sched: Add wrapper for checking task_struct::on_rq
[deliverable/linux.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
f4ebcbc0
KT
82 /* We start is dequeued state, because no RT tasks are queued */
83 rt_rq->rt_queued = 0;
029632fb
PZ
84
85 rt_rq->rt_time = 0;
86 rt_rq->rt_throttled = 0;
87 rt_rq->rt_runtime = 0;
88 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89}
90
8f48894f 91#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
92static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93{
94 hrtimer_cancel(&rt_b->rt_period_timer);
95}
8f48894f
PZ
96
97#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98
398a153b
GH
99static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100{
8f48894f
PZ
101#ifdef CONFIG_SCHED_DEBUG
102 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103#endif
398a153b
GH
104 return container_of(rt_se, struct task_struct, rt);
105}
106
398a153b
GH
107static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108{
109 return rt_rq->rq;
110}
111
112static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113{
114 return rt_se->rt_rq;
115}
116
653d07a6
KT
117static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118{
119 struct rt_rq *rt_rq = rt_se->rt_rq;
120
121 return rt_rq->rq;
122}
123
029632fb
PZ
124void free_rt_sched_group(struct task_group *tg)
125{
126 int i;
127
128 if (tg->rt_se)
129 destroy_rt_bandwidth(&tg->rt_bandwidth);
130
131 for_each_possible_cpu(i) {
132 if (tg->rt_rq)
133 kfree(tg->rt_rq[i]);
134 if (tg->rt_se)
135 kfree(tg->rt_se[i]);
136 }
137
138 kfree(tg->rt_rq);
139 kfree(tg->rt_se);
140}
141
142void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 struct sched_rt_entity *rt_se, int cpu,
144 struct sched_rt_entity *parent)
145{
146 struct rq *rq = cpu_rq(cpu);
147
148 rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 rt_rq->rt_nr_boosted = 0;
150 rt_rq->rq = rq;
151 rt_rq->tg = tg;
152
153 tg->rt_rq[cpu] = rt_rq;
154 tg->rt_se[cpu] = rt_se;
155
156 if (!rt_se)
157 return;
158
159 if (!parent)
160 rt_se->rt_rq = &rq->rt;
161 else
162 rt_se->rt_rq = parent->my_q;
163
164 rt_se->my_q = rt_rq;
165 rt_se->parent = parent;
166 INIT_LIST_HEAD(&rt_se->run_list);
167}
168
169int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170{
171 struct rt_rq *rt_rq;
172 struct sched_rt_entity *rt_se;
173 int i;
174
175 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 if (!tg->rt_rq)
177 goto err;
178 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 if (!tg->rt_se)
180 goto err;
181
182 init_rt_bandwidth(&tg->rt_bandwidth,
183 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184
185 for_each_possible_cpu(i) {
186 rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 GFP_KERNEL, cpu_to_node(i));
188 if (!rt_rq)
189 goto err;
190
191 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 GFP_KERNEL, cpu_to_node(i));
193 if (!rt_se)
194 goto err_free_rq;
195
196 init_rt_rq(rt_rq, cpu_rq(i));
197 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 }
200
201 return 1;
202
203err_free_rq:
204 kfree(rt_rq);
205err:
206 return 0;
207}
208
398a153b
GH
209#else /* CONFIG_RT_GROUP_SCHED */
210
a1ba4d8b
PZ
211#define rt_entity_is_task(rt_se) (1)
212
8f48894f
PZ
213static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214{
215 return container_of(rt_se, struct task_struct, rt);
216}
217
398a153b
GH
218static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219{
220 return container_of(rt_rq, struct rq, rt);
221}
222
653d07a6 223static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
224{
225 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
226
227 return task_rq(p);
228}
229
230static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231{
232 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
233
234 return &rq->rt;
235}
236
029632fb
PZ
237void free_rt_sched_group(struct task_group *tg) { }
238
239int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240{
241 return 1;
242}
398a153b
GH
243#endif /* CONFIG_RT_GROUP_SCHED */
244
4fd29176 245#ifdef CONFIG_SMP
84de4274 246
38033c37
PZ
247static int pull_rt_task(struct rq *this_rq);
248
dc877341
PZ
249static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250{
251 /* Try to pull RT tasks here if we lower this rq's prio */
252 return rq->rt.highest_prio.curr > prev->prio;
253}
254
637f5085 255static inline int rt_overloaded(struct rq *rq)
4fd29176 256{
637f5085 257 return atomic_read(&rq->rd->rto_count);
4fd29176 258}
84de4274 259
4fd29176
SR
260static inline void rt_set_overload(struct rq *rq)
261{
1f11eb6a
GH
262 if (!rq->online)
263 return;
264
c6c4927b 265 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
266 /*
267 * Make sure the mask is visible before we set
268 * the overload count. That is checked to determine
269 * if we should look at the mask. It would be a shame
270 * if we looked at the mask, but the mask was not
271 * updated yet.
7c3f2ab7
PZ
272 *
273 * Matched by the barrier in pull_rt_task().
4fd29176 274 */
7c3f2ab7 275 smp_wmb();
637f5085 276 atomic_inc(&rq->rd->rto_count);
4fd29176 277}
84de4274 278
4fd29176
SR
279static inline void rt_clear_overload(struct rq *rq)
280{
1f11eb6a
GH
281 if (!rq->online)
282 return;
283
4fd29176 284 /* the order here really doesn't matter */
637f5085 285 atomic_dec(&rq->rd->rto_count);
c6c4927b 286 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 287}
73fe6aae 288
398a153b 289static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 290{
a1ba4d8b 291 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
292 if (!rt_rq->overloaded) {
293 rt_set_overload(rq_of_rt_rq(rt_rq));
294 rt_rq->overloaded = 1;
cdc8eb98 295 }
398a153b
GH
296 } else if (rt_rq->overloaded) {
297 rt_clear_overload(rq_of_rt_rq(rt_rq));
298 rt_rq->overloaded = 0;
637f5085 299 }
73fe6aae 300}
4fd29176 301
398a153b
GH
302static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303{
29baa747
PZ
304 struct task_struct *p;
305
a1ba4d8b
PZ
306 if (!rt_entity_is_task(rt_se))
307 return;
308
29baa747 309 p = rt_task_of(rt_se);
a1ba4d8b
PZ
310 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311
312 rt_rq->rt_nr_total++;
29baa747 313 if (p->nr_cpus_allowed > 1)
398a153b
GH
314 rt_rq->rt_nr_migratory++;
315
316 update_rt_migration(rt_rq);
317}
318
319static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320{
29baa747
PZ
321 struct task_struct *p;
322
a1ba4d8b
PZ
323 if (!rt_entity_is_task(rt_se))
324 return;
325
29baa747 326 p = rt_task_of(rt_se);
a1ba4d8b
PZ
327 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328
329 rt_rq->rt_nr_total--;
29baa747 330 if (p->nr_cpus_allowed > 1)
398a153b
GH
331 rt_rq->rt_nr_migratory--;
332
333 update_rt_migration(rt_rq);
334}
335
5181f4a4
SR
336static inline int has_pushable_tasks(struct rq *rq)
337{
338 return !plist_head_empty(&rq->rt.pushable_tasks);
339}
340
dc877341
PZ
341static inline void set_post_schedule(struct rq *rq)
342{
343 /*
344 * We detect this state here so that we can avoid taking the RQ
345 * lock again later if there is no need to push
346 */
347 rq->post_schedule = has_pushable_tasks(rq);
348}
349
917b627d
GH
350static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351{
352 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 plist_node_init(&p->pushable_tasks, p->prio);
354 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
355
356 /* Update the highest prio pushable task */
357 if (p->prio < rq->rt.highest_prio.next)
358 rq->rt.highest_prio.next = p->prio;
917b627d
GH
359}
360
361static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362{
363 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 364
5181f4a4
SR
365 /* Update the new highest prio pushable task */
366 if (has_pushable_tasks(rq)) {
367 p = plist_first_entry(&rq->rt.pushable_tasks,
368 struct task_struct, pushable_tasks);
369 rq->rt.highest_prio.next = p->prio;
370 } else
371 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
372}
373
917b627d
GH
374#else
375
ceacc2c1 376static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 377{
6f505b16
PZ
378}
379
ceacc2c1
PZ
