[PATCH] Add cscope generated files to .gitignore
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
1da177e4
LT
55#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68/*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77/*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83/*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91#define DEF_TIMESLICE (100 * HZ / 1000)
92#define ON_RUNQUEUE_WEIGHT 30
93#define CHILD_PENALTY 95
94#define PARENT_PENALTY 100
95#define EXIT_WEIGHT 3
96#define PRIO_BONUS_RATIO 25
97#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98#define INTERACTIVE_DELTA 2
99#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100#define STARVATION_LIMIT (MAX_SLEEP_AVG)
101#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103/*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131#define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135#define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137#ifdef CONFIG_SMP
138#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141#else
142#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144#endif
145
146#define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149#define DELTA(p) \
013d3868
MA
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
1da177e4
LT
152
153#define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156#define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160#define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
1da177e4 163#define SCALE_PRIO(x, prio) \
2dd73a4f 164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 165
2dd73a4f 166static unsigned int static_prio_timeslice(int static_prio)
1da177e4 167{
2dd73a4f
PW
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 170 else
2dd73a4f 171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 172}
2dd73a4f 173
91fcdd4e
BP
174/*
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
177 *
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
181 */
182
36c8b586 183static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
184{
185 return static_prio_timeslice(p->static_prio);
186}
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
1da177e4
LT
192struct prio_array {
193 unsigned int nr_active;
d444886e 194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
195 struct list_head queue[MAX_PRIO];
196};
197
198/*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
70b97a7f 205struct rq {
1da177e4
LT
206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
2dd73a4f 213 unsigned long raw_weighted_load;
1da177e4 214#ifdef CONFIG_SMP
7897986b 215 unsigned long cpu_load[3];
1da177e4
LT
216#endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
b18ec803
MG
228 /* Cached timestamp set by update_cpu_clock() */
229 unsigned long long most_recent_timestamp;
36c8b586 230 struct task_struct *curr, *idle;
c9819f45 231 unsigned long next_balance;
1da177e4 232 struct mm_struct *prev_mm;
70b97a7f 233 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
234 int best_expired_prio;
235 atomic_t nr_iowait;
236
237#ifdef CONFIG_SMP
238 struct sched_domain *sd;
239
240 /* For active balancing */
241 int active_balance;
242 int push_cpu;
0a2966b4 243 int cpu; /* cpu of this runqueue */
1da177e4 244
36c8b586 245 struct task_struct *migration_thread;
1da177e4
LT
246 struct list_head migration_queue;
247#endif
248
249#ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
252
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
258
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
263
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267#endif
fcb99371 268 struct lock_class_key rq_lock_key;
1da177e4
LT
269};
270
70b97a7f 271static DEFINE_PER_CPU(struct rq, runqueues);
1da177e4 272
0a2966b4
CL
273static inline int cpu_of(struct rq *rq)
274{
275#ifdef CONFIG_SMP
276 return rq->cpu;
277#else
278 return 0;
279#endif
280}
281
674311d5
NP
282/*
283 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 284 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
285 *
286 * The domain tree of any CPU may only be accessed from within
287 * preempt-disabled sections.
288 */
48f24c4d
IM
289#define for_each_domain(cpu, __sd) \
290 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
291
292#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
293#define this_rq() (&__get_cpu_var(runqueues))
294#define task_rq(p) cpu_rq(task_cpu(p))
295#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
296
1da177e4 297#ifndef prepare_arch_switch
4866cde0
NP
298# define prepare_arch_switch(next) do { } while (0)
299#endif
300#ifndef finish_arch_switch
301# define finish_arch_switch(prev) do { } while (0)
302#endif
303
304#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 305static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
306{
307 return rq->curr == p;
308}
309
70b97a7f 310static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
311{
312}
313
70b97a7f 314static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 315{
da04c035
IM
316#ifdef CONFIG_DEBUG_SPINLOCK
317 /* this is a valid case when another task releases the spinlock */
318 rq->lock.owner = current;
319#endif
8a25d5de
IM
320 /*
321 * If we are tracking spinlock dependencies then we have to
322 * fix up the runqueue lock - which gets 'carried over' from
323 * prev into current:
324 */
325 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
326
4866cde0
NP
327 spin_unlock_irq(&rq->lock);
328}
329
330#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 331static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
332{
333#ifdef CONFIG_SMP
334 return p->oncpu;
335#else
336 return rq->curr == p;
337#endif
338}
339
70b97a7f 340static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
341{
342#ifdef CONFIG_SMP
343 /*
344 * We can optimise this out completely for !SMP, because the
345 * SMP rebalancing from interrupt is the only thing that cares
346 * here.
347 */
348 next->oncpu = 1;
349#endif
350#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 spin_unlock_irq(&rq->lock);
352#else
353 spin_unlock(&rq->lock);
354#endif
355}
356
70b97a7f 357static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
358{
359#ifdef CONFIG_SMP
360 /*
361 * After ->oncpu is cleared, the task can be moved to a different CPU.
362 * We must ensure this doesn't happen until the switch is completely
363 * finished.
364 */
365 smp_wmb();
366 prev->oncpu = 0;
367#endif
368#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
369 local_irq_enable();
1da177e4 370#endif
4866cde0
NP
371}
372#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 373
b29739f9
IM
374/*
375 * __task_rq_lock - lock the runqueue a given task resides on.
376 * Must be called interrupts disabled.
377 */
70b97a7f 378static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
379 __acquires(rq->lock)
380{
70b97a7f 381 struct rq *rq;
b29739f9
IM
382
383repeat_lock_task:
384 rq = task_rq(p);
385 spin_lock(&rq->lock);
386 if (unlikely(rq != task_rq(p))) {
387 spin_unlock(&rq->lock);
388 goto repeat_lock_task;
389 }
390 return rq;
391}
392
1da177e4
LT
393/*
394 * task_rq_lock - lock the runqueue a given task resides on and disable
395 * interrupts. Note the ordering: we can safely lookup the task_rq without
396 * explicitly disabling preemption.
397 */
70b97a7f 398static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
399 __acquires(rq->lock)
400{
70b97a7f 401 struct rq *rq;
1da177e4
LT
402
403repeat_lock_task:
404 local_irq_save(*flags);
405 rq = task_rq(p);
406 spin_lock(&rq->lock);
407 if (unlikely(rq != task_rq(p))) {
408 spin_unlock_irqrestore(&rq->lock, *flags);
409 goto repeat_lock_task;
410 }
411 return rq;
412}
413
70b97a7f 414static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
415 __releases(rq->lock)
416{
417 spin_unlock(&rq->lock);
418}
419
70b97a7f 420static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
421 __releases(rq->lock)
422{
423 spin_unlock_irqrestore(&rq->lock, *flags);
424}
425
426#ifdef CONFIG_SCHEDSTATS
427/*
428 * bump this up when changing the output format or the meaning of an existing
429 * format, so that tools can adapt (or abort)
430 */
06066714 431#define SCHEDSTAT_VERSION 14
1da177e4
LT
432
433static int show_schedstat(struct seq_file *seq, void *v)
434{
435 int cpu;
436
437 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
438 seq_printf(seq, "timestamp %lu\n", jiffies);
439 for_each_online_cpu(cpu) {
70b97a7f 440 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
441#ifdef CONFIG_SMP
442 struct sched_domain *sd;
443 int dcnt = 0;
444#endif
445
446 /* runqueue-specific stats */
447 seq_printf(seq,
448 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
449 cpu, rq->yld_both_empty,
450 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
451 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
452 rq->ttwu_cnt, rq->ttwu_local,
453 rq->rq_sched_info.cpu_time,
454 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
455
456 seq_printf(seq, "\n");
457
458#ifdef CONFIG_SMP
459 /* domain-specific stats */
674311d5 460 preempt_disable();
1da177e4
LT
461 for_each_domain(cpu, sd) {
462 enum idle_type itype;
463 char mask_str[NR_CPUS];
464
465 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
466 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
467 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
468 itype++) {
33859f7f
MOS
469 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
470 "%lu",
1da177e4
LT
471 sd->lb_cnt[itype],
472 sd->lb_balanced[itype],
473 sd->lb_failed[itype],
474 sd->lb_imbalance[itype],
475 sd->lb_gained[itype],
476 sd->lb_hot_gained[itype],
477 sd->lb_nobusyq[itype],
06066714 478 sd->lb_nobusyg[itype]);
1da177e4 479 }
33859f7f
MOS
480 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
481 " %lu %lu %lu\n",
1da177e4 482 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
483 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
484 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
33859f7f
MOS
485 sd->ttwu_wake_remote, sd->ttwu_move_affine,
486 sd->ttwu_move_balance);
1da177e4 487 }
674311d5 488 preempt_enable();
1da177e4
LT
489#endif
490 }
491 return 0;
492}
493
494static int schedstat_open(struct inode *inode, struct file *file)
495{
496 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
497 char *buf = kmalloc(size, GFP_KERNEL);
498 struct seq_file *m;
499 int res;
500
501 if (!buf)
502 return -ENOMEM;
503 res = single_open(file, show_schedstat, NULL);
504 if (!res) {
505 m = file->private_data;
506 m->buf = buf;
507 m->size = size;
508 } else
509 kfree(buf);
510 return res;
511}
512
15ad7cdc 513const struct file_operations proc_schedstat_operations = {
1da177e4
LT
514 .open = schedstat_open,
515 .read = seq_read,
516 .llseek = seq_lseek,
517 .release = single_release,
518};
519
52f17b6c
CS
520/*
521 * Expects runqueue lock to be held for atomicity of update
522 */
523static inline void
524rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
525{
526 if (rq) {
527 rq->rq_sched_info.run_delay += delta_jiffies;
528 rq->rq_sched_info.pcnt++;
529 }
530}
531
532/*
533 * Expects runqueue lock to be held for atomicity of update
534 */
535static inline void
536rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
537{
538 if (rq)
539 rq->rq_sched_info.cpu_time += delta_jiffies;
540}
1da177e4
LT
541# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
542# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
543#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
544static inline void
545rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
546{}
547static inline void
548rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
549{}
1da177e4
LT
550# define schedstat_inc(rq, field) do { } while (0)
551# define schedstat_add(rq, field, amt) do { } while (0)
552#endif
553
554/*
cc2a73b5 555 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 556 */
70b97a7f 557static inline struct rq *this_rq_lock(void)
1da177e4
LT
558 __acquires(rq->lock)
559{
70b97a7f 560 struct rq *rq;
1da177e4
LT
561
562 local_irq_disable();
563 rq = this_rq();
564 spin_lock(&rq->lock);
565
566 return rq;
567}
568
52f17b6c 569#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
570/*
571 * Called when a process is dequeued from the active array and given
572 * the cpu. We should note that with the exception of interactive
573 * tasks, the expired queue will become the active queue after the active
574 * queue is empty, without explicitly dequeuing and requeuing tasks in the
575 * expired queue. (Interactive tasks may be requeued directly to the
576 * active queue, thus delaying tasks in the expired queue from running;
577 * see scheduler_tick()).
578 *
579 * This function is only called from sched_info_arrive(), rather than
580 * dequeue_task(). Even though a task may be queued and dequeued multiple
581 * times as it is shuffled about, we're really interested in knowing how
582 * long it was from the *first* time it was queued to the time that it
583 * finally hit a cpu.
584 */
36c8b586 585static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
586{
587 t->sched_info.last_queued = 0;
588}
589
590/*
591 * Called when a task finally hits the cpu. We can now calculate how
592 * long it was waiting to run. We also note when it began so that we
593 * can keep stats on how long its timeslice is.
594 */
36c8b586 595static void sched_info_arrive(struct task_struct *t)
1da177e4 596{
52f17b6c 597 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
598
599 if (t->sched_info.last_queued)
52f17b6c 600 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 601 sched_info_dequeued(t);
52f17b6c 602 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
603 t->sched_info.last_arrival = now;
604 t->sched_info.pcnt++;
605
52f17b6c 606 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
607}
608
609/*
610 * Called when a process is queued into either the active or expired
611 * array. The time is noted and later used to determine how long we
612 * had to wait for us to reach the cpu. Since the expired queue will
613 * become the active queue after active queue is empty, without dequeuing
614 * and requeuing any tasks, we are interested in queuing to either. It
615 * is unusual but not impossible for tasks to be dequeued and immediately
616 * requeued in the same or another array: this can happen in sched_yield(),
617 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
618 * to runqueue.
619 *
620 * This function is only called from enqueue_task(), but also only updates
621 * the timestamp if it is already not set. It's assumed that
622 * sched_info_dequeued() will clear that stamp when appropriate.
623 */
36c8b586 624static inline void sched_info_queued(struct task_struct *t)
1da177e4 625{
52f17b6c
CS
626 if (unlikely(sched_info_on()))
627 if (!t->sched_info.last_queued)
628 t->sched_info.last_queued = jiffies;
1da177e4
LT
629}
630
631/*
632 * Called when a process ceases being the active-running process, either
633 * voluntarily or involuntarily. Now we can calculate how long we ran.
634 */
36c8b586 635static inline void sched_info_depart(struct task_struct *t)
1da177e4 636{
52f17b6c 637 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 638
52f17b6c
CS
639 t->sched_info.cpu_time += delta_jiffies;
640 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
641}
642
643/*
644 * Called when tasks are switched involuntarily due, typically, to expiring
645 * their time slice. (This may also be called when switching to or from
646 * the idle task.) We are only called when prev != next.
647 */
36c8b586 648static inline void
52f17b6c 649__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 650{
70b97a7f 651 struct rq *rq = task_rq(prev);
1da177e4
LT
652
653 /*
654 * prev now departs the cpu. It's not interesting to record
655 * stats about how efficient we were at scheduling the idle
656 * process, however.
657 */
658 if (prev != rq->idle)
659 sched_info_depart(prev);
660
661 if (next != rq->idle)
662 sched_info_arrive(next);
663}
52f17b6c
CS
664static inline void
665sched_info_switch(struct task_struct *prev, struct task_struct *next)
666{
667 if (unlikely(sched_info_on()))
668 __sched_info_switch(prev, next);
669}
1da177e4
LT
670#else
671#define sched_info_queued(t) do { } while (0)
672#define sched_info_switch(t, next) do { } while (0)
52f17b6c 673#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
674
675/*
676 * Adding/removing a task to/from a priority array:
677 */
70b97a7f 678static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
679{
680 array->nr_active--;
681 list_del(&p->run_list);
682 if (list_empty(array->queue + p->prio))
683 __clear_bit(p->prio, array->bitmap);
684}
685
70b97a7f 686static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
687{
688 sched_info_queued(p);
689 list_add_tail(&p->run_list, array->queue + p->prio);
690 __set_bit(p->prio, array->bitmap);
691 array->nr_active++;
692 p->array = array;
693}
694
695/*
696 * Put task to the end of the run list without the overhead of dequeue
697 * followed by enqueue.
698 */
70b97a7f 699static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
700{
701 list_move_tail(&p->run_list, array->queue + p->prio);
702}
703
70b97a7f
IM
704static inline void
705enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
706{
707 list_add(&p->run_list, array->queue + p->prio);
708 __set_bit(p->prio, array->bitmap);
709 array->nr_active++;
710 p->array = array;
711}
712
713/*
b29739f9 714 * __normal_prio - return the priority that is based on the static
1da177e4
LT
715 * priority but is modified by bonuses/penalties.
716 *
717 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
718 * into the -5 ... 0 ... +5 bonus/penalty range.
719 *
720 * We use 25% of the full 0...39 priority range so that:
721 *
722 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
723 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
724 *
725 * Both properties are important to certain workloads.
726 */
b29739f9 727
36c8b586 728static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
729{
730 int bonus, prio;
731
1da177e4
LT
732 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
733
734 prio = p->static_prio - bonus;
735 if (prio < MAX_RT_PRIO)
736 prio = MAX_RT_PRIO;
737 if (prio > MAX_PRIO-1)
738 prio = MAX_PRIO-1;
739 return prio;
740}
741
2dd73a4f
PW
742/*
743 * To aid in avoiding the subversion of "niceness" due to uneven distribution
744 * of tasks with abnormal "nice" values across CPUs the contribution that
745 * each task makes to its run queue's load is weighted according to its
746 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
747 * scaled version of the new time slice allocation that they receive on time
748 * slice expiry etc.
749 */
750
751/*
752 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
753 * If static_prio_timeslice() is ever changed to break this assumption then
754 * this code will need modification
755 */
756#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
757#define LOAD_WEIGHT(lp) \
758 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
759#define PRIO_TO_LOAD_WEIGHT(prio) \
760 LOAD_WEIGHT(static_prio_timeslice(prio))
761#define RTPRIO_TO_LOAD_WEIGHT(rp) \
762 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
763
36c8b586 764static void set_load_weight(struct task_struct *p)
2dd73a4f 765{
b29739f9 766 if (has_rt_policy(p)) {
2dd73a4f
PW
767#ifdef CONFIG_SMP
768 if (p == task_rq(p)->migration_thread)
769 /*
770 * The migration thread does the actual balancing.
771 * Giving its load any weight will skew balancing
772 * adversely.
773 */
774 p->load_weight = 0;
775 else
776#endif
777 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
778 } else
779 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
780}
781
36c8b586 782static inline void
70b97a7f 783inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
784{
785 rq->raw_weighted_load += p->load_weight;
786}
787
36c8b586 788static inline void
70b97a7f 789dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
790{
791 rq->raw_weighted_load -= p->load_weight;
792}
793
70b97a7f 794static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
795{
796 rq->nr_running++;
797 inc_raw_weighted_load(rq, p);
798}
799
70b97a7f 800static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
801{
802 rq->nr_running--;
803 dec_raw_weighted_load(rq, p);
804}
805
b29739f9
IM
806/*
807 * Calculate the expected normal priority: i.e. priority
808 * without taking RT-inheritance into account. Might be
809 * boosted by interactivity modifiers. Changes upon fork,
810 * setprio syscalls, and whenever the interactivity
811 * estimator recalculates.
812 */
36c8b586 813static inline int normal_prio(struct task_struct *p)
b29739f9
IM
814{
815 int prio;
816
817 if (has_rt_policy(p))
818 prio = MAX_RT_PRIO-1 - p->rt_priority;
819 else
820 prio = __normal_prio(p);
821 return prio;
822}
823
824/*
825 * Calculate the current priority, i.e. the priority
826 * taken into account by the scheduler. This value might
827 * be boosted by RT tasks, or might be boosted by
828 * interactivity modifiers. Will be RT if the task got
829 * RT-boosted. If not then it returns p->normal_prio.
830 */
36c8b586 831static int effective_prio(struct task_struct *p)
b29739f9
IM
832{
833 p->normal_prio = normal_prio(p);
834 /*
835 * If we are RT tasks or we were boosted to RT priority,
836 * keep the priority unchanged. Otherwise, update priority
837 * to the normal priority:
838 */
839 if (!rt_prio(p->prio))
840 return p->normal_prio;
841 return p->prio;
842}
843
1da177e4
LT
844/*
845 * __activate_task - move a task to the runqueue.
846 */
70b97a7f 847static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 848{
70b97a7f 849 struct prio_array *target = rq->active;
d425b274 850
f1adad78 851 if (batch_task(p))
d425b274
CK
852 target = rq->expired;
853 enqueue_task(p, target);
2dd73a4f 854 inc_nr_running(p, rq);
1da177e4
LT
855}
856
857/*
858 * __activate_idle_task - move idle task to the _front_ of runqueue.
859 */
70b97a7f 860static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
861{
862 enqueue_task_head(p, rq->active);
2dd73a4f 863 inc_nr_running(p, rq);
1da177e4
LT
864}
865
b29739f9
IM
866/*
867 * Recalculate p->normal_prio and p->prio after having slept,
868 * updating the sleep-average too:
869 */
36c8b586 870static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
871{
872 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 873 unsigned long sleep_time = now - p->timestamp;
1da177e4 874
d425b274 875 if (batch_task(p))
b0a9499c 876 sleep_time = 0;
1da177e4
LT
877
878 if (likely(sleep_time > 0)) {
879 /*
72d2854d
CK
880 * This ceiling is set to the lowest priority that would allow
881 * a task to be reinserted into the active array on timeslice
882 * completion.
1da177e4 883 */
72d2854d 884 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 885
72d2854d
CK
886 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
887 /*
888 * Prevents user tasks from achieving best priority
889 * with one single large enough sleep.
890 */
891 p->sleep_avg = ceiling;
892 /*
893 * Using INTERACTIVE_SLEEP() as a ceiling places a
894 * nice(0) task 1ms sleep away from promotion, and
895 * gives it 700ms to round-robin with no chance of
896 * being demoted. This is more than generous, so
897 * mark this sleep as non-interactive to prevent the
898 * on-runqueue bonus logic from intervening should
899 * this task not receive cpu immediately.
900 */
901 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 902 } else {
1da177e4
LT
903 /*
904 * Tasks waking from uninterruptible sleep are
905 * limited in their sleep_avg rise as they
906 * are likely to be waiting on I/O
907 */
3dee386e 908 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 909 if (p->sleep_avg >= ceiling)
1da177e4
LT
910 sleep_time = 0;
911 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
912 ceiling) {
913 p->sleep_avg = ceiling;
914 sleep_time = 0;
1da177e4
LT
915 }
916 }
917
918 /*
919 * This code gives a bonus to interactive tasks.
920 *
921 * The boost works by updating the 'average sleep time'
922 * value here, based on ->timestamp. The more time a
923 * task spends sleeping, the higher the average gets -
924 * and the higher the priority boost gets as well.
925 */
926 p->sleep_avg += sleep_time;
927
1da177e4 928 }
72d2854d
CK
929 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
930 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
931 }
932
a3464a10 933 return effective_prio(p);
1da177e4
LT
934}
935
936/*
937 * activate_task - move a task to the runqueue and do priority recalculation
938 *
939 * Update all the scheduling statistics stuff. (sleep average
940 * calculation, priority modifiers, etc.)
941 */
70b97a7f 942static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
943{
944 unsigned long long now;
945
62ab616d
CK
946 if (rt_task(p))
947 goto out;
948
1da177e4
LT
949 now = sched_clock();
950#ifdef CONFIG_SMP
951 if (!local) {
952 /* Compensate for drifting sched_clock */
70b97a7f 953 struct rq *this_rq = this_rq();
b18ec803
MG
954 now = (now - this_rq->most_recent_timestamp)
955 + rq->most_recent_timestamp;
1da177e4
LT
956 }
957#endif
958
ece8a684
IM
959 /*
960 * Sleep time is in units of nanosecs, so shift by 20 to get a
961 * milliseconds-range estimation of the amount of time that the task
962 * spent sleeping:
963 */
964 if (unlikely(prof_on == SLEEP_PROFILING)) {
965 if (p->state == TASK_UNINTERRUPTIBLE)
966 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
967 (now - p->timestamp) >> 20);
968 }
969
62ab616d 970 p->prio = recalc_task_prio(p, now);
1da177e4
LT
971
972 /*
973 * This checks to make sure it's not an uninterruptible task
974 * that is now waking up.
975 */
3dee386e 976 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
977 /*
978 * Tasks which were woken up by interrupts (ie. hw events)
979 * are most likely of interactive nature. So we give them
980 * the credit of extending their sleep time to the period
981 * of time they spend on the runqueue, waiting for execution
982 * on a CPU, first time around:
983 */
984 if (in_interrupt())
3dee386e 985 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
986 else {
987 /*
988 * Normal first-time wakeups get a credit too for
989 * on-runqueue time, but it will be weighted down:
990 */
3dee386e 991 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
992 }
993 }
994 p->timestamp = now;
62ab616d 995out:
1da177e4
LT
996 __activate_task(p, rq);
997}
998
999/*
1000 * deactivate_task - remove a task from the runqueue.
1001 */
70b97a7f 1002static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 1003{
2dd73a4f 1004 dec_nr_running(p, rq);
1da177e4
LT
1005 dequeue_task(p, p->array);
1006 p->array = NULL;
1007}
1008
1009/*
1010 * resched_task - mark a task 'to be rescheduled now'.
1011 *
1012 * On UP this means the setting of the need_resched flag, on SMP it
1013 * might also involve a cross-CPU call to trigger the scheduler on
1014 * the target CPU.
1015 */
1016#ifdef CONFIG_SMP
495ab9c0
AK
1017
1018#ifndef tsk_is_polling
1019#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1020#endif
1021
36c8b586 1022static void resched_task(struct task_struct *p)
1da177e4 1023{
64c7c8f8 1024 int cpu;
1da177e4
LT
1025
1026 assert_spin_locked(&task_rq(p)->lock);
1027
64c7c8f8
NP
1028 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1029 return;
1030
1031 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1032
64c7c8f8
NP
1033 cpu = task_cpu(p);
1034 if (cpu == smp_processor_id())
1035 return;
1036
495ab9c0 1037 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1038 smp_mb();
495ab9c0 1039 if (!tsk_is_polling(p))
64c7c8f8 1040 smp_send_reschedule(cpu);
1da177e4
LT
1041}
1042#else
36c8b586 1043static inline void resched_task(struct task_struct *p)
1da177e4 1044{
64c7c8f8 1045 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1046 set_tsk_need_resched(p);
1047}
1048#endif
1049
1050/**
1051 * task_curr - is this task currently executing on a CPU?
1052 * @p: the task in question.
1053 */
36c8b586 1054inline int task_curr(const struct task_struct *p)
1da177e4
LT
1055{
1056 return cpu_curr(task_cpu(p)) == p;
1057}
1058
2dd73a4f
PW
1059/* Used instead of source_load when we know the type == 0 */
1060unsigned long weighted_cpuload(const int cpu)
1061{
1062 return cpu_rq(cpu)->raw_weighted_load;
1063}
1064
1da177e4 1065#ifdef CONFIG_SMP
70b97a7f 1066struct migration_req {
1da177e4 1067 struct list_head list;
1da177e4 1068
36c8b586 1069 struct task_struct *task;
1da177e4
LT
1070 int dest_cpu;
1071
1da177e4 1072 struct completion done;
70b97a7f 1073};
1da177e4
LT
1074
1075/*
1076 * The task's runqueue lock must be held.
1077 * Returns true if you have to wait for migration thread.
1078 */
36c8b586 1079static int
70b97a7f 1080migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1081{
70b97a7f 1082 struct rq *rq = task_rq(p);
1da177e4
LT
1083
1084 /*
1085 * If the task is not on a runqueue (and not running), then
1086 * it is sufficient to simply update the task's cpu field.
1087 */
1088 if (!p->array && !task_running(rq, p)) {
1089 set_task_cpu(p, dest_cpu);
1090 return 0;
1091 }
1092
1093 init_completion(&req->done);
1da177e4
LT
1094 req->task = p;
1095 req->dest_cpu = dest_cpu;
1096 list_add(&req->list, &rq->migration_queue);
48f24c4d 1097
1da177e4
LT
1098 return 1;
1099}
1100
1101/*
1102 * wait_task_inactive - wait for a thread to unschedule.
1103 *
1104 * The caller must ensure that the task *will* unschedule sometime soon,
1105 * else this function might spin for a *long* time. This function can't
1106 * be called with interrupts off, or it may introduce deadlock with
1107 * smp_call_function() if an IPI is sent by the same process we are
1108 * waiting to become inactive.
