new bandwidth
3277 * period or because we're racing with the tear-down path
3278 * (timer_active==0 becomes visible before the hrtimer call-back
3279 * terminates). In either case we ensure that it's re-programmed
3280 */
3281 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3282 raw_spin_unlock(&cfs_b->lock);
3283 /* ensure cfs_b->lock is available while we wait */
3284 hrtimer_cancel(&cfs_b->period_timer);
3285
3286 raw_spin_lock(&cfs_b->lock);
3287 /* if someone else restarted the timer then we're done */
3288 if (cfs_b->timer_active)
3289 return;
3290 }
3291
3292 cfs_b->timer_active = 1;
3293 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3294}
3295
3296static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3297{
3298 hrtimer_cancel(&cfs_b->period_timer);
3299 hrtimer_cancel(&cfs_b->slack_timer);
3300}
3301
38dc3348 3302static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3303{
3304 struct cfs_rq *cfs_rq;
3305
3306 for_each_leaf_cfs_rq(rq, cfs_rq) {
3307 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3308
3309 if (!cfs_rq->runtime_enabled)
3310 continue;
3311
3312 /*
3313 * clock_task is not advancing so we just need to make sure
3314 * there's some valid quota amount
3315 */
3316 cfs_rq->runtime_remaining = cfs_b->quota;
3317 if (cfs_rq_throttled(cfs_rq))
3318 unthrottle_cfs_rq(cfs_rq);
3319 }
3320}
3321
3322#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3323static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3324{
78becc27 3325 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3326}
3327
3328static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3329 unsigned long delta_exec) {}
d3d9dc33
PT
3330static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3331static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3332static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3333
3334static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3335{
3336 return 0;
3337}
64660c86
PT
3338
3339static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3340{
3341 return 0;
3342}
3343
3344static inline int throttled_lb_pair(struct task_group *tg,
3345 int src_cpu, int dest_cpu)
3346{
3347 return 0;
3348}
029632fb
PZ
3349
3350void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3351
3352#ifdef CONFIG_FAIR_GROUP_SCHED
3353static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3354#endif
3355
029632fb
PZ
3356static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3357{
3358 return NULL;
3359}
3360static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3361static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3362
3363#endif /* CONFIG_CFS_BANDWIDTH */
3364
bf0f6f24
IM
3365/**************************************************
3366 * CFS operations on tasks:
3367 */
3368
8f4d37ec
PZ
3369#ifdef CONFIG_SCHED_HRTICK
3370static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3371{
8f4d37ec
PZ
3372 struct sched_entity *se = &p->se;
3373 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3374
3375 WARN_ON(task_rq(p) != rq);
3376
b39e66ea 3377 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3378 u64 slice = sched_slice(cfs_rq, se);
3379 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3380 s64 delta = slice - ran;
3381
3382 if (delta < 0) {
3383 if (rq->curr == p)
3384 resched_task(p);
3385 return;
3386 }
3387
3388 /*
3389 * Don't schedule slices shorter than 10000ns, that just
3390 * doesn't make sense. Rely on vruntime for fairness.
3391 */
31656519 3392 if (rq->curr != p)
157124c1 3393 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3394
31656519 3395 hrtick_start(rq, delta);
8f4d37ec
PZ
3396 }
3397}
a4c2f00f
PZ
3398
3399/*
3400 * called from enqueue/dequeue and updates the hrtick when the
3401 * current task is from our class and nr_running is low enough
3402 * to matter.
3403 */
3404static void hrtick_update(struct rq *rq)
3405{
3406 struct task_struct *curr = rq->curr;
3407
b39e66ea 3408 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3409 return;
3410
3411 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3412 hrtick_start_fair(rq, curr);
3413}
55e12e5e 3414#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3415static inline void
3416hrtick_start_fair(struct rq *rq, struct task_struct *p)
3417{
3418}
a4c2f00f
PZ
3419
3420static inline void hrtick_update(struct rq *rq)
3421{
3422}
8f4d37ec
PZ
3423#endif
3424
bf0f6f24
IM
3425/*
3426 * The enqueue_task method is called before nr_running is
3427 * increased. Here we update the fair scheduling stats and
3428 * then put the task into the rbtree:
3429 */
ea87bb78 3430static void
371fd7e7 3431enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3432{
3433 struct cfs_rq *cfs_rq;
62fb1851 3434 struct sched_entity *se = &p->se;
bf0f6f24
IM
3435
3436 for_each_sched_entity(se) {
62fb1851 3437 if (se->on_rq)
bf0f6f24
IM
3438 break;
3439 cfs_rq = cfs_rq_of(se);
88ec22d3 3440 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3441
3442 /*
3443 * end evaluation on encountering a throttled cfs_rq
3444 *
3445 * note: in the case of encountering a throttled cfs_rq we will
3446 * post the final h_nr_running increment below.
3447 */
3448 if (cfs_rq_throttled(cfs_rq))
3449 break;
953bfcd1 3450 cfs_rq->h_nr_running++;
85dac906 3451
88ec22d3 3452 flags = ENQUEUE_WAKEUP;
bf0f6f24 3453 }
8f4d37ec 3454
2069dd75 3455 for_each_sched_entity(se) {
0f317143 3456 cfs_rq = cfs_rq_of(se);
953bfcd1 3457 cfs_rq->h_nr_running++;
2069dd75 3458
85dac906
PT
3459 if (cfs_rq_throttled(cfs_rq))
3460 break;
3461
17bc14b7 3462 update_cfs_shares(cfs_rq);
9ee474f5 3463 update_entity_load_avg(se, 1);
2069dd75
PZ
3464 }
3465
18bf2805
BS
3466 if (!se) {
3467 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3468 inc_nr_running(rq);
18bf2805 3469 }
a4c2f00f 3470 hrtick_update(rq);
bf0f6f24
IM
3471}
3472
2f36825b
VP
3473static void set_next_buddy(struct sched_entity *se);
3474
bf0f6f24
IM
3475/*
3476 * The dequeue_task method is called before nr_running is
3477 * decreased. We remove the task from the rbtree and
3478 * update the fair scheduling stats:
3479 */
371fd7e7 3480static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3481{
3482 struct cfs_rq *cfs_rq;
62fb1851 3483 struct sched_entity *se = &p->se;
2f36825b 3484 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3485
3486 for_each_sched_entity(se) {
3487 cfs_rq = cfs_rq_of(se);
371fd7e7 3488 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3489
3490 /*
3491 * end evaluation on encountering a throttled cfs_rq
3492 *
3493 * note: in the case of encountering a throttled cfs_rq we will
3494 * post the final h_nr_running decrement below.
3495 */
3496 if (cfs_rq_throttled(cfs_rq))
3497 break;
953bfcd1 3498 cfs_rq->h_nr_running--;
2069dd75 3499
bf0f6f24 3500 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3501 if (cfs_rq->load.weight) {
3502 /*
3503 * Bias pick_next to pick a task from this cfs_rq, as
3504 * p is sleeping when it is within its sched_slice.
3505 */
3506 if (task_sleep && parent_entity(se))
3507 set_next_buddy(parent_entity(se));
9598c82d
PT
3508
3509 /* avoid re-evaluating load for this entity */
3510 se = parent_entity(se);
bf0f6f24 3511 break;
2f36825b 3512 }
371fd7e7 3513 flags |= DEQUEUE_SLEEP;
bf0f6f24 3514 }
8f4d37ec 3515
2069dd75 3516 for_each_sched_entity(se) {
0f317143 3517 cfs_rq = cfs_rq_of(se);
953bfcd1 3518 cfs_rq->h_nr_running--;
2069dd75 3519
85dac906
PT
3520 if (cfs_rq_throttled(cfs_rq))
3521 break;
3522
17bc14b7 3523 update_cfs_shares(cfs_rq);
9ee474f5 3524 update_entity_load_avg(se, 1);
2069dd75
PZ
3525 }
3526
18bf2805 3527 if (!se) {
85dac906 3528 dec_nr_running(rq);
18bf2805
BS
3529 update_rq_runnable_avg(rq, 1);
3530 }
a4c2f00f 3531 hrtick_update(rq);
bf0f6f24
IM
3532}
3533
e7693a36 3534#ifdef CONFIG_SMP
029632fb
PZ
3535/* Used instead of source_load when we know the type == 0 */
3536static unsigned long weighted_cpuload(const int cpu)
3537{
b92486cb 3538 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3539}
3540
3541/*
3542 * Return a low guess at the load of a migration-source cpu weighted
3543 * according to the scheduling class and "nice" value.
3544 *
3545 * We want to under-estimate the load of migration sources, to
3546 * balance conservatively.
3547 */
3548static unsigned long source_load(int cpu, int type)
3549{
3550 struct rq *rq = cpu_rq(cpu);
3551 unsigned long total = weighted_cpuload(cpu);
3552
3553 if (type == 0 || !sched_feat(LB_BIAS))
3554 return total;
3555
3556 return min(rq->cpu_load[type-1], total);
3557}
3558
3559/*
3560 * Return a high guess at the load of a migration-target cpu weighted
3561 * according to the scheduling class and "nice" value.
3562 */
3563static unsigned long target_load(int cpu, int type)
3564{
3565 struct rq *rq = cpu_rq(cpu);
3566 unsigned long total = weighted_cpuload(cpu);
3567
3568 if (type == 0 || !sched_feat(LB_BIAS))
3569 return total;
3570
3571 return max(rq->cpu_load[type-1], total);
3572}
3573
3574static unsigned long power_of(int cpu)
3575{
3576 return cpu_rq(cpu)->cpu_power;
3577}
3578
3579static unsigned long cpu_avg_load_per_task(int cpu)
3580{
3581 struct rq *rq = cpu_rq(cpu);
3582 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3583 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3584
3585 if (nr_running)
b92486cb 3586 return load_avg / nr_running;
029632fb
PZ
3587
3588 return 0;
3589}
3590
62470419
MW
3591static void record_wakee(struct task_struct *p)
3592{
3593 /*
3594 * Rough decay (wiping) for cost saving, don't worry
3595 * about the boundary, really active task won't care
3596 * about the loss.
3597 */
3598 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3599 current->wakee_flips = 0;
3600 current->wakee_flip_decay_ts = jiffies;
3601 }
3602
3603 if (current->last_wakee != p) {
3604 current->last_wakee = p;
3605 current->wakee_flips++;
3606 }
3607}
098fb9db 3608
74f8e4b2 3609static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3610{
3611 struct sched_entity *se = &p->se;
3612 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3613 u64 min_vruntime;
3614
3615#ifndef CONFIG_64BIT
3616 u64 min_vruntime_copy;
88ec22d3 3617
3fe1698b
PZ
3618 do {
3619 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3620 smp_rmb();
3621 min_vruntime = cfs_rq->min_vruntime;
3622 } while (min_vruntime != min_vruntime_copy);
3623#else
3624 min_vruntime = cfs_rq->min_vruntime;
3625#endif
88ec22d3 3626
3fe1698b 3627 se->vruntime -= min_vruntime;
62470419 3628 record_wakee(p);
88ec22d3
PZ
3629}
3630
bb3469ac 3631#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3632/*
3633 * effective_load() calculates the load change as seen from the root_task_group
3634 *
3635 * Adding load to a group doesn't make a group heavier, but can cause movement
3636 * of group shares between cpus. Assuming the shares were perfectly aligned one
3637 * can calculate the shift in shares.
cf5f0acf
PZ
3638 *
3639 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3640 * on this @cpu and results in a total addition (subtraction) of @wg to the
3641 * total group weight.
3642 *
3643 * Given a runqueue weight distribution (rw_i) we can compute a shares
3644 * distribution (s_i) using:
3645 *
3646 * s_i = rw_i / \Sum rw_j (1)
3647 *
3648 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3649 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3650 * shares distribution (s_i):
3651 *
3652 * rw_i = { 2, 4, 1, 0 }
3653 * s_i = { 2/7, 4/7, 1/7, 0 }
3654 *
3655 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3656 * task used to run on and the CPU the waker is running on), we need to
3657 * compute the effect of waking a task on either CPU and, in case of a sync
3658 * wakeup, compute the effect of the current task going to sleep.
3659 *
3660 * So for a change of @wl to the local @cpu with an overall group weight change
3661 * of @wl we can compute the new shares distribution (s'_i) using:
3662 *
3663 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3664 *
3665 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3666 * differences in waking a task to CPU 0. The additional task changes the
3667 * weight and shares distributions like:
3668 *
3669 * rw'_i = { 3, 4, 1, 0 }
3670 * s'_i = { 3/8, 4/8, 1/8, 0 }
3671 *
3672 * We can then compute the difference in effective weight by using:
3673 *
3674 * dw_i = S * (s'_i - s_i) (3)
3675 *
3676 * Where 'S' is the group weight as seen by its parent.
3677 *
3678 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3679 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3680 * 4/7) times the weight of the group.
f5bfb7d9 3681 */
2069dd75 3682static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3683{
4be9daaa 3684 struct sched_entity *se = tg->se[cpu];
f1d239f7 3685
58d081b5 3686 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3687 return wl;
3688
4be9daaa 3689 for_each_sched_entity(se) {
cf5f0acf 3690 long w, W;
4be9daaa 3691
977dda7c 3692 tg = se->my_q->tg;
bb3469ac 3693
cf5f0acf
PZ
3694 /*
3695 * W = @wg + \Sum rw_j
3696 */
3697 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3698
cf5f0acf
PZ
3699 /*
3700 * w = rw_i + @wl
3701 */
3702 w = se->my_q->load.weight + wl;
940959e9 3703
cf5f0acf
PZ
3704 /*
3705 * wl = S * s'_i; see (2)
3706 */
3707 if (W > 0 && w < W)
3708 wl = (w * tg->shares) / W;
977dda7c
PT
3709 else
3710 wl = tg->shares;
940959e9 3711
cf5f0acf
PZ
3712 /*
3713 * Per the above, wl is the new se->load.weight value; since
3714 * those are clipped to [MIN_SHARES, ...) do so now. See
3715 * calc_cfs_shares().
3716 */
977dda7c
PT
3717 if (wl < MIN_SHARES)
3718 wl = MIN_SHARES;
cf5f0acf
PZ
3719
3720 /*
3721 * wl = dw_i = S * (s'_i - s_i); see (3)
3722 */
977dda7c 3723 wl -= se->load.weight;
cf5f0acf
PZ
3724
3725 /*
3726 * Recursively apply this logic to all parent groups to compute
3727 * the final effective load change on the root group. Since
3728 * only the @tg group gets extra weight, all parent groups can
3729 * only redistribute existing shares. @wl is the shift in shares
3730 * resulting from this level per the above.
3731 */
4be9daaa 3732 wg = 0;
4be9daaa 3733 }
bb3469ac 3734
4be9daaa 3735 return wl;
bb3469ac
PZ
3736}
3737#else
4be9daaa 3738
58d081b5 3739static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3740{
83378269 3741 return wl;
bb3469ac 3742}
4be9daaa 3743
bb3469ac
PZ
3744#endif
3745
62470419
MW
3746static int wake_wide(struct task_struct *p)
3747{
7d9ffa89 3748 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3749
3750 /*
3751 * Yeah, it's the switching-frequency, could means many wakee or
3752 * rapidly switch, use factor here will just help to automatically
3753 * adjust the loose-degree, so bigger node will lead to more pull.
