sched: debug: increase width of debug line
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
5cb350ba
DG
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
29f59db3
SV
167};
168
169/* Default task group's sched entity on each cpu */
170static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171/* Default task group's cfs_rq on each cpu */
172static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
9b5b7751
SV
174static struct sched_entity *init_sched_entity_p[NR_CPUS];
175static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
176
177/* Default task group.
3a252015 178 * Every task in system belong to this group at bootup.
29f59db3 179 */
4cf86d77 180struct task_group init_task_group = {
3a252015
IM
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183};
9b5b7751 184
24e377a8 185#ifdef CONFIG_FAIR_USER_SCHED
3a252015 186# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 187#else
3a252015 188# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
189#endif
190
4cf86d77 191static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
192
193/* return group to which a task belongs */
4cf86d77 194static inline struct task_group *task_group(struct task_struct *p)
29f59db3 195{
4cf86d77 196 struct task_group *tg;
9b5b7751 197
24e377a8
SV
198#ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200#else
4cf86d77 201 tg = &init_task_group;
24e377a8 202#endif
9b5b7751
SV
203
204 return tg;
29f59db3
SV
205}
206
207/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208static inline void set_task_cfs_rq(struct task_struct *p)
209{
4cf86d77
IM
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
212}
213
214#else
215
216static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218#endif /* CONFIG_FAIR_GROUP_SCHED */
219
6aa645ea
IM
220/* CFS-related fields in a runqueue */
221struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
6aa645ea 225 u64 exec_clock;
e9acbff6 226 u64 min_vruntime;
6aa645ea
IM
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
ddc97297
PZ
235
236 unsigned long nr_spread_over;
237
62160e3f 238#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 249 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 250 struct rcu_head rcu;
6aa645ea
IM
251#endif
252};
1da177e4 253
6aa645ea
IM
254/* Real-Time classes' related field in a runqueue: */
255struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259};
260
1da177e4
LT
261/*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
70b97a7f 268struct rq {
6aa645ea 269 spinlock_t lock; /* runqueue lock */
1da177e4
LT
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
6aa645ea
IM
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 278 unsigned char idle_at_tick;
46cb4b7c
SS
279#ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281#endif
495eca49 282 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287#ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 289#endif
6aa645ea 290 struct rt_rq rt;
1da177e4
LT
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
36c8b586 300 struct task_struct *curr, *idle;
c9819f45 301 unsigned long next_balance;
1da177e4 302 struct mm_struct *prev_mm;
6aa645ea 303
6aa645ea
IM
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
529c7726 310 u64 tick_timestamp;
6aa645ea 311
1da177e4
LT
312 atomic_t nr_iowait;
313
314#ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
0a2966b4 320 int cpu; /* cpu of this runqueue */
1da177e4 321
36c8b586 322 struct task_struct *migration_thread;
1da177e4
LT
323 struct list_head migration_queue;
324#endif
325
326#ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
2d72376b 334 unsigned long yld_count;
1da177e4
LT
335
336 /* schedule() stats */
337 unsigned long sched_switch;
2d72376b 338 unsigned long sched_count;
1da177e4
LT
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
2d72376b 342 unsigned long ttwu_count;
1da177e4 343 unsigned long ttwu_local;
b8efb561
IM
344
345 /* BKL stats */
2d72376b 346 unsigned long bkl_count;
1da177e4 347#endif
fcb99371 348 struct lock_class_key rq_lock_key;
1da177e4
LT
349};
350
f34e3b61 351static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 352static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 353
dd41f596
IM
354static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355{
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357}
358
0a2966b4
CL
359static inline int cpu_of(struct rq *rq)
360{
361#ifdef CONFIG_SMP
362 return rq->cpu;
363#else
364 return 0;
365#endif
366}
367
20d315d4 368/*
b04a0f4c
IM
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
20d315d4 371 */
b04a0f4c 372static void __update_rq_clock(struct rq *rq)
20d315d4
IM
373{
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
b04a0f4c
IM
379#ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381#endif
20d315d4
IM
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
529c7726
IM
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
20d315d4
IM
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
b04a0f4c 407}
20d315d4 408
b04a0f4c
IM
409static void update_rq_clock(struct rq *rq)
410{
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
20d315d4
IM
413}
414
674311d5
NP
415/*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 417 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
48f24c4d
IM
422#define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
424
425#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426#define this_rq() (&__get_cpu_var(runqueues))
427#define task_rq(p) cpu_rq(task_cpu(p))
428#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
bf5c91ba
IM
430/*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433#ifdef CONFIG_SCHED_DEBUG
434# define const_debug __read_mostly
435#else
436# define const_debug static const
437#endif
438
439/*
440 * Debugging: various feature bits
441 */
442enum {
bbdba7c0
IM
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
06877c33 445 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 446 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
449};
450
451const_debug unsigned int sysctl_sched_features =
bf5c91ba 452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 453 SCHED_FEAT_START_DEBIT *1 |
06877c33 454 SCHED_FEAT_TREE_AVG *0 |
ce6c1311 455 SCHED_FEAT_APPROX_AVG *0 |
95938a35
MG
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
bf5c91ba
IM
458
459#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460
e436d800
IM
461/*
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
464 */
465unsigned long long cpu_clock(int cpu)
466{
e436d800
IM
467 unsigned long long now;
468 unsigned long flags;
b04a0f4c 469 struct rq *rq;
e436d800 470
2cd4d0ea 471 local_irq_save(flags);
b04a0f4c
IM
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
2cd4d0ea 475 local_irq_restore(flags);
e436d800
IM
476
477 return now;
478}
a58f6f25 479EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 480
1da177e4 481#ifndef prepare_arch_switch
4866cde0
NP
482# define prepare_arch_switch(next) do { } while (0)
483#endif
484#ifndef finish_arch_switch
485# define finish_arch_switch(prev) do { } while (0)
486#endif
487
488#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 489static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
490{
491 return rq->curr == p;
492}
493
70b97a7f 494static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
495{
496}
497
70b97a7f 498static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 499{
da04c035
IM
500#ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503#endif
8a25d5de
IM
504 /*
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
508 */
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
510
4866cde0
NP
511 spin_unlock_irq(&rq->lock);
512}
513
514#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 515static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
516{
517#ifdef CONFIG_SMP
518 return p->oncpu;
519#else
520 return rq->curr == p;
521#endif
522}
523
70b97a7f 524static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
525{
526#ifdef CONFIG_SMP
527 /*
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
531 */
532 next->oncpu = 1;
533#endif
534#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536#else
537 spin_unlock(&rq->lock);
538#endif
539}
540
70b97a7f 541static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
542{
543#ifdef CONFIG_SMP
544 /*
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
548 */
549 smp_wmb();
550 prev->oncpu = 0;
551#endif
552#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
1da177e4 554#endif
4866cde0
NP
555}
556#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 557
b29739f9
IM
558/*
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
561 */
70b97a7f 562static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
563 __acquires(rq->lock)
564{
3a5c359a
AK
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
b29739f9 570 spin_unlock(&rq->lock);
b29739f9 571 }
b29739f9
IM
572}
573
1da177e4
LT
574/*
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
578 */
70b97a7f 579static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
580 __acquires(rq->lock)
581{
70b97a7f 582 struct rq *rq;
1da177e4 583
3a5c359a
AK
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
1da177e4 590 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 591 }
1da177e4
LT
592}
593
a9957449 594static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
595 __releases(rq->lock)
596{
597 spin_unlock(&rq->lock);
598}
599
70b97a7f 600static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
601 __releases(rq->lock)
602{
603 spin_unlock_irqrestore(&rq->lock, *flags);
604}
605
1da177e4 606/*
cc2a73b5 607 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 608 */
a9957449 609static struct rq *this_rq_lock(void)
1da177e4
LT
610 __acquires(rq->lock)
611{
70b97a7f 612 struct rq *rq;
1da177e4
LT
613
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
617
618 return rq;
619}
620
1b9f19c2 621/*
2aa44d05 622 * We are going deep-idle (irqs are disabled):
1b9f19c2 623 */
2aa44d05 624void sched_clock_idle_sleep_event(void)
1b9f19c2 625{
2aa44d05
IM
626 struct rq *rq = cpu_rq(smp_processor_id());
627
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
632}
633EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
634
635/*
636 * We just idled delta nanoseconds (called with irqs disabled):
637 */
638void sched_clock_idle_wakeup_event(u64 delta_ns)
639{
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
1b9f19c2 642
2aa44d05
IM
643 rq->idle_clock += delta_ns;
644 /*
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
649 */
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
1b9f19c2 654}
2aa44d05 655EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 656
c24d20db
IM
657/*
658 * resched_task - mark a task 'to be rescheduled now'.
659 *
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
663 */
664#ifdef CONFIG_SMP
665
666#ifndef tsk_is_polling
667#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668#endif
669
670static void resched_task(struct task_struct *p)
671{
672 int cpu;
673
674 assert_spin_locked(&task_rq(p)->lock);
675
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
678
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
680
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
684
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
689}
690
691static void resched_cpu(int cpu)
692{
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
695
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
700}
701#else
702static inline void resched_task(struct task_struct *p)
703{
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
706}
707#endif
708
45bf76df
IM
709#if BITS_PER_LONG == 32
710# define WMULT_CONST (~0UL)
711#else
712# define WMULT_CONST (1UL << 32)
713#endif
714
715#define WMULT_SHIFT 32
716
194081eb
IM
717/*
718 * Shift right and round:
719 */
cf2ab469 720#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 721
cb1c4fc9 722static unsigned long
45bf76df
IM
723calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
725{
726 u64 tmp;
727
728 if (unlikely(!lw->inv_weight))
194081eb 729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
730
731 tmp = (u64)delta_exec * weight;
732 /*
733 * Check whether we'd overflow the 64-bit multiplication:
734 */
194081eb 735 if (unlikely(tmp > WMULT_CONST))
cf2ab469 736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
737 WMULT_SHIFT/2);
738 else
cf2ab469 739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 740
ecf691da 741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
742}
743
744static inline unsigned long
745calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
746{
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
748}
749
1091985b 750static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
751{
752 lw->weight += inc;
45bf76df
IM
753}
754
1091985b 755static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
756{
757 lw->weight -= dec;
45bf76df
IM
758}
759
2dd73a4f
PW
760/*
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
767 */
768
dd41f596
IM
769#define WEIGHT_IDLEPRIO 2
770#define WMULT_IDLEPRIO (1 << 31)
771
772/*
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
777 *
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
dd41f596
IM
783 */
784static const int prio_to_weight[40] = {
254753dc
IM
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
793};
794
5714d2de
IM
795/*
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
797 *
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
801 */
dd41f596 802static const u32 prio_to_wmult[40] = {
254753dc
IM
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 811};
2dd73a4f 812
dd41f596
IM
813static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
814
815/*
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
819 */
820struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
824};
825
826static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
a4ac01c3 830 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
831
832#include "sched_stats.h"
dd41f596 833#include "sched_idletask.c"
5522d5d5
IM
834#include "sched_fair.c"
835#include "sched_rt.c"
dd41f596
IM
836#ifdef CONFIG_SCHED_DEBUG
837# include "sched_debug.c"
838#endif
839
840#define sched_class_highest (&rt_sched_class)
841
9c217245
IM
842/*
843 * Update delta_exec, delta_fair fields for rq.
844 *
845 * delta_fair clock advances at a rate inversely proportional to
495eca49 846 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
849 *
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
853 *
495eca49 854 * This function is called /before/ updating rq->load
9c217245
IM
855 * and when switching tasks.
856 */
29b4b623 857static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 858{
495eca49 859 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
860}
861
79b5dddf 862static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 863{
495eca49 864 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
865}
866
e5fa2237 867static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
868{
869 rq->nr_running++;
29b4b623 870 inc_load(rq, p);
9c217245
IM
871}
872
db53181e 873static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
874{
875 rq->nr_running--;
79b5dddf 876 dec_load(rq, p);
9c217245
IM
877}
878
45bf76df
IM
879static void set_load_weight(struct task_struct *p)
880{
881 if (task_has_rt_policy(p)) {
dd41f596
IM
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
885 }
45bf76df 886
dd41f596
IM
887 /*
888 * SCHED_IDLE tasks get minimal weight:
889 */
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
894 }
71f8bd46 895
dd41f596
IM
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
898}
899
8159f87e 900static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 901{
dd41f596 902 sched_info_queued(p);
fd390f6a 903 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 904 p->se.on_rq = 1;
71f8bd46
IM
905}
906
69be72c1 907static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 908{
f02231e5 909 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 910 p->se.on_rq = 0;
71f8bd46
IM
911}
912
14531189 913/*
dd41f596 914 * __normal_prio - return the priority that is based on the static prio
14531189 915 */
14531189
IM
916static inline int __normal_prio(struct task_struct *p)
917{
dd41f596 918 return p->static_prio;
14531189
IM
919}
920
b29739f9
IM
921/*
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
927 */
36c8b586 928static inline int normal_prio(struct task_struct *p)
b29739f9
IM
929{
930 int prio;
931
e05606d3 932 if (task_has_rt_policy(p))
b29739f9
IM
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
937}
938
939/*
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
945 */
36c8b586 946static int effective_prio(struct task_struct *p)
b29739f9
IM
947{
948 p->normal_prio = normal_prio(p);
949 /*
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
953 */
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
957}
958
1da177e4 959/*
dd41f596 960 * activate_task - move a task to the runqueue.
1da177e4 961 */
dd41f596 962static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 963{
dd41f596
IM
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
1da177e4 966
8159f87e 967 enqueue_task(rq, p, wakeup);
e5fa2237 968 inc_nr_running(p, rq);
1da177e4
LT
969}
970
1da177e4
LT
971/*
972 * deactivate_task - remove a task from the runqueue.
973 */
2e1cb74a 974static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 975{
dd41f596
IM
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
978
69be72c1 979 dequeue_task(rq, p, sleep);
db53181e 980 dec_nr_running(p, rq);
1da177e4
LT
981}
982
1da177e4
LT
983/**
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
986 */
36c8b586 987inline int task_curr(const struct task_struct *p)
1da177e4
LT
988{
989 return cpu_curr(task_cpu(p)) == p;
990}
991
2dd73a4f
PW
992/* Used instead of source_load when we know the type == 0 */
993unsigned long weighted_cpuload(const int cpu)
994{
495eca49 995 return cpu_rq(cpu)->load.weight;
dd41f596
IM
996}
997
998static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
999{
1000#ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
dd41f596 1002#endif
29f59db3 1003 set_task_cfs_rq(p);
2dd73a4f
PW
1004}
1005
1da177e4 1006#ifdef CONFIG_SMP
c65cc870 1007
dd41f596 1008void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1009{
dd41f596
IM
1010 int old_cpu = task_cpu(p);
1011 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1012 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1013 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1014 u64 clock_offset;
dd41f596
IM
1015
1016 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1017
1018#ifdef CONFIG_SCHEDSTATS
1019 if (p->se.wait_start)
1020 p->se.wait_start -= clock_offset;
dd41f596
IM
1021 if (p->se.sleep_start)
1022 p->se.sleep_start -= clock_offset;
1023 if (p->se.block_start)
1024 p->se.block_start -= clock_offset;
6cfb0d5d 1025#endif
2830cf8c
SV
1026 p->se.vruntime -= old_cfsrq->min_vruntime -
1027 new_cfsrq->min_vruntime;
dd41f596
IM
1028
1029 __set_task_cpu(p, new_cpu);
c65cc870
IM
1030}
1031
70b97a7f 1032struct migration_req {
1da177e4 1033 struct list_head list;
1da177e4 1034
36c8b586 1035 struct task_struct *task;
1da177e4
LT
1036 int dest_cpu;
1037
1da177e4 1038 struct completion done;
70b97a7f 1039};
1da177e4
LT
1040
1041/*
1042 * The task's runqueue lock must be held.
1043 * Returns true if you have to wait for migration thread.
1044 */
36c8b586 1045static int
70b97a7f 1046migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1047{
70b97a7f 1048 struct rq *rq = task_rq(p);
1da177e4
LT
1049
1050 /*
1051 * If the task is not on a runqueue (and not running), then
1052 * it is sufficient to simply update the task's cpu field.
1053 */
dd41f596 1054 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1055 set_task_cpu(p, dest_cpu);
1056 return 0;
1057 }
1058
1059 init_completion(&req->done);
1da177e4
LT
1060 req->task = p;
1061 req->dest_cpu = dest_cpu;
1062 list_add(&req->list, &rq->migration_queue);
48f24c4d 1063
1da177e4
LT
1064 return 1;
1065}
1066
1067/*
1068 * wait_task_inactive - wait for a thread to unschedule.
1069 *
1070 * The caller must ensure that the task *will* unschedule sometime soon,
1071 * else this function might spin for a *long* time. This function can't
1072 * be called with interrupts off, or it may introduce deadlock with
1073 * smp_call_function() if an IPI is sent by the same process we are
1074 * waiting to become inactive.
1075 */
36c8b586 1076void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1077{
1078 unsigned long flags;
dd41f596 1079 int running, on_rq;
70b97a7f 1080 struct rq *rq;
1da177e4 1081
3a5c359a
AK
1082 for (;;) {
1083 /*
1084 * We do the initial early heuristics without holding
1085 * any task-queue locks at all. We'll only try to get
1086 * the runqueue lock when things look like they will
1087 * work out!
1088 */
1089 rq = task_rq(p);
fa490cfd 1090
3a5c359a
AK
1091 /*
1092 * If the task is actively running on another CPU
1093 * still, just relax and busy-wait without holding
1094 * any locks.
1095 *
1096 * NOTE! Since we don't hold any locks, it's not
1097 * even sure that "rq" stays as the right runqueue!
1098 * But we don't care, since "task_running()" will
1099 * return false if the runqueue has changed and p
1100 * is actually now running somewhere else!
1101 */
1102 while (task_running(rq, p))
1103 cpu_relax();
fa490cfd 1104
3a5c359a
AK
1105 /*
1106 * Ok, time to look more closely! We need the rq
1107 * lock now, to be *sure*. If we're wrong, we'll
1108 * just go back and repeat.
1109 */
1110 rq = task_rq_lock(p, &flags);
1111 running = task_running(rq, p);
1112 on_rq = p->se.on_rq;
1113 task_rq_unlock(rq, &flags);
fa490cfd 1114
3a5c359a
AK
1115 /*
1116 * Was it really running after all now that we
1117 * checked with the proper locks actually held?
1118 *
1119 * Oops. Go back and try again..
1120 */
1121 if (unlikely(running)) {
1122 cpu_relax();
1123 continue;
1124 }
fa490cfd 1125
3a5c359a
AK
1126 /*
1127 * It's not enough that it's not actively running,
1128 * it must be off the runqueue _entirely_, and not
1129 * preempted!
1130 *
1131 * So if it wa still runnable (but just not actively
1132 * running right now), it's preempted, and we should
1133 * yield - it could be a while.
1134 */
1135 if (unlikely(on_rq)) {
1136 schedule_timeout_uninterruptible(1);
1137 continue;
1138 }
fa490cfd 1139
3a5c359a
AK
1140 /*
1141 * Ahh, all good. It wasn't running, and it wasn't
1142 * runnable, which means that it will never become
1143 * running in the future either. We're all done!
1144 */
1145 break;
1146 }
1da177e4
LT
1147}
1148
1149/***
1150 * kick_process - kick a running thread to enter/exit the kernel
1151 * @p: the to-be-kicked thread
1152 *
1153 * Cause a process which is running on another CPU to enter
1154 * kernel-mode, without any delay. (to get signals handled.)
1155 *
1156 * NOTE: this function doesnt have to take the runqueue lock,
1157 * because all it wants to ensure is that the remote task enters
1158 * the kernel. If the IPI races and the task has been migrated
1159 * to another CPU then no harm is done and the purpose has been
1160 * achieved as well.
1161 */
36c8b586 1162void kick_process(struct task_struct *p)
1da177e4
LT
1163{
1164 int cpu;
1165
1166 preempt_disable();
1167 cpu = task_cpu(p);
1168 if ((cpu != smp_processor_id()) && task_curr(p))
1169 smp_send_reschedule(cpu);
1170 preempt_enable();
1171}
1172
1173/*
2dd73a4f
PW
1174 * Return a low guess at the load of a migration-source cpu weighted
1175 * according to the scheduling class and "nice" value.
1da177e4
LT
1176 *
1177 * We want to under-estimate the load of migration sources, to
1178 * balance conservatively.
1179 */
a9957449 1180static unsigned long source_load(int cpu, int type)
1da177e4 1181{
70b97a7f 1182 struct rq *rq = cpu_rq(cpu);
dd41f596 1183 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1184
3b0bd9bc 1185 if (type == 0)
dd41f596 1186 return total;
b910472d 1187
dd41f596 1188 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1189}
1190
1191/*
2dd73a4f
PW
1192 * Return a high guess at the load of a migration-target cpu weighted
1193 * according to the scheduling class and "nice" value.
1da177e4 1194 */
a9957449 1195static unsigned long target_load(int cpu, int type)
1da177e4 1196{
70b97a7f 1197 struct rq *rq = cpu_rq(cpu);
dd41f596 1198 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1199
7897986b 1200 if (type == 0)
dd41f596 1201 return total;
3b0bd9bc 1202
dd41f596 1203 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1204}
1205
1206/*
1207 * Return the average load per task on the cpu's run queue
1208 */
1209static inline unsigned long cpu_avg_load_per_task(int cpu)
1210{
70b97a7f 1211 struct rq *rq = cpu_rq(cpu);
dd41f596 1212 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1213 unsigned long n = rq->nr_running;
1214
dd41f596 1215 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1216}
1217
147cbb4b
NP
1218/*
1219 * find_idlest_group finds and returns the least busy CPU group within the
1220 * domain.