1109 */
36c8b586 1110void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1111{
1112 unsigned long flags;
70b97a7f 1113 struct rq *rq;
1da177e4
LT
1114 int preempted;
1115
1116repeat:
1117 rq = task_rq_lock(p, &flags);
1118 /* Must be off runqueue entirely, not preempted. */
1119 if (unlikely(p->array || task_running(rq, p))) {
1120 /* If it's preempted, we yield. It could be a while. */
1121 preempted = !task_running(rq, p);
1122 task_rq_unlock(rq, &flags);
1123 cpu_relax();
1124 if (preempted)
1125 yield();
1126 goto repeat;
1127 }
1128 task_rq_unlock(rq, &flags);
1129}
1130
1131/***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
1138 * NOTE: this function doesnt have to take the runqueue lock,
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
36c8b586 1144void kick_process(struct task_struct *p)
1da177e4
LT
1145{
1146 int cpu;
1147
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1153}
1154
1155/*
2dd73a4f
PW
1156 * Return a low guess at the load of a migration-source cpu weighted
1157 * according to the scheduling class and "nice" value.
1da177e4
LT
1158 *
1159 * We want to under-estimate the load of migration sources, to
1160 * balance conservatively.
1161 */
a2000572 1162static inline unsigned long source_load(int cpu, int type)
1da177e4 1163{
70b97a7f 1164 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1165
3b0bd9bc 1166 if (type == 0)
2dd73a4f 1167 return rq->raw_weighted_load;
b910472d 1168
2dd73a4f 1169 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1170}
1171
1172/*
2dd73a4f
PW
1173 * Return a high guess at the load of a migration-target cpu weighted
1174 * according to the scheduling class and "nice" value.
1da177e4 1175 */
a2000572 1176static inline unsigned long target_load(int cpu, int type)
1da177e4 1177{
70b97a7f 1178 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1179
7897986b 1180 if (type == 0)
2dd73a4f 1181 return rq->raw_weighted_load;
3b0bd9bc 1182
2dd73a4f
PW
1183 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1184}
1185
1186/*
1187 * Return the average load per task on the cpu's run queue
1188 */
1189static inline unsigned long cpu_avg_load_per_task(int cpu)
1190{
70b97a7f 1191 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1192 unsigned long n = rq->nr_running;
1193
48f24c4d 1194 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1195}
1196
147cbb4b
NP
1197/*
1198 * find_idlest_group finds and returns the least busy CPU group within the
1199 * domain.
1200 */
1201static struct sched_group *
1202find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1203{
1204 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1205 unsigned long min_load = ULONG_MAX, this_load = 0;
1206 int load_idx = sd->forkexec_idx;
1207 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1208
1209 do {
1210 unsigned long load, avg_load;
1211 int local_group;
1212 int i;
1213
da5a5522
BD
1214 /* Skip over this group if it has no CPUs allowed */
1215 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1216 goto nextgroup;
1217
147cbb4b 1218 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1219
1220 /* Tally up the load of all CPUs in the group */
1221 avg_load = 0;
1222
1223 for_each_cpu_mask(i, group->cpumask) {
1224 /* Bias balancing toward cpus of our domain */
1225 if (local_group)
1226 load = source_load(i, load_idx);
1227 else
1228 load = target_load(i, load_idx);
1229
1230 avg_load += load;
1231 }
1232
1233 /* Adjust by relative CPU power of the group */
1234 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1235
1236 if (local_group) {
1237 this_load = avg_load;
1238 this = group;
1239 } else if (avg_load < min_load) {
1240 min_load = avg_load;
1241 idlest = group;
1242 }
da5a5522 1243nextgroup:
147cbb4b
NP
1244 group = group->next;
1245 } while (group != sd->groups);
1246
1247 if (!idlest || 100*this_load < imbalance*min_load)
1248 return NULL;
1249 return idlest;
1250}
1251
1252/*
0feaece9 1253 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1254 */
95cdf3b7
IM
1255static int
1256find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1257{
da5a5522 1258 cpumask_t tmp;
147cbb4b
NP
1259 unsigned long load, min_load = ULONG_MAX;
1260 int idlest = -1;
1261 int i;
1262
da5a5522
BD
1263 /* Traverse only the allowed CPUs */
1264 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1265
1266 for_each_cpu_mask(i, tmp) {
2dd73a4f 1267 load = weighted_cpuload(i);
147cbb4b
NP
1268
1269 if (load < min_load || (load == min_load && i == this_cpu)) {
1270 min_load = load;
1271 idlest = i;
1272 }
1273 }
1274
1275 return idlest;
1276}
1277
476d139c
NP
1278/*
1279 * sched_balance_self: balance the current task (running on cpu) in domains
1280 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1281 * SD_BALANCE_EXEC.
1282 *
1283 * Balance, ie. select the least loaded group.
1284 *
1285 * Returns the target CPU number, or the same CPU if no balancing is needed.
1286 *
1287 * preempt must be disabled.
1288 */
1289static int sched_balance_self(int cpu, int flag)
1290{
1291 struct task_struct *t = current;
1292 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1293
c96d145e 1294 for_each_domain(cpu, tmp) {
5c45bf27
SS
1295 /*
1296 * If power savings logic is enabled for a domain, stop there.
1297 */
1298 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1299 break;
476d139c
NP
1300 if (tmp->flags & flag)
1301 sd = tmp;
c96d145e 1302 }
476d139c
NP
1303
1304 while (sd) {
1305 cpumask_t span;
1306 struct sched_group *group;
1a848870
SS
1307 int new_cpu, weight;
1308
1309 if (!(sd->flags & flag)) {
1310 sd = sd->child;
1311 continue;
1312 }
476d139c
NP
1313
1314 span = sd->span;
1315 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1316 if (!group) {
1317 sd = sd->child;
1318 continue;
1319 }
476d139c 1320
da5a5522 1321 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1322 if (new_cpu == -1 || new_cpu == cpu) {
1323 /* Now try balancing at a lower domain level of cpu */
1324 sd = sd->child;
1325 continue;
1326 }
476d139c 1327
1a848870 1328 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1329 cpu = new_cpu;
476d139c
NP
1330 sd = NULL;
1331 weight = cpus_weight(span);
1332 for_each_domain(cpu, tmp) {
1333 if (weight <= cpus_weight(tmp->span))
1334 break;
1335 if (tmp->flags & flag)
1336 sd = tmp;
1337 }
1338 /* while loop will break here if sd == NULL */
1339 }
1340
1341 return cpu;
1342}
1343
1344#endif /* CONFIG_SMP */
1da177e4
LT
1345
1346/*
1347 * wake_idle() will wake a task on an idle cpu if task->cpu is
1348 * not idle and an idle cpu is available. The span of cpus to
1349 * search starts with cpus closest then further out as needed,
1350 * so we always favor a closer, idle cpu.
1351 *
1352 * Returns the CPU we should wake onto.
1353 */
1354#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1355static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1356{
1357 cpumask_t tmp;
1358 struct sched_domain *sd;
1359 int i;
1360
1361 if (idle_cpu(cpu))
1362 return cpu;
1363
1364 for_each_domain(cpu, sd) {
1365 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1366 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1367 for_each_cpu_mask(i, tmp) {
1368 if (idle_cpu(i))
1369 return i;
1370 }
1371 }
e0f364f4
NP
1372 else
1373 break;
1da177e4
LT
1374 }
1375 return cpu;
1376}
1377#else
36c8b586 1378static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1379{
1380 return cpu;
1381}
1382#endif
1383
1384/***
1385 * try_to_wake_up - wake up a thread
1386 * @p: the to-be-woken-up thread
1387 * @state: the mask of task states that can be woken
1388 * @sync: do a synchronous wakeup?
1389 *
1390 * Put it on the run-queue if it's not already there. The "current"
1391 * thread is always on the run-queue (except when the actual
1392 * re-schedule is in progress), and as such you're allowed to do
1393 * the simpler "current->state = TASK_RUNNING" to mark yourself
1394 * runnable without the overhead of this.
1395 *
1396 * returns failure only if the task is already active.
1397 */
36c8b586 1398static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1399{
1400 int cpu, this_cpu, success = 0;
1401 unsigned long flags;
1402 long old_state;
70b97a7f 1403 struct rq *rq;
1da177e4 1404#ifdef CONFIG_SMP
7897986b 1405 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1406 unsigned long load, this_load;
1da177e4
LT
1407 int new_cpu;
1408#endif
1409
1410 rq = task_rq_lock(p, &flags);
1411 old_state = p->state;
1412 if (!(old_state & state))
1413 goto out;
1414
1415 if (p->array)
1416 goto out_running;
1417
1418 cpu = task_cpu(p);
1419 this_cpu = smp_processor_id();
1420
1421#ifdef CONFIG_SMP
1422 if (unlikely(task_running(rq, p)))
1423 goto out_activate;
1424
7897986b
NP
1425 new_cpu = cpu;
1426
1da177e4
LT
1427 schedstat_inc(rq, ttwu_cnt);
1428 if (cpu == this_cpu) {
1429 schedstat_inc(rq, ttwu_local);
7897986b
NP
1430 goto out_set_cpu;
1431 }
1432
1433 for_each_domain(this_cpu, sd) {
1434 if (cpu_isset(cpu, sd->span)) {
1435 schedstat_inc(sd, ttwu_wake_remote);
1436 this_sd = sd;
1437 break;
1da177e4
LT
1438 }
1439 }
1da177e4 1440
7897986b 1441 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1442 goto out_set_cpu;
1443
1da177e4 1444 /*
7897986b 1445 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1446 */
7897986b
NP
1447 if (this_sd) {
1448 int idx = this_sd->wake_idx;
1449 unsigned int imbalance;
1da177e4 1450
a3f21bce
NP
1451 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1452
7897986b
NP
1453 load = source_load(cpu, idx);
1454 this_load = target_load(this_cpu, idx);
1da177e4 1455
7897986b
NP
1456 new_cpu = this_cpu; /* Wake to this CPU if we can */
1457
a3f21bce
NP
1458 if (this_sd->flags & SD_WAKE_AFFINE) {
1459 unsigned long tl = this_load;
33859f7f
MOS
1460 unsigned long tl_per_task;
1461
1462 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1463
1da177e4 1464 /*
a3f21bce
NP
1465 * If sync wakeup then subtract the (maximum possible)
1466 * effect of the currently running task from the load
1467 * of the current CPU:
1da177e4 1468 */
a3f21bce 1469 if (sync)
2dd73a4f 1470 tl -= current->load_weight;
a3f21bce
NP
1471
1472 if ((tl <= load &&
2dd73a4f
PW
1473 tl + target_load(cpu, idx) <= tl_per_task) ||
1474 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1475 /*
1476 * This domain has SD_WAKE_AFFINE and
1477 * p is cache cold in this domain, and
1478 * there is no bad imbalance.
1479 */
1480 schedstat_inc(this_sd, ttwu_move_affine);
1481 goto out_set_cpu;
1482 }
1483 }
1484
1485 /*
1486 * Start passive balancing when half the imbalance_pct
1487 * limit is reached.
1488 */
1489 if (this_sd->flags & SD_WAKE_BALANCE) {
1490 if (imbalance*this_load <= 100*load) {
1491 schedstat_inc(this_sd, ttwu_move_balance);
1492 goto out_set_cpu;
1493 }
1da177e4
LT
1494 }
1495 }
1496
1497 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1498out_set_cpu:
1499 new_cpu = wake_idle(new_cpu, p);
1500 if (new_cpu != cpu) {
1501 set_task_cpu(p, new_cpu);
1502 task_rq_unlock(rq, &flags);
1503 /* might preempt at this point */
1504 rq = task_rq_lock(p, &flags);
1505 old_state = p->state;
1506 if (!(old_state & state))
1507 goto out;
1508 if (p->array)
1509 goto out_running;
1510
1511 this_cpu = smp_processor_id();
1512 cpu = task_cpu(p);
1513 }
1514
1515out_activate:
1516#endif /* CONFIG_SMP */
1517 if (old_state == TASK_UNINTERRUPTIBLE) {
1518 rq->nr_uninterruptible--;
1519 /*
1520 * Tasks on involuntary sleep don't earn
1521 * sleep_avg beyond just interactive state.
1522 */
3dee386e 1523 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1524 } else
1da177e4 1525
d79fc0fc
IM
1526 /*
1527 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1528 * woken up with their sleep average not weighted in an
1529 * interactive way.
d79fc0fc 1530 */
e7c38cb4
CK
1531 if (old_state & TASK_NONINTERACTIVE)
1532 p->sleep_type = SLEEP_NONINTERACTIVE;
1533
1534
1535 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1536 /*
1537 * Sync wakeups (i.e. those types of wakeups where the waker
1538 * has indicated that it will leave the CPU in short order)
1539 * don't trigger a preemption, if the woken up task will run on
1540 * this cpu. (in this case the 'I will reschedule' promise of
1541 * the waker guarantees that the freshly woken up task is going
1542 * to be considered on this CPU.)
1543 */
1da177e4
LT
1544 if (!sync || cpu != this_cpu) {
1545 if (TASK_PREEMPTS_CURR(p, rq))
1546 resched_task(rq->curr);
1547 }
1548 success = 1;
1549
1550out_running:
1551 p->state = TASK_RUNNING;
1552out:
1553 task_rq_unlock(rq, &flags);
1554
1555 return success;
1556}
1557
36c8b586 1558int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1559{
1560 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1561 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1562}
1da177e4
LT
1563EXPORT_SYMBOL(wake_up_process);
1564
36c8b586 1565int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1566{
1567 return try_to_wake_up(p, state, 0);
1568}
1569
bc947631 1570static void task_running_tick(struct rq *rq, struct task_struct *p);
1da177e4
LT
1571/*
1572 * Perform scheduler related setup for a newly forked process p.
1573 * p is forked by current.
1574 */
36c8b586 1575void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1576{
476d139c
NP
1577 int cpu = get_cpu();
1578
1579#ifdef CONFIG_SMP
1580 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1581#endif
1582 set_task_cpu(p, cpu);
1583
1da177e4
LT
1584 /*
1585 * We mark the process as running here, but have not actually
1586 * inserted it onto the runqueue yet. This guarantees that
1587 * nobody will actually run it, and a signal or other external
1588 * event cannot wake it up and insert it on the runqueue either.
1589 */
1590 p->state = TASK_RUNNING;
b29739f9
IM
1591
1592 /*
1593 * Make sure we do not leak PI boosting priority to the child:
1594 */
1595 p->prio = current->normal_prio;
1596
1da177e4
LT
1597 INIT_LIST_HEAD(&p->run_list);
1598 p->array = NULL;
52f17b6c
CS
1599#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1600 if (unlikely(sched_info_on()))
1601 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1602#endif
d6077cb8 1603#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1604 p->oncpu = 0;
1605#endif
1da177e4 1606#ifdef CONFIG_PREEMPT
4866cde0 1607 /* Want to start with kernel preemption disabled. */
a1261f54 1608 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1609#endif
1610 /*
1611 * Share the timeslice between parent and child, thus the
1612 * total amount of pending timeslices in the system doesn't change,
1613 * resulting in more scheduling fairness.
1614 */
1615 local_irq_disable();
1616 p->time_slice = (current->time_slice + 1) >> 1;
1617 /*
1618 * The remainder of the first timeslice might be recovered by
1619 * the parent if the child exits early enough.
1620 */
1621 p->first_time_slice = 1;
1622 current->time_slice >>= 1;
1623 p->timestamp = sched_clock();
1624 if (unlikely(!current->time_slice)) {
1625 /*
1626 * This case is rare, it happens when the parent has only
1627 * a single jiffy left from its timeslice. Taking the
1628 * runqueue lock is not a problem.
1629 */
1630 current->time_slice = 1;
bc947631 1631 task_running_tick(cpu_rq(cpu), current);
476d139c
NP
1632 }
1633 local_irq_enable();
1634 put_cpu();
1da177e4
LT
1635}
1636
1637/*
1638 * wake_up_new_task - wake up a newly created task for the first time.
1639 *
1640 * This function will do some initial scheduler statistics housekeeping
1641 * that must be done for every newly created context, then puts the task
1642 * on the runqueue and wakes it.
1643 */
36c8b586 1644void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1645{
70b97a7f 1646 struct rq *rq, *this_rq;
1da177e4
LT
1647 unsigned long flags;
1648 int this_cpu, cpu;
1da177e4
LT
1649
1650 rq = task_rq_lock(p, &flags);
147cbb4b 1651 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1652 this_cpu = smp_processor_id();
147cbb4b 1653 cpu = task_cpu(p);
1da177e4 1654
1da177e4
LT
1655 /*
1656 * We decrease the sleep average of forking parents
1657 * and children as well, to keep max-interactive tasks
1658 * from forking tasks that are max-interactive. The parent
1659 * (current) is done further down, under its lock.
1660 */
1661 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1662 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1663
1664 p->prio = effective_prio(p);
1665
1666 if (likely(cpu == this_cpu)) {
1667 if (!(clone_flags & CLONE_VM)) {
1668 /*
1669 * The VM isn't cloned, so we're in a good position to
1670 * do child-runs-first in anticipation of an exec. This
1671 * usually avoids a lot of COW overhead.
1672 */
1673 if (unlikely(!current->array))
1674 __activate_task(p, rq);
1675 else {
1676 p->prio = current->prio;
b29739f9 1677 p->normal_prio = current->normal_prio;
1da177e4
LT
1678 list_add_tail(&p->run_list, &current->run_list);
1679 p->array = current->array;
1680 p->array->nr_active++;
2dd73a4f 1681 inc_nr_running(p, rq);
1da177e4
LT
1682 }
1683 set_need_resched();
1684 } else
1685 /* Run child last */
1686 __activate_task(p, rq);
1687 /*
1688 * We skip the following code due to cpu == this_cpu
1689 *
1690 * task_rq_unlock(rq, &flags);
1691 * this_rq = task_rq_lock(current, &flags);
1692 */
1693 this_rq = rq;
1694 } else {
1695 this_rq = cpu_rq(this_cpu);
1696
1697 /*
1698 * Not the local CPU - must adjust timestamp. This should
1699 * get optimised away in the !CONFIG_SMP case.
1700 */
b18ec803
MG
1701 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1702 + rq->most_recent_timestamp;
1da177e4
LT
1703 __activate_task(p, rq);
1704 if (TASK_PREEMPTS_CURR(p, rq))
1705 resched_task(rq->curr);
1706
1707 /*
1708 * Parent and child are on different CPUs, now get the
1709 * parent runqueue to update the parent's ->sleep_avg:
1710 */
1711 task_rq_unlock(rq, &flags);
1712 this_rq = task_rq_lock(current, &flags);
1713 }
1714 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1715 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1716 task_rq_unlock(this_rq, &flags);
1717}
1718
1719/*
1720 * Potentially available exiting-child timeslices are
1721 * retrieved here - this way the parent does not get
1722 * penalized for creating too many threads.
1723 *
1724 * (this cannot be used to 'generate' timeslices
1725 * artificially, because any timeslice recovered here
1726 * was given away by the parent in the first place.)
1727 */
36c8b586 1728void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1729{
1730 unsigned long flags;
70b97a7f 1731 struct rq *rq;
1da177e4
LT
1732
1733 /*
1734 * If the child was a (relative-) CPU hog then decrease
1735 * the sleep_avg of the parent as well.
1736 */
1737 rq = task_rq_lock(p->parent, &flags);
889dfafe 1738 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1739 p->parent->time_slice += p->time_slice;
1740 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1741 p->parent->time_slice = task_timeslice(p);
1742 }
1743 if (p->sleep_avg < p->parent->sleep_avg)
1744 p->parent->sleep_avg = p->parent->sleep_avg /
1745 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1746 (EXIT_WEIGHT + 1);
1747 task_rq_unlock(rq, &flags);
1748}
1749
4866cde0
NP
1750/**
1751 * prepare_task_switch - prepare to switch tasks
1752 * @rq: the runqueue preparing to switch
1753 * @next: the task we are going to switch to.
1754 *
1755 * This is called with the rq lock held and interrupts off. It must
1756 * be paired with a subsequent finish_task_switch after the context
1757 * switch.
1758 *
1759 * prepare_task_switch sets up locking and calls architecture specific
1760 * hooks.
1761 */
70b97a7f 1762static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1763{
1764 prepare_lock_switch(rq, next);
1765 prepare_arch_switch(next);
1766}
1767
1da177e4
LT
1768/**
1769 * finish_task_switch - clean up after a task-switch
344babaa 1770 * @rq: runqueue associated with task-switch
1da177e4
LT
1771 * @prev: the thread we just switched away from.
1772 *
4866cde0
NP
1773 * finish_task_switch must be called after the context switch, paired
1774 * with a prepare_task_switch call before the context switch.
1775 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1776 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1777 *
1778 * Note that we may have delayed dropping an mm in context_switch(). If
1779 * so, we finish that here outside of the runqueue lock. (Doing it
1780 * with the lock held can cause deadlocks; see schedule() for
1781 * details.)
1782 */
70b97a7f 1783static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1784 __releases(rq->lock)
1785{
1da177e4 1786 struct mm_struct *mm = rq->prev_mm;
55a101f8 1787 long prev_state;
1da177e4
LT
1788
1789 rq->prev_mm = NULL;
1790
1791 /*
1792 * A task struct has one reference for the use as "current".
c394cc9f 1793 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1794 * schedule one last time. The schedule call will never return, and
1795 * the scheduled task must drop that reference.
c394cc9f 1796 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1797 * still held, otherwise prev could be scheduled on another cpu, die
1798 * there before we look at prev->state, and then the reference would
1799 * be dropped twice.
1800 * Manfred Spraul <manfred@colorfullife.com>
1801 */
55a101f8 1802 prev_state = prev->state;
4866cde0
NP
1803 finish_arch_switch(prev);
1804 finish_lock_switch(rq, prev);
1da177e4
LT
1805 if (mm)
1806 mmdrop(mm);
c394cc9f 1807 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1808 /*
1809 * Remove function-return probe instances associated with this
1810 * task and put them back on the free list.
1811 */
1812 kprobe_flush_task(prev);
1da177e4 1813 put_task_struct(prev);
c6fd91f0 1814 }
1da177e4
LT
1815}
1816
1817/**
1818 * schedule_tail - first thing a freshly forked thread must call.
1819 * @prev: the thread we just switched away from.
1820 */
36c8b586 1821asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1822 __releases(rq->lock)
1823{
70b97a7f
IM
1824 struct rq *rq = this_rq();
1825
4866cde0
NP
1826 finish_task_switch(rq, prev);
1827#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1828 /* In this case, finish_task_switch does not reenable preemption */
1829 preempt_enable();
1830#endif
1da177e4
LT
1831 if (current->set_child_tid)
1832 put_user(current->pid, current->set_child_tid);
1833}
1834
1835/*
1836 * context_switch - switch to the new MM and the new
1837 * thread's register state.
1838 */
36c8b586 1839static inline struct task_struct *
70b97a7f 1840context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1841 struct task_struct *next)
1da177e4
LT
1842{
1843 struct mm_struct *mm = next->mm;
1844 struct mm_struct *oldmm = prev->active_mm;
1845
beed33a8 1846 if (!mm) {
1da177e4
LT
1847 next->active_mm = oldmm;
1848 atomic_inc(&oldmm->mm_count);
1849 enter_lazy_tlb(oldmm, next);
1850 } else
1851 switch_mm(oldmm, mm, next);
1852
beed33a8 1853 if (!prev->mm) {
1da177e4
LT
1854 prev->active_mm = NULL;
1855 WARN_ON(rq->prev_mm);
1856 rq->prev_mm = oldmm;
1857 }
3a5f5e48
IM
1858 /*
1859 * Since the runqueue lock will be released by the next
1860 * task (which is an invalid locking op but in the case
1861 * of the scheduler it's an obvious special-case), so we
1862 * do an early lockdep release here:
1863 */
1864#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1865 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1866#endif
1da177e4
LT
1867
1868 /* Here we just switch the register state and the stack. */
1869 switch_to(prev, next, prev);
1870
1871 return prev;
1872}
1873
1874/*
1875 * nr_running, nr_uninterruptible and nr_context_switches:
1876 *
1877 * externally visible scheduler statistics: current number of runnable
1878 * threads, current number of uninterruptible-sleeping threads, total
1879 * number of context switches performed since bootup.
1880 */
1881unsigned long nr_running(void)
1882{
1883 unsigned long i, sum = 0;
1884
1885 for_each_online_cpu(i)
1886 sum += cpu_rq(i)->nr_running;
1887
1888 return sum;
1889}
1890
1891unsigned long nr_uninterruptible(void)
1892{
1893 unsigned long i, sum = 0;
1894
0a945022 1895 for_each_possible_cpu(i)
1da177e4
LT
1896 sum += cpu_rq(i)->nr_uninterruptible;
1897
1898 /*
1899 * Since we read the counters lockless, it might be slightly
1900 * inaccurate. Do not allow it to go below zero though:
1901 */
1902 if (unlikely((long)sum < 0))
1903 sum = 0;
1904
1905 return sum;
1906}
1907
1908unsigned long long nr_context_switches(void)
1909{
cc94abfc
SR
1910 int i;
1911 unsigned long long sum = 0;
1da177e4 1912
0a945022 1913 for_each_possible_cpu(i)
1da177e4
LT
1914 sum += cpu_rq(i)->nr_switches;
1915
1916 return sum;
1917}
1918
1919unsigned long nr_iowait(void)
1920{
1921 unsigned long i, sum = 0;
1922
0a945022 1923 for_each_possible_cpu(i)
1da177e4
LT
1924 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1925
1926 return sum;
1927}
1928
db1b1fef
JS
1929unsigned long nr_active(void)
1930{
1931 unsigned long i, running = 0, uninterruptible = 0;
1932
1933 for_each_online_cpu(i) {
1934 running += cpu_rq(i)->nr_running;
1935 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1936 }
1937
1938 if (unlikely((long)uninterruptible < 0))
1939 uninterruptible = 0;
1940
1941 return running + uninterruptible;
1942}
1943
1da177e4
LT
1944#ifdef CONFIG_SMP
1945
48f24c4d
IM
1946/*
1947 * Is this task likely cache-hot:
1948 */
1949static inline int
1950task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1951{
1952 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1953}
1954
1da177e4
LT
1955/*
1956 * double_rq_lock - safely lock two runqueues
1957 *
1958 * Note this does not disable interrupts like task_rq_lock,
1959 * you need to do so manually before calling.
1960 */
70b97a7f 1961static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1962 __acquires(rq1->lock)
1963 __acquires(rq2->lock)
1964{
054b9108 1965 BUG_ON(!irqs_disabled());
1da177e4
LT
1966 if (rq1 == rq2) {
1967 spin_lock(&rq1->lock);
1968 __acquire(rq2->lock); /* Fake it out ;) */
1969 } else {
c96d145e 1970 if (rq1 < rq2) {
1da177e4
LT
1971 spin_lock(&rq1->lock);
1972 spin_lock(&rq2->lock);
1973 } else {
1974 spin_lock(&rq2->lock);
1975 spin_lock(&rq1->lock);
1976 }
1977 }
1978}
1979
1980/*
1981 * double_rq_unlock - safely unlock two runqueues
1982 *
1983 * Note this does not restore interrupts like task_rq_unlock,
1984 * you need to do so manually after calling.
1985 */
70b97a7f 1986static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1987 __releases(rq1->lock)
1988 __releases(rq2->lock)
1989{
1990 spin_unlock(&rq1->lock);
1991 if (rq1 != rq2)
1992 spin_unlock(&rq2->lock);
1993 else
1994 __release(rq2->lock);
1995}
1996
1997/*
1998 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1999 */
70b97a7f 2000static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2001 __releases(this_rq->lock)
2002 __acquires(busiest->lock)
2003 __acquires(this_rq->lock)
2004{
054b9108
KK
2005 if (unlikely(!irqs_disabled())) {
2006 /* printk() doesn't work good under rq->lock */
2007 spin_unlock(&this_rq->lock);
2008 BUG_ON(1);
2009 }
1da177e4 2010 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2011 if (busiest < this_rq) {
1da177e4
LT
2012 spin_unlock(&this_rq->lock);
2013 spin_lock(&busiest->lock);
2014 spin_lock(&this_rq->lock);
2015 } else
2016 spin_lock(&busiest->lock);
2017 }
2018}
2019
1da177e4
LT
2020/*
2021 * If dest_cpu is allowed for this process, migrate the task to it.
