sched/fair: Remove idle_balance() declaration in sched.h
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
887c290e
RR
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
fb13c7ee
MG
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
887c290e 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
887c290e
RR
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1133 * in any group then look only at task weights.
887c290e 1134 */
ca28aa53 1135 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
ca28aa53
RR
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
887c290e 1144 } else {
ca28aa53
RR
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
887c290e 1161 }
fb13c7ee
MG
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
887c290e
RR
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
2c8a50aa
MG
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
887c290e 1222 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1223 }
1224}
1225
58d081b5
MG
1226static int task_numa_migrate(struct task_struct *p)
1227{
58d081b5
MG
1228 struct task_numa_env env = {
1229 .p = p,
fb13c7ee 1230
58d081b5 1231 .src_cpu = task_cpu(p),
b32e86b4 1232 .src_nid = task_node(p),
fb13c7ee
MG
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
58d081b5
MG
1239 };
1240 struct sched_domain *sd;
887c290e 1241 unsigned long taskweight, groupweight;
2c8a50aa 1242 int nid, ret;
887c290e 1243 long taskimp, groupimp;
e6628d5b 1244
58d081b5 1245 /*
fb13c7ee
MG
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
58d081b5
MG
1252 */
1253 rcu_read_lock();
fb13c7ee 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1257 rcu_read_unlock();
1258
46a73e8a
RR
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
de1b301a 1266 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1267 return -EINVAL;
1268 }
1269
887c290e
RR
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1272 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1273 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1277
e1dda8a7
RR
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
887c290e 1280 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
2c8a50aa
MG
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
58d081b5 1287
83e1d2cd 1288 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1292 continue;
1293
2c8a50aa
MG
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1296 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1297 }
1298 }
1299
fb13c7ee
MG
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
0ec8aa00
PZ
1304 sched_setnuma(p, env.dst_nid);
1305
04bb2f94
RR
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
fb13c7ee 1312 if (env.best_task == NULL) {
286549dc
MG
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
286549dc
MG
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1322 put_task_struct(env.best_task);
1323 return ret;
e6628d5b
MG
1324}
1325
6b9a7460
MG
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
2739d3ee 1329 /* This task has no NUMA fault statistics yet */
ff1df896 1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1331 return;
1332
2739d3ee
RR
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
de1b301a 1337 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1341 task_numa_migrate(p);
6b9a7460
MG
1342}
1343
20e07dea
RR
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
04bb2f94
RR
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
04bb2f94
RR
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
7e2703e6
RR
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
cbee9f88
PZ
1478static void task_numa_placement(struct task_struct *p)
1479{
83e1d2cd
MG
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1482 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1483 unsigned long total_faults;
1484 u64 runtime, period;
7dbd13ed 1485 spinlock_t *group_lock = NULL;
cbee9f88 1486
2832bc19 1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
598f0ec0 1491 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1492
7e2703e6
RR
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
7dbd13ed
MG
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock(group_lock);
1501 }
1502
688b7585
MG
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
83e1d2cd 1505 unsigned long faults = 0, group_faults = 0;
ac8e895b 1506 int priv, i;
745d6147 1507
be1e4e76 1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1509 long diff, f_diff, f_weight;
8c8a743c 1510
ac8e895b 1511 i = task_faults_idx(nid, priv);
745d6147 1512
ac8e895b 1513 /* Decay existing window, copy faults since last scan */
35664fd4 1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1517
7e2703e6
RR
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
35664fd4 1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
35664fd4
RR
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
ff1df896 1533 faults += p->numa_faults_memory[i];
83e1d2cd 1534 p->total_numa_faults += diff;
8c8a743c
PZ
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
989348b5 1537 p->numa_group->faults[i] += diff;
50ec8a40 1538 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
8c8a743c 1541 }
ac8e895b
MG
1542 }
1543
688b7585
MG
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
83e1d2cd
MG
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
04bb2f94
RR
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
7dbd13ed 1557 if (p->numa_group) {
20e07dea 1558 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
83e1d2cd
MG
1572 }
1573 }
7dbd13ed
MG
1574
1575 spin_unlock(group_lock);
688b7585
MG
1576 }
1577
6b9a7460 1578 /* Preferred node as the node with the most faults */
3a7053b3 1579 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1580 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1581 sched_setnuma(p, max_nid);
6b9a7460 1582 numa_migrate_preferred(p);
3a7053b3 1583 }
cbee9f88
PZ
1584}
1585
8c8a743c
PZ
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
3e6a9418
MG
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
8c8a743c
PZ
1599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1608 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1617 grp->gid = p->pid;
50ec8a40 1618 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
8c8a743c 1621
20e07dea
RR
1622 node_set(task_node(current), grp->active_nodes);
1623
be1e4e76 1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1625 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1626
989348b5 1627 grp->total_faults = p->total_numa_faults;
83e1d2cd 1628
8c8a743c
PZ
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1638 goto no_join;
8c8a743c
PZ
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
3354781a 1642 goto no_join;
8c8a743c
PZ
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
3354781a 1646 goto no_join;
8c8a743c
PZ
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1653 goto no_join;
8c8a743c
PZ
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1659 goto no_join;
8c8a743c 1660
dabe1d99
RR
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
8c8a743c 1668
3e6a9418
MG
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
dabe1d99 1672 if (join && !get_numa_group(grp))
3354781a 1673 goto no_join;
8c8a743c 1674
8c8a743c
PZ
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
989348b5
MG
1680 double_lock(&my_grp->lock, &grp->lock);
1681
be1e4e76 1682 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1683 my_grp->faults[i] -= p->numa_faults_memory[i];
1684 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1685 }
989348b5
MG
1686 my_grp->total_faults -= p->total_numa_faults;
1687 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1688
1689 list_move(&p->numa_entry, &grp->task_list);
1690 my_grp->nr_tasks--;
1691 grp->nr_tasks++;
1692
1693 spin_unlock(&my_grp->lock);
1694 spin_unlock(&grp->lock);
1695
1696 rcu_assign_pointer(p->numa_group, grp);
1697
1698 put_numa_group(my_grp);
3354781a
PZ
1699 return;
1700
1701no_join:
1702 rcu_read_unlock();
1703 return;
8c8a743c
PZ
1704}
1705
1706void task_numa_free(struct task_struct *p)
1707{
1708 struct numa_group *grp = p->numa_group;
1709 int i;
ff1df896 1710 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1711
1712 if (grp) {
989348b5 1713 spin_lock(&grp->lock);
be1e4e76 1714 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1715 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1716 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1717
8c8a743c
PZ
1718 list_del(&p->numa_entry);
1719 grp->nr_tasks--;
1720 spin_unlock(&grp->lock);
1721 rcu_assign_pointer(p->numa_group, NULL);
1722 put_numa_group(grp);
1723 }
1724
ff1df896
RR
1725 p->numa_faults_memory = NULL;
1726 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1727 p->numa_faults_cpu= NULL;
1728 p->numa_faults_buffer_cpu = NULL;
82727018 1729 kfree(numa_faults);
8c8a743c
PZ
1730}
1731
cbee9f88
PZ
1732/*
1733 * Got a PROT_NONE fault for a page on @node.
1734 */
58b46da3 1735void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1736{
1737 struct task_struct *p = current;
6688cc05 1738 bool migrated = flags & TNF_MIGRATED;
58b46da3 1739 int cpu_node = task_node(current);
ac8e895b 1740 int priv;
cbee9f88 1741
10e84b97 1742 if (!numabalancing_enabled)
1a687c2e
MG
1743 return;
1744
9ff1d9ff
MG
1745 /* for example, ksmd faulting in a user's mm */
1746 if (!p->mm)
1747 return;
1748
82727018
RR
1749 /* Do not worry about placement if exiting */
1750 if (p->state == TASK_DEAD)
1751 return;
1752
f809ca9a 1753 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1754 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1755 int size = sizeof(*p->numa_faults_memory) *
1756 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1757
be1e4e76 1758 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1759 if (!p->numa_faults_memory)
f809ca9a 1760 return;
745d6147 1761
ff1df896 1762 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1763 /*
1764 * The averaged statistics, shared & private, memory & cpu,
1765 * occupy the first half of the array. The second half of the
1766 * array is for current counters, which are averaged into the
1767 * first set by task_numa_placement.
1768 */
50ec8a40
RR
1769 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1770 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1771 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1772 p->total_numa_faults = 0;
04bb2f94 1773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1774 }
cbee9f88 1775
8c8a743c
PZ
1776 /*
1777 * First accesses are treated as private, otherwise consider accesses
1778 * to be private if the accessing pid has not changed
1779 */
1780 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1781 priv = 1;
1782 } else {
1783 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1784 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1785 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1786 }
1787
cbee9f88 1788 task_numa_placement(p);
f809ca9a 1789
2739d3ee
RR
1790 /*
1791 * Retry task to preferred node migration periodically, in case it
1792 * case it previously failed, or the scheduler moved us.
1793 */
1794 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1795 numa_migrate_preferred(p);
1796
b32e86b4
IM
1797 if (migrated)
1798 p->numa_pages_migrated += pages;
1799
58b46da3
RR
1800 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1801 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
04bb2f94 1802 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1803}
1804
6e5fb223
PZ
1805static void reset_ptenuma_scan(struct task_struct *p)
1806{
1807 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1808 p->mm->numa_scan_offset = 0;
1809}
1810
cbee9f88
PZ
1811/*
1812 * The expensive part of numa migration is done from task_work context.
1813 * Triggered from task_tick_numa().
1814 */
1815void task_numa_work(struct callback_head *work)
1816{
1817 unsigned long migrate, next_scan, now = jiffies;
1818 struct task_struct *p = current;
1819 struct mm_struct *mm = p->mm;
6e5fb223 1820 struct vm_area_struct *vma;
9f40604c 1821 unsigned long start, end;
598f0ec0 1822 unsigned long nr_pte_updates = 0;
9f40604c 1823 long pages;
cbee9f88
PZ
1824
1825 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1826
1827 work->next = work; /* protect against double add */
1828 /*
1829 * Who cares about NUMA placement when they're dying.
1830 *
1831 * NOTE: make sure not to dereference p->mm before this check,
1832 * exit_task_work() happens _after_ exit_mm() so we could be called
1833 * without p->mm even though we still had it when we enqueued this
1834 * work.
1835 */
1836 if (p->flags & PF_EXITING)
1837 return;
1838
930aa174 1839 if (!mm->numa_next_scan) {
7e8d16b6
MG
1840 mm->numa_next_scan = now +
1841 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1842 }
1843
cbee9f88
PZ
1844 /*
1845 * Enforce maximal scan/migration frequency..
1846 */
1847 migrate = mm->numa_next_scan;
1848 if (time_before(now, migrate))
1849 return;
1850
598f0ec0
MG
1851 if (p->numa_scan_period == 0) {
1852 p->numa_scan_period_max = task_scan_max(p);
1853 p->numa_scan_period = task_scan_min(p);
1854 }
cbee9f88 1855
fb003b80 1856 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1857 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1858 return;
1859
19a78d11
PZ
1860 /*
1861 * Delay this task enough that another task of this mm will likely win
1862 * the next time around.
1863 */
1864 p->node_stamp += 2 * TICK_NSEC;
1865
9f40604c
MG
1866 start = mm->numa_scan_offset;
1867 pages = sysctl_numa_balancing_scan_size;
1868 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1869 if (!pages)
1870 return;
cbee9f88 1871
6e5fb223 1872 down_read(&mm->mmap_sem);
9f40604c 1873 vma = find_vma(mm, start);
6e5fb223
PZ
1874 if (!vma) {
1875 reset_ptenuma_scan(p);
9f40604c 1876 start = 0;
6e5fb223
PZ
1877 vma = mm->mmap;
1878 }
9f40604c 1879 for (; vma; vma = vma->vm_next) {
fc314724 1880 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1881 continue;
1882
4591ce4f
MG
1883 /*
1884 * Shared library pages mapped by multiple processes are not
1885 * migrated as it is expected they are cache replicated. Avoid
1886 * hinting faults in read-only file-backed mappings or the vdso
1887 * as migrating the pages will be of marginal benefit.
1888 */
1889 if (!vma->vm_mm ||
1890 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1891 continue;
1892
3c67f474
MG
1893 /*
1894 * Skip inaccessible VMAs to avoid any confusion between
1895 * PROT_NONE and NUMA hinting ptes
1896 */
1897 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1898 continue;
4591ce4f 1899
9f40604c
MG
1900 do {
1901 start = max(start, vma->vm_start);
1902 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1903 end = min(end, vma->vm_end);
598f0ec0
MG
1904 nr_pte_updates += change_prot_numa(vma, start, end);
1905
1906 /*
1907 * Scan sysctl_numa_balancing_scan_size but ensure that
1908 * at least one PTE is updated so that unused virtual
1909 * address space is quickly skipped.
1910 */
1911 if (nr_pte_updates)
1912 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1913
9f40604c
MG
1914 start = end;
1915 if (pages <= 0)
1916 goto out;
1917 } while (end != vma->vm_end);
cbee9f88 1918 }
6e5fb223 1919
9f40604c 1920out:
6e5fb223 1921 /*
c69307d5
PZ
1922 * It is possible to reach the end of the VMA list but the last few
1923 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1924 * would find the !migratable VMA on the next scan but not reset the
1925 * scanner to the start so check it now.
6e5fb223
PZ
1926 */
1927 if (vma)
9f40604c 1928 mm->numa_scan_offset = start;
6e5fb223
PZ
1929 else
1930 reset_ptenuma_scan(p);
1931 up_read(&mm->mmap_sem);
cbee9f88
PZ
1932}
1933
1934/*
1935 * Drive the periodic memory faults..
1936 */
1937void task_tick_numa(struct rq *rq, struct task_struct *curr)
1938{
1939 struct callback_head *work = &curr->numa_work;
1940 u64 period, now;
1941
1942 /*
1943 * We don't care about NUMA placement if we don't have memory.
1944 */
1945 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1946 return;
1947
1948 /*
1949 * Using runtime rather than walltime has the dual advantage that
1950 * we (mostly) drive the selection from busy threads and that the
1951 * task needs to have done some actual work before we bother with
1952 * NUMA placement.
1953 */
1954 now = curr->se.sum_exec_runtime;
1955 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1956
1957 if (now - curr->node_stamp > period) {
4b96a29b 1958 if (!curr->node_stamp)
598f0ec0 1959 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1960 curr->node_stamp += period;
cbee9f88
PZ
1961
1962 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1963 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1964 task_work_add(curr, work, true);
1965 }
1966 }
1967}
1968#else
1969static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1970{
1971}
0ec8aa00
PZ
1972
1973static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1974{
1975}
1976
1977static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1978{
1979}
cbee9f88
PZ
1980#endif /* CONFIG_NUMA_BALANCING */
1981
30cfdcfc
DA
1982static void
1983account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1984{
1985 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1986 if (!parent_entity(se))
029632fb 1987 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1988#ifdef CONFIG_SMP
0ec8aa00
PZ
1989 if (entity_is_task(se)) {
1990 struct rq *rq = rq_of(cfs_rq);
1991
1992 account_numa_enqueue(rq, task_of(se));
1993 list_add(&se->group_node, &rq->cfs_tasks);
1994 }
367456c7 1995#endif
30cfdcfc 1996 cfs_rq->nr_running++;
30cfdcfc
DA
1997}
1998
1999static void
2000account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2001{
2002 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2003 if (!parent_entity(se))
029632fb 2004 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2005 if (entity_is_task(se)) {
2006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2007 list_del_init(&se->group_node);
0ec8aa00 2008 }
30cfdcfc 2009 cfs_rq->nr_running--;
30cfdcfc
DA
2010}
2011
3ff6dcac
YZ
2012#ifdef CONFIG_FAIR_GROUP_SCHED
2013# ifdef CONFIG_SMP
cf5f0acf
PZ
2014static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2015{
2016 long tg_weight;
2017
2018 /*
2019 * Use this CPU's actual weight instead of the last load_contribution
2020 * to gain a more accurate current total weight. See
2021 * update_cfs_rq_load_contribution().
2022 */
bf5b986e 2023 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2024 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2025 tg_weight += cfs_rq->load.weight;
2026
2027 return tg_weight;
2028}
2029
6d5ab293 2030static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2031{
cf5f0acf 2032 long tg_weight, load, shares;
3ff6dcac 2033
cf5f0acf 2034 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2035 load = cfs_rq->load.weight;
3ff6dcac 2036
3ff6dcac 2037 shares = (tg->shares * load);
cf5f0acf
PZ
2038 if (tg_weight)
2039 shares /= tg_weight;
3ff6dcac
YZ
2040
2041 if (shares < MIN_SHARES)
2042 shares = MIN_SHARES;
2043 if (shares > tg->shares)
2044 shares = tg->shares;
2045
2046 return shares;
2047}
3ff6dcac 2048# else /* CONFIG_SMP */
6d5ab293 2049static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2050{
2051 return tg->shares;
2052}
3ff6dcac 2053# endif /* CONFIG_SMP */
2069dd75
PZ
2054static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2055 unsigned long weight)
2056{
19e5eebb
PT
2057 if (se->on_rq) {
2058 /* commit outstanding execution time */
2059 if (cfs_rq->curr == se)
2060 update_curr(cfs_rq);
2069dd75 2061 account_entity_dequeue(cfs_rq, se);
19e5eebb 2062 }
2069dd75
PZ
2063
2064 update_load_set(&se->load, weight);
2065
2066 if (se->on_rq)
2067 account_entity_enqueue(cfs_rq, se);
2068}
2069
82958366
PT
2070static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2071
6d5ab293 2072static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2073{
2074 struct task_group *tg;
2075 struct sched_entity *se;
3ff6dcac 2076 long shares;
2069dd75 2077
2069dd75
PZ
2078 tg = cfs_rq->tg;
2079 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2080 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2081 return;
3ff6dcac
YZ
2082#ifndef CONFIG_SMP
2083 if (likely(se->load.weight == tg->shares))
2084 return;
2085#endif
6d5ab293 2086 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2087
2088 reweight_entity(cfs_rq_of(se), se, shares);
2089}
2090#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2091static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2092{
2093}
2094#endif /* CONFIG_FAIR_GROUP_SCHED */
2095
141965c7 2096#ifdef CONFIG_SMP
5b51f2f8
PT
2097/*
2098 * We choose a half-life close to 1 scheduling period.
2099 * Note: The tables below are dependent on this value.
2100 */
2101#define LOAD_AVG_PERIOD 32
2102#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2103#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2104
2105/* Precomputed fixed inverse multiplies for multiplication by y^n */
2106static const u32 runnable_avg_yN_inv[] = {
2107 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2108 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2109 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2110 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2111 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2112 0x85aac367, 0x82cd8698,
2113};
2114
2115/*
2116 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2117 * over-estimates when re-combining.
2118 */
2119static const u32 runnable_avg_yN_sum[] = {
2120 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2121 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2122 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2123};
2124
9d85f21c
PT
2125/*
2126 * Approximate:
2127 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2128 */
2129static __always_inline u64 decay_load(u64 val, u64 n)
2130{
5b51f2f8
PT
2131 unsigned int local_n;
2132
2133 if (!n)
2134 return val;
2135 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2136 return 0;
2137
2138 /* after bounds checking we can collapse to 32-bit */
2139 local_n = n;
2140
2141 /*
2142 * As y^PERIOD = 1/2, we can combine
2143 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2144 * With a look-up table which covers k^n (n<PERIOD)
2145 *
2146 * To achieve constant time decay_load.
2147 */
2148 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2149 val >>= local_n / LOAD_AVG_PERIOD;
2150 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2151 }
2152
5b51f2f8
PT
2153 val *= runnable_avg_yN_inv[local_n];
2154 /* We don't use SRR here since we always want to round down. */
2155 return val >> 32;
2156}
2157
2158/*
2159 * For updates fully spanning n periods, the contribution to runnable
2160 * average will be: \Sum 1024*y^n
2161 *
2162 * We can compute this reasonably efficiently by combining:
2163 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2164 */
2165static u32 __compute_runnable_contrib(u64 n)
2166{
2167 u32 contrib = 0;
2168
2169 if (likely(n <= LOAD_AVG_PERIOD))
2170 return runnable_avg_yN_sum[n];
2171 else if (unlikely(n >= LOAD_AVG_MAX_N))
2172 return LOAD_AVG_MAX;
2173
2174 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2175 do {
2176 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2177 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2178
2179 n -= LOAD_AVG_PERIOD;
2180 } while (n > LOAD_AVG_PERIOD);
2181
2182 contrib = decay_load(contrib, n);
2183 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2184}
2185
2186/*
2187 * We can represent the historical contribution to runnable average as the
2188 * coefficients of a geometric series. To do this we sub-divide our runnable
2189 * history into segments of approximately 1ms (1024us); label the segment that
2190 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2191 *
2192 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2193 * p0 p1 p2
2194 * (now) (~1ms ago) (~2ms ago)
2195 *
2196 * Let u_i denote the fraction of p_i that the entity was runnable.
2197 *
2198 * We then designate the fractions u_i as our co-efficients, yielding the
2199 * following representation of historical load:
2200 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2201 *
2202 * We choose y based on the with of a reasonably scheduling period, fixing:
2203 * y^32 = 0.5
2204 *
2205 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2206 * approximately half as much as the contribution to load within the last ms
2207 * (u_0).
2208 *
2209 * When a period "rolls over" and we have new u_0`, multiplying the previous
2210 * sum again by y is sufficient to update:
2211 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2212 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2213 */
2214static __always_inline int __update_entity_runnable_avg(u64 now,
2215 struct sched_avg *sa,
2216 int runnable)
2217{
5b51f2f8
PT
2218 u64 delta, periods;
2219 u32 runnable_contrib;
9d85f21c
PT
2220 int delta_w, decayed = 0;
2221
2222 delta = now - sa->last_runnable_update;
2223 /*
2224 * This should only happen when time goes backwards, which it
2225 * unfortunately does during sched clock init when we swap over to TSC.
2226 */
2227 if ((s64)delta < 0) {
2228 sa->last_runnable_update = now;
2229 return 0;
2230 }
2231
2232 /*
2233 * Use 1024ns as the unit of measurement since it's a reasonable
2234 * approximation of 1us and fast to compute.
2235 */
2236 delta >>= 10;
2237 if (!delta)
2238 return 0;
2239 sa->last_runnable_update = now;
2240
2241 /* delta_w is the amount already accumulated against our next period */
2242 delta_w = sa->runnable_avg_period % 1024;
2243 if (delta + delta_w >= 1024) {
2244 /* period roll-over */
2245 decayed = 1;
2246
2247 /*
2248 * Now that we know we're crossing a period boundary, figure
2249 * out how much from delta we need to complete the current
2250 * period and accrue it.
2251 */
2252 delta_w = 1024 - delta_w;
5b51f2f8
PT
2253 if (runnable)
2254 sa->runnable_avg_sum += delta_w;
2255 sa->runnable_avg_period += delta_w;
2256
2257 delta -= delta_w;
2258
2259 /* Figure out how many additional periods this update spans */
2260 periods = delta / 1024;
2261 delta %= 1024;
2262
2263 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2264 periods + 1);
2265 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2266 periods + 1);
2267
2268 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2269 runnable_contrib = __compute_runnable_contrib(periods);
2270 if (runnable)
2271 sa->runnable_avg_sum += runnable_contrib;
2272 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2273 }
2274
2275 /* Remainder of delta accrued against u_0` */
2276 if (runnable)
2277 sa->runnable_avg_sum += delta;
2278 sa->runnable_avg_period += delta;
2279
2280 return decayed;
2281}
2282
9ee474f5 2283/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2284static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2285{
2286 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2287 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2288
2289 decays -= se->avg.decay_count;
2290 if (!decays)
aff3e498 2291 return 0;
9ee474f5
PT
2292
2293 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2294 se->avg.decay_count = 0;
aff3e498
PT
2295
2296 return decays;
9ee474f5
PT
2297}
2298
c566e8e9
PT
2299#ifdef CONFIG_FAIR_GROUP_SCHED
2300static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2301 int force_update)
2302{
2303 struct task_group *tg = cfs_rq->tg;
bf5b986e 2304 long tg_contrib;
c566e8e9
PT
2305
2306 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2307 tg_contrib -= cfs_rq->tg_load_contrib;
2308
bf5b986e
AS
2309 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2310 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2311 cfs_rq->tg_load_contrib += tg_contrib;
2312 }
2313}
8165e145 2314
bb17f655
PT
2315/*
2316 * Aggregate cfs_rq runnable averages into an equivalent task_group
2317 * representation for computing load contributions.