380static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381{
382}
383
b07430ac 384static inline
ceacc2c1
PZ
385void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386{
387}
388
398a153b 389static inline
ceacc2c1
PZ
390void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391{
392}
917b627d 393
dc877341
PZ
394static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395{
396 return false;
397}
398
399static inline int pull_rt_task(struct rq *this_rq)
400{
401 return 0;
402}
403
404static inline void set_post_schedule(struct rq *rq)
405{
406}
4fd29176
SR
407#endif /* CONFIG_SMP */
408
f4ebcbc0
KT
409static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411
6f505b16
PZ
412static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413{
414 return !list_empty(&rt_se->run_list);
415}
416
052f1dc7 417#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 418
9f0c1e56 419static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
420{
421 if (!rt_rq->tg)
9f0c1e56 422 return RUNTIME_INF;
6f505b16 423
ac086bc2
PZ
424 return rt_rq->rt_runtime;
425}
426
427static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428{
429 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
430}
431
ec514c48
CX
432typedef struct task_group *rt_rq_iter_t;
433
1c09ab0d
YZ
434static inline struct task_group *next_task_group(struct task_group *tg)
435{
436 do {
437 tg = list_entry_rcu(tg->list.next,
438 typeof(struct task_group), list);
439 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440
441 if (&tg->list == &task_groups)
442 tg = NULL;
443
444 return tg;
445}
446
447#define for_each_rt_rq(rt_rq, iter, rq) \
448 for (iter = container_of(&task_groups, typeof(*iter), list); \
449 (iter = next_task_group(iter)) && \
450 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 451
6f505b16
PZ
452#define for_each_sched_rt_entity(rt_se) \
453 for (; rt_se; rt_se = rt_se->parent)
454
455static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456{
457 return rt_se->my_q;
458}
459
37dad3fc 460static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
461static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462
9f0c1e56 463static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 464{
f6121f4f 465 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 466 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
467 struct sched_rt_entity *rt_se;
468
8875125e 469 int cpu = cpu_of(rq);
0c3b9168
BS
470
471 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 472
f6121f4f 473 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
474 if (!rt_se)
475 enqueue_top_rt_rq(rt_rq);
476 else if (!on_rt_rq(rt_se))
37dad3fc 477 enqueue_rt_entity(rt_se, false);
f4ebcbc0 478
e864c499 479 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 480 resched_curr(rq);
6f505b16
PZ
481 }
482}
483
9f0c1e56 484static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 485{
74b7eb58 486 struct sched_rt_entity *rt_se;
0c3b9168 487 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 488
0c3b9168 489 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 490
f4ebcbc0
KT
491 if (!rt_se)
492 dequeue_top_rt_rq(rt_rq);
493 else if (on_rt_rq(rt_se))
6f505b16
PZ
494 dequeue_rt_entity(rt_se);
495}
496
46383648
KT
497static inline int rt_rq_throttled(struct rt_rq *rt_rq)
498{
499 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
500}
501
23b0fdfc
PZ
502static int rt_se_boosted(struct sched_rt_entity *rt_se)
503{
504 struct rt_rq *rt_rq = group_rt_rq(rt_se);
505 struct task_struct *p;
506
507 if (rt_rq)
508 return !!rt_rq->rt_nr_boosted;
509
510 p = rt_task_of(rt_se);
511 return p->prio != p->normal_prio;
512}
513
d0b27fa7 514#ifdef CONFIG_SMP
c6c4927b 515static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 516{
424c93fe 517 return this_rq()->rd->span;
d0b27fa7 518}
6f505b16 519#else
c6c4927b 520static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 521{
c6c4927b 522 return cpu_online_mask;
d0b27fa7
PZ
523}
524#endif
6f505b16 525
d0b27fa7
PZ
526static inline
527struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 528{
d0b27fa7
PZ
529 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
530}
9f0c1e56 531
ac086bc2
PZ
532static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533{
534 return &rt_rq->tg->rt_bandwidth;
535}
536
55e12e5e 537#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
538
539static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
540{
ac086bc2
PZ
541 return rt_rq->rt_runtime;
542}
543
544static inline u64 sched_rt_period(struct rt_rq *rt_rq)
545{
546 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
547}
548
ec514c48
CX
549typedef struct rt_rq *rt_rq_iter_t;
550
551#define for_each_rt_rq(rt_rq, iter, rq) \
552 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
553
6f505b16
PZ
554#define for_each_sched_rt_entity(rt_se) \
555 for (; rt_se; rt_se = NULL)
556
557static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
558{
559 return NULL;
560}
561
9f0c1e56 562static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 563{
f4ebcbc0
KT
564 struct rq *rq = rq_of_rt_rq(rt_rq);
565
566 if (!rt_rq->rt_nr_running)
567 return;
568
569 enqueue_top_rt_rq(rt_rq);
8875125e 570 resched_curr(rq);
6f505b16
PZ
571}
572
9f0c1e56 573static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 574{
f4ebcbc0 575 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
576}
577
46383648
KT
578static inline int rt_rq_throttled(struct rt_rq *rt_rq)
579{
580 return rt_rq->rt_throttled;
581}
582
c6c4927b 583static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 584{
c6c4927b 585 return cpu_online_mask;
d0b27fa7
PZ
586}
587
588static inline
589struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
590{
591 return &cpu_rq(cpu)->rt;
592}
593
ac086bc2
PZ
594static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
595{
596 return &def_rt_bandwidth;
597}
598
55e12e5e 599#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 600
faa59937
JL
601bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
602{
603 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
604
605 return (hrtimer_active(&rt_b->rt_period_timer) ||
606 rt_rq->rt_time < rt_b->rt_runtime);
607}
608
ac086bc2 609#ifdef CONFIG_SMP
78333cdd
PZ
610/*
611 * We ran out of runtime, see if we can borrow some from our neighbours.
612 */
b79f3833 613static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
614{
615 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 616 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
617 int i, weight, more = 0;
618 u64 rt_period;
619
c6c4927b 620 weight = cpumask_weight(rd->span);
ac086bc2 621
0986b11b 622 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 623 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 624 for_each_cpu(i, rd->span) {
ac086bc2
PZ
625 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
626 s64 diff;
627
628 if (iter == rt_rq)
629 continue;
630
0986b11b 631 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
632 /*
633 * Either all rqs have inf runtime and there's nothing to steal
634 * or __disable_runtime() below sets a specific rq to inf to
635 * indicate its been disabled and disalow stealing.
636 */
7def2be1
PZ
637 if (iter->rt_runtime == RUNTIME_INF)
638 goto next;
639
78333cdd
PZ
640 /*
641 * From runqueues with spare time, take 1/n part of their
642 * spare time, but no more than our period.
643 */
ac086bc2
PZ
644 diff = iter->rt_runtime - iter->rt_time;
645 if (diff > 0) {
58838cf3 646 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
647 if (rt_rq->rt_runtime + diff > rt_period)
648 diff = rt_period - rt_rq->rt_runtime;
649 iter->rt_runtime -= diff;
650 rt_rq->rt_runtime += diff;
651 more = 1;
652 if (rt_rq->rt_runtime == rt_period) {
0986b11b 653 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
654 break;
655 }
656 }
7def2be1 657next:
0986b11b 658 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 659 }
0986b11b 660 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
661
662 return more;
663}
7def2be1 664
78333cdd
PZ
665/*
666 * Ensure this RQ takes back all the runtime it lend to its neighbours.