2022 * This is accomplished by forcing the cpu_allowed mask to only
2023 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2024 * the cpu_allowed mask is restored.
2025 */
36c8b586 2026static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2027{
70b97a7f 2028 struct migration_req req;
1da177e4 2029 unsigned long flags;
70b97a7f 2030 struct rq *rq;
1da177e4
LT
2031
2032 rq = task_rq_lock(p, &flags);
2033 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2034 || unlikely(cpu_is_offline(dest_cpu)))
2035 goto out;
2036
2037 /* force the process onto the specified CPU */
2038 if (migrate_task(p, dest_cpu, &req)) {
2039 /* Need to wait for migration thread (might exit: take ref). */
2040 struct task_struct *mt = rq->migration_thread;
36c8b586 2041
1da177e4
LT
2042 get_task_struct(mt);
2043 task_rq_unlock(rq, &flags);
2044 wake_up_process(mt);
2045 put_task_struct(mt);
2046 wait_for_completion(&req.done);
36c8b586 2047
1da177e4
LT
2048 return;
2049 }
2050out:
2051 task_rq_unlock(rq, &flags);
2052}
2053
2054/*
476d139c
NP
2055 * sched_exec - execve() is a valuable balancing opportunity, because at
2056 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2057 */
2058void sched_exec(void)
2059{
1da177e4 2060 int new_cpu, this_cpu = get_cpu();
476d139c 2061 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2062 put_cpu();
476d139c
NP
2063 if (new_cpu != this_cpu)
2064 sched_migrate_task(current, new_cpu);
1da177e4
LT
2065}
2066
2067/*
2068 * pull_task - move a task from a remote runqueue to the local runqueue.
2069 * Both runqueues must be locked.
2070 */
70b97a7f
IM
2071static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2072 struct task_struct *p, struct rq *this_rq,
2073 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2074{
2075 dequeue_task(p, src_array);
2dd73a4f 2076 dec_nr_running(p, src_rq);
1da177e4 2077 set_task_cpu(p, this_cpu);
2dd73a4f 2078 inc_nr_running(p, this_rq);
1da177e4 2079 enqueue_task(p, this_array);
b18ec803
MG
2080 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2081 + this_rq->most_recent_timestamp;
1da177e4
LT
2082 /*
2083 * Note that idle threads have a prio of MAX_PRIO, for this test
2084 * to be always true for them.
2085 */
2086 if (TASK_PREEMPTS_CURR(p, this_rq))
2087 resched_task(this_rq->curr);
2088}
2089
2090/*
2091 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2092 */
858119e1 2093static
70b97a7f 2094int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2095 struct sched_domain *sd, enum idle_type idle,
2096 int *all_pinned)
1da177e4
LT
2097{
2098 /*
2099 * We do not migrate tasks that are:
2100 * 1) running (obviously), or
2101 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2102 * 3) are cache-hot on their current CPU.
2103 */
1da177e4
LT
2104 if (!cpu_isset(this_cpu, p->cpus_allowed))
2105 return 0;
81026794
NP
2106 *all_pinned = 0;
2107
2108 if (task_running(rq, p))
2109 return 0;
1da177e4
LT
2110
2111 /*
2112 * Aggressive migration if:
cafb20c1 2113 * 1) task is cache cold, or
1da177e4
LT
2114 * 2) too many balance attempts have failed.
2115 */
2116
b18ec803
MG
2117 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2118#ifdef CONFIG_SCHEDSTATS
2119 if (task_hot(p, rq->most_recent_timestamp, sd))
2120 schedstat_inc(sd, lb_hot_gained[idle]);
2121#endif
1da177e4 2122 return 1;
b18ec803 2123 }
1da177e4 2124
b18ec803 2125 if (task_hot(p, rq->most_recent_timestamp, sd))
81026794 2126 return 0;
1da177e4
LT
2127 return 1;
2128}
2129
615052dc 2130#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2131
1da177e4 2132/*
2dd73a4f
PW
2133 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2134 * load from busiest to this_rq, as part of a balancing operation within
2135 * "domain". Returns the number of tasks moved.
1da177e4
LT
2136 *
2137 * Called with both runqueues locked.
2138 */
70b97a7f 2139static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2140 unsigned long max_nr_move, unsigned long max_load_move,
2141 struct sched_domain *sd, enum idle_type idle,
2142 int *all_pinned)
1da177e4 2143{
48f24c4d
IM
2144 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2145 best_prio_seen, skip_for_load;
70b97a7f 2146 struct prio_array *array, *dst_array;
1da177e4 2147 struct list_head *head, *curr;
36c8b586 2148 struct task_struct *tmp;
2dd73a4f 2149 long rem_load_move;
1da177e4 2150
2dd73a4f 2151 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2152 goto out;
2153
2dd73a4f 2154 rem_load_move = max_load_move;
81026794 2155 pinned = 1;
615052dc 2156 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2157 best_prio = rq_best_prio(busiest);
615052dc
PW
2158 /*
2159 * Enable handling of the case where there is more than one task
2160 * with the best priority. If the current running task is one
48f24c4d 2161 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2162 * and therefore it's safe to override the skip (based on load) of
2163 * any task we find with that prio.
2164 */
48f24c4d 2165 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2166
1da177e4
LT
2167 /*
2168 * We first consider expired tasks. Those will likely not be
2169 * executed in the near future, and they are most likely to
2170 * be cache-cold, thus switching CPUs has the least effect
2171 * on them.
2172 */
2173 if (busiest->expired->nr_active) {
2174 array = busiest->expired;
2175 dst_array = this_rq->expired;
2176 } else {
2177 array = busiest->active;
2178 dst_array = this_rq->active;
2179 }
2180
2181new_array:
2182 /* Start searching at priority 0: */
2183 idx = 0;
2184skip_bitmap:
2185 if (!idx)
2186 idx = sched_find_first_bit(array->bitmap);
2187 else
2188 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2189 if (idx >= MAX_PRIO) {
2190 if (array == busiest->expired && busiest->active->nr_active) {
2191 array = busiest->active;
2192 dst_array = this_rq->active;
2193 goto new_array;
2194 }
2195 goto out;
2196 }
2197
2198 head = array->queue + idx;
2199 curr = head->prev;
2200skip_queue:
36c8b586 2201 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2202
2203 curr = curr->prev;
2204
50ddd969
PW
2205 /*
2206 * To help distribute high priority tasks accross CPUs we don't
2207 * skip a task if it will be the highest priority task (i.e. smallest
2208 * prio value) on its new queue regardless of its load weight
2209 */
615052dc
PW
2210 skip_for_load = tmp->load_weight > rem_load_move;
2211 if (skip_for_load && idx < this_best_prio)
48f24c4d 2212 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2213 if (skip_for_load ||
2dd73a4f 2214 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2215
2216 best_prio_seen |= idx == best_prio;
1da177e4
LT
2217 if (curr != head)
2218 goto skip_queue;
2219 idx++;
2220 goto skip_bitmap;
2221 }
2222
1da177e4
LT
2223 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2224 pulled++;
2dd73a4f 2225 rem_load_move -= tmp->load_weight;
1da177e4 2226
2dd73a4f
PW
2227 /*
2228 * We only want to steal up to the prescribed number of tasks
2229 * and the prescribed amount of weighted load.
2230 */
2231 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2232 if (idx < this_best_prio)
2233 this_best_prio = idx;
1da177e4
LT
2234 if (curr != head)
2235 goto skip_queue;
2236 idx++;
2237 goto skip_bitmap;
2238 }
2239out:
2240 /*
2241 * Right now, this is the only place pull_task() is called,
2242 * so we can safely collect pull_task() stats here rather than
2243 * inside pull_task().
2244 */
2245 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2246
2247 if (all_pinned)
2248 *all_pinned = pinned;
1da177e4
LT
2249 return pulled;
2250}
2251
2252/*
2253 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2254 * domain. It calculates and returns the amount of weighted load which
2255 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2256 */
2257static struct sched_group *
2258find_busiest_group(struct sched_domain *sd, int this_cpu,
0a2966b4 2259 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
783609c6 2260 cpumask_t *cpus, int *balance)
1da177e4
LT
2261{
2262 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2263 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2264 unsigned long max_pull;
2dd73a4f
PW
2265 unsigned long busiest_load_per_task, busiest_nr_running;
2266 unsigned long this_load_per_task, this_nr_running;
7897986b 2267 int load_idx;
5c45bf27
SS
2268#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2269 int power_savings_balance = 1;
2270 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2271 unsigned long min_nr_running = ULONG_MAX;
2272 struct sched_group *group_min = NULL, *group_leader = NULL;
2273#endif
1da177e4
LT
2274
2275 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2276 busiest_load_per_task = busiest_nr_running = 0;
2277 this_load_per_task = this_nr_running = 0;
7897986b
NP
2278 if (idle == NOT_IDLE)
2279 load_idx = sd->busy_idx;
2280 else if (idle == NEWLY_IDLE)
2281 load_idx = sd->newidle_idx;
2282 else
2283 load_idx = sd->idle_idx;
1da177e4
LT
2284
2285 do {
5c45bf27 2286 unsigned long load, group_capacity;
1da177e4
LT
2287 int local_group;
2288 int i;
783609c6 2289 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2290 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2291
2292 local_group = cpu_isset(this_cpu, group->cpumask);
2293
783609c6
SS
2294 if (local_group)
2295 balance_cpu = first_cpu(group->cpumask);
2296
1da177e4 2297 /* Tally up the load of all CPUs in the group */
2dd73a4f 2298 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2299
2300 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2301 struct rq *rq;
2302
2303 if (!cpu_isset(i, *cpus))
2304 continue;
2305
2306 rq = cpu_rq(i);
2dd73a4f 2307
5969fe06
NP
2308 if (*sd_idle && !idle_cpu(i))
2309 *sd_idle = 0;
2310
1da177e4 2311 /* Bias balancing toward cpus of our domain */
783609c6
SS
2312 if (local_group) {
2313 if (idle_cpu(i) && !first_idle_cpu) {
2314 first_idle_cpu = 1;
2315 balance_cpu = i;
2316 }
2317
a2000572 2318 load = target_load(i, load_idx);
783609c6 2319 } else
a2000572 2320 load = source_load(i, load_idx);
1da177e4
LT
2321
2322 avg_load += load;
2dd73a4f
PW
2323 sum_nr_running += rq->nr_running;
2324 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2325 }
2326
783609c6
SS
2327 /*
2328 * First idle cpu or the first cpu(busiest) in this sched group
2329 * is eligible for doing load balancing at this and above
2330 * domains.
2331 */
2332 if (local_group && balance_cpu != this_cpu && balance) {
2333 *balance = 0;
2334 goto ret;
2335 }
2336
1da177e4
LT
2337 total_load += avg_load;
2338 total_pwr += group->cpu_power;
2339
2340 /* Adjust by relative CPU power of the group */
2341 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2342
5c45bf27
SS
2343 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2344
1da177e4
LT
2345 if (local_group) {
2346 this_load = avg_load;
2347 this = group;
2dd73a4f
PW
2348 this_nr_running = sum_nr_running;
2349 this_load_per_task = sum_weighted_load;
2350 } else if (avg_load > max_load &&
5c45bf27 2351 sum_nr_running > group_capacity) {
1da177e4
LT
2352 max_load = avg_load;
2353 busiest = group;
2dd73a4f
PW
2354 busiest_nr_running = sum_nr_running;
2355 busiest_load_per_task = sum_weighted_load;
1da177e4 2356 }
5c45bf27
SS
2357
2358#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2359 /*
2360 * Busy processors will not participate in power savings
2361 * balance.
2362 */
2363 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2364 goto group_next;
2365
2366 /*
2367 * If the local group is idle or completely loaded
2368 * no need to do power savings balance at this domain
2369 */
2370 if (local_group && (this_nr_running >= group_capacity ||
2371 !this_nr_running))
2372 power_savings_balance = 0;
2373
2374 /*
2375 * If a group is already running at full capacity or idle,
2376 * don't include that group in power savings calculations
2377 */
2378 if (!power_savings_balance || sum_nr_running >= group_capacity
2379 || !sum_nr_running)
2380 goto group_next;
2381
2382 /*
2383 * Calculate the group which has the least non-idle load.
2384 * This is the group from where we need to pick up the load
2385 * for saving power
2386 */
2387 if ((sum_nr_running < min_nr_running) ||
2388 (sum_nr_running == min_nr_running &&
2389 first_cpu(group->cpumask) <
2390 first_cpu(group_min->cpumask))) {
2391 group_min = group;
2392 min_nr_running = sum_nr_running;
2393 min_load_per_task = sum_weighted_load /
2394 sum_nr_running;
2395 }
2396
2397 /*
2398 * Calculate the group which is almost near its
2399 * capacity but still has some space to pick up some load
2400 * from other group and save more power
2401 */
48f24c4d 2402 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2403 if (sum_nr_running > leader_nr_running ||
2404 (sum_nr_running == leader_nr_running &&
2405 first_cpu(group->cpumask) >
2406 first_cpu(group_leader->cpumask))) {
2407 group_leader = group;
2408 leader_nr_running = sum_nr_running;
2409 }
48f24c4d 2410 }
5c45bf27
SS
2411group_next:
2412#endif
1da177e4
LT
2413 group = group->next;
2414 } while (group != sd->groups);
2415
2dd73a4f 2416 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2417 goto out_balanced;
2418
2419 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2420
2421 if (this_load >= avg_load ||
2422 100*max_load <= sd->imbalance_pct*this_load)
2423 goto out_balanced;
2424
2dd73a4f 2425 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2426 /*
2427 * We're trying to get all the cpus to the average_load, so we don't
2428 * want to push ourselves above the average load, nor do we wish to
2429 * reduce the max loaded cpu below the average load, as either of these
2430 * actions would just result in more rebalancing later, and ping-pong
2431 * tasks around. Thus we look for the minimum possible imbalance.
2432 * Negative imbalances (*we* are more loaded than anyone else) will
2433 * be counted as no imbalance for these purposes -- we can't fix that
2434 * by pulling tasks to us. Be careful of negative numbers as they'll
2435 * appear as very large values with unsigned longs.
2436 */
2dd73a4f
PW
2437 if (max_load <= busiest_load_per_task)
2438 goto out_balanced;
2439
2440 /*
2441 * In the presence of smp nice balancing, certain scenarios can have
2442 * max load less than avg load(as we skip the groups at or below
2443 * its cpu_power, while calculating max_load..)
2444 */
2445 if (max_load < avg_load) {
2446 *imbalance = 0;
2447 goto small_imbalance;
2448 }
0c117f1b
SS
2449
2450 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2451 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2452
1da177e4 2453 /* How much load to actually move to equalise the imbalance */
0c117f1b 2454 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2455 (avg_load - this_load) * this->cpu_power)
2456 / SCHED_LOAD_SCALE;
2457
2dd73a4f
PW
2458 /*
2459 * if *imbalance is less than the average load per runnable task
2460 * there is no gaurantee that any tasks will be moved so we'll have
2461 * a think about bumping its value to force at least one task to be
2462 * moved
2463 */
2464 if (*imbalance < busiest_load_per_task) {
48f24c4d 2465 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2466 unsigned int imbn;
2467
2468small_imbalance:
2469 pwr_move = pwr_now = 0;
2470 imbn = 2;
2471 if (this_nr_running) {
2472 this_load_per_task /= this_nr_running;
2473 if (busiest_load_per_task > this_load_per_task)
2474 imbn = 1;
2475 } else
2476 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2477
2dd73a4f
PW
2478 if (max_load - this_load >= busiest_load_per_task * imbn) {
2479 *imbalance = busiest_load_per_task;
1da177e4
LT
2480 return busiest;
2481 }
2482
2483 /*
2484 * OK, we don't have enough imbalance to justify moving tasks,
2485 * however we may be able to increase total CPU power used by
2486 * moving them.
2487 */
2488
2dd73a4f
PW
2489 pwr_now += busiest->cpu_power *
2490 min(busiest_load_per_task, max_load);
2491 pwr_now += this->cpu_power *
2492 min(this_load_per_task, this_load);
1da177e4
LT
2493 pwr_now /= SCHED_LOAD_SCALE;
2494
2495 /* Amount of load we'd subtract */
33859f7f
MOS
2496 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2497 busiest->cpu_power;
1da177e4 2498 if (max_load > tmp)
2dd73a4f
PW
2499 pwr_move += busiest->cpu_power *
2500 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2501
2502 /* Amount of load we'd add */
33859f7f
MOS
2503 if (max_load * busiest->cpu_power <
2504 busiest_load_per_task * SCHED_LOAD_SCALE)
2505 tmp = max_load * busiest->cpu_power / this->cpu_power;
1da177e4 2506 else
33859f7f
MOS
2507 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2508 this->cpu_power;
2509 pwr_move += this->cpu_power *
2510 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2511 pwr_move /= SCHED_LOAD_SCALE;
2512
2513 /* Move if we gain throughput */
2514 if (pwr_move <= pwr_now)
2515 goto out_balanced;
2516
2dd73a4f 2517 *imbalance = busiest_load_per_task;
1da177e4
LT
2518 }
2519
1da177e4
LT
2520 return busiest;
2521
2522out_balanced:
5c45bf27
SS
2523#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2524 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2525 goto ret;
1da177e4 2526
5c45bf27
SS
2527 if (this == group_leader && group_leader != group_min) {
2528 *imbalance = min_load_per_task;
2529 return group_min;
2530 }
5c45bf27 2531#endif
783609c6 2532ret:
1da177e4
LT
2533 *imbalance = 0;
2534 return NULL;
2535}
2536
2537/*
2538 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2539 */
70b97a7f 2540static struct rq *
48f24c4d 2541find_busiest_queue(struct sched_group *group, enum idle_type idle,
0a2966b4 2542 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2543{
70b97a7f 2544 struct rq *busiest = NULL, *rq;
2dd73a4f 2545 unsigned long max_load = 0;
1da177e4
LT
2546 int i;
2547
2548 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2549
2550 if (!cpu_isset(i, *cpus))
2551 continue;
2552
48f24c4d 2553 rq = cpu_rq(i);
2dd73a4f 2554
48f24c4d 2555 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2556 continue;
1da177e4 2557
48f24c4d
IM
2558 if (rq->raw_weighted_load > max_load) {
2559 max_load = rq->raw_weighted_load;
2560 busiest = rq;
1da177e4
LT
2561 }
2562 }
2563
2564 return busiest;
2565}
2566
77391d71
NP
2567/*
2568 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2569 * so long as it is large enough.
2570 */
2571#define MAX_PINNED_INTERVAL 512
2572
48f24c4d
IM
2573static inline unsigned long minus_1_or_zero(unsigned long n)
2574{
2575 return n > 0 ? n - 1 : 0;
2576}
2577
1da177e4
LT
2578/*
2579 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2580 * tasks if there is an imbalance.
1da177e4 2581 */
70b97a7f 2582static int load_balance(int this_cpu, struct rq *this_rq,
783609c6
SS
2583 struct sched_domain *sd, enum idle_type idle,
2584 int *balance)
1da177e4 2585{
48f24c4d 2586 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2587 struct sched_group *group;
1da177e4 2588 unsigned long imbalance;
70b97a7f 2589 struct rq *busiest;
0a2966b4 2590 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2591 unsigned long flags;
5969fe06 2592
89c4710e
SS
2593 /*
2594 * When power savings policy is enabled for the parent domain, idle
2595 * sibling can pick up load irrespective of busy siblings. In this case,
2596 * let the state of idle sibling percolate up as IDLE, instead of
2597 * portraying it as NOT_IDLE.
2598 */
5c45bf27 2599 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2600 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2601 sd_idle = 1;
1da177e4 2602
1da177e4
LT
2603 schedstat_inc(sd, lb_cnt[idle]);
2604
0a2966b4
CL
2605redo:
2606 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2607 &cpus, balance);
2608
06066714 2609 if (*balance == 0)
783609c6 2610 goto out_balanced;
783609c6 2611
1da177e4
LT
2612 if (!group) {
2613 schedstat_inc(sd, lb_nobusyg[idle]);
2614 goto out_balanced;
2615 }
2616
0a2966b4 2617 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2618 if (!busiest) {
2619 schedstat_inc(sd, lb_nobusyq[idle]);
2620 goto out_balanced;
2621 }
2622
db935dbd 2623 BUG_ON(busiest == this_rq);
1da177e4
LT
2624
2625 schedstat_add(sd, lb_imbalance[idle], imbalance);
2626
2627 nr_moved = 0;
2628 if (busiest->nr_running > 1) {
2629 /*
2630 * Attempt to move tasks. If find_busiest_group has found
2631 * an imbalance but busiest->nr_running <= 1, the group is
2632 * still unbalanced. nr_moved simply stays zero, so it is
2633 * correctly treated as an imbalance.
2634 */
fe2eea3f 2635 local_irq_save(flags);
e17224bf 2636 double_rq_lock(this_rq, busiest);
1da177e4 2637 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2638 minus_1_or_zero(busiest->nr_running),
2639 imbalance, sd, idle, &all_pinned);
e17224bf 2640 double_rq_unlock(this_rq, busiest);
fe2eea3f 2641 local_irq_restore(flags);
81026794
NP
2642
2643 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2644 if (unlikely(all_pinned)) {
2645 cpu_clear(cpu_of(busiest), cpus);
2646 if (!cpus_empty(cpus))
2647 goto redo;
81026794 2648 goto out_balanced;
0a2966b4 2649 }
1da177e4 2650 }
81026794 2651
1da177e4
LT
2652 if (!nr_moved) {
2653 schedstat_inc(sd, lb_failed[idle]);
2654 sd->nr_balance_failed++;
2655
2656 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2657
fe2eea3f 2658 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2659
2660 /* don't kick the migration_thread, if the curr
2661 * task on busiest cpu can't be moved to this_cpu
2662 */
2663 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2664 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2665 all_pinned = 1;
2666 goto out_one_pinned;
2667 }
2668
1da177e4
LT
2669 if (!busiest->active_balance) {
2670 busiest->active_balance = 1;
2671 busiest->push_cpu = this_cpu;
81026794 2672 active_balance = 1;
1da177e4 2673 }
fe2eea3f 2674 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2675 if (active_balance)
1da177e4
LT
2676 wake_up_process(busiest->migration_thread);
2677
2678 /*
2679 * We've kicked active balancing, reset the failure
2680 * counter.
2681 */
39507451 2682 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2683 }
81026794 2684 } else
1da177e4
LT
2685 sd->nr_balance_failed = 0;
2686
81026794 2687 if (likely(!active_balance)) {
1da177e4
LT
2688 /* We were unbalanced, so reset the balancing interval */
2689 sd->balance_interval = sd->min_interval;
81026794
NP
2690 } else {
2691 /*
2692 * If we've begun active balancing, start to back off. This
2693 * case may not be covered by the all_pinned logic if there
2694 * is only 1 task on the busy runqueue (because we don't call
2695 * move_tasks).
2696 */
2697 if (sd->balance_interval < sd->max_interval)
2698 sd->balance_interval *= 2;
1da177e4
LT
2699 }
2700
5c45bf27 2701 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2702 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2703 return -1;
1da177e4
LT
2704 return nr_moved;
2705
2706out_balanced:
1da177e4
LT
2707 schedstat_inc(sd, lb_balanced[idle]);
2708
16cfb1c0 2709 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2710
2711out_one_pinned:
1da177e4 2712 /* tune up the balancing interval */
77391d71
NP
2713 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2714 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2715 sd->balance_interval *= 2;
2716
48f24c4d 2717 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2718 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2719 return -1;
1da177e4
LT
2720 return 0;
2721}
2722
2723/*
2724 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2725 * tasks if there is an imbalance.
2726 *
2727 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2728 * this_rq is locked.
2729 */
48f24c4d 2730static int
70b97a7f 2731load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2732{
2733 struct sched_group *group;
70b97a7f 2734 struct rq *busiest = NULL;
1da177e4
LT
2735 unsigned long imbalance;
2736 int nr_moved = 0;
5969fe06 2737 int sd_idle = 0;
0a2966b4 2738 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2739
89c4710e
SS
2740 /*
2741 * When power savings policy is enabled for the parent domain, idle
2742 * sibling can pick up load irrespective of busy siblings. In this case,
2743 * let the state of idle sibling percolate up as IDLE, instead of
2744 * portraying it as NOT_IDLE.
2745 */
2746 if (sd->flags & SD_SHARE_CPUPOWER &&
2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2748 sd_idle = 1;
1da177e4
LT
2749
2750 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
0a2966b4
CL
2751redo:
2752 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
783609c6 2753 &sd_idle, &cpus, NULL);
1da177e4 2754 if (!group) {
1da177e4 2755 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2756 goto out_balanced;
1da177e4
LT
2757 }
2758
0a2966b4
CL
2759 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2760 &cpus);
db935dbd 2761 if (!busiest) {
1da177e4 2762 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2763 goto out_balanced;
1da177e4
LT
2764 }
2765
db935dbd
NP
2766 BUG_ON(busiest == this_rq);
2767
1da177e4 2768 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2769
2770 nr_moved = 0;
2771 if (busiest->nr_running > 1) {
2772 /* Attempt to move tasks */
2773 double_lock_balance(this_rq, busiest);
2774 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2775 minus_1_or_zero(busiest->nr_running),
81026794 2776 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf 2777 spin_unlock(&busiest->lock);
0a2966b4
CL
2778
2779 if (!nr_moved) {
2780 cpu_clear(cpu_of(busiest), cpus);
2781 if (!cpus_empty(cpus))
2782 goto redo;
2783 }
d6d5cfaf
NP
2784 }
2785
5969fe06 2786 if (!nr_moved) {
1da177e4 2787 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
89c4710e
SS
2788 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2789 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2790 return -1;
2791 } else
16cfb1c0 2792 sd->nr_balance_failed = 0;
1da177e4 2793
1da177e4 2794 return nr_moved;
16cfb1c0
NP
2795
2796out_balanced:
2797 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d 2798 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2800 return -1;
16cfb1c0 2801 sd->nr_balance_failed = 0;
48f24c4d 2802
16cfb1c0 2803 return 0;
1da177e4
LT
2804}
2805
2806/*
2807 * idle_balance is called by schedule() if this_cpu is about to become
2808 * idle. Attempts to pull tasks from other CPUs.
2809 */
70b97a7f 2810static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2811{
2812 struct sched_domain *sd;
1bd77f2d
CL
2813 int pulled_task = 0;
2814 unsigned long next_balance = jiffies + 60 * HZ;
1da177e4
LT
2815
2816 for_each_domain(this_cpu, sd) {
2817 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d 2818 /* If we've pulled tasks over stop searching: */
1bd77f2d
CL
2819 pulled_task = load_balance_newidle(this_cpu,
2820 this_rq, sd);
2821 if (time_after(next_balance,
2822 sd->last_balance + sd->balance_interval))
2823 next_balance = sd->last_balance
2824 + sd->balance_interval;
2825 if (pulled_task)
1da177e4 2826 break;
1da177e4
LT
2827 }
2828 }
1bd77f2d
CL
2829 if (!pulled_task)
2830 /*
2831 * We are going idle. next_balance may be set based on
2832 * a busy processor. So reset next_balance.