2318 */
2319static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2320 struct cfs_rq *cfs_rq)
2321{
2322 struct task_group *tg = cfs_rq->tg;
2323 long contrib;
2324
2325 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2326 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2327 sa->runnable_avg_period + 1);
2328 contrib -= cfs_rq->tg_runnable_contrib;
2329
2330 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2331 atomic_add(contrib, &tg->runnable_avg);
2332 cfs_rq->tg_runnable_contrib += contrib;
2333 }
2334}
2335
8165e145
PT
2336static inline void __update_group_entity_contrib(struct sched_entity *se)
2337{
2338 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2339 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2340 int runnable_avg;
2341
8165e145
PT
2342 u64 contrib;
2343
2344 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2345 se->avg.load_avg_contrib = div_u64(contrib,
2346 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2347
2348 /*
2349 * For group entities we need to compute a correction term in the case
2350 * that they are consuming <1 cpu so that we would contribute the same
2351 * load as a task of equal weight.
2352 *
2353 * Explicitly co-ordinating this measurement would be expensive, but
2354 * fortunately the sum of each cpus contribution forms a usable
2355 * lower-bound on the true value.
2356 *
2357 * Consider the aggregate of 2 contributions. Either they are disjoint
2358 * (and the sum represents true value) or they are disjoint and we are
2359 * understating by the aggregate of their overlap.
2360 *
2361 * Extending this to N cpus, for a given overlap, the maximum amount we
2362 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2363 * cpus that overlap for this interval and w_i is the interval width.
2364 *
2365 * On a small machine; the first term is well-bounded which bounds the
2366 * total error since w_i is a subset of the period. Whereas on a
2367 * larger machine, while this first term can be larger, if w_i is the
2368 * of consequential size guaranteed to see n_i*w_i quickly converge to
2369 * our upper bound of 1-cpu.
2370 */
2371 runnable_avg = atomic_read(&tg->runnable_avg);
2372 if (runnable_avg < NICE_0_LOAD) {
2373 se->avg.load_avg_contrib *= runnable_avg;
2374 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2375 }
8165e145 2376}
6e83125c 2377#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2378static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2379 int force_update) {}
bb17f655
PT
2380static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2381 struct cfs_rq *cfs_rq) {}
8165e145 2382static inline void __update_group_entity_contrib(struct sched_entity *se) {}
6e83125c 2383#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2384
8165e145
PT
2385static inline void __update_task_entity_contrib(struct sched_entity *se)
2386{
2387 u32 contrib;
2388
2389 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2390 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2391 contrib /= (se->avg.runnable_avg_period + 1);
2392 se->avg.load_avg_contrib = scale_load(contrib);
2393}
2394
2dac754e
PT
2395/* Compute the current contribution to load_avg by se, return any delta */
2396static long __update_entity_load_avg_contrib(struct sched_entity *se)
2397{
2398 long old_contrib = se->avg.load_avg_contrib;
2399
8165e145
PT
2400 if (entity_is_task(se)) {
2401 __update_task_entity_contrib(se);
2402 } else {
bb17f655 2403 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2404 __update_group_entity_contrib(se);
2405 }
2dac754e
PT
2406
2407 return se->avg.load_avg_contrib - old_contrib;
2408}
2409
9ee474f5
PT
2410static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2411 long load_contrib)
2412{
2413 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2414 cfs_rq->blocked_load_avg -= load_contrib;
2415 else
2416 cfs_rq->blocked_load_avg = 0;
2417}
2418
f1b17280
PT
2419static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2420
9d85f21c 2421/* Update a sched_entity's runnable average */
9ee474f5
PT
2422static inline void update_entity_load_avg(struct sched_entity *se,
2423 int update_cfs_rq)
9d85f21c 2424{
2dac754e
PT
2425 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2426 long contrib_delta;
f1b17280 2427 u64 now;
2dac754e 2428
f1b17280
PT
2429 /*
2430 * For a group entity we need to use their owned cfs_rq_clock_task() in
2431 * case they are the parent of a throttled hierarchy.
2432 */
2433 if (entity_is_task(se))
2434 now = cfs_rq_clock_task(cfs_rq);
2435 else
2436 now = cfs_rq_clock_task(group_cfs_rq(se));
2437
2438 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2439 return;
2440
2441 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2442
2443 if (!update_cfs_rq)
2444 return;
2445
2dac754e
PT
2446 if (se->on_rq)
2447 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2448 else
2449 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2450}
2451
2452/*
2453 * Decay the load contributed by all blocked children and account this so that
2454 * their contribution may appropriately discounted when they wake up.
2455 */
aff3e498 2456static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2457{
f1b17280 2458 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2459 u64 decays;
2460
2461 decays = now - cfs_rq->last_decay;
aff3e498 2462 if (!decays && !force_update)
9ee474f5
PT
2463 return;
2464
2509940f
AS
2465 if (atomic_long_read(&cfs_rq->removed_load)) {
2466 unsigned long removed_load;
2467 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2468 subtract_blocked_load_contrib(cfs_rq, removed_load);
2469 }
9ee474f5 2470
aff3e498
PT
2471 if (decays) {
2472 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2473 decays);
2474 atomic64_add(decays, &cfs_rq->decay_counter);
2475 cfs_rq->last_decay = now;
2476 }
c566e8e9
PT
2477
2478 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2479}
18bf2805
BS
2480
2481static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2482{
78becc27 2483 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2484 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2485}
2dac754e
PT
2486
2487/* Add the load generated by se into cfs_rq's child load-average */
2488static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2489 struct sched_entity *se,
2490 int wakeup)
2dac754e 2491{
aff3e498
PT
2492 /*
2493 * We track migrations using entity decay_count <= 0, on a wake-up
2494 * migration we use a negative decay count to track the remote decays
2495 * accumulated while sleeping.
a75cdaa9
AS
2496 *
2497 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2498 * are seen by enqueue_entity_load_avg() as a migration with an already
2499 * constructed load_avg_contrib.
aff3e498
PT
2500 */
2501 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2502 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2503 if (se->avg.decay_count) {
2504 /*
2505 * In a wake-up migration we have to approximate the
2506 * time sleeping. This is because we can't synchronize
2507 * clock_task between the two cpus, and it is not
2508 * guaranteed to be read-safe. Instead, we can
2509 * approximate this using our carried decays, which are
2510 * explicitly atomically readable.
2511 */
2512 se->avg.last_runnable_update -= (-se->avg.decay_count)
2513 << 20;
2514 update_entity_load_avg(se, 0);
2515 /* Indicate that we're now synchronized and on-rq */
2516 se->avg.decay_count = 0;
2517 }
9ee474f5
PT
2518 wakeup = 0;
2519 } else {
9390675a 2520 __synchronize_entity_decay(se);
9ee474f5
PT
2521 }
2522
aff3e498
PT
2523 /* migrated tasks did not contribute to our blocked load */
2524 if (wakeup) {
9ee474f5 2525 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2526 update_entity_load_avg(se, 0);
2527 }
9ee474f5 2528
2dac754e 2529 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2530 /* we force update consideration on load-balancer moves */
2531 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2532}
2533
9ee474f5
PT
2534/*
2535 * Remove se's load from this cfs_rq child load-average, if the entity is
2536 * transitioning to a blocked state we track its projected decay using
2537 * blocked_load_avg.
2538 */
2dac754e 2539static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2540 struct sched_entity *se,
2541 int sleep)
2dac754e 2542{
9ee474f5 2543 update_entity_load_avg(se, 1);
aff3e498
PT
2544 /* we force update consideration on load-balancer moves */
2545 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2546
2dac754e 2547 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2548 if (sleep) {
2549 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2550 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2551 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2552}
642dbc39
VG
2553
2554/*
2555 * Update the rq's load with the elapsed running time before entering
2556 * idle. if the last scheduled task is not a CFS task, idle_enter will
2557 * be the only way to update the runnable statistic.
2558 */
2559void idle_enter_fair(struct rq *this_rq)
2560{
2561 update_rq_runnable_avg(this_rq, 1);
2562}
2563
2564/*
2565 * Update the rq's load with the elapsed idle time before a task is
2566 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2567 * be the only way to update the runnable statistic.
2568 */
2569void idle_exit_fair(struct rq *this_rq)
2570{
2571 update_rq_runnable_avg(this_rq, 0);
2572}
2573
6e83125c
PZ
2574static int idle_balance(struct rq *this_rq);
2575
38033c37
PZ
2576#else /* CONFIG_SMP */
2577
9ee474f5
PT
2578static inline void update_entity_load_avg(struct sched_entity *se,
2579 int update_cfs_rq) {}
18bf2805 2580static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2581static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2582 struct sched_entity *se,
2583 int wakeup) {}
2dac754e 2584static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2585 struct sched_entity *se,
2586 int sleep) {}
aff3e498
PT
2587static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2588 int force_update) {}
6e83125c
PZ
2589
2590static inline int idle_balance(struct rq *rq)
2591{
2592 return 0;
2593}
2594
38033c37 2595#endif /* CONFIG_SMP */
9d85f21c 2596
2396af69 2597static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2598{
bf0f6f24 2599#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2600 struct task_struct *tsk = NULL;
2601
2602 if (entity_is_task(se))
2603 tsk = task_of(se);
2604
41acab88 2605 if (se->statistics.sleep_start) {
78becc27 2606 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2607
2608 if ((s64)delta < 0)
2609 delta = 0;
2610
41acab88
LDM
2611 if (unlikely(delta > se->statistics.sleep_max))
2612 se->statistics.sleep_max = delta;
bf0f6f24 2613
8c79a045 2614 se->statistics.sleep_start = 0;
41acab88 2615 se->statistics.sum_sleep_runtime += delta;
9745512c 2616
768d0c27 2617 if (tsk) {
e414314c 2618 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2619 trace_sched_stat_sleep(tsk, delta);
2620 }
bf0f6f24 2621 }
41acab88 2622 if (se->statistics.block_start) {
78becc27 2623 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2624
2625 if ((s64)delta < 0)
2626 delta = 0;
2627
41acab88
LDM
2628 if (unlikely(delta > se->statistics.block_max))
2629 se->statistics.block_max = delta;
bf0f6f24 2630
8c79a045 2631 se->statistics.block_start = 0;
41acab88 2632 se->statistics.sum_sleep_runtime += delta;
30084fbd 2633
e414314c 2634 if (tsk) {
8f0dfc34 2635 if (tsk->in_iowait) {
41acab88
LDM
2636 se->statistics.iowait_sum += delta;
2637 se->statistics.iowait_count++;
768d0c27 2638 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2639 }
2640
b781a602
AV
2641 trace_sched_stat_blocked(tsk, delta);
2642
e414314c
PZ
2643 /*
2644 * Blocking time is in units of nanosecs, so shift by
2645 * 20 to get a milliseconds-range estimation of the
2646 * amount of time that the task spent sleeping:
2647 */
2648 if (unlikely(prof_on == SLEEP_PROFILING)) {
2649 profile_hits(SLEEP_PROFILING,
2650 (void *)get_wchan(tsk),
2651 delta >> 20);
2652 }
2653 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2654 }
bf0f6f24
IM
2655 }
2656#endif
2657}
2658
ddc97297
PZ
2659static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2660{
2661#ifdef CONFIG_SCHED_DEBUG
2662 s64 d = se->vruntime - cfs_rq->min_vruntime;
2663
2664 if (d < 0)
2665 d = -d;
2666
2667 if (d > 3*sysctl_sched_latency)
2668 schedstat_inc(cfs_rq, nr_spread_over);
2669#endif
2670}
2671
aeb73b04
PZ
2672static void
2673place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2674{
1af5f730 2675 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2676
2cb8600e
PZ
2677 /*
2678 * The 'current' period is already promised to the current tasks,
2679 * however the extra weight of the new task will slow them down a
2680 * little, place the new task so that it fits in the slot that
2681 * stays open at the end.
2682 */
94dfb5e7 2683 if (initial && sched_feat(START_DEBIT))
f9c0b095 2684 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2685
a2e7a7eb 2686 /* sleeps up to a single latency don't count. */
5ca9880c 2687 if (!initial) {
a2e7a7eb 2688 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2689
a2e7a7eb
MG
2690 /*
2691 * Halve their sleep time's effect, to allow
2692 * for a gentler effect of sleepers:
2693 */
2694 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2695 thresh >>= 1;
51e0304c 2696
a2e7a7eb 2697 vruntime -= thresh;
aeb73b04
PZ
2698 }
2699
b5d9d734 2700 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2701 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2702}
2703
d3d9dc33
PT
2704static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2705
bf0f6f24 2706static void
88ec22d3 2707enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2708{
88ec22d3
PZ
2709 /*
2710 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2711 * through calling update_curr().
88ec22d3 2712 */
371fd7e7 2713 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2714 se->vruntime += cfs_rq->min_vruntime;
2715
bf0f6f24 2716 /*
a2a2d680 2717 * Update run-time statistics of the 'current'.
bf0f6f24 2718 */
b7cc0896 2719 update_curr(cfs_rq);
f269ae04 2720 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2721 account_entity_enqueue(cfs_rq, se);
2722 update_cfs_shares(cfs_rq);
bf0f6f24 2723
88ec22d3 2724 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2725 place_entity(cfs_rq, se, 0);
2396af69 2726 enqueue_sleeper(cfs_rq, se);
e9acbff6 2727 }
bf0f6f24 2728
d2417e5a 2729 update_stats_enqueue(cfs_rq, se);
ddc97297 2730 check_spread(cfs_rq, se);
83b699ed
SV
2731 if (se != cfs_rq->curr)
2732 __enqueue_entity(cfs_rq, se);
2069dd75 2733 se->on_rq = 1;
3d4b47b4 2734
d3d9dc33 2735 if (cfs_rq->nr_running == 1) {
3d4b47b4 2736 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2737 check_enqueue_throttle(cfs_rq);
2738 }
bf0f6f24
IM
2739}
2740
2c13c919 2741static void __clear_buddies_last(struct sched_entity *se)
2002c695 2742{
2c13c919
RR
2743 for_each_sched_entity(se) {
2744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2745 if (cfs_rq->last != se)
2c13c919 2746 break;
f1044799
PZ
2747
2748 cfs_rq->last = NULL;
2c13c919
RR
2749 }
2750}
2002c695 2751
2c13c919
RR
2752static void __clear_buddies_next(struct sched_entity *se)
2753{
2754 for_each_sched_entity(se) {
2755 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2756 if (cfs_rq->next != se)
2c13c919 2757 break;
f1044799
PZ
2758
2759 cfs_rq->next = NULL;
2c13c919 2760 }
2002c695
PZ
2761}
2762
ac53db59
RR
2763static void __clear_buddies_skip(struct sched_entity *se)
2764{
2765 for_each_sched_entity(se) {
2766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2767 if (cfs_rq->skip != se)
ac53db59 2768 break;
f1044799
PZ
2769
2770 cfs_rq->skip = NULL;
ac53db59
RR
2771 }
2772}
2773
a571bbea
PZ
2774static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2775{
2c13c919
RR
2776 if (cfs_rq->last == se)
2777 __clear_buddies_last(se);
2778
2779 if (cfs_rq->next == se)
2780 __clear_buddies_next(se);
ac53db59
RR
2781
2782 if (cfs_rq->skip == se)
2783 __clear_buddies_skip(se);
a571bbea
PZ
2784}
2785
6c16a6dc 2786static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2787
bf0f6f24 2788static void
371fd7e7 2789dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2790{
a2a2d680
DA
2791 /*
2792 * Update run-time statistics of the 'current'.
2793 */
2794 update_curr(cfs_rq);
17bc14b7 2795 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2796
19b6a2e3 2797 update_stats_dequeue(cfs_rq, se);
371fd7e7 2798 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2799#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2800 if (entity_is_task(se)) {
2801 struct task_struct *tsk = task_of(se);
2802
2803 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2804 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2805 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2806 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2807 }
db36cc7d 2808#endif
67e9fb2a
PZ
2809 }
2810
2002c695 2811 clear_buddies(cfs_rq, se);
4793241b 2812
83b699ed 2813 if (se != cfs_rq->curr)
30cfdcfc 2814 __dequeue_entity(cfs_rq, se);
17bc14b7 2815 se->on_rq = 0;
30cfdcfc 2816 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2817
2818 /*
2819 * Normalize the entity after updating the min_vruntime because the
2820 * update can refer to the ->curr item and we need to reflect this
2821 * movement in our normalized position.
2822 */
371fd7e7 2823 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2824 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2825
d8b4986d
PT
2826 /* return excess runtime on last dequeue */
2827 return_cfs_rq_runtime(cfs_rq);
2828
1e876231 2829 update_min_vruntime(cfs_rq);
17bc14b7 2830 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2831}
2832
2833/*
2834 * Preempt the current task with a newly woken task if needed:
2835 */
7c92e54f 2836static void
2e09bf55 2837check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2838{
11697830 2839 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2840 struct sched_entity *se;
2841 s64 delta;
11697830 2842
6d0f0ebd 2843 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2844 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2845 if (delta_exec > ideal_runtime) {
bf0f6f24 2846 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2847 /*
2848 * The current task ran long enough, ensure it doesn't get
2849 * re-elected due to buddy favours.
2850 */
2851 clear_buddies(cfs_rq, curr);
f685ceac
MG
2852 return;
2853 }
2854
2855 /*
2856 * Ensure that a task that missed wakeup preemption by a
2857 * narrow margin doesn't have to wait for a full slice.
2858 * This also mitigates buddy induced latencies under load.
2859 */
f685ceac
MG
2860 if (delta_exec < sysctl_sched_min_granularity)
2861 return;
2862
f4cfb33e
WX
2863 se = __pick_first_entity(cfs_rq);
2864 delta = curr->vruntime - se->vruntime;
f685ceac 2865
f4cfb33e
WX
2866 if (delta < 0)
2867 return;
d7d82944 2868
f4cfb33e
WX
2869 if (delta > ideal_runtime)
2870 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2871}
2872
83b699ed 2873static void
8494f412 2874set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2875{
83b699ed
SV
2876 /* 'current' is not kept within the tree. */
2877 if (se->on_rq) {
2878 /*
2879 * Any task has to be enqueued before it get to execute on
2880 * a CPU. So account for the time it spent waiting on the
2881 * runqueue.
2882 */
2883 update_stats_wait_end(cfs_rq, se);
2884 __dequeue_entity(cfs_rq, se);
2885 }
2886
79303e9e 2887 update_stats_curr_start(cfs_rq, se);
429d43bc 2888 cfs_rq->curr = se;
eba1ed4b
IM
2889#ifdef CONFIG_SCHEDSTATS
2890 /*
2891 * Track our maximum slice length, if the CPU's load is at
2892 * least twice that of our own weight (i.e. dont track it
2893 * when there are only lesser-weight tasks around):
2894 */
495eca49 2895 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2896 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2897 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2898 }
2899#endif
4a55b450 2900 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2901}
2902
3f3a4904
PZ
2903static int
2904wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2905
ac53db59
RR
2906/*
2907 * Pick the next process, keeping these things in mind, in this order:
2908 * 1) keep things fair between processes/task groups
2909 * 2) pick the "next" process, since someone really wants that to run
2910 * 3) pick the "last" process, for cache locality
2911 * 4) do not run the "skip" process, if something else is available
2912 */
678d5718
PZ
2913static struct sched_entity *
2914pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2915{
678d5718
PZ
2916 struct sched_entity *left = __pick_first_entity(cfs_rq);
2917 struct sched_entity *se;
2918
2919 /*
2920 * If curr is set we have to see if its left of the leftmost entity
2921 * still in the tree, provided there was anything in the tree at all.
2922 */
2923 if (!left || (curr && entity_before(curr, left)))
2924 left = curr;
2925
2926 se = left; /* ideally we run the leftmost entity */
f4b6755f 2927
ac53db59
RR
2928 /*
2929 * Avoid running the skip buddy, if running something else can
2930 * be done without getting too unfair.
2931 */
2932 if (cfs_rq->skip == se) {
678d5718
PZ
2933 struct sched_entity *second;
2934
2935 if (se == curr) {
2936 second = __pick_first_entity(cfs_rq);
2937 } else {
2938 second = __pick_next_entity(se);
2939 if (!second || (curr && entity_before(curr, second)))
2940 second = curr;
2941 }
2942
ac53db59
RR
2943 if (second && wakeup_preempt_entity(second, left) < 1)
2944 se = second;
2945 }
aa2ac252 2946
f685ceac
MG
2947 /*
2948 * Prefer last buddy, try to return the CPU to a preempted task.
2949 */
2950 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2951 se = cfs_rq->last;
2952
ac53db59
RR
2953 /*
2954 * Someone really wants this to run. If it's not unfair, run it.
2955 */
2956 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2957 se = cfs_rq->next;
2958
f685ceac 2959 clear_buddies(cfs_rq, se);
4793241b
PZ
2960
2961 return se;
aa2ac252
PZ
2962}
2963
678d5718 2964static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 2965
ab6cde26 2966static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2967{
2968 /*
2969 * If still on the runqueue then deactivate_task()
2970 * was not called and update_curr() has to be done:
2971 */
2972 if (prev->on_rq)
b7cc0896 2973 update_curr(cfs_rq);
bf0f6f24 2974
d3d9dc33
PT
2975 /* throttle cfs_rqs exceeding runtime */
2976 check_cfs_rq_runtime(cfs_rq);
2977
ddc97297 2978 check_spread(cfs_rq, prev);
30cfdcfc 2979 if (prev->on_rq) {
5870db5b 2980 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2981 /* Put 'current' back into the tree. */
2982 __enqueue_entity(cfs_rq, prev);
9d85f21c 2983 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2984 update_entity_load_avg(prev, 1);
30cfdcfc 2985 }
429d43bc 2986 cfs_rq->curr = NULL;
bf0f6f24
IM
2987}
2988
8f4d37ec
PZ
2989static void
2990entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2991{
bf0f6f24 2992 /*
30cfdcfc 2993 * Update run-time statistics of the 'current'.
bf0f6f24 2994 */
30cfdcfc 2995 update_curr(cfs_rq);
bf0f6f24 2996
9d85f21c
PT
2997 /*
2998 * Ensure that runnable average is periodically updated.
2999 */
9ee474f5 3000 update_entity_load_avg(curr, 1);
aff3e498 3001 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3002 update_cfs_shares(cfs_rq);
9d85f21c 3003
8f4d37ec
PZ
3004#ifdef CONFIG_SCHED_HRTICK
3005 /*
3006 * queued ticks are scheduled to match the slice, so don't bother
3007 * validating it and just reschedule.
3008 */
983ed7a6
HH
3009 if (queued) {
3010 resched_task(rq_of(cfs_rq)->curr);
3011 return;
3012 }
8f4d37ec
PZ
3013 /*
3014 * don't let the period tick interfere with the hrtick preemption
3015 */
3016 if (!sched_feat(DOUBLE_TICK) &&
3017 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3018 return;
3019#endif
3020
2c2efaed 3021 if (cfs_rq->nr_running > 1)
2e09bf55 3022 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3023}
3024
ab84d31e
PT
3025
3026/**************************************************
3027 * CFS bandwidth control machinery
3028 */
3029
3030#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3031
3032#ifdef HAVE_JUMP_LABEL
c5905afb 3033static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3034
3035static inline bool cfs_bandwidth_used(void)
3036{
c5905afb 3037 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3038}
3039
1ee14e6c 3040void cfs_bandwidth_usage_inc(void)
029632fb 3041{
1ee14e6c
BS
3042 static_key_slow_inc(&__cfs_bandwidth_used);
3043}
3044
3045void cfs_bandwidth_usage_dec(void)
3046{
3047 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3048}
3049#else /* HAVE_JUMP_LABEL */
3050static bool cfs_bandwidth_used(void)
3051{
3052 return true;
3053}
3054
1ee14e6c
BS
3055void cfs_bandwidth_usage_inc(void) {}
3056void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3057#endif /* HAVE_JUMP_LABEL */
3058
ab84d31e
PT
3059/*
3060 * default period for cfs group bandwidth.