667 */
7def2be1
PZ
668static void __disable_runtime(struct rq *rq)
669{
670 struct root_domain *rd = rq->rd;
ec514c48 671 rt_rq_iter_t iter;
7def2be1
PZ
672 struct rt_rq *rt_rq;
673
674 if (unlikely(!scheduler_running))
675 return;
676
ec514c48 677 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
678 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
679 s64 want;
680 int i;
681
0986b11b
TG
682 raw_spin_lock(&rt_b->rt_runtime_lock);
683 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
684 /*
685 * Either we're all inf and nobody needs to borrow, or we're
686 * already disabled and thus have nothing to do, or we have
687 * exactly the right amount of runtime to take out.
688 */
7def2be1
PZ
689 if (rt_rq->rt_runtime == RUNTIME_INF ||
690 rt_rq->rt_runtime == rt_b->rt_runtime)
691 goto balanced;
0986b11b 692 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 693
78333cdd
PZ
694 /*
695 * Calculate the difference between what we started out with
696 * and what we current have, that's the amount of runtime
697 * we lend and now have to reclaim.
698 */
7def2be1
PZ
699 want = rt_b->rt_runtime - rt_rq->rt_runtime;
700
78333cdd
PZ
701 /*
702 * Greedy reclaim, take back as much as we can.
703 */
c6c4927b 704 for_each_cpu(i, rd->span) {
7def2be1
PZ
705 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
706 s64 diff;
707
78333cdd
PZ
708 /*
709 * Can't reclaim from ourselves or disabled runqueues.
710 */
f1679d08 711 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
712 continue;
713
0986b11b 714 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
715 if (want > 0) {
716 diff = min_t(s64, iter->rt_runtime, want);
717 iter->rt_runtime -= diff;
718 want -= diff;
719 } else {
720 iter->rt_runtime -= want;
721 want -= want;
722 }
0986b11b 723 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
724
725 if (!want)
726 break;
727 }
728
0986b11b 729 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
730 /*
731 * We cannot be left wanting - that would mean some runtime
732 * leaked out of the system.
733 */
7def2be1
PZ
734 BUG_ON(want);
735balanced:
78333cdd
PZ
736 /*
737 * Disable all the borrow logic by pretending we have inf
738 * runtime - in which case borrowing doesn't make sense.
739 */
7def2be1 740 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 741 rt_rq->rt_throttled = 0;
0986b11b
TG
742 raw_spin_unlock(&rt_rq->rt_runtime_lock);
743 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
744
745 /* Make rt_rq available for pick_next_task() */
746 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
747 }
748}
749
7def2be1
PZ
750static void __enable_runtime(struct rq *rq)
751{
ec514c48 752 rt_rq_iter_t iter;
7def2be1
PZ
753 struct rt_rq *rt_rq;
754
755 if (unlikely(!scheduler_running))
756 return;
757
78333cdd
PZ
758 /*
759 * Reset each runqueue's bandwidth settings
760 */
ec514c48 761 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
762 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
763
0986b11b
TG
764 raw_spin_lock(&rt_b->rt_runtime_lock);
765 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
766 rt_rq->rt_runtime = rt_b->rt_runtime;
767 rt_rq->rt_time = 0;
baf25731 768 rt_rq->rt_throttled = 0;
0986b11b
TG
769 raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
771 }
772}
773
eff6549b
PZ
774static int balance_runtime(struct rt_rq *rt_rq)
775{
776 int more = 0;
777
4a6184ce
PZ
778 if (!sched_feat(RT_RUNTIME_SHARE))
779 return more;
780
eff6549b 781 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 783 more = do_balance_runtime(rt_rq);
0986b11b 784 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
785 }
786
787 return more;
788}
55e12e5e 789#else /* !CONFIG_SMP */
eff6549b
PZ
790static inline int balance_runtime(struct rt_rq *rt_rq)
791{
792 return 0;
793}
55e12e5e 794#endif /* CONFIG_SMP */
ac086bc2 795
eff6549b
PZ
796static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
797{
42c62a58 798 int i, idle = 1, throttled = 0;
c6c4927b 799 const struct cpumask *span;
eff6549b 800
eff6549b 801 span = sched_rt_period_mask();
e221d028
MG
802#ifdef CONFIG_RT_GROUP_SCHED
803 /*
804 * FIXME: isolated CPUs should really leave the root task group,
805 * whether they are isolcpus or were isolated via cpusets, lest
806 * the timer run on a CPU which does not service all runqueues,
807 * potentially leaving other CPUs indefinitely throttled. If
808 * isolation is really required, the user will turn the throttle
809 * off to kill the perturbations it causes anyway. Meanwhile,
810 * this maintains functionality for boot and/or troubleshooting.
811 */
812 if (rt_b == &root_task_group.rt_bandwidth)
813 span = cpu_online_mask;
814#endif
c6c4927b 815 for_each_cpu(i, span) {
eff6549b
PZ
816 int enqueue = 0;
817 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
818 struct rq *rq = rq_of_rt_rq(rt_rq);
819
05fa785c 820 raw_spin_lock(&rq->lock);
eff6549b
PZ
821 if (rt_rq->rt_time) {
822 u64 runtime;
823
0986b11b 824 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
825 if (rt_rq->rt_throttled)
826 balance_runtime(rt_rq);
827 runtime = rt_rq->rt_runtime;
828 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
829 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
830 rt_rq->rt_throttled = 0;
831 enqueue = 1;
61eadef6
MG
832
833 /*
834 * Force a clock update if the CPU was idle,
835 * lest wakeup -> unthrottle time accumulate.
836 */
837 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
838 rq->skip_clock_update = -1;
eff6549b
PZ
839 }
840 if (rt_rq->rt_time || rt_rq->rt_nr_running)
841 idle = 0;
0986b11b 842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 843 } else if (rt_rq->rt_nr_running) {
6c3df255 844 idle = 0;
0c3b9168
BS
845 if (!rt_rq_throttled(rt_rq))
846 enqueue = 1;
847 }
42c62a58
PZ
848 if (rt_rq->rt_throttled)
849 throttled = 1;
eff6549b
PZ
850
851 if (enqueue)
852 sched_rt_rq_enqueue(rt_rq);
05fa785c 853 raw_spin_unlock(&rq->lock);
eff6549b
PZ
854 }
855
42c62a58
PZ
856 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
857 return 1;
858
eff6549b
PZ
859 return idle;
860}
ac086bc2 861
6f505b16
PZ
862static inline int rt_se_prio(struct sched_rt_entity *rt_se)
863{
052f1dc7 864#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
865 struct rt_rq *rt_rq = group_rt_rq(rt_se);
866
867 if (rt_rq)
e864c499 868 return rt_rq->highest_prio.curr;
6f505b16
PZ
869#endif
870
871 return rt_task_of(rt_se)->prio;
872}
873
9f0c1e56 874static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 875{
9f0c1e56 876 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 877
fa85ae24 878 if (rt_rq->rt_throttled)
23b0fdfc 879 return rt_rq_throttled(rt_rq);
fa85ae24 880
5b680fd6 881 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
882 return 0;
883
b79f3833
PZ
884 balance_runtime(rt_rq);
885 runtime = sched_rt_runtime(rt_rq);
886 if (runtime == RUNTIME_INF)
887 return 0;
ac086bc2 888
9f0c1e56 889 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
890 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
891
892 /*
893 * Don't actually throttle groups that have no runtime assigned
894 * but accrue some time due to boosting.
895 */
896 if (likely(rt_b->rt_runtime)) {
897 rt_rq->rt_throttled = 1;
c224815d 898 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
899 } else {
900 /*
901 * In case we did anyway, make it go away,
902 * replenishment is a joke, since it will replenish us
903 * with exactly 0 ns.