1221 */
1222static struct sched_group *
1223find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1224{
1225 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1226 unsigned long min_load = ULONG_MAX, this_load = 0;
1227 int load_idx = sd->forkexec_idx;
1228 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1229
1230 do {
1231 unsigned long load, avg_load;
1232 int local_group;
1233 int i;
1234
da5a5522
BD
1235 /* Skip over this group if it has no CPUs allowed */
1236 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1237 continue;
da5a5522 1238
147cbb4b 1239 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1240
1241 /* Tally up the load of all CPUs in the group */
1242 avg_load = 0;
1243
1244 for_each_cpu_mask(i, group->cpumask) {
1245 /* Bias balancing toward cpus of our domain */
1246 if (local_group)
1247 load = source_load(i, load_idx);
1248 else
1249 load = target_load(i, load_idx);
1250
1251 avg_load += load;
1252 }
1253
1254 /* Adjust by relative CPU power of the group */
5517d86b
ED
1255 avg_load = sg_div_cpu_power(group,
1256 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1257
1258 if (local_group) {
1259 this_load = avg_load;
1260 this = group;
1261 } else if (avg_load < min_load) {
1262 min_load = avg_load;
1263 idlest = group;
1264 }
3a5c359a 1265 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1266
1267 if (!idlest || 100*this_load < imbalance*min_load)
1268 return NULL;
1269 return idlest;
1270}
1271
1272/*
0feaece9 1273 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1274 */
95cdf3b7
IM
1275static int
1276find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1277{
da5a5522 1278 cpumask_t tmp;
147cbb4b
NP
1279 unsigned long load, min_load = ULONG_MAX;
1280 int idlest = -1;
1281 int i;
1282
da5a5522
BD
1283 /* Traverse only the allowed CPUs */
1284 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1285
1286 for_each_cpu_mask(i, tmp) {
2dd73a4f 1287 load = weighted_cpuload(i);
147cbb4b
NP
1288
1289 if (load < min_load || (load == min_load && i == this_cpu)) {
1290 min_load = load;
1291 idlest = i;
1292 }
1293 }
1294
1295 return idlest;
1296}
1297
476d139c
NP
1298/*
1299 * sched_balance_self: balance the current task (running on cpu) in domains
1300 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1301 * SD_BALANCE_EXEC.
1302 *
1303 * Balance, ie. select the least loaded group.
1304 *
1305 * Returns the target CPU number, or the same CPU if no balancing is needed.
1306 *
1307 * preempt must be disabled.
1308 */
1309static int sched_balance_self(int cpu, int flag)
1310{
1311 struct task_struct *t = current;
1312 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1313
c96d145e 1314 for_each_domain(cpu, tmp) {
9761eea8
IM
1315 /*
1316 * If power savings logic is enabled for a domain, stop there.
1317 */
5c45bf27
SS
1318 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1319 break;
476d139c
NP
1320 if (tmp->flags & flag)
1321 sd = tmp;
c96d145e 1322 }
476d139c
NP
1323
1324 while (sd) {
1325 cpumask_t span;
1326 struct sched_group *group;
1a848870
SS
1327 int new_cpu, weight;
1328
1329 if (!(sd->flags & flag)) {
1330 sd = sd->child;
1331 continue;
1332 }
476d139c
NP
1333
1334 span = sd->span;
1335 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1336 if (!group) {
1337 sd = sd->child;
1338 continue;
1339 }
476d139c 1340
da5a5522 1341 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1342 if (new_cpu == -1 || new_cpu == cpu) {
1343 /* Now try balancing at a lower domain level of cpu */
1344 sd = sd->child;
1345 continue;
1346 }
476d139c 1347
1a848870 1348 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1349 cpu = new_cpu;
476d139c
NP
1350 sd = NULL;
1351 weight = cpus_weight(span);
1352 for_each_domain(cpu, tmp) {
1353 if (weight <= cpus_weight(tmp->span))
1354 break;
1355 if (tmp->flags & flag)
1356 sd = tmp;
1357 }
1358 /* while loop will break here if sd == NULL */
1359 }
1360
1361 return cpu;
1362}
1363
1364#endif /* CONFIG_SMP */
1da177e4
LT
1365
1366/*
1367 * wake_idle() will wake a task on an idle cpu if task->cpu is
1368 * not idle and an idle cpu is available. The span of cpus to
1369 * search starts with cpus closest then further out as needed,
1370 * so we always favor a closer, idle cpu.
1371 *
1372 * Returns the CPU we should wake onto.
1373 */
1374#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1375static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1376{
1377 cpumask_t tmp;
1378 struct sched_domain *sd;
1379 int i;
1380
4953198b
SS
1381 /*
1382 * If it is idle, then it is the best cpu to run this task.
1383 *
1384 * This cpu is also the best, if it has more than one task already.
1385 * Siblings must be also busy(in most cases) as they didn't already
1386 * pickup the extra load from this cpu and hence we need not check
1387 * sibling runqueue info. This will avoid the checks and cache miss
1388 * penalities associated with that.
1389 */
1390 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1391 return cpu;
1392
1393 for_each_domain(cpu, sd) {
1394 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1395 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1396 for_each_cpu_mask(i, tmp) {
1397 if (idle_cpu(i))
1398 return i;
1399 }
9761eea8 1400 } else {
e0f364f4 1401 break;
9761eea8 1402 }
1da177e4
LT
1403 }
1404 return cpu;
1405}
1406#else
36c8b586 1407static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1408{
1409 return cpu;
1410}
1411#endif
1412
1413/***
1414 * try_to_wake_up - wake up a thread
1415 * @p: the to-be-woken-up thread
1416 * @state: the mask of task states that can be woken
1417 * @sync: do a synchronous wakeup?
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
1425 * returns failure only if the task is already active.
1426 */
36c8b586 1427static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1428{
1429 int cpu, this_cpu, success = 0;
1430 unsigned long flags;
1431 long old_state;
70b97a7f 1432 struct rq *rq;
1da177e4 1433#ifdef CONFIG_SMP
7897986b 1434 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1435 unsigned long load, this_load;
1da177e4
LT
1436 int new_cpu;
1437#endif
1438
1439 rq = task_rq_lock(p, &flags);
1440 old_state = p->state;
1441 if (!(old_state & state))
1442 goto out;
1443
dd41f596 1444 if (p->se.on_rq)
1da177e4
LT
1445 goto out_running;
1446
1447 cpu = task_cpu(p);
1448 this_cpu = smp_processor_id();
1449
1450#ifdef CONFIG_SMP
1451 if (unlikely(task_running(rq, p)))
1452 goto out_activate;
1453
7897986b
NP
1454 new_cpu = cpu;
1455
2d72376b 1456 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1457 if (cpu == this_cpu) {
1458 schedstat_inc(rq, ttwu_local);
7897986b
NP
1459 goto out_set_cpu;
1460 }
1461
1462 for_each_domain(this_cpu, sd) {
1463 if (cpu_isset(cpu, sd->span)) {
1464 schedstat_inc(sd, ttwu_wake_remote);
1465 this_sd = sd;
1466 break;
1da177e4
LT
1467 }
1468 }
1da177e4 1469
7897986b 1470 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1471 goto out_set_cpu;
1472
1da177e4 1473 /*
7897986b 1474 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1475 */
7897986b
NP
1476 if (this_sd) {
1477 int idx = this_sd->wake_idx;
1478 unsigned int imbalance;
1da177e4 1479
a3f21bce
NP
1480 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1481
7897986b
NP
1482 load = source_load(cpu, idx);
1483 this_load = target_load(this_cpu, idx);
1da177e4 1484
7897986b
NP
1485 new_cpu = this_cpu; /* Wake to this CPU if we can */
1486
a3f21bce
NP
1487 if (this_sd->flags & SD_WAKE_AFFINE) {
1488 unsigned long tl = this_load;
33859f7f
MOS
1489 unsigned long tl_per_task;
1490
1491 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1492
1da177e4 1493 /*
a3f21bce
NP
1494 * If sync wakeup then subtract the (maximum possible)
1495 * effect of the currently running task from the load
1496 * of the current CPU:
1da177e4 1497 */
a3f21bce 1498 if (sync)
dd41f596 1499 tl -= current->se.load.weight;
a3f21bce
NP
1500
1501 if ((tl <= load &&
2dd73a4f 1502 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1503 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1504 /*
1505 * This domain has SD_WAKE_AFFINE and
1506 * p is cache cold in this domain, and
1507 * there is no bad imbalance.
1508 */
1509 schedstat_inc(this_sd, ttwu_move_affine);
1510 goto out_set_cpu;
1511 }
1512 }
1513
1514 /*
1515 * Start passive balancing when half the imbalance_pct
1516 * limit is reached.
1517 */
1518 if (this_sd->flags & SD_WAKE_BALANCE) {
1519 if (imbalance*this_load <= 100*load) {
1520 schedstat_inc(this_sd, ttwu_move_balance);
1521 goto out_set_cpu;
1522 }
1da177e4
LT
1523 }
1524 }
1525
1526 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1527out_set_cpu:
1528 new_cpu = wake_idle(new_cpu, p);
1529 if (new_cpu != cpu) {
1530 set_task_cpu(p, new_cpu);
1531 task_rq_unlock(rq, &flags);
1532 /* might preempt at this point */
1533 rq = task_rq_lock(p, &flags);
1534 old_state = p->state;
1535 if (!(old_state & state))
1536 goto out;
dd41f596 1537 if (p->se.on_rq)
1da177e4
LT
1538 goto out_running;
1539
1540 this_cpu = smp_processor_id();
1541 cpu = task_cpu(p);
1542 }
1543
1544out_activate:
1545#endif /* CONFIG_SMP */
2daa3577 1546 update_rq_clock(rq);
dd41f596 1547 activate_task(rq, p, 1);
1da177e4
LT
1548 /*
1549 * Sync wakeups (i.e. those types of wakeups where the waker
1550 * has indicated that it will leave the CPU in short order)
1551 * don't trigger a preemption, if the woken up task will run on
1552 * this cpu. (in this case the 'I will reschedule' promise of
1553 * the waker guarantees that the freshly woken up task is going
1554 * to be considered on this CPU.)
1555 */
dd41f596
IM
1556 if (!sync || cpu != this_cpu)
1557 check_preempt_curr(rq, p);
1da177e4
LT
1558 success = 1;
1559
1560out_running:
1561 p->state = TASK_RUNNING;
1562out:
1563 task_rq_unlock(rq, &flags);
1564
1565 return success;
1566}
1567
36c8b586 1568int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1569{
1570 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1571 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1572}
1da177e4
LT
1573EXPORT_SYMBOL(wake_up_process);
1574
36c8b586 1575int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1576{
1577 return try_to_wake_up(p, state, 0);
1578}
1579
1da177e4
LT
1580/*
1581 * Perform scheduler related setup for a newly forked process p.
1582 * p is forked by current.
dd41f596
IM
1583 *
1584 * __sched_fork() is basic setup used by init_idle() too:
1585 */
1586static void __sched_fork(struct task_struct *p)
1587{
dd41f596
IM
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
f6cf891c 1590 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1591
1592#ifdef CONFIG_SCHEDSTATS
1593 p->se.wait_start = 0;
dd41f596
IM
1594 p->se.sum_sleep_runtime = 0;
1595 p->se.sleep_start = 0;
dd41f596
IM
1596 p->se.block_start = 0;
1597 p->se.sleep_max = 0;
1598 p->se.block_max = 0;
1599 p->se.exec_max = 0;
eba1ed4b 1600 p->se.slice_max = 0;
dd41f596 1601 p->se.wait_max = 0;
6cfb0d5d 1602#endif
476d139c 1603
dd41f596
IM
1604 INIT_LIST_HEAD(&p->run_list);
1605 p->se.on_rq = 0;
476d139c 1606
e107be36
AK
1607#ifdef CONFIG_PREEMPT_NOTIFIERS
1608 INIT_HLIST_HEAD(&p->preempt_notifiers);
1609#endif
1610
1da177e4
LT
1611 /*
1612 * We mark the process as running here, but have not actually
1613 * inserted it onto the runqueue yet. This guarantees that
1614 * nobody will actually run it, and a signal or other external
1615 * event cannot wake it up and insert it on the runqueue either.
1616 */
1617 p->state = TASK_RUNNING;
dd41f596
IM
1618}
1619
1620/*
1621 * fork()/clone()-time setup:
1622 */
1623void sched_fork(struct task_struct *p, int clone_flags)
1624{
1625 int cpu = get_cpu();
1626
1627 __sched_fork(p);
1628
1629#ifdef CONFIG_SMP
1630 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1631#endif
02e4bac2 1632 set_task_cpu(p, cpu);
b29739f9
IM
1633
1634 /*
1635 * Make sure we do not leak PI boosting priority to the child:
1636 */
1637 p->prio = current->normal_prio;
2ddbf952
HS
1638 if (!rt_prio(p->prio))
1639 p->sched_class = &fair_sched_class;
b29739f9 1640
52f17b6c 1641#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1642 if (likely(sched_info_on()))
52f17b6c 1643 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1644#endif
d6077cb8 1645#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1646 p->oncpu = 0;
1647#endif
1da177e4 1648#ifdef CONFIG_PREEMPT
4866cde0 1649 /* Want to start with kernel preemption disabled. */
a1261f54 1650 task_thread_info(p)->preempt_count = 1;
1da177e4 1651#endif
476d139c 1652 put_cpu();
1da177e4
LT
1653}
1654
1655/*
1656 * wake_up_new_task - wake up a newly created task for the first time.
1657 *
1658 * This function will do some initial scheduler statistics housekeeping
1659 * that must be done for every newly created context, then puts the task
1660 * on the runqueue and wakes it.
1661 */
36c8b586 1662void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1663{
1664 unsigned long flags;
dd41f596 1665 struct rq *rq;
1da177e4
LT
1666
1667 rq = task_rq_lock(p, &flags);
147cbb4b 1668 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1669 update_rq_clock(rq);
1da177e4
LT
1670
1671 p->prio = effective_prio(p);
1672
00bf7bfc 1673 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1674 activate_task(rq, p, 0);
1da177e4 1675 } else {
1da177e4 1676 /*
dd41f596
IM
1677 * Let the scheduling class do new task startup
1678 * management (if any):
1da177e4 1679 */
ee0827d8 1680 p->sched_class->task_new(rq, p);
e5fa2237 1681 inc_nr_running(p, rq);
1da177e4 1682 }
dd41f596
IM
1683 check_preempt_curr(rq, p);
1684 task_rq_unlock(rq, &flags);
1da177e4
LT
1685}
1686
e107be36
AK
1687#ifdef CONFIG_PREEMPT_NOTIFIERS
1688
1689/**
421cee29
RD
1690 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1691 * @notifier: notifier struct to register
e107be36
AK
1692 */
1693void preempt_notifier_register(struct preempt_notifier *notifier)
1694{
1695 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1696}
1697EXPORT_SYMBOL_GPL(preempt_notifier_register);
1698
1699/**
1700 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1701 * @notifier: notifier struct to unregister
e107be36
AK
1702 *
1703 * This is safe to call from within a preemption notifier.
1704 */
1705void preempt_notifier_unregister(struct preempt_notifier *notifier)
1706{
1707 hlist_del(&notifier->link);
1708}
1709EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1710
1711static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1712{
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1715
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1718}
1719
1720static void
1721fire_sched_out_preempt_notifiers(struct task_struct *curr,
1722 struct task_struct *next)
1723{
1724 struct preempt_notifier *notifier;
1725 struct hlist_node *node;
1726
1727 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1728 notifier->ops->sched_out(notifier, next);
1729}
1730
1731#else
1732
1733static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1734{
1735}
1736
1737static void
1738fire_sched_out_preempt_notifiers(struct task_struct *curr,
1739 struct task_struct *next)
1740{
1741}
1742
1743#endif
1744
4866cde0
NP
1745/**
1746 * prepare_task_switch - prepare to switch tasks
1747 * @rq: the runqueue preparing to switch
421cee29 1748 * @prev: the current task that is being switched out
4866cde0
NP
1749 * @next: the task we are going to switch to.
1750 *
1751 * This is called with the rq lock held and interrupts off. It must
1752 * be paired with a subsequent finish_task_switch after the context
1753 * switch.
1754 *
1755 * prepare_task_switch sets up locking and calls architecture specific
1756 * hooks.
1757 */
e107be36
AK
1758static inline void
1759prepare_task_switch(struct rq *rq, struct task_struct *prev,
1760 struct task_struct *next)
4866cde0 1761{
e107be36 1762 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1763 prepare_lock_switch(rq, next);
1764 prepare_arch_switch(next);
1765}
1766
1da177e4
LT
1767/**
1768 * finish_task_switch - clean up after a task-switch
344babaa 1769 * @rq: runqueue associated with task-switch
1da177e4
LT
1770 * @prev: the thread we just switched away from.
1771 *
4866cde0
NP
1772 * finish_task_switch must be called after the context switch, paired
1773 * with a prepare_task_switch call before the context switch.
1774 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1775 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1776 *
1777 * Note that we may have delayed dropping an mm in context_switch(). If
1778 * so, we finish that here outside of the runqueue lock. (Doing it
1779 * with the lock held can cause deadlocks; see schedule() for
1780 * details.)
1781 */
a9957449 1782static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1783 __releases(rq->lock)
1784{
1da177e4 1785 struct mm_struct *mm = rq->prev_mm;
55a101f8 1786 long prev_state;
1da177e4
LT
1787
1788 rq->prev_mm = NULL;
1789
1790 /*
1791 * A task struct has one reference for the use as "current".
c394cc9f 1792 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1793 * schedule one last time. The schedule call will never return, and
1794 * the scheduled task must drop that reference.
c394cc9f 1795 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1796 * still held, otherwise prev could be scheduled on another cpu, die
1797 * there before we look at prev->state, and then the reference would
1798 * be dropped twice.
1799 * Manfred Spraul <manfred@colorfullife.com>
1800 */
55a101f8 1801 prev_state = prev->state;
4866cde0
NP
1802 finish_arch_switch(prev);
1803 finish_lock_switch(rq, prev);
e107be36 1804 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1805 if (mm)
1806 mmdrop(mm);
c394cc9f 1807 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1808 /*
1809 * Remove function-return probe instances associated with this
1810 * task and put them back on the free list.
9761eea8 1811 */
c6fd91f0 1812 kprobe_flush_task(prev);
1da177e4 1813 put_task_struct(prev);
c6fd91f0 1814 }
1da177e4
LT
1815}
1816
1817/**
1818 * schedule_tail - first thing a freshly forked thread must call.
1819 * @prev: the thread we just switched away from.
1820 */
36c8b586 1821asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1822 __releases(rq->lock)
1823{
70b97a7f
IM
1824 struct rq *rq = this_rq();
1825
4866cde0
NP
1826 finish_task_switch(rq, prev);
1827#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1828 /* In this case, finish_task_switch does not reenable preemption */
1829 preempt_enable();
1830#endif
1da177e4
LT
1831 if (current->set_child_tid)
1832 put_user(current->pid, current->set_child_tid);
1833}
1834
1835/*
1836 * context_switch - switch to the new MM and the new
1837 * thread's register state.
1838 */
dd41f596 1839static inline void
70b97a7f 1840context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1841 struct task_struct *next)
1da177e4 1842{
dd41f596 1843 struct mm_struct *mm, *oldmm;
1da177e4 1844
e107be36 1845 prepare_task_switch(rq, prev, next);
dd41f596
IM
1846 mm = next->mm;
1847 oldmm = prev->active_mm;
9226d125
ZA
1848 /*
1849 * For paravirt, this is coupled with an exit in switch_to to
1850 * combine the page table reload and the switch backend into
1851 * one hypercall.
1852 */
1853 arch_enter_lazy_cpu_mode();
1854
dd41f596 1855 if (unlikely(!mm)) {
1da177e4
LT
1856 next->active_mm = oldmm;
1857 atomic_inc(&oldmm->mm_count);
1858 enter_lazy_tlb(oldmm, next);
1859 } else
1860 switch_mm(oldmm, mm, next);
1861
dd41f596 1862 if (unlikely(!prev->mm)) {
1da177e4 1863 prev->active_mm = NULL;
1da177e4
LT
1864 rq->prev_mm = oldmm;
1865 }
3a5f5e48
IM
1866 /*
1867 * Since the runqueue lock will be released by the next
1868 * task (which is an invalid locking op but in the case
1869 * of the scheduler it's an obvious special-case), so we
1870 * do an early lockdep release here:
1871 */
1872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1873 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1874#endif
1da177e4
LT
1875
1876 /* Here we just switch the register state and the stack. */
1877 switch_to(prev, next, prev);
1878
dd41f596
IM
1879 barrier();
1880 /*
1881 * this_rq must be evaluated again because prev may have moved
1882 * CPUs since it called schedule(), thus the 'rq' on its stack
1883 * frame will be invalid.
1884 */
1885 finish_task_switch(this_rq(), prev);
1da177e4
LT
1886}
1887
1888/*
1889 * nr_running, nr_uninterruptible and nr_context_switches:
1890 *
1891 * externally visible scheduler statistics: current number of runnable
1892 * threads, current number of uninterruptible-sleeping threads, total
1893 * number of context switches performed since bootup.