3061 * default: 0.1s, units: nanoseconds
3062 */
3063static inline u64 default_cfs_period(void)
3064{
3065 return 100000000ULL;
3066}
ec12cb7f
PT
3067
3068static inline u64 sched_cfs_bandwidth_slice(void)
3069{
3070 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3071}
3072
a9cf55b2
PT
3073/*
3074 * Replenish runtime according to assigned quota and update expiration time.
3075 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3076 * additional synchronization around rq->lock.
3077 *
3078 * requires cfs_b->lock
3079 */
029632fb 3080void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3081{
3082 u64 now;
3083
3084 if (cfs_b->quota == RUNTIME_INF)
3085 return;
3086
3087 now = sched_clock_cpu(smp_processor_id());
3088 cfs_b->runtime = cfs_b->quota;
3089 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3090}
3091
029632fb
PZ
3092static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3093{
3094 return &tg->cfs_bandwidth;
3095}
3096
f1b17280
PT
3097/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3098static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3099{
3100 if (unlikely(cfs_rq->throttle_count))
3101 return cfs_rq->throttled_clock_task;
3102
78becc27 3103 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3104}
3105
85dac906
PT
3106/* returns 0 on failure to allocate runtime */
3107static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3108{
3109 struct task_group *tg = cfs_rq->tg;
3110 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3111 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3112
3113 /* note: this is a positive sum as runtime_remaining <= 0 */
3114 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3115
3116 raw_spin_lock(&cfs_b->lock);
3117 if (cfs_b->quota == RUNTIME_INF)
3118 amount = min_amount;
58088ad0 3119 else {
a9cf55b2
PT
3120 /*
3121 * If the bandwidth pool has become inactive, then at least one
3122 * period must have elapsed since the last consumption.
3123 * Refresh the global state and ensure bandwidth timer becomes
3124 * active.
3125 */
3126 if (!cfs_b->timer_active) {
3127 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3128 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3129 }
58088ad0
PT
3130
3131 if (cfs_b->runtime > 0) {
3132 amount = min(cfs_b->runtime, min_amount);
3133 cfs_b->runtime -= amount;
3134 cfs_b->idle = 0;
3135 }
ec12cb7f 3136 }
a9cf55b2 3137 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3138 raw_spin_unlock(&cfs_b->lock);
3139
3140 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3141 /*
3142 * we may have advanced our local expiration to account for allowed
3143 * spread between our sched_clock and the one on which runtime was
3144 * issued.
3145 */
3146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3147 cfs_rq->runtime_expires = expires;
85dac906
PT
3148
3149 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3150}
3151
a9cf55b2
PT
3152/*
3153 * Note: This depends on the synchronization provided by sched_clock and the
3154 * fact that rq->clock snapshots this value.
3155 */
3156static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3157{
a9cf55b2 3158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3159
3160 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3161 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3162 return;
3163
a9cf55b2
PT
3164 if (cfs_rq->runtime_remaining < 0)
3165 return;
3166
3167 /*
3168 * If the local deadline has passed we have to consider the
3169 * possibility that our sched_clock is 'fast' and the global deadline
3170 * has not truly expired.
3171 *
3172 * Fortunately we can check determine whether this the case by checking
3173 * whether the global deadline has advanced.
3174 */
3175
3176 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3177 /* extend local deadline, drift is bounded above by 2 ticks */
3178 cfs_rq->runtime_expires += TICK_NSEC;
3179 } else {
3180 /* global deadline is ahead, expiration has passed */
3181 cfs_rq->runtime_remaining = 0;
3182 }
3183}
3184
9dbdb155 3185static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3186{
3187 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3188 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3189 expire_cfs_rq_runtime(cfs_rq);
3190
3191 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3192 return;
3193
85dac906
PT
3194 /*
3195 * if we're unable to extend our runtime we resched so that the active
3196 * hierarchy can be throttled
3197 */
3198 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3199 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3200}
3201
6c16a6dc 3202static __always_inline
9dbdb155 3203void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3204{
56f570e5 3205 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3206 return;
3207
3208 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3209}
3210
85dac906
PT
3211static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3212{
56f570e5 3213 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3214}
3215
64660c86
PT
3216/* check whether cfs_rq, or any parent, is throttled */
3217static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3218{
56f570e5 3219 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3220}
3221
3222/*
3223 * Ensure that neither of the group entities corresponding to src_cpu or
3224 * dest_cpu are members of a throttled hierarchy when performing group
3225 * load-balance operations.
3226 */
3227static inline int throttled_lb_pair(struct task_group *tg,
3228 int src_cpu, int dest_cpu)
3229{
3230 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3231
3232 src_cfs_rq = tg->cfs_rq[src_cpu];
3233 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3234
3235 return throttled_hierarchy(src_cfs_rq) ||
3236 throttled_hierarchy(dest_cfs_rq);
3237}
3238
3239/* updated child weight may affect parent so we have to do this bottom up */
3240static int tg_unthrottle_up(struct task_group *tg, void *data)
3241{
3242 struct rq *rq = data;
3243 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3244
3245 cfs_rq->throttle_count--;
3246#ifdef CONFIG_SMP
3247 if (!cfs_rq->throttle_count) {
f1b17280 3248 /* adjust cfs_rq_clock_task() */
78becc27 3249 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3250 cfs_rq->throttled_clock_task;
64660c86
PT
3251 }
3252#endif
3253
3254 return 0;
3255}
3256
3257static int tg_throttle_down(struct task_group *tg, void *data)
3258{
3259 struct rq *rq = data;
3260 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3261
82958366
PT
3262 /* group is entering throttled state, stop time */
3263 if (!cfs_rq->throttle_count)
78becc27 3264 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3265 cfs_rq->throttle_count++;
3266
3267 return 0;
3268}
3269
d3d9dc33 3270static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3271{
3272 struct rq *rq = rq_of(cfs_rq);
3273 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3274 struct sched_entity *se;
3275 long task_delta, dequeue = 1;
3276
3277 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3278
f1b17280 3279 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3280 rcu_read_lock();
3281 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3282 rcu_read_unlock();
85dac906
PT
3283
3284 task_delta = cfs_rq->h_nr_running;
3285 for_each_sched_entity(se) {
3286 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3287 /* throttled entity or throttle-on-deactivate */
3288 if (!se->on_rq)
3289 break;
3290
3291 if (dequeue)
3292 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3293 qcfs_rq->h_nr_running -= task_delta;
3294
3295 if (qcfs_rq->load.weight)
3296 dequeue = 0;
3297 }
3298
3299 if (!se)
3300 rq->nr_running -= task_delta;
3301
3302 cfs_rq->throttled = 1;
78becc27 3303 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3304 raw_spin_lock(&cfs_b->lock);
3305 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3306 if (!cfs_b->timer_active)
3307 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3308 raw_spin_unlock(&cfs_b->lock);
3309}
3310
029632fb 3311void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3312{
3313 struct rq *rq = rq_of(cfs_rq);
3314 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3315 struct sched_entity *se;
3316 int enqueue = 1;
3317 long task_delta;
3318
22b958d8 3319 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3320
3321 cfs_rq->throttled = 0;
1a55af2e
FW
3322
3323 update_rq_clock(rq);
3324
671fd9da 3325 raw_spin_lock(&cfs_b->lock);
78becc27 3326 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3327 list_del_rcu(&cfs_rq->throttled_list);
3328 raw_spin_unlock(&cfs_b->lock);
3329
64660c86
PT
3330 /* update hierarchical throttle state */
3331 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3332
671fd9da
PT
3333 if (!cfs_rq->load.weight)
3334 return;
3335
3336 task_delta = cfs_rq->h_nr_running;
3337 for_each_sched_entity(se) {
3338 if (se->on_rq)
3339 enqueue = 0;
3340
3341 cfs_rq = cfs_rq_of(se);
3342 if (enqueue)
3343 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3344 cfs_rq->h_nr_running += task_delta;
3345
3346 if (cfs_rq_throttled(cfs_rq))
3347 break;
3348 }
3349
3350 if (!se)
3351 rq->nr_running += task_delta;
3352
3353 /* determine whether we need to wake up potentially idle cpu */
3354 if (rq->curr == rq->idle && rq->cfs.nr_running)
3355 resched_task(rq->curr);
3356}
3357
3358static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3359 u64 remaining, u64 expires)
3360{
3361 struct cfs_rq *cfs_rq;
3362 u64 runtime = remaining;
3363
3364 rcu_read_lock();
3365 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3366 throttled_list) {
3367 struct rq *rq = rq_of(cfs_rq);
3368
3369 raw_spin_lock(&rq->lock);
3370 if (!cfs_rq_throttled(cfs_rq))
3371 goto next;
3372
3373 runtime = -cfs_rq->runtime_remaining + 1;
3374 if (runtime > remaining)
3375 runtime = remaining;
3376 remaining -= runtime;
3377
3378 cfs_rq->runtime_remaining += runtime;
3379 cfs_rq->runtime_expires = expires;
3380
3381 /* we check whether we're throttled above */
3382 if (cfs_rq->runtime_remaining > 0)
3383 unthrottle_cfs_rq(cfs_rq);
3384
3385next:
3386 raw_spin_unlock(&rq->lock);
3387
3388 if (!remaining)
3389 break;
3390 }
3391 rcu_read_unlock();
3392
3393 return remaining;
3394}
3395
58088ad0
PT
3396/*
3397 * Responsible for refilling a task_group's bandwidth and unthrottling its
3398 * cfs_rqs as appropriate. If there has been no activity within the last
3399 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3400 * used to track this state.
3401 */
3402static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3403{
671fd9da
PT
3404 u64 runtime, runtime_expires;
3405 int idle = 1, throttled;
58088ad0
PT
3406
3407 raw_spin_lock(&cfs_b->lock);
3408 /* no need to continue the timer with no bandwidth constraint */
3409 if (cfs_b->quota == RUNTIME_INF)
3410 goto out_unlock;
3411
671fd9da
PT
3412 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3413 /* idle depends on !throttled (for the case of a large deficit) */
3414 idle = cfs_b->idle && !throttled;
e8da1b18 3415 cfs_b->nr_periods += overrun;
671fd9da 3416
a9cf55b2
PT
3417 /* if we're going inactive then everything else can be deferred */
3418 if (idle)
3419 goto out_unlock;
3420
927b54fc
BS
3421 /*
3422 * if we have relooped after returning idle once, we need to update our
3423 * status as actually running, so that other cpus doing
3424 * __start_cfs_bandwidth will stop trying to cancel us.
3425 */
3426 cfs_b->timer_active = 1;
3427
a9cf55b2
PT
3428 __refill_cfs_bandwidth_runtime(cfs_b);
3429
671fd9da
PT
3430 if (!throttled) {
3431 /* mark as potentially idle for the upcoming period */
3432 cfs_b->idle = 1;
3433 goto out_unlock;
3434 }
3435
e8da1b18
NR
3436 /* account preceding periods in which throttling occurred */
3437 cfs_b->nr_throttled += overrun;
3438
671fd9da
PT
3439 /*
3440 * There are throttled entities so we must first use the new bandwidth
3441 * to unthrottle them before making it generally available. This
3442 * ensures that all existing debts will be paid before a new cfs_rq is
3443 * allowed to run.
3444 */
3445 runtime = cfs_b->runtime;
3446 runtime_expires = cfs_b->runtime_expires;
3447 cfs_b->runtime = 0;
3448
3449 /*
3450 * This check is repeated as we are holding onto the new bandwidth
3451 * while we unthrottle. This can potentially race with an unthrottled
3452 * group trying to acquire new bandwidth from the global pool.
3453 */
3454 while (throttled && runtime > 0) {
3455 raw_spin_unlock(&cfs_b->lock);
3456 /* we can't nest cfs_b->lock while distributing bandwidth */
3457 runtime = distribute_cfs_runtime(cfs_b, runtime,
3458 runtime_expires);
3459 raw_spin_lock(&cfs_b->lock);
3460
3461 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3462 }
58088ad0 3463
671fd9da
PT
3464 /* return (any) remaining runtime */
3465 cfs_b->runtime = runtime;
3466 /*
3467 * While we are ensured activity in the period following an
3468 * unthrottle, this also covers the case in which the new bandwidth is
3469 * insufficient to cover the existing bandwidth deficit. (Forcing the
3470 * timer to remain active while there are any throttled entities.)
3471 */
3472 cfs_b->idle = 0;
58088ad0
PT
3473out_unlock:
3474 if (idle)
3475 cfs_b->timer_active = 0;
3476 raw_spin_unlock(&cfs_b->lock);
3477
3478 return idle;
3479}
d3d9dc33 3480
d8b4986d
PT
3481/* a cfs_rq won't donate quota below this amount */
3482static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3483/* minimum remaining period time to redistribute slack quota */
3484static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3485/* how long we wait to gather additional slack before distributing */
3486static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3487
db06e78c
BS
3488/*
3489 * Are we near the end of the current quota period?
3490 *
3491 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3492 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3493 * migrate_hrtimers, base is never cleared, so we are fine.
3494 */
d8b4986d
PT
3495static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3496{
3497 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3498 u64 remaining;
3499
3500 /* if the call-back is running a quota refresh is already occurring */
3501 if (hrtimer_callback_running(refresh_timer))
3502 return 1;
3503
3504 /* is a quota refresh about to occur? */
3505 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3506 if (remaining < min_expire)
3507 return 1;
3508
3509 return 0;
3510}
3511
3512static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3513{
3514 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3515
3516 /* if there's a quota refresh soon don't bother with slack */
3517 if (runtime_refresh_within(cfs_b, min_left))
3518 return;
3519
3520 start_bandwidth_timer(&cfs_b->slack_timer,
3521 ns_to_ktime(cfs_bandwidth_slack_period));
3522}
3523
3524/* we know any runtime found here is valid as update_curr() precedes return */
3525static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3526{
3527 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3528 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3529
3530 if (slack_runtime <= 0)
3531 return;
3532
3533 raw_spin_lock(&cfs_b->lock);
3534 if (cfs_b->quota != RUNTIME_INF &&
3535 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3536 cfs_b->runtime += slack_runtime;
3537
3538 /* we are under rq->lock, defer unthrottling using a timer */
3539 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3540 !list_empty(&cfs_b->throttled_cfs_rq))
3541 start_cfs_slack_bandwidth(cfs_b);
3542 }
3543 raw_spin_unlock(&cfs_b->lock);
3544
3545 /* even if it's not valid for return we don't want to try again */
3546 cfs_rq->runtime_remaining -= slack_runtime;
3547}
3548
3549static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3550{
56f570e5
PT
3551 if (!cfs_bandwidth_used())
3552 return;
3553
fccfdc6f 3554 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3555 return;
3556
3557 __return_cfs_rq_runtime(cfs_rq);
3558}
3559
3560/*
3561 * This is done with a timer (instead of inline with bandwidth return) since
3562 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3563 */
3564static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3565{
3566 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3567 u64 expires;
3568
3569 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3570 raw_spin_lock(&cfs_b->lock);
3571 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3572 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3573 return;
db06e78c 3574 }
d8b4986d 3575
d8b4986d
PT
3576 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3577 runtime = cfs_b->runtime;
3578 cfs_b->runtime = 0;
3579 }
3580 expires = cfs_b->runtime_expires;
3581 raw_spin_unlock(&cfs_b->lock);
3582
3583 if (!runtime)
3584 return;
3585
3586 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3587
3588 raw_spin_lock(&cfs_b->lock);
3589 if (expires == cfs_b->runtime_expires)
3590 cfs_b->runtime = runtime;
3591 raw_spin_unlock(&cfs_b->lock);
3592}
3593
d3d9dc33
PT
3594/*
3595 * When a group wakes up we want to make sure that its quota is not already
3596 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3597 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3598 */
3599static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3600{
56f570e5
PT
3601 if (!cfs_bandwidth_used())
3602 return;
3603
d3d9dc33
PT
3604 /* an active group must be handled by the update_curr()->put() path */
3605 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3606 return;
3607
3608 /* ensure the group is not already throttled */
3609 if (cfs_rq_throttled(cfs_rq))
3610 return;
3611
3612 /* update runtime allocation */
3613 account_cfs_rq_runtime(cfs_rq, 0);
3614 if (cfs_rq->runtime_remaining <= 0)
3615 throttle_cfs_rq(cfs_rq);
3616}
3617
3618/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3619static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3620{
56f570e5 3621 if (!cfs_bandwidth_used())
678d5718 3622 return false;
56f570e5 3623
d3d9dc33 3624 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3625 return false;
d3d9dc33
PT
3626
3627 /*
3628 * it's possible for a throttled entity to be forced into a running
3629 * state (e.g. set_curr_task), in this case we're finished.
3630 */
3631 if (cfs_rq_throttled(cfs_rq))
678d5718 3632 return true;
d3d9dc33
PT
3633
3634 throttle_cfs_rq(cfs_rq);
678d5718 3635 return true;
d3d9dc33 3636}
029632fb 3637
029632fb
PZ
3638static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3639{
3640 struct cfs_bandwidth *cfs_b =
3641 container_of(timer, struct cfs_bandwidth, slack_timer);
3642 do_sched_cfs_slack_timer(cfs_b);
3643
3644 return HRTIMER_NORESTART;
3645}
3646
3647static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3648{
3649 struct cfs_bandwidth *cfs_b =
3650 container_of(timer, struct cfs_bandwidth, period_timer);
3651 ktime_t now;
3652 int overrun;
3653 int idle = 0;
3654
3655 for (;;) {
3656 now = hrtimer_cb_get_time(timer);
3657 overrun = hrtimer_forward(timer, now, cfs_b->period);
3658
3659 if (!overrun)
3660 break;
3661
3662 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3663 }
3664
3665 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3666}
3667
3668void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3669{
3670 raw_spin_lock_init(&cfs_b->lock);
3671 cfs_b->runtime = 0;
3672 cfs_b->quota = RUNTIME_INF;
3673 cfs_b->period = ns_to_ktime(default_cfs_period());
3674
3675 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3676 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3677 cfs_b->period_timer.function = sched_cfs_period_timer;
3678 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3679 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3680}
3681
3682static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3683{
3684 cfs_rq->runtime_enabled = 0;
3685 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3686}
3687
3688/* requires cfs_b->lock, may release to reprogram timer */
3689void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3690{
3691 /*
3692 * The timer may be active because we're trying to set a new bandwidth
3693 * period or because we're racing with the tear-down path
3694 * (timer_active==0 becomes visible before the hrtimer call-back
3695 * terminates). In either case we ensure that it's re-programmed
3696 */
927b54fc
BS
3697 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3698 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3699 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3700 raw_spin_unlock(&cfs_b->lock);
927b54fc 3701 cpu_relax();
029632fb
PZ
3702 raw_spin_lock(&cfs_b->lock);
3703 /* if someone else restarted the timer then we're done */
3704 if (cfs_b->timer_active)
3705 return;
3706 }
3707
3708 cfs_b->timer_active = 1;
3709 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3710}
3711
3712static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3713{
3714 hrtimer_cancel(&cfs_b->period_timer);
3715 hrtimer_cancel(&cfs_b->slack_timer);
3716}
3717
38dc3348 3718static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3719{
3720 struct cfs_rq *cfs_rq;
3721
3722 for_each_leaf_cfs_rq(rq, cfs_rq) {
3723 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3724
3725 if (!cfs_rq->runtime_enabled)
3726 continue;
3727
3728 /*
3729 * clock_task is not advancing so we just need to make sure
3730 * there's some valid quota amount
3731 */
3732 cfs_rq->runtime_remaining = cfs_b->quota;
3733 if (cfs_rq_throttled(cfs_rq))
3734 unthrottle_cfs_rq(cfs_rq);
3735 }
3736}
3737
3738#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3739static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3740{
78becc27 3741 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3742}
3743
9dbdb155 3744static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3745static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3746static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3747static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3748
3749static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3750{
3751 return 0;
3752}
64660c86
PT
3753
3754static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3755{
3756 return 0;
3757}
3758
3759static inline int throttled_lb_pair(struct task_group *tg,
3760 int src_cpu, int dest_cpu)
3761{
3762 return 0;
3763}
029632fb
PZ
3764
3765void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3766
3767#ifdef CONFIG_FAIR_GROUP_SCHED
3768static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3769#endif
3770
029632fb
PZ
3771static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3772{
3773 return NULL;
3774}
3775static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3776static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3777
3778#endif /* CONFIG_CFS_BANDWIDTH */
3779
bf0f6f24
IM
3780/**************************************************
3781 * CFS operations on tasks:
3782 */
3783
8f4d37ec
PZ
3784#ifdef CONFIG_SCHED_HRTICK
3785static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3786{
8f4d37ec
PZ
3787 struct sched_entity *se = &p->se;
3788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3789
3790 WARN_ON(task_rq(p) != rq);
3791
b39e66ea 3792 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3793 u64 slice = sched_slice(cfs_rq, se);
3794 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3795 s64 delta = slice - ran;
3796
3797 if (delta < 0) {
3798 if (rq->curr == p)
3799 resched_task(p);
3800 return;
3801 }
3802
3803 /*
3804 * Don't schedule slices shorter than 10000ns, that just
3805 * doesn't make sense. Rely on vruntime for fairness.
3806 */
31656519 3807 if (rq->curr != p)
157124c1 3808 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3809
31656519 3810 hrtick_start(rq, delta);
8f4d37ec
PZ
3811 }
3812}
a4c2f00f
PZ
3813
3814/*
3815 * called from enqueue/dequeue and updates the hrtick when the
3816 * current task is from our class and nr_running is low enough
3817 * to matter.
3818 */
3819static void hrtick_update(struct rq *rq)
3820{
3821 struct task_struct *curr = rq->curr;
3822
b39e66ea 3823 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3824 return;
3825
3826 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3827 hrtick_start_fair(rq, curr);
3828}
55e12e5e 3829#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3830static inline void
3831hrtick_start_fair(struct rq *rq, struct task_struct *p)
3832{
3833}
a4c2f00f
PZ
3834
3835static inline void hrtick_update(struct rq *rq)
3836{
3837}
8f4d37ec
PZ
3838#endif
3839
bf0f6f24
IM
3840/*
3841 * The enqueue_task method is called before nr_running is
3842 * increased. Here we update the fair scheduling stats and
3843 * then put the task into the rbtree:
3844 */
ea87bb78 3845static void
371fd7e7 3846enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3847{
3848 struct cfs_rq *cfs_rq;
62fb1851 3849 struct sched_entity *se = &p->se;
bf0f6f24
IM
3850
3851 for_each_sched_entity(se) {
62fb1851 3852 if (se->on_rq)
bf0f6f24
IM
3853 break;
3854 cfs_rq = cfs_rq_of(se);
88ec22d3 3855 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3856
3857 /*
3858 * end evaluation on encountering a throttled cfs_rq
3859 *
3860 * note: in the case of encountering a throttled cfs_rq we will
3861 * post the final h_nr_running increment below.
3862 */
3863 if (cfs_rq_throttled(cfs_rq))
3864 break;
953bfcd1 3865 cfs_rq->h_nr_running++;
85dac906 3866
88ec22d3 3867 flags = ENQUEUE_WAKEUP;
bf0f6f24 3868 }
8f4d37ec 3869
2069dd75 3870 for_each_sched_entity(se) {
0f317143 3871 cfs_rq = cfs_rq_of(se);
953bfcd1 3872 cfs_rq->h_nr_running++;
2069dd75 3873
85dac906
PT
3874 if (cfs_rq_throttled(cfs_rq))
3875 break;
3876
17bc14b7 3877 update_cfs_shares(cfs_rq);
9ee474f5 3878 update_entity_load_avg(se, 1);
2069dd75
PZ
3879 }
3880
18bf2805
BS
3881 if (!se) {
3882 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3883 inc_nr_running(rq);
18bf2805 3884 }
a4c2f00f 3885 hrtick_update(rq);
bf0f6f24
IM
3886}
3887
2f36825b
VP
3888static void set_next_buddy(struct sched_entity *se);
3889
bf0f6f24
IM
3890/*
3891 * The dequeue_task method is called before nr_running is
3892 * decreased. We remove the task from the rbtree and
3893 * update the fair scheduling stats:
3894 */
371fd7e7 3895static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3896{
3897 struct cfs_rq *cfs_rq;
62fb1851 3898 struct sched_entity *se = &p->se;
2f36825b 3899 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3900
3901 for_each_sched_entity(se) {
3902 cfs_rq = cfs_rq_of(se);
371fd7e7 3903 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3904
3905 /*
3906 * end evaluation on encountering a throttled cfs_rq
3907 *
3908 * note: in the case of encountering a throttled cfs_rq we will
3909 * post the final h_nr_running decrement below.