2833 */
2834 this_rq->next_balance = next_balance;
1da177e4
LT
2835}
2836
2837/*
2838 * active_load_balance is run by migration threads. It pushes running tasks
2839 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2840 * running on each physical CPU where possible, and avoids physical /
2841 * logical imbalances.
2842 *
2843 * Called with busiest_rq locked.
2844 */
70b97a7f 2845static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2846{
39507451 2847 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2848 struct sched_domain *sd;
2849 struct rq *target_rq;
39507451 2850
48f24c4d 2851 /* Is there any task to move? */
39507451 2852 if (busiest_rq->nr_running <= 1)
39507451
NP
2853 return;
2854
2855 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2856
2857 /*
39507451
NP
2858 * This condition is "impossible", if it occurs
2859 * we need to fix it. Originally reported by
2860 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2861 */
39507451 2862 BUG_ON(busiest_rq == target_rq);
1da177e4 2863
39507451
NP
2864 /* move a task from busiest_rq to target_rq */
2865 double_lock_balance(busiest_rq, target_rq);
2866
2867 /* Search for an sd spanning us and the target CPU. */
c96d145e 2868 for_each_domain(target_cpu, sd) {
39507451 2869 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2870 cpu_isset(busiest_cpu, sd->span))
39507451 2871 break;
c96d145e 2872 }
39507451 2873
48f24c4d
IM
2874 if (likely(sd)) {
2875 schedstat_inc(sd, alb_cnt);
39507451 2876
48f24c4d
IM
2877 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2878 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2879 NULL))
2880 schedstat_inc(sd, alb_pushed);
2881 else
2882 schedstat_inc(sd, alb_failed);
2883 }
39507451 2884 spin_unlock(&target_rq->lock);
1da177e4
LT
2885}
2886
7835b98b 2887static void update_load(struct rq *this_rq)
1da177e4 2888{
7835b98b 2889 unsigned long this_load;
48f24c4d 2890 int i, scale;
1da177e4 2891
2dd73a4f 2892 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2893
2894 /* Update our load: */
2895 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2896 unsigned long old_load, new_load;
2897
7897986b 2898 old_load = this_rq->cpu_load[i];
48f24c4d 2899 new_load = this_load;
7897986b
NP
2900 /*
2901 * Round up the averaging division if load is increasing. This
2902 * prevents us from getting stuck on 9 if the load is 10, for
2903 * example.
2904 */
2905 if (new_load > old_load)
2906 new_load += scale-1;
2907 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2908 }
7835b98b
CL
2909}
2910
2911/*
c9819f45 2912 * run_rebalance_domains is triggered when needed from the scheduler tick.
7835b98b
CL
2913 *
2914 * It checks each scheduling domain to see if it is due to be balanced,
2915 * and initiates a balancing operation if so.
2916 *
2917 * Balancing parameters are set up in arch_init_sched_domains.
2918 */
08c183f3 2919static DEFINE_SPINLOCK(balancing);
7835b98b 2920
c9819f45 2921static void run_rebalance_domains(struct softirq_action *h)
7835b98b 2922{
783609c6 2923 int this_cpu = smp_processor_id(), balance = 1;
c9819f45 2924 struct rq *this_rq = cpu_rq(this_cpu);
7835b98b
CL
2925 unsigned long interval;
2926 struct sched_domain *sd;
e418e1c2
CL
2927 /*
2928 * We are idle if there are no processes running. This
2929 * is valid even if we are the idle process (SMT).
2930 */
2931 enum idle_type idle = !this_rq->nr_running ?
2932 SCHED_IDLE : NOT_IDLE;
c9819f45
CL
2933 /* Earliest time when we have to call run_rebalance_domains again */
2934 unsigned long next_balance = jiffies + 60*HZ;
1da177e4
LT
2935
2936 for_each_domain(this_cpu, sd) {
1da177e4
LT
2937 if (!(sd->flags & SD_LOAD_BALANCE))
2938 continue;
2939
2940 interval = sd->balance_interval;
2941 if (idle != SCHED_IDLE)
2942 interval *= sd->busy_factor;
2943
2944 /* scale ms to jiffies */
2945 interval = msecs_to_jiffies(interval);
2946 if (unlikely(!interval))
2947 interval = 1;
2948
08c183f3
CL
2949 if (sd->flags & SD_SERIALIZE) {
2950 if (!spin_trylock(&balancing))
2951 goto out;
2952 }
2953
c9819f45 2954 if (time_after_eq(jiffies, sd->last_balance + interval)) {
783609c6 2955 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
fa3b6ddc
SS
2956 /*
2957 * We've pulled tasks over so either we're no
5969fe06
NP
2958 * longer idle, or one of our SMT siblings is
2959 * not idle.
2960 */
1da177e4
LT
2961 idle = NOT_IDLE;
2962 }
1bd77f2d 2963 sd->last_balance = jiffies;
1da177e4 2964 }
08c183f3
CL
2965 if (sd->flags & SD_SERIALIZE)
2966 spin_unlock(&balancing);
2967out:
c9819f45
CL
2968 if (time_after(next_balance, sd->last_balance + interval))
2969 next_balance = sd->last_balance + interval;
783609c6
SS
2970
2971 /*
2972 * Stop the load balance at this level. There is another
2973 * CPU in our sched group which is doing load balancing more
2974 * actively.
2975 */
2976 if (!balance)
2977 break;
1da177e4 2978 }
c9819f45 2979 this_rq->next_balance = next_balance;
1da177e4
LT
2980}
2981#else
2982/*
2983 * on UP we do not need to balance between CPUs:
2984 */
70b97a7f 2985static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
2986{
2987}
2988#endif
2989
e418e1c2 2990static inline void wake_priority_sleeper(struct rq *rq)
1da177e4 2991{
1da177e4 2992#ifdef CONFIG_SCHED_SMT
571f6d2f 2993 if (!rq->nr_running)
e418e1c2 2994 return;
571f6d2f 2995
1da177e4
LT
2996 spin_lock(&rq->lock);
2997 /*
2998 * If an SMT sibling task has been put to sleep for priority
2999 * reasons reschedule the idle task to see if it can now run.
3000 */
e418e1c2 3001 if (rq->nr_running)
1da177e4 3002 resched_task(rq->idle);
1da177e4
LT
3003 spin_unlock(&rq->lock);
3004#endif
1da177e4
LT
3005}
3006
3007DEFINE_PER_CPU(struct kernel_stat, kstat);
3008
3009EXPORT_PER_CPU_SYMBOL(kstat);
3010
3011/*
3012 * This is called on clock ticks and on context switches.
3013 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3014 */
48f24c4d 3015static inline void
70b97a7f 3016update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 3017{
b18ec803
MG
3018 p->sched_time += now - p->last_ran;
3019 p->last_ran = rq->most_recent_timestamp = now;
1da177e4
LT
3020}
3021
3022/*
3023 * Return current->sched_time plus any more ns on the sched_clock
3024 * that have not yet been banked.
3025 */
36c8b586 3026unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
3027{
3028 unsigned long long ns;
3029 unsigned long flags;
48f24c4d 3030
1da177e4 3031 local_irq_save(flags);
b18ec803 3032 ns = p->sched_time + sched_clock() - p->last_ran;
1da177e4 3033 local_irq_restore(flags);
48f24c4d 3034
1da177e4
LT
3035 return ns;
3036}
3037
f1adad78
LT
3038/*
3039 * We place interactive tasks back into the active array, if possible.
3040 *
3041 * To guarantee that this does not starve expired tasks we ignore the
3042 * interactivity of a task if the first expired task had to wait more
3043 * than a 'reasonable' amount of time. This deadline timeout is
3044 * load-dependent, as the frequency of array switched decreases with
3045 * increasing number of running tasks. We also ignore the interactivity
3046 * if a better static_prio task has expired:
3047 */
70b97a7f 3048static inline int expired_starving(struct rq *rq)
48f24c4d
IM
3049{
3050 if (rq->curr->static_prio > rq->best_expired_prio)
3051 return 1;
3052 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3053 return 0;
3054 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3055 return 1;
3056 return 0;
3057}
f1adad78 3058
1da177e4
LT
3059/*
3060 * Account user cpu time to a process.
3061 * @p: the process that the cpu time gets accounted to
3062 * @hardirq_offset: the offset to subtract from hardirq_count()
3063 * @cputime: the cpu time spent in user space since the last update
3064 */
3065void account_user_time(struct task_struct *p, cputime_t cputime)
3066{
3067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3068 cputime64_t tmp;
3069
3070 p->utime = cputime_add(p->utime, cputime);
3071
3072 /* Add user time to cpustat. */
3073 tmp = cputime_to_cputime64(cputime);
3074 if (TASK_NICE(p) > 0)
3075 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3076 else
3077 cpustat->user = cputime64_add(cpustat->user, tmp);
3078}
3079
3080/*
3081 * Account system cpu time to a process.
3082 * @p: the process that the cpu time gets accounted to
3083 * @hardirq_offset: the offset to subtract from hardirq_count()
3084 * @cputime: the cpu time spent in kernel space since the last update
3085 */
3086void account_system_time(struct task_struct *p, int hardirq_offset,
3087 cputime_t cputime)
3088{
3089 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3090 struct rq *rq = this_rq();
1da177e4
LT
3091 cputime64_t tmp;
3092
3093 p->stime = cputime_add(p->stime, cputime);
3094
3095 /* Add system time to cpustat. */
3096 tmp = cputime_to_cputime64(cputime);
3097 if (hardirq_count() - hardirq_offset)
3098 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3099 else if (softirq_count())
3100 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3101 else if (p != rq->idle)
3102 cpustat->system = cputime64_add(cpustat->system, tmp);
3103 else if (atomic_read(&rq->nr_iowait) > 0)
3104 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3105 else
3106 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3107 /* Account for system time used */
3108 acct_update_integrals(p);
1da177e4
LT
3109}
3110
3111/*
3112 * Account for involuntary wait time.
3113 * @p: the process from which the cpu time has been stolen
3114 * @steal: the cpu time spent in involuntary wait
3115 */
3116void account_steal_time(struct task_struct *p, cputime_t steal)
3117{
3118 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3119 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3120 struct rq *rq = this_rq();
1da177e4
LT
3121
3122 if (p == rq->idle) {
3123 p->stime = cputime_add(p->stime, steal);
3124 if (atomic_read(&rq->nr_iowait) > 0)
3125 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3126 else
3127 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3128 } else
3129 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3130}
3131
7835b98b 3132static void task_running_tick(struct rq *rq, struct task_struct *p)
1da177e4 3133{
1da177e4 3134 if (p->array != rq->active) {
7835b98b 3135 /* Task has expired but was not scheduled yet */
1da177e4 3136 set_tsk_need_resched(p);
7835b98b 3137 return;
1da177e4
LT
3138 }
3139 spin_lock(&rq->lock);
3140 /*
3141 * The task was running during this tick - update the
3142 * time slice counter. Note: we do not update a thread's
3143 * priority until it either goes to sleep or uses up its
3144 * timeslice. This makes it possible for interactive tasks
3145 * to use up their timeslices at their highest priority levels.
3146 */
3147 if (rt_task(p)) {
3148 /*
3149 * RR tasks need a special form of timeslice management.
3150 * FIFO tasks have no timeslices.
3151 */
3152 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3153 p->time_slice = task_timeslice(p);
3154 p->first_time_slice = 0;
3155 set_tsk_need_resched(p);
3156
3157 /* put it at the end of the queue: */
3158 requeue_task(p, rq->active);
3159 }
3160 goto out_unlock;
3161 }
3162 if (!--p->time_slice) {
3163 dequeue_task(p, rq->active);
3164 set_tsk_need_resched(p);
3165 p->prio = effective_prio(p);
3166 p->time_slice = task_timeslice(p);
3167 p->first_time_slice = 0;
3168
3169 if (!rq->expired_timestamp)
3170 rq->expired_timestamp = jiffies;
48f24c4d 3171 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3172 enqueue_task(p, rq->expired);
3173 if (p->static_prio < rq->best_expired_prio)
3174 rq->best_expired_prio = p->static_prio;
3175 } else
3176 enqueue_task(p, rq->active);
3177 } else {
3178 /*
3179 * Prevent a too long timeslice allowing a task to monopolize
3180 * the CPU. We do this by splitting up the timeslice into
3181 * smaller pieces.
3182 *
3183 * Note: this does not mean the task's timeslices expire or
3184 * get lost in any way, they just might be preempted by
3185 * another task of equal priority. (one with higher
3186 * priority would have preempted this task already.) We
3187 * requeue this task to the end of the list on this priority
3188 * level, which is in essence a round-robin of tasks with
3189 * equal priority.
3190 *
3191 * This only applies to tasks in the interactive
3192 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3193 */
3194 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3195 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3196 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3197 (p->array == rq->active)) {
3198
3199 requeue_task(p, rq->active);
3200 set_tsk_need_resched(p);
3201 }
3202 }
3203out_unlock:
3204 spin_unlock(&rq->lock);
7835b98b
CL
3205}
3206
3207/*
3208 * This function gets called by the timer code, with HZ frequency.
3209 * We call it with interrupts disabled.
3210 *
3211 * It also gets called by the fork code, when changing the parent's
3212 * timeslices.
3213 */
3214void scheduler_tick(void)
3215{
3216 unsigned long long now = sched_clock();
3217 struct task_struct *p = current;
3218 int cpu = smp_processor_id();
3219 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3220
3221 update_cpu_clock(p, rq, now);
3222
e418e1c2 3223 if (p == rq->idle)
7835b98b 3224 /* Task on the idle queue */
e418e1c2
CL
3225 wake_priority_sleeper(rq);
3226 else
7835b98b 3227 task_running_tick(rq, p);
e418e1c2 3228#ifdef CONFIG_SMP
7835b98b 3229 update_load(rq);
c9819f45
CL
3230 if (time_after_eq(jiffies, rq->next_balance))
3231 raise_softirq(SCHED_SOFTIRQ);
e418e1c2 3232#endif
1da177e4
LT
3233}
3234
3235#ifdef CONFIG_SCHED_SMT
70b97a7f 3236static inline void wakeup_busy_runqueue(struct rq *rq)
fc38ed75
CK
3237{
3238 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3239 if (rq->curr == rq->idle && rq->nr_running)
3240 resched_task(rq->idle);
3241}
3242
c96d145e
CK
3243/*
3244 * Called with interrupt disabled and this_rq's runqueue locked.
3245 */
3246static void wake_sleeping_dependent(int this_cpu)
1da177e4 3247{
41c7ce9a 3248 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3249 int i;
3250
c96d145e
CK
3251 for_each_domain(this_cpu, tmp) {
3252 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3253 sd = tmp;
c96d145e
CK
3254 break;
3255 }
3256 }
41c7ce9a
NP
3257
3258 if (!sd)
1da177e4
LT
3259 return;
3260
c96d145e 3261 for_each_cpu_mask(i, sd->span) {
70b97a7f 3262 struct rq *smt_rq = cpu_rq(i);
1da177e4 3263
c96d145e
CK
3264 if (i == this_cpu)
3265 continue;
3266 if (unlikely(!spin_trylock(&smt_rq->lock)))
3267 continue;
3268
fc38ed75 3269 wakeup_busy_runqueue(smt_rq);
c96d145e 3270 spin_unlock(&smt_rq->lock);
1da177e4 3271 }
1da177e4
LT
3272}
3273
67f9a619
IM
3274/*
3275 * number of 'lost' timeslices this task wont be able to fully
3276 * utilize, if another task runs on a sibling. This models the
3277 * slowdown effect of other tasks running on siblings:
3278 */
36c8b586
IM
3279static inline unsigned long
3280smt_slice(struct task_struct *p, struct sched_domain *sd)
67f9a619
IM
3281{
3282 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3283}
3284
c96d145e
CK
3285/*
3286 * To minimise lock contention and not have to drop this_rq's runlock we only
3287 * trylock the sibling runqueues and bypass those runqueues if we fail to
3288 * acquire their lock. As we only trylock the normal locking order does not
3289 * need to be obeyed.
3290 */
36c8b586 3291static int
70b97a7f 3292dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4 3293{
41c7ce9a 3294 struct sched_domain *tmp, *sd = NULL;
1da177e4 3295 int ret = 0, i;
1da177e4 3296
c96d145e
CK
3297 /* kernel/rt threads do not participate in dependent sleeping */
3298 if (!p->mm || rt_task(p))
3299 return 0;
3300
3301 for_each_domain(this_cpu, tmp) {
3302 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3303 sd = tmp;
c96d145e
CK
3304 break;
3305 }
3306 }
41c7ce9a
NP
3307
3308 if (!sd)
1da177e4
LT
3309 return 0;
3310
c96d145e 3311 for_each_cpu_mask(i, sd->span) {
36c8b586 3312 struct task_struct *smt_curr;
70b97a7f 3313 struct rq *smt_rq;
1da177e4 3314
c96d145e
CK
3315 if (i == this_cpu)
3316 continue;
1da177e4 3317
c96d145e
CK
3318 smt_rq = cpu_rq(i);
3319 if (unlikely(!spin_trylock(&smt_rq->lock)))
3320 continue;
1da177e4 3321
c96d145e 3322 smt_curr = smt_rq->curr;
1da177e4 3323
c96d145e
CK
3324 if (!smt_curr->mm)
3325 goto unlock;
fc38ed75 3326
1da177e4
LT
3327 /*
3328 * If a user task with lower static priority than the
3329 * running task on the SMT sibling is trying to schedule,
3330 * delay it till there is proportionately less timeslice
3331 * left of the sibling task to prevent a lower priority
3332 * task from using an unfair proportion of the
3333 * physical cpu's resources. -ck
3334 */
fc38ed75
CK
3335 if (rt_task(smt_curr)) {
3336 /*
3337 * With real time tasks we run non-rt tasks only
3338 * per_cpu_gain% of the time.
3339 */
3340 if ((jiffies % DEF_TIMESLICE) >
3341 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3342 ret = 1;
c96d145e 3343 } else {
67f9a619
IM
3344 if (smt_curr->static_prio < p->static_prio &&
3345 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3346 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3347 ret = 1;
fc38ed75 3348 }
c96d145e
CK
3349unlock:
3350 spin_unlock(&smt_rq->lock);
1da177e4 3351 }
1da177e4
LT
3352 return ret;
3353}
3354#else
c96d145e 3355static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3356{
3357}
48f24c4d 3358static inline int
70b97a7f 3359dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4
LT
3360{
3361 return 0;
3362}
3363#endif
3364
3365#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3366
3367void fastcall add_preempt_count(int val)
3368{
3369 /*
3370 * Underflow?
3371 */
9a11b49a
IM
3372 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3373 return;
1da177e4
LT
3374 preempt_count() += val;
3375 /*
3376 * Spinlock count overflowing soon?
3377 */
33859f7f
MOS
3378 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3379 PREEMPT_MASK - 10);
1da177e4
LT
3380}
3381EXPORT_SYMBOL(add_preempt_count);
3382
3383void fastcall sub_preempt_count(int val)
3384{
3385 /*
3386 * Underflow?
3387 */
9a11b49a
IM
3388 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3389 return;
1da177e4
LT
3390 /*
3391 * Is the spinlock portion underflowing?
3392 */
9a11b49a
IM
3393 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3394 !(preempt_count() & PREEMPT_MASK)))
3395 return;
3396
1da177e4
LT
3397 preempt_count() -= val;
3398}
3399EXPORT_SYMBOL(sub_preempt_count);
3400
3401#endif
3402
3dee386e
CK
3403static inline int interactive_sleep(enum sleep_type sleep_type)
3404{
3405 return (sleep_type == SLEEP_INTERACTIVE ||
3406 sleep_type == SLEEP_INTERRUPTED);
3407}
3408
1da177e4
LT
3409/*
3410 * schedule() is the main scheduler function.
3411 */
3412asmlinkage void __sched schedule(void)
3413{
36c8b586 3414 struct task_struct *prev, *next;
70b97a7f 3415 struct prio_array *array;
1da177e4
LT
3416 struct list_head *queue;
3417 unsigned long long now;
3418 unsigned long run_time;
a3464a10 3419 int cpu, idx, new_prio;
48f24c4d 3420 long *switch_count;
70b97a7f 3421 struct rq *rq;
1da177e4
LT
3422
3423 /*
3424 * Test if we are atomic. Since do_exit() needs to call into
3425 * schedule() atomically, we ignore that path for now.
3426 * Otherwise, whine if we are scheduling when we should not be.
3427 */
77e4bfbc
AM
3428 if (unlikely(in_atomic() && !current->exit_state)) {
3429 printk(KERN_ERR "BUG: scheduling while atomic: "
3430 "%s/0x%08x/%d\n",
3431 current->comm, preempt_count(), current->pid);
a4c410f0 3432 debug_show_held_locks(current);
3117df04
IM
3433 if (irqs_disabled())
3434 print_irqtrace_events(current);
77e4bfbc 3435 dump_stack();
1da177e4
LT
3436 }
3437 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3438
3439need_resched:
3440 preempt_disable();
3441 prev = current;
3442 release_kernel_lock(prev);
3443need_resched_nonpreemptible:
3444 rq = this_rq();
3445
3446 /*
3447 * The idle thread is not allowed to schedule!
3448 * Remove this check after it has been exercised a bit.
3449 */
3450 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3451 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3452 dump_stack();
3453 }
3454
3455 schedstat_inc(rq, sched_cnt);
3456 now = sched_clock();
238628ed 3457 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3458 run_time = now - prev->timestamp;
238628ed 3459 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3460 run_time = 0;
3461 } else
3462 run_time = NS_MAX_SLEEP_AVG;
3463
3464 /*
3465 * Tasks charged proportionately less run_time at high sleep_avg to
3466 * delay them losing their interactive status
3467 */
3468 run_time /= (CURRENT_BONUS(prev) ? : 1);
3469
3470 spin_lock_irq(&rq->lock);
3471
1da177e4
LT
3472 switch_count = &prev->nivcsw;
3473 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3474 switch_count = &prev->nvcsw;
3475 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3476 unlikely(signal_pending(prev))))
3477 prev->state = TASK_RUNNING;
3478 else {
3479 if (prev->state == TASK_UNINTERRUPTIBLE)
3480 rq->nr_uninterruptible++;
3481 deactivate_task(prev, rq);
3482 }
3483 }
3484
3485 cpu = smp_processor_id();
3486 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3487 idle_balance(cpu, rq);
3488 if (!rq->nr_running) {
3489 next = rq->idle;
3490 rq->expired_timestamp = 0;
c96d145e 3491 wake_sleeping_dependent(cpu);
1da177e4
LT
3492 goto switch_tasks;
3493 }
1da177e4
LT
3494 }
3495
3496 array = rq->active;
3497 if (unlikely(!array->nr_active)) {
3498 /*
3499 * Switch the active and expired arrays.
3500 */
3501 schedstat_inc(rq, sched_switch);
3502 rq->active = rq->expired;
3503 rq->expired = array;
3504 array = rq->active;
3505 rq->expired_timestamp = 0;
3506 rq->best_expired_prio = MAX_PRIO;
3507 }
3508
3509 idx = sched_find_first_bit(array->bitmap);
3510 queue = array->queue + idx;
36c8b586 3511 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3512
3dee386e 3513 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3514 unsigned long long delta = now - next->timestamp;
238628ed 3515 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3516 delta = 0;
3517
3dee386e 3518 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3519 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3520
3521 array = next->array;
a3464a10
CS
3522 new_prio = recalc_task_prio(next, next->timestamp + delta);
3523
3524 if (unlikely(next->prio != new_prio)) {
3525 dequeue_task(next, array);
3526 next->prio = new_prio;
3527 enqueue_task(next, array);
7c4bb1f9 3528 }
1da177e4 3529 }
3dee386e 3530 next->sleep_type = SLEEP_NORMAL;
c96d145e
CK
3531 if (dependent_sleeper(cpu, rq, next))
3532 next = rq->idle;
1da177e4
LT
3533switch_tasks:
3534 if (next == rq->idle)
3535 schedstat_inc(rq, sched_goidle);
3536 prefetch(next);
383f2835 3537 prefetch_stack(next);
1da177e4
LT
3538 clear_tsk_need_resched(prev);
3539 rcu_qsctr_inc(task_cpu(prev));
3540
3541 update_cpu_clock(prev, rq, now);
3542
3543 prev->sleep_avg -= run_time;
3544 if ((long)prev->sleep_avg <= 0)
3545 prev->sleep_avg = 0;
3546 prev->timestamp = prev->last_ran = now;
3547
3548 sched_info_switch(prev, next);
3549 if (likely(prev != next)) {
3550 next->timestamp = now;
3551 rq->nr_switches++;
3552 rq->curr = next;
3553 ++*switch_count;
3554
4866cde0 3555 prepare_task_switch(rq, next);
1da177e4
LT
3556 prev = context_switch(rq, prev, next);
3557 barrier();
4866cde0
NP
3558 /*
3559 * this_rq must be evaluated again because prev may have moved
3560 * CPUs since it called schedule(), thus the 'rq' on its stack
3561 * frame will be invalid.
3562 */
3563 finish_task_switch(this_rq(), prev);
1da177e4
LT
3564 } else
3565 spin_unlock_irq(&rq->lock);
3566
3567 prev = current;
3568 if (unlikely(reacquire_kernel_lock(prev) < 0))
3569 goto need_resched_nonpreemptible;
3570 preempt_enable_no_resched();
3571 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3572 goto need_resched;
3573}
1da177e4
LT
3574EXPORT_SYMBOL(schedule);
3575
3576#ifdef CONFIG_PREEMPT
3577/*
2ed6e34f 3578 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3579 * off of preempt_enable. Kernel preemptions off return from interrupt
3580 * occur there and call schedule directly.
3581 */
3582asmlinkage void __sched preempt_schedule(void)
3583{
3584 struct thread_info *ti = current_thread_info();
3585#ifdef CONFIG_PREEMPT_BKL
3586 struct task_struct *task = current;
3587 int saved_lock_depth;
3588#endif
3589 /*
3590 * If there is a non-zero preempt_count or interrupts are disabled,
3591 * we do not want to preempt the current task. Just return..
3592 */
beed33a8 3593 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3594 return;
3595
3596need_resched:
3597 add_preempt_count(PREEMPT_ACTIVE);
3598 /*
3599 * We keep the big kernel semaphore locked, but we
3600 * clear ->lock_depth so that schedule() doesnt
3601 * auto-release the semaphore:
3602 */
3603#ifdef CONFIG_PREEMPT_BKL
3604 saved_lock_depth = task->lock_depth;
3605 task->lock_depth = -1;
3606#endif
3607 schedule();
3608#ifdef CONFIG_PREEMPT_BKL
3609 task->lock_depth = saved_lock_depth;
3610#endif
3611 sub_preempt_count(PREEMPT_ACTIVE);
3612
3613 /* we could miss a preemption opportunity between schedule and now */
3614 barrier();
3615 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3616 goto need_resched;
3617}
1da177e4
LT
3618EXPORT_SYMBOL(preempt_schedule);
3619
3620/*
2ed6e34f 3621 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3622 * off of irq context.
3623 * Note, that this is called and return with irqs disabled. This will
3624 * protect us against recursive calling from irq.