3754 */
3755 if (p->wakee_flips > factor) {
3756 /*
3757 * wakee is somewhat hot, it needs certain amount of cpu
3758 * resource, so if waker is far more hot, prefer to leave
3759 * it alone.
3760 */
3761 if (current->wakee_flips > (factor * p->wakee_flips))
3762 return 1;
3763 }
3764
3765 return 0;
3766}
3767
c88d5910 3768static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3769{
e37b6a7b 3770 s64 this_load, load;
c88d5910 3771 int idx, this_cpu, prev_cpu;
098fb9db 3772 unsigned long tl_per_task;
c88d5910 3773 struct task_group *tg;
83378269 3774 unsigned long weight;
b3137bc8 3775 int balanced;
098fb9db 3776
62470419
MW
3777 /*
3778 * If we wake multiple tasks be careful to not bounce
3779 * ourselves around too much.
3780 */
3781 if (wake_wide(p))
3782 return 0;
3783
c88d5910
PZ
3784 idx = sd->wake_idx;
3785 this_cpu = smp_processor_id();
3786 prev_cpu = task_cpu(p);
3787 load = source_load(prev_cpu, idx);
3788 this_load = target_load(this_cpu, idx);
098fb9db 3789
b3137bc8
MG
3790 /*
3791 * If sync wakeup then subtract the (maximum possible)
3792 * effect of the currently running task from the load
3793 * of the current CPU:
3794 */
83378269
PZ
3795 if (sync) {
3796 tg = task_group(current);
3797 weight = current->se.load.weight;
3798
c88d5910 3799 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3800 load += effective_load(tg, prev_cpu, 0, -weight);
3801 }
b3137bc8 3802
83378269
PZ
3803 tg = task_group(p);
3804 weight = p->se.load.weight;
b3137bc8 3805
71a29aa7
PZ
3806 /*
3807 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3808 * due to the sync cause above having dropped this_load to 0, we'll
3809 * always have an imbalance, but there's really nothing you can do
3810 * about that, so that's good too.
71a29aa7
PZ
3811 *
3812 * Otherwise check if either cpus are near enough in load to allow this
3813 * task to be woken on this_cpu.
3814 */
e37b6a7b
PT
3815 if (this_load > 0) {
3816 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3817
3818 this_eff_load = 100;
3819 this_eff_load *= power_of(prev_cpu);
3820 this_eff_load *= this_load +
3821 effective_load(tg, this_cpu, weight, weight);
3822
3823 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3824 prev_eff_load *= power_of(this_cpu);
3825 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3826
3827 balanced = this_eff_load <= prev_eff_load;
3828 } else
3829 balanced = true;
b3137bc8 3830
098fb9db 3831 /*
4ae7d5ce
IM
3832 * If the currently running task will sleep within
3833 * a reasonable amount of time then attract this newly
3834 * woken task:
098fb9db 3835 */
2fb7635c
PZ
3836 if (sync && balanced)
3837 return 1;
098fb9db 3838
41acab88 3839 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3840 tl_per_task = cpu_avg_load_per_task(this_cpu);
3841
c88d5910
PZ
3842 if (balanced ||
3843 (this_load <= load &&
3844 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3845 /*
3846 * This domain has SD_WAKE_AFFINE and
3847 * p is cache cold in this domain, and
3848 * there is no bad imbalance.
3849 */
c88d5910 3850 schedstat_inc(sd, ttwu_move_affine);
41acab88 3851 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3852
3853 return 1;
3854 }
3855 return 0;
3856}
3857
aaee1203
PZ
3858/*
3859 * find_idlest_group finds and returns the least busy CPU group within the
3860 * domain.
3861 */
3862static struct sched_group *
78e7ed53 3863find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3864 int this_cpu, int load_idx)
e7693a36 3865{
b3bd3de6 3866 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3867 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3868 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3869
aaee1203
PZ
3870 do {
3871 unsigned long load, avg_load;
3872 int local_group;
3873 int i;
e7693a36 3874
aaee1203
PZ
3875 /* Skip over this group if it has no CPUs allowed */
3876 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3877 tsk_cpus_allowed(p)))
aaee1203
PZ
3878 continue;
3879
3880 local_group = cpumask_test_cpu(this_cpu,
3881 sched_group_cpus(group));
3882
3883 /* Tally up the load of all CPUs in the group */
3884 avg_load = 0;
3885
3886 for_each_cpu(i, sched_group_cpus(group)) {
3887 /* Bias balancing toward cpus of our domain */
3888 if (local_group)
3889 load = source_load(i, load_idx);
3890 else
3891 load = target_load(i, load_idx);
3892
3893 avg_load += load;
3894 }
3895
3896 /* Adjust by relative CPU power of the group */
9c3f75cb 3897 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3898
3899 if (local_group) {
3900 this_load = avg_load;
aaee1203
PZ
3901 } else if (avg_load < min_load) {
3902 min_load = avg_load;
3903 idlest = group;
3904 }
3905 } while (group = group->next, group != sd->groups);
3906
3907 if (!idlest || 100*this_load < imbalance*min_load)
3908 return NULL;
3909 return idlest;
3910}
3911
3912/*
3913 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3914 */
3915static int
3916find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3917{
3918 unsigned long load, min_load = ULONG_MAX;
3919 int idlest = -1;
3920 int i;
3921
3922 /* Traverse only the allowed CPUs */
fa17b507 3923 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3924 load = weighted_cpuload(i);
3925
3926 if (load < min_load || (load == min_load && i == this_cpu)) {
3927 min_load = load;
3928 idlest = i;
e7693a36
GH
3929 }
3930 }
3931
aaee1203
PZ
3932 return idlest;
3933}
e7693a36 3934
a50bde51
PZ
3935/*
3936 * Try and locate an idle CPU in the sched_domain.
3937 */
99bd5e2f 3938static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3939{
99bd5e2f 3940 struct sched_domain *sd;
37407ea7 3941 struct sched_group *sg;
e0a79f52 3942 int i = task_cpu(p);
a50bde51 3943
e0a79f52
MG
3944 if (idle_cpu(target))
3945 return target;
99bd5e2f
SS
3946
3947 /*
e0a79f52 3948 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3949 */
e0a79f52
MG
3950 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3951 return i;
a50bde51
PZ
3952
3953 /*
37407ea7 3954 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3955 */
518cd623 3956 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3957 for_each_lower_domain(sd) {
37407ea7
LT
3958 sg = sd->groups;
3959 do {
3960 if (!cpumask_intersects(sched_group_cpus(sg),
3961 tsk_cpus_allowed(p)))
3962 goto next;
3963
3964 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3965 if (i == target || !idle_cpu(i))
37407ea7
LT
3966 goto next;
3967 }
970e1789 3968
37407ea7
LT
3969 target = cpumask_first_and(sched_group_cpus(sg),
3970 tsk_cpus_allowed(p));
3971 goto done;
3972next:
3973 sg = sg->next;
3974 } while (sg != sd->groups);
3975 }
3976done:
a50bde51
PZ
3977 return target;
3978}
3979
aaee1203
PZ
3980/*
3981 * sched_balance_self: balance the current task (running on cpu) in domains
3982 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3983 * SD_BALANCE_EXEC.
3984 *
3985 * Balance, ie. select the least loaded group.
3986 *
3987 * Returns the target CPU number, or the same CPU if no balancing is needed.
3988 *
3989 * preempt must be disabled.
3990 */
0017d735 3991static int
ac66f547 3992select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 3993{
29cd8bae 3994 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 3995 int cpu = smp_processor_id();
c88d5910 3996 int new_cpu = cpu;
99bd5e2f 3997 int want_affine = 0;
5158f4e4 3998 int sync = wake_flags & WF_SYNC;
c88d5910 3999
29baa747 4000 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4001 return prev_cpu;
4002
0763a660 4003 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4004 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4005 want_affine = 1;
4006 new_cpu = prev_cpu;
4007 }
aaee1203 4008
dce840a0 4009 rcu_read_lock();
aaee1203 4010 for_each_domain(cpu, tmp) {
e4f42888
PZ
4011 if (!(tmp->flags & SD_LOAD_BALANCE))
4012 continue;
4013
fe3bcfe1 4014 /*
99bd5e2f
SS
4015 * If both cpu and prev_cpu are part of this domain,
4016 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4017 */
99bd5e2f
SS
4018 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4019 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4020 affine_sd = tmp;
29cd8bae 4021 break;
f03542a7 4022 }
29cd8bae 4023
f03542a7 4024 if (tmp->flags & sd_flag)
29cd8bae
PZ
4025 sd = tmp;
4026 }
4027
8b911acd 4028 if (affine_sd) {
f03542a7 4029 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4030 prev_cpu = cpu;
4031
4032 new_cpu = select_idle_sibling(p, prev_cpu);
4033 goto unlock;
8b911acd 4034 }
e7693a36 4035
aaee1203 4036 while (sd) {
5158f4e4 4037 int load_idx = sd->forkexec_idx;
aaee1203 4038 struct sched_group *group;
c88d5910 4039 int weight;
098fb9db 4040
0763a660 4041 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4042 sd = sd->child;
4043 continue;
4044 }
098fb9db 4045
5158f4e4
PZ
4046 if (sd_flag & SD_BALANCE_WAKE)
4047 load_idx = sd->wake_idx;
098fb9db 4048
5158f4e4 4049 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4050 if (!group) {
4051 sd = sd->child;
4052 continue;
4053 }
4ae7d5ce 4054
d7c33c49 4055 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4056 if (new_cpu == -1 || new_cpu == cpu) {
4057 /* Now try balancing at a lower domain level of cpu */
4058 sd = sd->child;
4059 continue;
e7693a36 4060 }
aaee1203
PZ
4061
4062 /* Now try balancing at a lower domain level of new_cpu */
4063 cpu = new_cpu;
669c55e9 4064 weight = sd->span_weight;
aaee1203
PZ
4065 sd = NULL;
4066 for_each_domain(cpu, tmp) {
669c55e9 4067 if (weight <= tmp->span_weight)
aaee1203 4068 break;
0763a660 4069 if (tmp->flags & sd_flag)
aaee1203
PZ
4070 sd = tmp;
4071 }
4072 /* while loop will break here if sd == NULL */
e7693a36 4073 }
dce840a0
PZ
4074unlock:
4075 rcu_read_unlock();
e7693a36 4076
c88d5910 4077 return new_cpu;
e7693a36 4078}
0a74bef8
PT
4079
4080/*
4081 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4082 * cfs_rq_of(p) references at time of call are still valid and identify the
4083 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4084 * other assumptions, including the state of rq->lock, should be made.
4085 */
4086static void
4087migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4088{
aff3e498
PT
4089 struct sched_entity *se = &p->se;
4090 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4091
4092 /*
4093 * Load tracking: accumulate removed load so that it can be processed
4094 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4095 * to blocked load iff they have a positive decay-count. It can never
4096 * be negative here since on-rq tasks have decay-count == 0.
4097 */
4098 if (se->avg.decay_count) {
4099 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4100 atomic_long_add(se->avg.load_avg_contrib,
4101 &cfs_rq->removed_load);
aff3e498 4102 }
0a74bef8 4103}
e7693a36
GH
4104#endif /* CONFIG_SMP */
4105
e52fb7c0
PZ
4106static unsigned long
4107wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4108{
4109 unsigned long gran = sysctl_sched_wakeup_granularity;
4110
4111 /*
e52fb7c0
PZ
4112 * Since its curr running now, convert the gran from real-time
4113 * to virtual-time in his units.
13814d42
MG
4114 *
4115 * By using 'se' instead of 'curr' we penalize light tasks, so
4116 * they get preempted easier. That is, if 'se' < 'curr' then
4117 * the resulting gran will be larger, therefore penalizing the
4118 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4119 * be smaller, again penalizing the lighter task.
4120 *
4121 * This is especially important for buddies when the leftmost
4122 * task is higher priority than the buddy.
0bbd3336 4123 */
f4ad9bd2 4124 return calc_delta_fair(gran, se);
0bbd3336
PZ
4125}
4126
464b7527
PZ
4127/*
4128 * Should 'se' preempt 'curr'.
4129 *
4130 * |s1
4131 * |s2
4132 * |s3
4133 * g
4134 * |<--->|c
4135 *
4136 * w(c, s1) = -1
4137 * w(c, s2) = 0
4138 * w(c, s3) = 1
4139 *
4140 */
4141static int
4142wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4143{
4144 s64 gran, vdiff = curr->vruntime - se->vruntime;
4145
4146 if (vdiff <= 0)
4147 return -1;
4148
e52fb7c0 4149 gran = wakeup_gran(curr, se);
464b7527
PZ
4150 if (vdiff > gran)
4151 return 1;
4152
4153 return 0;
4154}
4155
02479099
PZ
4156static void set_last_buddy(struct sched_entity *se)
4157{
69c80f3e
VP
4158 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4159 return;
4160
4161 for_each_sched_entity(se)
4162 cfs_rq_of(se)->last = se;
02479099
PZ
4163}
4164
4165static void set_next_buddy(struct sched_entity *se)
4166{
69c80f3e
VP
4167 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4168 return;
4169
4170 for_each_sched_entity(se)
4171 cfs_rq_of(se)->next = se;
02479099
PZ
4172}
4173
ac53db59
RR
4174static void set_skip_buddy(struct sched_entity *se)
4175{
69c80f3e
VP
4176 for_each_sched_entity(se)
4177 cfs_rq_of(se)->skip = se;
ac53db59
RR
4178}
4179
bf0f6f24
IM
4180/*
4181 * Preempt the current task with a newly woken task if needed:
4182 */
5a9b86f6 4183static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4184{
4185 struct task_struct *curr = rq->curr;
8651a86c 4186 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4187 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4188 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4189 int next_buddy_marked = 0;
bf0f6f24 4190
4ae7d5ce
IM
4191 if (unlikely(se == pse))
4192 return;
4193
5238cdd3 4194 /*
ddcdf6e7 4195 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4196 * unconditionally check_prempt_curr() after an enqueue (which may have
4197 * lead to a throttle). This both saves work and prevents false
4198 * next-buddy nomination below.
4199 */
4200 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4201 return;
4202
2f36825b 4203 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4204 set_next_buddy(pse);
2f36825b
VP
4205 next_buddy_marked = 1;
4206 }
57fdc26d 4207
aec0a514
BR
4208 /*
4209 * We can come here with TIF_NEED_RESCHED already set from new task
4210 * wake up path.