904 */
905 rt_rq->rt_time = 0;
906 }
907
23b0fdfc 908 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 909 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
910 return 1;
911 }
fa85ae24
PZ
912 }
913
914 return 0;
915}
916
bb44e5d1
IM
917/*
918 * Update the current task's runtime statistics. Skip current tasks that
919 * are not in our scheduling class.
920 */
a9957449 921static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
922{
923 struct task_struct *curr = rq->curr;
6f505b16 924 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1
IM
925 u64 delta_exec;
926
06c3bc65 927 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
928 return;
929
78becc27 930 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
931 if (unlikely((s64)delta_exec <= 0))
932 return;
6cfb0d5d 933
42c62a58
PZ
934 schedstat_set(curr->se.statistics.exec_max,
935 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
936
937 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
938 account_group_exec_runtime(curr, delta_exec);
939
78becc27 940 curr->se.exec_start = rq_clock_task(rq);
d842de87 941 cpuacct_charge(curr, delta_exec);
fa85ae24 942
e9e9250b
PZ
943 sched_rt_avg_update(rq, delta_exec);
944
0b148fa0
PZ
945 if (!rt_bandwidth_enabled())
946 return;
947
354d60c2 948 for_each_sched_rt_entity(rt_se) {
0b07939c 949 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 950
cc2991cf 951 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 952 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
953 rt_rq->rt_time += delta_exec;
954 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 955 resched_curr(rq);
0986b11b 956 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 957 }
354d60c2 958 }
bb44e5d1
IM
959}
960
f4ebcbc0
KT
961static void
962dequeue_top_rt_rq(struct rt_rq *rt_rq)
963{
964 struct rq *rq = rq_of_rt_rq(rt_rq);
965
966 BUG_ON(&rq->rt != rt_rq);
967
968 if (!rt_rq->rt_queued)
969 return;
970
971 BUG_ON(!rq->nr_running);
972
72465447 973 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
974 rt_rq->rt_queued = 0;
975}
976
977static void
978enqueue_top_rt_rq(struct rt_rq *rt_rq)
979{
980 struct rq *rq = rq_of_rt_rq(rt_rq);
981
982 BUG_ON(&rq->rt != rt_rq);
983
984 if (rt_rq->rt_queued)
985 return;
986 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
987 return;
988
72465447 989 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
990 rt_rq->rt_queued = 1;
991}
992
398a153b 993#if defined CONFIG_SMP
e864c499 994
398a153b
GH
995static void
996inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 997{
4d984277 998 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 999
757dfcaa
KT
1000#ifdef CONFIG_RT_GROUP_SCHED
1001 /*
1002 * Change rq's cpupri only if rt_rq is the top queue.
1003 */
1004 if (&rq->rt != rt_rq)
1005 return;
1006#endif
5181f4a4
SR
1007 if (rq->online && prio < prev_prio)
1008 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1009}
73fe6aae 1010
398a153b
GH
1011static void
1012dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1013{
1014 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1015
757dfcaa
KT
1016#ifdef CONFIG_RT_GROUP_SCHED
1017 /*
1018 * Change rq's cpupri only if rt_rq is the top queue.
1019 */
1020 if (&rq->rt != rt_rq)
1021 return;
1022#endif
398a153b
GH
1023 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1024 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1025}
1026
398a153b
GH
1027#else /* CONFIG_SMP */
1028
6f505b16 1029static inline
398a153b
GH
1030void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1031static inline
1032void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1033
1034#endif /* CONFIG_SMP */
6e0534f2 1035
052f1dc7 1036#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1037static void
1038inc_rt_prio(struct rt_rq *rt_rq, int prio)
1039{
1040 int prev_prio = rt_rq->highest_prio.curr;
1041
1042 if (prio < prev_prio)
1043 rt_rq->highest_prio.curr = prio;
1044
1045 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1046}
1047
1048static void
1049dec_rt_prio(struct rt_rq *rt_rq, int prio)
1050{
1051 int prev_prio = rt_rq->highest_prio.curr;
1052
6f505b16 1053 if (rt_rq->rt_nr_running) {
764a9d6f 1054
398a153b 1055 WARN_ON(prio < prev_prio);
764a9d6f 1056
e864c499 1057 /*
398a153b
GH
1058 * This may have been our highest task, and therefore
1059 * we may have some recomputation to do
e864c499 1060 */
398a153b 1061 if (prio == prev_prio) {
e864c499
GH
1062 struct rt_prio_array *array = &rt_rq->active;
1063
1064 rt_rq->highest_prio.curr =
764a9d6f 1065 sched_find_first_bit(array->bitmap);
e864c499
GH
1066 }
1067
764a9d6f 1068 } else
e864c499 1069 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1070
398a153b
GH
1071 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1072}
1f11eb6a 1073
398a153b
GH
1074#else
1075
1076static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1077static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1078
1079#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1080
052f1dc7 1081#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1082
1083static void
1084inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1085{
1086 if (rt_se_boosted(rt_se))
1087 rt_rq->rt_nr_boosted++;
1088
1089 if (rt_rq->tg)
1090 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1091}
1092
1093static void
1094dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1095{
23b0fdfc
PZ
1096 if (rt_se_boosted(rt_se))
1097 rt_rq->rt_nr_boosted--;
1098
1099 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1100}
1101
1102#else /* CONFIG_RT_GROUP_SCHED */
1103
1104static void
1105inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1106{
1107 start_rt_bandwidth(&def_rt_bandwidth);
1108}
1109
1110static inline
1111void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1112
1113#endif /* CONFIG_RT_GROUP_SCHED */
1114
22abdef3
KT
1115static inline
1116unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1117{
1118 struct rt_rq *group_rq = group_rt_rq(rt_se);
1119
1120 if (group_rq)
1121 return group_rq->rt_nr_running;
1122 else
1123 return 1;
1124}
1125
398a153b
GH
1126static inline
1127void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1128{
1129 int prio = rt_se_prio(rt_se);
1130
1131 WARN_ON(!rt_prio(prio));
22abdef3 1132 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
398a153b
GH
1133
1134 inc_rt_prio(rt_rq, prio);
1135 inc_rt_migration(rt_se, rt_rq);
1136 inc_rt_group(rt_se, rt_rq);
1137}
1138
1139static inline
1140void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1141{
1142 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1143 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1144 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
398a153b
GH
1145
1146 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1147 dec_rt_migration(rt_se, rt_rq);
1148 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1149}
1150
37dad3fc 1151static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1152{
6f505b16
PZ
1153 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1154 struct rt_prio_array *array = &rt_rq->active;
1155 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1156 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1157
ad2a3f13
PZ
1158 /*
1159 * Don't enqueue the group if its throttled, or when empty.
1160 * The latter is a consequence of the former when a child group
1161 * get throttled and the current group doesn't have any other
1162 * active members.
1163 */
1164 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1165 return;
63489e45 1166
37dad3fc
TG
1167 if (head)
1168 list_add(&rt_se->run_list, queue);
1169 else
1170 list_add_tail(&rt_se->run_list, queue);
6f505b16 1171 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1172
6f505b16
PZ
1173 inc_rt_tasks(rt_se, rt_rq);
1174}
1175
ad2a3f13 1176static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1177{
1178 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1179 struct rt_prio_array *array = &rt_rq->active;
1180
1181 list_del_init(&rt_se->run_list);
1182 if (list_empty(array->queue + rt_se_prio(rt_se)))
1183 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1184
1185 dec_rt_tasks(rt_se, rt_rq);
1186}
1187
1188/*
1189 * Because the prio of an upper entry depends on the lower
1190 * entries, we must remove entries top - down.