1894 */
1895unsigned long nr_running(void)
1896{
1897 unsigned long i, sum = 0;
1898
1899 for_each_online_cpu(i)
1900 sum += cpu_rq(i)->nr_running;
1901
1902 return sum;
1903}
1904
1905unsigned long nr_uninterruptible(void)
1906{
1907 unsigned long i, sum = 0;
1908
0a945022 1909 for_each_possible_cpu(i)
1da177e4
LT
1910 sum += cpu_rq(i)->nr_uninterruptible;
1911
1912 /*
1913 * Since we read the counters lockless, it might be slightly
1914 * inaccurate. Do not allow it to go below zero though:
1915 */
1916 if (unlikely((long)sum < 0))
1917 sum = 0;
1918
1919 return sum;
1920}
1921
1922unsigned long long nr_context_switches(void)
1923{
cc94abfc
SR
1924 int i;
1925 unsigned long long sum = 0;
1da177e4 1926
0a945022 1927 for_each_possible_cpu(i)
1da177e4
LT
1928 sum += cpu_rq(i)->nr_switches;
1929
1930 return sum;
1931}
1932
1933unsigned long nr_iowait(void)
1934{
1935 unsigned long i, sum = 0;
1936
0a945022 1937 for_each_possible_cpu(i)
1da177e4
LT
1938 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1939
1940 return sum;
1941}
1942
db1b1fef
JS
1943unsigned long nr_active(void)
1944{
1945 unsigned long i, running = 0, uninterruptible = 0;
1946
1947 for_each_online_cpu(i) {
1948 running += cpu_rq(i)->nr_running;
1949 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1950 }
1951
1952 if (unlikely((long)uninterruptible < 0))
1953 uninterruptible = 0;
1954
1955 return running + uninterruptible;
1956}
1957
48f24c4d 1958/*
dd41f596
IM
1959 * Update rq->cpu_load[] statistics. This function is usually called every
1960 * scheduler tick (TICK_NSEC).
48f24c4d 1961 */
dd41f596 1962static void update_cpu_load(struct rq *this_rq)
48f24c4d 1963{
495eca49 1964 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
1965 int i, scale;
1966
1967 this_rq->nr_load_updates++;
dd41f596
IM
1968
1969 /* Update our load: */
1970 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1971 unsigned long old_load, new_load;
1972
1973 /* scale is effectively 1 << i now, and >> i divides by scale */
1974
1975 old_load = this_rq->cpu_load[i];
1976 new_load = this_load;
a25707f3
IM
1977 /*
1978 * Round up the averaging division if load is increasing. This
1979 * prevents us from getting stuck on 9 if the load is 10, for
1980 * example.
1981 */
1982 if (new_load > old_load)
1983 new_load += scale-1;
dd41f596
IM
1984 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1985 }
48f24c4d
IM
1986}
1987
dd41f596
IM
1988#ifdef CONFIG_SMP
1989
1da177e4
LT
1990/*
1991 * double_rq_lock - safely lock two runqueues
1992 *
1993 * Note this does not disable interrupts like task_rq_lock,
1994 * you need to do so manually before calling.
1995 */
70b97a7f 1996static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1997 __acquires(rq1->lock)
1998 __acquires(rq2->lock)
1999{
054b9108 2000 BUG_ON(!irqs_disabled());
1da177e4
LT
2001 if (rq1 == rq2) {
2002 spin_lock(&rq1->lock);
2003 __acquire(rq2->lock); /* Fake it out ;) */
2004 } else {
c96d145e 2005 if (rq1 < rq2) {
1da177e4
LT
2006 spin_lock(&rq1->lock);
2007 spin_lock(&rq2->lock);
2008 } else {
2009 spin_lock(&rq2->lock);
2010 spin_lock(&rq1->lock);
2011 }
2012 }
6e82a3be
IM
2013 update_rq_clock(rq1);
2014 update_rq_clock(rq2);
1da177e4
LT
2015}
2016
2017/*
2018 * double_rq_unlock - safely unlock two runqueues
2019 *
2020 * Note this does not restore interrupts like task_rq_unlock,
2021 * you need to do so manually after calling.
2022 */
70b97a7f 2023static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2024 __releases(rq1->lock)
2025 __releases(rq2->lock)
2026{
2027 spin_unlock(&rq1->lock);
2028 if (rq1 != rq2)
2029 spin_unlock(&rq2->lock);
2030 else
2031 __release(rq2->lock);
2032}
2033
2034/*
2035 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2036 */
70b97a7f 2037static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2038 __releases(this_rq->lock)
2039 __acquires(busiest->lock)
2040 __acquires(this_rq->lock)
2041{
054b9108
KK
2042 if (unlikely(!irqs_disabled())) {
2043 /* printk() doesn't work good under rq->lock */
2044 spin_unlock(&this_rq->lock);
2045 BUG_ON(1);
2046 }
1da177e4 2047 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2048 if (busiest < this_rq) {
1da177e4
LT
2049 spin_unlock(&this_rq->lock);
2050 spin_lock(&busiest->lock);
2051 spin_lock(&this_rq->lock);
2052 } else
2053 spin_lock(&busiest->lock);
2054 }
2055}
2056
1da177e4
LT
2057/*
2058 * If dest_cpu is allowed for this process, migrate the task to it.
2059 * This is accomplished by forcing the cpu_allowed mask to only
2060 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2061 * the cpu_allowed mask is restored.
2062 */
36c8b586 2063static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2064{
70b97a7f 2065 struct migration_req req;
1da177e4 2066 unsigned long flags;
70b97a7f 2067 struct rq *rq;
1da177e4
LT
2068
2069 rq = task_rq_lock(p, &flags);
2070 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2071 || unlikely(cpu_is_offline(dest_cpu)))
2072 goto out;
2073
2074 /* force the process onto the specified CPU */
2075 if (migrate_task(p, dest_cpu, &req)) {
2076 /* Need to wait for migration thread (might exit: take ref). */
2077 struct task_struct *mt = rq->migration_thread;
36c8b586 2078
1da177e4
LT
2079 get_task_struct(mt);
2080 task_rq_unlock(rq, &flags);
2081 wake_up_process(mt);
2082 put_task_struct(mt);
2083 wait_for_completion(&req.done);
36c8b586 2084
1da177e4
LT
2085 return;
2086 }
2087out:
2088 task_rq_unlock(rq, &flags);
2089}
2090
2091/*
476d139c
NP
2092 * sched_exec - execve() is a valuable balancing opportunity, because at
2093 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2094 */
2095void sched_exec(void)
2096{
1da177e4 2097 int new_cpu, this_cpu = get_cpu();
476d139c 2098 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2099 put_cpu();
476d139c
NP
2100 if (new_cpu != this_cpu)
2101 sched_migrate_task(current, new_cpu);
1da177e4
LT
2102}
2103
2104/*
2105 * pull_task - move a task from a remote runqueue to the local runqueue.
2106 * Both runqueues must be locked.
2107 */
dd41f596
IM
2108static void pull_task(struct rq *src_rq, struct task_struct *p,
2109 struct rq *this_rq, int this_cpu)
1da177e4 2110{
2e1cb74a 2111 deactivate_task(src_rq, p, 0);
1da177e4 2112 set_task_cpu(p, this_cpu);
dd41f596 2113 activate_task(this_rq, p, 0);
1da177e4
LT
2114 /*
2115 * Note that idle threads have a prio of MAX_PRIO, for this test
2116 * to be always true for them.
2117 */
dd41f596 2118 check_preempt_curr(this_rq, p);
1da177e4
LT
2119}
2120
da84d961
IM
2121/*
2122 * Is this task likely cache-hot:
2123 */
2124static inline int
ff56b2f0 2125task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
da84d961 2126{
ff56b2f0 2127 s64 delta;
da84d961 2128
ff56b2f0
PZ
2129 if (p->sched_class != &fair_sched_class)
2130 return 0;
2131
2132 delta = now - p->se.exec_start;
2133
2134 return delta < (s64)sysctl_sched_migration_cost;
da84d961
IM
2135}
2136
1da177e4
LT
2137/*
2138 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2139 */
858119e1 2140static
70b97a7f 2141int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2142 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2143 int *all_pinned)
1da177e4
LT
2144{
2145 /*
2146 * We do not migrate tasks that are:
2147 * 1) running (obviously), or
2148 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2149 * 3) are cache-hot on their current CPU.
2150 */
1da177e4
LT
2151 if (!cpu_isset(this_cpu, p->cpus_allowed))
2152 return 0;
81026794
NP
2153 *all_pinned = 0;
2154
2155 if (task_running(rq, p))
2156 return 0;
1da177e4 2157
da84d961
IM
2158 /*
2159 * Aggressive migration if:
2160 * 1) task is cache cold, or
2161 * 2) too many balance attempts have failed.
2162 */
2163
2164 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2165#ifdef CONFIG_SCHEDSTATS
2166 if (task_hot(p, rq->clock, sd))
2167 schedstat_inc(sd, lb_hot_gained[idle]);
2168#endif
2169 return 1;
2170 }
2171
2172 if (task_hot(p, rq->clock, sd))
2173 return 0;
1da177e4
LT
2174 return 1;
2175}
2176
dd41f596 2177static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2178 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2179 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2180 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2181 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2182{
dd41f596
IM
2183 int pulled = 0, pinned = 0, skip_for_load;
2184 struct task_struct *p;
2185 long rem_load_move = max_load_move;
1da177e4 2186
2dd73a4f 2187 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2188 goto out;
2189
81026794
NP
2190 pinned = 1;
2191
1da177e4 2192 /*
dd41f596 2193 * Start the load-balancing iterator:
1da177e4 2194 */
dd41f596
IM
2195 p = iterator->start(iterator->arg);
2196next:
2197 if (!p)
1da177e4 2198 goto out;
50ddd969
PW
2199 /*
2200 * To help distribute high priority tasks accross CPUs we don't
2201 * skip a task if it will be the highest priority task (i.e. smallest
2202 * prio value) on its new queue regardless of its load weight
2203 */
dd41f596
IM
2204 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2205 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2206 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2207 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2208 p = iterator->next(iterator->arg);
2209 goto next;
1da177e4
LT
2210 }
2211
dd41f596 2212 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2213 pulled++;
dd41f596 2214 rem_load_move -= p->se.load.weight;
1da177e4 2215
2dd73a4f
PW
2216 /*
2217 * We only want to steal up to the prescribed number of tasks
2218 * and the prescribed amount of weighted load.
2219 */
2220 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2221 if (p->prio < *this_best_prio)
2222 *this_best_prio = p->prio;
dd41f596
IM
2223 p = iterator->next(iterator->arg);
2224 goto next;
1da177e4
LT
2225 }
2226out:
2227 /*
2228 * Right now, this is the only place pull_task() is called,
2229 * so we can safely collect pull_task() stats here rather than
2230 * inside pull_task().
2231 */
2232 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2233
2234 if (all_pinned)
2235 *all_pinned = pinned;
dd41f596 2236 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2237 return pulled;
2238}
2239
dd41f596 2240/*
43010659
PW
2241 * move_tasks tries to move up to max_load_move weighted load from busiest to
2242 * this_rq, as part of a balancing operation within domain "sd".
2243 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2244 *
2245 * Called with both runqueues locked.
2246 */
2247static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2248 unsigned long max_load_move,
dd41f596
IM
2249 struct sched_domain *sd, enum cpu_idle_type idle,
2250 int *all_pinned)
2251{
5522d5d5 2252 const struct sched_class *class = sched_class_highest;
43010659 2253 unsigned long total_load_moved = 0;
a4ac01c3 2254 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2255
2256 do {
43010659
PW
2257 total_load_moved +=
2258 class->load_balance(this_rq, this_cpu, busiest,
2259 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2260 sd, idle, all_pinned, &this_best_prio);
dd41f596 2261 class = class->next;
43010659 2262 } while (class && max_load_move > total_load_moved);
dd41f596 2263
43010659
PW
2264 return total_load_moved > 0;
2265}
2266
2267/*
2268 * move_one_task tries to move exactly one task from busiest to this_rq, as
2269 * part of active balancing operations within "domain".
2270 * Returns 1 if successful and 0 otherwise.
2271 *
2272 * Called with both runqueues locked.
2273 */
2274static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2275 struct sched_domain *sd, enum cpu_idle_type idle)
2276{
5522d5d5 2277 const struct sched_class *class;
a4ac01c3 2278 int this_best_prio = MAX_PRIO;
43010659
PW
2279
2280 for (class = sched_class_highest; class; class = class->next)
2281 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2282 1, ULONG_MAX, sd, idle, NULL,
2283 &this_best_prio))
43010659
PW
2284 return 1;
2285
2286 return 0;
dd41f596
IM
2287}
2288
1da177e4
LT
2289/*
2290 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2291 * domain. It calculates and returns the amount of weighted load which
2292 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2293 */
2294static struct sched_group *
2295find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2296 unsigned long *imbalance, enum cpu_idle_type idle,
2297 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2298{
2299 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2300 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2301 unsigned long max_pull;
2dd73a4f
PW
2302 unsigned long busiest_load_per_task, busiest_nr_running;
2303 unsigned long this_load_per_task, this_nr_running;
7897986b 2304 int load_idx;
5c45bf27
SS
2305#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2306 int power_savings_balance = 1;
2307 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2308 unsigned long min_nr_running = ULONG_MAX;
2309 struct sched_group *group_min = NULL, *group_leader = NULL;
2310#endif
1da177e4
LT
2311
2312 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2313 busiest_load_per_task = busiest_nr_running = 0;
2314 this_load_per_task = this_nr_running = 0;
d15bcfdb 2315 if (idle == CPU_NOT_IDLE)
7897986b 2316 load_idx = sd->busy_idx;
d15bcfdb 2317 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2318 load_idx = sd->newidle_idx;
2319 else
2320 load_idx = sd->idle_idx;
1da177e4
LT
2321
2322 do {
5c45bf27 2323 unsigned long load, group_capacity;
1da177e4
LT
2324 int local_group;
2325 int i;
783609c6 2326 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2327 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2328
2329 local_group = cpu_isset(this_cpu, group->cpumask);
2330
783609c6
SS
2331 if (local_group)
2332 balance_cpu = first_cpu(group->cpumask);
2333
1da177e4 2334 /* Tally up the load of all CPUs in the group */
2dd73a4f 2335 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2336
2337 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2338 struct rq *rq;
2339
2340 if (!cpu_isset(i, *cpus))
2341 continue;
2342
2343 rq = cpu_rq(i);
2dd73a4f 2344
9439aab8 2345 if (*sd_idle && rq->nr_running)
5969fe06
NP
2346 *sd_idle = 0;
2347
1da177e4 2348 /* Bias balancing toward cpus of our domain */
783609c6
SS
2349 if (local_group) {
2350 if (idle_cpu(i) && !first_idle_cpu) {
2351 first_idle_cpu = 1;
2352 balance_cpu = i;
2353 }
2354
a2000572 2355 load = target_load(i, load_idx);
783609c6 2356 } else
a2000572 2357 load = source_load(i, load_idx);
1da177e4
LT
2358
2359 avg_load += load;
2dd73a4f 2360 sum_nr_running += rq->nr_running;
dd41f596 2361 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2362 }
2363
783609c6
SS
2364 /*
2365 * First idle cpu or the first cpu(busiest) in this sched group
2366 * is eligible for doing load balancing at this and above
9439aab8
SS
2367 * domains. In the newly idle case, we will allow all the cpu's
2368 * to do the newly idle load balance.
783609c6 2369 */
9439aab8
SS
2370 if (idle != CPU_NEWLY_IDLE && local_group &&
2371 balance_cpu != this_cpu && balance) {
783609c6
SS
2372 *balance = 0;
2373 goto ret;
2374 }
2375
1da177e4 2376 total_load += avg_load;
5517d86b 2377 total_pwr += group->__cpu_power;
1da177e4
LT
2378
2379 /* Adjust by relative CPU power of the group */
5517d86b
ED
2380 avg_load = sg_div_cpu_power(group,
2381 avg_load * SCHED_LOAD_SCALE);
1da177e4 2382
5517d86b 2383 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2384
1da177e4
LT
2385 if (local_group) {
2386 this_load = avg_load;
2387 this = group;
2dd73a4f
PW
2388 this_nr_running = sum_nr_running;
2389 this_load_per_task = sum_weighted_load;
2390 } else if (avg_load > max_load &&
5c45bf27 2391 sum_nr_running > group_capacity) {
1da177e4
LT
2392 max_load = avg_load;
2393 busiest = group;
2dd73a4f
PW
2394 busiest_nr_running = sum_nr_running;
2395 busiest_load_per_task = sum_weighted_load;
1da177e4 2396 }
5c45bf27
SS
2397
2398#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2399 /*
2400 * Busy processors will not participate in power savings
2401 * balance.
2402 */
dd41f596
IM
2403 if (idle == CPU_NOT_IDLE ||
2404 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2405 goto group_next;
5c45bf27
SS
2406
2407 /*
2408 * If the local group is idle or completely loaded
2409 * no need to do power savings balance at this domain
2410 */
2411 if (local_group && (this_nr_running >= group_capacity ||
2412 !this_nr_running))
2413 power_savings_balance = 0;
2414
dd41f596 2415 /*
5c45bf27
SS
2416 * If a group is already running at full capacity or idle,
2417 * don't include that group in power savings calculations
dd41f596
IM
2418 */
2419 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2420 || !sum_nr_running)
dd41f596 2421 goto group_next;
5c45bf27 2422
dd41f596 2423 /*
5c45bf27 2424 * Calculate the group which has the least non-idle load.
dd41f596
IM
2425 * This is the group from where we need to pick up the load
2426 * for saving power
2427 */
2428 if ((sum_nr_running < min_nr_running) ||
2429 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2430 first_cpu(group->cpumask) <
2431 first_cpu(group_min->cpumask))) {
dd41f596
IM
2432 group_min = group;
2433 min_nr_running = sum_nr_running;
5c45bf27
SS
2434 min_load_per_task = sum_weighted_load /
2435 sum_nr_running;
dd41f596 2436 }
5c45bf27 2437
dd41f596 2438 /*
5c45bf27 2439 * Calculate the group which is almost near its
dd41f596
IM
2440 * capacity but still has some space to pick up some load
2441 * from other group and save more power
2442 */
2443 if (sum_nr_running <= group_capacity - 1) {
2444 if (sum_nr_running > leader_nr_running ||
2445 (sum_nr_running == leader_nr_running &&
2446 first_cpu(group->cpumask) >
2447 first_cpu(group_leader->cpumask))) {
2448 group_leader = group;
2449 leader_nr_running = sum_nr_running;
2450 }
48f24c4d 2451 }
5c45bf27
SS
2452group_next:
2453#endif
1da177e4
LT
2454 group = group->next;
2455 } while (group != sd->groups);
2456
2dd73a4f 2457 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2458 goto out_balanced;
2459
2460 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2461
2462 if (this_load >= avg_load ||
2463 100*max_load <= sd->imbalance_pct*this_load)
2464 goto out_balanced;
2465
2dd73a4f 2466 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2467 /*
2468 * We're trying to get all the cpus to the average_load, so we don't
2469 * want to push ourselves above the average load, nor do we wish to
2470 * reduce the max loaded cpu below the average load, as either of these
2471 * actions would just result in more rebalancing later, and ping-pong
2472 * tasks around. Thus we look for the minimum possible imbalance.
2473 * Negative imbalances (*we* are more loaded than anyone else) will
2474 * be counted as no imbalance for these purposes -- we can't fix that
2475 * by pulling tasks to us. Be careful of negative numbers as they'll
2476 * appear as very large values with unsigned longs.
2477 */
2dd73a4f
PW
2478 if (max_load <= busiest_load_per_task)
2479 goto out_balanced;
2480
2481 /*
2482 * In the presence of smp nice balancing, certain scenarios can have
2483 * max load less than avg load(as we skip the groups at or below
2484 * its cpu_power, while calculating max_load..)
2485 */
2486 if (max_load < avg_load) {
2487 *imbalance = 0;
2488 goto small_imbalance;
2489 }
0c117f1b
SS
2490
2491 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2492 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2493
1da177e4 2494 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2495 *imbalance = min(max_pull * busiest->__cpu_power,
2496 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2497 / SCHED_LOAD_SCALE;
2498
2dd73a4f
PW
2499 /*
2500 * if *imbalance is less than the average load per runnable task
2501 * there is no gaurantee that any tasks will be moved so we'll have
2502 * a think about bumping its value to force at least one task to be
2503 * moved
2504 */
7fd0d2dd 2505 if (*imbalance < busiest_load_per_task) {
48f24c4d 2506 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2507 unsigned int imbn;
2508
2509small_imbalance:
2510 pwr_move = pwr_now = 0;
2511 imbn = 2;
2512 if (this_nr_running) {
2513 this_load_per_task /= this_nr_running;
2514 if (busiest_load_per_task > this_load_per_task)
2515 imbn = 1;
2516 } else
2517 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2518
dd41f596
IM
2519 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2520 busiest_load_per_task * imbn) {
2dd73a4f 2521 *imbalance = busiest_load_per_task;
1da177e4
LT
2522 return busiest;
2523 }
2524
2525 /*
2526 * OK, we don't have enough imbalance to justify moving tasks,
2527 * however we may be able to increase total CPU power used by
2528 * moving them.