3910 */
3911 if (cfs_rq_throttled(cfs_rq))
3912 break;
953bfcd1 3913 cfs_rq->h_nr_running--;
2069dd75 3914
bf0f6f24 3915 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3916 if (cfs_rq->load.weight) {
3917 /*
3918 * Bias pick_next to pick a task from this cfs_rq, as
3919 * p is sleeping when it is within its sched_slice.
3920 */
3921 if (task_sleep && parent_entity(se))
3922 set_next_buddy(parent_entity(se));
9598c82d
PT
3923
3924 /* avoid re-evaluating load for this entity */
3925 se = parent_entity(se);
bf0f6f24 3926 break;
2f36825b 3927 }
371fd7e7 3928 flags |= DEQUEUE_SLEEP;
bf0f6f24 3929 }
8f4d37ec 3930
2069dd75 3931 for_each_sched_entity(se) {
0f317143 3932 cfs_rq = cfs_rq_of(se);
953bfcd1 3933 cfs_rq->h_nr_running--;
2069dd75 3934
85dac906
PT
3935 if (cfs_rq_throttled(cfs_rq))
3936 break;
3937
17bc14b7 3938 update_cfs_shares(cfs_rq);
9ee474f5 3939 update_entity_load_avg(se, 1);
2069dd75
PZ
3940 }
3941
18bf2805 3942 if (!se) {
85dac906 3943 dec_nr_running(rq);
18bf2805
BS
3944 update_rq_runnable_avg(rq, 1);
3945 }
a4c2f00f 3946 hrtick_update(rq);
bf0f6f24
IM
3947}
3948
e7693a36 3949#ifdef CONFIG_SMP
029632fb
PZ
3950/* Used instead of source_load when we know the type == 0 */
3951static unsigned long weighted_cpuload(const int cpu)
3952{
b92486cb 3953 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3954}
3955
3956/*
3957 * Return a low guess at the load of a migration-source cpu weighted
3958 * according to the scheduling class and "nice" value.
3959 *
3960 * We want to under-estimate the load of migration sources, to
3961 * balance conservatively.
3962 */
3963static unsigned long source_load(int cpu, int type)
3964{
3965 struct rq *rq = cpu_rq(cpu);
3966 unsigned long total = weighted_cpuload(cpu);
3967
3968 if (type == 0 || !sched_feat(LB_BIAS))
3969 return total;
3970
3971 return min(rq->cpu_load[type-1], total);
3972}
3973
3974/*
3975 * Return a high guess at the load of a migration-target cpu weighted
3976 * according to the scheduling class and "nice" value.
3977 */
3978static unsigned long target_load(int cpu, int type)
3979{
3980 struct rq *rq = cpu_rq(cpu);
3981 unsigned long total = weighted_cpuload(cpu);
3982
3983 if (type == 0 || !sched_feat(LB_BIAS))
3984 return total;
3985
3986 return max(rq->cpu_load[type-1], total);
3987}
3988
3989static unsigned long power_of(int cpu)
3990{
3991 return cpu_rq(cpu)->cpu_power;
3992}
3993
3994static unsigned long cpu_avg_load_per_task(int cpu)
3995{
3996 struct rq *rq = cpu_rq(cpu);
3997 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3998 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3999
4000 if (nr_running)
b92486cb 4001 return load_avg / nr_running;
029632fb
PZ
4002
4003 return 0;
4004}
4005
62470419
MW
4006static void record_wakee(struct task_struct *p)
4007{
4008 /*
4009 * Rough decay (wiping) for cost saving, don't worry
4010 * about the boundary, really active task won't care
4011 * about the loss.
4012 */
4013 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4014 current->wakee_flips = 0;
4015 current->wakee_flip_decay_ts = jiffies;
4016 }
4017
4018 if (current->last_wakee != p) {
4019 current->last_wakee = p;
4020 current->wakee_flips++;
4021 }
4022}
098fb9db 4023
74f8e4b2 4024static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4025{
4026 struct sched_entity *se = &p->se;
4027 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4028 u64 min_vruntime;
4029
4030#ifndef CONFIG_64BIT
4031 u64 min_vruntime_copy;
88ec22d3 4032
3fe1698b
PZ
4033 do {
4034 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4035 smp_rmb();
4036 min_vruntime = cfs_rq->min_vruntime;
4037 } while (min_vruntime != min_vruntime_copy);
4038#else
4039 min_vruntime = cfs_rq->min_vruntime;
4040#endif
88ec22d3 4041
3fe1698b 4042 se->vruntime -= min_vruntime;
62470419 4043 record_wakee(p);
88ec22d3
PZ
4044}
4045
bb3469ac 4046#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4047/*
4048 * effective_load() calculates the load change as seen from the root_task_group
4049 *
4050 * Adding load to a group doesn't make a group heavier, but can cause movement
4051 * of group shares between cpus. Assuming the shares were perfectly aligned one
4052 * can calculate the shift in shares.
cf5f0acf
PZ
4053 *
4054 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4055 * on this @cpu and results in a total addition (subtraction) of @wg to the
4056 * total group weight.
4057 *
4058 * Given a runqueue weight distribution (rw_i) we can compute a shares
4059 * distribution (s_i) using:
4060 *
4061 * s_i = rw_i / \Sum rw_j (1)
4062 *
4063 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4064 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4065 * shares distribution (s_i):
4066 *
4067 * rw_i = { 2, 4, 1, 0 }
4068 * s_i = { 2/7, 4/7, 1/7, 0 }
4069 *
4070 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4071 * task used to run on and the CPU the waker is running on), we need to
4072 * compute the effect of waking a task on either CPU and, in case of a sync
4073 * wakeup, compute the effect of the current task going to sleep.
4074 *
4075 * So for a change of @wl to the local @cpu with an overall group weight change
4076 * of @wl we can compute the new shares distribution (s'_i) using:
4077 *
4078 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4079 *
4080 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4081 * differences in waking a task to CPU 0. The additional task changes the
4082 * weight and shares distributions like:
4083 *
4084 * rw'_i = { 3, 4, 1, 0 }
4085 * s'_i = { 3/8, 4/8, 1/8, 0 }
4086 *
4087 * We can then compute the difference in effective weight by using:
4088 *
4089 * dw_i = S * (s'_i - s_i) (3)
4090 *
4091 * Where 'S' is the group weight as seen by its parent.
4092 *
4093 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4094 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4095 * 4/7) times the weight of the group.
f5bfb7d9 4096 */
2069dd75 4097static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4098{
4be9daaa 4099 struct sched_entity *se = tg->se[cpu];
f1d239f7 4100
9722c2da 4101 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4102 return wl;
4103
4be9daaa 4104 for_each_sched_entity(se) {
cf5f0acf 4105 long w, W;
4be9daaa 4106
977dda7c 4107 tg = se->my_q->tg;
bb3469ac 4108
cf5f0acf
PZ
4109 /*
4110 * W = @wg + \Sum rw_j
4111 */
4112 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4113
cf5f0acf
PZ
4114 /*
4115 * w = rw_i + @wl
4116 */
4117 w = se->my_q->load.weight + wl;
940959e9 4118
cf5f0acf
PZ
4119 /*
4120 * wl = S * s'_i; see (2)
4121 */
4122 if (W > 0 && w < W)
4123 wl = (w * tg->shares) / W;
977dda7c
PT
4124 else
4125 wl = tg->shares;
940959e9 4126
cf5f0acf
PZ
4127 /*
4128 * Per the above, wl is the new se->load.weight value; since
4129 * those are clipped to [MIN_SHARES, ...) do so now. See
4130 * calc_cfs_shares().
4131 */
977dda7c
PT
4132 if (wl < MIN_SHARES)
4133 wl = MIN_SHARES;
cf5f0acf
PZ
4134
4135 /*
4136 * wl = dw_i = S * (s'_i - s_i); see (3)
4137 */
977dda7c 4138 wl -= se->load.weight;
cf5f0acf
PZ
4139
4140 /*
4141 * Recursively apply this logic to all parent groups to compute
4142 * the final effective load change on the root group. Since
4143 * only the @tg group gets extra weight, all parent groups can
4144 * only redistribute existing shares. @wl is the shift in shares
4145 * resulting from this level per the above.
4146 */
4be9daaa 4147 wg = 0;
4be9daaa 4148 }
bb3469ac 4149
4be9daaa 4150 return wl;
bb3469ac
PZ
4151}
4152#else
4be9daaa 4153
58d081b5 4154static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4155{
83378269 4156 return wl;
bb3469ac 4157}
4be9daaa 4158
bb3469ac
PZ
4159#endif
4160
62470419
MW
4161static int wake_wide(struct task_struct *p)
4162{
7d9ffa89 4163 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4164
4165 /*
4166 * Yeah, it's the switching-frequency, could means many wakee or
4167 * rapidly switch, use factor here will just help to automatically
4168 * adjust the loose-degree, so bigger node will lead to more pull.
4169 */
4170 if (p->wakee_flips > factor) {
4171 /*
4172 * wakee is somewhat hot, it needs certain amount of cpu
4173 * resource, so if waker is far more hot, prefer to leave
4174 * it alone.
4175 */
4176 if (current->wakee_flips > (factor * p->wakee_flips))
4177 return 1;
4178 }
4179
4180 return 0;
4181}
4182
c88d5910 4183static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4184{
e37b6a7b 4185 s64 this_load, load;
c88d5910 4186 int idx, this_cpu, prev_cpu;
098fb9db 4187 unsigned long tl_per_task;
c88d5910 4188 struct task_group *tg;
83378269 4189 unsigned long weight;
b3137bc8 4190 int balanced;
098fb9db 4191
62470419
MW
4192 /*
4193 * If we wake multiple tasks be careful to not bounce
4194 * ourselves around too much.
4195 */
4196 if (wake_wide(p))
4197 return 0;
4198
c88d5910
PZ
4199 idx = sd->wake_idx;
4200 this_cpu = smp_processor_id();
4201 prev_cpu = task_cpu(p);
4202 load = source_load(prev_cpu, idx);
4203 this_load = target_load(this_cpu, idx);
098fb9db 4204
b3137bc8
MG
4205 /*
4206 * If sync wakeup then subtract the (maximum possible)
4207 * effect of the currently running task from the load
4208 * of the current CPU:
4209 */
83378269
PZ
4210 if (sync) {
4211 tg = task_group(current);
4212 weight = current->se.load.weight;
4213
c88d5910 4214 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4215 load += effective_load(tg, prev_cpu, 0, -weight);
4216 }
b3137bc8 4217
83378269
PZ
4218 tg = task_group(p);
4219 weight = p->se.load.weight;
b3137bc8 4220
71a29aa7
PZ
4221 /*
4222 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4223 * due to the sync cause above having dropped this_load to 0, we'll
4224 * always have an imbalance, but there's really nothing you can do
4225 * about that, so that's good too.
71a29aa7
PZ
4226 *
4227 * Otherwise check if either cpus are near enough in load to allow this
4228 * task to be woken on this_cpu.
4229 */
e37b6a7b
PT
4230 if (this_load > 0) {
4231 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4232
4233 this_eff_load = 100;
4234 this_eff_load *= power_of(prev_cpu);
4235 this_eff_load *= this_load +
4236 effective_load(tg, this_cpu, weight, weight);
4237
4238 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4239 prev_eff_load *= power_of(this_cpu);
4240 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4241
4242 balanced = this_eff_load <= prev_eff_load;
4243 } else
4244 balanced = true;
b3137bc8 4245
098fb9db 4246 /*
4ae7d5ce
IM
4247 * If the currently running task will sleep within
4248 * a reasonable amount of time then attract this newly
4249 * woken task:
098fb9db 4250 */
2fb7635c
PZ
4251 if (sync && balanced)
4252 return 1;
098fb9db 4253
41acab88 4254 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4255 tl_per_task = cpu_avg_load_per_task(this_cpu);
4256
c88d5910
PZ
4257 if (balanced ||
4258 (this_load <= load &&
4259 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4260 /*
4261 * This domain has SD_WAKE_AFFINE and
4262 * p is cache cold in this domain, and
4263 * there is no bad imbalance.
4264 */
c88d5910 4265 schedstat_inc(sd, ttwu_move_affine);
41acab88 4266 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4267
4268 return 1;
4269 }
4270 return 0;
4271}
4272
aaee1203
PZ
4273/*
4274 * find_idlest_group finds and returns the least busy CPU group within the
4275 * domain.
4276 */
4277static struct sched_group *
78e7ed53 4278find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4279 int this_cpu, int sd_flag)
e7693a36 4280{
b3bd3de6 4281 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4282 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4283 int load_idx = sd->forkexec_idx;
aaee1203 4284 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4285
c44f2a02
VG
4286 if (sd_flag & SD_BALANCE_WAKE)
4287 load_idx = sd->wake_idx;
4288
aaee1203
PZ
4289 do {
4290 unsigned long load, avg_load;
4291 int local_group;
4292 int i;
e7693a36 4293
aaee1203
PZ
4294 /* Skip over this group if it has no CPUs allowed */
4295 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4296 tsk_cpus_allowed(p)))
aaee1203
PZ
4297 continue;
4298
4299 local_group = cpumask_test_cpu(this_cpu,
4300 sched_group_cpus(group));
4301
4302 /* Tally up the load of all CPUs in the group */
4303 avg_load = 0;
4304
4305 for_each_cpu(i, sched_group_cpus(group)) {
4306 /* Bias balancing toward cpus of our domain */
4307 if (local_group)
4308 load = source_load(i, load_idx);
4309 else
4310 load = target_load(i, load_idx);
4311
4312 avg_load += load;
4313 }
4314
4315 /* Adjust by relative CPU power of the group */
9c3f75cb 4316 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4317
4318 if (local_group) {
4319 this_load = avg_load;
aaee1203
PZ
4320 } else if (avg_load < min_load) {
4321 min_load = avg_load;
4322 idlest = group;
4323 }
4324 } while (group = group->next, group != sd->groups);
4325
4326 if (!idlest || 100*this_load < imbalance*min_load)
4327 return NULL;
4328 return idlest;
4329}
4330
4331/*
4332 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4333 */
4334static int
4335find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4336{
4337 unsigned long load, min_load = ULONG_MAX;
4338 int idlest = -1;
4339 int i;
4340
4341 /* Traverse only the allowed CPUs */
fa17b507 4342 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4343 load = weighted_cpuload(i);
4344
4345 if (load < min_load || (load == min_load && i == this_cpu)) {
4346 min_load = load;
4347 idlest = i;
e7693a36
GH
4348 }
4349 }
4350
aaee1203
PZ
4351 return idlest;
4352}
e7693a36 4353
a50bde51
PZ
4354/*
4355 * Try and locate an idle CPU in the sched_domain.
4356 */
99bd5e2f 4357static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4358{
99bd5e2f 4359 struct sched_domain *sd;
37407ea7 4360 struct sched_group *sg;
e0a79f52 4361 int i = task_cpu(p);
a50bde51 4362
e0a79f52
MG
4363 if (idle_cpu(target))
4364 return target;
99bd5e2f
SS
4365
4366 /*
e0a79f52 4367 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4368 */
e0a79f52
MG
4369 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4370 return i;
a50bde51
PZ
4371
4372 /*
37407ea7 4373 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4374 */
518cd623 4375 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4376 for_each_lower_domain(sd) {
37407ea7
LT
4377 sg = sd->groups;
4378 do {
4379 if (!cpumask_intersects(sched_group_cpus(sg),
4380 tsk_cpus_allowed(p)))
4381 goto next;
4382
4383 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4384 if (i == target || !idle_cpu(i))
37407ea7
LT
4385 goto next;
4386 }
970e1789 4387
37407ea7
LT
4388 target = cpumask_first_and(sched_group_cpus(sg),
4389 tsk_cpus_allowed(p));
4390 goto done;
4391next:
4392 sg = sg->next;
4393 } while (sg != sd->groups);
4394 }
4395done:
a50bde51
PZ
4396 return target;
4397}
4398
aaee1203
PZ
4399/*
4400 * sched_balance_self: balance the current task (running on cpu) in domains
4401 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4402 * SD_BALANCE_EXEC.
4403 *
4404 * Balance, ie. select the least loaded group.
4405 *
4406 * Returns the target CPU number, or the same CPU if no balancing is needed.
4407 *
4408 * preempt must be disabled.
4409 */
0017d735 4410static int
ac66f547 4411select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4412{
29cd8bae 4413 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4414 int cpu = smp_processor_id();
c88d5910 4415 int new_cpu = cpu;
99bd5e2f 4416 int want_affine = 0;
5158f4e4 4417 int sync = wake_flags & WF_SYNC;
c88d5910 4418
29baa747 4419 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4420 return prev_cpu;
4421
0763a660 4422 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4423 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4424 want_affine = 1;
4425 new_cpu = prev_cpu;
4426 }
aaee1203 4427
dce840a0 4428 rcu_read_lock();
aaee1203 4429 for_each_domain(cpu, tmp) {
e4f42888
PZ
4430 if (!(tmp->flags & SD_LOAD_BALANCE))
4431 continue;
4432
fe3bcfe1 4433 /*
99bd5e2f
SS
4434 * If both cpu and prev_cpu are part of this domain,
4435 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4436 */
99bd5e2f
SS
4437 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4438 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4439 affine_sd = tmp;
29cd8bae 4440 break;
f03542a7 4441 }
29cd8bae 4442
f03542a7 4443 if (tmp->flags & sd_flag)
29cd8bae
PZ
4444 sd = tmp;
4445 }
4446
8b911acd 4447 if (affine_sd) {
f03542a7 4448 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4449 prev_cpu = cpu;
4450
4451 new_cpu = select_idle_sibling(p, prev_cpu);
4452 goto unlock;
8b911acd 4453 }
e7693a36 4454
aaee1203
PZ
4455 while (sd) {
4456 struct sched_group *group;
c88d5910 4457 int weight;
098fb9db 4458
0763a660 4459 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4460 sd = sd->child;
4461 continue;
4462 }
098fb9db 4463
c44f2a02 4464 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4465 if (!group) {
4466 sd = sd->child;
4467 continue;
4468 }
4ae7d5ce 4469
d7c33c49 4470 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4471 if (new_cpu == -1 || new_cpu == cpu) {
4472 /* Now try balancing at a lower domain level of cpu */
4473 sd = sd->child;
4474 continue;
e7693a36 4475 }
aaee1203
PZ
4476
4477 /* Now try balancing at a lower domain level of new_cpu */
4478 cpu = new_cpu;
669c55e9 4479 weight = sd->span_weight;
aaee1203
PZ
4480 sd = NULL;
4481 for_each_domain(cpu, tmp) {
669c55e9 4482 if (weight <= tmp->span_weight)
aaee1203 4483 break;
0763a660 4484 if (tmp->flags & sd_flag)
aaee1203
PZ
4485 sd = tmp;
4486 }
4487 /* while loop will break here if sd == NULL */
e7693a36 4488 }
dce840a0
PZ
4489unlock:
4490 rcu_read_unlock();
e7693a36 4491
c88d5910 4492 return new_cpu;
e7693a36 4493}
0a74bef8
PT
4494
4495/*
4496 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4497 * cfs_rq_of(p) references at time of call are still valid and identify the
4498 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4499 * other assumptions, including the state of rq->lock, should be made.
4500 */
4501static void
4502migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4503{
aff3e498
PT
4504 struct sched_entity *se = &p->se;
4505 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4506
4507 /*
4508 * Load tracking: accumulate removed load so that it can be processed
4509 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4510 * to blocked load iff they have a positive decay-count. It can never
4511 * be negative here since on-rq tasks have decay-count == 0.
4512 */
4513 if (se->avg.decay_count) {
4514 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4515 atomic_long_add(se->avg.load_avg_contrib,
4516 &cfs_rq->removed_load);
aff3e498 4517 }
0a74bef8 4518}
e7693a36
GH
4519#endif /* CONFIG_SMP */
4520
e52fb7c0
PZ
4521static unsigned long
4522wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4523{
4524 unsigned long gran = sysctl_sched_wakeup_granularity;
4525
4526 /*
e52fb7c0
PZ
4527 * Since its curr running now, convert the gran from real-time
4528 * to virtual-time in his units.
13814d42
MG
4529 *
4530 * By using 'se' instead of 'curr' we penalize light tasks, so
4531 * they get preempted easier. That is, if 'se' < 'curr' then
4532 * the resulting gran will be larger, therefore penalizing the
4533 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4534 * be smaller, again penalizing the lighter task.
4535 *
4536 * This is especially important for buddies when the leftmost
4537 * task is higher priority than the buddy.
0bbd3336 4538 */
f4ad9bd2 4539 return calc_delta_fair(gran, se);
0bbd3336
PZ
4540}
4541
464b7527
PZ
4542/*
4543 * Should 'se' preempt 'curr'.
4544 *
4545 * |s1
4546 * |s2
4547 * |s3
4548 * g
4549 * |<--->|c
4550 *
4551 * w(c, s1) = -1
4552 * w(c, s2) = 0
4553 * w(c, s3) = 1
4554 *
4555 */
4556static int
4557wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4558{
4559 s64 gran, vdiff = curr->vruntime - se->vruntime;
4560
4561 if (vdiff <= 0)
4562 return -1;
4563
e52fb7c0 4564 gran = wakeup_gran(curr, se);
464b7527
PZ
4565 if (vdiff > gran)
4566 return 1;
4567
4568 return 0;
4569}
4570
02479099
PZ
4571static void set_last_buddy(struct sched_entity *se)
4572{
69c80f3e
VP
4573 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4574 return;
4575
4576 for_each_sched_entity(se)
4577 cfs_rq_of(se)->last = se;
02479099
PZ
4578}
4579
4580static void set_next_buddy(struct sched_entity *se)
4581{
69c80f3e
VP
4582 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4583 return;
4584
4585 for_each_sched_entity(se)
4586 cfs_rq_of(se)->next = se;
02479099
PZ
4587}
4588
ac53db59
RR
4589static void set_skip_buddy(struct sched_entity *se)
4590{
69c80f3e
VP
4591 for_each_sched_entity(se)
4592 cfs_rq_of(se)->skip = se;
ac53db59
RR
4593}
4594
bf0f6f24
IM
4595/*
4596 * Preempt the current task with a newly woken task if needed:
4597 */
5a9b86f6 4598static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4599{
4600 struct task_struct *curr = rq->curr;
8651a86c 4601 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4602 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4603 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4604 int next_buddy_marked = 0;
bf0f6f24 4605
4ae7d5ce
IM
4606 if (unlikely(se == pse))
4607 return;
4608
5238cdd3 4609 /*
ddcdf6e7 4610 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4611 * unconditionally check_prempt_curr() after an enqueue (which may have
4612 * lead to a throttle). This both saves work and prevents false
4613 * next-buddy nomination below.
4614 */
4615 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4616 return;
4617
2f36825b 4618 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4619 set_next_buddy(pse);
2f36825b
VP
4620 next_buddy_marked = 1;
4621 }
57fdc26d 4622
aec0a514
BR
4623 /*
4624 * We can come here with TIF_NEED_RESCHED already set from new task
4625 * wake up path.
5238cdd3
PT
4626 *
4627 * Note: this also catches the edge-case of curr being in a throttled
4628 * group (e.g. via set_curr_task), since update_curr() (in the
4629 * enqueue of curr) will have resulted in resched being set. This
4630 * prevents us from potentially nominating it as a false LAST_BUDDY
4631 * below.
aec0a514
BR
4632 */
4633 if (test_tsk_need_resched(curr))
4634 return;
4635
a2f5c9ab
DH
4636 /* Idle tasks are by definition preempted by non-idle tasks. */
4637 if (unlikely(curr->policy == SCHED_IDLE) &&
4638 likely(p->policy != SCHED_IDLE))
4639 goto preempt;
4640
91c234b4 4641 /*
a2f5c9ab
DH
4642 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4643 * is driven by the tick):
91c234b4 4644 */
8ed92e51 4645 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4646 return;
bf0f6f24 4647
464b7527 4648 find_matching_se(&se, &pse);
9bbd7374 4649 update_curr(cfs_rq_of(se));
002f128b 4650 BUG_ON(!pse);
2f36825b
VP
4651 if (wakeup_preempt_entity(se, pse) == 1) {
4652 /*
4653 * Bias pick_next to pick the sched entity that is
4654 * triggering this preemption.