3625 */
3626asmlinkage void __sched preempt_schedule_irq(void)
3627{
3628 struct thread_info *ti = current_thread_info();
3629#ifdef CONFIG_PREEMPT_BKL
3630 struct task_struct *task = current;
3631 int saved_lock_depth;
3632#endif
2ed6e34f 3633 /* Catch callers which need to be fixed */
1da177e4
LT
3634 BUG_ON(ti->preempt_count || !irqs_disabled());
3635
3636need_resched:
3637 add_preempt_count(PREEMPT_ACTIVE);
3638 /*
3639 * We keep the big kernel semaphore locked, but we
3640 * clear ->lock_depth so that schedule() doesnt
3641 * auto-release the semaphore:
3642 */
3643#ifdef CONFIG_PREEMPT_BKL
3644 saved_lock_depth = task->lock_depth;
3645 task->lock_depth = -1;
3646#endif
3647 local_irq_enable();
3648 schedule();
3649 local_irq_disable();
3650#ifdef CONFIG_PREEMPT_BKL
3651 task->lock_depth = saved_lock_depth;
3652#endif
3653 sub_preempt_count(PREEMPT_ACTIVE);
3654
3655 /* we could miss a preemption opportunity between schedule and now */
3656 barrier();
3657 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3658 goto need_resched;
3659}
3660
3661#endif /* CONFIG_PREEMPT */
3662
95cdf3b7
IM
3663int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3664 void *key)
1da177e4 3665{
48f24c4d 3666 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3667}
1da177e4
LT
3668EXPORT_SYMBOL(default_wake_function);
3669
3670/*
3671 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3672 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3673 * number) then we wake all the non-exclusive tasks and one exclusive task.
3674 *
3675 * There are circumstances in which we can try to wake a task which has already
3676 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3677 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3678 */
3679static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3680 int nr_exclusive, int sync, void *key)
3681{
3682 struct list_head *tmp, *next;
3683
3684 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3685 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3686 unsigned flags = curr->flags;
3687
1da177e4 3688 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3689 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3690 break;
3691 }
3692}
3693
3694/**
3695 * __wake_up - wake up threads blocked on a waitqueue.
3696 * @q: the waitqueue
3697 * @mode: which threads
3698 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3699 * @key: is directly passed to the wakeup function
1da177e4
LT
3700 */
3701void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3702 int nr_exclusive, void *key)
1da177e4
LT
3703{
3704 unsigned long flags;
3705
3706 spin_lock_irqsave(&q->lock, flags);
3707 __wake_up_common(q, mode, nr_exclusive, 0, key);
3708 spin_unlock_irqrestore(&q->lock, flags);
3709}
1da177e4
LT
3710EXPORT_SYMBOL(__wake_up);
3711
3712/*
3713 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3714 */
3715void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3716{
3717 __wake_up_common(q, mode, 1, 0, NULL);
3718}
3719
3720/**
67be2dd1 3721 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3722 * @q: the waitqueue
3723 * @mode: which threads
3724 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3725 *
3726 * The sync wakeup differs that the waker knows that it will schedule
3727 * away soon, so while the target thread will be woken up, it will not
3728 * be migrated to another CPU - ie. the two threads are 'synchronized'
3729 * with each other. This can prevent needless bouncing between CPUs.
3730 *
3731 * On UP it can prevent extra preemption.
3732 */
95cdf3b7
IM
3733void fastcall
3734__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3735{
3736 unsigned long flags;
3737 int sync = 1;
3738
3739 if (unlikely(!q))
3740 return;
3741
3742 if (unlikely(!nr_exclusive))
3743 sync = 0;
3744
3745 spin_lock_irqsave(&q->lock, flags);
3746 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3747 spin_unlock_irqrestore(&q->lock, flags);
3748}
3749EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3750
3751void fastcall complete(struct completion *x)
3752{
3753 unsigned long flags;
3754
3755 spin_lock_irqsave(&x->wait.lock, flags);
3756 x->done++;
3757 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3758 1, 0, NULL);
3759 spin_unlock_irqrestore(&x->wait.lock, flags);
3760}
3761EXPORT_SYMBOL(complete);
3762
3763void fastcall complete_all(struct completion *x)
3764{
3765 unsigned long flags;
3766
3767 spin_lock_irqsave(&x->wait.lock, flags);
3768 x->done += UINT_MAX/2;
3769 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3770 0, 0, NULL);
3771 spin_unlock_irqrestore(&x->wait.lock, flags);
3772}
3773EXPORT_SYMBOL(complete_all);
3774
3775void fastcall __sched wait_for_completion(struct completion *x)
3776{
3777 might_sleep();
48f24c4d 3778
1da177e4
LT
3779 spin_lock_irq(&x->wait.lock);
3780 if (!x->done) {
3781 DECLARE_WAITQUEUE(wait, current);
3782
3783 wait.flags |= WQ_FLAG_EXCLUSIVE;
3784 __add_wait_queue_tail(&x->wait, &wait);
3785 do {
3786 __set_current_state(TASK_UNINTERRUPTIBLE);
3787 spin_unlock_irq(&x->wait.lock);
3788 schedule();
3789 spin_lock_irq(&x->wait.lock);
3790 } while (!x->done);
3791 __remove_wait_queue(&x->wait, &wait);
3792 }
3793 x->done--;
3794 spin_unlock_irq(&x->wait.lock);
3795}
3796EXPORT_SYMBOL(wait_for_completion);
3797
3798unsigned long fastcall __sched
3799wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3800{
3801 might_sleep();
3802
3803 spin_lock_irq(&x->wait.lock);
3804 if (!x->done) {
3805 DECLARE_WAITQUEUE(wait, current);
3806
3807 wait.flags |= WQ_FLAG_EXCLUSIVE;
3808 __add_wait_queue_tail(&x->wait, &wait);
3809 do {
3810 __set_current_state(TASK_UNINTERRUPTIBLE);
3811 spin_unlock_irq(&x->wait.lock);
3812 timeout = schedule_timeout(timeout);
3813 spin_lock_irq(&x->wait.lock);
3814 if (!timeout) {
3815 __remove_wait_queue(&x->wait, &wait);
3816 goto out;
3817 }
3818 } while (!x->done);
3819 __remove_wait_queue(&x->wait, &wait);
3820 }
3821 x->done--;
3822out:
3823 spin_unlock_irq(&x->wait.lock);
3824 return timeout;
3825}
3826EXPORT_SYMBOL(wait_for_completion_timeout);
3827
3828int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3829{
3830 int ret = 0;
3831
3832 might_sleep();
3833
3834 spin_lock_irq(&x->wait.lock);
3835 if (!x->done) {
3836 DECLARE_WAITQUEUE(wait, current);
3837
3838 wait.flags |= WQ_FLAG_EXCLUSIVE;
3839 __add_wait_queue_tail(&x->wait, &wait);
3840 do {
3841 if (signal_pending(current)) {
3842 ret = -ERESTARTSYS;
3843 __remove_wait_queue(&x->wait, &wait);
3844 goto out;
3845 }
3846 __set_current_state(TASK_INTERRUPTIBLE);
3847 spin_unlock_irq(&x->wait.lock);
3848 schedule();
3849 spin_lock_irq(&x->wait.lock);
3850 } while (!x->done);
3851 __remove_wait_queue(&x->wait, &wait);
3852 }
3853 x->done--;
3854out:
3855 spin_unlock_irq(&x->wait.lock);
3856
3857 return ret;
3858}
3859EXPORT_SYMBOL(wait_for_completion_interruptible);
3860
3861unsigned long fastcall __sched
3862wait_for_completion_interruptible_timeout(struct completion *x,
3863 unsigned long timeout)
3864{
3865 might_sleep();
3866
3867 spin_lock_irq(&x->wait.lock);
3868 if (!x->done) {
3869 DECLARE_WAITQUEUE(wait, current);
3870
3871 wait.flags |= WQ_FLAG_EXCLUSIVE;
3872 __add_wait_queue_tail(&x->wait, &wait);
3873 do {
3874 if (signal_pending(current)) {
3875 timeout = -ERESTARTSYS;
3876 __remove_wait_queue(&x->wait, &wait);
3877 goto out;
3878 }
3879 __set_current_state(TASK_INTERRUPTIBLE);
3880 spin_unlock_irq(&x->wait.lock);
3881 timeout = schedule_timeout(timeout);
3882 spin_lock_irq(&x->wait.lock);
3883 if (!timeout) {
3884 __remove_wait_queue(&x->wait, &wait);
3885 goto out;
3886 }
3887 } while (!x->done);
3888 __remove_wait_queue(&x->wait, &wait);
3889 }
3890 x->done--;
3891out:
3892 spin_unlock_irq(&x->wait.lock);
3893 return timeout;
3894}
3895EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3896
3897
3898#define SLEEP_ON_VAR \
3899 unsigned long flags; \
3900 wait_queue_t wait; \
3901 init_waitqueue_entry(&wait, current);
3902
3903#define SLEEP_ON_HEAD \
3904 spin_lock_irqsave(&q->lock,flags); \
3905 __add_wait_queue(q, &wait); \
3906 spin_unlock(&q->lock);
3907
3908#define SLEEP_ON_TAIL \
3909 spin_lock_irq(&q->lock); \
3910 __remove_wait_queue(q, &wait); \
3911 spin_unlock_irqrestore(&q->lock, flags);
3912
3913void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3914{
3915 SLEEP_ON_VAR
3916
3917 current->state = TASK_INTERRUPTIBLE;
3918
3919 SLEEP_ON_HEAD
3920 schedule();
3921 SLEEP_ON_TAIL
3922}
1da177e4
LT
3923EXPORT_SYMBOL(interruptible_sleep_on);
3924
95cdf3b7
IM
3925long fastcall __sched
3926interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3927{
3928 SLEEP_ON_VAR
3929
3930 current->state = TASK_INTERRUPTIBLE;
3931
3932 SLEEP_ON_HEAD
3933 timeout = schedule_timeout(timeout);
3934 SLEEP_ON_TAIL
3935
3936 return timeout;
3937}
1da177e4
LT
3938EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3939
3940void fastcall __sched sleep_on(wait_queue_head_t *q)
3941{
3942 SLEEP_ON_VAR
3943
3944 current->state = TASK_UNINTERRUPTIBLE;
3945
3946 SLEEP_ON_HEAD
3947 schedule();
3948 SLEEP_ON_TAIL
3949}
1da177e4
LT
3950EXPORT_SYMBOL(sleep_on);
3951
3952long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3953{
3954 SLEEP_ON_VAR
3955
3956 current->state = TASK_UNINTERRUPTIBLE;
3957
3958 SLEEP_ON_HEAD
3959 timeout = schedule_timeout(timeout);
3960 SLEEP_ON_TAIL
3961
3962 return timeout;
3963}
3964
3965EXPORT_SYMBOL(sleep_on_timeout);
3966
b29739f9
IM
3967#ifdef CONFIG_RT_MUTEXES
3968
3969/*
3970 * rt_mutex_setprio - set the current priority of a task
3971 * @p: task
3972 * @prio: prio value (kernel-internal form)
3973 *
3974 * This function changes the 'effective' priority of a task. It does
3975 * not touch ->normal_prio like __setscheduler().
3976 *
3977 * Used by the rt_mutex code to implement priority inheritance logic.
3978 */
36c8b586 3979void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3980{
70b97a7f 3981 struct prio_array *array;
b29739f9 3982 unsigned long flags;
70b97a7f 3983 struct rq *rq;
b29739f9
IM
3984 int oldprio;
3985
3986 BUG_ON(prio < 0 || prio > MAX_PRIO);
3987
3988 rq = task_rq_lock(p, &flags);
3989
3990 oldprio = p->prio;
3991 array = p->array;
3992 if (array)
3993 dequeue_task(p, array);
3994 p->prio = prio;
3995
3996 if (array) {
3997 /*
3998 * If changing to an RT priority then queue it
3999 * in the active array!
4000 */
4001 if (rt_task(p))
4002 array = rq->active;
4003 enqueue_task(p, array);
4004 /*
4005 * Reschedule if we are currently running on this runqueue and
4006 * our priority decreased, or if we are not currently running on
4007 * this runqueue and our priority is higher than the current's
4008 */
4009 if (task_running(rq, p)) {
4010 if (p->prio > oldprio)
4011 resched_task(rq->curr);
4012 } else if (TASK_PREEMPTS_CURR(p, rq))
4013 resched_task(rq->curr);
4014 }
4015 task_rq_unlock(rq, &flags);
4016}
4017
4018#endif
4019
36c8b586 4020void set_user_nice(struct task_struct *p, long nice)
1da177e4 4021{
70b97a7f 4022 struct prio_array *array;
48f24c4d 4023 int old_prio, delta;
1da177e4 4024 unsigned long flags;
70b97a7f 4025 struct rq *rq;
1da177e4
LT
4026
4027 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4028 return;
4029 /*
4030 * We have to be careful, if called from sys_setpriority(),
4031 * the task might be in the middle of scheduling on another CPU.
4032 */
4033 rq = task_rq_lock(p, &flags);
4034 /*
4035 * The RT priorities are set via sched_setscheduler(), but we still
4036 * allow the 'normal' nice value to be set - but as expected
4037 * it wont have any effect on scheduling until the task is
b0a9499c 4038 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 4039 */
b29739f9 4040 if (has_rt_policy(p)) {
1da177e4
LT
4041 p->static_prio = NICE_TO_PRIO(nice);
4042 goto out_unlock;
4043 }
4044 array = p->array;
2dd73a4f 4045 if (array) {
1da177e4 4046 dequeue_task(p, array);
2dd73a4f
PW
4047 dec_raw_weighted_load(rq, p);
4048 }
1da177e4 4049
1da177e4 4050 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4051 set_load_weight(p);
b29739f9
IM
4052 old_prio = p->prio;
4053 p->prio = effective_prio(p);
4054 delta = p->prio - old_prio;
1da177e4
LT
4055
4056 if (array) {
4057 enqueue_task(p, array);
2dd73a4f 4058 inc_raw_weighted_load(rq, p);
1da177e4
LT
4059 /*
4060 * If the task increased its priority or is running and
4061 * lowered its priority, then reschedule its CPU:
4062 */
4063 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4064 resched_task(rq->curr);
4065 }
4066out_unlock:
4067 task_rq_unlock(rq, &flags);
4068}
1da177e4
LT
4069EXPORT_SYMBOL(set_user_nice);
4070
e43379f1
MM
4071/*
4072 * can_nice - check if a task can reduce its nice value
4073 * @p: task
4074 * @nice: nice value
4075 */
36c8b586 4076int can_nice(const struct task_struct *p, const int nice)
e43379f1 4077{
024f4747
MM
4078 /* convert nice value [19,-20] to rlimit style value [1,40] */
4079 int nice_rlim = 20 - nice;
48f24c4d 4080
e43379f1
MM
4081 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4082 capable(CAP_SYS_NICE));
4083}
4084
1da177e4
LT
4085#ifdef __ARCH_WANT_SYS_NICE
4086
4087/*
4088 * sys_nice - change the priority of the current process.
4089 * @increment: priority increment
4090 *
4091 * sys_setpriority is a more generic, but much slower function that
4092 * does similar things.
4093 */
4094asmlinkage long sys_nice(int increment)
4095{
48f24c4d 4096 long nice, retval;
1da177e4
LT
4097
4098 /*
4099 * Setpriority might change our priority at the same moment.
4100 * We don't have to worry. Conceptually one call occurs first
4101 * and we have a single winner.
4102 */
e43379f1
MM
4103 if (increment < -40)
4104 increment = -40;
1da177e4
LT
4105 if (increment > 40)
4106 increment = 40;
4107
4108 nice = PRIO_TO_NICE(current->static_prio) + increment;
4109 if (nice < -20)
4110 nice = -20;
4111 if (nice > 19)
4112 nice = 19;
4113
e43379f1
MM
4114 if (increment < 0 && !can_nice(current, nice))
4115 return -EPERM;
4116
1da177e4
LT
4117 retval = security_task_setnice(current, nice);
4118 if (retval)
4119 return retval;
4120
4121 set_user_nice(current, nice);
4122 return 0;
4123}
4124
4125#endif
4126
4127/**
4128 * task_prio - return the priority value of a given task.
4129 * @p: the task in question.
4130 *
4131 * This is the priority value as seen by users in /proc.
4132 * RT tasks are offset by -200. Normal tasks are centered
4133 * around 0, value goes from -16 to +15.
4134 */
36c8b586 4135int task_prio(const struct task_struct *p)
1da177e4
LT
4136{
4137 return p->prio - MAX_RT_PRIO;
4138}
4139
4140/**
4141 * task_nice - return the nice value of a given task.
4142 * @p: the task in question.
4143 */
36c8b586 4144int task_nice(const struct task_struct *p)
1da177e4
LT
4145{
4146 return TASK_NICE(p);
4147}
1da177e4 4148EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4149
4150/**
4151 * idle_cpu - is a given cpu idle currently?
4152 * @cpu: the processor in question.
4153 */
4154int idle_cpu(int cpu)
4155{
4156 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4157}
4158
1da177e4
LT
4159/**
4160 * idle_task - return the idle task for a given cpu.
4161 * @cpu: the processor in question.
4162 */
36c8b586 4163struct task_struct *idle_task(int cpu)
1da177e4
LT
4164{
4165 return cpu_rq(cpu)->idle;
4166}
4167
4168/**
4169 * find_process_by_pid - find a process with a matching PID value.
4170 * @pid: the pid in question.
4171 */
36c8b586 4172static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4173{
4174 return pid ? find_task_by_pid(pid) : current;
4175}
4176
4177/* Actually do priority change: must hold rq lock. */
4178static void __setscheduler(struct task_struct *p, int policy, int prio)
4179{
4180 BUG_ON(p->array);
48f24c4d 4181
1da177e4
LT
4182 p->policy = policy;
4183 p->rt_priority = prio;
b29739f9
IM
4184 p->normal_prio = normal_prio(p);
4185 /* we are holding p->pi_lock already */
4186 p->prio = rt_mutex_getprio(p);
4187 /*
4188 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4189 */
4190 if (policy == SCHED_BATCH)
4191 p->sleep_avg = 0;
2dd73a4f 4192 set_load_weight(p);
1da177e4
LT
4193}
4194
4195/**
4196 * sched_setscheduler - change the scheduling policy and/or RT priority of
4197 * a thread.
4198 * @p: the task in question.
4199 * @policy: new policy.
4200 * @param: structure containing the new RT priority.
5fe1d75f
ON
4201 *
4202 * NOTE: the task may be already dead
1da177e4 4203 */
95cdf3b7
IM
4204int sched_setscheduler(struct task_struct *p, int policy,
4205 struct sched_param *param)
1da177e4 4206{
48f24c4d 4207 int retval, oldprio, oldpolicy = -1;
70b97a7f 4208 struct prio_array *array;
1da177e4 4209 unsigned long flags;
70b97a7f 4210 struct rq *rq;
1da177e4 4211
66e5393a
SR
4212 /* may grab non-irq protected spin_locks */
4213 BUG_ON(in_interrupt());
1da177e4
LT
4214recheck:
4215 /* double check policy once rq lock held */
4216 if (policy < 0)
4217 policy = oldpolicy = p->policy;
4218 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4219 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4220 return -EINVAL;
1da177e4
LT
4221 /*
4222 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4223 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4224 * SCHED_BATCH is 0.
1da177e4
LT
4225 */
4226 if (param->sched_priority < 0 ||
95cdf3b7 4227 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4228 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4229 return -EINVAL;
57a6f51c 4230 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4231 return -EINVAL;
4232
37e4ab3f
OC
4233 /*
4234 * Allow unprivileged RT tasks to decrease priority:
4235 */
4236 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4237 if (is_rt_policy(policy)) {
4238 unsigned long rlim_rtprio;
4239 unsigned long flags;
4240
4241 if (!lock_task_sighand(p, &flags))
4242 return -ESRCH;
4243 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4244 unlock_task_sighand(p, &flags);
4245
4246 /* can't set/change the rt policy */
4247 if (policy != p->policy && !rlim_rtprio)
4248 return -EPERM;
4249
4250 /* can't increase priority */
4251 if (param->sched_priority > p->rt_priority &&
4252 param->sched_priority > rlim_rtprio)
4253 return -EPERM;
4254 }
5fe1d75f 4255
37e4ab3f
OC
4256 /* can't change other user's priorities */
4257 if ((current->euid != p->euid) &&
4258 (current->euid != p->uid))
4259 return -EPERM;
4260 }
1da177e4
LT
4261
4262 retval = security_task_setscheduler(p, policy, param);
4263 if (retval)
4264 return retval;
b29739f9
IM
4265 /*
4266 * make sure no PI-waiters arrive (or leave) while we are
4267 * changing the priority of the task:
4268 */
4269 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4270 /*
4271 * To be able to change p->policy safely, the apropriate
4272 * runqueue lock must be held.
4273 */
b29739f9 4274 rq = __task_rq_lock(p);
1da177e4
LT
4275 /* recheck policy now with rq lock held */
4276 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4277 policy = oldpolicy = -1;
b29739f9
IM
4278 __task_rq_unlock(rq);
4279 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4280 goto recheck;
4281 }
4282 array = p->array;
4283 if (array)
4284 deactivate_task(p, rq);
4285 oldprio = p->prio;
4286 __setscheduler(p, policy, param->sched_priority);
4287 if (array) {
4288 __activate_task(p, rq);
4289 /*
4290 * Reschedule if we are currently running on this runqueue and
4291 * our priority decreased, or if we are not currently running on
4292 * this runqueue and our priority is higher than the current's
4293 */
4294 if (task_running(rq, p)) {
4295 if (p->prio > oldprio)
4296 resched_task(rq->curr);
4297 } else if (TASK_PREEMPTS_CURR(p, rq))
4298 resched_task(rq->curr);
4299 }
b29739f9
IM
4300 __task_rq_unlock(rq);
4301 spin_unlock_irqrestore(&p->pi_lock, flags);
4302
95e02ca9
TG
4303 rt_mutex_adjust_pi(p);
4304
1da177e4
LT
4305 return 0;
4306}
4307EXPORT_SYMBOL_GPL(sched_setscheduler);
4308
95cdf3b7
IM
4309static int
4310do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4311{
1da177e4
LT
4312 struct sched_param lparam;
4313 struct task_struct *p;
36c8b586 4314 int retval;
1da177e4
LT
4315
4316 if (!param || pid < 0)
4317 return -EINVAL;
4318 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4319 return -EFAULT;
5fe1d75f
ON
4320
4321 rcu_read_lock();
4322 retval = -ESRCH;
1da177e4 4323 p = find_process_by_pid(pid);
5fe1d75f
ON
4324 if (p != NULL)
4325 retval = sched_setscheduler(p, policy, &lparam);
4326 rcu_read_unlock();
36c8b586 4327
1da177e4
LT
4328 return retval;
4329}
4330
4331/**
4332 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4333 * @pid: the pid in question.
4334 * @policy: new policy.
4335 * @param: structure containing the new RT priority.
4336 */
4337asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4338 struct sched_param __user *param)
4339{
c21761f1
JB
4340 /* negative values for policy are not valid */
4341 if (policy < 0)
4342 return -EINVAL;
4343
1da177e4
LT
4344 return do_sched_setscheduler(pid, policy, param);
4345}
4346
4347/**
4348 * sys_sched_setparam - set/change the RT priority of a thread
4349 * @pid: the pid in question.
4350 * @param: structure containing the new RT priority.
4351 */
4352asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4353{
4354 return do_sched_setscheduler(pid, -1, param);
4355}
4356
4357/**
4358 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4359 * @pid: the pid in question.
4360 */
4361asmlinkage long sys_sched_getscheduler(pid_t pid)
4362{
36c8b586 4363 struct task_struct *p;
1da177e4 4364 int retval = -EINVAL;
1da177e4
LT
4365
4366 if (pid < 0)
4367 goto out_nounlock;
4368
4369 retval = -ESRCH;
4370 read_lock(&tasklist_lock);
4371 p = find_process_by_pid(pid);
4372 if (p) {
4373 retval = security_task_getscheduler(p);
4374 if (!retval)
4375 retval = p->policy;
4376 }
4377 read_unlock(&tasklist_lock);
4378
4379out_nounlock:
4380 return retval;
4381}
4382
4383/**
4384 * sys_sched_getscheduler - get the RT priority of a thread
4385 * @pid: the pid in question.
4386 * @param: structure containing the RT priority.
4387 */
4388asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4389{
4390 struct sched_param lp;
36c8b586 4391 struct task_struct *p;
1da177e4 4392 int retval = -EINVAL;
1da177e4
LT
4393
4394 if (!param || pid < 0)
4395 goto out_nounlock;
4396
4397 read_lock(&tasklist_lock);
4398 p = find_process_by_pid(pid);
4399 retval = -ESRCH;
4400 if (!p)
4401 goto out_unlock;
4402
4403 retval = security_task_getscheduler(p);
4404 if (retval)
4405 goto out_unlock;
4406
4407 lp.sched_priority = p->rt_priority;
4408 read_unlock(&tasklist_lock);
4409
4410 /*
4411 * This one might sleep, we cannot do it with a spinlock held ...
4412 */
4413 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4414
4415out_nounlock:
4416 return retval;
4417
4418out_unlock:
4419 read_unlock(&tasklist_lock);
4420 return retval;
4421}
4422
4423long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4424{
1da177e4 4425 cpumask_t cpus_allowed;
36c8b586
IM
4426 struct task_struct *p;
4427 int retval;
1da177e4
LT
4428
4429 lock_cpu_hotplug();
4430 read_lock(&tasklist_lock);
4431
4432 p = find_process_by_pid(pid);
4433 if (!p) {
4434 read_unlock(&tasklist_lock);
4435 unlock_cpu_hotplug();
4436 return -ESRCH;
4437 }
4438
4439 /*
4440 * It is not safe to call set_cpus_allowed with the
4441 * tasklist_lock held. We will bump the task_struct's
4442 * usage count and then drop tasklist_lock.
4443 */
4444 get_task_struct(p);
4445 read_unlock(&tasklist_lock);
4446
4447 retval = -EPERM;
4448 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4449 !capable(CAP_SYS_NICE))
4450 goto out_unlock;
4451
e7834f8f
DQ
4452 retval = security_task_setscheduler(p, 0, NULL);
4453 if (retval)
4454 goto out_unlock;
4455
1da177e4
LT
4456 cpus_allowed = cpuset_cpus_allowed(p);
4457 cpus_and(new_mask, new_mask, cpus_allowed);
4458 retval = set_cpus_allowed(p, new_mask);
4459
4460out_unlock:
4461 put_task_struct(p);
4462 unlock_cpu_hotplug();
4463 return retval;
4464}
4465
4466static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4467 cpumask_t *new_mask)
4468{
4469 if (len < sizeof(cpumask_t)) {
4470 memset(new_mask, 0, sizeof(cpumask_t));
4471 } else if (len > sizeof(cpumask_t)) {
4472 len = sizeof(cpumask_t);
4473 }
4474 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4475}
4476
4477/**
4478 * sys_sched_setaffinity - set the cpu affinity of a process
4479 * @pid: pid of the process
4480 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4481 * @user_mask_ptr: user-space pointer to the new cpu mask
4482 */
4483asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4484 unsigned long __user *user_mask_ptr)
4485{
4486 cpumask_t new_mask;
4487 int retval;
4488
4489 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4490 if (retval)
4491 return retval;
4492
4493 return sched_setaffinity(pid, new_mask);
4494}
4495
4496/*
4497 * Represents all cpu's present in the system
4498 * In systems capable of hotplug, this map could dynamically grow
4499 * as new cpu's are detected in the system via any platform specific
4500 * method, such as ACPI for e.g.