5238cdd3
PT
4211 *
4212 * Note: this also catches the edge-case of curr being in a throttled
4213 * group (e.g. via set_curr_task), since update_curr() (in the
4214 * enqueue of curr) will have resulted in resched being set. This
4215 * prevents us from potentially nominating it as a false LAST_BUDDY
4216 * below.
aec0a514
BR
4217 */
4218 if (test_tsk_need_resched(curr))
4219 return;
4220
a2f5c9ab
DH
4221 /* Idle tasks are by definition preempted by non-idle tasks. */
4222 if (unlikely(curr->policy == SCHED_IDLE) &&
4223 likely(p->policy != SCHED_IDLE))
4224 goto preempt;
4225
91c234b4 4226 /*
a2f5c9ab
DH
4227 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4228 * is driven by the tick):
91c234b4 4229 */
8ed92e51 4230 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4231 return;
bf0f6f24 4232
464b7527 4233 find_matching_se(&se, &pse);
9bbd7374 4234 update_curr(cfs_rq_of(se));
002f128b 4235 BUG_ON(!pse);
2f36825b
VP
4236 if (wakeup_preempt_entity(se, pse) == 1) {
4237 /*
4238 * Bias pick_next to pick the sched entity that is
4239 * triggering this preemption.
4240 */
4241 if (!next_buddy_marked)
4242 set_next_buddy(pse);
3a7e73a2 4243 goto preempt;
2f36825b 4244 }
464b7527 4245
3a7e73a2 4246 return;
a65ac745 4247
3a7e73a2
PZ
4248preempt:
4249 resched_task(curr);
4250 /*
4251 * Only set the backward buddy when the current task is still
4252 * on the rq. This can happen when a wakeup gets interleaved
4253 * with schedule on the ->pre_schedule() or idle_balance()
4254 * point, either of which can * drop the rq lock.
4255 *
4256 * Also, during early boot the idle thread is in the fair class,
4257 * for obvious reasons its a bad idea to schedule back to it.
4258 */
4259 if (unlikely(!se->on_rq || curr == rq->idle))
4260 return;
4261
4262 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4263 set_last_buddy(se);
bf0f6f24
IM
4264}
4265
fb8d4724 4266static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4267{
8f4d37ec 4268 struct task_struct *p;
bf0f6f24
IM
4269 struct cfs_rq *cfs_rq = &rq->cfs;
4270 struct sched_entity *se;
4271
36ace27e 4272 if (!cfs_rq->nr_running)
bf0f6f24
IM
4273 return NULL;
4274
4275 do {
9948f4b2 4276 se = pick_next_entity(cfs_rq);
f4b6755f 4277 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4278 cfs_rq = group_cfs_rq(se);
4279 } while (cfs_rq);
4280
8f4d37ec 4281 p = task_of(se);
b39e66ea
MG
4282 if (hrtick_enabled(rq))
4283 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4284
4285 return p;
bf0f6f24
IM
4286}
4287
4288/*
4289 * Account for a descheduled task:
4290 */
31ee529c 4291static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4292{
4293 struct sched_entity *se = &prev->se;
4294 struct cfs_rq *cfs_rq;
4295
4296 for_each_sched_entity(se) {
4297 cfs_rq = cfs_rq_of(se);
ab6cde26 4298 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4299 }
4300}
4301
ac53db59
RR
4302/*
4303 * sched_yield() is very simple
4304 *
4305 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4306 */
4307static void yield_task_fair(struct rq *rq)
4308{
4309 struct task_struct *curr = rq->curr;
4310 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4311 struct sched_entity *se = &curr->se;
4312
4313 /*
4314 * Are we the only task in the tree?
4315 */
4316 if (unlikely(rq->nr_running == 1))
4317 return;
4318
4319 clear_buddies(cfs_rq, se);
4320
4321 if (curr->policy != SCHED_BATCH) {
4322 update_rq_clock(rq);
4323 /*
4324 * Update run-time statistics of the 'current'.
4325 */
4326 update_curr(cfs_rq);
916671c0
MG
4327 /*
4328 * Tell update_rq_clock() that we've just updated,
4329 * so we don't do microscopic update in schedule()
4330 * and double the fastpath cost.
4331 */
4332 rq->skip_clock_update = 1;
ac53db59
RR
4333 }
4334
4335 set_skip_buddy(se);
4336}
4337
d95f4122
MG
4338static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4339{
4340 struct sched_entity *se = &p->se;
4341
5238cdd3
PT
4342 /* throttled hierarchies are not runnable */
4343 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4344 return false;
4345
4346 /* Tell the scheduler that we'd really like pse to run next. */
4347 set_next_buddy(se);
4348
d95f4122
MG
4349 yield_task_fair(rq);
4350
4351 return true;
4352}
4353
681f3e68 4354#ifdef CONFIG_SMP
bf0f6f24 4355/**************************************************
e9c84cb8
PZ
4356 * Fair scheduling class load-balancing methods.
4357 *
4358 * BASICS
4359 *
4360 * The purpose of load-balancing is to achieve the same basic fairness the
4361 * per-cpu scheduler provides, namely provide a proportional amount of compute
4362 * time to each task. This is expressed in the following equation:
4363 *
4364 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4365 *
4366 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4367 * W_i,0 is defined as:
4368 *
4369 * W_i,0 = \Sum_j w_i,j (2)
4370 *
4371 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4372 * is derived from the nice value as per prio_to_weight[].
4373 *
4374 * The weight average is an exponential decay average of the instantaneous
4375 * weight:
4376 *
4377 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4378 *
4379 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4380 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4381 * can also include other factors [XXX].
4382 *
4383 * To achieve this balance we define a measure of imbalance which follows
4384 * directly from (1):
4385 *
4386 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4387 *
4388 * We them move tasks around to minimize the imbalance. In the continuous
4389 * function space it is obvious this converges, in the discrete case we get
4390 * a few fun cases generally called infeasible weight scenarios.
4391 *
4392 * [XXX expand on:
4393 * - infeasible weights;
4394 * - local vs global optima in the discrete case. ]
4395 *
4396 *
4397 * SCHED DOMAINS
4398 *
4399 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4400 * for all i,j solution, we create a tree of cpus that follows the hardware
4401 * topology where each level pairs two lower groups (or better). This results
4402 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4403 * tree to only the first of the previous level and we decrease the frequency
4404 * of load-balance at each level inv. proportional to the number of cpus in
4405 * the groups.
4406 *
4407 * This yields:
4408 *
4409 * log_2 n 1 n
4410 * \Sum { --- * --- * 2^i } = O(n) (5)
4411 * i = 0 2^i 2^i
4412 * `- size of each group
4413 * | | `- number of cpus doing load-balance
4414 * | `- freq
4415 * `- sum over all levels
4416 *
4417 * Coupled with a limit on how many tasks we can migrate every balance pass,
4418 * this makes (5) the runtime complexity of the balancer.
4419 *
4420 * An important property here is that each CPU is still (indirectly) connected
4421 * to every other cpu in at most O(log n) steps:
4422 *
4423 * The adjacency matrix of the resulting graph is given by:
4424 *
4425 * log_2 n
4426 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4427 * k = 0
4428 *
4429 * And you'll find that:
4430 *
4431 * A^(log_2 n)_i,j != 0 for all i,j (7)
4432 *
4433 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4434 * The task movement gives a factor of O(m), giving a convergence complexity
4435 * of:
4436 *
4437 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4438 *
4439 *
4440 * WORK CONSERVING
4441 *
4442 * In order to avoid CPUs going idle while there's still work to do, new idle
4443 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4444 * tree itself instead of relying on other CPUs to bring it work.
4445 *
4446 * This adds some complexity to both (5) and (8) but it reduces the total idle
4447 * time.
4448 *
4449 * [XXX more?]
4450 *
4451 *
4452 * CGROUPS
4453 *
4454 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4455 *
4456 * s_k,i
4457 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4458 * S_k
4459 *
4460 * Where
4461 *
4462 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4463 *
4464 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4465 *
4466 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4467 * property.
4468 *
4469 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4470 * rewrite all of this once again.]
4471 */
bf0f6f24 4472
ed387b78
HS
4473static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4474
ddcdf6e7 4475#define LBF_ALL_PINNED 0x01
367456c7 4476#define LBF_NEED_BREAK 0x02
6263322c
PZ
4477#define LBF_DST_PINNED 0x04
4478#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4479
4480struct lb_env {
4481 struct sched_domain *sd;
4482
ddcdf6e7 4483 struct rq *src_rq;
85c1e7da 4484 int src_cpu;
ddcdf6e7
PZ
4485
4486 int dst_cpu;
4487 struct rq *dst_rq;
4488
88b8dac0
SV
4489 struct cpumask *dst_grpmask;
4490 int new_dst_cpu;
ddcdf6e7 4491 enum cpu_idle_type idle;
bd939f45 4492 long imbalance;
b9403130
MW
4493 /* The set of CPUs under consideration for load-balancing */
4494 struct cpumask *cpus;
4495
ddcdf6e7 4496 unsigned int flags;
367456c7
PZ
4497
4498 unsigned int loop;
4499 unsigned int loop_break;
4500 unsigned int loop_max;
ddcdf6e7
PZ
4501};
4502
1e3c88bd 4503/*
ddcdf6e7 4504 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4505 * Both runqueues must be locked.
4506 */
ddcdf6e7 4507static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4508{
ddcdf6e7
PZ
4509 deactivate_task(env->src_rq, p, 0);
4510 set_task_cpu(p, env->dst_cpu);
4511 activate_task(env->dst_rq, p, 0);
4512 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4513#ifdef CONFIG_NUMA_BALANCING
4514 if (p->numa_preferred_nid != -1) {
4515 int src_nid = cpu_to_node(env->src_cpu);
4516 int dst_nid = cpu_to_node(env->dst_cpu);
4517
4518 /*
4519 * If the load balancer has moved the task then limit
4520 * migrations from taking place in the short term in
4521 * case this is a short-lived migration.
4522 */
4523 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4524 p->numa_migrate_seq = 0;
4525 }
4526#endif
1e3c88bd
PZ
4527}
4528
029632fb
PZ
4529/*
4530 * Is this task likely cache-hot:
4531 */
4532static int
4533task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4534{
4535 s64 delta;
4536
4537 if (p->sched_class != &fair_sched_class)
4538 return 0;
4539
4540 if (unlikely(p->policy == SCHED_IDLE))
4541 return 0;
4542
4543 /*
4544 * Buddy candidates are cache hot:
4545 */
4546 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4547 (&p->se == cfs_rq_of(&p->se)->next ||
4548 &p->se == cfs_rq_of(&p->se)->last))
4549 return 1;
4550
4551 if (sysctl_sched_migration_cost == -1)
4552 return 1;
4553 if (sysctl_sched_migration_cost == 0)
4554 return 0;
4555
4556 delta = now - p->se.exec_start;
4557
4558 return delta < (s64)sysctl_sched_migration_cost;
4559}
4560
3a7053b3
MG
4561#ifdef CONFIG_NUMA_BALANCING
4562/* Returns true if the destination node has incurred more faults */
4563static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4564{
4565 int src_nid, dst_nid;
4566
4567 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4568 !(env->sd->flags & SD_NUMA)) {
4569 return false;
4570 }
4571
4572 src_nid = cpu_to_node(env->src_cpu);
4573 dst_nid = cpu_to_node(env->dst_cpu);
4574
4575 if (src_nid == dst_nid ||
4576 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4577 return false;
4578
4579 if (dst_nid == p->numa_preferred_nid ||
ac8e895b 4580 task_faults(p, dst_nid) > task_faults(p, src_nid))
3a7053b3
MG
4581 return true;
4582
4583 return false;
4584}
7a0f3083
MG
4585
4586
4587static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4588{
4589 int src_nid, dst_nid;
4590
4591 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4592 return false;
4593
4594 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4595 return false;
4596
4597 src_nid = cpu_to_node(env->src_cpu);
4598 dst_nid = cpu_to_node(env->dst_cpu);
4599
4600 if (src_nid == dst_nid ||
4601 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4602 return false;
4603
ac8e895b 4604 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
7a0f3083
MG
4605 return true;
4606
4607 return false;
4608}
4609
3a7053b3
MG
4610#else
4611static inline bool migrate_improves_locality(struct task_struct *p,
4612 struct lb_env *env)
4613{
4614 return false;
4615}
7a0f3083
MG
4616
4617static inline bool migrate_degrades_locality(struct task_struct *p,
4618 struct lb_env *env)
4619{
4620 return false;
4621}
3a7053b3
MG
4622#endif
4623
1e3c88bd
PZ
4624/*
4625 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4626 */
4627static
8e45cb54 4628int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4629{
4630 int tsk_cache_hot = 0;
4631 /*
4632 * We do not migrate tasks that are:
d3198084 4633 * 1) throttled_lb_pair, or
1e3c88bd 4634 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4635 * 3) running (obviously), or
4636 * 4) are cache-hot on their current CPU.
1e3c88bd 4637 */
d3198084
JK
4638 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4639 return 0;
4640
ddcdf6e7 4641 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4642 int cpu;
88b8dac0 4643
41acab88 4644 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4645
6263322c
PZ
4646 env->flags |= LBF_SOME_PINNED;
4647
88b8dac0
SV
4648 /*
4649 * Remember if this task can be migrated to any other cpu in
4650 * our sched_group. We may want to revisit it if we couldn't
4651 * meet load balance goals by pulling other tasks on src_cpu.
4652 *
4653 * Also avoid computing new_dst_cpu if we have already computed
4654 * one in current iteration.
4655 */
6263322c 4656 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4657 return 0;
4658
e02e60c1
JK
4659 /* Prevent to re-select dst_cpu via env's cpus */
4660 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4661 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4662 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4663 env->new_dst_cpu = cpu;
4664 break;
4665 }
88b8dac0 4666 }
e02e60c1 4667
1e3c88bd
PZ
4668 return 0;
4669 }
88b8dac0
SV
4670
4671 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4672 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4673
ddcdf6e7 4674 if (task_running(env->src_rq, p)) {
41acab88 4675 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4676 return 0;
4677 }
4678
4679 /*
4680 * Aggressive migration if:
3a7053b3
MG
4681 * 1) destination numa is preferred
4682 * 2) task is cache cold, or
4683 * 3) too many balance attempts have failed.
1e3c88bd 4684 */
78becc27 4685 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4686 if (!tsk_cache_hot)
4687 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4688
4689 if (migrate_improves_locality(p, env)) {
4690#ifdef CONFIG_SCHEDSTATS
4691 if (tsk_cache_hot) {
4692 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4693 schedstat_inc(p, se.statistics.nr_forced_migrations);
4694 }
4695#endif
4696 return 1;
4697 }
4698
1e3c88bd 4699 if (!tsk_cache_hot ||
8e45cb54 4700 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4701
1e3c88bd 4702 if (tsk_cache_hot) {
8e45cb54 4703 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4704 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4705 }
4e2dcb73 4706
1e3c88bd
PZ
4707 return 1;
4708 }
4709
4e2dcb73
ZH
4710 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4711 return 0;
1e3c88bd
PZ
4712}
4713
897c395f
PZ
4714/*
4715 * move_one_task tries to move exactly one task from busiest to this_rq, as
4716 * part of active balancing operations within "domain".
4717 * Returns 1 if successful and 0 otherwise.
4718 *
4719 * Called with both runqueues locked.
4720 */
8e45cb54 4721static int move_one_task(struct lb_env *env)
897c395f
PZ
4722{
4723 struct task_struct *p, *n;
897c395f 4724
367456c7 4725 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4726 if (!can_migrate_task(p, env))
4727 continue;
897c395f 4728
367456c7
PZ
4729 move_task(p, env);
4730 /*
4731 * Right now, this is only the second place move_task()
4732 * is called, so we can safely collect move_task()
4733 * stats here rather than inside move_task().