4655 */
4656 if (!next_buddy_marked)
4657 set_next_buddy(pse);
3a7e73a2 4658 goto preempt;
2f36825b 4659 }
464b7527 4660
3a7e73a2 4661 return;
a65ac745 4662
3a7e73a2
PZ
4663preempt:
4664 resched_task(curr);
4665 /*
4666 * Only set the backward buddy when the current task is still
4667 * on the rq. This can happen when a wakeup gets interleaved
4668 * with schedule on the ->pre_schedule() or idle_balance()
4669 * point, either of which can * drop the rq lock.
4670 *
4671 * Also, during early boot the idle thread is in the fair class,
4672 * for obvious reasons its a bad idea to schedule back to it.
4673 */
4674 if (unlikely(!se->on_rq || curr == rq->idle))
4675 return;
4676
4677 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4678 set_last_buddy(se);
bf0f6f24
IM
4679}
4680
606dba2e
PZ
4681static struct task_struct *
4682pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4683{
4684 struct cfs_rq *cfs_rq = &rq->cfs;
4685 struct sched_entity *se;
678d5718
PZ
4686 struct task_struct *p;
4687
6e83125c 4688again:
678d5718
PZ
4689#ifdef CONFIG_FAIR_GROUP_SCHED
4690 if (!cfs_rq->nr_running)
38033c37 4691 goto idle;
678d5718
PZ
4692
4693 if (!prev || prev->sched_class != &fair_sched_class)
4694 goto simple;
4695
4696 /*
4697 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4698 * likely that a next task is from the same cgroup as the current.
4699 *
4700 * Therefore attempt to avoid putting and setting the entire cgroup
4701 * hierarchy, only change the part that actually changes.
4702 */
4703
4704 do {
4705 struct sched_entity *curr = cfs_rq->curr;
4706
4707 /*
4708 * Since we got here without doing put_prev_entity() we also
4709 * have to consider cfs_rq->curr. If it is still a runnable
4710 * entity, update_curr() will update its vruntime, otherwise
4711 * forget we've ever seen it.
4712 */
4713 if (curr && curr->on_rq)
4714 update_curr(cfs_rq);
4715 else
4716 curr = NULL;
4717
4718 /*
4719 * This call to check_cfs_rq_runtime() will do the throttle and
4720 * dequeue its entity in the parent(s). Therefore the 'simple'
4721 * nr_running test will indeed be correct.
4722 */
4723 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4724 goto simple;
4725
4726 se = pick_next_entity(cfs_rq, curr);
4727 cfs_rq = group_cfs_rq(se);
4728 } while (cfs_rq);
4729
4730 p = task_of(se);
4731
4732 /*
4733 * Since we haven't yet done put_prev_entity and if the selected task
4734 * is a different task than we started out with, try and touch the
4735 * least amount of cfs_rqs.
4736 */
4737 if (prev != p) {
4738 struct sched_entity *pse = &prev->se;
4739
4740 while (!(cfs_rq = is_same_group(se, pse))) {
4741 int se_depth = se->depth;
4742 int pse_depth = pse->depth;
4743
4744 if (se_depth <= pse_depth) {
4745 put_prev_entity(cfs_rq_of(pse), pse);
4746 pse = parent_entity(pse);
4747 }
4748 if (se_depth >= pse_depth) {
4749 set_next_entity(cfs_rq_of(se), se);
4750 se = parent_entity(se);
4751 }
4752 }
4753
4754 put_prev_entity(cfs_rq, pse);
4755 set_next_entity(cfs_rq, se);
4756 }
4757
4758 if (hrtick_enabled(rq))
4759 hrtick_start_fair(rq, p);
4760
4761 return p;
4762simple:
4763 cfs_rq = &rq->cfs;
4764#endif
bf0f6f24 4765
36ace27e 4766 if (!cfs_rq->nr_running)
38033c37 4767 goto idle;
bf0f6f24 4768
606dba2e
PZ
4769 if (prev)
4770 prev->sched_class->put_prev_task(rq, prev);
4771
bf0f6f24 4772 do {
678d5718 4773 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4774 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4775 cfs_rq = group_cfs_rq(se);
4776 } while (cfs_rq);
4777
8f4d37ec 4778 p = task_of(se);
678d5718 4779
b39e66ea
MG
4780 if (hrtick_enabled(rq))
4781 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4782
4783 return p;
38033c37
PZ
4784
4785idle:
6e83125c 4786 if (idle_balance(rq)) /* drops rq->lock */
38033c37 4787 goto again;
38033c37
PZ
4788
4789 return NULL;
bf0f6f24
IM
4790}
4791
4792/*
4793 * Account for a descheduled task:
4794 */
31ee529c 4795static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4796{
4797 struct sched_entity *se = &prev->se;
4798 struct cfs_rq *cfs_rq;
4799
4800 for_each_sched_entity(se) {
4801 cfs_rq = cfs_rq_of(se);
ab6cde26 4802 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4803 }
4804}
4805
ac53db59
RR
4806/*
4807 * sched_yield() is very simple
4808 *
4809 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4810 */
4811static void yield_task_fair(struct rq *rq)
4812{
4813 struct task_struct *curr = rq->curr;
4814 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4815 struct sched_entity *se = &curr->se;
4816
4817 /*
4818 * Are we the only task in the tree?
4819 */
4820 if (unlikely(rq->nr_running == 1))
4821 return;
4822
4823 clear_buddies(cfs_rq, se);
4824
4825 if (curr->policy != SCHED_BATCH) {
4826 update_rq_clock(rq);
4827 /*
4828 * Update run-time statistics of the 'current'.
4829 */
4830 update_curr(cfs_rq);
916671c0
MG
4831 /*
4832 * Tell update_rq_clock() that we've just updated,
4833 * so we don't do microscopic update in schedule()
4834 * and double the fastpath cost.
4835 */
4836 rq->skip_clock_update = 1;
ac53db59
RR
4837 }
4838
4839 set_skip_buddy(se);
4840}
4841
d95f4122
MG
4842static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4843{
4844 struct sched_entity *se = &p->se;
4845
5238cdd3
PT
4846 /* throttled hierarchies are not runnable */
4847 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4848 return false;
4849
4850 /* Tell the scheduler that we'd really like pse to run next. */
4851 set_next_buddy(se);
4852
d95f4122
MG
4853 yield_task_fair(rq);
4854
4855 return true;
4856}
4857
681f3e68 4858#ifdef CONFIG_SMP
bf0f6f24 4859/**************************************************
e9c84cb8
PZ
4860 * Fair scheduling class load-balancing methods.
4861 *
4862 * BASICS
4863 *
4864 * The purpose of load-balancing is to achieve the same basic fairness the
4865 * per-cpu scheduler provides, namely provide a proportional amount of compute
4866 * time to each task. This is expressed in the following equation:
4867 *
4868 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4869 *
4870 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4871 * W_i,0 is defined as:
4872 *
4873 * W_i,0 = \Sum_j w_i,j (2)
4874 *
4875 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4876 * is derived from the nice value as per prio_to_weight[].
4877 *
4878 * The weight average is an exponential decay average of the instantaneous
4879 * weight:
4880 *
4881 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4882 *
4883 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4884 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4885 * can also include other factors [XXX].
4886 *
4887 * To achieve this balance we define a measure of imbalance which follows
4888 * directly from (1):
4889 *
4890 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4891 *
4892 * We them move tasks around to minimize the imbalance. In the continuous
4893 * function space it is obvious this converges, in the discrete case we get
4894 * a few fun cases generally called infeasible weight scenarios.
4895 *
4896 * [XXX expand on:
4897 * - infeasible weights;
4898 * - local vs global optima in the discrete case. ]
4899 *
4900 *
4901 * SCHED DOMAINS
4902 *
4903 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4904 * for all i,j solution, we create a tree of cpus that follows the hardware
4905 * topology where each level pairs two lower groups (or better). This results
4906 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4907 * tree to only the first of the previous level and we decrease the frequency
4908 * of load-balance at each level inv. proportional to the number of cpus in
4909 * the groups.
4910 *
4911 * This yields:
4912 *
4913 * log_2 n 1 n
4914 * \Sum { --- * --- * 2^i } = O(n) (5)
4915 * i = 0 2^i 2^i
4916 * `- size of each group
4917 * | | `- number of cpus doing load-balance
4918 * | `- freq
4919 * `- sum over all levels
4920 *
4921 * Coupled with a limit on how many tasks we can migrate every balance pass,
4922 * this makes (5) the runtime complexity of the balancer.
4923 *
4924 * An important property here is that each CPU is still (indirectly) connected
4925 * to every other cpu in at most O(log n) steps:
4926 *
4927 * The adjacency matrix of the resulting graph is given by:
4928 *
4929 * log_2 n
4930 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4931 * k = 0
4932 *
4933 * And you'll find that:
4934 *
4935 * A^(log_2 n)_i,j != 0 for all i,j (7)
4936 *
4937 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4938 * The task movement gives a factor of O(m), giving a convergence complexity
4939 * of:
4940 *
4941 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4942 *
4943 *
4944 * WORK CONSERVING
4945 *
4946 * In order to avoid CPUs going idle while there's still work to do, new idle
4947 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4948 * tree itself instead of relying on other CPUs to bring it work.
4949 *
4950 * This adds some complexity to both (5) and (8) but it reduces the total idle
4951 * time.
4952 *
4953 * [XXX more?]
4954 *
4955 *
4956 * CGROUPS
4957 *
4958 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4959 *
4960 * s_k,i
4961 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4962 * S_k
4963 *
4964 * Where
4965 *
4966 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4967 *
4968 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4969 *
4970 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4971 * property.
4972 *
4973 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4974 * rewrite all of this once again.]
4975 */
bf0f6f24 4976
ed387b78
HS
4977static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4978
0ec8aa00
PZ
4979enum fbq_type { regular, remote, all };
4980
ddcdf6e7 4981#define LBF_ALL_PINNED 0x01
367456c7 4982#define LBF_NEED_BREAK 0x02
6263322c
PZ
4983#define LBF_DST_PINNED 0x04
4984#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4985
4986struct lb_env {
4987 struct sched_domain *sd;
4988
ddcdf6e7 4989 struct rq *src_rq;
85c1e7da 4990 int src_cpu;
ddcdf6e7
PZ
4991
4992 int dst_cpu;
4993 struct rq *dst_rq;
4994
88b8dac0
SV
4995 struct cpumask *dst_grpmask;
4996 int new_dst_cpu;
ddcdf6e7 4997 enum cpu_idle_type idle;
bd939f45 4998 long imbalance;
b9403130
MW
4999 /* The set of CPUs under consideration for load-balancing */
5000 struct cpumask *cpus;
5001
ddcdf6e7 5002 unsigned int flags;
367456c7
PZ
5003
5004 unsigned int loop;
5005 unsigned int loop_break;
5006 unsigned int loop_max;
0ec8aa00
PZ
5007
5008 enum fbq_type fbq_type;
ddcdf6e7
PZ
5009};
5010
1e3c88bd 5011/*
ddcdf6e7 5012 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5013 * Both runqueues must be locked.
5014 */
ddcdf6e7 5015static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5016{
ddcdf6e7
PZ
5017 deactivate_task(env->src_rq, p, 0);
5018 set_task_cpu(p, env->dst_cpu);
5019 activate_task(env->dst_rq, p, 0);
5020 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5021}
5022
029632fb
PZ
5023/*
5024 * Is this task likely cache-hot:
5025 */
5026static int
5027task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
5028{
5029 s64 delta;
5030
5031 if (p->sched_class != &fair_sched_class)
5032 return 0;
5033
5034 if (unlikely(p->policy == SCHED_IDLE))
5035 return 0;
5036
5037 /*
5038 * Buddy candidates are cache hot:
5039 */
5040 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5041 (&p->se == cfs_rq_of(&p->se)->next ||
5042 &p->se == cfs_rq_of(&p->se)->last))
5043 return 1;
5044
5045 if (sysctl_sched_migration_cost == -1)
5046 return 1;
5047 if (sysctl_sched_migration_cost == 0)
5048 return 0;
5049
5050 delta = now - p->se.exec_start;
5051
5052 return delta < (s64)sysctl_sched_migration_cost;
5053}
5054
3a7053b3
MG
5055#ifdef CONFIG_NUMA_BALANCING
5056/* Returns true if the destination node has incurred more faults */
5057static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5058{
5059 int src_nid, dst_nid;
5060
ff1df896 5061 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5062 !(env->sd->flags & SD_NUMA)) {
5063 return false;
5064 }
5065
5066 src_nid = cpu_to_node(env->src_cpu);
5067 dst_nid = cpu_to_node(env->dst_cpu);
5068
83e1d2cd 5069 if (src_nid == dst_nid)
3a7053b3
MG
5070 return false;
5071
83e1d2cd
MG
5072 /* Always encourage migration to the preferred node. */
5073 if (dst_nid == p->numa_preferred_nid)
5074 return true;
5075
887c290e
RR
5076 /* If both task and group weight improve, this move is a winner. */
5077 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5078 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5079 return true;
5080
5081 return false;
5082}
7a0f3083
MG
5083
5084
5085static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5086{
5087 int src_nid, dst_nid;
5088
5089 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5090 return false;
5091
ff1df896 5092 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5093 return false;
5094
5095 src_nid = cpu_to_node(env->src_cpu);
5096 dst_nid = cpu_to_node(env->dst_cpu);
5097
83e1d2cd 5098 if (src_nid == dst_nid)
7a0f3083
MG
5099 return false;
5100
83e1d2cd
MG
5101 /* Migrating away from the preferred node is always bad. */
5102 if (src_nid == p->numa_preferred_nid)
5103 return true;
5104
887c290e
RR
5105 /* If either task or group weight get worse, don't do it. */
5106 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5107 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5108 return true;
5109
5110 return false;
5111}
5112
3a7053b3
MG
5113#else
5114static inline bool migrate_improves_locality(struct task_struct *p,
5115 struct lb_env *env)
5116{
5117 return false;
5118}
7a0f3083
MG
5119
5120static inline bool migrate_degrades_locality(struct task_struct *p,
5121 struct lb_env *env)
5122{
5123 return false;
5124}
3a7053b3
MG
5125#endif
5126
1e3c88bd
PZ
5127/*
5128 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5129 */
5130static
8e45cb54 5131int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5132{
5133 int tsk_cache_hot = 0;
5134 /*
5135 * We do not migrate tasks that are:
d3198084 5136 * 1) throttled_lb_pair, or
1e3c88bd 5137 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5138 * 3) running (obviously), or
5139 * 4) are cache-hot on their current CPU.
1e3c88bd 5140 */
d3198084
JK
5141 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5142 return 0;
5143
ddcdf6e7 5144 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5145 int cpu;
88b8dac0 5146
41acab88 5147 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5148
6263322c
PZ
5149 env->flags |= LBF_SOME_PINNED;
5150
88b8dac0
SV
5151 /*
5152 * Remember if this task can be migrated to any other cpu in
5153 * our sched_group. We may want to revisit it if we couldn't
5154 * meet load balance goals by pulling other tasks on src_cpu.
5155 *
5156 * Also avoid computing new_dst_cpu if we have already computed
5157 * one in current iteration.
5158 */
6263322c 5159 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5160 return 0;
5161
e02e60c1
JK
5162 /* Prevent to re-select dst_cpu via env's cpus */
5163 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5164 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5165 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5166 env->new_dst_cpu = cpu;
5167 break;
5168 }
88b8dac0 5169 }
e02e60c1 5170
1e3c88bd
PZ
5171 return 0;
5172 }
88b8dac0
SV
5173
5174 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5175 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5176
ddcdf6e7 5177 if (task_running(env->src_rq, p)) {
41acab88 5178 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5179 return 0;
5180 }
5181
5182 /*
5183 * Aggressive migration if:
3a7053b3
MG
5184 * 1) destination numa is preferred
5185 * 2) task is cache cold, or
5186 * 3) too many balance attempts have failed.
1e3c88bd 5187 */
78becc27 5188 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
5189 if (!tsk_cache_hot)
5190 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5191
5192 if (migrate_improves_locality(p, env)) {
5193#ifdef CONFIG_SCHEDSTATS
5194 if (tsk_cache_hot) {
5195 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5196 schedstat_inc(p, se.statistics.nr_forced_migrations);
5197 }
5198#endif
5199 return 1;
5200 }
5201
1e3c88bd 5202 if (!tsk_cache_hot ||
8e45cb54 5203 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5204
1e3c88bd 5205 if (tsk_cache_hot) {
8e45cb54 5206 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5207 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5208 }
4e2dcb73 5209
1e3c88bd
PZ
5210 return 1;
5211 }
5212
4e2dcb73
ZH
5213 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5214 return 0;
1e3c88bd
PZ
5215}
5216
897c395f
PZ
5217/*
5218 * move_one_task tries to move exactly one task from busiest to this_rq, as
5219 * part of active balancing operations within "domain".
5220 * Returns 1 if successful and 0 otherwise.
5221 *
5222 * Called with both runqueues locked.
5223 */
8e45cb54 5224static int move_one_task(struct lb_env *env)
897c395f
PZ
5225{
5226 struct task_struct *p, *n;
897c395f 5227
367456c7 5228 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5229 if (!can_migrate_task(p, env))
5230 continue;
897c395f 5231
367456c7
PZ
5232 move_task(p, env);
5233 /*
5234 * Right now, this is only the second place move_task()
5235 * is called, so we can safely collect move_task()
5236 * stats here rather than inside move_task().
5237 */
5238 schedstat_inc(env->sd, lb_gained[env->idle]);
5239 return 1;
897c395f 5240 }
897c395f
PZ
5241 return 0;
5242}
5243
eb95308e
PZ
5244static const unsigned int sched_nr_migrate_break = 32;
5245
5d6523eb 5246/*
bd939f45 5247 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5248 * this_rq, as part of a balancing operation within domain "sd".
5249 * Returns 1 if successful and 0 otherwise.
5250 *
5251 * Called with both runqueues locked.
5252 */
5253static int move_tasks(struct lb_env *env)
1e3c88bd 5254{
5d6523eb
PZ
5255 struct list_head *tasks = &env->src_rq->cfs_tasks;
5256 struct task_struct *p;
367456c7
PZ
5257 unsigned long load;
5258 int pulled = 0;
1e3c88bd 5259
bd939f45 5260 if (env->imbalance <= 0)
5d6523eb 5261 return 0;
1e3c88bd 5262
5d6523eb
PZ
5263 while (!list_empty(tasks)) {
5264 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5265
367456c7
PZ
5266 env->loop++;
5267 /* We've more or less seen every task there is, call it quits */
5d6523eb 5268 if (env->loop > env->loop_max)
367456c7 5269 break;
5d6523eb
PZ
5270
5271 /* take a breather every nr_migrate tasks */
367456c7 5272 if (env->loop > env->loop_break) {
eb95308e 5273 env->loop_break += sched_nr_migrate_break;
8e45cb54 5274 env->flags |= LBF_NEED_BREAK;
ee00e66f 5275 break;
a195f004 5276 }
1e3c88bd 5277
d3198084 5278 if (!can_migrate_task(p, env))
367456c7
PZ
5279 goto next;
5280
5281 load = task_h_load(p);
5d6523eb 5282
eb95308e 5283 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5284 goto next;
5285
bd939f45 5286 if ((load / 2) > env->imbalance)
367456c7 5287 goto next;
1e3c88bd 5288
ddcdf6e7 5289 move_task(p, env);
ee00e66f 5290 pulled++;
bd939f45 5291 env->imbalance -= load;
1e3c88bd
PZ
5292
5293#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5294 /*
5295 * NEWIDLE balancing is a source of latency, so preemptible
5296 * kernels will stop after the first task is pulled to minimize
5297 * the critical section.
5298 */
5d6523eb 5299 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5300 break;
1e3c88bd
PZ
5301#endif
5302
ee00e66f
PZ
5303 /*
5304 * We only want to steal up to the prescribed amount of
5305 * weighted load.
5306 */
bd939f45 5307 if (env->imbalance <= 0)
ee00e66f 5308 break;
367456c7
PZ
5309
5310 continue;
5311next:
5d6523eb 5312 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5313 }
5d6523eb 5314
1e3c88bd 5315 /*
ddcdf6e7
PZ
5316 * Right now, this is one of only two places move_task() is called,
5317 * so we can safely collect move_task() stats here rather than
5318 * inside move_task().
1e3c88bd 5319 */
8e45cb54 5320 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5321
5d6523eb 5322 return pulled;
1e3c88bd
PZ
5323}
5324
230059de 5325#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5326/*
5327 * update tg->load_weight by folding this cpu's load_avg
5328 */
48a16753 5329static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5330{
48a16753
PT
5331 struct sched_entity *se = tg->se[cpu];
5332 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5333
48a16753
PT
5334 /* throttled entities do not contribute to load */
5335 if (throttled_hierarchy(cfs_rq))
5336 return;
9e3081ca 5337
aff3e498 5338 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5339
82958366
PT
5340 if (se) {
5341 update_entity_load_avg(se, 1);
5342 /*
5343 * We pivot on our runnable average having decayed to zero for
5344 * list removal. This generally implies that all our children
5345 * have also been removed (modulo rounding error or bandwidth
5346 * control); however, such cases are rare and we can fix these
5347 * at enqueue.
5348 *
5349 * TODO: fix up out-of-order children on enqueue.
5350 */
5351 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5352 list_del_leaf_cfs_rq(cfs_rq);
5353 } else {
48a16753 5354 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5355 update_rq_runnable_avg(rq, rq->nr_running);
5356 }
9e3081ca
PZ
5357}
5358
48a16753 5359static void update_blocked_averages(int cpu)
9e3081ca 5360{
9e3081ca 5361 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5362 struct cfs_rq *cfs_rq;
5363 unsigned long flags;
9e3081ca 5364
48a16753
PT
5365 raw_spin_lock_irqsave(&rq->lock, flags);
5366 update_rq_clock(rq);
9763b67f
PZ
5367 /*
5368 * Iterates the task_group tree in a bottom up fashion, see
5369 * list_add_leaf_cfs_rq() for details.
5370 */
64660c86 5371 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5372 /*
5373 * Note: We may want to consider periodically releasing
5374 * rq->lock about these updates so that creating many task
5375 * groups does not result in continually extending hold time.
5376 */
5377 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5378 }
48a16753
PT
5379
5380 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5381}
5382
9763b67f 5383/*
68520796 5384 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5385 * This needs to be done in a top-down fashion because the load of a child
5386 * group is a fraction of its parents load.
5387 */
68520796 5388static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5389{
68520796
VD
5390 struct rq *rq = rq_of(cfs_rq);
5391 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5392 unsigned long now = jiffies;
68520796 5393 unsigned long load;
a35b6466 5394
68520796 5395 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5396 return;
5397
68520796
VD
5398 cfs_rq->h_load_next = NULL;
5399 for_each_sched_entity(se) {
5400 cfs_rq = cfs_rq_of(se);
5401 cfs_rq->h_load_next = se;
5402 if (cfs_rq->last_h_load_update == now)
5403 break;
5404 }
a35b6466 5405
68520796 5406 if (!se) {
7e3115ef 5407 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5408 cfs_rq->last_h_load_update = now;
5409 }
5410
5411 while ((se = cfs_rq->h_load_next) != NULL) {
5412 load = cfs_rq->h_load;
5413 load = div64_ul(load * se->avg.load_avg_contrib,
5414 cfs_rq->runnable_load_avg + 1);
5415 cfs_rq = group_cfs_rq(se);
5416 cfs_rq->h_load = load;
5417 cfs_rq->last_h_load_update = now;
5418 }
9763b67f
PZ
5419}
5420
367456c7 5421static unsigned long task_h_load(struct task_struct *p)
230059de 5422{
367456c7 5423 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5424
68520796 5425 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5426 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5427 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5428}
5429#else
48a16753 5430static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5431{
5432}
5433
367456c7 5434static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5435{
a003a25b 5436 return p->se.avg.load_avg_contrib;
1e3c88bd 5437}
230059de 5438#endif
1e3c88bd 5439
1e3c88bd 5440/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5441/*
5442 * sg_lb_stats - stats of a sched_group required for load_balancing
5443 */
5444struct sg_lb_stats {
5445 unsigned long avg_load; /*Avg load across the CPUs of the group */
5446 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5447 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5448 unsigned long load_per_task;
3ae11c90 5449 unsigned long group_power;
147c5fc2
PZ
5450 unsigned int sum_nr_running; /* Nr tasks running in the group */
5451 unsigned int group_capacity;
5452 unsigned int idle_cpus;
5453 unsigned int group_weight;
1e3c88bd 5454 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5455 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5456#ifdef CONFIG_NUMA_BALANCING
5457 unsigned int nr_numa_running;
5458 unsigned int nr_preferred_running;
5459#endif
1e3c88bd
PZ
5460};
5461
56cf515b
JK
5462/*
5463 * sd_lb_stats - Structure to store the statistics of a sched_domain
5464 * during load balancing.