6f505b16 1191 */
ad2a3f13 1192static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1193{
ad2a3f13 1194 struct sched_rt_entity *back = NULL;
6f505b16 1195
58d6c2d7
PZ
1196 for_each_sched_rt_entity(rt_se) {
1197 rt_se->back = back;
1198 back = rt_se;
1199 }
1200
f4ebcbc0
KT
1201 dequeue_top_rt_rq(rt_rq_of_se(back));
1202
58d6c2d7
PZ
1203 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1204 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1205 __dequeue_rt_entity(rt_se);
1206 }
1207}
1208
37dad3fc 1209static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13 1210{
f4ebcbc0
KT
1211 struct rq *rq = rq_of_rt_se(rt_se);
1212
ad2a3f13
PZ
1213 dequeue_rt_stack(rt_se);
1214 for_each_sched_rt_entity(rt_se)
37dad3fc 1215 __enqueue_rt_entity(rt_se, head);
f4ebcbc0 1216 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1217}
1218
1219static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1220{
f4ebcbc0
KT
1221 struct rq *rq = rq_of_rt_se(rt_se);
1222
ad2a3f13
PZ
1223 dequeue_rt_stack(rt_se);
1224
1225 for_each_sched_rt_entity(rt_se) {
1226 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1227
1228 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1229 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1230 }
f4ebcbc0 1231 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1232}
1233
1234/*
1235 * Adding/removing a task to/from a priority array:
1236 */
ea87bb78 1237static void
371fd7e7 1238enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1239{
1240 struct sched_rt_entity *rt_se = &p->rt;
1241
371fd7e7 1242 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1243 rt_se->timeout = 0;
1244
371fd7e7 1245 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1246
29baa747 1247 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1248 enqueue_pushable_task(rq, p);
6f505b16
PZ
1249}
1250
371fd7e7 1251static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1252{
6f505b16 1253 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1254
f1e14ef6 1255 update_curr_rt(rq);
ad2a3f13 1256 dequeue_rt_entity(rt_se);
c09595f6 1257
917b627d 1258 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1259}
1260
1261/*
60686317
RW
1262 * Put task to the head or the end of the run list without the overhead of
1263 * dequeue followed by enqueue.
bb44e5d1 1264 */
7ebefa8c
DA
1265static void
1266requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1267{
1cdad715 1268 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1269 struct rt_prio_array *array = &rt_rq->active;
1270 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1271
1272 if (head)
1273 list_move(&rt_se->run_list, queue);
1274 else
1275 list_move_tail(&rt_se->run_list, queue);
1cdad715 1276 }
6f505b16
PZ
1277}
1278
7ebefa8c 1279static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1280{
6f505b16
PZ
1281 struct sched_rt_entity *rt_se = &p->rt;
1282 struct rt_rq *rt_rq;
bb44e5d1 1283
6f505b16
PZ
1284 for_each_sched_rt_entity(rt_se) {
1285 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1286 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1287 }
bb44e5d1
IM
1288}
1289
6f505b16 1290static void yield_task_rt(struct rq *rq)
bb44e5d1 1291{
7ebefa8c 1292 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1293}
1294
e7693a36 1295#ifdef CONFIG_SMP
318e0893
GH
1296static int find_lowest_rq(struct task_struct *task);
1297
0017d735 1298static int
ac66f547 1299select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1300{
7608dec2
PZ
1301 struct task_struct *curr;
1302 struct rq *rq;
c37495fd 1303
29baa747 1304 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1305 goto out;
1306
c37495fd
SR
1307 /* For anything but wake ups, just return the task_cpu */
1308 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1309 goto out;
1310
7608dec2
PZ
1311 rq = cpu_rq(cpu);
1312
1313 rcu_read_lock();
1314 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1315
318e0893 1316 /*
7608dec2 1317 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1318 * try to see if we can wake this RT task up on another
1319 * runqueue. Otherwise simply start this RT task
1320 * on its current runqueue.
1321 *
43fa5460
SR
1322 * We want to avoid overloading runqueues. If the woken
1323 * task is a higher priority, then it will stay on this CPU
1324 * and the lower prio task should be moved to another CPU.
1325 * Even though this will probably make the lower prio task
1326 * lose its cache, we do not want to bounce a higher task
1327 * around just because it gave up its CPU, perhaps for a
1328 * lock?
1329 *
1330 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1331 *
1332 * Otherwise, just let it ride on the affined RQ and the
1333 * post-schedule router will push the preempted task away
1334 *
1335 * This test is optimistic, if we get it wrong the load-balancer
1336 * will have to sort it out.
318e0893 1337 */
7608dec2 1338 if (curr && unlikely(rt_task(curr)) &&
29baa747 1339 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1340 curr->prio <= p->prio)) {
7608dec2 1341 int target = find_lowest_rq(p);
318e0893 1342
7608dec2
PZ
1343 if (target != -1)
1344 cpu = target;
318e0893 1345 }
7608dec2 1346 rcu_read_unlock();
318e0893 1347
c37495fd 1348out:
7608dec2 1349 return cpu;
e7693a36 1350}
7ebefa8c
DA
1351
1352static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1353{
29baa747 1354 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1355 return;
1356
29baa747 1357 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1358 && cpupri_find(&rq->rd->cpupri, p, NULL))
1359 return;
24600ce8 1360
13b8bd0a
RR
1361 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1362 return;
7ebefa8c
DA
1363
1364 /*
1365 * There appears to be other cpus that can accept
1366 * current and none to run 'p', so lets reschedule
1367 * to try and push current away:
1368 */
1369 requeue_task_rt(rq, p, 1);
8875125e 1370 resched_curr(rq);
7ebefa8c
DA
1371}
1372
e7693a36
GH
1373#endif /* CONFIG_SMP */
1374
bb44e5d1
IM
1375/*
1376 * Preempt the current task with a newly woken task if needed:
1377 */
7d478721 1378static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1379{
45c01e82 1380 if (p->prio < rq->curr->prio) {
8875125e 1381 resched_curr(rq);
45c01e82
GH
1382 return;
1383 }
1384
1385#ifdef CONFIG_SMP
1386 /*
1387 * If:
1388 *
1389 * - the newly woken task is of equal priority to the current task
1390 * - the newly woken task is non-migratable while current is migratable
1391 * - current will be preempted on the next reschedule
1392 *
1393 * we should check to see if current can readily move to a different
1394 * cpu. If so, we will reschedule to allow the push logic to try
1395 * to move current somewhere else, making room for our non-migratable
1396 * task.
1397 */
8dd0de8b 1398 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1399 check_preempt_equal_prio(rq, p);
45c01e82 1400#endif
bb44e5d1
IM
1401}
1402
6f505b16
PZ
1403static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1404 struct rt_rq *rt_rq)
bb44e5d1 1405{
6f505b16
PZ
1406 struct rt_prio_array *array = &rt_rq->active;
1407 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1408 struct list_head *queue;
1409 int idx;
1410
1411 idx = sched_find_first_bit(array->bitmap);
6f505b16 1412 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1413
1414 queue = array->queue + idx;
6f505b16 1415 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1416
6f505b16
PZ
1417 return next;
1418}
bb44e5d1 1419
917b627d 1420static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1421{
1422 struct sched_rt_entity *rt_se;
1423 struct task_struct *p;
606dba2e 1424 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1425
1426 do {
1427 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1428 BUG_ON(!rt_se);
6f505b16
PZ
1429 rt_rq = group_rt_rq(rt_se);
1430 } while (rt_rq);
1431
1432 p = rt_task_of(rt_se);
78becc27 1433 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1434
1435 return p;
1436}
1437
606dba2e
PZ
1438static struct task_struct *
1439pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1440{
606dba2e
PZ
1441 struct task_struct *p;
1442 struct rt_rq *rt_rq = &rq->rt;
1443
37e117c0 1444 if (need_pull_rt_task(rq, prev)) {
38033c37 1445 pull_rt_task(rq);
37e117c0
PZ
1446 /*
1447 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1448 * means a dl or stop task can slip in, in which case we need
1449 * to re-start task selection.
37e117c0 1450 */
da0c1e65 1451 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1452 rq->dl.dl_nr_running))
37e117c0
PZ
1453 return RETRY_TASK;
1454 }
38033c37 1455
734ff2a7
KT
1456 /*
1457 * We may dequeue prev's rt_rq in put_prev_task().