4734 */
4735 schedstat_inc(env->sd, lb_gained[env->idle]);
4736 return 1;
897c395f 4737 }
897c395f
PZ
4738 return 0;
4739}
4740
eb95308e
PZ
4741static const unsigned int sched_nr_migrate_break = 32;
4742
5d6523eb 4743/*
bd939f45 4744 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4745 * this_rq, as part of a balancing operation within domain "sd".
4746 * Returns 1 if successful and 0 otherwise.
4747 *
4748 * Called with both runqueues locked.
4749 */
4750static int move_tasks(struct lb_env *env)
1e3c88bd 4751{
5d6523eb
PZ
4752 struct list_head *tasks = &env->src_rq->cfs_tasks;
4753 struct task_struct *p;
367456c7
PZ
4754 unsigned long load;
4755 int pulled = 0;
1e3c88bd 4756
bd939f45 4757 if (env->imbalance <= 0)
5d6523eb 4758 return 0;
1e3c88bd 4759
5d6523eb
PZ
4760 while (!list_empty(tasks)) {
4761 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4762
367456c7
PZ
4763 env->loop++;
4764 /* We've more or less seen every task there is, call it quits */
5d6523eb 4765 if (env->loop > env->loop_max)
367456c7 4766 break;
5d6523eb
PZ
4767
4768 /* take a breather every nr_migrate tasks */
367456c7 4769 if (env->loop > env->loop_break) {
eb95308e 4770 env->loop_break += sched_nr_migrate_break;
8e45cb54 4771 env->flags |= LBF_NEED_BREAK;
ee00e66f 4772 break;
a195f004 4773 }
1e3c88bd 4774
d3198084 4775 if (!can_migrate_task(p, env))
367456c7
PZ
4776 goto next;
4777
4778 load = task_h_load(p);
5d6523eb 4779
eb95308e 4780 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4781 goto next;
4782
bd939f45 4783 if ((load / 2) > env->imbalance)
367456c7 4784 goto next;
1e3c88bd 4785
ddcdf6e7 4786 move_task(p, env);
ee00e66f 4787 pulled++;
bd939f45 4788 env->imbalance -= load;
1e3c88bd
PZ
4789
4790#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4791 /*
4792 * NEWIDLE balancing is a source of latency, so preemptible
4793 * kernels will stop after the first task is pulled to minimize
4794 * the critical section.
4795 */
5d6523eb 4796 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4797 break;
1e3c88bd
PZ
4798#endif
4799
ee00e66f
PZ
4800 /*
4801 * We only want to steal up to the prescribed amount of
4802 * weighted load.
4803 */
bd939f45 4804 if (env->imbalance <= 0)
ee00e66f 4805 break;
367456c7
PZ
4806
4807 continue;
4808next:
5d6523eb 4809 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4810 }
5d6523eb 4811
1e3c88bd 4812 /*
ddcdf6e7
PZ
4813 * Right now, this is one of only two places move_task() is called,
4814 * so we can safely collect move_task() stats here rather than
4815 * inside move_task().
1e3c88bd 4816 */
8e45cb54 4817 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4818
5d6523eb 4819 return pulled;
1e3c88bd
PZ
4820}
4821
230059de 4822#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4823/*
4824 * update tg->load_weight by folding this cpu's load_avg
4825 */
48a16753 4826static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4827{
48a16753
PT
4828 struct sched_entity *se = tg->se[cpu];
4829 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4830
48a16753
PT
4831 /* throttled entities do not contribute to load */
4832 if (throttled_hierarchy(cfs_rq))
4833 return;
9e3081ca 4834
aff3e498 4835 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4836
82958366
PT
4837 if (se) {
4838 update_entity_load_avg(se, 1);
4839 /*
4840 * We pivot on our runnable average having decayed to zero for
4841 * list removal. This generally implies that all our children
4842 * have also been removed (modulo rounding error or bandwidth
4843 * control); however, such cases are rare and we can fix these
4844 * at enqueue.
4845 *
4846 * TODO: fix up out-of-order children on enqueue.
4847 */
4848 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4849 list_del_leaf_cfs_rq(cfs_rq);
4850 } else {
48a16753 4851 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4852 update_rq_runnable_avg(rq, rq->nr_running);
4853 }
9e3081ca
PZ
4854}
4855
48a16753 4856static void update_blocked_averages(int cpu)
9e3081ca 4857{
9e3081ca 4858 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4859 struct cfs_rq *cfs_rq;
4860 unsigned long flags;
9e3081ca 4861
48a16753
PT
4862 raw_spin_lock_irqsave(&rq->lock, flags);
4863 update_rq_clock(rq);
9763b67f
PZ
4864 /*
4865 * Iterates the task_group tree in a bottom up fashion, see
4866 * list_add_leaf_cfs_rq() for details.
4867 */
64660c86 4868 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4869 /*
4870 * Note: We may want to consider periodically releasing
4871 * rq->lock about these updates so that creating many task
4872 * groups does not result in continually extending hold time.
4873 */
4874 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4875 }
48a16753
PT
4876
4877 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4878}
4879
9763b67f 4880/*
68520796 4881 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4882 * This needs to be done in a top-down fashion because the load of a child
4883 * group is a fraction of its parents load.
4884 */
68520796 4885static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4886{
68520796
VD
4887 struct rq *rq = rq_of(cfs_rq);
4888 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4889 unsigned long now = jiffies;
68520796 4890 unsigned long load;
a35b6466 4891
68520796 4892 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4893 return;
4894
68520796
VD
4895 cfs_rq->h_load_next = NULL;
4896 for_each_sched_entity(se) {
4897 cfs_rq = cfs_rq_of(se);
4898 cfs_rq->h_load_next = se;
4899 if (cfs_rq->last_h_load_update == now)
4900 break;
4901 }
a35b6466 4902
68520796 4903 if (!se) {
7e3115ef 4904 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4905 cfs_rq->last_h_load_update = now;
4906 }
4907
4908 while ((se = cfs_rq->h_load_next) != NULL) {
4909 load = cfs_rq->h_load;
4910 load = div64_ul(load * se->avg.load_avg_contrib,
4911 cfs_rq->runnable_load_avg + 1);
4912 cfs_rq = group_cfs_rq(se);
4913 cfs_rq->h_load = load;
4914 cfs_rq->last_h_load_update = now;
4915 }
9763b67f
PZ
4916}
4917
367456c7 4918static unsigned long task_h_load(struct task_struct *p)
230059de 4919{
367456c7 4920 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4921
68520796 4922 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4923 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4924 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4925}
4926#else
48a16753 4927static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4928{
4929}
4930
367456c7 4931static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4932{
a003a25b 4933 return p->se.avg.load_avg_contrib;
1e3c88bd 4934}
230059de 4935#endif
1e3c88bd 4936
1e3c88bd 4937/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4938/*
4939 * sg_lb_stats - stats of a sched_group required for load_balancing
4940 */
4941struct sg_lb_stats {
4942 unsigned long avg_load; /*Avg load across the CPUs of the group */
4943 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4944 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4945 unsigned long load_per_task;
3ae11c90 4946 unsigned long group_power;
147c5fc2
PZ
4947 unsigned int sum_nr_running; /* Nr tasks running in the group */
4948 unsigned int group_capacity;
4949 unsigned int idle_cpus;
4950 unsigned int group_weight;
1e3c88bd 4951 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4952 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4953};
4954
56cf515b
JK
4955/*
4956 * sd_lb_stats - Structure to store the statistics of a sched_domain
4957 * during load balancing.
4958 */
4959struct sd_lb_stats {
4960 struct sched_group *busiest; /* Busiest group in this sd */
4961 struct sched_group *local; /* Local group in this sd */
4962 unsigned long total_load; /* Total load of all groups in sd */
4963 unsigned long total_pwr; /* Total power of all groups in sd */
4964 unsigned long avg_load; /* Average load across all groups in sd */
4965
56cf515b 4966 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4967 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4968};
4969
147c5fc2
PZ
4970static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4971{
4972 /*
4973 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4974 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4975 * We must however clear busiest_stat::avg_load because
4976 * update_sd_pick_busiest() reads this before assignment.
4977 */
4978 *sds = (struct sd_lb_stats){
4979 .busiest = NULL,
4980 .local = NULL,
4981 .total_load = 0UL,
4982 .total_pwr = 0UL,
4983 .busiest_stat = {
4984 .avg_load = 0UL,
4985 },
4986 };
4987}
4988
1e3c88bd
PZ
4989/**
4990 * get_sd_load_idx - Obtain the load index for a given sched domain.
4991 * @sd: The sched_domain whose load_idx is to be obtained.
4992 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4993 *
4994 * Return: The load index.
1e3c88bd
PZ
4995 */
4996static inline int get_sd_load_idx(struct sched_domain *sd,
4997 enum cpu_idle_type idle)
4998{
4999 int load_idx;
5000
5001 switch (idle) {
5002 case CPU_NOT_IDLE:
5003 load_idx = sd->busy_idx;
5004 break;
5005
5006 case CPU_NEWLY_IDLE:
5007 load_idx = sd->newidle_idx;
5008 break;
5009 default:
5010 load_idx = sd->idle_idx;
5011 break;
5012 }
5013
5014 return load_idx;
5015}
5016
15f803c9 5017static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5018{
1399fa78 5019 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5020}
5021
5022unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5023{
5024 return default_scale_freq_power(sd, cpu);
5025}
5026
15f803c9 5027static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5028{
669c55e9 5029 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5030 unsigned long smt_gain = sd->smt_gain;
5031
5032 smt_gain /= weight;
5033
5034 return smt_gain;
5035}
5036
5037unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5038{
5039 return default_scale_smt_power(sd, cpu);
5040}
5041
15f803c9 5042static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5043{
5044 struct rq *rq = cpu_rq(cpu);
b654f7de 5045 u64 total, available, age_stamp, avg;
1e3c88bd 5046
b654f7de
PZ
5047 /*
5048 * Since we're reading these variables without serialization make sure
5049 * we read them once before doing sanity checks on them.
5050 */
5051 age_stamp = ACCESS_ONCE(rq->age_stamp);
5052 avg = ACCESS_ONCE(rq->rt_avg);
5053
78becc27 5054 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5055
b654f7de 5056 if (unlikely(total < avg)) {
aa483808
VP
5057 /* Ensures that power won't end up being negative */
5058 available = 0;
5059 } else {
b654f7de 5060 available = total - avg;
aa483808 5061 }
1e3c88bd 5062
1399fa78
NR
5063 if (unlikely((s64)total < SCHED_POWER_SCALE))
5064 total = SCHED_POWER_SCALE;
1e3c88bd 5065
1399fa78 5066 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5067
5068 return div_u64(available, total);
5069}
5070
5071static void update_cpu_power(struct sched_domain *sd, int cpu)
5072{
669c55e9 5073 unsigned long weight = sd->span_weight;
1399fa78 5074 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5075 struct sched_group *sdg = sd->groups;
5076
1e3c88bd
PZ
5077 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5078 if (sched_feat(ARCH_POWER))
5079 power *= arch_scale_smt_power(sd, cpu);
5080 else
5081 power *= default_scale_smt_power(sd, cpu);
5082
1399fa78 5083 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5084 }
5085
9c3f75cb 5086 sdg->sgp->power_orig = power;
9d5efe05
SV
5087
5088 if (sched_feat(ARCH_POWER))
5089 power *= arch_scale_freq_power(sd, cpu);
5090 else
5091 power *= default_scale_freq_power(sd, cpu);
5092
1399fa78 5093 power >>= SCHED_POWER_SHIFT;
9d5efe05 5094
1e3c88bd 5095 power *= scale_rt_power(cpu);
1399fa78 5096 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5097
5098 if (!power)
5099 power = 1;
5100
e51fd5e2 5101 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5102 sdg->sgp->power = power;
1e3c88bd
PZ
5103}
5104
029632fb 5105void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5106{
5107 struct sched_domain *child = sd->child;
5108 struct sched_group *group, *sdg = sd->groups;
863bffc8 5109 unsigned long power, power_orig;
4ec4412e
VG
5110 unsigned long interval;
5111
5112 interval = msecs_to_jiffies(sd->balance_interval);
5113 interval = clamp(interval, 1UL, max_load_balance_interval);
5114 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5115
5116 if (!child) {
5117 update_cpu_power(sd, cpu);
5118 return;
5119 }
5120
863bffc8 5121 power_orig = power = 0;
1e3c88bd 5122
74a5ce20
PZ
5123 if (child->flags & SD_OVERLAP) {
5124 /*
5125 * SD_OVERLAP domains cannot assume that child groups
5126 * span the current group.
5127 */
5128
863bffc8
PZ
5129 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5130 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5131
5132 power_orig += sg->sgp->power_orig;
5133 power += sg->sgp->power;
5134 }
74a5ce20
PZ
5135 } else {
5136 /*
5137 * !SD_OVERLAP domains can assume that child groups
5138 * span the current group.
5139 */
5140
5141 group = child->groups;
5142 do {
863bffc8 5143 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5144 power += group->sgp->power;
5145 group = group->next;
5146 } while (group != child->groups);
5147 }
1e3c88bd 5148
863bffc8
PZ
5149 sdg->sgp->power_orig = power_orig;
5150 sdg->sgp->power = power;
1e3c88bd
PZ
5151}
5152
9d5efe05
SV
5153/*
5154 * Try and fix up capacity for tiny siblings, this is needed when
5155 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5156 * which on its own isn't powerful enough.
5157 *
5158 * See update_sd_pick_busiest() and check_asym_packing().
5159 */
5160static inline int
5161fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5162{
5163 /*
1399fa78 5164 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5165 */
a6c75f2f 5166 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5167 return 0;
5168
5169 /*
5170 * If ~90% of the cpu_power is still there, we're good.
5171 */
9c3f75cb 5172 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5173 return 1;
5174
5175 return 0;
5176}
5177
30ce5dab
PZ
5178/*
5179 * Group imbalance indicates (and tries to solve) the problem where balancing
5180 * groups is inadequate due to tsk_cpus_allowed() constraints.
5181 *
5182 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5183 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5184 * Something like:
5185 *
5186 * { 0 1 2 3 } { 4 5 6 7 }
5187 * * * * *
5188 *
5189 * If we were to balance group-wise we'd place two tasks in the first group and
5190 * two tasks in the second group. Clearly this is undesired as it will overload
5191 * cpu 3 and leave one of the cpus in the second group unused.
5192 *
5193 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5194 * by noticing the lower domain failed to reach balance and had difficulty
5195 * moving tasks due to affinity constraints.
30ce5dab
PZ
5196 *
5197 * When this is so detected; this group becomes a candidate for busiest; see
5198 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5199 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5200 * to create an effective group imbalance.
5201 *
5202 * This is a somewhat tricky proposition since the next run might not find the
5203 * group imbalance and decide the groups need to be balanced again. A most
5204 * subtle and fragile situation.