2529 */
2530
5517d86b
ED
2531 pwr_now += busiest->__cpu_power *
2532 min(busiest_load_per_task, max_load);
2533 pwr_now += this->__cpu_power *
2534 min(this_load_per_task, this_load);
1da177e4
LT
2535 pwr_now /= SCHED_LOAD_SCALE;
2536
2537 /* Amount of load we'd subtract */
5517d86b
ED
2538 tmp = sg_div_cpu_power(busiest,
2539 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2540 if (max_load > tmp)
5517d86b 2541 pwr_move += busiest->__cpu_power *
2dd73a4f 2542 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2543
2544 /* Amount of load we'd add */
5517d86b 2545 if (max_load * busiest->__cpu_power <
33859f7f 2546 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2547 tmp = sg_div_cpu_power(this,
2548 max_load * busiest->__cpu_power);
1da177e4 2549 else
5517d86b
ED
2550 tmp = sg_div_cpu_power(this,
2551 busiest_load_per_task * SCHED_LOAD_SCALE);
2552 pwr_move += this->__cpu_power *
2553 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2554 pwr_move /= SCHED_LOAD_SCALE;
2555
2556 /* Move if we gain throughput */
7fd0d2dd
SS
2557 if (pwr_move > pwr_now)
2558 *imbalance = busiest_load_per_task;
1da177e4
LT
2559 }
2560
1da177e4
LT
2561 return busiest;
2562
2563out_balanced:
5c45bf27 2564#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2565 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2566 goto ret;
1da177e4 2567
5c45bf27
SS
2568 if (this == group_leader && group_leader != group_min) {
2569 *imbalance = min_load_per_task;
2570 return group_min;
2571 }
5c45bf27 2572#endif
783609c6 2573ret:
1da177e4
LT
2574 *imbalance = 0;
2575 return NULL;
2576}
2577
2578/*
2579 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2580 */
70b97a7f 2581static struct rq *
d15bcfdb 2582find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2583 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2584{
70b97a7f 2585 struct rq *busiest = NULL, *rq;
2dd73a4f 2586 unsigned long max_load = 0;
1da177e4
LT
2587 int i;
2588
2589 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2590 unsigned long wl;
0a2966b4
CL
2591
2592 if (!cpu_isset(i, *cpus))
2593 continue;
2594
48f24c4d 2595 rq = cpu_rq(i);
dd41f596 2596 wl = weighted_cpuload(i);
2dd73a4f 2597
dd41f596 2598 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2599 continue;
1da177e4 2600
dd41f596
IM
2601 if (wl > max_load) {
2602 max_load = wl;
48f24c4d 2603 busiest = rq;
1da177e4
LT
2604 }
2605 }
2606
2607 return busiest;
2608}
2609
77391d71
NP
2610/*
2611 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2612 * so long as it is large enough.
2613 */
2614#define MAX_PINNED_INTERVAL 512
2615
1da177e4
LT
2616/*
2617 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2618 * tasks if there is an imbalance.
1da177e4 2619 */
70b97a7f 2620static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2621 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2622 int *balance)
1da177e4 2623{
43010659 2624 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2625 struct sched_group *group;
1da177e4 2626 unsigned long imbalance;
70b97a7f 2627 struct rq *busiest;
0a2966b4 2628 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2629 unsigned long flags;
5969fe06 2630
89c4710e
SS
2631 /*
2632 * When power savings policy is enabled for the parent domain, idle
2633 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2634 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2635 * portraying it as CPU_NOT_IDLE.
89c4710e 2636 */
d15bcfdb 2637 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2638 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2639 sd_idle = 1;
1da177e4 2640
2d72376b 2641 schedstat_inc(sd, lb_count[idle]);
1da177e4 2642
0a2966b4
CL
2643redo:
2644 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2645 &cpus, balance);
2646
06066714 2647 if (*balance == 0)
783609c6 2648 goto out_balanced;
783609c6 2649
1da177e4
LT
2650 if (!group) {
2651 schedstat_inc(sd, lb_nobusyg[idle]);
2652 goto out_balanced;
2653 }
2654
0a2966b4 2655 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2656 if (!busiest) {
2657 schedstat_inc(sd, lb_nobusyq[idle]);
2658 goto out_balanced;
2659 }
2660
db935dbd 2661 BUG_ON(busiest == this_rq);
1da177e4
LT
2662
2663 schedstat_add(sd, lb_imbalance[idle], imbalance);
2664
43010659 2665 ld_moved = 0;
1da177e4
LT
2666 if (busiest->nr_running > 1) {
2667 /*
2668 * Attempt to move tasks. If find_busiest_group has found
2669 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2670 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2671 * correctly treated as an imbalance.
2672 */
fe2eea3f 2673 local_irq_save(flags);
e17224bf 2674 double_rq_lock(this_rq, busiest);
43010659 2675 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2676 imbalance, sd, idle, &all_pinned);
e17224bf 2677 double_rq_unlock(this_rq, busiest);
fe2eea3f 2678 local_irq_restore(flags);
81026794 2679
46cb4b7c
SS
2680 /*
2681 * some other cpu did the load balance for us.
2682 */
43010659 2683 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2684 resched_cpu(this_cpu);
2685
81026794 2686 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2687 if (unlikely(all_pinned)) {
2688 cpu_clear(cpu_of(busiest), cpus);
2689 if (!cpus_empty(cpus))
2690 goto redo;
81026794 2691 goto out_balanced;
0a2966b4 2692 }
1da177e4 2693 }
81026794 2694
43010659 2695 if (!ld_moved) {
1da177e4
LT
2696 schedstat_inc(sd, lb_failed[idle]);
2697 sd->nr_balance_failed++;
2698
2699 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2700
fe2eea3f 2701 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2702
2703 /* don't kick the migration_thread, if the curr
2704 * task on busiest cpu can't be moved to this_cpu
2705 */
2706 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2707 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2708 all_pinned = 1;
2709 goto out_one_pinned;
2710 }
2711
1da177e4
LT
2712 if (!busiest->active_balance) {
2713 busiest->active_balance = 1;
2714 busiest->push_cpu = this_cpu;
81026794 2715 active_balance = 1;
1da177e4 2716 }
fe2eea3f 2717 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2718 if (active_balance)
1da177e4
LT
2719 wake_up_process(busiest->migration_thread);
2720
2721 /*
2722 * We've kicked active balancing, reset the failure
2723 * counter.
2724 */
39507451 2725 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2726 }
81026794 2727 } else
1da177e4
LT
2728 sd->nr_balance_failed = 0;
2729
81026794 2730 if (likely(!active_balance)) {
1da177e4
LT
2731 /* We were unbalanced, so reset the balancing interval */
2732 sd->balance_interval = sd->min_interval;
81026794
NP
2733 } else {
2734 /*
2735 * If we've begun active balancing, start to back off. This
2736 * case may not be covered by the all_pinned logic if there
2737 * is only 1 task on the busy runqueue (because we don't call
2738 * move_tasks).
2739 */
2740 if (sd->balance_interval < sd->max_interval)
2741 sd->balance_interval *= 2;
1da177e4
LT
2742 }
2743
43010659 2744 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2746 return -1;
43010659 2747 return ld_moved;
1da177e4
LT
2748
2749out_balanced:
1da177e4
LT
2750 schedstat_inc(sd, lb_balanced[idle]);
2751
16cfb1c0 2752 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2753
2754out_one_pinned:
1da177e4 2755 /* tune up the balancing interval */
77391d71
NP
2756 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2757 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2758 sd->balance_interval *= 2;
2759
48f24c4d 2760 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2762 return -1;
1da177e4
LT
2763 return 0;
2764}
2765
2766/*
2767 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2768 * tasks if there is an imbalance.
2769 *
d15bcfdb 2770 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2771 * this_rq is locked.
2772 */
48f24c4d 2773static int
70b97a7f 2774load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2775{
2776 struct sched_group *group;
70b97a7f 2777 struct rq *busiest = NULL;
1da177e4 2778 unsigned long imbalance;
43010659 2779 int ld_moved = 0;
5969fe06 2780 int sd_idle = 0;
969bb4e4 2781 int all_pinned = 0;
0a2966b4 2782 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2783
89c4710e
SS
2784 /*
2785 * When power savings policy is enabled for the parent domain, idle
2786 * sibling can pick up load irrespective of busy siblings. In this case,
2787 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2788 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2789 */
2790 if (sd->flags & SD_SHARE_CPUPOWER &&
2791 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2792 sd_idle = 1;
1da177e4 2793
2d72376b 2794 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2795redo:
d15bcfdb 2796 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2797 &sd_idle, &cpus, NULL);
1da177e4 2798 if (!group) {
d15bcfdb 2799 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2800 goto out_balanced;
1da177e4
LT
2801 }
2802
d15bcfdb 2803 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2804 &cpus);
db935dbd 2805 if (!busiest) {
d15bcfdb 2806 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2807 goto out_balanced;
1da177e4
LT
2808 }
2809
db935dbd
NP
2810 BUG_ON(busiest == this_rq);
2811
d15bcfdb 2812 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2813
43010659 2814 ld_moved = 0;
d6d5cfaf
NP
2815 if (busiest->nr_running > 1) {
2816 /* Attempt to move tasks */
2817 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2818 /* this_rq->clock is already updated */
2819 update_rq_clock(busiest);
43010659 2820 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2821 imbalance, sd, CPU_NEWLY_IDLE,
2822 &all_pinned);
d6d5cfaf 2823 spin_unlock(&busiest->lock);
0a2966b4 2824
969bb4e4 2825 if (unlikely(all_pinned)) {
0a2966b4
CL
2826 cpu_clear(cpu_of(busiest), cpus);
2827 if (!cpus_empty(cpus))
2828 goto redo;
2829 }
d6d5cfaf
NP
2830 }
2831
43010659 2832 if (!ld_moved) {
d15bcfdb 2833 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2834 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2835 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2836 return -1;
2837 } else
16cfb1c0 2838 sd->nr_balance_failed = 0;
1da177e4 2839
43010659 2840 return ld_moved;
16cfb1c0
NP
2841
2842out_balanced:
d15bcfdb 2843 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2844 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2845 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2846 return -1;
16cfb1c0 2847 sd->nr_balance_failed = 0;
48f24c4d 2848
16cfb1c0 2849 return 0;
1da177e4
LT
2850}
2851
2852/*
2853 * idle_balance is called by schedule() if this_cpu is about to become
2854 * idle. Attempts to pull tasks from other CPUs.
2855 */
70b97a7f 2856static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2857{
2858 struct sched_domain *sd;
dd41f596
IM
2859 int pulled_task = -1;
2860 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2861
2862 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2863 unsigned long interval;
2864
2865 if (!(sd->flags & SD_LOAD_BALANCE))
2866 continue;
2867
2868 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2869 /* If we've pulled tasks over stop searching: */
1bd77f2d 2870 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2871 this_rq, sd);
2872
2873 interval = msecs_to_jiffies(sd->balance_interval);
2874 if (time_after(next_balance, sd->last_balance + interval))
2875 next_balance = sd->last_balance + interval;
2876 if (pulled_task)
2877 break;
1da177e4 2878 }
dd41f596 2879 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2880 /*
2881 * We are going idle. next_balance may be set based on
2882 * a busy processor. So reset next_balance.
2883 */
2884 this_rq->next_balance = next_balance;
dd41f596 2885 }
1da177e4
LT
2886}
2887
2888/*
2889 * active_load_balance is run by migration threads. It pushes running tasks
2890 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2891 * running on each physical CPU where possible, and avoids physical /
2892 * logical imbalances.
2893 *
2894 * Called with busiest_rq locked.
2895 */
70b97a7f 2896static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2897{
39507451 2898 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2899 struct sched_domain *sd;
2900 struct rq *target_rq;
39507451 2901
48f24c4d 2902 /* Is there any task to move? */
39507451 2903 if (busiest_rq->nr_running <= 1)
39507451
NP
2904 return;
2905
2906 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2907
2908 /*
39507451
NP
2909 * This condition is "impossible", if it occurs
2910 * we need to fix it. Originally reported by
2911 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2912 */
39507451 2913 BUG_ON(busiest_rq == target_rq);
1da177e4 2914
39507451
NP
2915 /* move a task from busiest_rq to target_rq */
2916 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2917 update_rq_clock(busiest_rq);
2918 update_rq_clock(target_rq);
39507451
NP
2919
2920 /* Search for an sd spanning us and the target CPU. */
c96d145e 2921 for_each_domain(target_cpu, sd) {
39507451 2922 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2923 cpu_isset(busiest_cpu, sd->span))
39507451 2924 break;
c96d145e 2925 }
39507451 2926
48f24c4d 2927 if (likely(sd)) {
2d72376b 2928 schedstat_inc(sd, alb_count);
39507451 2929
43010659
PW
2930 if (move_one_task(target_rq, target_cpu, busiest_rq,
2931 sd, CPU_IDLE))
48f24c4d
IM
2932 schedstat_inc(sd, alb_pushed);
2933 else
2934 schedstat_inc(sd, alb_failed);
2935 }
39507451 2936 spin_unlock(&target_rq->lock);
1da177e4
LT
2937}
2938
46cb4b7c
SS
2939#ifdef CONFIG_NO_HZ
2940static struct {
2941 atomic_t load_balancer;
2942 cpumask_t cpu_mask;
2943} nohz ____cacheline_aligned = {
2944 .load_balancer = ATOMIC_INIT(-1),
2945 .cpu_mask = CPU_MASK_NONE,
2946};
2947
7835b98b 2948/*
46cb4b7c
SS
2949 * This routine will try to nominate the ilb (idle load balancing)
2950 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2951 * load balancing on behalf of all those cpus. If all the cpus in the system
2952 * go into this tickless mode, then there will be no ilb owner (as there is
2953 * no need for one) and all the cpus will sleep till the next wakeup event
2954 * arrives...
2955 *
2956 * For the ilb owner, tick is not stopped. And this tick will be used
2957 * for idle load balancing. ilb owner will still be part of
2958 * nohz.cpu_mask..
7835b98b 2959 *
46cb4b7c
SS
2960 * While stopping the tick, this cpu will become the ilb owner if there
2961 * is no other owner. And will be the owner till that cpu becomes busy
2962 * or if all cpus in the system stop their ticks at which point
2963 * there is no need for ilb owner.
2964 *
2965 * When the ilb owner becomes busy, it nominates another owner, during the
2966 * next busy scheduler_tick()
2967 */
2968int select_nohz_load_balancer(int stop_tick)
2969{
2970 int cpu = smp_processor_id();
2971
2972 if (stop_tick) {
2973 cpu_set(cpu, nohz.cpu_mask);
2974 cpu_rq(cpu)->in_nohz_recently = 1;
2975
2976 /*
2977 * If we are going offline and still the leader, give up!
2978 */
2979 if (cpu_is_offline(cpu) &&
2980 atomic_read(&nohz.load_balancer) == cpu) {
2981 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2982 BUG();
2983 return 0;
2984 }
2985
2986 /* time for ilb owner also to sleep */
2987 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2988 if (atomic_read(&nohz.load_balancer) == cpu)
2989 atomic_set(&nohz.load_balancer, -1);
2990 return 0;
2991 }
2992
2993 if (atomic_read(&nohz.load_balancer) == -1) {
2994 /* make me the ilb owner */
2995 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2996 return 1;
2997 } else if (atomic_read(&nohz.load_balancer) == cpu)
2998 return 1;
2999 } else {
3000 if (!cpu_isset(cpu, nohz.cpu_mask))
3001 return 0;
3002
3003 cpu_clear(cpu, nohz.cpu_mask);
3004
3005 if (atomic_read(&nohz.load_balancer) == cpu)
3006 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3007 BUG();
3008 }
3009 return 0;
3010}
3011#endif
3012
3013static DEFINE_SPINLOCK(balancing);
3014
3015/*
7835b98b
CL
3016 * It checks each scheduling domain to see if it is due to be balanced,
3017 * and initiates a balancing operation if so.
3018 *
3019 * Balancing parameters are set up in arch_init_sched_domains.
3020 */
a9957449 3021static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3022{
46cb4b7c
SS
3023 int balance = 1;
3024 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3025 unsigned long interval;
3026 struct sched_domain *sd;
46cb4b7c 3027 /* Earliest time when we have to do rebalance again */
c9819f45 3028 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3029 int update_next_balance = 0;
1da177e4 3030
46cb4b7c 3031 for_each_domain(cpu, sd) {
1da177e4
LT
3032 if (!(sd->flags & SD_LOAD_BALANCE))
3033 continue;
3034
3035 interval = sd->balance_interval;
d15bcfdb 3036 if (idle != CPU_IDLE)
1da177e4
LT
3037 interval *= sd->busy_factor;
3038
3039 /* scale ms to jiffies */
3040 interval = msecs_to_jiffies(interval);
3041 if (unlikely(!interval))
3042 interval = 1;
dd41f596
IM
3043 if (interval > HZ*NR_CPUS/10)
3044 interval = HZ*NR_CPUS/10;
3045
1da177e4 3046
08c183f3
CL
3047 if (sd->flags & SD_SERIALIZE) {
3048 if (!spin_trylock(&balancing))
3049 goto out;
3050 }
3051
c9819f45 3052 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3053 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3054 /*
3055 * We've pulled tasks over so either we're no
5969fe06
NP
3056 * longer idle, or one of our SMT siblings is
3057 * not idle.
3058 */
d15bcfdb 3059 idle = CPU_NOT_IDLE;
1da177e4 3060 }
1bd77f2d 3061 sd->last_balance = jiffies;
1da177e4 3062 }
08c183f3
CL
3063 if (sd->flags & SD_SERIALIZE)
3064 spin_unlock(&balancing);
3065out:
f549da84 3066 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3067 next_balance = sd->last_balance + interval;
f549da84
SS
3068 update_next_balance = 1;
3069 }
783609c6
SS
3070
3071 /*
3072 * Stop the load balance at this level. There is another
3073 * CPU in our sched group which is doing load balancing more
3074 * actively.
3075 */
3076 if (!balance)
3077 break;
1da177e4 3078 }
f549da84
SS
3079
3080 /*
3081 * next_balance will be updated only when there is a need.
3082 * When the cpu is attached to null domain for ex, it will not be
3083 * updated.
3084 */
3085 if (likely(update_next_balance))
3086 rq->next_balance = next_balance;
46cb4b7c
SS
3087}
3088
3089/*
3090 * run_rebalance_domains is triggered when needed from the scheduler tick.
3091 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3092 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3093 */
3094static void run_rebalance_domains(struct softirq_action *h)
3095{
dd41f596
IM
3096 int this_cpu = smp_processor_id();
3097 struct rq *this_rq = cpu_rq(this_cpu);
3098 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3099 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3100
dd41f596 3101 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3102
3103#ifdef CONFIG_NO_HZ
3104 /*
3105 * If this cpu is the owner for idle load balancing, then do the
3106 * balancing on behalf of the other idle cpus whose ticks are
3107 * stopped.
3108 */
dd41f596
IM
3109 if (this_rq->idle_at_tick &&
3110 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3111 cpumask_t cpus = nohz.cpu_mask;
3112 struct rq *rq;
3113 int balance_cpu;
3114
dd41f596 3115 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3116 for_each_cpu_mask(balance_cpu, cpus) {
3117 /*
3118 * If this cpu gets work to do, stop the load balancing
3119 * work being done for other cpus. Next load
3120 * balancing owner will pick it up.
3121 */
3122 if (need_resched())
3123 break;
3124
de0cf899 3125 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3126
3127 rq = cpu_rq(balance_cpu);
dd41f596
IM
3128 if (time_after(this_rq->next_balance, rq->next_balance))
3129 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3130 }
3131 }
3132#endif
3133}
3134
3135/*
3136 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3137 *
3138 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3139 * idle load balancing owner or decide to stop the periodic load balancing,
3140 * if the whole system is idle.
3141 */
dd41f596 3142static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3143{
46cb4b7c
SS
3144#ifdef CONFIG_NO_HZ
3145 /*
3146 * If we were in the nohz mode recently and busy at the current
3147 * scheduler tick, then check if we need to nominate new idle
3148 * load balancer.
3149 */
3150 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3151 rq->in_nohz_recently = 0;
3152
3153 if (atomic_read(&nohz.load_balancer) == cpu) {
3154 cpu_clear(cpu, nohz.cpu_mask);
3155 atomic_set(&nohz.load_balancer, -1);
3156 }
3157
3158 if (atomic_read(&nohz.load_balancer) == -1) {
3159 /*
3160 * simple selection for now: Nominate the
3161 * first cpu in the nohz list to be the next
3162 * ilb owner.
3163 *
3164 * TBD: Traverse the sched domains and nominate
3165 * the nearest cpu in the nohz.cpu_mask.
3166 */
3167 int ilb = first_cpu(nohz.cpu_mask);
3168
3169 if (ilb != NR_CPUS)
3170 resched_cpu(ilb);
3171 }
3172 }
3173
3174 /*
3175 * If this cpu is idle and doing idle load balancing for all the
3176 * cpus with ticks stopped, is it time for that to stop?
3177 */
3178 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3179 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3180 resched_cpu(cpu);
3181 return;
3182 }
3183
3184 /*
3185 * If this cpu is idle and the idle load balancing is done by
3186 * someone else, then no need raise the SCHED_SOFTIRQ
3187 */
3188 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3189 cpu_isset(cpu, nohz.cpu_mask))
3190 return;
3191#endif
3192 if (time_after_eq(jiffies, rq->next_balance))
3193 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3194}
dd41f596
IM
3195
3196#else /* CONFIG_SMP */
3197
1da177e4
LT
3198/*
3199 * on UP we do not need to balance between CPUs:
3200 */
70b97a7f 3201static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3202{
3203}
dd41f596
IM
3204
3205/* Avoid "used but not defined" warning on UP */
3206static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3207 unsigned long max_nr_move, unsigned long max_load_move,
3208 struct sched_domain *sd, enum cpu_idle_type idle,
3209 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3210 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3211{
3212 *load_moved = 0;
3213
3214 return 0;
3215}
3216
1da177e4
LT
3217#endif
3218
1da177e4
LT
3219DEFINE_PER_CPU(struct kernel_stat, kstat);
3220
3221EXPORT_PER_CPU_SYMBOL(kstat);
3222
3223/*
41b86e9c
IM
3224 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3225 * that have not yet been banked in case the task is currently running.