5465 */
5466struct sd_lb_stats {
5467 struct sched_group *busiest; /* Busiest group in this sd */
5468 struct sched_group *local; /* Local group in this sd */
5469 unsigned long total_load; /* Total load of all groups in sd */
5470 unsigned long total_pwr; /* Total power of all groups in sd */
5471 unsigned long avg_load; /* Average load across all groups in sd */
5472
56cf515b 5473 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5474 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5475};
5476
147c5fc2
PZ
5477static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5478{
5479 /*
5480 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5481 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5482 * We must however clear busiest_stat::avg_load because
5483 * update_sd_pick_busiest() reads this before assignment.
5484 */
5485 *sds = (struct sd_lb_stats){
5486 .busiest = NULL,
5487 .local = NULL,
5488 .total_load = 0UL,
5489 .total_pwr = 0UL,
5490 .busiest_stat = {
5491 .avg_load = 0UL,
5492 },
5493 };
5494}
5495
1e3c88bd
PZ
5496/**
5497 * get_sd_load_idx - Obtain the load index for a given sched domain.
5498 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5499 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5500 *
5501 * Return: The load index.
1e3c88bd
PZ
5502 */
5503static inline int get_sd_load_idx(struct sched_domain *sd,
5504 enum cpu_idle_type idle)
5505{
5506 int load_idx;
5507
5508 switch (idle) {
5509 case CPU_NOT_IDLE:
5510 load_idx = sd->busy_idx;
5511 break;
5512
5513 case CPU_NEWLY_IDLE:
5514 load_idx = sd->newidle_idx;
5515 break;
5516 default:
5517 load_idx = sd->idle_idx;
5518 break;
5519 }
5520
5521 return load_idx;
5522}
5523
15f803c9 5524static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5525{
1399fa78 5526 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5527}
5528
5529unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5530{
5531 return default_scale_freq_power(sd, cpu);
5532}
5533
15f803c9 5534static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5535{
669c55e9 5536 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5537 unsigned long smt_gain = sd->smt_gain;
5538
5539 smt_gain /= weight;
5540
5541 return smt_gain;
5542}
5543
5544unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5545{
5546 return default_scale_smt_power(sd, cpu);
5547}
5548
15f803c9 5549static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5550{
5551 struct rq *rq = cpu_rq(cpu);
b654f7de 5552 u64 total, available, age_stamp, avg;
1e3c88bd 5553
b654f7de
PZ
5554 /*
5555 * Since we're reading these variables without serialization make sure
5556 * we read them once before doing sanity checks on them.
5557 */
5558 age_stamp = ACCESS_ONCE(rq->age_stamp);
5559 avg = ACCESS_ONCE(rq->rt_avg);
5560
78becc27 5561 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5562
b654f7de 5563 if (unlikely(total < avg)) {
aa483808
VP
5564 /* Ensures that power won't end up being negative */
5565 available = 0;
5566 } else {
b654f7de 5567 available = total - avg;
aa483808 5568 }
1e3c88bd 5569
1399fa78
NR
5570 if (unlikely((s64)total < SCHED_POWER_SCALE))
5571 total = SCHED_POWER_SCALE;
1e3c88bd 5572
1399fa78 5573 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5574
5575 return div_u64(available, total);
5576}
5577
5578static void update_cpu_power(struct sched_domain *sd, int cpu)
5579{
669c55e9 5580 unsigned long weight = sd->span_weight;
1399fa78 5581 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5582 struct sched_group *sdg = sd->groups;
5583
1e3c88bd
PZ
5584 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5585 if (sched_feat(ARCH_POWER))
5586 power *= arch_scale_smt_power(sd, cpu);
5587 else
5588 power *= default_scale_smt_power(sd, cpu);
5589
1399fa78 5590 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5591 }
5592
9c3f75cb 5593 sdg->sgp->power_orig = power;
9d5efe05
SV
5594
5595 if (sched_feat(ARCH_POWER))
5596 power *= arch_scale_freq_power(sd, cpu);
5597 else
5598 power *= default_scale_freq_power(sd, cpu);
5599
1399fa78 5600 power >>= SCHED_POWER_SHIFT;
9d5efe05 5601
1e3c88bd 5602 power *= scale_rt_power(cpu);
1399fa78 5603 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5604
5605 if (!power)
5606 power = 1;
5607
e51fd5e2 5608 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5609 sdg->sgp->power = power;
1e3c88bd
PZ
5610}
5611
029632fb 5612void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5613{
5614 struct sched_domain *child = sd->child;
5615 struct sched_group *group, *sdg = sd->groups;
863bffc8 5616 unsigned long power, power_orig;
4ec4412e
VG
5617 unsigned long interval;
5618
5619 interval = msecs_to_jiffies(sd->balance_interval);
5620 interval = clamp(interval, 1UL, max_load_balance_interval);
5621 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5622
5623 if (!child) {
5624 update_cpu_power(sd, cpu);
5625 return;
5626 }
5627
863bffc8 5628 power_orig = power = 0;
1e3c88bd 5629
74a5ce20
PZ
5630 if (child->flags & SD_OVERLAP) {
5631 /*
5632 * SD_OVERLAP domains cannot assume that child groups
5633 * span the current group.
5634 */
5635
863bffc8 5636 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5637 struct sched_group_power *sgp;
5638 struct rq *rq = cpu_rq(cpu);
863bffc8 5639
9abf24d4
SD
5640 /*
5641 * build_sched_domains() -> init_sched_groups_power()
5642 * gets here before we've attached the domains to the
5643 * runqueues.
5644 *
5645 * Use power_of(), which is set irrespective of domains
5646 * in update_cpu_power().
5647 *
5648 * This avoids power/power_orig from being 0 and
5649 * causing divide-by-zero issues on boot.
5650 *
5651 * Runtime updates will correct power_orig.
5652 */
5653 if (unlikely(!rq->sd)) {
5654 power_orig += power_of(cpu);
5655 power += power_of(cpu);
5656 continue;
5657 }
863bffc8 5658
9abf24d4
SD
5659 sgp = rq->sd->groups->sgp;
5660 power_orig += sgp->power_orig;
5661 power += sgp->power;
863bffc8 5662 }
74a5ce20
PZ
5663 } else {
5664 /*
5665 * !SD_OVERLAP domains can assume that child groups
5666 * span the current group.
5667 */
5668
5669 group = child->groups;
5670 do {
863bffc8 5671 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5672 power += group->sgp->power;
5673 group = group->next;
5674 } while (group != child->groups);
5675 }
1e3c88bd 5676
863bffc8
PZ
5677 sdg->sgp->power_orig = power_orig;
5678 sdg->sgp->power = power;
1e3c88bd
PZ
5679}
5680
9d5efe05
SV
5681/*
5682 * Try and fix up capacity for tiny siblings, this is needed when
5683 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5684 * which on its own isn't powerful enough.
5685 *
5686 * See update_sd_pick_busiest() and check_asym_packing().
5687 */
5688static inline int
5689fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5690{
5691 /*
1399fa78 5692 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5693 */
a6c75f2f 5694 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5695 return 0;
5696
5697 /*
5698 * If ~90% of the cpu_power is still there, we're good.
5699 */
9c3f75cb 5700 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5701 return 1;
5702
5703 return 0;
5704}
5705
30ce5dab
PZ
5706/*
5707 * Group imbalance indicates (and tries to solve) the problem where balancing
5708 * groups is inadequate due to tsk_cpus_allowed() constraints.
5709 *
5710 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5711 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5712 * Something like:
5713 *
5714 * { 0 1 2 3 } { 4 5 6 7 }
5715 * * * * *
5716 *
5717 * If we were to balance group-wise we'd place two tasks in the first group and
5718 * two tasks in the second group. Clearly this is undesired as it will overload
5719 * cpu 3 and leave one of the cpus in the second group unused.
5720 *
5721 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5722 * by noticing the lower domain failed to reach balance and had difficulty
5723 * moving tasks due to affinity constraints.
30ce5dab
PZ
5724 *
5725 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5726 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5727 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5728 * to create an effective group imbalance.
5729 *
5730 * This is a somewhat tricky proposition since the next run might not find the
5731 * group imbalance and decide the groups need to be balanced again. A most
5732 * subtle and fragile situation.
5733 */
5734
6263322c 5735static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5736{
6263322c 5737 return group->sgp->imbalance;
30ce5dab
PZ
5738}
5739
b37d9316
PZ
5740/*
5741 * Compute the group capacity.
5742 *
c61037e9
PZ
5743 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5744 * first dividing out the smt factor and computing the actual number of cores
5745 * and limit power unit capacity with that.
b37d9316
PZ
5746 */
5747static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5748{
c61037e9
PZ
5749 unsigned int capacity, smt, cpus;
5750 unsigned int power, power_orig;
5751
5752 power = group->sgp->power;
5753 power_orig = group->sgp->power_orig;
5754 cpus = group->group_weight;
b37d9316 5755
c61037e9
PZ
5756 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5757 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5758 capacity = cpus / smt; /* cores */
b37d9316 5759
c61037e9 5760 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5761 if (!capacity)
5762 capacity = fix_small_capacity(env->sd, group);
5763
5764 return capacity;
5765}
5766
1e3c88bd
PZ
5767/**
5768 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5769 * @env: The load balancing environment.
1e3c88bd 5770 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5771 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5772 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5773 * @sgs: variable to hold the statistics for this group.
5774 */
bd939f45
PZ
5775static inline void update_sg_lb_stats(struct lb_env *env,
5776 struct sched_group *group, int load_idx,
23f0d209 5777 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5778{
30ce5dab 5779 unsigned long load;
bd939f45 5780 int i;
1e3c88bd 5781
b72ff13c
PZ
5782 memset(sgs, 0, sizeof(*sgs));
5783
b9403130 5784 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5785 struct rq *rq = cpu_rq(i);
5786
1e3c88bd 5787 /* Bias balancing toward cpus of our domain */
6263322c 5788 if (local_group)
04f733b4 5789 load = target_load(i, load_idx);
6263322c 5790 else
1e3c88bd 5791 load = source_load(i, load_idx);
1e3c88bd
PZ
5792
5793 sgs->group_load += load;
380c9077 5794 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5795#ifdef CONFIG_NUMA_BALANCING
5796 sgs->nr_numa_running += rq->nr_numa_running;
5797 sgs->nr_preferred_running += rq->nr_preferred_running;
5798#endif
1e3c88bd 5799 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5800 if (idle_cpu(i))
5801 sgs->idle_cpus++;
1e3c88bd
PZ
5802 }
5803
1e3c88bd 5804 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5805 sgs->group_power = group->sgp->power;
5806 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5807
dd5feea1 5808 if (sgs->sum_nr_running)
38d0f770 5809 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5810
aae6d3dd 5811 sgs->group_weight = group->group_weight;
fab47622 5812
b37d9316
PZ
5813 sgs->group_imb = sg_imbalanced(group);
5814 sgs->group_capacity = sg_capacity(env, group);
5815
fab47622
NR
5816 if (sgs->group_capacity > sgs->sum_nr_running)
5817 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5818}
5819
532cb4c4
MN
5820/**
5821 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5822 * @env: The load balancing environment.
532cb4c4
MN
5823 * @sds: sched_domain statistics
5824 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5825 * @sgs: sched_group statistics
532cb4c4
MN
5826 *
5827 * Determine if @sg is a busier group than the previously selected
5828 * busiest group.
e69f6186
YB
5829 *
5830 * Return: %true if @sg is a busier group than the previously selected
5831 * busiest group. %false otherwise.
532cb4c4 5832 */
bd939f45 5833static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5834 struct sd_lb_stats *sds,
5835 struct sched_group *sg,
bd939f45 5836 struct sg_lb_stats *sgs)
532cb4c4 5837{
56cf515b 5838 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5839 return false;
5840
5841 if (sgs->sum_nr_running > sgs->group_capacity)
5842 return true;
5843
5844 if (sgs->group_imb)
5845 return true;
5846
5847 /*
5848 * ASYM_PACKING needs to move all the work to the lowest
5849 * numbered CPUs in the group, therefore mark all groups
5850 * higher than ourself as busy.
5851 */
bd939f45
PZ
5852 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5853 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5854 if (!sds->busiest)
5855 return true;
5856
5857 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5858 return true;
5859 }
5860
5861 return false;
5862}
5863
0ec8aa00
PZ
5864#ifdef CONFIG_NUMA_BALANCING
5865static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5866{
5867 if (sgs->sum_nr_running > sgs->nr_numa_running)
5868 return regular;
5869 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5870 return remote;
5871 return all;
5872}
5873
5874static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5875{
5876 if (rq->nr_running > rq->nr_numa_running)
5877 return regular;
5878 if (rq->nr_running > rq->nr_preferred_running)
5879 return remote;
5880 return all;
5881}
5882#else
5883static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5884{
5885 return all;
5886}
5887
5888static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5889{
5890 return regular;
5891}
5892#endif /* CONFIG_NUMA_BALANCING */
5893
1e3c88bd 5894/**
461819ac 5895 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5896 * @env: The load balancing environment.
1e3c88bd
PZ
5897 * @sds: variable to hold the statistics for this sched_domain.
5898 */
0ec8aa00 5899static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5900{
bd939f45
PZ
5901 struct sched_domain *child = env->sd->child;
5902 struct sched_group *sg = env->sd->groups;
56cf515b 5903 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5904 int load_idx, prefer_sibling = 0;
5905
5906 if (child && child->flags & SD_PREFER_SIBLING)
5907 prefer_sibling = 1;
5908
bd939f45 5909 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5910
5911 do {
56cf515b 5912 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5913 int local_group;
5914
bd939f45 5915 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5916 if (local_group) {
5917 sds->local = sg;
5918 sgs = &sds->local_stat;
b72ff13c
PZ
5919
5920 if (env->idle != CPU_NEWLY_IDLE ||
5921 time_after_eq(jiffies, sg->sgp->next_update))
5922 update_group_power(env->sd, env->dst_cpu);
56cf515b 5923 }
1e3c88bd 5924
56cf515b 5925 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5926
b72ff13c
PZ
5927 if (local_group)
5928 goto next_group;
5929
1e3c88bd
PZ
5930 /*
5931 * In case the child domain prefers tasks go to siblings
532cb4c4 5932 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5933 * and move all the excess tasks away. We lower the capacity
5934 * of a group only if the local group has the capacity to fit
5935 * these excess tasks, i.e. nr_running < group_capacity. The
5936 * extra check prevents the case where you always pull from the
5937 * heaviest group when it is already under-utilized (possible
5938 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5939 */
b72ff13c
PZ
5940 if (prefer_sibling && sds->local &&
5941 sds->local_stat.group_has_capacity)
147c5fc2 5942 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5943
b72ff13c 5944 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5945 sds->busiest = sg;
56cf515b 5946 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5947 }
5948
b72ff13c
PZ
5949next_group:
5950 /* Now, start updating sd_lb_stats */
5951 sds->total_load += sgs->group_load;
5952 sds->total_pwr += sgs->group_power;
5953
532cb4c4 5954 sg = sg->next;
bd939f45 5955 } while (sg != env->sd->groups);
0ec8aa00
PZ
5956
5957 if (env->sd->flags & SD_NUMA)
5958 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5959}
5960
532cb4c4
MN
5961/**
5962 * check_asym_packing - Check to see if the group is packed into the
5963 * sched doman.
5964 *
5965 * This is primarily intended to used at the sibling level. Some
5966 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5967 * case of POWER7, it can move to lower SMT modes only when higher
5968 * threads are idle. When in lower SMT modes, the threads will
5969 * perform better since they share less core resources. Hence when we
5970 * have idle threads, we want them to be the higher ones.
5971 *
5972 * This packing function is run on idle threads. It checks to see if
5973 * the busiest CPU in this domain (core in the P7 case) has a higher
5974 * CPU number than the packing function is being run on. Here we are
5975 * assuming lower CPU number will be equivalent to lower a SMT thread
5976 * number.
5977 *
e69f6186 5978 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5979 * this CPU. The amount of the imbalance is returned in *imbalance.
5980 *
cd96891d 5981 * @env: The load balancing environment.
532cb4c4 5982 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5983 */
bd939f45 5984static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5985{
5986 int busiest_cpu;
5987
bd939f45 5988 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5989 return 0;
5990
5991 if (!sds->busiest)
5992 return 0;
5993
5994 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5995 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5996 return 0;
5997
bd939f45 5998 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5999 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6000 SCHED_POWER_SCALE);
bd939f45 6001
532cb4c4 6002 return 1;
1e3c88bd
PZ
6003}
6004
6005/**
6006 * fix_small_imbalance - Calculate the minor imbalance that exists
6007 * amongst the groups of a sched_domain, during
6008 * load balancing.
cd96891d 6009 * @env: The load balancing environment.
1e3c88bd 6010 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6011 */
bd939f45
PZ
6012static inline
6013void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6014{
6015 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6016 unsigned int imbn = 2;
dd5feea1 6017 unsigned long scaled_busy_load_per_task;
56cf515b 6018 struct sg_lb_stats *local, *busiest;
1e3c88bd 6019
56cf515b
JK
6020 local = &sds->local_stat;
6021 busiest = &sds->busiest_stat;
1e3c88bd 6022
56cf515b
JK
6023 if (!local->sum_nr_running)
6024 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6025 else if (busiest->load_per_task > local->load_per_task)
6026 imbn = 1;
dd5feea1 6027
56cf515b
JK
6028 scaled_busy_load_per_task =
6029 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6030 busiest->group_power;
56cf515b 6031
3029ede3
VD
6032 if (busiest->avg_load + scaled_busy_load_per_task >=
6033 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6034 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6035 return;
6036 }
6037
6038 /*
6039 * OK, we don't have enough imbalance to justify moving tasks,
6040 * however we may be able to increase total CPU power used by
6041 * moving them.
6042 */
6043
3ae11c90 6044 pwr_now += busiest->group_power *
56cf515b 6045 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6046 pwr_now += local->group_power *
56cf515b 6047 min(local->load_per_task, local->avg_load);
1399fa78 6048 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6049
6050 /* Amount of load we'd subtract */
56cf515b 6051 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6052 busiest->group_power;
56cf515b 6053 if (busiest->avg_load > tmp) {
3ae11c90 6054 pwr_move += busiest->group_power *
56cf515b
JK
6055 min(busiest->load_per_task,
6056 busiest->avg_load - tmp);
6057 }
1e3c88bd
PZ
6058
6059 /* Amount of load we'd add */
3ae11c90 6060 if (busiest->avg_load * busiest->group_power <
56cf515b 6061 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6062 tmp = (busiest->avg_load * busiest->group_power) /
6063 local->group_power;
56cf515b
JK
6064 } else {
6065 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6066 local->group_power;
56cf515b 6067 }
3ae11c90
PZ
6068 pwr_move += local->group_power *
6069 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6070 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6071
6072 /* Move if we gain throughput */
6073 if (pwr_move > pwr_now)
56cf515b 6074 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6075}
6076
6077/**
6078 * calculate_imbalance - Calculate the amount of imbalance present within the
6079 * groups of a given sched_domain during load balance.
bd939f45 6080 * @env: load balance environment
1e3c88bd 6081 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6082 */
bd939f45 6083static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6084{
dd5feea1 6085 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6086 struct sg_lb_stats *local, *busiest;
6087
6088 local = &sds->local_stat;
56cf515b 6089 busiest = &sds->busiest_stat;
dd5feea1 6090
56cf515b 6091 if (busiest->group_imb) {
30ce5dab
PZ
6092 /*
6093 * In the group_imb case we cannot rely on group-wide averages
6094 * to ensure cpu-load equilibrium, look at wider averages. XXX
6095 */
56cf515b
JK
6096 busiest->load_per_task =
6097 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6098 }
6099
1e3c88bd
PZ
6100 /*
6101 * In the presence of smp nice balancing, certain scenarios can have
6102 * max load less than avg load(as we skip the groups at or below
6103 * its cpu_power, while calculating max_load..)
6104 */
b1885550
VD
6105 if (busiest->avg_load <= sds->avg_load ||
6106 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6107 env->imbalance = 0;
6108 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6109 }
6110
56cf515b 6111 if (!busiest->group_imb) {
dd5feea1
SS
6112 /*
6113 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6114 * Except of course for the group_imb case, since then we might
6115 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6116 */
56cf515b
JK
6117 load_above_capacity =
6118 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6119
1399fa78 6120 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6121 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6122 }
6123
6124 /*
6125 * We're trying to get all the cpus to the average_load, so we don't
6126 * want to push ourselves above the average load, nor do we wish to
6127 * reduce the max loaded cpu below the average load. At the same time,
6128 * we also don't want to reduce the group load below the group capacity
6129 * (so that we can implement power-savings policies etc). Thus we look
6130 * for the minimum possible imbalance.
dd5feea1 6131 */
30ce5dab 6132 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6133
6134 /* How much load to actually move to equalise the imbalance */
56cf515b 6135 env->imbalance = min(
3ae11c90
PZ
6136 max_pull * busiest->group_power,
6137 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6138 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6139
6140 /*
6141 * if *imbalance is less than the average load per runnable task
25985edc 6142 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6143 * a think about bumping its value to force at least one task to be
6144 * moved
6145 */
56cf515b 6146 if (env->imbalance < busiest->load_per_task)
bd939f45 6147 return fix_small_imbalance(env, sds);
1e3c88bd 6148}
fab47622 6149
1e3c88bd
PZ
6150/******* find_busiest_group() helpers end here *********************/
6151
6152/**
6153 * find_busiest_group - Returns the busiest group within the sched_domain
6154 * if there is an imbalance. If there isn't an imbalance, and
6155 * the user has opted for power-savings, it returns a group whose
6156 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6157 * such a group exists.
6158 *
6159 * Also calculates the amount of weighted load which should be moved
6160 * to restore balance.
6161 *
cd96891d 6162 * @env: The load balancing environment.
1e3c88bd 6163 *
e69f6186 6164 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6165 * - If no imbalance and user has opted for power-savings balance,
6166 * return the least loaded group whose CPUs can be
6167 * put to idle by rebalancing its tasks onto our group.
6168 */
56cf515b 6169static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6170{
56cf515b 6171 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6172 struct sd_lb_stats sds;
6173
147c5fc2 6174 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6175
6176 /*
6177 * Compute the various statistics relavent for load balancing at
6178 * this level.
6179 */
23f0d209 6180 update_sd_lb_stats(env, &sds);
56cf515b
JK
6181 local = &sds.local_stat;
6182 busiest = &sds.busiest_stat;
1e3c88bd 6183
bd939f45
PZ
6184 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6185 check_asym_packing(env, &sds))
532cb4c4
MN
6186 return sds.busiest;
6187
cc57aa8f 6188 /* There is no busy sibling group to pull tasks from */
56cf515b 6189 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6190 goto out_balanced;
6191
1399fa78 6192 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6193
866ab43e
PZ
6194 /*
6195 * If the busiest group is imbalanced the below checks don't
30ce5dab 6196 * work because they assume all things are equal, which typically
866ab43e
PZ
6197 * isn't true due to cpus_allowed constraints and the like.