5205 */
5206
6263322c 5207static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5208{
6263322c 5209 return group->sgp->imbalance;
30ce5dab
PZ
5210}
5211
b37d9316
PZ
5212/*
5213 * Compute the group capacity.
5214 *
c61037e9
PZ
5215 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5216 * first dividing out the smt factor and computing the actual number of cores
5217 * and limit power unit capacity with that.
b37d9316
PZ
5218 */
5219static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5220{
c61037e9
PZ
5221 unsigned int capacity, smt, cpus;
5222 unsigned int power, power_orig;
5223
5224 power = group->sgp->power;
5225 power_orig = group->sgp->power_orig;
5226 cpus = group->group_weight;
b37d9316 5227
c61037e9
PZ
5228 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5229 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5230 capacity = cpus / smt; /* cores */
b37d9316 5231
c61037e9 5232 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5233 if (!capacity)
5234 capacity = fix_small_capacity(env->sd, group);
5235
5236 return capacity;
5237}
5238
1e3c88bd
PZ
5239/**
5240 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5241 * @env: The load balancing environment.
1e3c88bd 5242 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5243 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5244 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5245 * @sgs: variable to hold the statistics for this group.
5246 */
bd939f45
PZ
5247static inline void update_sg_lb_stats(struct lb_env *env,
5248 struct sched_group *group, int load_idx,
23f0d209 5249 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5250{
30ce5dab
PZ
5251 unsigned long nr_running;
5252 unsigned long load;
bd939f45 5253 int i;
1e3c88bd 5254
b72ff13c
PZ
5255 memset(sgs, 0, sizeof(*sgs));
5256
b9403130 5257 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5258 struct rq *rq = cpu_rq(i);
5259
e44bc5c5
PZ
5260 nr_running = rq->nr_running;
5261
1e3c88bd 5262 /* Bias balancing toward cpus of our domain */
6263322c 5263 if (local_group)
04f733b4 5264 load = target_load(i, load_idx);
6263322c 5265 else
1e3c88bd 5266 load = source_load(i, load_idx);
1e3c88bd
PZ
5267
5268 sgs->group_load += load;
e44bc5c5 5269 sgs->sum_nr_running += nr_running;
1e3c88bd 5270 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5271 if (idle_cpu(i))
5272 sgs->idle_cpus++;
1e3c88bd
PZ
5273 }
5274
1e3c88bd 5275 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5276 sgs->group_power = group->sgp->power;
5277 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5278
dd5feea1 5279 if (sgs->sum_nr_running)
38d0f770 5280 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5281
aae6d3dd 5282 sgs->group_weight = group->group_weight;
fab47622 5283
b37d9316
PZ
5284 sgs->group_imb = sg_imbalanced(group);
5285 sgs->group_capacity = sg_capacity(env, group);
5286
fab47622
NR
5287 if (sgs->group_capacity > sgs->sum_nr_running)
5288 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5289}
5290
532cb4c4
MN
5291/**
5292 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5293 * @env: The load balancing environment.
532cb4c4
MN
5294 * @sds: sched_domain statistics
5295 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5296 * @sgs: sched_group statistics
532cb4c4
MN
5297 *
5298 * Determine if @sg is a busier group than the previously selected
5299 * busiest group.
e69f6186
YB
5300 *
5301 * Return: %true if @sg is a busier group than the previously selected
5302 * busiest group. %false otherwise.
532cb4c4 5303 */
bd939f45 5304static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5305 struct sd_lb_stats *sds,
5306 struct sched_group *sg,
bd939f45 5307 struct sg_lb_stats *sgs)
532cb4c4 5308{
56cf515b 5309 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5310 return false;
5311
5312 if (sgs->sum_nr_running > sgs->group_capacity)
5313 return true;
5314
5315 if (sgs->group_imb)
5316 return true;
5317
5318 /*
5319 * ASYM_PACKING needs to move all the work to the lowest
5320 * numbered CPUs in the group, therefore mark all groups
5321 * higher than ourself as busy.
5322 */
bd939f45
PZ
5323 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5324 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5325 if (!sds->busiest)
5326 return true;
5327
5328 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5329 return true;
5330 }
5331
5332 return false;
5333}
5334
1e3c88bd 5335/**
461819ac 5336 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5337 * @env: The load balancing environment.
1e3c88bd
PZ
5338 * @balance: Should we balance.
5339 * @sds: variable to hold the statistics for this sched_domain.
5340 */
bd939f45 5341static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 5342 struct sd_lb_stats *sds)
1e3c88bd 5343{
bd939f45
PZ
5344 struct sched_domain *child = env->sd->child;
5345 struct sched_group *sg = env->sd->groups;
56cf515b 5346 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5347 int load_idx, prefer_sibling = 0;
5348
5349 if (child && child->flags & SD_PREFER_SIBLING)
5350 prefer_sibling = 1;
5351
bd939f45 5352 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5353
5354 do {
56cf515b 5355 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5356 int local_group;
5357
bd939f45 5358 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5359 if (local_group) {
5360 sds->local = sg;
5361 sgs = &sds->local_stat;
b72ff13c
PZ
5362
5363 if (env->idle != CPU_NEWLY_IDLE ||
5364 time_after_eq(jiffies, sg->sgp->next_update))
5365 update_group_power(env->sd, env->dst_cpu);
56cf515b 5366 }
1e3c88bd 5367
56cf515b 5368 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5369
b72ff13c
PZ
5370 if (local_group)
5371 goto next_group;
5372
1e3c88bd
PZ
5373 /*
5374 * In case the child domain prefers tasks go to siblings
532cb4c4 5375 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5376 * and move all the excess tasks away. We lower the capacity
5377 * of a group only if the local group has the capacity to fit
5378 * these excess tasks, i.e. nr_running < group_capacity. The
5379 * extra check prevents the case where you always pull from the
5380 * heaviest group when it is already under-utilized (possible
5381 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5382 */
b72ff13c
PZ
5383 if (prefer_sibling && sds->local &&
5384 sds->local_stat.group_has_capacity)
147c5fc2 5385 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5386
b72ff13c 5387 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5388 sds->busiest = sg;
56cf515b 5389 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5390 }
5391
b72ff13c
PZ
5392next_group:
5393 /* Now, start updating sd_lb_stats */
5394 sds->total_load += sgs->group_load;
5395 sds->total_pwr += sgs->group_power;
5396
532cb4c4 5397 sg = sg->next;
bd939f45 5398 } while (sg != env->sd->groups);
532cb4c4
MN
5399}
5400
532cb4c4
MN
5401/**
5402 * check_asym_packing - Check to see if the group is packed into the
5403 * sched doman.
5404 *
5405 * This is primarily intended to used at the sibling level. Some
5406 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5407 * case of POWER7, it can move to lower SMT modes only when higher
5408 * threads are idle. When in lower SMT modes, the threads will
5409 * perform better since they share less core resources. Hence when we
5410 * have idle threads, we want them to be the higher ones.
5411 *
5412 * This packing function is run on idle threads. It checks to see if
5413 * the busiest CPU in this domain (core in the P7 case) has a higher
5414 * CPU number than the packing function is being run on. Here we are
5415 * assuming lower CPU number will be equivalent to lower a SMT thread
5416 * number.
5417 *
e69f6186 5418 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5419 * this CPU. The amount of the imbalance is returned in *imbalance.
5420 *
cd96891d 5421 * @env: The load balancing environment.
532cb4c4 5422 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5423 */
bd939f45 5424static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5425{
5426 int busiest_cpu;
5427
bd939f45 5428 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5429 return 0;
5430
5431 if (!sds->busiest)
5432 return 0;
5433
5434 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5435 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5436 return 0;
5437
bd939f45 5438 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5439 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5440 SCHED_POWER_SCALE);
bd939f45 5441
532cb4c4 5442 return 1;
1e3c88bd
PZ
5443}
5444
5445/**
5446 * fix_small_imbalance - Calculate the minor imbalance that exists
5447 * amongst the groups of a sched_domain, during
5448 * load balancing.
cd96891d 5449 * @env: The load balancing environment.
1e3c88bd 5450 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5451 */
bd939f45
PZ
5452static inline
5453void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5454{
5455 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5456 unsigned int imbn = 2;
dd5feea1 5457 unsigned long scaled_busy_load_per_task;
56cf515b 5458 struct sg_lb_stats *local, *busiest;
1e3c88bd 5459
56cf515b
JK
5460 local = &sds->local_stat;
5461 busiest = &sds->busiest_stat;
1e3c88bd 5462
56cf515b
JK
5463 if (!local->sum_nr_running)
5464 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5465 else if (busiest->load_per_task > local->load_per_task)
5466 imbn = 1;
dd5feea1 5467
56cf515b
JK
5468 scaled_busy_load_per_task =
5469 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5470 busiest->group_power;
56cf515b 5471
3029ede3
VD
5472 if (busiest->avg_load + scaled_busy_load_per_task >=
5473 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5474 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5475 return;
5476 }
5477
5478 /*
5479 * OK, we don't have enough imbalance to justify moving tasks,
5480 * however we may be able to increase total CPU power used by
5481 * moving them.
5482 */
5483
3ae11c90 5484 pwr_now += busiest->group_power *
56cf515b 5485 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5486 pwr_now += local->group_power *
56cf515b 5487 min(local->load_per_task, local->avg_load);
1399fa78 5488 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5489
5490 /* Amount of load we'd subtract */
56cf515b 5491 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5492 busiest->group_power;
56cf515b 5493 if (busiest->avg_load > tmp) {
3ae11c90 5494 pwr_move += busiest->group_power *
56cf515b
JK
5495 min(busiest->load_per_task,
5496 busiest->avg_load - tmp);
5497 }
1e3c88bd
PZ
5498
5499 /* Amount of load we'd add */
3ae11c90 5500 if (busiest->avg_load * busiest->group_power <
56cf515b 5501 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5502 tmp = (busiest->avg_load * busiest->group_power) /
5503 local->group_power;
56cf515b
JK
5504 } else {
5505 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5506 local->group_power;
56cf515b 5507 }
3ae11c90
PZ
5508 pwr_move += local->group_power *
5509 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5510 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5511
5512 /* Move if we gain throughput */
5513 if (pwr_move > pwr_now)
56cf515b 5514 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5515}
5516
5517/**
5518 * calculate_imbalance - Calculate the amount of imbalance present within the
5519 * groups of a given sched_domain during load balance.
bd939f45 5520 * @env: load balance environment
1e3c88bd 5521 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5522 */
bd939f45 5523static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5524{
dd5feea1 5525 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5526 struct sg_lb_stats *local, *busiest;
5527
5528 local = &sds->local_stat;
56cf515b 5529 busiest = &sds->busiest_stat;
dd5feea1 5530
56cf515b 5531 if (busiest->group_imb) {
30ce5dab
PZ
5532 /*
5533 * In the group_imb case we cannot rely on group-wide averages
5534 * to ensure cpu-load equilibrium, look at wider averages. XXX
5535 */
56cf515b
JK
5536 busiest->load_per_task =
5537 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5538 }
5539
1e3c88bd
PZ
5540 /*
5541 * In the presence of smp nice balancing, certain scenarios can have
5542 * max load less than avg load(as we skip the groups at or below
5543 * its cpu_power, while calculating max_load..)
5544 */
b1885550
VD
5545 if (busiest->avg_load <= sds->avg_load ||
5546 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5547 env->imbalance = 0;
5548 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5549 }
5550
56cf515b 5551 if (!busiest->group_imb) {
dd5feea1
SS
5552 /*
5553 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5554 * Except of course for the group_imb case, since then we might
5555 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5556 */
56cf515b
JK
5557 load_above_capacity =
5558 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5559
1399fa78 5560 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5561 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5562 }
5563
5564 /*
5565 * We're trying to get all the cpus to the average_load, so we don't
5566 * want to push ourselves above the average load, nor do we wish to
5567 * reduce the max loaded cpu below the average load. At the same time,
5568 * we also don't want to reduce the group load below the group capacity
5569 * (so that we can implement power-savings policies etc). Thus we look
5570 * for the minimum possible imbalance.
dd5feea1 5571 */
30ce5dab 5572 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5573
5574 /* How much load to actually move to equalise the imbalance */
56cf515b 5575 env->imbalance = min(
3ae11c90
PZ
5576 max_pull * busiest->group_power,
5577 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5578 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5579
5580 /*
5581 * if *imbalance is less than the average load per runnable task
25985edc 5582 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5583 * a think about bumping its value to force at least one task to be
5584 * moved
5585 */
56cf515b 5586 if (env->imbalance < busiest->load_per_task)
bd939f45 5587 return fix_small_imbalance(env, sds);
1e3c88bd 5588}
fab47622 5589
1e3c88bd
PZ
5590/******* find_busiest_group() helpers end here *********************/
5591
5592/**
5593 * find_busiest_group - Returns the busiest group within the sched_domain
5594 * if there is an imbalance. If there isn't an imbalance, and
5595 * the user has opted for power-savings, it returns a group whose
5596 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5597 * such a group exists.
5598 *
5599 * Also calculates the amount of weighted load which should be moved
5600 * to restore balance.
5601 *
cd96891d 5602 * @env: The load balancing environment.
1e3c88bd 5603 *
e69f6186 5604 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5605 * - If no imbalance and user has opted for power-savings balance,
5606 * return the least loaded group whose CPUs can be
5607 * put to idle by rebalancing its tasks onto our group.
5608 */
56cf515b 5609static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5610{
56cf515b 5611 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5612 struct sd_lb_stats sds;
5613
147c5fc2 5614 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5615
5616 /*
5617 * Compute the various statistics relavent for load balancing at
5618 * this level.
5619 */
23f0d209 5620 update_sd_lb_stats(env, &sds);
56cf515b
JK
5621 local = &sds.local_stat;
5622 busiest = &sds.busiest_stat;
1e3c88bd 5623
bd939f45
PZ
5624 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5625 check_asym_packing(env, &sds))
532cb4c4
MN
5626 return sds.busiest;
5627
cc57aa8f 5628 /* There is no busy sibling group to pull tasks from */
56cf515b 5629 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5630 goto out_balanced;
5631
1399fa78 5632 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5633
866ab43e
PZ
5634 /*
5635 * If the busiest group is imbalanced the below checks don't
30ce5dab 5636 * work because they assume all things are equal, which typically
866ab43e
PZ
5637 * isn't true due to cpus_allowed constraints and the like.
5638 */
56cf515b 5639 if (busiest->group_imb)
866ab43e
PZ
5640 goto force_balance;
5641
cc57aa8f 5642 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5643 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5644 !busiest->group_has_capacity)
fab47622
NR
5645 goto force_balance;
5646
cc57aa8f
PZ
5647 /*
5648 * If the local group is more busy than the selected busiest group
5649 * don't try and pull any tasks.
5650 */
56cf515b 5651 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5652 goto out_balanced;
5653
cc57aa8f
PZ
5654 /*
5655 * Don't pull any tasks if this group is already above the domain
5656 * average load.
5657 */
56cf515b 5658 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5659 goto out_balanced;
5660
bd939f45 5661 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5662 /*
5663 * This cpu is idle. If the busiest group load doesn't
5664 * have more tasks than the number of available cpu's and
5665 * there is no imbalance between this and busiest group
5666 * wrt to idle cpu's, it is balanced.