1458 * So, we update time before rt_nr_running check.
1459 */
1460 if (prev->sched_class == &rt_sched_class)
1461 update_curr_rt(rq);
1462
f4ebcbc0 1463 if (!rt_rq->rt_queued)
606dba2e
PZ
1464 return NULL;
1465
3f1d2a31 1466 put_prev_task(rq, prev);
606dba2e
PZ
1467
1468 p = _pick_next_task_rt(rq);
917b627d
GH
1469
1470 /* The running task is never eligible for pushing */
1471 if (p)
1472 dequeue_pushable_task(rq, p);
1473
dc877341 1474 set_post_schedule(rq);
3f029d3c 1475
6f505b16 1476 return p;
bb44e5d1
IM
1477}
1478
31ee529c 1479static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1480{
f1e14ef6 1481 update_curr_rt(rq);
917b627d
GH
1482
1483 /*
1484 * The previous task needs to be made eligible for pushing
1485 * if it is still active
1486 */
29baa747 1487 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1488 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1489}
1490
681f3e68 1491#ifdef CONFIG_SMP
6f505b16 1492
e8fa1362
SR
1493/* Only try algorithms three times */
1494#define RT_MAX_TRIES 3
1495
f65eda4f
SR
1496static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1497{
1498 if (!task_running(rq, p) &&
60334caf 1499 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1500 return 1;
1501 return 0;
1502}
1503
e23ee747
KT
1504/*
1505 * Return the highest pushable rq's task, which is suitable to be executed
1506 * on the cpu, NULL otherwise
1507 */
1508static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1509{
e23ee747
KT
1510 struct plist_head *head = &rq->rt.pushable_tasks;
1511 struct task_struct *p;
3d07467b 1512
e23ee747
KT
1513 if (!has_pushable_tasks(rq))
1514 return NULL;
3d07467b 1515
e23ee747
KT
1516 plist_for_each_entry(p, head, pushable_tasks) {
1517 if (pick_rt_task(rq, p, cpu))
1518 return p;
f65eda4f
SR
1519 }
1520
e23ee747 1521 return NULL;
e8fa1362
SR
1522}
1523
0e3900e6 1524static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1525
6e1254d2
GH
1526static int find_lowest_rq(struct task_struct *task)
1527{
1528 struct sched_domain *sd;
96f874e2 1529 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1530 int this_cpu = smp_processor_id();
1531 int cpu = task_cpu(task);
06f90dbd 1532
0da938c4
SR
1533 /* Make sure the mask is initialized first */
1534 if (unlikely(!lowest_mask))
1535 return -1;
1536
29baa747 1537 if (task->nr_cpus_allowed == 1)
6e0534f2 1538 return -1; /* No other targets possible */
6e1254d2 1539
6e0534f2
GH
1540 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1541 return -1; /* No targets found */
6e1254d2
GH
1542
1543 /*
1544 * At this point we have built a mask of cpus representing the
1545 * lowest priority tasks in the system. Now we want to elect
1546 * the best one based on our affinity and topology.
1547 *
1548 * We prioritize the last cpu that the task executed on since
1549 * it is most likely cache-hot in that location.
1550 */
96f874e2 1551 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1552 return cpu;
1553
1554 /*
1555 * Otherwise, we consult the sched_domains span maps to figure
1556 * out which cpu is logically closest to our hot cache data.
1557 */
e2c88063
RR
1558 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1559 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1560
cd4ae6ad 1561 rcu_read_lock();
e2c88063
RR
1562 for_each_domain(cpu, sd) {
1563 if (sd->flags & SD_WAKE_AFFINE) {
1564 int best_cpu;
6e1254d2 1565
e2c88063
RR
1566 /*
1567 * "this_cpu" is cheaper to preempt than a
1568 * remote processor.
1569 */
1570 if (this_cpu != -1 &&
cd4ae6ad
XF
1571 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1572 rcu_read_unlock();
e2c88063 1573 return this_cpu;
cd4ae6ad 1574 }
e2c88063
RR
1575
1576 best_cpu = cpumask_first_and(lowest_mask,
1577 sched_domain_span(sd));
cd4ae6ad
XF
1578 if (best_cpu < nr_cpu_ids) {
1579 rcu_read_unlock();
e2c88063 1580 return best_cpu;
cd4ae6ad 1581 }
6e1254d2
GH
1582 }
1583 }
cd4ae6ad 1584 rcu_read_unlock();
6e1254d2
GH
1585
1586 /*
1587 * And finally, if there were no matches within the domains
1588 * just give the caller *something* to work with from the compatible
1589 * locations.
1590 */
e2c88063
RR
1591 if (this_cpu != -1)
1592 return this_cpu;
1593
1594 cpu = cpumask_any(lowest_mask);
1595 if (cpu < nr_cpu_ids)
1596 return cpu;
1597 return -1;
07b4032c
GH
1598}
1599
1600/* Will lock the rq it finds */
4df64c0b 1601static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1602{
1603 struct rq *lowest_rq = NULL;
07b4032c 1604 int tries;
4df64c0b 1605 int cpu;
e8fa1362 1606
07b4032c
GH
1607 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1608 cpu = find_lowest_rq(task);
1609
2de0b463 1610 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1611 break;
1612
07b4032c
GH
1613 lowest_rq = cpu_rq(cpu);
1614
e8fa1362 1615 /* if the prio of this runqueue changed, try again */
07b4032c 1616 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1617 /*
1618 * We had to unlock the run queue. In
1619 * the mean time, task could have
1620 * migrated already or had its affinity changed.
1621 * Also make sure that it wasn't scheduled on its rq.
1622 */
07b4032c 1623 if (unlikely(task_rq(task) != rq ||
96f874e2 1624 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1625 tsk_cpus_allowed(task)) ||
07b4032c 1626 task_running(rq, task) ||
da0c1e65 1627 !task_on_rq_queued(task))) {
4df64c0b 1628
7f1b4393 1629 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1630 lowest_rq = NULL;
1631 break;
1632 }
1633 }
1634
1635 /* If this rq is still suitable use it. */
e864c499 1636 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1637 break;
1638
1639 /* try again */
1b12bbc7 1640 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1641 lowest_rq = NULL;
1642 }
1643
1644 return lowest_rq;
1645}
1646
917b627d
GH
1647static struct task_struct *pick_next_pushable_task(struct rq *rq)
1648{
1649 struct task_struct *p;
1650
1651 if (!has_pushable_tasks(rq))
1652 return NULL;
1653
1654 p = plist_first_entry(&rq->rt.pushable_tasks,
1655 struct task_struct, pushable_tasks);
1656
1657 BUG_ON(rq->cpu != task_cpu(p));
1658 BUG_ON(task_current(rq, p));
29baa747 1659 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1660
da0c1e65 1661 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1662 BUG_ON(!rt_task(p));
1663
1664 return p;
1665}
1666
e8fa1362
SR
1667/*
1668 * If the current CPU has more than one RT task, see if the non
1669 * running task can migrate over to a CPU that is running a task
1670 * of lesser priority.
1671 */
697f0a48 1672static int push_rt_task(struct rq *rq)
e8fa1362
SR
1673{
1674 struct task_struct *next_task;
1675 struct rq *lowest_rq;
311e800e 1676 int ret = 0;
e8fa1362 1677
a22d7fc1
GH
1678 if (!rq->rt.overloaded)
1679 return 0;
1680
917b627d 1681 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1682 if (!next_task)
1683 return 0;
1684
49246274 1685retry:
697f0a48 1686 if (unlikely(next_task == rq->curr)) {
f65eda4f 1687 WARN_ON(1);
e8fa1362 1688 return 0;
f65eda4f 1689 }
e8fa1362
SR
1690
1691 /*
1692 * It's possible that the next_task slipped in of
1693 * higher priority than current. If that's the case
1694 * just reschedule current.