6198 */
56cf515b 6199 if (busiest->group_imb)
866ab43e
PZ
6200 goto force_balance;
6201
cc57aa8f 6202 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6203 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6204 !busiest->group_has_capacity)
fab47622
NR
6205 goto force_balance;
6206
cc57aa8f
PZ
6207 /*
6208 * If the local group is more busy than the selected busiest group
6209 * don't try and pull any tasks.
6210 */
56cf515b 6211 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6212 goto out_balanced;
6213
cc57aa8f
PZ
6214 /*
6215 * Don't pull any tasks if this group is already above the domain
6216 * average load.
6217 */
56cf515b 6218 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6219 goto out_balanced;
6220
bd939f45 6221 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6222 /*
6223 * This cpu is idle. If the busiest group load doesn't
6224 * have more tasks than the number of available cpu's and
6225 * there is no imbalance between this and busiest group
6226 * wrt to idle cpu's, it is balanced.
6227 */
56cf515b
JK
6228 if ((local->idle_cpus < busiest->idle_cpus) &&
6229 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6230 goto out_balanced;
c186fafe
PZ
6231 } else {
6232 /*
6233 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6234 * imbalance_pct to be conservative.
6235 */
56cf515b
JK
6236 if (100 * busiest->avg_load <=
6237 env->sd->imbalance_pct * local->avg_load)
c186fafe 6238 goto out_balanced;
aae6d3dd 6239 }
1e3c88bd 6240
fab47622 6241force_balance:
1e3c88bd 6242 /* Looks like there is an imbalance. Compute it */
bd939f45 6243 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6244 return sds.busiest;
6245
6246out_balanced:
bd939f45 6247 env->imbalance = 0;
1e3c88bd
PZ
6248 return NULL;
6249}
6250
6251/*
6252 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6253 */
bd939f45 6254static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6255 struct sched_group *group)
1e3c88bd
PZ
6256{
6257 struct rq *busiest = NULL, *rq;
95a79b80 6258 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6259 int i;
6260
6906a408 6261 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6262 unsigned long power, capacity, wl;
6263 enum fbq_type rt;
6264
6265 rq = cpu_rq(i);
6266 rt = fbq_classify_rq(rq);
1e3c88bd 6267
0ec8aa00
PZ
6268 /*
6269 * We classify groups/runqueues into three groups:
6270 * - regular: there are !numa tasks
6271 * - remote: there are numa tasks that run on the 'wrong' node
6272 * - all: there is no distinction
6273 *
6274 * In order to avoid migrating ideally placed numa tasks,
6275 * ignore those when there's better options.
6276 *
6277 * If we ignore the actual busiest queue to migrate another
6278 * task, the next balance pass can still reduce the busiest
6279 * queue by moving tasks around inside the node.
6280 *
6281 * If we cannot move enough load due to this classification
6282 * the next pass will adjust the group classification and
6283 * allow migration of more tasks.
6284 *
6285 * Both cases only affect the total convergence complexity.
6286 */
6287 if (rt > env->fbq_type)
6288 continue;
6289
6290 power = power_of(i);
6291 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6292 if (!capacity)
bd939f45 6293 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6294
6e40f5bb 6295 wl = weighted_cpuload(i);
1e3c88bd 6296
6e40f5bb
TG
6297 /*
6298 * When comparing with imbalance, use weighted_cpuload()
6299 * which is not scaled with the cpu power.
6300 */
bd939f45 6301 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6302 continue;
6303
6e40f5bb
TG
6304 /*
6305 * For the load comparisons with the other cpu's, consider
6306 * the weighted_cpuload() scaled with the cpu power, so that
6307 * the load can be moved away from the cpu that is potentially
6308 * running at a lower capacity.
95a79b80
JK
6309 *
6310 * Thus we're looking for max(wl_i / power_i), crosswise
6311 * multiplication to rid ourselves of the division works out
6312 * to: wl_i * power_j > wl_j * power_i; where j is our
6313 * previous maximum.
6e40f5bb 6314 */
95a79b80
JK
6315 if (wl * busiest_power > busiest_load * power) {
6316 busiest_load = wl;
6317 busiest_power = power;
1e3c88bd
PZ
6318 busiest = rq;
6319 }
6320 }
6321
6322 return busiest;
6323}
6324
6325/*
6326 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6327 * so long as it is large enough.
6328 */
6329#define MAX_PINNED_INTERVAL 512
6330
6331/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6332DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6333
bd939f45 6334static int need_active_balance(struct lb_env *env)
1af3ed3d 6335{
bd939f45
PZ
6336 struct sched_domain *sd = env->sd;
6337
6338 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6339
6340 /*
6341 * ASYM_PACKING needs to force migrate tasks from busy but
6342 * higher numbered CPUs in order to pack all tasks in the
6343 * lowest numbered CPUs.
6344 */
bd939f45 6345 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6346 return 1;
1af3ed3d
PZ
6347 }
6348
6349 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6350}
6351
969c7921
TH
6352static int active_load_balance_cpu_stop(void *data);
6353
23f0d209
JK
6354static int should_we_balance(struct lb_env *env)
6355{
6356 struct sched_group *sg = env->sd->groups;
6357 struct cpumask *sg_cpus, *sg_mask;
6358 int cpu, balance_cpu = -1;
6359
6360 /*
6361 * In the newly idle case, we will allow all the cpu's
6362 * to do the newly idle load balance.
6363 */
6364 if (env->idle == CPU_NEWLY_IDLE)
6365 return 1;
6366
6367 sg_cpus = sched_group_cpus(sg);
6368 sg_mask = sched_group_mask(sg);
6369 /* Try to find first idle cpu */
6370 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6371 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6372 continue;
6373
6374 balance_cpu = cpu;
6375 break;
6376 }
6377
6378 if (balance_cpu == -1)
6379 balance_cpu = group_balance_cpu(sg);
6380
6381 /*
6382 * First idle cpu or the first cpu(busiest) in this sched group
6383 * is eligible for doing load balancing at this and above domains.
6384 */
b0cff9d8 6385 return balance_cpu == env->dst_cpu;
23f0d209
JK
6386}
6387
1e3c88bd
PZ
6388/*
6389 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6390 * tasks if there is an imbalance.
6391 */
6392static int load_balance(int this_cpu, struct rq *this_rq,
6393 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6394 int *continue_balancing)
1e3c88bd 6395{
88b8dac0 6396 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6397 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6398 struct sched_group *group;
1e3c88bd
PZ
6399 struct rq *busiest;
6400 unsigned long flags;
e6252c3e 6401 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6402
8e45cb54
PZ
6403 struct lb_env env = {
6404 .sd = sd,
ddcdf6e7
PZ
6405 .dst_cpu = this_cpu,
6406 .dst_rq = this_rq,
88b8dac0 6407 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6408 .idle = idle,
eb95308e 6409 .loop_break = sched_nr_migrate_break,
b9403130 6410 .cpus = cpus,
0ec8aa00 6411 .fbq_type = all,
8e45cb54
PZ
6412 };
6413
cfc03118
JK
6414 /*
6415 * For NEWLY_IDLE load_balancing, we don't need to consider
6416 * other cpus in our group
6417 */
e02e60c1 6418 if (idle == CPU_NEWLY_IDLE)
cfc03118 6419 env.dst_grpmask = NULL;
cfc03118 6420
1e3c88bd
PZ
6421 cpumask_copy(cpus, cpu_active_mask);
6422
1e3c88bd
PZ
6423 schedstat_inc(sd, lb_count[idle]);
6424
6425redo:
23f0d209
JK
6426 if (!should_we_balance(&env)) {
6427 *continue_balancing = 0;
1e3c88bd 6428 goto out_balanced;
23f0d209 6429 }
1e3c88bd 6430
23f0d209 6431 group = find_busiest_group(&env);
1e3c88bd
PZ
6432 if (!group) {
6433 schedstat_inc(sd, lb_nobusyg[idle]);
6434 goto out_balanced;
6435 }
6436
b9403130 6437 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6438 if (!busiest) {
6439 schedstat_inc(sd, lb_nobusyq[idle]);
6440 goto out_balanced;
6441 }
6442
78feefc5 6443 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6444
bd939f45 6445 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6446
6447 ld_moved = 0;
6448 if (busiest->nr_running > 1) {
6449 /*
6450 * Attempt to move tasks. If find_busiest_group has found
6451 * an imbalance but busiest->nr_running <= 1, the group is
6452 * still unbalanced. ld_moved simply stays zero, so it is
6453 * correctly treated as an imbalance.
6454 */
8e45cb54 6455 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6456 env.src_cpu = busiest->cpu;
6457 env.src_rq = busiest;
6458 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6459
5d6523eb 6460more_balance:
1e3c88bd 6461 local_irq_save(flags);
78feefc5 6462 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6463
6464 /*
6465 * cur_ld_moved - load moved in current iteration
6466 * ld_moved - cumulative load moved across iterations
6467 */
6468 cur_ld_moved = move_tasks(&env);
6469 ld_moved += cur_ld_moved;
78feefc5 6470 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6471 local_irq_restore(flags);
6472
6473 /*
6474 * some other cpu did the load balance for us.
6475 */
88b8dac0
SV
6476 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6477 resched_cpu(env.dst_cpu);
6478
f1cd0858
JK
6479 if (env.flags & LBF_NEED_BREAK) {
6480 env.flags &= ~LBF_NEED_BREAK;
6481 goto more_balance;
6482 }
6483
88b8dac0
SV
6484 /*
6485 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6486 * us and move them to an alternate dst_cpu in our sched_group
6487 * where they can run. The upper limit on how many times we
6488 * iterate on same src_cpu is dependent on number of cpus in our
6489 * sched_group.
6490 *
6491 * This changes load balance semantics a bit on who can move
6492 * load to a given_cpu. In addition to the given_cpu itself
6493 * (or a ilb_cpu acting on its behalf where given_cpu is
6494 * nohz-idle), we now have balance_cpu in a position to move
6495 * load to given_cpu. In rare situations, this may cause
6496 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6497 * _independently_ and at _same_ time to move some load to
6498 * given_cpu) causing exceess load to be moved to given_cpu.
6499 * This however should not happen so much in practice and
6500 * moreover subsequent load balance cycles should correct the
6501 * excess load moved.
6502 */
6263322c 6503 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6504
7aff2e3a
VD
6505 /* Prevent to re-select dst_cpu via env's cpus */
6506 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6507
78feefc5 6508 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6509 env.dst_cpu = env.new_dst_cpu;
6263322c 6510 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6511 env.loop = 0;
6512 env.loop_break = sched_nr_migrate_break;
e02e60c1 6513
88b8dac0
SV
6514 /*
6515 * Go back to "more_balance" rather than "redo" since we
6516 * need to continue with same src_cpu.
6517 */
6518 goto more_balance;
6519 }
1e3c88bd 6520
6263322c
PZ
6521 /*
6522 * We failed to reach balance because of affinity.
6523 */
6524 if (sd_parent) {
6525 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6526
6527 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6528 *group_imbalance = 1;
6529 } else if (*group_imbalance)
6530 *group_imbalance = 0;
6531 }
6532
1e3c88bd 6533 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6534 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6535 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6536 if (!cpumask_empty(cpus)) {
6537 env.loop = 0;
6538 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6539 goto redo;
bbf18b19 6540 }
1e3c88bd
PZ
6541 goto out_balanced;
6542 }
6543 }
6544
6545 if (!ld_moved) {
6546 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6547 /*
6548 * Increment the failure counter only on periodic balance.
6549 * We do not want newidle balance, which can be very
6550 * frequent, pollute the failure counter causing
6551 * excessive cache_hot migrations and active balances.
6552 */
6553 if (idle != CPU_NEWLY_IDLE)
6554 sd->nr_balance_failed++;
1e3c88bd 6555
bd939f45 6556 if (need_active_balance(&env)) {
1e3c88bd
PZ
6557 raw_spin_lock_irqsave(&busiest->lock, flags);
6558
969c7921
TH
6559 /* don't kick the active_load_balance_cpu_stop,
6560 * if the curr task on busiest cpu can't be
6561 * moved to this_cpu
1e3c88bd
PZ
6562 */
6563 if (!cpumask_test_cpu(this_cpu,
fa17b507 6564 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6565 raw_spin_unlock_irqrestore(&busiest->lock,
6566 flags);
8e45cb54 6567 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6568 goto out_one_pinned;
6569 }
6570
969c7921
TH
6571 /*
6572 * ->active_balance synchronizes accesses to
6573 * ->active_balance_work. Once set, it's cleared
6574 * only after active load balance is finished.
6575 */
1e3c88bd
PZ
6576 if (!busiest->active_balance) {
6577 busiest->active_balance = 1;
6578 busiest->push_cpu = this_cpu;
6579 active_balance = 1;
6580 }
6581 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6582
bd939f45 6583 if (active_balance) {
969c7921
TH
6584 stop_one_cpu_nowait(cpu_of(busiest),
6585 active_load_balance_cpu_stop, busiest,
6586 &busiest->active_balance_work);
bd939f45 6587 }
1e3c88bd
PZ
6588
6589 /*
6590 * We've kicked active balancing, reset the failure
6591 * counter.
6592 */
6593 sd->nr_balance_failed = sd->cache_nice_tries+1;
6594 }
6595 } else
6596 sd->nr_balance_failed = 0;
6597
6598 if (likely(!active_balance)) {
6599 /* We were unbalanced, so reset the balancing interval */
6600 sd->balance_interval = sd->min_interval;
6601 } else {
6602 /*
6603 * If we've begun active balancing, start to back off. This
6604 * case may not be covered by the all_pinned logic if there
6605 * is only 1 task on the busy runqueue (because we don't call
6606 * move_tasks).
6607 */
6608 if (sd->balance_interval < sd->max_interval)
6609 sd->balance_interval *= 2;
6610 }
6611
1e3c88bd
PZ
6612 goto out;
6613
6614out_balanced:
6615 schedstat_inc(sd, lb_balanced[idle]);
6616
6617 sd->nr_balance_failed = 0;
6618
6619out_one_pinned:
6620 /* tune up the balancing interval */
8e45cb54 6621 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6622 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6623 (sd->balance_interval < sd->max_interval))
6624 sd->balance_interval *= 2;
6625
46e49b38 6626 ld_moved = 0;
1e3c88bd 6627out:
1e3c88bd
PZ
6628 return ld_moved;
6629}
6630
1e3c88bd
PZ
6631/*
6632 * idle_balance is called by schedule() if this_cpu is about to become
6633 * idle. Attempts to pull tasks from other CPUs.
6634 */
6e83125c 6635static int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6636{
6637 struct sched_domain *sd;
6638 int pulled_task = 0;
6639 unsigned long next_balance = jiffies + HZ;
9bd721c5 6640 u64 curr_cost = 0;
b4f2ab43 6641 int this_cpu = this_rq->cpu;
1e3c88bd 6642
6e83125c
PZ
6643 idle_enter_fair(this_rq);
6644 /*
6645 * We must set idle_stamp _before_ calling idle_balance(), such that we
6646 * measure the duration of idle_balance() as idle time.
6647 */
6648 this_rq->idle_stamp = rq_clock(this_rq);
6649
1e3c88bd 6650 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6e83125c 6651 goto out;
1e3c88bd 6652
f492e12e
PZ
6653 /*
6654 * Drop the rq->lock, but keep IRQ/preempt disabled.
6655 */
6656 raw_spin_unlock(&this_rq->lock);
6657
48a16753 6658 update_blocked_averages(this_cpu);
dce840a0 6659 rcu_read_lock();
1e3c88bd
PZ
6660 for_each_domain(this_cpu, sd) {
6661 unsigned long interval;
23f0d209 6662 int continue_balancing = 1;
9bd721c5 6663 u64 t0, domain_cost;
1e3c88bd
PZ
6664
6665 if (!(sd->flags & SD_LOAD_BALANCE))
6666 continue;
6667
9bd721c5
JL
6668 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6669 break;
6670
f492e12e 6671 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6672 t0 = sched_clock_cpu(this_cpu);
6673
1e3c88bd 6674 /* If we've pulled tasks over stop searching: */
f492e12e 6675 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6676 sd, CPU_NEWLY_IDLE,
6677 &continue_balancing);
9bd721c5
JL
6678
6679 domain_cost = sched_clock_cpu(this_cpu) - t0;
6680 if (domain_cost > sd->max_newidle_lb_cost)
6681 sd->max_newidle_lb_cost = domain_cost;
6682
6683 curr_cost += domain_cost;
f492e12e 6684 }
1e3c88bd
PZ
6685
6686 interval = msecs_to_jiffies(sd->balance_interval);
6687 if (time_after(next_balance, sd->last_balance + interval))
6688 next_balance = sd->last_balance + interval;
3c4017c1 6689 if (pulled_task)
1e3c88bd 6690 break;
1e3c88bd 6691 }
dce840a0 6692 rcu_read_unlock();
f492e12e
PZ
6693
6694 raw_spin_lock(&this_rq->lock);
6695
e5fc6611
DL
6696 /*
6697 * While browsing the domains, we released the rq lock.
6698 * A task could have be enqueued in the meantime
6699 */
6e83125c
PZ
6700 if (this_rq->nr_running && !pulled_task) {
6701 pulled_task = 1;
6702 goto out;
6703 }
e5fc6611 6704
1e3c88bd
PZ
6705 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6706 /*
6707 * We are going idle. next_balance may be set based on
6708 * a busy processor. So reset next_balance.
6709 */
6710 this_rq->next_balance = next_balance;
6711 }
9bd721c5
JL
6712
6713 if (curr_cost > this_rq->max_idle_balance_cost)
6714 this_rq->max_idle_balance_cost = curr_cost;
3c4017c1 6715
6e83125c
PZ
6716out:
6717 if (pulled_task)
6718 this_rq->idle_stamp = 0;
6719
3c4017c1 6720 return pulled_task;
1e3c88bd
PZ
6721}
6722
6723/*
969c7921
TH
6724 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6725 * running tasks off the busiest CPU onto idle CPUs. It requires at
6726 * least 1 task to be running on each physical CPU where possible, and
6727 * avoids physical / logical imbalances.
1e3c88bd 6728 */
969c7921 6729static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6730{
969c7921
TH
6731 struct rq *busiest_rq = data;
6732 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6733 int target_cpu = busiest_rq->push_cpu;
969c7921 6734 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6735 struct sched_domain *sd;
969c7921
TH
6736
6737 raw_spin_lock_irq(&busiest_rq->lock);
6738
6739 /* make sure the requested cpu hasn't gone down in the meantime */
6740 if (unlikely(busiest_cpu != smp_processor_id() ||
6741 !busiest_rq->active_balance))
6742 goto out_unlock;
1e3c88bd
PZ
6743
6744 /* Is there any task to move? */
6745 if (busiest_rq->nr_running <= 1)
969c7921 6746 goto out_unlock;
1e3c88bd
PZ
6747
6748 /*
6749 * This condition is "impossible", if it occurs
6750 * we need to fix it. Originally reported by
6751 * Bjorn Helgaas on a 128-cpu setup.
6752 */
6753 BUG_ON(busiest_rq == target_rq);
6754
6755 /* move a task from busiest_rq to target_rq */
6756 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6757
6758 /* Search for an sd spanning us and the target CPU. */
dce840a0 6759 rcu_read_lock();
1e3c88bd
PZ
6760 for_each_domain(target_cpu, sd) {
6761 if ((sd->flags & SD_LOAD_BALANCE) &&
6762 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6763 break;
6764 }
6765
6766 if (likely(sd)) {
8e45cb54
PZ
6767 struct lb_env env = {
6768 .sd = sd,
ddcdf6e7
PZ
6769 .dst_cpu = target_cpu,
6770 .dst_rq = target_rq,
6771 .src_cpu = busiest_rq->cpu,
6772 .src_rq = busiest_rq,
8e45cb54
PZ
6773 .idle = CPU_IDLE,
6774 };
6775
1e3c88bd
PZ
6776 schedstat_inc(sd, alb_count);
6777
8e45cb54 6778 if (move_one_task(&env))
1e3c88bd
PZ
6779 schedstat_inc(sd, alb_pushed);
6780 else
6781 schedstat_inc(sd, alb_failed);
6782 }
dce840a0 6783 rcu_read_unlock();
1e3c88bd 6784 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6785out_unlock:
6786 busiest_rq->active_balance = 0;
6787 raw_spin_unlock_irq(&busiest_rq->lock);
6788 return 0;
1e3c88bd
PZ
6789}
6790
3451d024 6791#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6792/*
6793 * idle load balancing details
83cd4fe2
VP
6794 * - When one of the busy CPUs notice that there may be an idle rebalancing
6795 * needed, they will kick the idle load balancer, which then does idle
6796 * load balancing for all the idle CPUs.
6797 */
1e3c88bd 6798static struct {
83cd4fe2 6799 cpumask_var_t idle_cpus_mask;
0b005cf5 6800 atomic_t nr_cpus;
83cd4fe2
VP
6801 unsigned long next_balance; /* in jiffy units */
6802} nohz ____cacheline_aligned;
1e3c88bd 6803
3dd0337d 6804static inline int find_new_ilb(void)
1e3c88bd 6805{
0b005cf5 6806 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6807
786d6dc7
SS
6808 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6809 return ilb;
6810
6811 return nr_cpu_ids;
1e3c88bd 6812}
1e3c88bd 6813
83cd4fe2
VP
6814/*
6815 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6816 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6817 * CPU (if there is one).
6818 */
0aeeeeba 6819static void nohz_balancer_kick(void)
83cd4fe2
VP
6820{
6821 int ilb_cpu;
6822
6823 nohz.next_balance++;
6824
3dd0337d 6825 ilb_cpu = find_new_ilb();
83cd4fe2 6826
0b005cf5
SS
6827 if (ilb_cpu >= nr_cpu_ids)
6828 return;
83cd4fe2 6829
cd490c5b 6830 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6831 return;
6832 /*
6833 * Use smp_send_reschedule() instead of resched_cpu().
6834 * This way we generate a sched IPI on the target cpu which
6835 * is idle. And the softirq performing nohz idle load balance
6836 * will be run before returning from the IPI.
6837 */
6838 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6839 return;
6840}
6841
c1cc017c 6842static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6843{
6844 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6845 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6846 atomic_dec(&nohz.nr_cpus);
6847 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6848 }
6849}
6850
69e1e811
SS
6851static inline void set_cpu_sd_state_busy(void)
6852{
6853 struct sched_domain *sd;
37dc6b50 6854 int cpu = smp_processor_id();
69e1e811 6855
69e1e811 6856 rcu_read_lock();
37dc6b50 6857 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6858
6859 if (!sd || !sd->nohz_idle)
6860 goto unlock;
6861 sd->nohz_idle = 0;
6862
37dc6b50 6863 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6864unlock:
69e1e811
SS
6865 rcu_read_unlock();
6866}
6867
6868void set_cpu_sd_state_idle(void)
6869{
6870 struct sched_domain *sd;
37dc6b50 6871 int cpu = smp_processor_id();
69e1e811 6872
69e1e811 6873 rcu_read_lock();
37dc6b50 6874 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6875
6876 if (!sd || sd->nohz_idle)
6877 goto unlock;
6878 sd->nohz_idle = 1;
6879
37dc6b50 6880 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6881unlock:
69e1e811
SS
6882 rcu_read_unlock();
6883}
6884
1e3c88bd 6885/*
c1cc017c 6886 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6887 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6888 */
c1cc017c 6889void nohz_balance_enter_idle(int cpu)
1e3c88bd 6890{
71325960
SS
6891 /*
6892 * If this cpu is going down, then nothing needs to be done.
6893 */
6894 if (!cpu_active(cpu))
6895 return;
6896
c1cc017c
AS
6897 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6898 return;
1e3c88bd 6899
c1cc017c
AS
6900 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6901 atomic_inc(&nohz.nr_cpus);
6902 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6903}
71325960 6904
0db0628d 6905static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6906 unsigned long action, void *hcpu)
6907{
6908 switch (action & ~CPU_TASKS_FROZEN) {
6909 case CPU_DYING:
c1cc017c 6910 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6911 return NOTIFY_OK;
6912 default:
6913 return NOTIFY_DONE;
6914 }
6915}
1e3c88bd
PZ
6916#endif
6917
6918static DEFINE_SPINLOCK(balancing);
6919
49c022e6
PZ
6920/*
6921 * Scale the max load_balance interval with the number of CPUs in the system.