5667 */
56cf515b
JK
5668 if ((local->idle_cpus < busiest->idle_cpus) &&
5669 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5670 goto out_balanced;
c186fafe
PZ
5671 } else {
5672 /*
5673 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5674 * imbalance_pct to be conservative.
5675 */
56cf515b
JK
5676 if (100 * busiest->avg_load <=
5677 env->sd->imbalance_pct * local->avg_load)
c186fafe 5678 goto out_balanced;
aae6d3dd 5679 }
1e3c88bd 5680
fab47622 5681force_balance:
1e3c88bd 5682 /* Looks like there is an imbalance. Compute it */
bd939f45 5683 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5684 return sds.busiest;
5685
5686out_balanced:
bd939f45 5687 env->imbalance = 0;
1e3c88bd
PZ
5688 return NULL;
5689}
5690
5691/*
5692 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5693 */
bd939f45 5694static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5695 struct sched_group *group)
1e3c88bd
PZ
5696{
5697 struct rq *busiest = NULL, *rq;
95a79b80 5698 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5699 int i;
5700
6906a408 5701 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5702 unsigned long power = power_of(i);
1399fa78
NR
5703 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5704 SCHED_POWER_SCALE);
1e3c88bd
PZ
5705 unsigned long wl;
5706
9d5efe05 5707 if (!capacity)
bd939f45 5708 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5709
1e3c88bd 5710 rq = cpu_rq(i);
6e40f5bb 5711 wl = weighted_cpuload(i);
1e3c88bd 5712
6e40f5bb
TG
5713 /*
5714 * When comparing with imbalance, use weighted_cpuload()
5715 * which is not scaled with the cpu power.
5716 */
bd939f45 5717 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5718 continue;
5719
6e40f5bb
TG
5720 /*
5721 * For the load comparisons with the other cpu's, consider
5722 * the weighted_cpuload() scaled with the cpu power, so that
5723 * the load can be moved away from the cpu that is potentially
5724 * running at a lower capacity.
95a79b80
JK
5725 *
5726 * Thus we're looking for max(wl_i / power_i), crosswise
5727 * multiplication to rid ourselves of the division works out
5728 * to: wl_i * power_j > wl_j * power_i; where j is our
5729 * previous maximum.
6e40f5bb 5730 */
95a79b80
JK
5731 if (wl * busiest_power > busiest_load * power) {
5732 busiest_load = wl;
5733 busiest_power = power;
1e3c88bd
PZ
5734 busiest = rq;
5735 }
5736 }
5737
5738 return busiest;
5739}
5740
5741/*
5742 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5743 * so long as it is large enough.
5744 */
5745#define MAX_PINNED_INTERVAL 512
5746
5747/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5748DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5749
bd939f45 5750static int need_active_balance(struct lb_env *env)
1af3ed3d 5751{
bd939f45
PZ
5752 struct sched_domain *sd = env->sd;
5753
5754 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5755
5756 /*
5757 * ASYM_PACKING needs to force migrate tasks from busy but
5758 * higher numbered CPUs in order to pack all tasks in the
5759 * lowest numbered CPUs.
5760 */
bd939f45 5761 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5762 return 1;
1af3ed3d
PZ
5763 }
5764
5765 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5766}
5767
969c7921
TH
5768static int active_load_balance_cpu_stop(void *data);
5769
23f0d209
JK
5770static int should_we_balance(struct lb_env *env)
5771{
5772 struct sched_group *sg = env->sd->groups;
5773 struct cpumask *sg_cpus, *sg_mask;
5774 int cpu, balance_cpu = -1;
5775
5776 /*
5777 * In the newly idle case, we will allow all the cpu's
5778 * to do the newly idle load balance.
5779 */
5780 if (env->idle == CPU_NEWLY_IDLE)
5781 return 1;
5782
5783 sg_cpus = sched_group_cpus(sg);
5784 sg_mask = sched_group_mask(sg);
5785 /* Try to find first idle cpu */
5786 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5787 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5788 continue;
5789
5790 balance_cpu = cpu;
5791 break;
5792 }
5793
5794 if (balance_cpu == -1)
5795 balance_cpu = group_balance_cpu(sg);
5796
5797 /*
5798 * First idle cpu or the first cpu(busiest) in this sched group
5799 * is eligible for doing load balancing at this and above domains.
5800 */
b0cff9d8 5801 return balance_cpu == env->dst_cpu;
23f0d209
JK
5802}
5803
1e3c88bd
PZ
5804/*
5805 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5806 * tasks if there is an imbalance.
5807 */
5808static int load_balance(int this_cpu, struct rq *this_rq,
5809 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5810 int *continue_balancing)
1e3c88bd 5811{
88b8dac0 5812 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5813 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5814 struct sched_group *group;
1e3c88bd
PZ
5815 struct rq *busiest;
5816 unsigned long flags;
e6252c3e 5817 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5818
8e45cb54
PZ
5819 struct lb_env env = {
5820 .sd = sd,
ddcdf6e7
PZ
5821 .dst_cpu = this_cpu,
5822 .dst_rq = this_rq,
88b8dac0 5823 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5824 .idle = idle,
eb95308e 5825 .loop_break = sched_nr_migrate_break,
b9403130 5826 .cpus = cpus,
8e45cb54
PZ
5827 };
5828
cfc03118
JK
5829 /*
5830 * For NEWLY_IDLE load_balancing, we don't need to consider
5831 * other cpus in our group
5832 */
e02e60c1 5833 if (idle == CPU_NEWLY_IDLE)
cfc03118 5834 env.dst_grpmask = NULL;
cfc03118 5835
1e3c88bd
PZ
5836 cpumask_copy(cpus, cpu_active_mask);
5837
1e3c88bd
PZ
5838 schedstat_inc(sd, lb_count[idle]);
5839
5840redo:
23f0d209
JK
5841 if (!should_we_balance(&env)) {
5842 *continue_balancing = 0;
1e3c88bd 5843 goto out_balanced;
23f0d209 5844 }
1e3c88bd 5845
23f0d209 5846 group = find_busiest_group(&env);
1e3c88bd
PZ
5847 if (!group) {
5848 schedstat_inc(sd, lb_nobusyg[idle]);
5849 goto out_balanced;
5850 }
5851
b9403130 5852 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5853 if (!busiest) {
5854 schedstat_inc(sd, lb_nobusyq[idle]);
5855 goto out_balanced;
5856 }
5857
78feefc5 5858 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5859
bd939f45 5860 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5861
5862 ld_moved = 0;
5863 if (busiest->nr_running > 1) {
5864 /*
5865 * Attempt to move tasks. If find_busiest_group has found
5866 * an imbalance but busiest->nr_running <= 1, the group is
5867 * still unbalanced. ld_moved simply stays zero, so it is
5868 * correctly treated as an imbalance.
5869 */
8e45cb54 5870 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5871 env.src_cpu = busiest->cpu;
5872 env.src_rq = busiest;
5873 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5874
5d6523eb 5875more_balance:
1e3c88bd 5876 local_irq_save(flags);
78feefc5 5877 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5878
5879 /*
5880 * cur_ld_moved - load moved in current iteration
5881 * ld_moved - cumulative load moved across iterations
5882 */
5883 cur_ld_moved = move_tasks(&env);
5884 ld_moved += cur_ld_moved;
78feefc5 5885 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5886 local_irq_restore(flags);
5887
5888 /*
5889 * some other cpu did the load balance for us.
5890 */
88b8dac0
SV
5891 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5892 resched_cpu(env.dst_cpu);
5893
f1cd0858
JK
5894 if (env.flags & LBF_NEED_BREAK) {
5895 env.flags &= ~LBF_NEED_BREAK;
5896 goto more_balance;
5897 }
5898
88b8dac0
SV
5899 /*
5900 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5901 * us and move them to an alternate dst_cpu in our sched_group
5902 * where they can run. The upper limit on how many times we
5903 * iterate on same src_cpu is dependent on number of cpus in our
5904 * sched_group.
5905 *
5906 * This changes load balance semantics a bit on who can move
5907 * load to a given_cpu. In addition to the given_cpu itself
5908 * (or a ilb_cpu acting on its behalf where given_cpu is
5909 * nohz-idle), we now have balance_cpu in a position to move
5910 * load to given_cpu. In rare situations, this may cause
5911 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5912 * _independently_ and at _same_ time to move some load to
5913 * given_cpu) causing exceess load to be moved to given_cpu.
5914 * This however should not happen so much in practice and
5915 * moreover subsequent load balance cycles should correct the
5916 * excess load moved.
5917 */
6263322c 5918 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5919
7aff2e3a
VD
5920 /* Prevent to re-select dst_cpu via env's cpus */
5921 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5922
78feefc5 5923 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5924 env.dst_cpu = env.new_dst_cpu;
6263322c 5925 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5926 env.loop = 0;
5927 env.loop_break = sched_nr_migrate_break;
e02e60c1 5928
88b8dac0
SV
5929 /*
5930 * Go back to "more_balance" rather than "redo" since we
5931 * need to continue with same src_cpu.
5932 */
5933 goto more_balance;
5934 }
1e3c88bd 5935
6263322c
PZ
5936 /*
5937 * We failed to reach balance because of affinity.
5938 */
5939 if (sd_parent) {
5940 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5941
5942 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5943 *group_imbalance = 1;
5944 } else if (*group_imbalance)
5945 *group_imbalance = 0;
5946 }
5947
1e3c88bd 5948 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5949 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5950 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5951 if (!cpumask_empty(cpus)) {
5952 env.loop = 0;
5953 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5954 goto redo;
bbf18b19 5955 }
1e3c88bd
PZ
5956 goto out_balanced;
5957 }
5958 }
5959
5960 if (!ld_moved) {
5961 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5962 /*
5963 * Increment the failure counter only on periodic balance.
5964 * We do not want newidle balance, which can be very
5965 * frequent, pollute the failure counter causing
5966 * excessive cache_hot migrations and active balances.
5967 */
5968 if (idle != CPU_NEWLY_IDLE)
5969 sd->nr_balance_failed++;
1e3c88bd 5970
bd939f45 5971 if (need_active_balance(&env)) {
1e3c88bd
PZ
5972 raw_spin_lock_irqsave(&busiest->lock, flags);
5973
969c7921
TH
5974 /* don't kick the active_load_balance_cpu_stop,
5975 * if the curr task on busiest cpu can't be
5976 * moved to this_cpu
1e3c88bd
PZ
5977 */
5978 if (!cpumask_test_cpu(this_cpu,
fa17b507 5979 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5980 raw_spin_unlock_irqrestore(&busiest->lock,
5981 flags);
8e45cb54 5982 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5983 goto out_one_pinned;
5984 }
5985
969c7921
TH
5986 /*
5987 * ->active_balance synchronizes accesses to
5988 * ->active_balance_work. Once set, it's cleared
5989 * only after active load balance is finished.
5990 */
1e3c88bd
PZ
5991 if (!busiest->active_balance) {
5992 busiest->active_balance = 1;
5993 busiest->push_cpu = this_cpu;
5994 active_balance = 1;
5995 }
5996 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5997
bd939f45 5998 if (active_balance) {
969c7921
TH
5999 stop_one_cpu_nowait(cpu_of(busiest),
6000 active_load_balance_cpu_stop, busiest,
6001 &busiest->active_balance_work);
bd939f45 6002 }
1e3c88bd
PZ
6003
6004 /*
6005 * We've kicked active balancing, reset the failure
6006 * counter.
6007 */
6008 sd->nr_balance_failed = sd->cache_nice_tries+1;
6009 }
6010 } else
6011 sd->nr_balance_failed = 0;
6012
6013 if (likely(!active_balance)) {
6014 /* We were unbalanced, so reset the balancing interval */
6015 sd->balance_interval = sd->min_interval;
6016 } else {
6017 /*
6018 * If we've begun active balancing, start to back off. This
6019 * case may not be covered by the all_pinned logic if there
6020 * is only 1 task on the busy runqueue (because we don't call
6021 * move_tasks).
6022 */
6023 if (sd->balance_interval < sd->max_interval)
6024 sd->balance_interval *= 2;
6025 }
6026
1e3c88bd
PZ
6027 goto out;
6028
6029out_balanced:
6030 schedstat_inc(sd, lb_balanced[idle]);
6031
6032 sd->nr_balance_failed = 0;
6033
6034out_one_pinned:
6035 /* tune up the balancing interval */
8e45cb54 6036 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6037 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6038 (sd->balance_interval < sd->max_interval))
6039 sd->balance_interval *= 2;
6040
46e49b38 6041 ld_moved = 0;
1e3c88bd 6042out:
1e3c88bd
PZ
6043 return ld_moved;
6044}
6045
1e3c88bd
PZ
6046/*
6047 * idle_balance is called by schedule() if this_cpu is about to become
6048 * idle. Attempts to pull tasks from other CPUs.
6049 */
029632fb 6050void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6051{
6052 struct sched_domain *sd;
6053 int pulled_task = 0;
6054 unsigned long next_balance = jiffies + HZ;
9bd721c5 6055 u64 curr_cost = 0;
1e3c88bd 6056
78becc27 6057 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6058
6059 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6060 return;
6061
f492e12e
PZ
6062 /*
6063 * Drop the rq->lock, but keep IRQ/preempt disabled.
6064 */
6065 raw_spin_unlock(&this_rq->lock);
6066
48a16753 6067 update_blocked_averages(this_cpu);
dce840a0 6068 rcu_read_lock();
1e3c88bd
PZ
6069 for_each_domain(this_cpu, sd) {
6070 unsigned long interval;
23f0d209 6071 int continue_balancing = 1;
9bd721c5 6072 u64 t0, domain_cost;
1e3c88bd
PZ
6073
6074 if (!(sd->flags & SD_LOAD_BALANCE))
6075 continue;
6076
9bd721c5
JL
6077 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6078 break;
6079
f492e12e 6080 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6081 t0 = sched_clock_cpu(this_cpu);
6082
1e3c88bd 6083 /* If we've pulled tasks over stop searching: */
f492e12e 6084 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6085 sd, CPU_NEWLY_IDLE,
6086 &continue_balancing);
9bd721c5
JL
6087
6088 domain_cost = sched_clock_cpu(this_cpu) - t0;
6089 if (domain_cost > sd->max_newidle_lb_cost)
6090 sd->max_newidle_lb_cost = domain_cost;
6091
6092 curr_cost += domain_cost;
f492e12e 6093 }
1e3c88bd
PZ
6094
6095 interval = msecs_to_jiffies(sd->balance_interval);
6096 if (time_after(next_balance, sd->last_balance + interval))
6097 next_balance = sd->last_balance + interval;
d5ad140b
NR
6098 if (pulled_task) {
6099 this_rq->idle_stamp = 0;
1e3c88bd 6100 break;
d5ad140b 6101 }
1e3c88bd 6102 }
dce840a0 6103 rcu_read_unlock();
f492e12e
PZ
6104
6105 raw_spin_lock(&this_rq->lock);
6106
1e3c88bd
PZ
6107 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6108 /*
6109 * We are going idle. next_balance may be set based on
6110 * a busy processor. So reset next_balance.