1695 */
697f0a48 1696 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1697 resched_curr(rq);
e8fa1362
SR
1698 return 0;
1699 }
1700
697f0a48 1701 /* We might release rq lock */
e8fa1362
SR
1702 get_task_struct(next_task);
1703
1704 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1705 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1706 if (!lowest_rq) {
1707 struct task_struct *task;
1708 /*
311e800e 1709 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1710 * so it is possible that next_task has migrated.
1711 *
1712 * We need to make sure that the task is still on the same
1713 * run-queue and is also still the next task eligible for
1714 * pushing.
e8fa1362 1715 */
917b627d 1716 task = pick_next_pushable_task(rq);
1563513d
GH
1717 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1718 /*
311e800e
HD
1719 * The task hasn't migrated, and is still the next
1720 * eligible task, but we failed to find a run-queue
1721 * to push it to. Do not retry in this case, since
1722 * other cpus will pull from us when ready.
1563513d 1723 */
1563513d 1724 goto out;
e8fa1362 1725 }
917b627d 1726
1563513d
GH
1727 if (!task)
1728 /* No more tasks, just exit */
1729 goto out;
1730
917b627d 1731 /*
1563513d 1732 * Something has shifted, try again.
917b627d 1733 */
1563513d
GH
1734 put_task_struct(next_task);
1735 next_task = task;
1736 goto retry;
e8fa1362
SR
1737 }
1738
697f0a48 1739 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1740 set_task_cpu(next_task, lowest_rq->cpu);
1741 activate_task(lowest_rq, next_task, 0);
311e800e 1742 ret = 1;
e8fa1362 1743
8875125e 1744 resched_curr(lowest_rq);
e8fa1362 1745
1b12bbc7 1746 double_unlock_balance(rq, lowest_rq);
e8fa1362 1747
e8fa1362
SR
1748out:
1749 put_task_struct(next_task);
1750
311e800e 1751 return ret;
e8fa1362
SR
1752}
1753
e8fa1362
SR
1754static void push_rt_tasks(struct rq *rq)
1755{
1756 /* push_rt_task will return true if it moved an RT */
1757 while (push_rt_task(rq))
1758 ;
1759}
1760
f65eda4f
SR
1761static int pull_rt_task(struct rq *this_rq)
1762{
80bf3171 1763 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1764 struct task_struct *p;
f65eda4f 1765 struct rq *src_rq;
f65eda4f 1766
637f5085 1767 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1768 return 0;
1769
7c3f2ab7
PZ
1770 /*
1771 * Match the barrier from rt_set_overloaded; this guarantees that if we
1772 * see overloaded we must also see the rto_mask bit.
1773 */
1774 smp_rmb();
1775
c6c4927b 1776 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1777 if (this_cpu == cpu)
1778 continue;
1779
1780 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1781
1782 /*
1783 * Don't bother taking the src_rq->lock if the next highest
1784 * task is known to be lower-priority than our current task.
1785 * This may look racy, but if this value is about to go
1786 * logically higher, the src_rq will push this task away.
1787 * And if its going logically lower, we do not care
1788 */
1789 if (src_rq->rt.highest_prio.next >=
1790 this_rq->rt.highest_prio.curr)
1791 continue;
1792
f65eda4f
SR
1793 /*
1794 * We can potentially drop this_rq's lock in
1795 * double_lock_balance, and another CPU could
a8728944 1796 * alter this_rq
f65eda4f 1797 */
a8728944 1798 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1799
1800 /*
e23ee747
KT
1801 * We can pull only a task, which is pushable
1802 * on its rq, and no others.
f65eda4f 1803 */
e23ee747 1804 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1805
1806 /*
1807 * Do we have an RT task that preempts
1808 * the to-be-scheduled task?
1809 */
a8728944 1810 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1811 WARN_ON(p == src_rq->curr);
da0c1e65 1812 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
1813
1814 /*
1815 * There's a chance that p is higher in priority
1816 * than what's currently running on its cpu.
1817 * This is just that p is wakeing up and hasn't
1818 * had a chance to schedule. We only pull
1819 * p if it is lower in priority than the
a8728944 1820 * current task on the run queue
f65eda4f 1821 */
a8728944 1822 if (p->prio < src_rq->curr->prio)
614ee1f6 1823 goto skip;
f65eda4f
SR
1824
1825 ret = 1;
1826
1827 deactivate_task(src_rq, p, 0);
1828 set_task_cpu(p, this_cpu);
1829 activate_task(this_rq, p, 0);
1830 /*
1831 * We continue with the search, just in
1832 * case there's an even higher prio task
25985edc 1833 * in another runqueue. (low likelihood
f65eda4f 1834 * but possible)
f65eda4f 1835 */
f65eda4f 1836 }
49246274 1837skip:
1b12bbc7 1838 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1839 }
1840
1841 return ret;
1842}
1843
9a897c5a 1844static void post_schedule_rt(struct rq *rq)
e8fa1362 1845{
967fc046 1846 push_rt_tasks(rq);
e8fa1362
SR
1847}
1848
8ae121ac
GH
1849/*
1850 * If we are not running and we are not going to reschedule soon, we should
1851 * try to push tasks away now
1852 */
efbbd05a 1853static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1854{
9a897c5a 1855 if (!task_running(rq, p) &&
8ae121ac 1856 !test_tsk_need_resched(rq->curr) &&
917b627d 1857 has_pushable_tasks(rq) &&
29baa747 1858 p->nr_cpus_allowed > 1 &&
1baca4ce 1859 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 1860 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1861 rq->curr->prio <= p->prio))
4642dafd
SR
1862 push_rt_tasks(rq);
1863}
1864
cd8ba7cd 1865static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1866 const struct cpumask *new_mask)
73fe6aae 1867{
8d3d5ada
KT
1868 struct rq *rq;
1869 int weight;
73fe6aae
GH
1870
1871 BUG_ON(!rt_task(p));
1872
da0c1e65 1873 if (!task_on_rq_queued(p))
8d3d5ada 1874 return;
917b627d 1875
8d3d5ada 1876 weight = cpumask_weight(new_mask);
917b627d 1877
8d3d5ada
KT
1878 /*
1879 * Only update if the process changes its state from whether it
1880 * can migrate or not.
1881 */
29baa747 1882 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1883 return;
917b627d 1884
8d3d5ada 1885 rq = task_rq(p);
73fe6aae 1886
8d3d5ada
KT
1887 /*
1888 * The process used to be able to migrate OR it can now migrate
1889 */
1890 if (weight <= 1) {
1891 if (!task_current(rq, p))
1892 dequeue_pushable_task(rq, p);
1893 BUG_ON(!rq->rt.rt_nr_migratory);
1894 rq->rt.rt_nr_migratory--;
1895 } else {
1896 if (!task_current(rq, p))
1897 enqueue_pushable_task(rq, p);
1898 rq->rt.rt_nr_migratory++;
73fe6aae 1899 }
8d3d5ada
KT
1900
1901 update_rt_migration(&rq->rt);
73fe6aae 1902}
deeeccd4 1903
bdd7c81b 1904/* Assumes rq->lock is held */
1f11eb6a 1905static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1906{
1907 if (rq->rt.overloaded)
1908 rt_set_overload(rq);
6e0534f2 1909
7def2be1
PZ
1910 __enable_runtime(rq);
1911
e864c499 1912 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1913}
1914
1915/* Assumes rq->lock is held */
1f11eb6a 1916static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1917{
1918 if (rq->rt.overloaded)
1919 rt_clear_overload(rq);
6e0534f2 1920
7def2be1
PZ
1921 __disable_runtime(rq);
1922
6e0534f2 1923 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1924}
cb469845
SR
1925
1926/*
1927 * When switch from the rt queue, we bring ourselves to a position
1928 * that we might want to pull RT tasks from other runqueues.