6922 * This trades load-balance latency on larger machines for less cross talk.
6923 */
029632fb 6924void update_max_interval(void)
49c022e6
PZ
6925{
6926 max_load_balance_interval = HZ*num_online_cpus()/10;
6927}
6928
1e3c88bd
PZ
6929/*
6930 * It checks each scheduling domain to see if it is due to be balanced,
6931 * and initiates a balancing operation if so.
6932 *
b9b0853a 6933 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6934 */
f7ed0a89 6935static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6936{
23f0d209 6937 int continue_balancing = 1;
f7ed0a89 6938 int cpu = rq->cpu;
1e3c88bd 6939 unsigned long interval;
04f733b4 6940 struct sched_domain *sd;
1e3c88bd
PZ
6941 /* Earliest time when we have to do rebalance again */
6942 unsigned long next_balance = jiffies + 60*HZ;
6943 int update_next_balance = 0;
f48627e6
JL
6944 int need_serialize, need_decay = 0;
6945 u64 max_cost = 0;
1e3c88bd 6946
48a16753 6947 update_blocked_averages(cpu);
2069dd75 6948
dce840a0 6949 rcu_read_lock();
1e3c88bd 6950 for_each_domain(cpu, sd) {
f48627e6
JL
6951 /*
6952 * Decay the newidle max times here because this is a regular
6953 * visit to all the domains. Decay ~1% per second.
6954 */
6955 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6956 sd->max_newidle_lb_cost =
6957 (sd->max_newidle_lb_cost * 253) / 256;
6958 sd->next_decay_max_lb_cost = jiffies + HZ;
6959 need_decay = 1;
6960 }
6961 max_cost += sd->max_newidle_lb_cost;
6962
1e3c88bd
PZ
6963 if (!(sd->flags & SD_LOAD_BALANCE))
6964 continue;
6965
f48627e6
JL
6966 /*
6967 * Stop the load balance at this level. There is another
6968 * CPU in our sched group which is doing load balancing more
6969 * actively.
6970 */
6971 if (!continue_balancing) {
6972 if (need_decay)
6973 continue;
6974 break;
6975 }
6976
1e3c88bd
PZ
6977 interval = sd->balance_interval;
6978 if (idle != CPU_IDLE)
6979 interval *= sd->busy_factor;
6980
6981 /* scale ms to jiffies */
6982 interval = msecs_to_jiffies(interval);
49c022e6 6983 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6984
6985 need_serialize = sd->flags & SD_SERIALIZE;
6986
6987 if (need_serialize) {
6988 if (!spin_trylock(&balancing))
6989 goto out;
6990 }
6991
6992 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6993 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6994 /*
6263322c 6995 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6996 * env->dst_cpu, so we can't know our idle
6997 * state even if we migrated tasks. Update it.
1e3c88bd 6998 */
de5eb2dd 6999 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7000 }
7001 sd->last_balance = jiffies;
7002 }
7003 if (need_serialize)
7004 spin_unlock(&balancing);
7005out:
7006 if (time_after(next_balance, sd->last_balance + interval)) {
7007 next_balance = sd->last_balance + interval;
7008 update_next_balance = 1;
7009 }
f48627e6
JL
7010 }
7011 if (need_decay) {
1e3c88bd 7012 /*
f48627e6
JL
7013 * Ensure the rq-wide value also decays but keep it at a
7014 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7015 */
f48627e6
JL
7016 rq->max_idle_balance_cost =
7017 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7018 }
dce840a0 7019 rcu_read_unlock();
1e3c88bd
PZ
7020
7021 /*
7022 * next_balance will be updated only when there is a need.
7023 * When the cpu is attached to null domain for ex, it will not be
7024 * updated.
7025 */
7026 if (likely(update_next_balance))
7027 rq->next_balance = next_balance;
7028}
7029
3451d024 7030#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7031/*
3451d024 7032 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7033 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7034 */
208cb16b 7035static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7036{
208cb16b 7037 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7038 struct rq *rq;
7039 int balance_cpu;
7040
1c792db7
SS
7041 if (idle != CPU_IDLE ||
7042 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7043 goto end;
83cd4fe2
VP
7044
7045 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7046 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7047 continue;
7048
7049 /*
7050 * If this cpu gets work to do, stop the load balancing
7051 * work being done for other cpus. Next load
7052 * balancing owner will pick it up.
7053 */
1c792db7 7054 if (need_resched())
83cd4fe2 7055 break;
83cd4fe2 7056
5ed4f1d9
VG
7057 rq = cpu_rq(balance_cpu);
7058
7059 raw_spin_lock_irq(&rq->lock);
7060 update_rq_clock(rq);
7061 update_idle_cpu_load(rq);
7062 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7063
f7ed0a89 7064 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7065
83cd4fe2
VP
7066 if (time_after(this_rq->next_balance, rq->next_balance))
7067 this_rq->next_balance = rq->next_balance;
7068 }
7069 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7070end:
7071 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7072}
7073
7074/*
0b005cf5
SS
7075 * Current heuristic for kicking the idle load balancer in the presence
7076 * of an idle cpu is the system.
7077 * - This rq has more than one task.
7078 * - At any scheduler domain level, this cpu's scheduler group has multiple
7079 * busy cpu's exceeding the group's power.
7080 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7081 * domain span are idle.
83cd4fe2 7082 */
4a725627 7083static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7084{
7085 unsigned long now = jiffies;
0b005cf5 7086 struct sched_domain *sd;
37dc6b50 7087 struct sched_group_power *sgp;
4a725627 7088 int nr_busy, cpu = rq->cpu;
83cd4fe2 7089
4a725627 7090 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7091 return 0;
7092
1c792db7
SS
7093 /*
7094 * We may be recently in ticked or tickless idle mode. At the first
7095 * busy tick after returning from idle, we will update the busy stats.
7096 */
69e1e811 7097 set_cpu_sd_state_busy();
c1cc017c 7098 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7099
7100 /*
7101 * None are in tickless mode and hence no need for NOHZ idle load
7102 * balancing.
7103 */
7104 if (likely(!atomic_read(&nohz.nr_cpus)))
7105 return 0;
1c792db7
SS
7106
7107 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7108 return 0;
7109
0b005cf5
SS
7110 if (rq->nr_running >= 2)
7111 goto need_kick;
83cd4fe2 7112
067491b7 7113 rcu_read_lock();
37dc6b50 7114 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7115
37dc6b50
PM
7116 if (sd) {
7117 sgp = sd->groups->sgp;
7118 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7119
37dc6b50 7120 if (nr_busy > 1)
067491b7 7121 goto need_kick_unlock;
83cd4fe2 7122 }
37dc6b50
PM
7123
7124 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7125
7126 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7127 sched_domain_span(sd)) < cpu))
7128 goto need_kick_unlock;
7129
067491b7 7130 rcu_read_unlock();
83cd4fe2 7131 return 0;
067491b7
PZ
7132
7133need_kick_unlock:
7134 rcu_read_unlock();
0b005cf5
SS
7135need_kick:
7136 return 1;
83cd4fe2
VP
7137}
7138#else
208cb16b 7139static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7140#endif
7141
7142/*
7143 * run_rebalance_domains is triggered when needed from the scheduler tick.
7144 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7145 */
1e3c88bd
PZ
7146static void run_rebalance_domains(struct softirq_action *h)
7147{
208cb16b 7148 struct rq *this_rq = this_rq();
6eb57e0d 7149 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7150 CPU_IDLE : CPU_NOT_IDLE;
7151
f7ed0a89 7152 rebalance_domains(this_rq, idle);
1e3c88bd 7153
1e3c88bd 7154 /*
83cd4fe2 7155 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7156 * balancing on behalf of the other idle cpus whose ticks are
7157 * stopped.
7158 */
208cb16b 7159 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7160}
7161
63f609b1 7162static inline int on_null_domain(struct rq *rq)
1e3c88bd 7163{
63f609b1 7164 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
7165}
7166
7167/*
7168 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7169 */
7caff66f 7170void trigger_load_balance(struct rq *rq)
1e3c88bd 7171{
1e3c88bd 7172 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7173 if (unlikely(on_null_domain(rq)))
7174 return;
7175
7176 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7177 raise_softirq(SCHED_SOFTIRQ);
3451d024 7178#ifdef CONFIG_NO_HZ_COMMON
c726099e 7179 if (nohz_kick_needed(rq))
0aeeeeba 7180 nohz_balancer_kick();
83cd4fe2 7181#endif
1e3c88bd
PZ
7182}
7183
0bcdcf28
CE
7184static void rq_online_fair(struct rq *rq)
7185{
7186 update_sysctl();
7187}
7188
7189static void rq_offline_fair(struct rq *rq)
7190{
7191 update_sysctl();
a4c96ae3
PB
7192
7193 /* Ensure any throttled groups are reachable by pick_next_task */
7194 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7195}
7196
55e12e5e 7197#endif /* CONFIG_SMP */
e1d1484f 7198
bf0f6f24
IM
7199/*
7200 * scheduler tick hitting a task of our scheduling class:
7201 */
8f4d37ec 7202static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7203{
7204 struct cfs_rq *cfs_rq;
7205 struct sched_entity *se = &curr->se;
7206
7207 for_each_sched_entity(se) {
7208 cfs_rq = cfs_rq_of(se);
8f4d37ec 7209 entity_tick(cfs_rq, se, queued);
bf0f6f24 7210 }
18bf2805 7211
10e84b97 7212 if (numabalancing_enabled)
cbee9f88 7213 task_tick_numa(rq, curr);
3d59eebc 7214
18bf2805 7215 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7216}
7217
7218/*
cd29fe6f
PZ
7219 * called on fork with the child task as argument from the parent's context
7220 * - child not yet on the tasklist
7221 * - preemption disabled
bf0f6f24 7222 */
cd29fe6f 7223static void task_fork_fair(struct task_struct *p)
bf0f6f24 7224{
4fc420c9
DN
7225 struct cfs_rq *cfs_rq;
7226 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7227 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7228 struct rq *rq = this_rq();
7229 unsigned long flags;
7230
05fa785c 7231 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7232
861d034e
PZ
7233 update_rq_clock(rq);
7234
4fc420c9
DN
7235 cfs_rq = task_cfs_rq(current);
7236 curr = cfs_rq->curr;
7237
6c9a27f5
DN
7238 /*
7239 * Not only the cpu but also the task_group of the parent might have
7240 * been changed after parent->se.parent,cfs_rq were copied to
7241 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7242 * of child point to valid ones.
7243 */
7244 rcu_read_lock();
7245 __set_task_cpu(p, this_cpu);
7246 rcu_read_unlock();
bf0f6f24 7247
7109c442 7248 update_curr(cfs_rq);
cd29fe6f 7249
b5d9d734
MG
7250 if (curr)
7251 se->vruntime = curr->vruntime;
aeb73b04 7252 place_entity(cfs_rq, se, 1);
4d78e7b6 7253
cd29fe6f 7254 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7255 /*
edcb60a3
IM
7256 * Upon rescheduling, sched_class::put_prev_task() will place
7257 * 'current' within the tree based on its new key value.
7258 */
4d78e7b6 7259 swap(curr->vruntime, se->vruntime);
aec0a514 7260 resched_task(rq->curr);
4d78e7b6 7261 }
bf0f6f24 7262
88ec22d3
PZ
7263 se->vruntime -= cfs_rq->min_vruntime;
7264
05fa785c 7265 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7266}
7267
cb469845
SR
7268/*
7269 * Priority of the task has changed. Check to see if we preempt
7270 * the current task.
7271 */
da7a735e
PZ
7272static void
7273prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7274{
da7a735e
PZ
7275 if (!p->se.on_rq)
7276 return;
7277
cb469845
SR
7278 /*
7279 * Reschedule if we are currently running on this runqueue and
7280 * our priority decreased, or if we are not currently running on
7281 * this runqueue and our priority is higher than the current's
7282 */
da7a735e 7283 if (rq->curr == p) {
cb469845
SR
7284 if (p->prio > oldprio)
7285 resched_task(rq->curr);
7286 } else
15afe09b 7287 check_preempt_curr(rq, p, 0);
cb469845
SR
7288}
7289
da7a735e
PZ
7290static void switched_from_fair(struct rq *rq, struct task_struct *p)
7291{
7292 struct sched_entity *se = &p->se;
7293 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7294
7295 /*
7296 * Ensure the task's vruntime is normalized, so that when its
7297 * switched back to the fair class the enqueue_entity(.flags=0) will
7298 * do the right thing.
7299 *
7300 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7301 * have normalized the vruntime, if it was !on_rq, then only when
7302 * the task is sleeping will it still have non-normalized vruntime.
7303 */
7304 if (!se->on_rq && p->state != TASK_RUNNING) {
7305 /*
7306 * Fix up our vruntime so that the current sleep doesn't
7307 * cause 'unlimited' sleep bonus.
7308 */
7309 place_entity(cfs_rq, se, 0);
7310 se->vruntime -= cfs_rq->min_vruntime;
7311 }
9ee474f5 7312
141965c7 7313#ifdef CONFIG_SMP
9ee474f5
PT
7314 /*
7315 * Remove our load from contribution when we leave sched_fair
7316 * and ensure we don't carry in an old decay_count if we
7317 * switch back.
7318 */
87e3c8ae
KT
7319 if (se->avg.decay_count) {
7320 __synchronize_entity_decay(se);
7321 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7322 }
7323#endif
da7a735e
PZ
7324}
7325
cb469845
SR
7326/*
7327 * We switched to the sched_fair class.
7328 */
da7a735e 7329static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7330{
eb7a59b2
M
7331 struct sched_entity *se = &p->se;
7332#ifdef CONFIG_FAIR_GROUP_SCHED
7333 /*
7334 * Since the real-depth could have been changed (only FAIR
7335 * class maintain depth value), reset depth properly.
7336 */
7337 se->depth = se->parent ? se->parent->depth + 1 : 0;
7338#endif
7339 if (!se->on_rq)
da7a735e
PZ
7340 return;
7341
cb469845
SR
7342 /*
7343 * We were most likely switched from sched_rt, so
7344 * kick off the schedule if running, otherwise just see
7345 * if we can still preempt the current task.
7346 */
da7a735e 7347 if (rq->curr == p)
cb469845
SR
7348 resched_task(rq->curr);
7349 else
15afe09b 7350 check_preempt_curr(rq, p, 0);
cb469845
SR
7351}
7352
83b699ed
SV
7353/* Account for a task changing its policy or group.
7354 *
7355 * This routine is mostly called to set cfs_rq->curr field when a task
7356 * migrates between groups/classes.
7357 */
7358static void set_curr_task_fair(struct rq *rq)
7359{
7360 struct sched_entity *se = &rq->curr->se;
7361
ec12cb7f
PT
7362 for_each_sched_entity(se) {
7363 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7364
7365 set_next_entity(cfs_rq, se);
7366 /* ensure bandwidth has been allocated on our new cfs_rq */
7367 account_cfs_rq_runtime(cfs_rq, 0);
7368 }
83b699ed
SV
7369}
7370
029632fb
PZ
7371void init_cfs_rq(struct cfs_rq *cfs_rq)
7372{
7373 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7374 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7375#ifndef CONFIG_64BIT
7376 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7377#endif
141965c7 7378#ifdef CONFIG_SMP
9ee474f5 7379 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7380 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7381#endif
029632fb
PZ
7382}
7383
810b3817 7384#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7385static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7386{
fed14d45 7387 struct sched_entity *se = &p->se;
aff3e498 7388 struct cfs_rq *cfs_rq;
fed14d45 7389
b2b5ce02
PZ
7390 /*
7391 * If the task was not on the rq at the time of this cgroup movement
7392 * it must have been asleep, sleeping tasks keep their ->vruntime
7393 * absolute on their old rq until wakeup (needed for the fair sleeper
7394 * bonus in place_entity()).
7395 *
7396 * If it was on the rq, we've just 'preempted' it, which does convert
7397 * ->vruntime to a relative base.
7398 *
7399 * Make sure both cases convert their relative position when migrating
7400 * to another cgroup's rq. This does somewhat interfere with the
7401 * fair sleeper stuff for the first placement, but who cares.
7402 */
7ceff013
DN
7403 /*
7404 * When !on_rq, vruntime of the task has usually NOT been normalized.
7405 * But there are some cases where it has already been normalized:
7406 *
7407 * - Moving a forked child which is waiting for being woken up by
7408 * wake_up_new_task().
62af3783
DN
7409 * - Moving a task which has been woken up by try_to_wake_up() and
7410 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7411 *
7412 * To prevent boost or penalty in the new cfs_rq caused by delta
7413 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7414 */
fed14d45 7415 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7416 on_rq = 1;
7417
b2b5ce02 7418 if (!on_rq)
fed14d45 7419 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7420 set_task_rq(p, task_cpu(p));
fed14d45 7421 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7422 if (!on_rq) {
fed14d45
PZ
7423 cfs_rq = cfs_rq_of(se);
7424 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7425#ifdef CONFIG_SMP
7426 /*
7427 * migrate_task_rq_fair() will have removed our previous
7428 * contribution, but we must synchronize for ongoing future
7429 * decay.
7430 */
fed14d45
PZ
7431 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7432 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7433#endif
7434 }
810b3817 7435}
029632fb
PZ
7436
7437void free_fair_sched_group(struct task_group *tg)
7438{
7439 int i;
7440
7441 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7442
7443 for_each_possible_cpu(i) {
7444 if (tg->cfs_rq)
7445 kfree(tg->cfs_rq[i]);
7446 if (tg->se)
7447 kfree(tg->se[i]);
7448 }
7449
7450 kfree(tg->cfs_rq);
7451 kfree(tg->se);
7452}
7453
7454int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7455{
7456 struct cfs_rq *cfs_rq;
7457 struct sched_entity *se;
7458 int i;
7459
7460 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7461 if (!tg->cfs_rq)
7462 goto err;
7463 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7464 if (!tg->se)
7465 goto err;
7466
7467 tg->shares = NICE_0_LOAD;
7468
7469 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7470
7471 for_each_possible_cpu(i) {
7472 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7473 GFP_KERNEL, cpu_to_node(i));
7474 if (!cfs_rq)
7475 goto err;
7476
7477 se = kzalloc_node(sizeof(struct sched_entity),
7478 GFP_KERNEL, cpu_to_node(i));
7479 if (!se)
7480 goto err_free_rq;
7481
7482 init_cfs_rq(cfs_rq);
7483 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7484 }
7485
7486 return 1;
7487
7488err_free_rq:
7489 kfree(cfs_rq);
7490err:
7491 return 0;
7492}
7493
7494void unregister_fair_sched_group(struct task_group *tg, int cpu)
7495{
7496 struct rq *rq = cpu_rq(cpu);
7497 unsigned long flags;
7498
7499 /*
7500 * Only empty task groups can be destroyed; so we can speculatively
7501 * check on_list without danger of it being re-added.
7502 */
7503 if (!tg->cfs_rq[cpu]->on_list)
7504 return;
7505
7506 raw_spin_lock_irqsave(&rq->lock, flags);
7507 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7508 raw_spin_unlock_irqrestore(&rq->lock, flags);
7509}
7510
7511void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7512 struct sched_entity *se, int cpu,
7513 struct sched_entity *parent)
7514{
7515 struct rq *rq = cpu_rq(cpu);
7516
7517 cfs_rq->tg = tg;
7518 cfs_rq->rq = rq;
029632fb
PZ
7519 init_cfs_rq_runtime(cfs_rq);
7520
7521 tg->cfs_rq[cpu] = cfs_rq;
7522 tg->se[cpu] = se;
7523
7524 /* se could be NULL for root_task_group */
7525 if (!se)
7526 return;
7527
fed14d45 7528 if (!parent) {
029632fb 7529 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7530 se->depth = 0;
7531 } else {
029632fb 7532 se->cfs_rq = parent->my_q;
fed14d45
PZ
7533 se->depth = parent->depth + 1;
7534 }
029632fb
PZ
7535
7536 se->my_q = cfs_rq;
0ac9b1c2
PT
7537 /* guarantee group entities always have weight */
7538 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7539 se->parent = parent;
7540}
7541
7542static DEFINE_MUTEX(shares_mutex);
7543
7544int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7545{
7546 int i;
7547 unsigned long flags;
7548
7549 /*
7550 * We can't change the weight of the root cgroup.
7551 */
7552 if (!tg->se[0])
7553 return -EINVAL;
7554
7555 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7556
7557 mutex_lock(&shares_mutex);
7558 if (tg->shares == shares)
7559 goto done;
7560
7561 tg->shares = shares;
7562 for_each_possible_cpu(i) {
7563 struct rq *rq = cpu_rq(i);
7564 struct sched_entity *se;
7565
7566 se = tg->se[i];
7567 /* Propagate contribution to hierarchy */
7568 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7569
7570 /* Possible calls to update_curr() need rq clock */
7571 update_rq_clock(rq);
17bc14b7 7572 for_each_sched_entity(se)
029632fb
PZ
7573 update_cfs_shares(group_cfs_rq(se));
7574 raw_spin_unlock_irqrestore(&rq->lock, flags);
7575 }
7576
7577done:
7578 mutex_unlock(&shares_mutex);
7579 return 0;
7580}
7581#else /* CONFIG_FAIR_GROUP_SCHED */
7582
7583void free_fair_sched_group(struct task_group *tg) { }
7584
7585int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7586{
7587 return 1;
7588}
7589
7590void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7591
7592#endif /* CONFIG_FAIR_GROUP_SCHED */
7593
810b3817 7594
6d686f45 7595static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7596{
7597 struct sched_entity *se = &task->se;
0d721cea
PW
7598 unsigned int rr_interval = 0;
7599
7600 /*
7601 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7602 * idle runqueue:
7603 */
0d721cea 7604 if (rq->cfs.load.weight)
a59f4e07 7605 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7606
7607 return rr_interval;
7608}
7609
bf0f6f24
IM
7610/*
7611 * All the scheduling class methods:
7612 */
029632fb 7613const struct sched_class fair_sched_class = {
5522d5d5 7614 .next = &idle_sched_class,
bf0f6f24
IM
7615 .enqueue_task = enqueue_task_fair,
7616 .dequeue_task = dequeue_task_fair,
7617 .yield_task = yield_task_fair,
d95f4122 7618 .yield_to_task = yield_to_task_fair,
bf0f6f24 7619
2e09bf55 7620 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7621
7622 .pick_next_task = pick_next_task_fair,
7623 .put_prev_task = put_prev_task_fair,
7624
681f3e68 7625#ifdef CONFIG_SMP
4ce72a2c 7626 .select_task_rq = select_task_rq_fair,
0a74bef8 7627 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7628
0bcdcf28
CE
7629 .rq_online = rq_online_fair,
7630 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7631
7632 .task_waking = task_waking_fair,
681f3e68 7633#endif
bf0f6f24 7634
83b699ed 7635 .set_curr_task = set_curr_task_fair,
bf0f6f24 7636 .task_tick = task_tick_fair,
cd29fe6f 7637 .task_fork = task_fork_fair,
cb469845
SR
7638
7639 .prio_changed = prio_changed_fair,
da7a735e 7640 .switched_from = switched_from_fair,
cb469845 7641 .switched_to = switched_to_fair,
810b3817 7642
0d721cea
PW
7643 .get_rr_interval = get_rr_interval_fair,
7644
810b3817 7645#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7646 .task_move_group = task_move_group_fair,
810b3817 7647#endif
bf0f6f24
IM
7648};
7649
7650#ifdef CONFIG_SCHED_DEBUG
029632fb 7651void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7652{
bf0f6f24
IM
7653 struct cfs_rq *cfs_rq;
7654
5973e5b9 7655 rcu_read_lock();
c3b64f1e 7656 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7657 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7658 rcu_read_unlock();
bf0f6f24
IM
7659}
7660#endif
029632fb
PZ
7661
7662__init void init_sched_fair_class(void)
7663{
7664#ifdef CONFIG_SMP
7665 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7666
3451d024 7667#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7668 nohz.next_balance = jiffies;
029632fb 7669 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7670 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7671#endif
7672#endif /* SMP */
7673
7674}
This page took 0.957676 seconds and 5 git commands to generate.