6111 */
6112 this_rq->next_balance = next_balance;
6113 }
9bd721c5
JL
6114
6115 if (curr_cost > this_rq->max_idle_balance_cost)
6116 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6117}
6118
6119/*
969c7921
TH
6120 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6121 * running tasks off the busiest CPU onto idle CPUs. It requires at
6122 * least 1 task to be running on each physical CPU where possible, and
6123 * avoids physical / logical imbalances.
1e3c88bd 6124 */
969c7921 6125static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6126{
969c7921
TH
6127 struct rq *busiest_rq = data;
6128 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6129 int target_cpu = busiest_rq->push_cpu;
969c7921 6130 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6131 struct sched_domain *sd;
969c7921
TH
6132
6133 raw_spin_lock_irq(&busiest_rq->lock);
6134
6135 /* make sure the requested cpu hasn't gone down in the meantime */
6136 if (unlikely(busiest_cpu != smp_processor_id() ||
6137 !busiest_rq->active_balance))
6138 goto out_unlock;
1e3c88bd
PZ
6139
6140 /* Is there any task to move? */
6141 if (busiest_rq->nr_running <= 1)
969c7921 6142 goto out_unlock;
1e3c88bd
PZ
6143
6144 /*
6145 * This condition is "impossible", if it occurs
6146 * we need to fix it. Originally reported by
6147 * Bjorn Helgaas on a 128-cpu setup.
6148 */
6149 BUG_ON(busiest_rq == target_rq);
6150
6151 /* move a task from busiest_rq to target_rq */
6152 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6153
6154 /* Search for an sd spanning us and the target CPU. */
dce840a0 6155 rcu_read_lock();
1e3c88bd
PZ
6156 for_each_domain(target_cpu, sd) {
6157 if ((sd->flags & SD_LOAD_BALANCE) &&
6158 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6159 break;
6160 }
6161
6162 if (likely(sd)) {
8e45cb54
PZ
6163 struct lb_env env = {
6164 .sd = sd,
ddcdf6e7
PZ
6165 .dst_cpu = target_cpu,
6166 .dst_rq = target_rq,
6167 .src_cpu = busiest_rq->cpu,
6168 .src_rq = busiest_rq,
8e45cb54
PZ
6169 .idle = CPU_IDLE,
6170 };
6171
1e3c88bd
PZ
6172 schedstat_inc(sd, alb_count);
6173
8e45cb54 6174 if (move_one_task(&env))
1e3c88bd
PZ
6175 schedstat_inc(sd, alb_pushed);
6176 else
6177 schedstat_inc(sd, alb_failed);
6178 }
dce840a0 6179 rcu_read_unlock();
1e3c88bd 6180 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6181out_unlock:
6182 busiest_rq->active_balance = 0;
6183 raw_spin_unlock_irq(&busiest_rq->lock);
6184 return 0;
1e3c88bd
PZ
6185}
6186
3451d024 6187#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6188/*
6189 * idle load balancing details
83cd4fe2
VP
6190 * - When one of the busy CPUs notice that there may be an idle rebalancing
6191 * needed, they will kick the idle load balancer, which then does idle
6192 * load balancing for all the idle CPUs.
6193 */
1e3c88bd 6194static struct {
83cd4fe2 6195 cpumask_var_t idle_cpus_mask;
0b005cf5 6196 atomic_t nr_cpus;
83cd4fe2
VP
6197 unsigned long next_balance; /* in jiffy units */
6198} nohz ____cacheline_aligned;
1e3c88bd 6199
8e7fbcbc 6200static inline int find_new_ilb(int call_cpu)
1e3c88bd 6201{
0b005cf5 6202 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6203
786d6dc7
SS
6204 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6205 return ilb;
6206
6207 return nr_cpu_ids;
1e3c88bd 6208}
1e3c88bd 6209
83cd4fe2
VP
6210/*
6211 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6212 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6213 * CPU (if there is one).
6214 */
6215static void nohz_balancer_kick(int cpu)
6216{
6217 int ilb_cpu;
6218
6219 nohz.next_balance++;
6220
0b005cf5 6221 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6222
0b005cf5
SS
6223 if (ilb_cpu >= nr_cpu_ids)
6224 return;
83cd4fe2 6225
cd490c5b 6226 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6227 return;
6228 /*
6229 * Use smp_send_reschedule() instead of resched_cpu().
6230 * This way we generate a sched IPI on the target cpu which
6231 * is idle. And the softirq performing nohz idle load balance
6232 * will be run before returning from the IPI.
6233 */
6234 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6235 return;
6236}
6237
c1cc017c 6238static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6239{
6240 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6241 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6242 atomic_dec(&nohz.nr_cpus);
6243 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6244 }
6245}
6246
69e1e811
SS
6247static inline void set_cpu_sd_state_busy(void)
6248{
6249 struct sched_domain *sd;
69e1e811 6250
69e1e811 6251 rcu_read_lock();
424c93fe 6252 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6253
6254 if (!sd || !sd->nohz_idle)
6255 goto unlock;
6256 sd->nohz_idle = 0;
6257
6258 for (; sd; sd = sd->parent)
69e1e811 6259 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6260unlock:
69e1e811
SS
6261 rcu_read_unlock();
6262}
6263
6264void set_cpu_sd_state_idle(void)
6265{
6266 struct sched_domain *sd;
69e1e811 6267
69e1e811 6268 rcu_read_lock();
424c93fe 6269 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6270
6271 if (!sd || sd->nohz_idle)
6272 goto unlock;
6273 sd->nohz_idle = 1;
6274
6275 for (; sd; sd = sd->parent)
69e1e811 6276 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6277unlock:
69e1e811
SS
6278 rcu_read_unlock();
6279}
6280
1e3c88bd 6281/*
c1cc017c 6282 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6283 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6284 */
c1cc017c 6285void nohz_balance_enter_idle(int cpu)
1e3c88bd 6286{
71325960
SS
6287 /*
6288 * If this cpu is going down, then nothing needs to be done.
6289 */
6290 if (!cpu_active(cpu))
6291 return;
6292
c1cc017c
AS
6293 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6294 return;
1e3c88bd 6295
c1cc017c
AS
6296 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6297 atomic_inc(&nohz.nr_cpus);
6298 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6299}
71325960 6300
0db0628d 6301static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6302 unsigned long action, void *hcpu)
6303{
6304 switch (action & ~CPU_TASKS_FROZEN) {
6305 case CPU_DYING:
c1cc017c 6306 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6307 return NOTIFY_OK;
6308 default:
6309 return NOTIFY_DONE;
6310 }
6311}
1e3c88bd
PZ
6312#endif
6313
6314static DEFINE_SPINLOCK(balancing);
6315
49c022e6
PZ
6316/*
6317 * Scale the max load_balance interval with the number of CPUs in the system.
6318 * This trades load-balance latency on larger machines for less cross talk.
6319 */
029632fb 6320void update_max_interval(void)
49c022e6
PZ
6321{
6322 max_load_balance_interval = HZ*num_online_cpus()/10;
6323}
6324
1e3c88bd
PZ
6325/*
6326 * It checks each scheduling domain to see if it is due to be balanced,
6327 * and initiates a balancing operation if so.
6328 *
b9b0853a 6329 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6330 */
6331static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6332{
23f0d209 6333 int continue_balancing = 1;
1e3c88bd
PZ
6334 struct rq *rq = cpu_rq(cpu);
6335 unsigned long interval;
04f733b4 6336 struct sched_domain *sd;
1e3c88bd
PZ
6337 /* Earliest time when we have to do rebalance again */
6338 unsigned long next_balance = jiffies + 60*HZ;
6339 int update_next_balance = 0;
f48627e6
JL
6340 int need_serialize, need_decay = 0;
6341 u64 max_cost = 0;
1e3c88bd 6342
48a16753 6343 update_blocked_averages(cpu);
2069dd75 6344
dce840a0 6345 rcu_read_lock();
1e3c88bd 6346 for_each_domain(cpu, sd) {
f48627e6
JL
6347 /*
6348 * Decay the newidle max times here because this is a regular
6349 * visit to all the domains. Decay ~1% per second.
6350 */
6351 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6352 sd->max_newidle_lb_cost =
6353 (sd->max_newidle_lb_cost * 253) / 256;
6354 sd->next_decay_max_lb_cost = jiffies + HZ;
6355 need_decay = 1;
6356 }
6357 max_cost += sd->max_newidle_lb_cost;
6358
1e3c88bd
PZ
6359 if (!(sd->flags & SD_LOAD_BALANCE))
6360 continue;
6361
f48627e6
JL
6362 /*
6363 * Stop the load balance at this level. There is another
6364 * CPU in our sched group which is doing load balancing more
6365 * actively.
6366 */
6367 if (!continue_balancing) {
6368 if (need_decay)
6369 continue;
6370 break;
6371 }
6372
1e3c88bd
PZ
6373 interval = sd->balance_interval;
6374 if (idle != CPU_IDLE)
6375 interval *= sd->busy_factor;
6376
6377 /* scale ms to jiffies */
6378 interval = msecs_to_jiffies(interval);
49c022e6 6379 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6380
6381 need_serialize = sd->flags & SD_SERIALIZE;
6382
6383 if (need_serialize) {
6384 if (!spin_trylock(&balancing))
6385 goto out;
6386 }
6387
6388 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6389 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6390 /*
6263322c 6391 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6392 * env->dst_cpu, so we can't know our idle
6393 * state even if we migrated tasks. Update it.
1e3c88bd 6394 */
de5eb2dd 6395 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6396 }
6397 sd->last_balance = jiffies;
6398 }
6399 if (need_serialize)
6400 spin_unlock(&balancing);
6401out:
6402 if (time_after(next_balance, sd->last_balance + interval)) {
6403 next_balance = sd->last_balance + interval;
6404 update_next_balance = 1;
6405 }
f48627e6
JL
6406 }
6407 if (need_decay) {
1e3c88bd 6408 /*
f48627e6
JL
6409 * Ensure the rq-wide value also decays but keep it at a
6410 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6411 */
f48627e6
JL
6412 rq->max_idle_balance_cost =
6413 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6414 }
dce840a0 6415 rcu_read_unlock();
1e3c88bd
PZ
6416
6417 /*
6418 * next_balance will be updated only when there is a need.
6419 * When the cpu is attached to null domain for ex, it will not be
6420 * updated.
6421 */
6422 if (likely(update_next_balance))
6423 rq->next_balance = next_balance;
6424}
6425
3451d024 6426#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6427/*
3451d024 6428 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6429 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6430 */
83cd4fe2
VP
6431static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6432{
6433 struct rq *this_rq = cpu_rq(this_cpu);
6434 struct rq *rq;
6435 int balance_cpu;
6436
1c792db7
SS
6437 if (idle != CPU_IDLE ||
6438 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6439 goto end;
83cd4fe2
VP
6440
6441 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6442 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6443 continue;
6444
6445 /*
6446 * If this cpu gets work to do, stop the load balancing
6447 * work being done for other cpus. Next load
6448 * balancing owner will pick it up.
6449 */
1c792db7 6450 if (need_resched())
83cd4fe2 6451 break;
83cd4fe2 6452
5ed4f1d9
VG
6453 rq = cpu_rq(balance_cpu);
6454
6455 raw_spin_lock_irq(&rq->lock);
6456 update_rq_clock(rq);
6457 update_idle_cpu_load(rq);
6458 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6459
6460 rebalance_domains(balance_cpu, CPU_IDLE);
6461
83cd4fe2
VP
6462 if (time_after(this_rq->next_balance, rq->next_balance))
6463 this_rq->next_balance = rq->next_balance;
6464 }
6465 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6466end:
6467 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6468}
6469
6470/*
0b005cf5
SS
6471 * Current heuristic for kicking the idle load balancer in the presence
6472 * of an idle cpu is the system.
6473 * - This rq has more than one task.
6474 * - At any scheduler domain level, this cpu's scheduler group has multiple
6475 * busy cpu's exceeding the group's power.
6476 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6477 * domain span are idle.
83cd4fe2
VP
6478 */
6479static inline int nohz_kick_needed(struct rq *rq, int cpu)
6480{
6481 unsigned long now = jiffies;
0b005cf5 6482 struct sched_domain *sd;
83cd4fe2 6483
1c792db7 6484 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6485 return 0;
6486
1c792db7
SS
6487 /*
6488 * We may be recently in ticked or tickless idle mode. At the first
6489 * busy tick after returning from idle, we will update the busy stats.
6490 */
69e1e811 6491 set_cpu_sd_state_busy();
c1cc017c 6492 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6493
6494 /*
6495 * None are in tickless mode and hence no need for NOHZ idle load
6496 * balancing.
6497 */
6498 if (likely(!atomic_read(&nohz.nr_cpus)))
6499 return 0;
1c792db7
SS
6500
6501 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6502 return 0;
6503
0b005cf5
SS
6504 if (rq->nr_running >= 2)
6505 goto need_kick;
83cd4fe2 6506
067491b7 6507 rcu_read_lock();
0b005cf5
SS
6508 for_each_domain(cpu, sd) {
6509 struct sched_group *sg = sd->groups;
6510 struct sched_group_power *sgp = sg->sgp;
6511 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6512
0b005cf5 6513 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6514 goto need_kick_unlock;
0b005cf5
SS
6515
6516 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6517 && (cpumask_first_and(nohz.idle_cpus_mask,
6518 sched_domain_span(sd)) < cpu))
067491b7 6519 goto need_kick_unlock;
0b005cf5
SS
6520
6521 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6522 break;
83cd4fe2 6523 }
067491b7 6524 rcu_read_unlock();
83cd4fe2 6525 return 0;
067491b7
PZ
6526
6527need_kick_unlock:
6528 rcu_read_unlock();
0b005cf5
SS
6529need_kick:
6530 return 1;
83cd4fe2
VP
6531}
6532#else
6533static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6534#endif
6535
6536/*
6537 * run_rebalance_domains is triggered when needed from the scheduler tick.
6538 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6539 */
1e3c88bd
PZ
6540static void run_rebalance_domains(struct softirq_action *h)
6541{
6542 int this_cpu = smp_processor_id();
6543 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6544 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6545 CPU_IDLE : CPU_NOT_IDLE;
6546
6547 rebalance_domains(this_cpu, idle);
6548
1e3c88bd 6549 /*
83cd4fe2 6550 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6551 * balancing on behalf of the other idle cpus whose ticks are
6552 * stopped.