1da177e4 3226 */
41b86e9c 3227unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3228{
1da177e4 3229 unsigned long flags;
41b86e9c
IM
3230 u64 ns, delta_exec;
3231 struct rq *rq;
48f24c4d 3232
41b86e9c
IM
3233 rq = task_rq_lock(p, &flags);
3234 ns = p->se.sum_exec_runtime;
3235 if (rq->curr == p) {
a8e504d2
IM
3236 update_rq_clock(rq);
3237 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3238 if ((s64)delta_exec > 0)
3239 ns += delta_exec;
3240 }
3241 task_rq_unlock(rq, &flags);
48f24c4d 3242
1da177e4
LT
3243 return ns;
3244}
3245
1da177e4
LT
3246/*
3247 * Account user cpu time to a process.
3248 * @p: the process that the cpu time gets accounted to
3249 * @hardirq_offset: the offset to subtract from hardirq_count()
3250 * @cputime: the cpu time spent in user space since the last update
3251 */
3252void account_user_time(struct task_struct *p, cputime_t cputime)
3253{
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 cputime64_t tmp;
3256
3257 p->utime = cputime_add(p->utime, cputime);
3258
3259 /* Add user time to cpustat. */
3260 tmp = cputime_to_cputime64(cputime);
3261 if (TASK_NICE(p) > 0)
3262 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3263 else
3264 cpustat->user = cputime64_add(cpustat->user, tmp);
3265}
3266
3267/*
3268 * Account system cpu time to a process.
3269 * @p: the process that the cpu time gets accounted to
3270 * @hardirq_offset: the offset to subtract from hardirq_count()
3271 * @cputime: the cpu time spent in kernel space since the last update
3272 */
3273void account_system_time(struct task_struct *p, int hardirq_offset,
3274 cputime_t cputime)
3275{
3276 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3277 struct rq *rq = this_rq();
1da177e4
LT
3278 cputime64_t tmp;
3279
3280 p->stime = cputime_add(p->stime, cputime);
3281
3282 /* Add system time to cpustat. */
3283 tmp = cputime_to_cputime64(cputime);
3284 if (hardirq_count() - hardirq_offset)
3285 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3286 else if (softirq_count())
3287 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3288 else if (p != rq->idle)
3289 cpustat->system = cputime64_add(cpustat->system, tmp);
3290 else if (atomic_read(&rq->nr_iowait) > 0)
3291 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3292 else
3293 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3294 /* Account for system time used */
3295 acct_update_integrals(p);
1da177e4
LT
3296}
3297
3298/*
3299 * Account for involuntary wait time.
3300 * @p: the process from which the cpu time has been stolen
3301 * @steal: the cpu time spent in involuntary wait
3302 */
3303void account_steal_time(struct task_struct *p, cputime_t steal)
3304{
3305 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3306 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3307 struct rq *rq = this_rq();
1da177e4
LT
3308
3309 if (p == rq->idle) {
3310 p->stime = cputime_add(p->stime, steal);
3311 if (atomic_read(&rq->nr_iowait) > 0)
3312 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3313 else
3314 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3315 } else
3316 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3317}
3318
7835b98b
CL
3319/*
3320 * This function gets called by the timer code, with HZ frequency.
3321 * We call it with interrupts disabled.
3322 *
3323 * It also gets called by the fork code, when changing the parent's
3324 * timeslices.
3325 */
3326void scheduler_tick(void)
3327{
7835b98b
CL
3328 int cpu = smp_processor_id();
3329 struct rq *rq = cpu_rq(cpu);
dd41f596 3330 struct task_struct *curr = rq->curr;
529c7726 3331 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3332
3333 spin_lock(&rq->lock);
546fe3c9 3334 __update_rq_clock(rq);
529c7726
IM
3335 /*
3336 * Let rq->clock advance by at least TICK_NSEC:
3337 */
3338 if (unlikely(rq->clock < next_tick))
3339 rq->clock = next_tick;
3340 rq->tick_timestamp = rq->clock;
f1a438d8 3341 update_cpu_load(rq);
dd41f596
IM
3342 if (curr != rq->idle) /* FIXME: needed? */
3343 curr->sched_class->task_tick(rq, curr);
dd41f596 3344 spin_unlock(&rq->lock);
7835b98b 3345
e418e1c2 3346#ifdef CONFIG_SMP
dd41f596
IM
3347 rq->idle_at_tick = idle_cpu(cpu);
3348 trigger_load_balance(rq, cpu);
e418e1c2 3349#endif
1da177e4
LT
3350}
3351
1da177e4
LT
3352#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3353
3354void fastcall add_preempt_count(int val)
3355{
3356 /*
3357 * Underflow?
3358 */
9a11b49a
IM
3359 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3360 return;
1da177e4
LT
3361 preempt_count() += val;
3362 /*
3363 * Spinlock count overflowing soon?
3364 */
33859f7f
MOS
3365 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3366 PREEMPT_MASK - 10);
1da177e4
LT
3367}
3368EXPORT_SYMBOL(add_preempt_count);
3369
3370void fastcall sub_preempt_count(int val)
3371{
3372 /*
3373 * Underflow?
3374 */
9a11b49a
IM
3375 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3376 return;
1da177e4
LT
3377 /*
3378 * Is the spinlock portion underflowing?
3379 */
9a11b49a
IM
3380 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3381 !(preempt_count() & PREEMPT_MASK)))
3382 return;
3383
1da177e4
LT
3384 preempt_count() -= val;
3385}
3386EXPORT_SYMBOL(sub_preempt_count);
3387
3388#endif
3389
3390/*
dd41f596 3391 * Print scheduling while atomic bug:
1da177e4 3392 */
dd41f596 3393static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3394{
dd41f596
IM
3395 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3396 prev->comm, preempt_count(), prev->pid);
3397 debug_show_held_locks(prev);
3398 if (irqs_disabled())
3399 print_irqtrace_events(prev);
3400 dump_stack();
3401}
1da177e4 3402
dd41f596
IM
3403/*
3404 * Various schedule()-time debugging checks and statistics:
3405 */
3406static inline void schedule_debug(struct task_struct *prev)
3407{
1da177e4
LT
3408 /*
3409 * Test if we are atomic. Since do_exit() needs to call into
3410 * schedule() atomically, we ignore that path for now.
3411 * Otherwise, whine if we are scheduling when we should not be.
3412 */
dd41f596
IM
3413 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3414 __schedule_bug(prev);
3415
1da177e4
LT
3416 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3417
2d72376b 3418 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3419#ifdef CONFIG_SCHEDSTATS
3420 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3421 schedstat_inc(this_rq(), bkl_count);
3422 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3423 }
3424#endif
dd41f596
IM
3425}
3426
3427/*
3428 * Pick up the highest-prio task:
3429 */
3430static inline struct task_struct *
ff95f3df 3431pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3432{
5522d5d5 3433 const struct sched_class *class;
dd41f596 3434 struct task_struct *p;
1da177e4
LT
3435
3436 /*
dd41f596
IM
3437 * Optimization: we know that if all tasks are in
3438 * the fair class we can call that function directly:
1da177e4 3439 */
dd41f596 3440 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3441 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3442 if (likely(p))
3443 return p;
1da177e4
LT
3444 }
3445
dd41f596
IM
3446 class = sched_class_highest;
3447 for ( ; ; ) {
fb8d4724 3448 p = class->pick_next_task(rq);
dd41f596
IM
3449 if (p)
3450 return p;
3451 /*
3452 * Will never be NULL as the idle class always
3453 * returns a non-NULL p:
3454 */
3455 class = class->next;
3456 }
3457}
1da177e4 3458
dd41f596
IM
3459/*
3460 * schedule() is the main scheduler function.
3461 */
3462asmlinkage void __sched schedule(void)
3463{
3464 struct task_struct *prev, *next;
3465 long *switch_count;
3466 struct rq *rq;
dd41f596
IM
3467 int cpu;
3468
3469need_resched:
3470 preempt_disable();
3471 cpu = smp_processor_id();
3472 rq = cpu_rq(cpu);
3473 rcu_qsctr_inc(cpu);
3474 prev = rq->curr;
3475 switch_count = &prev->nivcsw;
3476
3477 release_kernel_lock(prev);
3478need_resched_nonpreemptible:
3479
3480 schedule_debug(prev);
1da177e4 3481
1e819950
IM
3482 /*
3483 * Do the rq-clock update outside the rq lock:
3484 */
3485 local_irq_disable();
c1b3da3e 3486 __update_rq_clock(rq);
1e819950
IM
3487 spin_lock(&rq->lock);
3488 clear_tsk_need_resched(prev);
1da177e4 3489
1da177e4 3490 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3491 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3492 unlikely(signal_pending(prev)))) {
1da177e4 3493 prev->state = TASK_RUNNING;
dd41f596 3494 } else {
2e1cb74a 3495 deactivate_task(rq, prev, 1);
1da177e4 3496 }
dd41f596 3497 switch_count = &prev->nvcsw;
1da177e4
LT
3498 }
3499
dd41f596 3500 if (unlikely(!rq->nr_running))
1da177e4 3501 idle_balance(cpu, rq);
1da177e4 3502
31ee529c 3503 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3504 next = pick_next_task(rq, prev);
1da177e4
LT
3505
3506 sched_info_switch(prev, next);
dd41f596 3507
1da177e4 3508 if (likely(prev != next)) {
1da177e4
LT
3509 rq->nr_switches++;
3510 rq->curr = next;
3511 ++*switch_count;
3512
dd41f596 3513 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3514 } else
3515 spin_unlock_irq(&rq->lock);
3516
dd41f596
IM
3517 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3518 cpu = smp_processor_id();
3519 rq = cpu_rq(cpu);
1da177e4 3520 goto need_resched_nonpreemptible;
dd41f596 3521 }
1da177e4
LT
3522 preempt_enable_no_resched();
3523 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3524 goto need_resched;
3525}
1da177e4
LT
3526EXPORT_SYMBOL(schedule);
3527
3528#ifdef CONFIG_PREEMPT
3529/*
2ed6e34f 3530 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3531 * off of preempt_enable. Kernel preemptions off return from interrupt
3532 * occur there and call schedule directly.
3533 */
3534asmlinkage void __sched preempt_schedule(void)
3535{
3536 struct thread_info *ti = current_thread_info();
3537#ifdef CONFIG_PREEMPT_BKL
3538 struct task_struct *task = current;
3539 int saved_lock_depth;
3540#endif
3541 /*
3542 * If there is a non-zero preempt_count or interrupts are disabled,
3543 * we do not want to preempt the current task. Just return..
3544 */
beed33a8 3545 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3546 return;
3547
3a5c359a
AK
3548 do {
3549 add_preempt_count(PREEMPT_ACTIVE);
3550
3551 /*
3552 * We keep the big kernel semaphore locked, but we
3553 * clear ->lock_depth so that schedule() doesnt
3554 * auto-release the semaphore:
3555 */
1da177e4 3556#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3557 saved_lock_depth = task->lock_depth;
3558 task->lock_depth = -1;
1da177e4 3559#endif
3a5c359a 3560 schedule();
1da177e4 3561#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3562 task->lock_depth = saved_lock_depth;
1da177e4 3563#endif
3a5c359a 3564 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3565
3a5c359a
AK
3566 /*
3567 * Check again in case we missed a preemption opportunity
3568 * between schedule and now.
3569 */
3570 barrier();
3571 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3572}
1da177e4
LT
3573EXPORT_SYMBOL(preempt_schedule);
3574
3575/*
2ed6e34f 3576 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3577 * off of irq context.
3578 * Note, that this is called and return with irqs disabled. This will
3579 * protect us against recursive calling from irq.
3580 */
3581asmlinkage void __sched preempt_schedule_irq(void)
3582{
3583 struct thread_info *ti = current_thread_info();
3584#ifdef CONFIG_PREEMPT_BKL
3585 struct task_struct *task = current;
3586 int saved_lock_depth;
3587#endif
2ed6e34f 3588 /* Catch callers which need to be fixed */
1da177e4
LT
3589 BUG_ON(ti->preempt_count || !irqs_disabled());
3590
3a5c359a
AK
3591 do {
3592 add_preempt_count(PREEMPT_ACTIVE);
3593
3594 /*
3595 * We keep the big kernel semaphore locked, but we
3596 * clear ->lock_depth so that schedule() doesnt
3597 * auto-release the semaphore:
3598 */
1da177e4 3599#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3600 saved_lock_depth = task->lock_depth;
3601 task->lock_depth = -1;
1da177e4 3602#endif
3a5c359a
AK
3603 local_irq_enable();
3604 schedule();
3605 local_irq_disable();
1da177e4 3606#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3607 task->lock_depth = saved_lock_depth;
1da177e4 3608#endif
3a5c359a 3609 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3610
3a5c359a
AK
3611 /*
3612 * Check again in case we missed a preemption opportunity
3613 * between schedule and now.
3614 */
3615 barrier();
3616 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3617}
3618
3619#endif /* CONFIG_PREEMPT */
3620
95cdf3b7
IM
3621int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3622 void *key)
1da177e4 3623{
48f24c4d 3624 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3625}
1da177e4
LT
3626EXPORT_SYMBOL(default_wake_function);
3627
3628/*
3629 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3630 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3631 * number) then we wake all the non-exclusive tasks and one exclusive task.
3632 *
3633 * There are circumstances in which we can try to wake a task which has already
3634 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3635 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3636 */
3637static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3638 int nr_exclusive, int sync, void *key)
3639{
2e45874c 3640 wait_queue_t *curr, *next;
1da177e4 3641
2e45874c 3642 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3643 unsigned flags = curr->flags;
3644
1da177e4 3645 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3646 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3647 break;
3648 }
3649}
3650
3651/**
3652 * __wake_up - wake up threads blocked on a waitqueue.
3653 * @q: the waitqueue
3654 * @mode: which threads
3655 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3656 * @key: is directly passed to the wakeup function
1da177e4
LT
3657 */
3658void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3659 int nr_exclusive, void *key)
1da177e4
LT
3660{
3661 unsigned long flags;
3662
3663 spin_lock_irqsave(&q->lock, flags);
3664 __wake_up_common(q, mode, nr_exclusive, 0, key);
3665 spin_unlock_irqrestore(&q->lock, flags);
3666}
1da177e4
LT
3667EXPORT_SYMBOL(__wake_up);
3668
3669/*
3670 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3671 */
3672void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3673{
3674 __wake_up_common(q, mode, 1, 0, NULL);
3675}
3676
3677/**
67be2dd1 3678 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3679 * @q: the waitqueue
3680 * @mode: which threads
3681 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3682 *
3683 * The sync wakeup differs that the waker knows that it will schedule
3684 * away soon, so while the target thread will be woken up, it will not
3685 * be migrated to another CPU - ie. the two threads are 'synchronized'
3686 * with each other. This can prevent needless bouncing between CPUs.
3687 *
3688 * On UP it can prevent extra preemption.
3689 */
95cdf3b7
IM
3690void fastcall
3691__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3692{
3693 unsigned long flags;
3694 int sync = 1;
3695
3696 if (unlikely(!q))
3697 return;
3698
3699 if (unlikely(!nr_exclusive))
3700 sync = 0;
3701
3702 spin_lock_irqsave(&q->lock, flags);
3703 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3704 spin_unlock_irqrestore(&q->lock, flags);
3705}
3706EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3707
3708void fastcall complete(struct completion *x)
3709{
3710 unsigned long flags;
3711
3712 spin_lock_irqsave(&x->wait.lock, flags);
3713 x->done++;
3714 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3715 1, 0, NULL);
3716 spin_unlock_irqrestore(&x->wait.lock, flags);
3717}
3718EXPORT_SYMBOL(complete);
3719
3720void fastcall complete_all(struct completion *x)
3721{
3722 unsigned long flags;
3723
3724 spin_lock_irqsave(&x->wait.lock, flags);
3725 x->done += UINT_MAX/2;
3726 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3727 0, 0, NULL);
3728 spin_unlock_irqrestore(&x->wait.lock, flags);
3729}
3730EXPORT_SYMBOL(complete_all);
3731
8cbbe86d
AK
3732static inline long __sched
3733do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3734{
1da177e4
LT
3735 if (!x->done) {
3736 DECLARE_WAITQUEUE(wait, current);
3737
3738 wait.flags |= WQ_FLAG_EXCLUSIVE;
3739 __add_wait_queue_tail(&x->wait, &wait);
3740 do {
8cbbe86d
AK
3741 if (state == TASK_INTERRUPTIBLE &&
3742 signal_pending(current)) {
3743 __remove_wait_queue(&x->wait, &wait);
3744 return -ERESTARTSYS;
3745 }
3746 __set_current_state(state);
1da177e4
LT
3747 spin_unlock_irq(&x->wait.lock);
3748 timeout = schedule_timeout(timeout);
3749 spin_lock_irq(&x->wait.lock);
3750 if (!timeout) {
3751 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3752 return timeout;
1da177e4
LT
3753 }
3754 } while (!x->done);
3755 __remove_wait_queue(&x->wait, &wait);
3756 }
3757 x->done--;
1da177e4
LT
3758 return timeout;
3759}
1da177e4 3760
8cbbe86d
AK
3761static long __sched
3762wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3763{
1da177e4
LT
3764 might_sleep();
3765
3766 spin_lock_irq(&x->wait.lock);
8cbbe86d 3767 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3768 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3769 return timeout;
3770}
1da177e4 3771
8cbbe86d
AK
3772void fastcall __sched wait_for_completion(struct completion *x)
3773{
3774 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3775}
8cbbe86d 3776EXPORT_SYMBOL(wait_for_completion);
1da177e4
LT
3777
3778unsigned long fastcall __sched
8cbbe86d 3779wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3780{
8cbbe86d 3781 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3782}
8cbbe86d 3783EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3784
8cbbe86d 3785int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3786{
8cbbe86d 3787 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
0fec171c 3788}
8cbbe86d 3789EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3790
8cbbe86d
AK
3791unsigned long fastcall __sched
3792wait_for_completion_interruptible_timeout(struct completion *x,
3793 unsigned long timeout)
0fec171c 3794{
8cbbe86d 3795 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3796}
8cbbe86d 3797EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3798
8cbbe86d
AK
3799static long __sched
3800sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3801{
0fec171c
IM
3802 unsigned long flags;
3803 wait_queue_t wait;
3804
3805 init_waitqueue_entry(&wait, current);
1da177e4 3806
8cbbe86d 3807 __set_current_state(state);
1da177e4 3808
8cbbe86d
AK
3809 spin_lock_irqsave(&q->lock, flags);
3810 __add_wait_queue(q, &wait);
3811 spin_unlock(&q->lock);
3812 timeout = schedule_timeout(timeout);
3813 spin_lock_irq(&q->lock);
3814 __remove_wait_queue(q, &wait);
3815 spin_unlock_irqrestore(&q->lock, flags);
3816
3817 return timeout;
3818}
3819
3820void __sched interruptible_sleep_on(wait_queue_head_t *q)
3821{
3822 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3823}
1da177e4
LT
3824EXPORT_SYMBOL(interruptible_sleep_on);
3825
0fec171c 3826long __sched
95cdf3b7 3827interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3828{
8cbbe86d 3829 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3830}
1da177e4
LT
3831EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3832
0fec171c 3833void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3834{
8cbbe86d 3835 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3836}
1da177e4
LT
3837EXPORT_SYMBOL(sleep_on);
3838
0fec171c 3839long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3840{
8cbbe86d 3841 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3842}
1da177e4
LT
3843EXPORT_SYMBOL(sleep_on_timeout);
3844
b29739f9
IM
3845#ifdef CONFIG_RT_MUTEXES
3846
3847/*
3848 * rt_mutex_setprio - set the current priority of a task
3849 * @p: task
3850 * @prio: prio value (kernel-internal form)
3851 *
3852 * This function changes the 'effective' priority of a task. It does
3853 * not touch ->normal_prio like __setscheduler().
3854 *
3855 * Used by the rt_mutex code to implement priority inheritance logic.
3856 */
36c8b586 3857void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3858{
3859 unsigned long flags;
83b699ed 3860 int oldprio, on_rq, running;
70b97a7f 3861 struct rq *rq;
b29739f9
IM
3862
3863 BUG_ON(prio < 0 || prio > MAX_PRIO);
3864
3865 rq = task_rq_lock(p, &flags);
a8e504d2 3866 update_rq_clock(rq);
b29739f9 3867
d5f9f942 3868 oldprio = p->prio;
dd41f596 3869 on_rq = p->se.on_rq;
83b699ed
SV
3870 running = task_running(rq, p);
3871 if (on_rq) {
69be72c1 3872 dequeue_task(rq, p, 0);
83b699ed
SV
3873 if (running)
3874 p->sched_class->put_prev_task(rq, p);
3875 }
dd41f596
IM
3876
3877 if (rt_prio(prio))
3878 p->sched_class = &rt_sched_class;
3879 else
3880 p->sched_class = &fair_sched_class;
3881
b29739f9
IM
3882 p->prio = prio;
3883
dd41f596 3884 if (on_rq) {
83b699ed
SV
3885 if (running)
3886 p->sched_class->set_curr_task(rq);
8159f87e 3887 enqueue_task(rq, p, 0);
b29739f9
IM
3888 /*
3889 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3890 * our priority decreased, or if we are not currently running on
3891 * this runqueue and our priority is higher than the current's
b29739f9 3892 */
83b699ed 3893 if (running) {
d5f9f942
AM
3894 if (p->prio > oldprio)
3895 resched_task(rq->curr);
dd41f596
IM
3896 } else {
3897 check_preempt_curr(rq, p);
3898 }
b29739f9
IM
3899 }
3900 task_rq_unlock(rq, &flags);
3901}
3902
3903#endif
3904
36c8b586 3905void set_user_nice(struct task_struct *p, long nice)
1da177e4 3906{
dd41f596 3907 int old_prio, delta, on_rq;
1da177e4 3908 unsigned long flags;
70b97a7f 3909 struct rq *rq;
1da177e4
LT
3910
3911 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3912 return;
3913 /*
3914 * We have to be careful, if called from sys_setpriority(),
3915 * the task might be in the middle of scheduling on another CPU.