1929 */
da7a735e 1930static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1931{
1932 /*
1933 * If there are other RT tasks then we will reschedule
1934 * and the scheduling of the other RT tasks will handle
1935 * the balancing. But if we are the last RT task
1936 * we may need to handle the pulling of RT tasks
1937 * now.
1938 */
da0c1e65 1939 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
1940 return;
1941
1942 if (pull_rt_task(rq))
8875125e 1943 resched_curr(rq);
cb469845 1944}
3d8cbdf8 1945
11c785b7 1946void __init init_sched_rt_class(void)
3d8cbdf8
RR
1947{
1948 unsigned int i;
1949
029632fb 1950 for_each_possible_cpu(i) {
eaa95840 1951 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1952 GFP_KERNEL, cpu_to_node(i));
029632fb 1953 }
3d8cbdf8 1954}
cb469845
SR
1955#endif /* CONFIG_SMP */
1956
1957/*
1958 * When switching a task to RT, we may overload the runqueue
1959 * with RT tasks. In this case we try to push them off to
1960 * other runqueues.
1961 */
da7a735e 1962static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1963{
1964 int check_resched = 1;
1965
1966 /*
1967 * If we are already running, then there's nothing
1968 * that needs to be done. But if we are not running
1969 * we may need to preempt the current running task.
1970 * If that current running task is also an RT task
1971 * then see if we can move to another run queue.
1972 */
da0c1e65 1973 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 1974#ifdef CONFIG_SMP
10447917 1975 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
cb469845 1976 /* Don't resched if we changed runqueues */
10447917 1977 push_rt_task(rq) && rq != task_rq(p))
cb469845
SR
1978 check_resched = 0;
1979#endif /* CONFIG_SMP */
1980 if (check_resched && p->prio < rq->curr->prio)
8875125e 1981 resched_curr(rq);
cb469845
SR
1982 }
1983}
1984
1985/*
1986 * Priority of the task has changed. This may cause
1987 * us to initiate a push or pull.
1988 */
da7a735e
PZ
1989static void
1990prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1991{
da0c1e65 1992 if (!task_on_rq_queued(p))
da7a735e
PZ
1993 return;
1994
1995 if (rq->curr == p) {
cb469845
SR
1996#ifdef CONFIG_SMP
1997 /*
1998 * If our priority decreases while running, we
1999 * may need to pull tasks to this runqueue.
2000 */
2001 if (oldprio < p->prio)
2002 pull_rt_task(rq);
2003 /*
2004 * If there's a higher priority task waiting to run
6fa46fa5
SR
2005 * then reschedule. Note, the above pull_rt_task
2006 * can release the rq lock and p could migrate.
2007 * Only reschedule if p is still on the same runqueue.
cb469845 2008 */
e864c499 2009 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
8875125e 2010 resched_curr(rq);
cb469845
SR
2011#else
2012 /* For UP simply resched on drop of prio */
2013 if (oldprio < p->prio)
8875125e 2014 resched_curr(rq);
e8fa1362 2015#endif /* CONFIG_SMP */
cb469845
SR
2016 } else {
2017 /*
2018 * This task is not running, but if it is
2019 * greater than the current running task
2020 * then reschedule.
2021 */
2022 if (p->prio < rq->curr->prio)
8875125e 2023 resched_curr(rq);
cb469845
SR
2024 }
2025}
2026
78f2c7db
PZ
2027static void watchdog(struct rq *rq, struct task_struct *p)
2028{
2029 unsigned long soft, hard;
2030
78d7d407
JS
2031 /* max may change after cur was read, this will be fixed next tick */
2032 soft = task_rlimit(p, RLIMIT_RTTIME);
2033 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2034
2035 if (soft != RLIM_INFINITY) {
2036 unsigned long next;
2037
57d2aa00
YX
2038 if (p->rt.watchdog_stamp != jiffies) {
2039 p->rt.timeout++;
2040 p->rt.watchdog_stamp = jiffies;
2041 }
2042
78f2c7db 2043 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2044 if (p->rt.timeout > next)
f06febc9 2045 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2046 }
2047}
bb44e5d1 2048
8f4d37ec 2049static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2050{
454c7999
CC
2051 struct sched_rt_entity *rt_se = &p->rt;
2052
67e2be02
PZ
2053 update_curr_rt(rq);
2054
78f2c7db
PZ
2055 watchdog(rq, p);
2056
bb44e5d1
IM
2057 /*
2058 * RR tasks need a special form of timeslice management.
2059 * FIFO tasks have no timeslices.
2060 */
2061 if (p->policy != SCHED_RR)
2062 return;
2063
fa717060 2064 if (--p->rt.time_slice)
bb44e5d1
IM
2065 return;
2066
ce0dbbbb 2067 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2068
98fbc798 2069 /*
e9aa39bb
LB
2070 * Requeue to the end of queue if we (and all of our ancestors) are not
2071 * the only element on the queue
98fbc798 2072 */
454c7999
CC
2073 for_each_sched_rt_entity(rt_se) {
2074 if (rt_se->run_list.prev != rt_se->run_list.next) {
2075 requeue_task_rt(rq, p, 0);
2076 set_tsk_need_resched(p);
2077 return;
2078 }
98fbc798 2079 }
bb44e5d1
IM
2080}
2081
83b699ed
SV
2082static void set_curr_task_rt(struct rq *rq)
2083{
2084 struct task_struct *p = rq->curr;
2085
78becc27 2086 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2087
2088 /* The running task is never eligible for pushing */
2089 dequeue_pushable_task(rq, p);
83b699ed
SV
2090}
2091
6d686f45 2092static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2093{
2094 /*
2095 * Time slice is 0 for SCHED_FIFO tasks
2096 */
2097 if (task->policy == SCHED_RR)
ce0dbbbb 2098 return sched_rr_timeslice;
0d721cea
PW
2099 else
2100 return 0;
2101}
2102
029632fb 2103const struct sched_class rt_sched_class = {
5522d5d5 2104 .next = &fair_sched_class,
bb44e5d1
IM
2105 .enqueue_task = enqueue_task_rt,
2106 .dequeue_task = dequeue_task_rt,
2107 .yield_task = yield_task_rt,
2108
2109 .check_preempt_curr = check_preempt_curr_rt,
2110
2111 .pick_next_task = pick_next_task_rt,
2112 .put_prev_task = put_prev_task_rt,
2113
681f3e68 2114#ifdef CONFIG_SMP
4ce72a2c
LZ
2115 .select_task_rq = select_task_rq_rt,
2116
73fe6aae 2117 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2118 .rq_online = rq_online_rt,
2119 .rq_offline = rq_offline_rt,
9a897c5a 2120 .post_schedule = post_schedule_rt,
efbbd05a 2121 .task_woken = task_woken_rt,
cb469845 2122 .switched_from = switched_from_rt,
681f3e68 2123#endif
bb44e5d1 2124
83b699ed 2125 .set_curr_task = set_curr_task_rt,
bb44e5d1 2126 .task_tick = task_tick_rt,
cb469845 2127
0d721cea
PW
2128 .get_rr_interval = get_rr_interval_rt,
2129
cb469845
SR
2130 .prio_changed = prio_changed_rt,
2131 .switched_to = switched_to_rt,
bb44e5d1 2132};
ada18de2
PZ
2133
2134#ifdef CONFIG_SCHED_DEBUG
2135extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2136
029632fb 2137void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2138{
ec514c48 2139 rt_rq_iter_t iter;
ada18de2
PZ
2140 struct rt_rq *rt_rq;
2141
2142 rcu_read_lock();
ec514c48 2143 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2144 print_rt_rq(m, cpu, rt_rq);
2145 rcu_read_unlock();
2146}
55e12e5e 2147#endif /* CONFIG_SCHED_DEBUG */
This page took 0.613683 seconds and 5 git commands to generate.