6553 */
83cd4fe2 6554 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6555}
6556
6557static inline int on_null_domain(int cpu)
6558{
90a6501f 6559 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6560}
6561
6562/*
6563 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6564 */
029632fb 6565void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6566{
1e3c88bd
PZ
6567 /* Don't need to rebalance while attached to NULL domain */
6568 if (time_after_eq(jiffies, rq->next_balance) &&
6569 likely(!on_null_domain(cpu)))
6570 raise_softirq(SCHED_SOFTIRQ);
3451d024 6571#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6572 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6573 nohz_balancer_kick(cpu);
6574#endif
1e3c88bd
PZ
6575}
6576
0bcdcf28
CE
6577static void rq_online_fair(struct rq *rq)
6578{
6579 update_sysctl();
6580}
6581
6582static void rq_offline_fair(struct rq *rq)
6583{
6584 update_sysctl();
a4c96ae3
PB
6585
6586 /* Ensure any throttled groups are reachable by pick_next_task */
6587 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6588}
6589
55e12e5e 6590#endif /* CONFIG_SMP */
e1d1484f 6591
bf0f6f24
IM
6592/*
6593 * scheduler tick hitting a task of our scheduling class:
6594 */
8f4d37ec 6595static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6596{
6597 struct cfs_rq *cfs_rq;
6598 struct sched_entity *se = &curr->se;
6599
6600 for_each_sched_entity(se) {
6601 cfs_rq = cfs_rq_of(se);
8f4d37ec 6602 entity_tick(cfs_rq, se, queued);
bf0f6f24 6603 }
18bf2805 6604
10e84b97 6605 if (numabalancing_enabled)
cbee9f88 6606 task_tick_numa(rq, curr);
3d59eebc 6607
18bf2805 6608 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6609}
6610
6611/*
cd29fe6f
PZ
6612 * called on fork with the child task as argument from the parent's context
6613 * - child not yet on the tasklist
6614 * - preemption disabled
bf0f6f24 6615 */
cd29fe6f 6616static void task_fork_fair(struct task_struct *p)
bf0f6f24 6617{
4fc420c9
DN
6618 struct cfs_rq *cfs_rq;
6619 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6620 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6621 struct rq *rq = this_rq();
6622 unsigned long flags;
6623
05fa785c 6624 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6625
861d034e
PZ
6626 update_rq_clock(rq);
6627
4fc420c9
DN
6628 cfs_rq = task_cfs_rq(current);
6629 curr = cfs_rq->curr;
6630
6c9a27f5
DN
6631 /*
6632 * Not only the cpu but also the task_group of the parent might have
6633 * been changed after parent->se.parent,cfs_rq were copied to
6634 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6635 * of child point to valid ones.
6636 */
6637 rcu_read_lock();
6638 __set_task_cpu(p, this_cpu);
6639 rcu_read_unlock();
bf0f6f24 6640
7109c442 6641 update_curr(cfs_rq);
cd29fe6f 6642
b5d9d734
MG
6643 if (curr)
6644 se->vruntime = curr->vruntime;
aeb73b04 6645 place_entity(cfs_rq, se, 1);
4d78e7b6 6646
cd29fe6f 6647 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6648 /*
edcb60a3
IM
6649 * Upon rescheduling, sched_class::put_prev_task() will place
6650 * 'current' within the tree based on its new key value.
6651 */
4d78e7b6 6652 swap(curr->vruntime, se->vruntime);
aec0a514 6653 resched_task(rq->curr);
4d78e7b6 6654 }
bf0f6f24 6655
88ec22d3
PZ
6656 se->vruntime -= cfs_rq->min_vruntime;
6657
05fa785c 6658 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6659}
6660
cb469845
SR
6661/*
6662 * Priority of the task has changed. Check to see if we preempt
6663 * the current task.
6664 */
da7a735e
PZ
6665static void
6666prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6667{
da7a735e
PZ
6668 if (!p->se.on_rq)
6669 return;
6670
cb469845
SR
6671 /*
6672 * Reschedule if we are currently running on this runqueue and
6673 * our priority decreased, or if we are not currently running on
6674 * this runqueue and our priority is higher than the current's
6675 */
da7a735e 6676 if (rq->curr == p) {
cb469845
SR
6677 if (p->prio > oldprio)
6678 resched_task(rq->curr);
6679 } else
15afe09b 6680 check_preempt_curr(rq, p, 0);
cb469845
SR
6681}
6682
da7a735e
PZ
6683static void switched_from_fair(struct rq *rq, struct task_struct *p)
6684{
6685 struct sched_entity *se = &p->se;
6686 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6687
6688 /*
6689 * Ensure the task's vruntime is normalized, so that when its
6690 * switched back to the fair class the enqueue_entity(.flags=0) will
6691 * do the right thing.
6692 *
6693 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6694 * have normalized the vruntime, if it was !on_rq, then only when
6695 * the task is sleeping will it still have non-normalized vruntime.
6696 */
6697 if (!se->on_rq && p->state != TASK_RUNNING) {
6698 /*
6699 * Fix up our vruntime so that the current sleep doesn't
6700 * cause 'unlimited' sleep bonus.
6701 */
6702 place_entity(cfs_rq, se, 0);
6703 se->vruntime -= cfs_rq->min_vruntime;
6704 }
9ee474f5 6705
141965c7 6706#ifdef CONFIG_SMP
9ee474f5
PT
6707 /*
6708 * Remove our load from contribution when we leave sched_fair
6709 * and ensure we don't carry in an old decay_count if we
6710 * switch back.
6711 */
87e3c8ae
KT
6712 if (se->avg.decay_count) {
6713 __synchronize_entity_decay(se);
6714 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6715 }
6716#endif
da7a735e
PZ
6717}
6718
cb469845
SR
6719/*
6720 * We switched to the sched_fair class.
6721 */
da7a735e 6722static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6723{
da7a735e
PZ
6724 if (!p->se.on_rq)
6725 return;
6726
cb469845
SR
6727 /*
6728 * We were most likely switched from sched_rt, so
6729 * kick off the schedule if running, otherwise just see
6730 * if we can still preempt the current task.
6731 */
da7a735e 6732 if (rq->curr == p)
cb469845
SR
6733 resched_task(rq->curr);
6734 else
15afe09b 6735 check_preempt_curr(rq, p, 0);
cb469845
SR
6736}
6737
83b699ed
SV
6738/* Account for a task changing its policy or group.
6739 *
6740 * This routine is mostly called to set cfs_rq->curr field when a task
6741 * migrates between groups/classes.
6742 */
6743static void set_curr_task_fair(struct rq *rq)
6744{
6745 struct sched_entity *se = &rq->curr->se;
6746
ec12cb7f
PT
6747 for_each_sched_entity(se) {
6748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6749
6750 set_next_entity(cfs_rq, se);
6751 /* ensure bandwidth has been allocated on our new cfs_rq */
6752 account_cfs_rq_runtime(cfs_rq, 0);
6753 }
83b699ed
SV
6754}
6755
029632fb
PZ
6756void init_cfs_rq(struct cfs_rq *cfs_rq)
6757{
6758 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6759 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6760#ifndef CONFIG_64BIT
6761 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6762#endif
141965c7 6763#ifdef CONFIG_SMP
9ee474f5 6764 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6765 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6766#endif
029632fb
PZ
6767}
6768
810b3817 6769#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6770static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6771{
aff3e498 6772 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6773 /*
6774 * If the task was not on the rq at the time of this cgroup movement
6775 * it must have been asleep, sleeping tasks keep their ->vruntime
6776 * absolute on their old rq until wakeup (needed for the fair sleeper
6777 * bonus in place_entity()).
6778 *
6779 * If it was on the rq, we've just 'preempted' it, which does convert
6780 * ->vruntime to a relative base.
6781 *
6782 * Make sure both cases convert their relative position when migrating
6783 * to another cgroup's rq. This does somewhat interfere with the
6784 * fair sleeper stuff for the first placement, but who cares.
6785 */
7ceff013
DN
6786 /*
6787 * When !on_rq, vruntime of the task has usually NOT been normalized.
6788 * But there are some cases where it has already been normalized:
6789 *
6790 * - Moving a forked child which is waiting for being woken up by
6791 * wake_up_new_task().
62af3783
DN
6792 * - Moving a task which has been woken up by try_to_wake_up() and
6793 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6794 *
6795 * To prevent boost or penalty in the new cfs_rq caused by delta
6796 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6797 */
62af3783 6798 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6799 on_rq = 1;
6800
b2b5ce02
PZ
6801 if (!on_rq)
6802 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6803 set_task_rq(p, task_cpu(p));
aff3e498
PT
6804 if (!on_rq) {
6805 cfs_rq = cfs_rq_of(&p->se);
6806 p->se.vruntime += cfs_rq->min_vruntime;
6807#ifdef CONFIG_SMP
6808 /*
6809 * migrate_task_rq_fair() will have removed our previous
6810 * contribution, but we must synchronize for ongoing future
6811 * decay.
6812 */
6813 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6814 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6815#endif
6816 }
810b3817 6817}
029632fb
PZ
6818
6819void free_fair_sched_group(struct task_group *tg)
6820{
6821 int i;
6822
6823 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6824
6825 for_each_possible_cpu(i) {
6826 if (tg->cfs_rq)
6827 kfree(tg->cfs_rq[i]);
6828 if (tg->se)
6829 kfree(tg->se[i]);
6830 }
6831
6832 kfree(tg->cfs_rq);
6833 kfree(tg->se);
6834}
6835
6836int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6837{
6838 struct cfs_rq *cfs_rq;
6839 struct sched_entity *se;
6840 int i;
6841
6842 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6843 if (!tg->cfs_rq)
6844 goto err;
6845 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6846 if (!tg->se)
6847 goto err;
6848
6849 tg->shares = NICE_0_LOAD;
6850
6851 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6852
6853 for_each_possible_cpu(i) {
6854 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6855 GFP_KERNEL, cpu_to_node(i));
6856 if (!cfs_rq)
6857 goto err;
6858
6859 se = kzalloc_node(sizeof(struct sched_entity),
6860 GFP_KERNEL, cpu_to_node(i));
6861 if (!se)
6862 goto err_free_rq;
6863
6864 init_cfs_rq(cfs_rq);
6865 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6866 }
6867
6868 return 1;
6869
6870err_free_rq:
6871 kfree(cfs_rq);
6872err:
6873 return 0;
6874}
6875
6876void unregister_fair_sched_group(struct task_group *tg, int cpu)
6877{
6878 struct rq *rq = cpu_rq(cpu);
6879 unsigned long flags;
6880
6881 /*
6882 * Only empty task groups can be destroyed; so we can speculatively
6883 * check on_list without danger of it being re-added.
6884 */
6885 if (!tg->cfs_rq[cpu]->on_list)
6886 return;
6887
6888 raw_spin_lock_irqsave(&rq->lock, flags);
6889 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6890 raw_spin_unlock_irqrestore(&rq->lock, flags);
6891}
6892
6893void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6894 struct sched_entity *se, int cpu,
6895 struct sched_entity *parent)
6896{
6897 struct rq *rq = cpu_rq(cpu);
6898
6899 cfs_rq->tg = tg;
6900 cfs_rq->rq = rq;
029632fb
PZ
6901 init_cfs_rq_runtime(cfs_rq);
6902
6903 tg->cfs_rq[cpu] = cfs_rq;
6904 tg->se[cpu] = se;
6905
6906 /* se could be NULL for root_task_group */
6907 if (!se)
6908 return;
6909
6910 if (!parent)
6911 se->cfs_rq = &rq->cfs;
6912 else
6913 se->cfs_rq = parent->my_q;
6914
6915 se->my_q = cfs_rq;
6916 update_load_set(&se->load, 0);
6917 se->parent = parent;
6918}
6919
6920static DEFINE_MUTEX(shares_mutex);
6921
6922int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6923{
6924 int i;
6925 unsigned long flags;
6926
6927 /*
6928 * We can't change the weight of the root cgroup.
6929 */
6930 if (!tg->se[0])
6931 return -EINVAL;
6932
6933 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6934
6935 mutex_lock(&shares_mutex);
6936 if (tg->shares == shares)
6937 goto done;
6938
6939 tg->shares = shares;
6940 for_each_possible_cpu(i) {
6941 struct rq *rq = cpu_rq(i);
6942 struct sched_entity *se;
6943
6944 se = tg->se[i];
6945 /* Propagate contribution to hierarchy */
6946 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6947
6948 /* Possible calls to update_curr() need rq clock */
6949 update_rq_clock(rq);
17bc14b7 6950 for_each_sched_entity(se)
029632fb
PZ
6951 update_cfs_shares(group_cfs_rq(se));
6952 raw_spin_unlock_irqrestore(&rq->lock, flags);
6953 }
6954
6955done:
6956 mutex_unlock(&shares_mutex);
6957 return 0;
6958}
6959#else /* CONFIG_FAIR_GROUP_SCHED */
6960
6961void free_fair_sched_group(struct task_group *tg) { }
6962
6963int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6964{
6965 return 1;
6966}
6967
6968void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6969
6970#endif /* CONFIG_FAIR_GROUP_SCHED */
6971
810b3817 6972
6d686f45 6973static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6974{
6975 struct sched_entity *se = &task->se;
0d721cea
PW
6976 unsigned int rr_interval = 0;
6977
6978 /*
6979 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6980 * idle runqueue:
6981 */
0d721cea 6982 if (rq->cfs.load.weight)
a59f4e07 6983 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6984
6985 return rr_interval;
6986}
6987
bf0f6f24
IM
6988/*
6989 * All the scheduling class methods:
6990 */
029632fb 6991const struct sched_class fair_sched_class = {
5522d5d5 6992 .next = &idle_sched_class,
bf0f6f24
IM
6993 .enqueue_task = enqueue_task_fair,
6994 .dequeue_task = dequeue_task_fair,
6995 .yield_task = yield_task_fair,
d95f4122 6996 .yield_to_task = yield_to_task_fair,
bf0f6f24 6997
2e09bf55 6998 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6999
7000 .pick_next_task = pick_next_task_fair,
7001 .put_prev_task = put_prev_task_fair,
7002
681f3e68 7003#ifdef CONFIG_SMP
4ce72a2c 7004 .select_task_rq = select_task_rq_fair,
0a74bef8 7005 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7006
0bcdcf28
CE
7007 .rq_online = rq_online_fair,
7008 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7009
7010 .task_waking = task_waking_fair,
681f3e68 7011#endif
bf0f6f24 7012
83b699ed 7013 .set_curr_task = set_curr_task_fair,
bf0f6f24 7014 .task_tick = task_tick_fair,
cd29fe6f 7015 .task_fork = task_fork_fair,
cb469845
SR
7016
7017 .prio_changed = prio_changed_fair,
da7a735e 7018 .switched_from = switched_from_fair,
cb469845 7019 .switched_to = switched_to_fair,
810b3817 7020
0d721cea
PW
7021 .get_rr_interval = get_rr_interval_fair,
7022
810b3817 7023#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7024 .task_move_group = task_move_group_fair,
810b3817 7025#endif
bf0f6f24
IM
7026};
7027
7028#ifdef CONFIG_SCHED_DEBUG
029632fb 7029void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7030{
bf0f6f24
IM
7031 struct cfs_rq *cfs_rq;
7032
5973e5b9 7033 rcu_read_lock();
c3b64f1e 7034 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7035 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7036 rcu_read_unlock();
bf0f6f24
IM
7037}
7038#endif
029632fb
PZ
7039
7040__init void init_sched_fair_class(void)
7041{
7042#ifdef CONFIG_SMP
7043 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7044
3451d024 7045#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7046 nohz.next_balance = jiffies;
029632fb 7047 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7048 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7049#endif
7050#endif /* SMP */
7051
7052}
This page took 0.970598 seconds and 5 git commands to generate.