3916 */
3917 rq = task_rq_lock(p, &flags);
a8e504d2 3918 update_rq_clock(rq);
1da177e4
LT
3919 /*
3920 * The RT priorities are set via sched_setscheduler(), but we still
3921 * allow the 'normal' nice value to be set - but as expected
3922 * it wont have any effect on scheduling until the task is
dd41f596 3923 * SCHED_FIFO/SCHED_RR:
1da177e4 3924 */
e05606d3 3925 if (task_has_rt_policy(p)) {
1da177e4
LT
3926 p->static_prio = NICE_TO_PRIO(nice);
3927 goto out_unlock;
3928 }
dd41f596
IM
3929 on_rq = p->se.on_rq;
3930 if (on_rq) {
69be72c1 3931 dequeue_task(rq, p, 0);
79b5dddf 3932 dec_load(rq, p);
2dd73a4f 3933 }
1da177e4 3934
1da177e4 3935 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3936 set_load_weight(p);
b29739f9
IM
3937 old_prio = p->prio;
3938 p->prio = effective_prio(p);
3939 delta = p->prio - old_prio;
1da177e4 3940
dd41f596 3941 if (on_rq) {
8159f87e 3942 enqueue_task(rq, p, 0);
29b4b623 3943 inc_load(rq, p);
1da177e4 3944 /*
d5f9f942
AM
3945 * If the task increased its priority or is running and
3946 * lowered its priority, then reschedule its CPU:
1da177e4 3947 */
d5f9f942 3948 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3949 resched_task(rq->curr);
3950 }
3951out_unlock:
3952 task_rq_unlock(rq, &flags);
3953}
1da177e4
LT
3954EXPORT_SYMBOL(set_user_nice);
3955
e43379f1
MM
3956/*
3957 * can_nice - check if a task can reduce its nice value
3958 * @p: task
3959 * @nice: nice value
3960 */
36c8b586 3961int can_nice(const struct task_struct *p, const int nice)
e43379f1 3962{
024f4747
MM
3963 /* convert nice value [19,-20] to rlimit style value [1,40] */
3964 int nice_rlim = 20 - nice;
48f24c4d 3965
e43379f1
MM
3966 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3967 capable(CAP_SYS_NICE));
3968}
3969
1da177e4
LT
3970#ifdef __ARCH_WANT_SYS_NICE
3971
3972/*
3973 * sys_nice - change the priority of the current process.
3974 * @increment: priority increment
3975 *
3976 * sys_setpriority is a more generic, but much slower function that
3977 * does similar things.
3978 */
3979asmlinkage long sys_nice(int increment)
3980{
48f24c4d 3981 long nice, retval;
1da177e4
LT
3982
3983 /*
3984 * Setpriority might change our priority at the same moment.
3985 * We don't have to worry. Conceptually one call occurs first
3986 * and we have a single winner.
3987 */
e43379f1
MM
3988 if (increment < -40)
3989 increment = -40;
1da177e4
LT
3990 if (increment > 40)
3991 increment = 40;
3992
3993 nice = PRIO_TO_NICE(current->static_prio) + increment;
3994 if (nice < -20)
3995 nice = -20;
3996 if (nice > 19)
3997 nice = 19;
3998
e43379f1
MM
3999 if (increment < 0 && !can_nice(current, nice))
4000 return -EPERM;
4001
1da177e4
LT
4002 retval = security_task_setnice(current, nice);
4003 if (retval)
4004 return retval;
4005
4006 set_user_nice(current, nice);
4007 return 0;
4008}
4009
4010#endif
4011
4012/**
4013 * task_prio - return the priority value of a given task.
4014 * @p: the task in question.
4015 *
4016 * This is the priority value as seen by users in /proc.
4017 * RT tasks are offset by -200. Normal tasks are centered
4018 * around 0, value goes from -16 to +15.
4019 */
36c8b586 4020int task_prio(const struct task_struct *p)
1da177e4
LT
4021{
4022 return p->prio - MAX_RT_PRIO;
4023}
4024
4025/**
4026 * task_nice - return the nice value of a given task.
4027 * @p: the task in question.
4028 */
36c8b586 4029int task_nice(const struct task_struct *p)
1da177e4
LT
4030{
4031 return TASK_NICE(p);
4032}
1da177e4 4033EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4034
4035/**
4036 * idle_cpu - is a given cpu idle currently?
4037 * @cpu: the processor in question.
4038 */
4039int idle_cpu(int cpu)
4040{
4041 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4042}
4043
1da177e4
LT
4044/**
4045 * idle_task - return the idle task for a given cpu.
4046 * @cpu: the processor in question.
4047 */
36c8b586 4048struct task_struct *idle_task(int cpu)
1da177e4
LT
4049{
4050 return cpu_rq(cpu)->idle;
4051}
4052
4053/**
4054 * find_process_by_pid - find a process with a matching PID value.
4055 * @pid: the pid in question.
4056 */
a9957449 4057static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4058{
4059 return pid ? find_task_by_pid(pid) : current;
4060}
4061
4062/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4063static void
4064__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4065{
dd41f596 4066 BUG_ON(p->se.on_rq);
48f24c4d 4067
1da177e4 4068 p->policy = policy;
dd41f596
IM
4069 switch (p->policy) {
4070 case SCHED_NORMAL:
4071 case SCHED_BATCH:
4072 case SCHED_IDLE:
4073 p->sched_class = &fair_sched_class;
4074 break;
4075 case SCHED_FIFO:
4076 case SCHED_RR:
4077 p->sched_class = &rt_sched_class;
4078 break;
4079 }
4080
1da177e4 4081 p->rt_priority = prio;
b29739f9
IM
4082 p->normal_prio = normal_prio(p);
4083 /* we are holding p->pi_lock already */
4084 p->prio = rt_mutex_getprio(p);
2dd73a4f 4085 set_load_weight(p);
1da177e4
LT
4086}
4087
4088/**
72fd4a35 4089 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4090 * @p: the task in question.
4091 * @policy: new policy.
4092 * @param: structure containing the new RT priority.
5fe1d75f 4093 *
72fd4a35 4094 * NOTE that the task may be already dead.
1da177e4 4095 */
95cdf3b7
IM
4096int sched_setscheduler(struct task_struct *p, int policy,
4097 struct sched_param *param)
1da177e4 4098{
83b699ed 4099 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4100 unsigned long flags;
70b97a7f 4101 struct rq *rq;
1da177e4 4102
66e5393a
SR
4103 /* may grab non-irq protected spin_locks */
4104 BUG_ON(in_interrupt());
1da177e4
LT
4105recheck:
4106 /* double check policy once rq lock held */
4107 if (policy < 0)
4108 policy = oldpolicy = p->policy;
4109 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4110 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4111 policy != SCHED_IDLE)
b0a9499c 4112 return -EINVAL;
1da177e4
LT
4113 /*
4114 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4115 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4116 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4117 */
4118 if (param->sched_priority < 0 ||
95cdf3b7 4119 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4120 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4121 return -EINVAL;
e05606d3 4122 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4123 return -EINVAL;
4124
37e4ab3f
OC
4125 /*
4126 * Allow unprivileged RT tasks to decrease priority:
4127 */
4128 if (!capable(CAP_SYS_NICE)) {
e05606d3 4129 if (rt_policy(policy)) {
8dc3e909 4130 unsigned long rlim_rtprio;
8dc3e909
ON
4131
4132 if (!lock_task_sighand(p, &flags))
4133 return -ESRCH;
4134 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4135 unlock_task_sighand(p, &flags);
4136
4137 /* can't set/change the rt policy */
4138 if (policy != p->policy && !rlim_rtprio)
4139 return -EPERM;
4140
4141 /* can't increase priority */
4142 if (param->sched_priority > p->rt_priority &&
4143 param->sched_priority > rlim_rtprio)
4144 return -EPERM;
4145 }
dd41f596
IM
4146 /*
4147 * Like positive nice levels, dont allow tasks to
4148 * move out of SCHED_IDLE either:
4149 */
4150 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4151 return -EPERM;
5fe1d75f 4152
37e4ab3f
OC
4153 /* can't change other user's priorities */
4154 if ((current->euid != p->euid) &&
4155 (current->euid != p->uid))
4156 return -EPERM;
4157 }
1da177e4
LT
4158
4159 retval = security_task_setscheduler(p, policy, param);
4160 if (retval)
4161 return retval;
b29739f9
IM
4162 /*
4163 * make sure no PI-waiters arrive (or leave) while we are
4164 * changing the priority of the task:
4165 */
4166 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4167 /*
4168 * To be able to change p->policy safely, the apropriate
4169 * runqueue lock must be held.
4170 */
b29739f9 4171 rq = __task_rq_lock(p);
1da177e4
LT
4172 /* recheck policy now with rq lock held */
4173 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4174 policy = oldpolicy = -1;
b29739f9
IM
4175 __task_rq_unlock(rq);
4176 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4177 goto recheck;
4178 }
2daa3577 4179 update_rq_clock(rq);
dd41f596 4180 on_rq = p->se.on_rq;
83b699ed
SV
4181 running = task_running(rq, p);
4182 if (on_rq) {
2e1cb74a 4183 deactivate_task(rq, p, 0);
83b699ed
SV
4184 if (running)
4185 p->sched_class->put_prev_task(rq, p);
4186 }
f6b53205 4187
1da177e4 4188 oldprio = p->prio;
dd41f596 4189 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4190
dd41f596 4191 if (on_rq) {
83b699ed
SV
4192 if (running)
4193 p->sched_class->set_curr_task(rq);
dd41f596 4194 activate_task(rq, p, 0);
1da177e4
LT
4195 /*
4196 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4197 * our priority decreased, or if we are not currently running on
4198 * this runqueue and our priority is higher than the current's
1da177e4 4199 */
83b699ed 4200 if (running) {
d5f9f942
AM
4201 if (p->prio > oldprio)
4202 resched_task(rq->curr);
dd41f596
IM
4203 } else {
4204 check_preempt_curr(rq, p);
4205 }
1da177e4 4206 }
b29739f9
IM
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
4209
95e02ca9
TG
4210 rt_mutex_adjust_pi(p);
4211
1da177e4
LT
4212 return 0;
4213}
4214EXPORT_SYMBOL_GPL(sched_setscheduler);
4215
95cdf3b7
IM
4216static int
4217do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4218{
1da177e4
LT
4219 struct sched_param lparam;
4220 struct task_struct *p;
36c8b586 4221 int retval;
1da177e4
LT
4222
4223 if (!param || pid < 0)
4224 return -EINVAL;
4225 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4226 return -EFAULT;
5fe1d75f
ON
4227
4228 rcu_read_lock();
4229 retval = -ESRCH;
1da177e4 4230 p = find_process_by_pid(pid);
5fe1d75f
ON
4231 if (p != NULL)
4232 retval = sched_setscheduler(p, policy, &lparam);
4233 rcu_read_unlock();
36c8b586 4234
1da177e4
LT
4235 return retval;
4236}
4237
4238/**
4239 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4240 * @pid: the pid in question.
4241 * @policy: new policy.
4242 * @param: structure containing the new RT priority.
4243 */
4244asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4245 struct sched_param __user *param)
4246{
c21761f1
JB
4247 /* negative values for policy are not valid */
4248 if (policy < 0)
4249 return -EINVAL;
4250
1da177e4
LT
4251 return do_sched_setscheduler(pid, policy, param);
4252}
4253
4254/**
4255 * sys_sched_setparam - set/change the RT priority of a thread
4256 * @pid: the pid in question.
4257 * @param: structure containing the new RT priority.
4258 */
4259asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4260{
4261 return do_sched_setscheduler(pid, -1, param);
4262}
4263
4264/**
4265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4266 * @pid: the pid in question.
4267 */
4268asmlinkage long sys_sched_getscheduler(pid_t pid)
4269{
36c8b586 4270 struct task_struct *p;
3a5c359a 4271 int retval;
1da177e4
LT
4272
4273 if (pid < 0)
3a5c359a 4274 return -EINVAL;
1da177e4
LT
4275
4276 retval = -ESRCH;
4277 read_lock(&tasklist_lock);
4278 p = find_process_by_pid(pid);
4279 if (p) {
4280 retval = security_task_getscheduler(p);
4281 if (!retval)
4282 retval = p->policy;
4283 }
4284 read_unlock(&tasklist_lock);
1da177e4
LT
4285 return retval;
4286}
4287
4288/**
4289 * sys_sched_getscheduler - get the RT priority of a thread
4290 * @pid: the pid in question.
4291 * @param: structure containing the RT priority.
4292 */
4293asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4294{
4295 struct sched_param lp;
36c8b586 4296 struct task_struct *p;
3a5c359a 4297 int retval;
1da177e4
LT
4298
4299 if (!param || pid < 0)
3a5c359a 4300 return -EINVAL;
1da177e4
LT
4301
4302 read_lock(&tasklist_lock);
4303 p = find_process_by_pid(pid);
4304 retval = -ESRCH;
4305 if (!p)
4306 goto out_unlock;
4307
4308 retval = security_task_getscheduler(p);
4309 if (retval)
4310 goto out_unlock;
4311
4312 lp.sched_priority = p->rt_priority;
4313 read_unlock(&tasklist_lock);
4314
4315 /*
4316 * This one might sleep, we cannot do it with a spinlock held ...
4317 */
4318 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4319
1da177e4
LT
4320 return retval;
4321
4322out_unlock:
4323 read_unlock(&tasklist_lock);
4324 return retval;
4325}
4326
4327long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4328{
1da177e4 4329 cpumask_t cpus_allowed;
36c8b586
IM
4330 struct task_struct *p;
4331 int retval;
1da177e4 4332
5be9361c 4333 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4334 read_lock(&tasklist_lock);
4335
4336 p = find_process_by_pid(pid);
4337 if (!p) {
4338 read_unlock(&tasklist_lock);
5be9361c 4339 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4340 return -ESRCH;
4341 }
4342
4343 /*
4344 * It is not safe to call set_cpus_allowed with the
4345 * tasklist_lock held. We will bump the task_struct's
4346 * usage count and then drop tasklist_lock.
4347 */
4348 get_task_struct(p);
4349 read_unlock(&tasklist_lock);
4350
4351 retval = -EPERM;
4352 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4353 !capable(CAP_SYS_NICE))
4354 goto out_unlock;
4355
e7834f8f
DQ
4356 retval = security_task_setscheduler(p, 0, NULL);
4357 if (retval)
4358 goto out_unlock;
4359
1da177e4
LT
4360 cpus_allowed = cpuset_cpus_allowed(p);
4361 cpus_and(new_mask, new_mask, cpus_allowed);
4362 retval = set_cpus_allowed(p, new_mask);
4363
4364out_unlock:
4365 put_task_struct(p);
5be9361c 4366 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4367 return retval;
4368}
4369
4370static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4371 cpumask_t *new_mask)
4372{
4373 if (len < sizeof(cpumask_t)) {
4374 memset(new_mask, 0, sizeof(cpumask_t));
4375 } else if (len > sizeof(cpumask_t)) {
4376 len = sizeof(cpumask_t);
4377 }
4378 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4379}
4380
4381/**
4382 * sys_sched_setaffinity - set the cpu affinity of a process
4383 * @pid: pid of the process
4384 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4385 * @user_mask_ptr: user-space pointer to the new cpu mask
4386 */
4387asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4388 unsigned long __user *user_mask_ptr)
4389{
4390 cpumask_t new_mask;
4391 int retval;
4392
4393 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4394 if (retval)
4395 return retval;
4396
4397 return sched_setaffinity(pid, new_mask);
4398}
4399
4400/*
4401 * Represents all cpu's present in the system
4402 * In systems capable of hotplug, this map could dynamically grow
4403 * as new cpu's are detected in the system via any platform specific
4404 * method, such as ACPI for e.g.
4405 */
4406
4cef0c61 4407cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4408EXPORT_SYMBOL(cpu_present_map);
4409
4410#ifndef CONFIG_SMP
4cef0c61 4411cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4412EXPORT_SYMBOL(cpu_online_map);
4413
4cef0c61 4414cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4415EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4416#endif
4417
4418long sched_getaffinity(pid_t pid, cpumask_t *mask)
4419{
36c8b586 4420 struct task_struct *p;
1da177e4 4421 int retval;
1da177e4 4422
5be9361c 4423 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4424 read_lock(&tasklist_lock);
4425
4426 retval = -ESRCH;
4427 p = find_process_by_pid(pid);
4428 if (!p)
4429 goto out_unlock;
4430
e7834f8f
DQ
4431 retval = security_task_getscheduler(p);
4432 if (retval)
4433 goto out_unlock;
4434
2f7016d9 4435 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4436
4437out_unlock:
4438 read_unlock(&tasklist_lock);
5be9361c 4439 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4440
9531b62f 4441 return retval;
1da177e4
LT
4442}
4443
4444/**
4445 * sys_sched_getaffinity - get the cpu affinity of a process
4446 * @pid: pid of the process
4447 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4448 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4449 */
4450asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4451 unsigned long __user *user_mask_ptr)
4452{
4453 int ret;
4454 cpumask_t mask;
4455
4456 if (len < sizeof(cpumask_t))
4457 return -EINVAL;
4458
4459 ret = sched_getaffinity(pid, &mask);
4460 if (ret < 0)
4461 return ret;
4462
4463 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4464 return -EFAULT;
4465
4466 return sizeof(cpumask_t);
4467}
4468
4469/**
4470 * sys_sched_yield - yield the current processor to other threads.
4471 *
dd41f596
IM
4472 * This function yields the current CPU to other tasks. If there are no
4473 * other threads running on this CPU then this function will return.
1da177e4
LT
4474 */
4475asmlinkage long sys_sched_yield(void)
4476{
70b97a7f 4477 struct rq *rq = this_rq_lock();
1da177e4 4478
2d72376b 4479 schedstat_inc(rq, yld_count);
4530d7ab 4480 current->sched_class->yield_task(rq);
1da177e4
LT
4481
4482 /*
4483 * Since we are going to call schedule() anyway, there's
4484 * no need to preempt or enable interrupts:
4485 */
4486 __release(rq->lock);
8a25d5de 4487 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4488 _raw_spin_unlock(&rq->lock);
4489 preempt_enable_no_resched();
4490
4491 schedule();
4492
4493 return 0;
4494}
4495
e7b38404 4496static void __cond_resched(void)
1da177e4 4497{
8e0a43d8
IM
4498#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4499 __might_sleep(__FILE__, __LINE__);
4500#endif
5bbcfd90
IM
4501 /*
4502 * The BKS might be reacquired before we have dropped
4503 * PREEMPT_ACTIVE, which could trigger a second
4504 * cond_resched() call.
4505 */
1da177e4
LT
4506 do {
4507 add_preempt_count(PREEMPT_ACTIVE);
4508 schedule();
4509 sub_preempt_count(PREEMPT_ACTIVE);
4510 } while (need_resched());
4511}
4512
4513int __sched cond_resched(void)
4514{
9414232f
IM
4515 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4516 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4517 __cond_resched();
4518 return 1;
4519 }
4520 return 0;
4521}
1da177e4
LT
4522EXPORT_SYMBOL(cond_resched);
4523
4524/*
4525 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4526 * call schedule, and on return reacquire the lock.
4527 *
4528 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4529 * operations here to prevent schedule() from being called twice (once via
4530 * spin_unlock(), once by hand).
4531 */
95cdf3b7 4532int cond_resched_lock(spinlock_t *lock)
1da177e4 4533{
6df3cecb
JK
4534 int ret = 0;
4535
1da177e4
LT
4536 if (need_lockbreak(lock)) {
4537 spin_unlock(lock);
4538 cpu_relax();
6df3cecb 4539 ret = 1;
1da177e4
LT
4540 spin_lock(lock);
4541 }
9414232f 4542 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4543 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4544 _raw_spin_unlock(lock);
4545 preempt_enable_no_resched();
4546 __cond_resched();
6df3cecb 4547 ret = 1;
1da177e4 4548 spin_lock(lock);
1da177e4 4549 }
6df3cecb 4550 return ret;
1da177e4 4551}
1da177e4
LT
4552EXPORT_SYMBOL(cond_resched_lock);
4553
4554int __sched cond_resched_softirq(void)
4555{
4556 BUG_ON(!in_softirq());
4557
9414232f 4558 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4559 local_bh_enable();
1da177e4
LT
4560 __cond_resched();
4561 local_bh_disable();
4562 return 1;
4563 }
4564 return 0;
4565}
1da177e4
LT
4566EXPORT_SYMBOL(cond_resched_softirq);
4567
1da177e4
LT
4568/**
4569 * yield - yield the current processor to other threads.
4570 *
72fd4a35 4571 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4572 * thread runnable and calls sys_sched_yield().