4501 */
4502
4cef0c61 4503cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4504EXPORT_SYMBOL(cpu_present_map);
4505
4506#ifndef CONFIG_SMP
4cef0c61 4507cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4508EXPORT_SYMBOL(cpu_online_map);
4509
4cef0c61 4510cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4511EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4512#endif
4513
4514long sched_getaffinity(pid_t pid, cpumask_t *mask)
4515{
36c8b586 4516 struct task_struct *p;
1da177e4 4517 int retval;
1da177e4
LT
4518
4519 lock_cpu_hotplug();
4520 read_lock(&tasklist_lock);
4521
4522 retval = -ESRCH;
4523 p = find_process_by_pid(pid);
4524 if (!p)
4525 goto out_unlock;
4526
e7834f8f
DQ
4527 retval = security_task_getscheduler(p);
4528 if (retval)
4529 goto out_unlock;
4530
2f7016d9 4531 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4532
4533out_unlock:
4534 read_unlock(&tasklist_lock);
4535 unlock_cpu_hotplug();
4536 if (retval)
4537 return retval;
4538
4539 return 0;
4540}
4541
4542/**
4543 * sys_sched_getaffinity - get the cpu affinity of a process
4544 * @pid: pid of the process
4545 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4546 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4547 */
4548asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4549 unsigned long __user *user_mask_ptr)
4550{
4551 int ret;
4552 cpumask_t mask;
4553
4554 if (len < sizeof(cpumask_t))
4555 return -EINVAL;
4556
4557 ret = sched_getaffinity(pid, &mask);
4558 if (ret < 0)
4559 return ret;
4560
4561 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4562 return -EFAULT;
4563
4564 return sizeof(cpumask_t);
4565}
4566
4567/**
4568 * sys_sched_yield - yield the current processor to other threads.
4569 *
4570 * this function yields the current CPU by moving the calling thread
4571 * to the expired array. If there are no other threads running on this
4572 * CPU then this function will return.
4573 */
4574asmlinkage long sys_sched_yield(void)
4575{
70b97a7f
IM
4576 struct rq *rq = this_rq_lock();
4577 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4578
4579 schedstat_inc(rq, yld_cnt);
4580 /*
4581 * We implement yielding by moving the task into the expired
4582 * queue.
4583 *
4584 * (special rule: RT tasks will just roundrobin in the active
4585 * array.)
4586 */
4587 if (rt_task(current))
4588 target = rq->active;
4589
5927ad78 4590 if (array->nr_active == 1) {
1da177e4
LT
4591 schedstat_inc(rq, yld_act_empty);
4592 if (!rq->expired->nr_active)
4593 schedstat_inc(rq, yld_both_empty);
4594 } else if (!rq->expired->nr_active)
4595 schedstat_inc(rq, yld_exp_empty);
4596
4597 if (array != target) {
4598 dequeue_task(current, array);
4599 enqueue_task(current, target);
4600 } else
4601 /*
4602 * requeue_task is cheaper so perform that if possible.
4603 */
4604 requeue_task(current, array);
4605
4606 /*
4607 * Since we are going to call schedule() anyway, there's
4608 * no need to preempt or enable interrupts:
4609 */
4610 __release(rq->lock);
8a25d5de 4611 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4612 _raw_spin_unlock(&rq->lock);
4613 preempt_enable_no_resched();
4614
4615 schedule();
4616
4617 return 0;
4618}
4619
2d7d2535 4620static inline int __resched_legal(int expected_preempt_count)
e7b38404 4621{
ba008404 4622#ifdef CONFIG_PREEMPT
2d7d2535 4623 if (unlikely(preempt_count() != expected_preempt_count))
e7b38404 4624 return 0;
ba008404 4625#endif
e7b38404
AM
4626 if (unlikely(system_state != SYSTEM_RUNNING))
4627 return 0;
4628 return 1;
4629}
4630
4631static void __cond_resched(void)
1da177e4 4632{
8e0a43d8
IM
4633#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4634 __might_sleep(__FILE__, __LINE__);
4635#endif
5bbcfd90
IM
4636 /*
4637 * The BKS might be reacquired before we have dropped
4638 * PREEMPT_ACTIVE, which could trigger a second
4639 * cond_resched() call.
4640 */
1da177e4
LT
4641 do {
4642 add_preempt_count(PREEMPT_ACTIVE);
4643 schedule();
4644 sub_preempt_count(PREEMPT_ACTIVE);
4645 } while (need_resched());
4646}
4647
4648int __sched cond_resched(void)
4649{
2d7d2535 4650 if (need_resched() && __resched_legal(0)) {
1da177e4
LT
4651 __cond_resched();
4652 return 1;
4653 }
4654 return 0;
4655}
1da177e4
LT
4656EXPORT_SYMBOL(cond_resched);
4657
4658/*
4659 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4660 * call schedule, and on return reacquire the lock.
4661 *
4662 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4663 * operations here to prevent schedule() from being called twice (once via
4664 * spin_unlock(), once by hand).
4665 */
95cdf3b7 4666int cond_resched_lock(spinlock_t *lock)
1da177e4 4667{
6df3cecb
JK
4668 int ret = 0;
4669
1da177e4
LT
4670 if (need_lockbreak(lock)) {
4671 spin_unlock(lock);
4672 cpu_relax();
6df3cecb 4673 ret = 1;
1da177e4
LT
4674 spin_lock(lock);
4675 }
2d7d2535 4676 if (need_resched() && __resched_legal(1)) {
8a25d5de 4677 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4678 _raw_spin_unlock(lock);
4679 preempt_enable_no_resched();
4680 __cond_resched();
6df3cecb 4681 ret = 1;
1da177e4 4682 spin_lock(lock);
1da177e4 4683 }
6df3cecb 4684 return ret;
1da177e4 4685}
1da177e4
LT
4686EXPORT_SYMBOL(cond_resched_lock);
4687
4688int __sched cond_resched_softirq(void)
4689{
4690 BUG_ON(!in_softirq());
4691
2d7d2535 4692 if (need_resched() && __resched_legal(0)) {
de30a2b3
IM
4693 raw_local_irq_disable();
4694 _local_bh_enable();
4695 raw_local_irq_enable();
1da177e4
LT
4696 __cond_resched();
4697 local_bh_disable();
4698 return 1;
4699 }
4700 return 0;
4701}
1da177e4
LT
4702EXPORT_SYMBOL(cond_resched_softirq);
4703
1da177e4
LT
4704/**
4705 * yield - yield the current processor to other threads.
4706 *
4707 * this is a shortcut for kernel-space yielding - it marks the
4708 * thread runnable and calls sys_sched_yield().
4709 */
4710void __sched yield(void)
4711{
4712 set_current_state(TASK_RUNNING);
4713 sys_sched_yield();
4714}
1da177e4
LT
4715EXPORT_SYMBOL(yield);
4716
4717/*
4718 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4719 * that process accounting knows that this is a task in IO wait state.
4720 *
4721 * But don't do that if it is a deliberate, throttling IO wait (this task
4722 * has set its backing_dev_info: the queue against which it should throttle)
4723 */
4724void __sched io_schedule(void)
4725{
70b97a7f 4726 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4727
0ff92245 4728 delayacct_blkio_start();
1da177e4
LT
4729 atomic_inc(&rq->nr_iowait);
4730 schedule();
4731 atomic_dec(&rq->nr_iowait);
0ff92245 4732 delayacct_blkio_end();
1da177e4 4733}
1da177e4
LT
4734EXPORT_SYMBOL(io_schedule);
4735
4736long __sched io_schedule_timeout(long timeout)
4737{
70b97a7f 4738 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4739 long ret;
4740
0ff92245 4741 delayacct_blkio_start();
1da177e4
LT
4742 atomic_inc(&rq->nr_iowait);
4743 ret = schedule_timeout(timeout);
4744 atomic_dec(&rq->nr_iowait);
0ff92245 4745 delayacct_blkio_end();
1da177e4
LT
4746 return ret;
4747}
4748
4749/**
4750 * sys_sched_get_priority_max - return maximum RT priority.
4751 * @policy: scheduling class.
4752 *
4753 * this syscall returns the maximum rt_priority that can be used
4754 * by a given scheduling class.
4755 */
4756asmlinkage long sys_sched_get_priority_max(int policy)
4757{
4758 int ret = -EINVAL;
4759
4760 switch (policy) {
4761 case SCHED_FIFO:
4762 case SCHED_RR:
4763 ret = MAX_USER_RT_PRIO-1;
4764 break;
4765 case SCHED_NORMAL:
b0a9499c 4766 case SCHED_BATCH:
1da177e4
LT
4767 ret = 0;
4768 break;
4769 }
4770 return ret;
4771}
4772
4773/**
4774 * sys_sched_get_priority_min - return minimum RT priority.
4775 * @policy: scheduling class.
4776 *
4777 * this syscall returns the minimum rt_priority that can be used
4778 * by a given scheduling class.
4779 */
4780asmlinkage long sys_sched_get_priority_min(int policy)
4781{
4782 int ret = -EINVAL;
4783
4784 switch (policy) {
4785 case SCHED_FIFO:
4786 case SCHED_RR:
4787 ret = 1;
4788 break;
4789 case SCHED_NORMAL:
b0a9499c 4790 case SCHED_BATCH:
1da177e4
LT
4791 ret = 0;
4792 }
4793 return ret;
4794}
4795
4796/**
4797 * sys_sched_rr_get_interval - return the default timeslice of a process.
4798 * @pid: pid of the process.
4799 * @interval: userspace pointer to the timeslice value.
4800 *
4801 * this syscall writes the default timeslice value of a given process
4802 * into the user-space timespec buffer. A value of '0' means infinity.
4803 */
4804asmlinkage
4805long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4806{
36c8b586 4807 struct task_struct *p;
1da177e4
LT
4808 int retval = -EINVAL;
4809 struct timespec t;
1da177e4
LT
4810
4811 if (pid < 0)
4812 goto out_nounlock;
4813
4814 retval = -ESRCH;
4815 read_lock(&tasklist_lock);
4816 p = find_process_by_pid(pid);
4817 if (!p)
4818 goto out_unlock;
4819
4820 retval = security_task_getscheduler(p);
4821 if (retval)
4822 goto out_unlock;
4823
b78709cf 4824 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4825 0 : task_timeslice(p), &t);
4826 read_unlock(&tasklist_lock);
4827 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4828out_nounlock:
4829 return retval;
4830out_unlock:
4831 read_unlock(&tasklist_lock);
4832 return retval;
4833}
4834
4835static inline struct task_struct *eldest_child(struct task_struct *p)
4836{
48f24c4d
IM
4837 if (list_empty(&p->children))
4838 return NULL;
1da177e4
LT
4839 return list_entry(p->children.next,struct task_struct,sibling);
4840}
4841
4842static inline struct task_struct *older_sibling(struct task_struct *p)
4843{
48f24c4d
IM
4844 if (p->sibling.prev==&p->parent->children)
4845 return NULL;
1da177e4
LT
4846 return list_entry(p->sibling.prev,struct task_struct,sibling);
4847}
4848
4849static inline struct task_struct *younger_sibling(struct task_struct *p)
4850{
48f24c4d
IM
4851 if (p->sibling.next==&p->parent->children)
4852 return NULL;
1da177e4
LT
4853 return list_entry(p->sibling.next,struct task_struct,sibling);
4854}
4855
2ed6e34f 4856static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4857
4858static void show_task(struct task_struct *p)
1da177e4 4859{
36c8b586 4860 struct task_struct *relative;
1da177e4 4861 unsigned long free = 0;
36c8b586 4862 unsigned state;
1da177e4 4863
1da177e4 4864 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4865 printk("%-13.13s %c", p->comm,
4866 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4867#if (BITS_PER_LONG == 32)
4868 if (state == TASK_RUNNING)
4869 printk(" running ");
4870 else
4871 printk(" %08lX ", thread_saved_pc(p));
4872#else
4873 if (state == TASK_RUNNING)
4874 printk(" running task ");
4875 else
4876 printk(" %016lx ", thread_saved_pc(p));
4877#endif
4878#ifdef CONFIG_DEBUG_STACK_USAGE
4879 {
10ebffde 4880 unsigned long *n = end_of_stack(p);
1da177e4
LT
4881 while (!*n)
4882 n++;
10ebffde 4883 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4884 }
4885#endif
4886 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4887 if ((relative = eldest_child(p)))
4888 printk("%5d ", relative->pid);
4889 else
4890 printk(" ");
4891 if ((relative = younger_sibling(p)))
4892 printk("%7d", relative->pid);
4893 else
4894 printk(" ");
4895 if ((relative = older_sibling(p)))
4896 printk(" %5d", relative->pid);
4897 else
4898 printk(" ");
4899 if (!p->mm)
4900 printk(" (L-TLB)\n");
4901 else
4902 printk(" (NOTLB)\n");
4903
4904 if (state != TASK_RUNNING)
4905 show_stack(p, NULL);
4906}
4907
e59e2ae2 4908void show_state_filter(unsigned long state_filter)
1da177e4 4909{
36c8b586 4910 struct task_struct *g, *p;
1da177e4
LT
4911
4912#if (BITS_PER_LONG == 32)
4913 printk("\n"
301827ac
CC
4914 " free sibling\n");
4915 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4916#else
4917 printk("\n"
301827ac
CC
4918 " free sibling\n");
4919 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4920#endif
4921 read_lock(&tasklist_lock);
4922 do_each_thread(g, p) {
4923 /*
4924 * reset the NMI-timeout, listing all files on a slow
4925 * console might take alot of time:
4926 */
4927 touch_nmi_watchdog();
e59e2ae2
IM
4928 if (p->state & state_filter)
4929 show_task(p);
1da177e4
LT
4930 } while_each_thread(g, p);
4931
4932 read_unlock(&tasklist_lock);
e59e2ae2
IM
4933 /*
4934 * Only show locks if all tasks are dumped:
4935 */
4936 if (state_filter == -1)
4937 debug_show_all_locks();
1da177e4
LT
4938}
4939
f340c0d1
IM
4940/**
4941 * init_idle - set up an idle thread for a given CPU
4942 * @idle: task in question
4943 * @cpu: cpu the idle task belongs to
4944 *
4945 * NOTE: this function does not set the idle thread's NEED_RESCHED
4946 * flag, to make booting more robust.
4947 */
5c1e1767 4948void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4949{
70b97a7f 4950 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4951 unsigned long flags;
4952
81c29a85 4953 idle->timestamp = sched_clock();
1da177e4
LT
4954 idle->sleep_avg = 0;
4955 idle->array = NULL;
b29739f9 4956 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4957 idle->state = TASK_RUNNING;
4958 idle->cpus_allowed = cpumask_of_cpu(cpu);
4959 set_task_cpu(idle, cpu);
4960
4961 spin_lock_irqsave(&rq->lock, flags);
4962 rq->curr = rq->idle = idle;
4866cde0
NP
4963#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4964 idle->oncpu = 1;
4965#endif
1da177e4
LT
4966 spin_unlock_irqrestore(&rq->lock, flags);
4967
4968 /* Set the preempt count _outside_ the spinlocks! */
4969#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4970 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4971#else
a1261f54 4972 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4973#endif
4974}
4975
4976/*
4977 * In a system that switches off the HZ timer nohz_cpu_mask
4978 * indicates which cpus entered this state. This is used
4979 * in the rcu update to wait only for active cpus. For system
4980 * which do not switch off the HZ timer nohz_cpu_mask should
4981 * always be CPU_MASK_NONE.
4982 */
4983cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4984
4985#ifdef CONFIG_SMP
4986/*
4987 * This is how migration works:
4988 *
70b97a7f 4989 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4990 * runqueue and wake up that CPU's migration thread.
4991 * 2) we down() the locked semaphore => thread blocks.
4992 * 3) migration thread wakes up (implicitly it forces the migrated
4993 * thread off the CPU)
4994 * 4) it gets the migration request and checks whether the migrated
4995 * task is still in the wrong runqueue.
4996 * 5) if it's in the wrong runqueue then the migration thread removes
4997 * it and puts it into the right queue.
4998 * 6) migration thread up()s the semaphore.
4999 * 7) we wake up and the migration is done.
5000 */
5001
5002/*
5003 * Change a given task's CPU affinity. Migrate the thread to a
5004 * proper CPU and schedule it away if the CPU it's executing on
5005 * is removed from the allowed bitmask.
5006 *
5007 * NOTE: the caller must have a valid reference to the task, the
5008 * task must not exit() & deallocate itself prematurely. The
5009 * call is not atomic; no spinlocks may be held.
5010 */
36c8b586 5011int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5012{
70b97a7f 5013 struct migration_req req;
1da177e4 5014 unsigned long flags;
70b97a7f 5015 struct rq *rq;
48f24c4d 5016 int ret = 0;
1da177e4
LT
5017
5018 rq = task_rq_lock(p, &flags);
5019 if (!cpus_intersects(new_mask, cpu_online_map)) {
5020 ret = -EINVAL;
5021 goto out;
5022 }
5023
5024 p->cpus_allowed = new_mask;
5025 /* Can the task run on the task's current CPU? If so, we're done */
5026 if (cpu_isset(task_cpu(p), new_mask))
5027 goto out;
5028
5029 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5030 /* Need help from migration thread: drop lock and wait. */
5031 task_rq_unlock(rq, &flags);
5032 wake_up_process(rq->migration_thread);
5033 wait_for_completion(&req.done);
5034 tlb_migrate_finish(p->mm);
5035 return 0;
5036 }
5037out:
5038 task_rq_unlock(rq, &flags);
48f24c4d 5039
1da177e4
LT
5040 return ret;
5041}
1da177e4
LT
5042EXPORT_SYMBOL_GPL(set_cpus_allowed);
5043
5044/*
5045 * Move (not current) task off this cpu, onto dest cpu. We're doing
5046 * this because either it can't run here any more (set_cpus_allowed()
5047 * away from this CPU, or CPU going down), or because we're
5048 * attempting to rebalance this task on exec (sched_exec).
5049 *
5050 * So we race with normal scheduler movements, but that's OK, as long
5051 * as the task is no longer on this CPU.
efc30814
KK
5052 *
5053 * Returns non-zero if task was successfully migrated.
1da177e4 5054 */
efc30814 5055static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5056{
70b97a7f 5057 struct rq *rq_dest, *rq_src;
efc30814 5058 int ret = 0;
1da177e4
LT
5059
5060 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5061 return ret;
1da177e4
LT
5062
5063 rq_src = cpu_rq(src_cpu);
5064 rq_dest = cpu_rq(dest_cpu);
5065
5066 double_rq_lock(rq_src, rq_dest);
5067 /* Already moved. */
5068 if (task_cpu(p) != src_cpu)
5069 goto out;
5070 /* Affinity changed (again). */
5071 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5072 goto out;
5073
5074 set_task_cpu(p, dest_cpu);
5075 if (p->array) {
5076 /*
5077 * Sync timestamp with rq_dest's before activating.
5078 * The same thing could be achieved by doing this step
5079 * afterwards, and pretending it was a local activate.
5080 * This way is cleaner and logically correct.
5081 */
b18ec803
MG
5082 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5083 + rq_dest->most_recent_timestamp;
1da177e4 5084 deactivate_task(p, rq_src);
0a565f79 5085 __activate_task(p, rq_dest);
1da177e4
LT
5086 if (TASK_PREEMPTS_CURR(p, rq_dest))
5087 resched_task(rq_dest->curr);
5088 }
efc30814 5089 ret = 1;
1da177e4
LT
5090out:
5091 double_rq_unlock(rq_src, rq_dest);
efc30814 5092 return ret;
1da177e4
LT
5093}
5094
5095/*
5096 * migration_thread - this is a highprio system thread that performs
5097 * thread migration by bumping thread off CPU then 'pushing' onto
5098 * another runqueue.
5099 */
95cdf3b7 5100static int migration_thread(void *data)
1da177e4 5101{
1da177e4 5102 int cpu = (long)data;
70b97a7f 5103 struct rq *rq;
1da177e4
LT
5104
5105 rq = cpu_rq(cpu);
5106 BUG_ON(rq->migration_thread != current);
5107
5108 set_current_state(TASK_INTERRUPTIBLE);
5109 while (!kthread_should_stop()) {
70b97a7f 5110 struct migration_req *req;
1da177e4 5111 struct list_head *head;
1da177e4 5112
3e1d1d28 5113 try_to_freeze();
1da177e4
LT
5114
5115 spin_lock_irq(&rq->lock);
5116
5117 if (cpu_is_offline(cpu)) {
5118 spin_unlock_irq(&rq->lock);
5119 goto wait_to_die;
5120 }
5121
5122 if (rq->active_balance) {
5123 active_load_balance(rq, cpu);
5124 rq->active_balance = 0;
5125 }
5126
5127 head = &rq->migration_queue;
5128
5129 if (list_empty(head)) {
5130 spin_unlock_irq(&rq->lock);
5131 schedule();
5132 set_current_state(TASK_INTERRUPTIBLE);
5133 continue;
5134 }
70b97a7f 5135 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5136 list_del_init(head->next);
5137
674311d5
NP
5138 spin_unlock(&rq->lock);
5139 __migrate_task(req->task, cpu, req->dest_cpu);
5140 local_irq_enable();
1da177e4
LT
5141
5142 complete(&req->done);
5143 }
5144 __set_current_state(TASK_RUNNING);
5145 return 0;
5146
5147wait_to_die:
5148 /* Wait for kthread_stop */
5149 set_current_state(TASK_INTERRUPTIBLE);
5150 while (!kthread_should_stop()) {
5151 schedule();
5152 set_current_state(TASK_INTERRUPTIBLE);
5153 }
5154 __set_current_state(TASK_RUNNING);
5155 return 0;
5156}
5157
5158#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5159/*
5160 * Figure out where task on dead CPU should go, use force if neccessary.
5161 * NOTE: interrupts should be disabled by the caller
5162 */
48f24c4d 5163static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5164{
efc30814 5165 unsigned long flags;
1da177e4 5166 cpumask_t mask;
70b97a7f
IM
5167 struct rq *rq;
5168 int dest_cpu;
1da177e4 5169
efc30814 5170restart:
1da177e4
LT
5171 /* On same node? */
5172 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5173 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5174 dest_cpu = any_online_cpu(mask);
5175
5176 /* On any allowed CPU? */
5177 if (dest_cpu == NR_CPUS)
48f24c4d 5178 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5179
5180 /* No more Mr. Nice Guy. */
5181 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5182 rq = task_rq_lock(p, &flags);
5183 cpus_setall(p->cpus_allowed);
5184 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5185 task_rq_unlock(rq, &flags);
1da177e4
LT
5186
5187 /*
5188 * Don't tell them about moving exiting tasks or
5189 * kernel threads (both mm NULL), since they never
5190 * leave kernel.
5191 */
48f24c4d 5192 if (p->mm && printk_ratelimit())
1da177e4
LT
5193 printk(KERN_INFO "process %d (%s) no "
5194 "longer affine to cpu%d\n",
48f24c4d 5195 p->pid, p->comm, dead_cpu);
1da177e4 5196 }
48f24c4d 5197 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5198 goto restart;
1da177e4
LT
5199}
5200
5201/*
5202 * While a dead CPU has no uninterruptible tasks queued at this point,
5203 * it might still have a nonzero ->nr_uninterruptible counter, because
5204 * for performance reasons the counter is not stricly tracking tasks to
5205 * their home CPUs. So we just add the counter to another CPU's counter,
5206 * to keep the global sum constant after CPU-down:
5207 */
70b97a7f 5208static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5209{
70b97a7f 5210 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5211 unsigned long flags;
5212
5213 local_irq_save(flags);
5214 double_rq_lock(rq_src, rq_dest);
5215 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5216 rq_src->nr_uninterruptible = 0;
5217 double_rq_unlock(rq_src, rq_dest);
5218 local_irq_restore(flags);
5219}
5220
5221/* Run through task list and migrate tasks from the dead cpu. */
5222static void migrate_live_tasks(int src_cpu)
5223{
48f24c4d 5224 struct task_struct *p, *t;
1da177e4
LT
5225
5226 write_lock_irq(&tasklist_lock);
5227
48f24c4d
IM
5228 do_each_thread(t, p) {
5229 if (p == current)
1da177e4
LT
5230 continue;
5231
48f24c4d
IM
5232 if (task_cpu(p) == src_cpu)
5233 move_task_off_dead_cpu(src_cpu, p);
5234 } while_each_thread(t, p);
1da177e4
LT
5235
5236 write_unlock_irq(&tasklist_lock);
5237}
5238
5239/* Schedules idle task to be the next runnable task on current CPU.
5240 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5241 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5242 */
5243void sched_idle_next(void)
5244{
48f24c4d 5245 int this_cpu = smp_processor_id();
70b97a7f 5246 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5247 struct task_struct *p = rq->idle;
5248 unsigned long flags;
5249
5250 /* cpu has to be offline */
48f24c4d 5251 BUG_ON(cpu_online(this_cpu));
1da177e4 5252
48f24c4d
IM
5253 /*
5254 * Strictly not necessary since rest of the CPUs are stopped by now
5255 * and interrupts disabled on the current cpu.
1da177e4
LT
5256 */
5257 spin_lock_irqsave(&rq->lock, flags);
5258
5259 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5260
5261 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5262 __activate_idle_task(p, rq);
5263
5264 spin_unlock_irqrestore(&rq->lock, flags);
5265}
5266
48f24c4d
IM
5267/*
5268 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5269 * offline.
5270 */
5271void idle_task_exit(void)
5272{
5273 struct mm_struct *mm = current->active_mm;
5274
5275 BUG_ON(cpu_online(smp_processor_id()));
5276
5277 if (mm != &init_mm)
5278 switch_mm(mm, &init_mm, current);
5279 mmdrop(mm);
5280}
5281
054b9108 5282/* called under rq->lock with disabled interrupts */
36c8b586 5283static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5284{
70b97a7f 5285 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5286
5287 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5288 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5289
5290 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5291 BUG_ON(p->state == TASK_DEAD);
1da177e4 5292
48f24c4d 5293 get_task_struct(p);
1da177e4
LT
5294
5295 /*
5296 * Drop lock around migration; if someone else moves it,
5297 * that's OK. No task can be added to this CPU, so iteration is
5298 * fine.
054b9108 5299 * NOTE: interrupts should be left disabled --dev@
1da177e4 5300 */
054b9108 5301 spin_unlock(&rq->lock);
48f24c4d 5302 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5303 spin_lock(&rq->lock);
1da177e4 5304
48f24c4d 5305 put_task_struct(p);
1da177e4
LT
5306}
5307
5308/* release_task() removes task from tasklist, so we won't find dead tasks. */
5309static void migrate_dead_tasks(unsigned int dead_cpu)
5310{
70b97a7f 5311 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5312 unsigned int arr, i;
1da177e4
LT
5313
5314 for (arr = 0; arr < 2; arr++) {
5315 for (i = 0; i < MAX_PRIO; i++) {
5316 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5317
1da177e4 5318 while (!list_empty(list))
36c8b586
IM
5319 migrate_dead(dead_cpu, list_entry(list->next,
5320 struct task_struct, run_list));
1da177e4
LT
5321 }
5322 }
5323}
5324#endif /* CONFIG_HOTPLUG_CPU */
5325
5326/*
5327 * migration_call - callback that gets triggered when a CPU is added.
5328 * Here we can start up the necessary migration thread for the new CPU.