4573 */
4574void __sched yield(void)
4575{
4576 set_current_state(TASK_RUNNING);
4577 sys_sched_yield();
4578}
1da177e4
LT
4579EXPORT_SYMBOL(yield);
4580
4581/*
4582 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4583 * that process accounting knows that this is a task in IO wait state.
4584 *
4585 * But don't do that if it is a deliberate, throttling IO wait (this task
4586 * has set its backing_dev_info: the queue against which it should throttle)
4587 */
4588void __sched io_schedule(void)
4589{
70b97a7f 4590 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4591
0ff92245 4592 delayacct_blkio_start();
1da177e4
LT
4593 atomic_inc(&rq->nr_iowait);
4594 schedule();
4595 atomic_dec(&rq->nr_iowait);
0ff92245 4596 delayacct_blkio_end();
1da177e4 4597}
1da177e4
LT
4598EXPORT_SYMBOL(io_schedule);
4599
4600long __sched io_schedule_timeout(long timeout)
4601{
70b97a7f 4602 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4603 long ret;
4604
0ff92245 4605 delayacct_blkio_start();
1da177e4
LT
4606 atomic_inc(&rq->nr_iowait);
4607 ret = schedule_timeout(timeout);
4608 atomic_dec(&rq->nr_iowait);
0ff92245 4609 delayacct_blkio_end();
1da177e4
LT
4610 return ret;
4611}
4612
4613/**
4614 * sys_sched_get_priority_max - return maximum RT priority.
4615 * @policy: scheduling class.
4616 *
4617 * this syscall returns the maximum rt_priority that can be used
4618 * by a given scheduling class.
4619 */
4620asmlinkage long sys_sched_get_priority_max(int policy)
4621{
4622 int ret = -EINVAL;
4623
4624 switch (policy) {
4625 case SCHED_FIFO:
4626 case SCHED_RR:
4627 ret = MAX_USER_RT_PRIO-1;
4628 break;
4629 case SCHED_NORMAL:
b0a9499c 4630 case SCHED_BATCH:
dd41f596 4631 case SCHED_IDLE:
1da177e4
LT
4632 ret = 0;
4633 break;
4634 }
4635 return ret;
4636}
4637
4638/**
4639 * sys_sched_get_priority_min - return minimum RT priority.
4640 * @policy: scheduling class.
4641 *
4642 * this syscall returns the minimum rt_priority that can be used
4643 * by a given scheduling class.
4644 */
4645asmlinkage long sys_sched_get_priority_min(int policy)
4646{
4647 int ret = -EINVAL;
4648
4649 switch (policy) {
4650 case SCHED_FIFO:
4651 case SCHED_RR:
4652 ret = 1;
4653 break;
4654 case SCHED_NORMAL:
b0a9499c 4655 case SCHED_BATCH:
dd41f596 4656 case SCHED_IDLE:
1da177e4
LT
4657 ret = 0;
4658 }
4659 return ret;
4660}
4661
4662/**
4663 * sys_sched_rr_get_interval - return the default timeslice of a process.
4664 * @pid: pid of the process.
4665 * @interval: userspace pointer to the timeslice value.
4666 *
4667 * this syscall writes the default timeslice value of a given process
4668 * into the user-space timespec buffer. A value of '0' means infinity.
4669 */
4670asmlinkage
4671long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4672{
36c8b586 4673 struct task_struct *p;
a4ec24b4 4674 unsigned int time_slice;
3a5c359a 4675 int retval;
1da177e4 4676 struct timespec t;
1da177e4
LT
4677
4678 if (pid < 0)
3a5c359a 4679 return -EINVAL;
1da177e4
LT
4680
4681 retval = -ESRCH;
4682 read_lock(&tasklist_lock);
4683 p = find_process_by_pid(pid);
4684 if (!p)
4685 goto out_unlock;
4686
4687 retval = security_task_getscheduler(p);
4688 if (retval)
4689 goto out_unlock;
4690
a4ec24b4
DA
4691 if (p->policy == SCHED_FIFO)
4692 time_slice = 0;
4693 else if (p->policy == SCHED_RR)
4694 time_slice = DEF_TIMESLICE;
4695 else {
4696 struct sched_entity *se = &p->se;
4697 unsigned long flags;
4698 struct rq *rq;
4699
4700 rq = task_rq_lock(p, &flags);
4701 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4702 task_rq_unlock(rq, &flags);
4703 }
1da177e4 4704 read_unlock(&tasklist_lock);
a4ec24b4 4705 jiffies_to_timespec(time_slice, &t);
1da177e4 4706 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4707 return retval;
3a5c359a 4708
1da177e4
LT
4709out_unlock:
4710 read_unlock(&tasklist_lock);
4711 return retval;
4712}
4713
2ed6e34f 4714static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4715
4716static void show_task(struct task_struct *p)
1da177e4 4717{
1da177e4 4718 unsigned long free = 0;
36c8b586 4719 unsigned state;
1da177e4 4720
1da177e4 4721 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4722 printk("%-13.13s %c", p->comm,
4723 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4724#if BITS_PER_LONG == 32
1da177e4 4725 if (state == TASK_RUNNING)
4bd77321 4726 printk(" running ");
1da177e4 4727 else
4bd77321 4728 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4729#else
4730 if (state == TASK_RUNNING)
4bd77321 4731 printk(" running task ");
1da177e4
LT
4732 else
4733 printk(" %016lx ", thread_saved_pc(p));
4734#endif
4735#ifdef CONFIG_DEBUG_STACK_USAGE
4736 {
10ebffde 4737 unsigned long *n = end_of_stack(p);
1da177e4
LT
4738 while (!*n)
4739 n++;
10ebffde 4740 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4741 }
4742#endif
4bd77321 4743 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4744
4745 if (state != TASK_RUNNING)
4746 show_stack(p, NULL);
4747}
4748
e59e2ae2 4749void show_state_filter(unsigned long state_filter)
1da177e4 4750{
36c8b586 4751 struct task_struct *g, *p;
1da177e4 4752
4bd77321
IM
4753#if BITS_PER_LONG == 32
4754 printk(KERN_INFO
4755 " task PC stack pid father\n");
1da177e4 4756#else
4bd77321
IM
4757 printk(KERN_INFO
4758 " task PC stack pid father\n");
1da177e4
LT
4759#endif
4760 read_lock(&tasklist_lock);
4761 do_each_thread(g, p) {
4762 /*
4763 * reset the NMI-timeout, listing all files on a slow
4764 * console might take alot of time:
4765 */
4766 touch_nmi_watchdog();
39bc89fd 4767 if (!state_filter || (p->state & state_filter))
e59e2ae2 4768 show_task(p);
1da177e4
LT
4769 } while_each_thread(g, p);
4770
04c9167f
JF
4771 touch_all_softlockup_watchdogs();
4772
dd41f596
IM
4773#ifdef CONFIG_SCHED_DEBUG
4774 sysrq_sched_debug_show();
4775#endif
1da177e4 4776 read_unlock(&tasklist_lock);
e59e2ae2
IM
4777 /*
4778 * Only show locks if all tasks are dumped:
4779 */
4780 if (state_filter == -1)
4781 debug_show_all_locks();
1da177e4
LT
4782}
4783
1df21055
IM
4784void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4785{
dd41f596 4786 idle->sched_class = &idle_sched_class;
1df21055
IM
4787}
4788
f340c0d1
IM
4789/**
4790 * init_idle - set up an idle thread for a given CPU
4791 * @idle: task in question
4792 * @cpu: cpu the idle task belongs to
4793 *
4794 * NOTE: this function does not set the idle thread's NEED_RESCHED
4795 * flag, to make booting more robust.
4796 */
5c1e1767 4797void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4798{
70b97a7f 4799 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4800 unsigned long flags;
4801
dd41f596
IM
4802 __sched_fork(idle);
4803 idle->se.exec_start = sched_clock();
4804
b29739f9 4805 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4806 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4807 __set_task_cpu(idle, cpu);
1da177e4
LT
4808
4809 spin_lock_irqsave(&rq->lock, flags);
4810 rq->curr = rq->idle = idle;
4866cde0
NP
4811#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4812 idle->oncpu = 1;
4813#endif
1da177e4
LT
4814 spin_unlock_irqrestore(&rq->lock, flags);
4815
4816 /* Set the preempt count _outside_ the spinlocks! */
4817#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4818 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4819#else
a1261f54 4820 task_thread_info(idle)->preempt_count = 0;
1da177e4 4821#endif
dd41f596
IM
4822 /*
4823 * The idle tasks have their own, simple scheduling class:
4824 */
4825 idle->sched_class = &idle_sched_class;
1da177e4
LT
4826}
4827
4828/*
4829 * In a system that switches off the HZ timer nohz_cpu_mask
4830 * indicates which cpus entered this state. This is used
4831 * in the rcu update to wait only for active cpus. For system
4832 * which do not switch off the HZ timer nohz_cpu_mask should
4833 * always be CPU_MASK_NONE.
4834 */
4835cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4836
4837#ifdef CONFIG_SMP
4838/*
4839 * This is how migration works:
4840 *
70b97a7f 4841 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4842 * runqueue and wake up that CPU's migration thread.
4843 * 2) we down() the locked semaphore => thread blocks.
4844 * 3) migration thread wakes up (implicitly it forces the migrated
4845 * thread off the CPU)
4846 * 4) it gets the migration request and checks whether the migrated
4847 * task is still in the wrong runqueue.
4848 * 5) if it's in the wrong runqueue then the migration thread removes
4849 * it and puts it into the right queue.
4850 * 6) migration thread up()s the semaphore.
4851 * 7) we wake up and the migration is done.
4852 */
4853
4854/*
4855 * Change a given task's CPU affinity. Migrate the thread to a
4856 * proper CPU and schedule it away if the CPU it's executing on
4857 * is removed from the allowed bitmask.
4858 *
4859 * NOTE: the caller must have a valid reference to the task, the
4860 * task must not exit() & deallocate itself prematurely. The
4861 * call is not atomic; no spinlocks may be held.
4862 */
36c8b586 4863int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4864{
70b97a7f 4865 struct migration_req req;
1da177e4 4866 unsigned long flags;
70b97a7f 4867 struct rq *rq;
48f24c4d 4868 int ret = 0;
1da177e4
LT
4869
4870 rq = task_rq_lock(p, &flags);
4871 if (!cpus_intersects(new_mask, cpu_online_map)) {
4872 ret = -EINVAL;
4873 goto out;
4874 }
4875
4876 p->cpus_allowed = new_mask;
4877 /* Can the task run on the task's current CPU? If so, we're done */
4878 if (cpu_isset(task_cpu(p), new_mask))
4879 goto out;
4880
4881 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4882 /* Need help from migration thread: drop lock and wait. */
4883 task_rq_unlock(rq, &flags);
4884 wake_up_process(rq->migration_thread);
4885 wait_for_completion(&req.done);
4886 tlb_migrate_finish(p->mm);
4887 return 0;
4888 }
4889out:
4890 task_rq_unlock(rq, &flags);
48f24c4d 4891
1da177e4
LT
4892 return ret;
4893}
1da177e4
LT
4894EXPORT_SYMBOL_GPL(set_cpus_allowed);
4895
4896/*
4897 * Move (not current) task off this cpu, onto dest cpu. We're doing
4898 * this because either it can't run here any more (set_cpus_allowed()
4899 * away from this CPU, or CPU going down), or because we're
4900 * attempting to rebalance this task on exec (sched_exec).
4901 *
4902 * So we race with normal scheduler movements, but that's OK, as long
4903 * as the task is no longer on this CPU.
efc30814
KK
4904 *
4905 * Returns non-zero if task was successfully migrated.
1da177e4 4906 */
efc30814 4907static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4908{
70b97a7f 4909 struct rq *rq_dest, *rq_src;
dd41f596 4910 int ret = 0, on_rq;
1da177e4
LT
4911
4912 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4913 return ret;
1da177e4
LT
4914
4915 rq_src = cpu_rq(src_cpu);
4916 rq_dest = cpu_rq(dest_cpu);
4917
4918 double_rq_lock(rq_src, rq_dest);
4919 /* Already moved. */
4920 if (task_cpu(p) != src_cpu)
4921 goto out;
4922 /* Affinity changed (again). */
4923 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4924 goto out;
4925
dd41f596 4926 on_rq = p->se.on_rq;
6e82a3be 4927 if (on_rq)
2e1cb74a 4928 deactivate_task(rq_src, p, 0);
6e82a3be 4929
1da177e4 4930 set_task_cpu(p, dest_cpu);
dd41f596
IM
4931 if (on_rq) {
4932 activate_task(rq_dest, p, 0);
4933 check_preempt_curr(rq_dest, p);
1da177e4 4934 }
efc30814 4935 ret = 1;
1da177e4
LT
4936out:
4937 double_rq_unlock(rq_src, rq_dest);
efc30814 4938 return ret;
1da177e4
LT
4939}
4940
4941/*
4942 * migration_thread - this is a highprio system thread that performs
4943 * thread migration by bumping thread off CPU then 'pushing' onto
4944 * another runqueue.
4945 */
95cdf3b7 4946static int migration_thread(void *data)
1da177e4 4947{
1da177e4 4948 int cpu = (long)data;
70b97a7f 4949 struct rq *rq;
1da177e4
LT
4950
4951 rq = cpu_rq(cpu);
4952 BUG_ON(rq->migration_thread != current);
4953
4954 set_current_state(TASK_INTERRUPTIBLE);
4955 while (!kthread_should_stop()) {
70b97a7f 4956 struct migration_req *req;
1da177e4 4957 struct list_head *head;
1da177e4 4958
1da177e4
LT
4959 spin_lock_irq(&rq->lock);
4960
4961 if (cpu_is_offline(cpu)) {
4962 spin_unlock_irq(&rq->lock);
4963 goto wait_to_die;
4964 }
4965
4966 if (rq->active_balance) {
4967 active_load_balance(rq, cpu);
4968 rq->active_balance = 0;
4969 }
4970
4971 head = &rq->migration_queue;
4972
4973 if (list_empty(head)) {
4974 spin_unlock_irq(&rq->lock);
4975 schedule();
4976 set_current_state(TASK_INTERRUPTIBLE);
4977 continue;
4978 }
70b97a7f 4979 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
4980 list_del_init(head->next);
4981
674311d5
NP
4982 spin_unlock(&rq->lock);
4983 __migrate_task(req->task, cpu, req->dest_cpu);
4984 local_irq_enable();
1da177e4
LT
4985
4986 complete(&req->done);
4987 }
4988 __set_current_state(TASK_RUNNING);
4989 return 0;
4990
4991wait_to_die:
4992 /* Wait for kthread_stop */
4993 set_current_state(TASK_INTERRUPTIBLE);
4994 while (!kthread_should_stop()) {
4995 schedule();
4996 set_current_state(TASK_INTERRUPTIBLE);
4997 }
4998 __set_current_state(TASK_RUNNING);
4999 return 0;
5000}
5001
5002#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5003/*
5004 * Figure out where task on dead CPU should go, use force if neccessary.
5005 * NOTE: interrupts should be disabled by the caller
5006 */
48f24c4d 5007static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5008{
efc30814 5009 unsigned long flags;
1da177e4 5010 cpumask_t mask;
70b97a7f
IM
5011 struct rq *rq;
5012 int dest_cpu;
1da177e4 5013
3a5c359a
AK
5014 do {
5015 /* On same node? */
5016 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5017 cpus_and(mask, mask, p->cpus_allowed);
5018 dest_cpu = any_online_cpu(mask);
5019
5020 /* On any allowed CPU? */
5021 if (dest_cpu == NR_CPUS)
5022 dest_cpu = any_online_cpu(p->cpus_allowed);
5023
5024 /* No more Mr. Nice Guy. */
5025 if (dest_cpu == NR_CPUS) {
5026 rq = task_rq_lock(p, &flags);
5027 cpus_setall(p->cpus_allowed);
5028 dest_cpu = any_online_cpu(p->cpus_allowed);
5029 task_rq_unlock(rq, &flags);
1da177e4 5030
3a5c359a
AK
5031 /*
5032 * Don't tell them about moving exiting tasks or
5033 * kernel threads (both mm NULL), since they never
5034 * leave kernel.
5035 */
5036 if (p->mm && printk_ratelimit())
5037 printk(KERN_INFO "process %d (%s) no "
5038 "longer affine to cpu%d\n",
5039 p->pid, p->comm, dead_cpu);
5040 }
5041 } while (!__migrate_task(p, dead_cpu, dest_cpu));
1da177e4
LT
5042}
5043
5044/*
5045 * While a dead CPU has no uninterruptible tasks queued at this point,
5046 * it might still have a nonzero ->nr_uninterruptible counter, because
5047 * for performance reasons the counter is not stricly tracking tasks to
5048 * their home CPUs. So we just add the counter to another CPU's counter,
5049 * to keep the global sum constant after CPU-down:
5050 */
70b97a7f 5051static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5052{
70b97a7f 5053 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5054 unsigned long flags;
5055
5056 local_irq_save(flags);
5057 double_rq_lock(rq_src, rq_dest);
5058 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5059 rq_src->nr_uninterruptible = 0;
5060 double_rq_unlock(rq_src, rq_dest);
5061 local_irq_restore(flags);
5062}
5063
5064/* Run through task list and migrate tasks from the dead cpu. */
5065static void migrate_live_tasks(int src_cpu)
5066{
48f24c4d 5067 struct task_struct *p, *t;
1da177e4
LT
5068
5069 write_lock_irq(&tasklist_lock);
5070
48f24c4d
IM
5071 do_each_thread(t, p) {
5072 if (p == current)
1da177e4
LT
5073 continue;
5074
48f24c4d
IM
5075 if (task_cpu(p) == src_cpu)
5076 move_task_off_dead_cpu(src_cpu, p);
5077 } while_each_thread(t, p);
1da177e4
LT
5078
5079 write_unlock_irq(&tasklist_lock);
5080}
5081
a9957449
AD
5082/*
5083 * activate_idle_task - move idle task to the _front_ of runqueue.
5084 */
5085static void activate_idle_task(struct task_struct *p, struct rq *rq)
5086{
5087 update_rq_clock(rq);
5088
5089 if (p->state == TASK_UNINTERRUPTIBLE)
5090 rq->nr_uninterruptible--;
5091
5092 enqueue_task(rq, p, 0);
5093 inc_nr_running(p, rq);
5094}
5095
dd41f596
IM
5096/*
5097 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5098 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5099 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5100 */
5101void sched_idle_next(void)
5102{
48f24c4d 5103 int this_cpu = smp_processor_id();
70b97a7f 5104 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5105 struct task_struct *p = rq->idle;
5106 unsigned long flags;
5107
5108 /* cpu has to be offline */
48f24c4d 5109 BUG_ON(cpu_online(this_cpu));
1da177e4 5110
48f24c4d
IM
5111 /*
5112 * Strictly not necessary since rest of the CPUs are stopped by now
5113 * and interrupts disabled on the current cpu.
1da177e4
LT
5114 */
5115 spin_lock_irqsave(&rq->lock, flags);
5116
dd41f596 5117 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5118
5119 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5120 activate_idle_task(p, rq);
1da177e4
LT
5121
5122 spin_unlock_irqrestore(&rq->lock, flags);
5123}
5124
48f24c4d
IM
5125/*
5126 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5127 * offline.
5128 */
5129void idle_task_exit(void)
5130{
5131 struct mm_struct *mm = current->active_mm;
5132
5133 BUG_ON(cpu_online(smp_processor_id()));
5134
5135 if (mm != &init_mm)
5136 switch_mm(mm, &init_mm, current);
5137 mmdrop(mm);
5138}
5139
054b9108 5140/* called under rq->lock with disabled interrupts */
36c8b586 5141static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5142{
70b97a7f 5143 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5144
5145 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5146 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5147
5148 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5149 BUG_ON(p->state == TASK_DEAD);
1da177e4 5150
48f24c4d 5151 get_task_struct(p);
1da177e4
LT
5152
5153 /*
5154 * Drop lock around migration; if someone else moves it,
5155 * that's OK. No task can be added to this CPU, so iteration is
5156 * fine.