5329 */
48f24c4d
IM
5330static int __cpuinit
5331migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5332{
1da177e4 5333 struct task_struct *p;
48f24c4d 5334 int cpu = (long)hcpu;
1da177e4 5335 unsigned long flags;
70b97a7f 5336 struct rq *rq;
1da177e4
LT
5337
5338 switch (action) {
5339 case CPU_UP_PREPARE:
5340 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5341 if (IS_ERR(p))
5342 return NOTIFY_BAD;
5343 p->flags |= PF_NOFREEZE;
5344 kthread_bind(p, cpu);
5345 /* Must be high prio: stop_machine expects to yield to it. */
5346 rq = task_rq_lock(p, &flags);
5347 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5348 task_rq_unlock(rq, &flags);
5349 cpu_rq(cpu)->migration_thread = p;
5350 break;
48f24c4d 5351
1da177e4
LT
5352 case CPU_ONLINE:
5353 /* Strictly unneccessary, as first user will wake it. */
5354 wake_up_process(cpu_rq(cpu)->migration_thread);
5355 break;
48f24c4d 5356
1da177e4
LT
5357#ifdef CONFIG_HOTPLUG_CPU
5358 case CPU_UP_CANCELED:
fc75cdfa
HC
5359 if (!cpu_rq(cpu)->migration_thread)
5360 break;
1da177e4 5361 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5362 kthread_bind(cpu_rq(cpu)->migration_thread,
5363 any_online_cpu(cpu_online_map));
1da177e4
LT
5364 kthread_stop(cpu_rq(cpu)->migration_thread);
5365 cpu_rq(cpu)->migration_thread = NULL;
5366 break;
48f24c4d 5367
1da177e4
LT
5368 case CPU_DEAD:
5369 migrate_live_tasks(cpu);
5370 rq = cpu_rq(cpu);
5371 kthread_stop(rq->migration_thread);
5372 rq->migration_thread = NULL;
5373 /* Idle task back to normal (off runqueue, low prio) */
5374 rq = task_rq_lock(rq->idle, &flags);
5375 deactivate_task(rq->idle, rq);
5376 rq->idle->static_prio = MAX_PRIO;
5377 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5378 migrate_dead_tasks(cpu);
5379 task_rq_unlock(rq, &flags);
5380 migrate_nr_uninterruptible(rq);
5381 BUG_ON(rq->nr_running != 0);
5382
5383 /* No need to migrate the tasks: it was best-effort if
5384 * they didn't do lock_cpu_hotplug(). Just wake up
5385 * the requestors. */
5386 spin_lock_irq(&rq->lock);
5387 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5388 struct migration_req *req;
5389
1da177e4 5390 req = list_entry(rq->migration_queue.next,
70b97a7f 5391 struct migration_req, list);
1da177e4
LT
5392 list_del_init(&req->list);
5393 complete(&req->done);
5394 }
5395 spin_unlock_irq(&rq->lock);
5396 break;
5397#endif
5398 }
5399 return NOTIFY_OK;
5400}
5401
5402/* Register at highest priority so that task migration (migrate_all_tasks)
5403 * happens before everything else.
5404 */
26c2143b 5405static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5406 .notifier_call = migration_call,
5407 .priority = 10
5408};
5409
5410int __init migration_init(void)
5411{
5412 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5413 int err;
48f24c4d
IM
5414
5415 /* Start one for the boot CPU: */
07dccf33
AM
5416 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5417 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5418 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5419 register_cpu_notifier(&migration_notifier);
48f24c4d 5420
1da177e4
LT
5421 return 0;
5422}
5423#endif
5424
5425#ifdef CONFIG_SMP
1a20ff27 5426#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5427#ifdef SCHED_DOMAIN_DEBUG
5428static void sched_domain_debug(struct sched_domain *sd, int cpu)
5429{
5430 int level = 0;
5431
41c7ce9a
NP
5432 if (!sd) {
5433 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5434 return;
5435 }
5436
1da177e4
LT
5437 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5438
5439 do {
5440 int i;
5441 char str[NR_CPUS];
5442 struct sched_group *group = sd->groups;
5443 cpumask_t groupmask;
5444
5445 cpumask_scnprintf(str, NR_CPUS, sd->span);
5446 cpus_clear(groupmask);
5447
5448 printk(KERN_DEBUG);
5449 for (i = 0; i < level + 1; i++)
5450 printk(" ");
5451 printk("domain %d: ", level);
5452
5453 if (!(sd->flags & SD_LOAD_BALANCE)) {
5454 printk("does not load-balance\n");
5455 if (sd->parent)
33859f7f
MOS
5456 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5457 " has parent");
1da177e4
LT
5458 break;
5459 }
5460
5461 printk("span %s\n", str);
5462
5463 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5464 printk(KERN_ERR "ERROR: domain->span does not contain "
5465 "CPU%d\n", cpu);
1da177e4 5466 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5467 printk(KERN_ERR "ERROR: domain->groups does not contain"
5468 " CPU%d\n", cpu);
1da177e4
LT
5469
5470 printk(KERN_DEBUG);
5471 for (i = 0; i < level + 2; i++)
5472 printk(" ");
5473 printk("groups:");
5474 do {
5475 if (!group) {
5476 printk("\n");
5477 printk(KERN_ERR "ERROR: group is NULL\n");
5478 break;
5479 }
5480
5481 if (!group->cpu_power) {
5482 printk("\n");
33859f7f
MOS
5483 printk(KERN_ERR "ERROR: domain->cpu_power not "
5484 "set\n");
1da177e4
LT
5485 }
5486
5487 if (!cpus_weight(group->cpumask)) {
5488 printk("\n");
5489 printk(KERN_ERR "ERROR: empty group\n");
5490 }
5491
5492 if (cpus_intersects(groupmask, group->cpumask)) {
5493 printk("\n");
5494 printk(KERN_ERR "ERROR: repeated CPUs\n");
5495 }
5496
5497 cpus_or(groupmask, groupmask, group->cpumask);
5498
5499 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5500 printk(" %s", str);
5501
5502 group = group->next;
5503 } while (group != sd->groups);
5504 printk("\n");
5505
5506 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5507 printk(KERN_ERR "ERROR: groups don't span "
5508 "domain->span\n");
1da177e4
LT
5509
5510 level++;
5511 sd = sd->parent;
33859f7f
MOS
5512 if (!sd)
5513 continue;
1da177e4 5514
33859f7f
MOS
5515 if (!cpus_subset(groupmask, sd->span))
5516 printk(KERN_ERR "ERROR: parent span is not a superset "
5517 "of domain->span\n");
1da177e4
LT
5518
5519 } while (sd);
5520}
5521#else
48f24c4d 5522# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5523#endif
5524
1a20ff27 5525static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5526{
5527 if (cpus_weight(sd->span) == 1)
5528 return 1;
5529
5530 /* Following flags need at least 2 groups */
5531 if (sd->flags & (SD_LOAD_BALANCE |
5532 SD_BALANCE_NEWIDLE |
5533 SD_BALANCE_FORK |
89c4710e
SS
5534 SD_BALANCE_EXEC |
5535 SD_SHARE_CPUPOWER |
5536 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5537 if (sd->groups != sd->groups->next)
5538 return 0;
5539 }
5540
5541 /* Following flags don't use groups */
5542 if (sd->flags & (SD_WAKE_IDLE |
5543 SD_WAKE_AFFINE |
5544 SD_WAKE_BALANCE))
5545 return 0;
5546
5547 return 1;
5548}
5549
48f24c4d
IM
5550static int
5551sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5552{
5553 unsigned long cflags = sd->flags, pflags = parent->flags;
5554
5555 if (sd_degenerate(parent))
5556 return 1;
5557
5558 if (!cpus_equal(sd->span, parent->span))
5559 return 0;
5560
5561 /* Does parent contain flags not in child? */
5562 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5563 if (cflags & SD_WAKE_AFFINE)
5564 pflags &= ~SD_WAKE_BALANCE;
5565 /* Flags needing groups don't count if only 1 group in parent */
5566 if (parent->groups == parent->groups->next) {
5567 pflags &= ~(SD_LOAD_BALANCE |
5568 SD_BALANCE_NEWIDLE |
5569 SD_BALANCE_FORK |
89c4710e
SS
5570 SD_BALANCE_EXEC |
5571 SD_SHARE_CPUPOWER |
5572 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5573 }
5574 if (~cflags & pflags)
5575 return 0;
5576
5577 return 1;
5578}
5579
1da177e4
LT
5580/*
5581 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5582 * hold the hotplug lock.
5583 */
9c1cfda2 5584static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5585{
70b97a7f 5586 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5587 struct sched_domain *tmp;
5588
5589 /* Remove the sched domains which do not contribute to scheduling. */
5590 for (tmp = sd; tmp; tmp = tmp->parent) {
5591 struct sched_domain *parent = tmp->parent;
5592 if (!parent)
5593 break;
1a848870 5594 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5595 tmp->parent = parent->parent;
1a848870
SS
5596 if (parent->parent)
5597 parent->parent->child = tmp;
5598 }
245af2c7
SS
5599 }
5600
1a848870 5601 if (sd && sd_degenerate(sd)) {
245af2c7 5602 sd = sd->parent;
1a848870
SS
5603 if (sd)
5604 sd->child = NULL;
5605 }
1da177e4
LT
5606
5607 sched_domain_debug(sd, cpu);
5608
674311d5 5609 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5610}
5611
5612/* cpus with isolated domains */
5c1e1767 5613static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5614
5615/* Setup the mask of cpus configured for isolated domains */
5616static int __init isolated_cpu_setup(char *str)
5617{
5618 int ints[NR_CPUS], i;
5619
5620 str = get_options(str, ARRAY_SIZE(ints), ints);
5621 cpus_clear(cpu_isolated_map);
5622 for (i = 1; i <= ints[0]; i++)
5623 if (ints[i] < NR_CPUS)
5624 cpu_set(ints[i], cpu_isolated_map);
5625 return 1;
5626}
5627
5628__setup ("isolcpus=", isolated_cpu_setup);
5629
5630/*
6711cab4
SS
5631 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5632 * to a function which identifies what group(along with sched group) a CPU
5633 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5634 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5635 *
5636 * init_sched_build_groups will build a circular linked list of the groups
5637 * covered by the given span, and will set each group's ->cpumask correctly,
5638 * and ->cpu_power to 0.
5639 */
a616058b 5640static void
6711cab4
SS
5641init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5642 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5643 struct sched_group **sg))
1da177e4
LT
5644{
5645 struct sched_group *first = NULL, *last = NULL;
5646 cpumask_t covered = CPU_MASK_NONE;
5647 int i;
5648
5649 for_each_cpu_mask(i, span) {
6711cab4
SS
5650 struct sched_group *sg;
5651 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5652 int j;
5653
5654 if (cpu_isset(i, covered))
5655 continue;
5656
5657 sg->cpumask = CPU_MASK_NONE;
5658 sg->cpu_power = 0;
5659
5660 for_each_cpu_mask(j, span) {
6711cab4 5661 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5662 continue;
5663
5664 cpu_set(j, covered);
5665 cpu_set(j, sg->cpumask);
5666 }
5667 if (!first)
5668 first = sg;
5669 if (last)
5670 last->next = sg;
5671 last = sg;
5672 }
5673 last->next = first;
5674}
5675
9c1cfda2 5676#define SD_NODES_PER_DOMAIN 16
1da177e4 5677
198e2f18 5678/*
5679 * Self-tuning task migration cost measurement between source and target CPUs.
5680 *
5681 * This is done by measuring the cost of manipulating buffers of varying
5682 * sizes. For a given buffer-size here are the steps that are taken:
5683 *
5684 * 1) the source CPU reads+dirties a shared buffer
5685 * 2) the target CPU reads+dirties the same shared buffer
5686 *
5687 * We measure how long they take, in the following 4 scenarios:
5688 *
5689 * - source: CPU1, target: CPU2 | cost1
5690 * - source: CPU2, target: CPU1 | cost2
5691 * - source: CPU1, target: CPU1 | cost3
5692 * - source: CPU2, target: CPU2 | cost4
5693 *
5694 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5695 * the cost of migration.
5696 *
5697 * We then start off from a small buffer-size and iterate up to larger
5698 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5699 * doing a maximum search for the cost. (The maximum cost for a migration
5700 * normally occurs when the working set size is around the effective cache
5701 * size.)
5702 */
5703#define SEARCH_SCOPE 2
5704#define MIN_CACHE_SIZE (64*1024U)
5705#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5706#define ITERATIONS 1
198e2f18 5707#define SIZE_THRESH 130
5708#define COST_THRESH 130
5709
5710/*
5711 * The migration cost is a function of 'domain distance'. Domain
5712 * distance is the number of steps a CPU has to iterate down its
5713 * domain tree to share a domain with the other CPU. The farther
5714 * two CPUs are from each other, the larger the distance gets.
5715 *
5716 * Note that we use the distance only to cache measurement results,
5717 * the distance value is not used numerically otherwise. When two
5718 * CPUs have the same distance it is assumed that the migration
5719 * cost is the same. (this is a simplification but quite practical)
5720 */
5721#define MAX_DOMAIN_DISTANCE 32
5722
5723static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5724 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5725/*
5726 * Architectures may override the migration cost and thus avoid
5727 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5728 * virtualized hardware:
5729 */
5730#ifdef CONFIG_DEFAULT_MIGRATION_COST
5731 CONFIG_DEFAULT_MIGRATION_COST
5732#else
5733 -1LL
5734#endif
5735};
198e2f18 5736
5737/*
5738 * Allow override of migration cost - in units of microseconds.
5739 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5740 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5741 */
5742static int __init migration_cost_setup(char *str)
5743{
5744 int ints[MAX_DOMAIN_DISTANCE+1], i;
5745
5746 str = get_options(str, ARRAY_SIZE(ints), ints);
5747
5748 printk("#ints: %d\n", ints[0]);
5749 for (i = 1; i <= ints[0]; i++) {
5750 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5751 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5752 }
5753 return 1;
5754}
5755
5756__setup ("migration_cost=", migration_cost_setup);
5757
5758/*
5759 * Global multiplier (divisor) for migration-cutoff values,
5760 * in percentiles. E.g. use a value of 150 to get 1.5 times
5761 * longer cache-hot cutoff times.
5762 *
5763 * (We scale it from 100 to 128 to long long handling easier.)
5764 */
5765
5766#define MIGRATION_FACTOR_SCALE 128
5767
5768static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5769
5770static int __init setup_migration_factor(char *str)
5771{
5772 get_option(&str, &migration_factor);
5773 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5774 return 1;
5775}
5776
5777__setup("migration_factor=", setup_migration_factor);
5778
5779/*
5780 * Estimated distance of two CPUs, measured via the number of domains
5781 * we have to pass for the two CPUs to be in the same span:
5782 */
5783static unsigned long domain_distance(int cpu1, int cpu2)
5784{
5785 unsigned long distance = 0;
5786 struct sched_domain *sd;
5787
5788 for_each_domain(cpu1, sd) {
5789 WARN_ON(!cpu_isset(cpu1, sd->span));
5790 if (cpu_isset(cpu2, sd->span))
5791 return distance;
5792 distance++;
5793 }
5794 if (distance >= MAX_DOMAIN_DISTANCE) {
5795 WARN_ON(1);
5796 distance = MAX_DOMAIN_DISTANCE-1;
5797 }
5798
5799 return distance;
5800}
5801
5802static unsigned int migration_debug;
5803
5804static int __init setup_migration_debug(char *str)
5805{
5806 get_option(&str, &migration_debug);
5807 return 1;
5808}
5809
5810__setup("migration_debug=", setup_migration_debug);
5811
5812/*
5813 * Maximum cache-size that the scheduler should try to measure.
5814 * Architectures with larger caches should tune this up during
5815 * bootup. Gets used in the domain-setup code (i.e. during SMP
5816 * bootup).
5817 */
5818unsigned int max_cache_size;
5819
5820static int __init setup_max_cache_size(char *str)
5821{
5822 get_option(&str, &max_cache_size);
5823 return 1;
5824}
5825
5826__setup("max_cache_size=", setup_max_cache_size);
5827
5828/*
5829 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5830 * is the operation that is timed, so we try to generate unpredictable
5831 * cachemisses that still end up filling the L2 cache:
5832 */
5833static void touch_cache(void *__cache, unsigned long __size)
5834{
33859f7f
MOS
5835 unsigned long size = __size / sizeof(long);
5836 unsigned long chunk1 = size / 3;
5837 unsigned long chunk2 = 2 * size / 3;
198e2f18 5838 unsigned long *cache = __cache;
5839 int i;
5840
5841 for (i = 0; i < size/6; i += 8) {
5842 switch (i % 6) {
5843 case 0: cache[i]++;
5844 case 1: cache[size-1-i]++;
5845 case 2: cache[chunk1-i]++;
5846 case 3: cache[chunk1+i]++;
5847 case 4: cache[chunk2-i]++;
5848 case 5: cache[chunk2+i]++;
5849 }
5850 }
5851}
5852
5853/*
5854 * Measure the cache-cost of one task migration. Returns in units of nsec.
5855 */
48f24c4d
IM
5856static unsigned long long
5857measure_one(void *cache, unsigned long size, int source, int target)
198e2f18 5858{
5859 cpumask_t mask, saved_mask;
5860 unsigned long long t0, t1, t2, t3, cost;
5861
5862 saved_mask = current->cpus_allowed;
5863
5864 /*
5865 * Flush source caches to RAM and invalidate them:
5866 */
5867 sched_cacheflush();
5868
5869 /*
5870 * Migrate to the source CPU:
5871 */
5872 mask = cpumask_of_cpu(source);
5873 set_cpus_allowed(current, mask);
5874 WARN_ON(smp_processor_id() != source);
5875
5876 /*
5877 * Dirty the working set:
5878 */
5879 t0 = sched_clock();
5880 touch_cache(cache, size);
5881 t1 = sched_clock();
5882
5883 /*
5884 * Migrate to the target CPU, dirty the L2 cache and access
5885 * the shared buffer. (which represents the working set
5886 * of a migrated task.)
5887 */
5888 mask = cpumask_of_cpu(target);
5889 set_cpus_allowed(current, mask);
5890 WARN_ON(smp_processor_id() != target);
5891
5892 t2 = sched_clock();
5893 touch_cache(cache, size);
5894 t3 = sched_clock();
5895
5896 cost = t1-t0 + t3-t2;
5897
5898 if (migration_debug >= 2)
5899 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5900 source, target, t1-t0, t1-t0, t3-t2, cost);
5901 /*
5902 * Flush target caches to RAM and invalidate them:
5903 */
5904 sched_cacheflush();
5905
5906 set_cpus_allowed(current, saved_mask);
5907
5908 return cost;
5909}
5910
5911/*
5912 * Measure a series of task migrations and return the average
5913 * result. Since this code runs early during bootup the system
5914 * is 'undisturbed' and the average latency makes sense.
5915 *
5916 * The algorithm in essence auto-detects the relevant cache-size,
5917 * so it will properly detect different cachesizes for different
5918 * cache-hierarchies, depending on how the CPUs are connected.
5919 *
5920 * Architectures can prime the upper limit of the search range via
5921 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5922 */
5923static unsigned long long
5924measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5925{
5926 unsigned long long cost1, cost2;
5927 int i;
5928
5929 /*
5930 * Measure the migration cost of 'size' bytes, over an
5931 * average of 10 runs:
5932 *
5933 * (We perturb the cache size by a small (0..4k)
5934 * value to compensate size/alignment related artifacts.
5935 * We also subtract the cost of the operation done on
5936 * the same CPU.)
5937 */
5938 cost1 = 0;
5939
5940 /*
5941 * dry run, to make sure we start off cache-cold on cpu1,
5942 * and to get any vmalloc pagefaults in advance:
5943 */
5944 measure_one(cache, size, cpu1, cpu2);
5945 for (i = 0; i < ITERATIONS; i++)
33859f7f 5946 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
198e2f18 5947
5948 measure_one(cache, size, cpu2, cpu1);
5949 for (i = 0; i < ITERATIONS; i++)
33859f7f 5950 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
198e2f18 5951
5952 /*
5953 * (We measure the non-migrating [cached] cost on both
5954 * cpu1 and cpu2, to handle CPUs with different speeds)
5955 */
5956 cost2 = 0;
5957
5958 measure_one(cache, size, cpu1, cpu1);
5959 for (i = 0; i < ITERATIONS; i++)
33859f7f 5960 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
198e2f18 5961
5962 measure_one(cache, size, cpu2, cpu2);
5963 for (i = 0; i < ITERATIONS; i++)
33859f7f 5964 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
198e2f18 5965
5966 /*
5967 * Get the per-iteration migration cost:
5968 */
33859f7f
MOS
5969 do_div(cost1, 2 * ITERATIONS);
5970 do_div(cost2, 2 * ITERATIONS);
198e2f18 5971
5972 return cost1 - cost2;
5973}
5974
5975static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5976{
5977 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5978 unsigned int max_size, size, size_found = 0;
5979 long long cost = 0, prev_cost;
5980 void *cache;
5981
5982 /*
5983 * Search from max_cache_size*5 down to 64K - the real relevant
5984 * cachesize has to lie somewhere inbetween.
5985 */
5986 if (max_cache_size) {
5987 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5988 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5989 } else {
5990 /*
5991 * Since we have no estimation about the relevant
5992 * search range
5993 */
5994 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5995 size = MIN_CACHE_SIZE;
5996 }
5997
5998 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5999 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6000 return 0;
6001 }
6002
6003 /*
6004 * Allocate the working set:
6005 */
6006 cache = vmalloc(max_size);
6007 if (!cache) {
33859f7f 6008 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
2ed6e34f 6009 return 1000000; /* return 1 msec on very small boxen */
198e2f18 6010 }
6011
6012 while (size <= max_size) {
6013 prev_cost = cost;
6014 cost = measure_cost(cpu1, cpu2, cache, size);
6015
6016 /*
6017 * Update the max:
6018 */
6019 if (cost > 0) {
6020 if (max_cost < cost) {
6021 max_cost = cost;
6022 size_found = size;
6023 }
6024 }
6025 /*
6026 * Calculate average fluctuation, we use this to prevent
6027 * noise from triggering an early break out of the loop:
6028 */
6029 fluct = abs(cost - prev_cost);
6030 avg_fluct = (avg_fluct + fluct)/2;
6031
6032 if (migration_debug)
33859f7f
MOS
6033 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6034 "(%8Ld %8Ld)\n",
198e2f18 6035 cpu1, cpu2, size,
6036 (long)cost / 1000000,
6037 ((long)cost / 100000) % 10,
6038 (long)max_cost / 1000000,
6039 ((long)max_cost / 100000) % 10,
6040 domain_distance(cpu1, cpu2),
6041 cost, avg_fluct);
6042
6043 /*
6044 * If we iterated at least 20% past the previous maximum,
6045 * and the cost has dropped by more than 20% already,
6046 * (taking fluctuations into account) then we assume to
6047 * have found the maximum and break out of the loop early:
6048 */
6049 if (size_found && (size*100 > size_found*SIZE_THRESH))
6050 if (cost+avg_fluct <= 0 ||
6051 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6052
6053 if (migration_debug)
6054 printk("-> found max.\n");
6055 break;
6056 }
6057 /*
70b4d63e 6058 * Increase the cachesize in 10% steps:
198e2f18 6059 */
70b4d63e 6060 size = size * 10 / 9;
198e2f18 6061 }
6062
6063 if (migration_debug)
6064 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6065 cpu1, cpu2, size_found, max_cost);
6066
6067 vfree(cache);
6068
6069 /*
6070 * A task is considered 'cache cold' if at least 2 times
6071 * the worst-case cost of migration has passed.
6072 *
6073 * (this limit is only listened to if the load-balancing
6074 * situation is 'nice' - if there is a large imbalance we
6075 * ignore it for the sake of CPU utilization and
6076 * processing fairness.)
6077 */
6078 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6079}
6080
6081static void calibrate_migration_costs(const cpumask_t *cpu_map)
6082{
6083 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6084 unsigned long j0, j1, distance, max_distance = 0;
6085 struct sched_domain *sd;
6086
6087 j0 = jiffies;
6088
6089 /*
6090 * First pass - calculate the cacheflush times:
6091 */
6092 for_each_cpu_mask(cpu1, *cpu_map) {
6093 for_each_cpu_mask(cpu2, *cpu_map) {
6094 if (cpu1 == cpu2)
6095 continue;
6096 distance = domain_distance(cpu1, cpu2);
6097 max_distance = max(max_distance, distance);
6098 /*
6099 * No result cached yet?
6100 */
6101 if (migration_cost[distance] == -1LL)
6102 migration_cost[distance] =
6103 measure_migration_cost(cpu1, cpu2);
6104 }
6105 }
6106 /*
6107 * Second pass - update the sched domain hierarchy with
6108 * the new cache-hot-time estimations:
6109 */
6110 for_each_cpu_mask(cpu, *cpu_map) {
6111 distance = 0;
6112 for_each_domain(cpu, sd) {
6113 sd->cache_hot_time = migration_cost[distance];
6114 distance++;
6115 }
6116 }
6117 /*
6118 * Print the matrix:
6119 */
6120 if (migration_debug)
6121 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6122 max_cache_size,
6123#ifdef CONFIG_X86
6124 cpu_khz/1000
6125#else
6126 -1
6127#endif
6128 );
33859f7f
MOS
6129 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6130 printk("migration_cost=");
6131 for (distance = 0; distance <= max_distance; distance++) {
6132 if (distance)
6133 printk(",");
6134 printk("%ld", (long)migration_cost[distance] / 1000);
bd576c95 6135 }
33859f7f 6136 printk("\n");
198e2f18 6137 }
198e2f18 6138 j1 = jiffies;
6139 if (migration_debug)
33859f7f 6140 printk("migration: %ld seconds\n", (j1-j0) / HZ);
198e2f18 6141
6142 /*
6143 * Move back to the original CPU. NUMA-Q gets confused
6144 * if we migrate to another quad during bootup.
6145 */
6146 if (raw_smp_processor_id() != orig_cpu) {
6147 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6148 saved_mask = current->cpus_allowed;
6149
6150 set_cpus_allowed(current, mask);
6151 set_cpus_allowed(current, saved_mask);
6152 }
6153}
6154
9c1cfda2 6155#ifdef CONFIG_NUMA
198e2f18 6156
9c1cfda2
JH
6157/**
6158 * find_next_best_node - find the next node to include in a sched_domain
6159 * @node: node whose sched_domain we're building
6160 * @used_nodes: nodes already in the sched_domain
6161 *
6162 * Find the next node to include in a given scheduling domain. Simply
6163 * finds the closest node not already in the @used_nodes map.
6164 *
6165 * Should use nodemask_t.
6166 */
6167static int find_next_best_node(int node, unsigned long *used_nodes)
6168{
6169 int i, n, val, min_val, best_node = 0;
6170
6171 min_val = INT_MAX;
6172
6173 for (i = 0; i < MAX_NUMNODES; i++) {
6174 /* Start at @node */
6175 n = (node + i) % MAX_NUMNODES;
6176
6177 if (!nr_cpus_node(n))
6178 continue;
6179
6180 /* Skip already used nodes */
6181 if (test_bit(n, used_nodes))
6182 continue;
6183
6184 /* Simple min distance search */
6185 val = node_distance(node, n);
6186
6187 if (val < min_val) {
6188 min_val = val;
6189 best_node = n;
6190 }
6191 }
6192
6193 set_bit(best_node, used_nodes);
6194 return best_node;
6195}
6196
6197/**
6198 * sched_domain_node_span - get a cpumask for a node's sched_domain
6199 * @node: node whose cpumask we're constructing
6200 * @size: number of nodes to include in this span
6201 *
6202 * Given a node, construct a good cpumask for its sched_domain to span. It
6203 * should be one that prevents unnecessary balancing, but also spreads tasks
6204 * out optimally.
6205 */
6206static cpumask_t sched_domain_node_span(int node)
6207{
9c1cfda2 6208 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6209 cpumask_t span, nodemask;
6210 int i;
9c1cfda2
JH
6211
6212 cpus_clear(span);
6213 bitmap_zero(used_nodes, MAX_NUMNODES);
6214
6215 nodemask = node_to_cpumask(node);
6216 cpus_or(span, span, nodemask);
6217 set_bit(node, used_nodes);
6218
6219 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6220 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6221
9c1cfda2
JH
6222 nodemask = node_to_cpumask(next_node);
6223 cpus_or(span, span, nodemask);
6224 }
6225
6226 return span;
6227}
6228#endif
6229
5c45bf27 6230int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6231
9c1cfda2 6232/*
48f24c4d 6233 * SMT sched-domains:
9c1cfda2 6234 */
1da177e4
LT
6235#ifdef CONFIG_SCHED_SMT
6236static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6237static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6238
6711cab4
SS
6239static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6240 struct sched_group **sg)
1da177e4 6241{
6711cab4
SS
6242 if (sg)
6243 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6244 return cpu;
6245}
6246#endif
6247
48f24c4d
IM
6248/*
6249 * multi-core sched-domains:
6250 */
1e9f28fa
SS
6251#ifdef CONFIG_SCHED_MC
6252static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6253static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6254#endif
6255
6256#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6257static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6258 struct sched_group **sg)
1e9f28fa 6259{
6711cab4 6260 int group;
a616058b
SS
6261 cpumask_t mask = cpu_sibling_map[cpu];
6262 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6263 group = first_cpu(mask);
6264 if (sg)
6265 *sg = &per_cpu(sched_group_core, group);
6266 return group;
1e9f28fa
SS
6267}
6268#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6269static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6270 struct sched_group **sg)
1e9f28fa 6271{
6711cab4
SS
6272 if (sg)
6273 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6274 return cpu;
6275}
6276#endif
6277
1da177e4 6278static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6279static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6280
6711cab4
SS
6281static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6282 struct sched_group **sg)
1da177e4 6283{
6711cab4 6284 int group;
48f24c4d 6285#ifdef CONFIG_SCHED_MC
1e9f28fa 6286 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6287 cpus_and(mask, mask, *cpu_map);
6711cab4 6288 group = first_cpu(mask);
1e9f28fa 6289#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
6290 cpumask_t mask = cpu_sibling_map[cpu];
6291 cpus_and(mask, mask, *cpu_map);
6711cab4 6292 group = first_cpu(mask);
1da177e4 6293#else
6711cab4 6294 group = cpu;
1da177e4 6295#endif
6711cab4
SS
6296 if (sg)
6297 *sg = &per_cpu(sched_group_phys, group);
6298 return group;
1da177e4
LT
6299}
6300
6301#ifdef CONFIG_NUMA
1da177e4 6302/*
9c1cfda2
JH
6303 * The init_sched_build_groups can't handle what we want to do with node
6304 * groups, so roll our own. Now each node has its own list of groups which
6305 * gets dynamically allocated.
1da177e4 6306 */
9c1cfda2 6307static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6308static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6309
9c1cfda2 6310static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6311static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6312
6711cab4
SS
6313static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6314 struct sched_group **sg)
9c1cfda2 6315{
6711cab4
SS
6316 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6317 int group;
6318
6319 cpus_and(nodemask, nodemask, *cpu_map);
6320 group = first_cpu(nodemask);
6321
6322 if (sg)
6323 *sg = &per_cpu(sched_group_allnodes, group);
6324 return group;
1da177e4 6325}
6711cab4 6326
08069033
SS
6327static void init_numa_sched_groups_power(struct sched_group *group_head)
6328{
6329 struct sched_group *sg = group_head;
6330 int j;
6331
6332 if (!sg)
6333 return;
6334next_sg:
6335 for_each_cpu_mask(j, sg->cpumask) {
6336 struct sched_domain *sd;
6337
6338 sd = &per_cpu(phys_domains, j);
6339 if (j != first_cpu(sd->groups->cpumask)) {
6340 /*
6341 * Only add "power" once for each
6342 * physical package.
6343 */
6344 continue;
6345 }
6346
6347 sg->cpu_power += sd->groups->cpu_power;
6348 }
6349 sg = sg->next;
6350 if (sg != group_head)
6351 goto next_sg;
6352}
1da177e4
LT
6353#endif
6354
a616058b 6355#ifdef CONFIG_NUMA
51888ca2
SV
6356/* Free memory allocated for various sched_group structures */
6357static void free_sched_groups(const cpumask_t *cpu_map)
6358{
a616058b 6359 int cpu, i;
51888ca2
SV
6360
6361 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6362 struct sched_group **sched_group_nodes
6363 = sched_group_nodes_bycpu[cpu];
6364
51888ca2
SV
6365 if (!sched_group_nodes)
6366 continue;
6367
6368 for (i = 0; i < MAX_NUMNODES; i++) {
6369 cpumask_t nodemask = node_to_cpumask(i);
6370 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6371
6372 cpus_and(nodemask, nodemask, *cpu_map);
6373 if (cpus_empty(nodemask))
6374 continue;
6375
6376 if (sg == NULL)
6377 continue;
6378 sg = sg->next;
6379next_sg:
6380 oldsg = sg;
6381 sg = sg->next;
6382 kfree(oldsg);
6383 if (oldsg != sched_group_nodes[i])
6384 goto next_sg;
6385 }
6386 kfree(sched_group_nodes);
6387 sched_group_nodes_bycpu[cpu] = NULL;
6388 }
51888ca2 6389}
a616058b
SS
6390#else
6391static void free_sched_groups(const cpumask_t *cpu_map)
6392{
6393}
6394#endif
51888ca2 6395
89c4710e
SS
6396/*
6397 * Initialize sched groups cpu_power.
6398 *
6399 * cpu_power indicates the capacity of sched group, which is used while
6400 * distributing the load between different sched groups in a sched domain.
6401 * Typically cpu_power for all the groups in a sched domain will be same unless
6402 * there are asymmetries in the topology. If there are asymmetries, group
6403 * having more cpu_power will pickup more load compared to the group having
6404 * less cpu_power.
6405 *
6406 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6407 * the maximum number of tasks a group can handle in the presence of other idle
6408 * or lightly loaded groups in the same sched domain.
6409 */
6410static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6411{
6412 struct sched_domain *child;
6413 struct sched_group *group;
6414
6415 WARN_ON(!sd || !sd->groups);
6416
6417 if (cpu != first_cpu(sd->groups->cpumask))
6418 return;
6419
6420 child = sd->child;
6421
6422 /*
6423 * For perf policy, if the groups in child domain share resources
6424 * (for example cores sharing some portions of the cache hierarchy
6425 * or SMT), then set this domain groups cpu_power such that each group
6426 * can handle only one task, when there are other idle groups in the
6427 * same sched domain.
6428 */
6429 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6430 (child->flags &
6431 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6432 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6433 return;
6434 }
6435
6436 sd->groups->cpu_power = 0;
6437
6438 /*
6439 * add cpu_power of each child group to this groups cpu_power
6440 */
6441 group = child->groups;
6442 do {
6443 sd->groups->cpu_power += group->cpu_power;
6444 group = group->next;
6445 } while (group != child->groups);
6446}
6447
1da177e4 6448/*
1a20ff27
DG
6449 * Build sched domains for a given set of cpus and attach the sched domains
6450 * to the individual cpus
1da177e4 6451 */
51888ca2 6452static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6453{
6454 int i;
89c4710e 6455 struct sched_domain *sd;
d1b55138
JH
6456#ifdef CONFIG_NUMA
6457 struct sched_group **sched_group_nodes = NULL;
6711cab4 6458 int sd_allnodes = 0;
d1b55138
JH
6459
6460 /*
6461 * Allocate the per-node list of sched groups
6462 */
51888ca2 6463 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6464 GFP_KERNEL);
d1b55138
JH
6465 if (!sched_group_nodes) {
6466 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6467 return -ENOMEM;
d1b55138
JH
6468 }
6469 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6470#endif
1da177e4
LT
6471
6472 /*
1a20ff27 6473 * Set up domains for cpus specified by the cpu_map.
1da177e4 6474 */
1a20ff27 6475 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6476 struct sched_domain *sd = NULL, *p;
6477 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6478
1a20ff27 6479 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6480
6481#ifdef CONFIG_NUMA
d1b55138 6482 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6483 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6484 sd = &per_cpu(allnodes_domains, i);
6485 *sd = SD_ALLNODES_INIT;
6486 sd->span = *cpu_map;
6711cab4 6487 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6488 p = sd;
6711cab4 6489 sd_allnodes = 1;
9c1cfda2
JH
6490 } else
6491 p = NULL;
6492
1da177e4 6493 sd = &per_cpu(node_domains, i);
1da177e4 6494 *sd = SD_NODE_INIT;
9c1cfda2
JH
6495 sd->span = sched_domain_node_span(cpu_to_node(i));
6496 sd->parent = p;
1a848870
SS
6497 if (p)
6498 p->child = sd;
9c1cfda2 6499 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6500#endif
6501
6502 p = sd;
6503 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6504 *sd = SD_CPU_INIT;
6505 sd->span = nodemask;
6506 sd->parent = p;
1a848870
SS
6507 if (p)
6508 p->child = sd;
6711cab4 6509 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6510
1e9f28fa
SS
6511#ifdef CONFIG_SCHED_MC
6512 p = sd;
6513 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6514 *sd = SD_MC_INIT;
6515 sd->span = cpu_coregroup_map(i);
6516 cpus_and(sd->span, sd->span, *cpu_map);
6517 sd->parent = p;
1a848870 6518 p->child = sd;
6711cab4 6519 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6520#endif
6521
1da177e4
LT
6522#ifdef CONFIG_SCHED_SMT
6523 p = sd;
6524 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6525 *sd = SD_SIBLING_INIT;
6526 sd->span = cpu_sibling_map[i];
1a20ff27 6527 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6528 sd->parent = p;
1a848870 6529 p->child = sd;
6711cab4 6530 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6531#endif
6532 }
6533
6534#ifdef CONFIG_SCHED_SMT
6535 /* Set up CPU (sibling) groups */
9c1cfda2 6536 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6537 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6538 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6539 if (i != first_cpu(this_sibling_map))
6540 continue;
6541
6711cab4 6542 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6543 }
6544#endif
6545
1e9f28fa
SS
6546#ifdef CONFIG_SCHED_MC
6547 /* Set up multi-core groups */
6548 for_each_cpu_mask(i, *cpu_map) {
6549 cpumask_t this_core_map = cpu_coregroup_map(i);
6550 cpus_and(this_core_map, this_core_map, *cpu_map);
6551 if (i != first_cpu(this_core_map))
6552 continue;
6711cab4 6553 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6554 }
6555#endif
6556
6557
1da177e4
LT
6558 /* Set up physical groups */
6559 for (i = 0; i < MAX_NUMNODES; i++) {
6560 cpumask_t nodemask = node_to_cpumask(i);
6561
1a20ff27 6562 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6563 if (cpus_empty(nodemask))
6564 continue;
6565
6711cab4 6566 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6567 }
6568
6569#ifdef CONFIG_NUMA
6570 /* Set up node groups */
6711cab4
SS
6571 if (sd_allnodes)
6572 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6573
6574 for (i = 0; i < MAX_NUMNODES; i++) {
6575 /* Set up node groups */
6576 struct sched_group *sg, *prev;
6577 cpumask_t nodemask = node_to_cpumask(i);
6578 cpumask_t domainspan;
6579 cpumask_t covered = CPU_MASK_NONE;
6580 int j;
6581
6582 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6583 if (cpus_empty(nodemask)) {
6584 sched_group_nodes[i] = NULL;
9c1cfda2 6585 continue;
d1b55138 6586 }
9c1cfda2
JH
6587
6588 domainspan = sched_domain_node_span(i);
6589 cpus_and(domainspan, domainspan, *cpu_map);
6590
15f0b676 6591 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6592 if (!sg) {
6593 printk(KERN_WARNING "Can not alloc domain group for "
6594 "node %d\n", i);
6595 goto error;
6596 }
9c1cfda2
JH
6597 sched_group_nodes[i] = sg;
6598 for_each_cpu_mask(j, nodemask) {
6599 struct sched_domain *sd;
6600 sd = &per_cpu(node_domains, j);
6601 sd->groups = sg;
9c1cfda2
JH
6602 }
6603 sg->cpu_power = 0;
6604 sg->cpumask = nodemask;
51888ca2 6605 sg->next = sg;
9c1cfda2
JH
6606 cpus_or(covered, covered, nodemask);
6607 prev = sg;
6608
6609 for (j = 0; j < MAX_NUMNODES; j++) {
6610 cpumask_t tmp, notcovered;
6611 int n = (i + j) % MAX_NUMNODES;
6612
6613 cpus_complement(notcovered, covered);
6614 cpus_and(tmp, notcovered, *cpu_map);
6615 cpus_and(tmp, tmp, domainspan);
6616 if (cpus_empty(tmp))
6617 break;
6618
6619 nodemask = node_to_cpumask(n);
6620 cpus_and(tmp, tmp, nodemask);
6621 if (cpus_empty(tmp))
6622 continue;
6623
15f0b676
SV
6624 sg = kmalloc_node(sizeof(struct sched_group),
6625 GFP_KERNEL, i);
9c1cfda2
JH
6626 if (!sg) {
6627 printk(KERN_WARNING
6628 "Can not alloc domain group for node %d\n", j);
51888ca2 6629 goto error;
9c1cfda2
JH
6630 }
6631 sg->cpu_power = 0;
6632 sg->cpumask = tmp;
51888ca2 6633 sg->next = prev->next;
9c1cfda2
JH
6634 cpus_or(covered, covered, tmp);
6635 prev->next = sg;
6636 prev = sg;
6637 }
9c1cfda2 6638 }
1da177e4
LT
6639#endif
6640
6641 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6642#ifdef CONFIG_SCHED_SMT
1a20ff27 6643 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6644 sd = &per_cpu(cpu_domains, i);
89c4710e 6645 init_sched_groups_power(i, sd);
5c45bf27 6646 }
1da177e4 6647#endif
1e9f28fa 6648#ifdef CONFIG_SCHED_MC
5c45bf27 6649 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6650 sd = &per_cpu(core_domains, i);
89c4710e 6651 init_sched_groups_power(i, sd);
5c45bf27
SS
6652 }
6653#endif
1e9f28fa 6654
5c45bf27 6655 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6656 sd = &per_cpu(phys_domains, i);
89c4710e 6657 init_sched_groups_power(i, sd);
1da177e4
LT
6658 }
6659
9c1cfda2 6660#ifdef CONFIG_NUMA
08069033
SS
6661 for (i = 0; i < MAX_NUMNODES; i++)
6662 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6663
6711cab4
SS
6664 if (sd_allnodes) {
6665 struct sched_group *sg;
f712c0c7 6666
6711cab4 6667 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6668 init_numa_sched_groups_power(sg);
6669 }
9c1cfda2
JH
6670#endif
6671
1da177e4 6672 /* Attach the domains */
1a20ff27 6673 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6674 struct sched_domain *sd;
6675#ifdef CONFIG_SCHED_SMT
6676 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6677#elif defined(CONFIG_SCHED_MC)
6678 sd = &per_cpu(core_domains, i);
1da177e4
LT
6679#else
6680 sd = &per_cpu(phys_domains, i);
6681#endif
6682 cpu_attach_domain(sd, i);
6683 }
198e2f18 6684 /*
6685 * Tune cache-hot values:
6686 */
6687 calibrate_migration_costs(cpu_map);
51888ca2
SV
6688
6689 return 0;
6690
a616058b 6691#ifdef CONFIG_NUMA
51888ca2
SV
6692error:
6693 free_sched_groups(cpu_map);
6694 return -ENOMEM;
a616058b 6695#endif
1da177e4 6696}
1a20ff27
DG
6697/*
6698 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6699 */
51888ca2 6700static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6701{
6702 cpumask_t cpu_default_map;
51888ca2 6703 int err;
1da177e4 6704
1a20ff27
DG
6705 /*
6706 * Setup mask for cpus without special case scheduling requirements.
6707 * For now this just excludes isolated cpus, but could be used to
6708 * exclude other special cases in the future.
6709 */
6710 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6711
51888ca2
SV
6712 err = build_sched_domains(&cpu_default_map);
6713
6714 return err;
1a20ff27
DG
6715}
6716
6717static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6718{
51888ca2 6719 free_sched_groups(cpu_map);
9c1cfda2 6720}
1da177e4 6721
1a20ff27
DG
6722/*
6723 * Detach sched domains from a group of cpus specified in cpu_map
6724 * These cpus will now be attached to the NULL domain
6725 */
858119e1 6726static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6727{
6728 int i;
6729
6730 for_each_cpu_mask(i, *cpu_map)
6731 cpu_attach_domain(NULL, i);
6732 synchronize_sched();
6733 arch_destroy_sched_domains(cpu_map);
6734}
6735
6736/*
6737 * Partition sched domains as specified by the cpumasks below.
6738 * This attaches all cpus from the cpumasks to the NULL domain,
6739 * waits for a RCU quiescent period, recalculates sched
6740 * domain information and then attaches them back to the
6741 * correct sched domains
6742 * Call with hotplug lock held
6743 */
51888ca2 6744int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6745{
6746 cpumask_t change_map;
51888ca2 6747 int err = 0;
1a20ff27
DG
6748
6749 cpus_and(*partition1, *partition1, cpu_online_map);
6750 cpus_and(*partition2, *partition2, cpu_online_map);
6751 cpus_or(change_map, *partition1, *partition2);
6752
6753 /* Detach sched domains from all of the affected cpus */
6754 detach_destroy_domains(&change_map);
6755 if (!cpus_empty(*partition1))
51888ca2
SV
6756 err = build_sched_domains(partition1);
6757 if (!err && !cpus_empty(*partition2))
6758 err = build_sched_domains(partition2);
6759
6760 return err;
1a20ff27
DG
6761}
6762
5c45bf27
SS
6763#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6764int arch_reinit_sched_domains(void)
6765{
6766 int err;
6767
6768 lock_cpu_hotplug();
6769 detach_destroy_domains(&cpu_online_map);
6770 err = arch_init_sched_domains(&cpu_online_map);
6771 unlock_cpu_hotplug();
6772
6773 return err;
6774}
6775
6776static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6777{
6778 int ret;
6779
6780 if (buf[0] != '0' && buf[0] != '1')
6781 return -EINVAL;
6782
6783 if (smt)
6784 sched_smt_power_savings = (buf[0] == '1');
6785 else
6786 sched_mc_power_savings = (buf[0] == '1');
6787
6788 ret = arch_reinit_sched_domains();
6789
6790 return ret ? ret : count;
6791}
6792
6793int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6794{
6795 int err = 0;
48f24c4d 6796
5c45bf27
SS
6797#ifdef CONFIG_SCHED_SMT
6798 if (smt_capable())
6799 err = sysfs_create_file(&cls->kset.kobj,
6800 &attr_sched_smt_power_savings.attr);
6801#endif
6802#ifdef CONFIG_SCHED_MC
6803 if (!err && mc_capable())
6804 err = sysfs_create_file(&cls->kset.kobj,
6805 &attr_sched_mc_power_savings.attr);
6806#endif
6807 return err;
6808}
6809#endif
6810
6811#ifdef CONFIG_SCHED_MC
6812static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6813{
6814 return sprintf(page, "%u\n", sched_mc_power_savings);
6815}
48f24c4d
IM
6816static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6817 const char *buf, size_t count)
5c45bf27
SS
6818{
6819 return sched_power_savings_store(buf, count, 0);
6820}
6821SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6822 sched_mc_power_savings_store);
6823#endif
6824
6825#ifdef CONFIG_SCHED_SMT
6826static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6827{
6828 return sprintf(page, "%u\n", sched_smt_power_savings);
6829}
48f24c4d
IM
6830static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6831 const char *buf, size_t count)
5c45bf27
SS
6832{
6833 return sched_power_savings_store(buf, count, 1);
6834}
6835SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6836 sched_smt_power_savings_store);
6837#endif
6838
1da177e4
LT
6839/*
6840 * Force a reinitialization of the sched domains hierarchy. The domains
6841 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6842 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6843 * which will prevent rebalancing while the sched domains are recalculated.
6844 */
6845static int update_sched_domains(struct notifier_block *nfb,
6846 unsigned long action, void *hcpu)
6847{
1da177e4
LT
6848 switch (action) {
6849 case CPU_UP_PREPARE:
6850 case CPU_DOWN_PREPARE:
1a20ff27 6851 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6852 return NOTIFY_OK;
6853
6854 case CPU_UP_CANCELED:
6855 case CPU_DOWN_FAILED:
6856 case CPU_ONLINE:
6857 case CPU_DEAD:
6858 /*
6859 * Fall through and re-initialise the domains.
6860 */
6861 break;
6862 default:
6863 return NOTIFY_DONE;
6864 }
6865
6866 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6867 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6868
6869 return NOTIFY_OK;
6870}
1da177e4
LT
6871
6872void __init sched_init_smp(void)
6873{
5c1e1767
NP
6874 cpumask_t non_isolated_cpus;
6875
1da177e4 6876 lock_cpu_hotplug();
1a20ff27 6877 arch_init_sched_domains(&cpu_online_map);
5c1e1767
NP
6878 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6879 if (cpus_empty(non_isolated_cpus))
6880 cpu_set(smp_processor_id(), non_isolated_cpus);
1da177e4
LT
6881 unlock_cpu_hotplug();
6882 /* XXX: Theoretical race here - CPU may be hotplugged now */
6883 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6884
6885 /* Move init over to a non-isolated CPU */
6886 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6887 BUG();
1da177e4
LT
6888}
6889#else
6890void __init sched_init_smp(void)
6891{
6892}
6893#endif /* CONFIG_SMP */
6894
6895int in_sched_functions(unsigned long addr)
6896{
6897 /* Linker adds these: start and end of __sched functions */
6898 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6899
1da177e4
LT
6900 return in_lock_functions(addr) ||
6901 (addr >= (unsigned long)__sched_text_start
6902 && addr < (unsigned long)__sched_text_end);
6903}
6904
6905void __init sched_init(void)
6906{
1da177e4
LT
6907 int i, j, k;
6908
0a945022 6909 for_each_possible_cpu(i) {
70b97a7f
IM
6910 struct prio_array *array;
6911 struct rq *rq;
1da177e4
LT
6912
6913 rq = cpu_rq(i);
6914 spin_lock_init(&rq->lock);
fcb99371 6915 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6916 rq->nr_running = 0;
1da177e4
LT
6917 rq->active = rq->arrays;
6918 rq->expired = rq->arrays + 1;
6919 rq->best_expired_prio = MAX_PRIO;
6920
6921#ifdef CONFIG_SMP
41c7ce9a 6922 rq->sd = NULL;
7897986b
NP
6923 for (j = 1; j < 3; j++)
6924 rq->cpu_load[j] = 0;
1da177e4
LT
6925 rq->active_balance = 0;
6926 rq->push_cpu = 0;
0a2966b4 6927 rq->cpu = i;
1da177e4
LT
6928 rq->migration_thread = NULL;
6929 INIT_LIST_HEAD(&rq->migration_queue);
6930#endif
6931 atomic_set(&rq->nr_iowait, 0);
6932
6933 for (j = 0; j < 2; j++) {
6934 array = rq->arrays + j;
6935 for (k = 0; k < MAX_PRIO; k++) {
6936 INIT_LIST_HEAD(array->queue + k);
6937 __clear_bit(k, array->bitmap);
6938 }
6939 // delimiter for bitsearch
6940 __set_bit(MAX_PRIO, array->bitmap);
6941 }
6942 }
6943
2dd73a4f 6944 set_load_weight(&init_task);
b50f60ce 6945
c9819f45
CL
6946#ifdef CONFIG_SMP
6947 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6948#endif
6949
b50f60ce
HC
6950#ifdef CONFIG_RT_MUTEXES
6951 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6952#endif
6953
1da177e4
LT
6954 /*
6955 * The boot idle thread does lazy MMU switching as well:
6956 */
6957 atomic_inc(&init_mm.mm_count);
6958 enter_lazy_tlb(&init_mm, current);
6959
6960 /*
6961 * Make us the idle thread. Technically, schedule() should not be
6962 * called from this thread, however somewhere below it might be,
6963 * but because we are the idle thread, we just pick up running again
6964 * when this runqueue becomes "idle".
6965 */
6966 init_idle(current, smp_processor_id());
6967}
6968
6969#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6970void __might_sleep(char *file, int line)
6971{
48f24c4d 6972#ifdef in_atomic
1da177e4
LT
6973 static unsigned long prev_jiffy; /* ratelimiting */
6974
6975 if ((in_atomic() || irqs_disabled()) &&
6976 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6977 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6978 return;
6979 prev_jiffy = jiffies;
91368d73 6980 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6981 " context at %s:%d\n", file, line);
6982 printk("in_atomic():%d, irqs_disabled():%d\n",
6983 in_atomic(), irqs_disabled());
a4c410f0 6984 debug_show_held_locks(current);
3117df04
IM
6985 if (irqs_disabled())
6986 print_irqtrace_events(current);
1da177e4
LT
6987 dump_stack();
6988 }
6989#endif
6990}
6991EXPORT_SYMBOL(__might_sleep);
6992#endif
6993
6994#ifdef CONFIG_MAGIC_SYSRQ
6995void normalize_rt_tasks(void)
6996{
70b97a7f 6997 struct prio_array *array;
1da177e4 6998 struct task_struct *p;
1da177e4 6999 unsigned long flags;
70b97a7f 7000 struct rq *rq;
1da177e4
LT
7001
7002 read_lock_irq(&tasklist_lock);
c96d145e 7003 for_each_process(p) {
1da177e4
LT
7004 if (!rt_task(p))
7005 continue;
7006
b29739f9
IM
7007 spin_lock_irqsave(&p->pi_lock, flags);
7008 rq = __task_rq_lock(p);
1da177e4
LT
7009
7010 array = p->array;
7011 if (array)
7012 deactivate_task(p, task_rq(p));
7013 __setscheduler(p, SCHED_NORMAL, 0);
7014 if (array) {
7015 __activate_task(p, task_rq(p));
7016 resched_task(rq->curr);
7017 }
7018
b29739f9
IM
7019 __task_rq_unlock(rq);
7020 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
7021 }
7022 read_unlock_irq(&tasklist_lock);
7023}
7024
7025#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7026
7027#ifdef CONFIG_IA64
7028/*
7029 * These functions are only useful for the IA64 MCA handling.
7030 *
7031 * They can only be called when the whole system has been
7032 * stopped - every CPU needs to be quiescent, and no scheduling
7033 * activity can take place. Using them for anything else would
7034 * be a serious bug, and as a result, they aren't even visible
7035 * under any other configuration.
7036 */
7037
7038/**
7039 * curr_task - return the current task for a given cpu.
7040 * @cpu: the processor in question.
7041 *
7042 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7043 */
36c8b586 7044struct task_struct *curr_task(int cpu)
1df5c10a
LT
7045{
7046 return cpu_curr(cpu);
7047}
7048
7049/**
7050 * set_curr_task - set the current task for a given cpu.
7051 * @cpu: the processor in question.
7052 * @p: the task pointer to set.
7053 *
7054 * Description: This function must only be used when non-maskable interrupts
7055 * are serviced on a separate stack. It allows the architecture to switch the
7056 * notion of the current task on a cpu in a non-blocking manner. This function
7057 * must be called with all CPU's synchronized, and interrupts disabled, the
7058 * and caller must save the original value of the current task (see
7059 * curr_task() above) and restore that value before reenabling interrupts and
7060 * re-starting the system.
7061 *
7062 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7063 */
36c8b586 7064void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7065{
7066 cpu_curr(cpu) = p;
7067}
7068
7069#endif
This page took 0.673217 seconds and 5 git commands to generate.