054b9108 5157 * NOTE: interrupts should be left disabled --dev@
1da177e4 5158 */
054b9108 5159 spin_unlock(&rq->lock);
48f24c4d 5160 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5161 spin_lock(&rq->lock);
1da177e4 5162
48f24c4d 5163 put_task_struct(p);
1da177e4
LT
5164}
5165
5166/* release_task() removes task from tasklist, so we won't find dead tasks. */
5167static void migrate_dead_tasks(unsigned int dead_cpu)
5168{
70b97a7f 5169 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5170 struct task_struct *next;
48f24c4d 5171
dd41f596
IM
5172 for ( ; ; ) {
5173 if (!rq->nr_running)
5174 break;
a8e504d2 5175 update_rq_clock(rq);
ff95f3df 5176 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5177 if (!next)
5178 break;
5179 migrate_dead(dead_cpu, next);
e692ab53 5180
1da177e4
LT
5181 }
5182}
5183#endif /* CONFIG_HOTPLUG_CPU */
5184
e692ab53
NP
5185#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5186
5187static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5188 {
5189 .procname = "sched_domain",
c57baf1e 5190 .mode = 0555,
e0361851 5191 },
e692ab53
NP
5192 {0,},
5193};
5194
5195static struct ctl_table sd_ctl_root[] = {
e0361851 5196 {
c57baf1e 5197 .ctl_name = CTL_KERN,
e0361851 5198 .procname = "kernel",
c57baf1e 5199 .mode = 0555,
e0361851
AD
5200 .child = sd_ctl_dir,
5201 },
e692ab53
NP
5202 {0,},
5203};
5204
5205static struct ctl_table *sd_alloc_ctl_entry(int n)
5206{
5207 struct ctl_table *entry =
5208 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5209
5210 BUG_ON(!entry);
5211 memset(entry, 0, n * sizeof(struct ctl_table));
5212
5213 return entry;
5214}
5215
5216static void
e0361851 5217set_table_entry(struct ctl_table *entry,
e692ab53
NP
5218 const char *procname, void *data, int maxlen,
5219 mode_t mode, proc_handler *proc_handler)
5220{
e692ab53
NP
5221 entry->procname = procname;
5222 entry->data = data;
5223 entry->maxlen = maxlen;
5224 entry->mode = mode;
5225 entry->proc_handler = proc_handler;
5226}
5227
5228static struct ctl_table *
5229sd_alloc_ctl_domain_table(struct sched_domain *sd)
5230{
ace8b3d6 5231 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5232
e0361851 5233 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5234 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5235 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5236 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5237 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5238 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5239 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5240 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5241 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5242 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5243 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5244 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5245 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5246 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5247 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5248 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5249 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5250 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5251 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5252 &sd->cache_nice_tries,
5253 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5254 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53
NP
5255 sizeof(int), 0644, proc_dointvec_minmax);
5256
5257 return table;
5258}
5259
5260static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5261{
5262 struct ctl_table *entry, *table;
5263 struct sched_domain *sd;
5264 int domain_num = 0, i;
5265 char buf[32];
5266
5267 for_each_domain(cpu, sd)
5268 domain_num++;
5269 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5270
5271 i = 0;
5272 for_each_domain(cpu, sd) {
5273 snprintf(buf, 32, "domain%d", i);
e692ab53 5274 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5275 entry->mode = 0555;
e692ab53
NP
5276 entry->child = sd_alloc_ctl_domain_table(sd);
5277 entry++;
5278 i++;
5279 }
5280 return table;
5281}
5282
5283static struct ctl_table_header *sd_sysctl_header;
5284static void init_sched_domain_sysctl(void)
5285{
5286 int i, cpu_num = num_online_cpus();
5287 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5288 char buf[32];
5289
5290 sd_ctl_dir[0].child = entry;
5291
5292 for (i = 0; i < cpu_num; i++, entry++) {
5293 snprintf(buf, 32, "cpu%d", i);
e692ab53 5294 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5295 entry->mode = 0555;
e692ab53
NP
5296 entry->child = sd_alloc_ctl_cpu_table(i);
5297 }
5298 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5299}
5300#else
5301static void init_sched_domain_sysctl(void)
5302{
5303}
5304#endif
5305
1da177e4
LT
5306/*
5307 * migration_call - callback that gets triggered when a CPU is added.
5308 * Here we can start up the necessary migration thread for the new CPU.
5309 */
48f24c4d
IM
5310static int __cpuinit
5311migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5312{
1da177e4 5313 struct task_struct *p;
48f24c4d 5314 int cpu = (long)hcpu;
1da177e4 5315 unsigned long flags;
70b97a7f 5316 struct rq *rq;
1da177e4
LT
5317
5318 switch (action) {
5be9361c
GS
5319 case CPU_LOCK_ACQUIRE:
5320 mutex_lock(&sched_hotcpu_mutex);
5321 break;
5322
1da177e4 5323 case CPU_UP_PREPARE:
8bb78442 5324 case CPU_UP_PREPARE_FROZEN:
dd41f596 5325 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5326 if (IS_ERR(p))
5327 return NOTIFY_BAD;
1da177e4
LT
5328 kthread_bind(p, cpu);
5329 /* Must be high prio: stop_machine expects to yield to it. */
5330 rq = task_rq_lock(p, &flags);
dd41f596 5331 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5332 task_rq_unlock(rq, &flags);
5333 cpu_rq(cpu)->migration_thread = p;
5334 break;
48f24c4d 5335
1da177e4 5336 case CPU_ONLINE:
8bb78442 5337 case CPU_ONLINE_FROZEN:
1da177e4
LT
5338 /* Strictly unneccessary, as first user will wake it. */
5339 wake_up_process(cpu_rq(cpu)->migration_thread);
5340 break;
48f24c4d 5341
1da177e4
LT
5342#ifdef CONFIG_HOTPLUG_CPU
5343 case CPU_UP_CANCELED:
8bb78442 5344 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5345 if (!cpu_rq(cpu)->migration_thread)
5346 break;
1da177e4 5347 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5348 kthread_bind(cpu_rq(cpu)->migration_thread,
5349 any_online_cpu(cpu_online_map));
1da177e4
LT
5350 kthread_stop(cpu_rq(cpu)->migration_thread);
5351 cpu_rq(cpu)->migration_thread = NULL;
5352 break;
48f24c4d 5353
1da177e4 5354 case CPU_DEAD:
8bb78442 5355 case CPU_DEAD_FROZEN:
1da177e4
LT
5356 migrate_live_tasks(cpu);
5357 rq = cpu_rq(cpu);
5358 kthread_stop(rq->migration_thread);
5359 rq->migration_thread = NULL;
5360 /* Idle task back to normal (off runqueue, low prio) */
5361 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5362 update_rq_clock(rq);
2e1cb74a 5363 deactivate_task(rq, rq->idle, 0);
1da177e4 5364 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5365 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5366 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5367 migrate_dead_tasks(cpu);
5368 task_rq_unlock(rq, &flags);
5369 migrate_nr_uninterruptible(rq);
5370 BUG_ON(rq->nr_running != 0);
5371
5372 /* No need to migrate the tasks: it was best-effort if
5be9361c 5373 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5374 * the requestors. */
5375 spin_lock_irq(&rq->lock);
5376 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5377 struct migration_req *req;
5378
1da177e4 5379 req = list_entry(rq->migration_queue.next,
70b97a7f 5380 struct migration_req, list);
1da177e4
LT
5381 list_del_init(&req->list);
5382 complete(&req->done);
5383 }
5384 spin_unlock_irq(&rq->lock);
5385 break;
5386#endif
5be9361c
GS
5387 case CPU_LOCK_RELEASE:
5388 mutex_unlock(&sched_hotcpu_mutex);
5389 break;
1da177e4
LT
5390 }
5391 return NOTIFY_OK;
5392}
5393
5394/* Register at highest priority so that task migration (migrate_all_tasks)
5395 * happens before everything else.
5396 */
26c2143b 5397static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5398 .notifier_call = migration_call,
5399 .priority = 10
5400};
5401
5402int __init migration_init(void)
5403{
5404 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5405 int err;
48f24c4d
IM
5406
5407 /* Start one for the boot CPU: */
07dccf33
AM
5408 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5409 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5410 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5411 register_cpu_notifier(&migration_notifier);
48f24c4d 5412
1da177e4
LT
5413 return 0;
5414}
5415#endif
5416
5417#ifdef CONFIG_SMP
476f3534
CL
5418
5419/* Number of possible processor ids */
5420int nr_cpu_ids __read_mostly = NR_CPUS;
5421EXPORT_SYMBOL(nr_cpu_ids);
5422
3e9830dc 5423#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5424static void sched_domain_debug(struct sched_domain *sd, int cpu)
5425{
5426 int level = 0;
5427
41c7ce9a
NP
5428 if (!sd) {
5429 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5430 return;
5431 }
5432
1da177e4
LT
5433 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5434
5435 do {
5436 int i;
5437 char str[NR_CPUS];
5438 struct sched_group *group = sd->groups;
5439 cpumask_t groupmask;
5440
5441 cpumask_scnprintf(str, NR_CPUS, sd->span);
5442 cpus_clear(groupmask);
5443
5444 printk(KERN_DEBUG);
5445 for (i = 0; i < level + 1; i++)
5446 printk(" ");
5447 printk("domain %d: ", level);
5448
5449 if (!(sd->flags & SD_LOAD_BALANCE)) {
5450 printk("does not load-balance\n");
5451 if (sd->parent)
33859f7f
MOS
5452 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5453 " has parent");
1da177e4
LT
5454 break;
5455 }
5456
5457 printk("span %s\n", str);
5458
5459 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5460 printk(KERN_ERR "ERROR: domain->span does not contain "
5461 "CPU%d\n", cpu);
1da177e4 5462 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5463 printk(KERN_ERR "ERROR: domain->groups does not contain"
5464 " CPU%d\n", cpu);
1da177e4
LT
5465
5466 printk(KERN_DEBUG);
5467 for (i = 0; i < level + 2; i++)
5468 printk(" ");
5469 printk("groups:");
5470 do {
5471 if (!group) {
5472 printk("\n");
5473 printk(KERN_ERR "ERROR: group is NULL\n");
5474 break;
5475 }
5476
5517d86b 5477 if (!group->__cpu_power) {
1da177e4 5478 printk("\n");
33859f7f
MOS
5479 printk(KERN_ERR "ERROR: domain->cpu_power not "
5480 "set\n");
26797a34 5481 break;
1da177e4
LT
5482 }
5483
5484 if (!cpus_weight(group->cpumask)) {
5485 printk("\n");
5486 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5487 break;
1da177e4
LT
5488 }
5489
5490 if (cpus_intersects(groupmask, group->cpumask)) {
5491 printk("\n");
5492 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5493 break;
1da177e4
LT
5494 }
5495
5496 cpus_or(groupmask, groupmask, group->cpumask);
5497
5498 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5499 printk(" %s", str);
5500
5501 group = group->next;
5502 } while (group != sd->groups);
5503 printk("\n");
5504
5505 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5506 printk(KERN_ERR "ERROR: groups don't span "
5507 "domain->span\n");
1da177e4
LT
5508
5509 level++;
5510 sd = sd->parent;
33859f7f
MOS
5511 if (!sd)
5512 continue;
1da177e4 5513
33859f7f
MOS
5514 if (!cpus_subset(groupmask, sd->span))
5515 printk(KERN_ERR "ERROR: parent span is not a superset "
5516 "of domain->span\n");
1da177e4
LT
5517
5518 } while (sd);
5519}
5520#else
48f24c4d 5521# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5522#endif
5523
1a20ff27 5524static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5525{
5526 if (cpus_weight(sd->span) == 1)
5527 return 1;
5528
5529 /* Following flags need at least 2 groups */
5530 if (sd->flags & (SD_LOAD_BALANCE |
5531 SD_BALANCE_NEWIDLE |
5532 SD_BALANCE_FORK |
89c4710e
SS
5533 SD_BALANCE_EXEC |
5534 SD_SHARE_CPUPOWER |
5535 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5536 if (sd->groups != sd->groups->next)
5537 return 0;
5538 }
5539
5540 /* Following flags don't use groups */
5541 if (sd->flags & (SD_WAKE_IDLE |
5542 SD_WAKE_AFFINE |
5543 SD_WAKE_BALANCE))
5544 return 0;
5545
5546 return 1;
5547}
5548
48f24c4d
IM
5549static int
5550sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5551{
5552 unsigned long cflags = sd->flags, pflags = parent->flags;
5553
5554 if (sd_degenerate(parent))
5555 return 1;
5556
5557 if (!cpus_equal(sd->span, parent->span))
5558 return 0;
5559
5560 /* Does parent contain flags not in child? */
5561 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5562 if (cflags & SD_WAKE_AFFINE)
5563 pflags &= ~SD_WAKE_BALANCE;
5564 /* Flags needing groups don't count if only 1 group in parent */
5565 if (parent->groups == parent->groups->next) {
5566 pflags &= ~(SD_LOAD_BALANCE |
5567 SD_BALANCE_NEWIDLE |
5568 SD_BALANCE_FORK |
89c4710e
SS
5569 SD_BALANCE_EXEC |
5570 SD_SHARE_CPUPOWER |
5571 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5572 }
5573 if (~cflags & pflags)
5574 return 0;
5575
5576 return 1;
5577}
5578
1da177e4
LT
5579/*
5580 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5581 * hold the hotplug lock.
5582 */
9c1cfda2 5583static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5584{
70b97a7f 5585 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5586 struct sched_domain *tmp;
5587
5588 /* Remove the sched domains which do not contribute to scheduling. */
5589 for (tmp = sd; tmp; tmp = tmp->parent) {
5590 struct sched_domain *parent = tmp->parent;
5591 if (!parent)
5592 break;
1a848870 5593 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5594 tmp->parent = parent->parent;
1a848870
SS
5595 if (parent->parent)
5596 parent->parent->child = tmp;
5597 }
245af2c7
SS
5598 }
5599
1a848870 5600 if (sd && sd_degenerate(sd)) {
245af2c7 5601 sd = sd->parent;
1a848870
SS
5602 if (sd)
5603 sd->child = NULL;
5604 }
1da177e4
LT
5605
5606 sched_domain_debug(sd, cpu);
5607
674311d5 5608 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5609}
5610
5611/* cpus with isolated domains */
67af63a6 5612static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5613
5614/* Setup the mask of cpus configured for isolated domains */
5615static int __init isolated_cpu_setup(char *str)
5616{
5617 int ints[NR_CPUS], i;
5618
5619 str = get_options(str, ARRAY_SIZE(ints), ints);
5620 cpus_clear(cpu_isolated_map);
5621 for (i = 1; i <= ints[0]; i++)
5622 if (ints[i] < NR_CPUS)
5623 cpu_set(ints[i], cpu_isolated_map);
5624 return 1;
5625}
5626
8927f494 5627__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5628
5629/*
6711cab4
SS
5630 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5631 * to a function which identifies what group(along with sched group) a CPU
5632 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5633 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5634 *
5635 * init_sched_build_groups will build a circular linked list of the groups
5636 * covered by the given span, and will set each group's ->cpumask correctly,
5637 * and ->cpu_power to 0.
5638 */
a616058b 5639static void
6711cab4
SS
5640init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5641 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5642 struct sched_group **sg))
1da177e4
LT
5643{
5644 struct sched_group *first = NULL, *last = NULL;
5645 cpumask_t covered = CPU_MASK_NONE;
5646 int i;
5647
5648 for_each_cpu_mask(i, span) {
6711cab4
SS
5649 struct sched_group *sg;
5650 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5651 int j;
5652
5653 if (cpu_isset(i, covered))
5654 continue;
5655
5656 sg->cpumask = CPU_MASK_NONE;
5517d86b 5657 sg->__cpu_power = 0;
1da177e4
LT
5658
5659 for_each_cpu_mask(j, span) {
6711cab4 5660 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5661 continue;
5662
5663 cpu_set(j, covered);
5664 cpu_set(j, sg->cpumask);
5665 }
5666 if (!first)
5667 first = sg;
5668 if (last)
5669 last->next = sg;
5670 last = sg;
5671 }
5672 last->next = first;
5673}
5674
9c1cfda2 5675#define SD_NODES_PER_DOMAIN 16
1da177e4 5676
9c1cfda2 5677#ifdef CONFIG_NUMA
198e2f18 5678
9c1cfda2
JH
5679/**
5680 * find_next_best_node - find the next node to include in a sched_domain
5681 * @node: node whose sched_domain we're building
5682 * @used_nodes: nodes already in the sched_domain
5683 *
5684 * Find the next node to include in a given scheduling domain. Simply
5685 * finds the closest node not already in the @used_nodes map.
5686 *
5687 * Should use nodemask_t.
5688 */
5689static int find_next_best_node(int node, unsigned long *used_nodes)
5690{
5691 int i, n, val, min_val, best_node = 0;
5692
5693 min_val = INT_MAX;
5694
5695 for (i = 0; i < MAX_NUMNODES; i++) {
5696 /* Start at @node */
5697 n = (node + i) % MAX_NUMNODES;
5698
5699 if (!nr_cpus_node(n))
5700 continue;
5701
5702 /* Skip already used nodes */
5703 if (test_bit(n, used_nodes))
5704 continue;
5705
5706 /* Simple min distance search */
5707 val = node_distance(node, n);
5708
5709 if (val < min_val) {
5710 min_val = val;
5711 best_node = n;
5712 }
5713 }
5714
5715 set_bit(best_node, used_nodes);
5716 return best_node;
5717}
5718
5719/**
5720 * sched_domain_node_span - get a cpumask for a node's sched_domain
5721 * @node: node whose cpumask we're constructing
5722 * @size: number of nodes to include in this span
5723 *
5724 * Given a node, construct a good cpumask for its sched_domain to span. It
5725 * should be one that prevents unnecessary balancing, but also spreads tasks
5726 * out optimally.
5727 */
5728static cpumask_t sched_domain_node_span(int node)
5729{
9c1cfda2 5730 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5731 cpumask_t span, nodemask;
5732 int i;
9c1cfda2
JH
5733
5734 cpus_clear(span);
5735 bitmap_zero(used_nodes, MAX_NUMNODES);
5736
5737 nodemask = node_to_cpumask(node);
5738 cpus_or(span, span, nodemask);
5739 set_bit(node, used_nodes);
5740
5741 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5742 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5743
9c1cfda2
JH
5744 nodemask = node_to_cpumask(next_node);
5745 cpus_or(span, span, nodemask);
5746 }
5747
5748 return span;
5749}
5750#endif
5751
5c45bf27 5752int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5753
9c1cfda2 5754/*
48f24c4d 5755 * SMT sched-domains:
9c1cfda2 5756 */
1da177e4
LT
5757#ifdef CONFIG_SCHED_SMT
5758static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5759static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5760
6711cab4
SS
5761static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5762 struct sched_group **sg)
1da177e4 5763{
6711cab4
SS
5764 if (sg)
5765 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5766 return cpu;
5767}
5768#endif
5769
48f24c4d
IM
5770/*
5771 * multi-core sched-domains:
5772 */
1e9f28fa
SS
5773#ifdef CONFIG_SCHED_MC
5774static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5775static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5776#endif
5777
5778#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5779static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5780 struct sched_group **sg)
1e9f28fa 5781{
6711cab4 5782 int group;
a616058b
SS
5783 cpumask_t mask = cpu_sibling_map[cpu];
5784 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5785 group = first_cpu(mask);
5786 if (sg)
5787 *sg = &per_cpu(sched_group_core, group);
5788 return group;
1e9f28fa
SS
5789}
5790#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5791static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5792 struct sched_group **sg)
1e9f28fa 5793{
6711cab4
SS
5794 if (sg)
5795 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5796 return cpu;
5797}
5798#endif
5799
1da177e4 5800static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5801static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5802
6711cab4
SS
5803static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5804 struct sched_group **sg)
1da177e4 5805{
6711cab4 5806 int group;
48f24c4d 5807#ifdef CONFIG_SCHED_MC
1e9f28fa 5808 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5809 cpus_and(mask, mask, *cpu_map);
6711cab4 5810 group = first_cpu(mask);
1e9f28fa 5811#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5812 cpumask_t mask = cpu_sibling_map[cpu];
5813 cpus_and(mask, mask, *cpu_map);
6711cab4 5814 group = first_cpu(mask);
1da177e4 5815#else
6711cab4 5816 group = cpu;
1da177e4 5817#endif
6711cab4
SS
5818 if (sg)
5819 *sg = &per_cpu(sched_group_phys, group);
5820 return group;
1da177e4
LT
5821}
5822
5823#ifdef CONFIG_NUMA
1da177e4 5824/*
9c1cfda2
JH
5825 * The init_sched_build_groups can't handle what we want to do with node
5826 * groups, so roll our own. Now each node has its own list of groups which
5827 * gets dynamically allocated.
1da177e4 5828 */
9c1cfda2 5829static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5830static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5831
9c1cfda2 5832static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5833static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5834
6711cab4
SS
5835static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5836 struct sched_group **sg)
9c1cfda2 5837{
6711cab4
SS
5838 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5839 int group;
5840
5841 cpus_and(nodemask, nodemask, *cpu_map);
5842 group = first_cpu(nodemask);
5843
5844 if (sg)
5845 *sg = &per_cpu(sched_group_allnodes, group);
5846 return group;
1da177e4 5847}
6711cab4 5848
08069033
SS
5849static void init_numa_sched_groups_power(struct sched_group *group_head)
5850{
5851 struct sched_group *sg = group_head;
5852 int j;
5853
5854 if (!sg)
5855 return;
3a5c359a
AK
5856 do {
5857 for_each_cpu_mask(j, sg->cpumask) {
5858 struct sched_domain *sd;
08069033 5859
3a5c359a
AK
5860 sd = &per_cpu(phys_domains, j);
5861 if (j != first_cpu(sd->groups->cpumask)) {
5862 /*
5863 * Only add "power" once for each
5864 * physical package.
5865 */
5866 continue;
5867 }
08069033 5868
3a5c359a
AK
5869 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5870 }
5871 sg = sg->next;
5872 } while (sg != group_head);
08069033 5873}
1da177e4
LT
5874#endif
5875
a616058b 5876#ifdef CONFIG_NUMA
51888ca2
SV
5877/* Free memory allocated for various sched_group structures */
5878static void free_sched_groups(const cpumask_t *cpu_map)
5879{
a616058b 5880 int cpu, i;
51888ca2
SV
5881
5882 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5883 struct sched_group **sched_group_nodes
5884 = sched_group_nodes_bycpu[cpu];
5885
51888ca2
SV
5886 if (!sched_group_nodes)
5887 continue;
5888
5889 for (i = 0; i < MAX_NUMNODES; i++) {
5890 cpumask_t nodemask = node_to_cpumask(i);
5891 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5892
5893 cpus_and(nodemask, nodemask, *cpu_map);
5894 if (cpus_empty(nodemask))
5895 continue;
5896
5897 if (sg == NULL)
5898 continue;
5899 sg = sg->next;
5900next_sg:
5901 oldsg = sg;
5902 sg = sg->next;
5903 kfree(oldsg);
5904 if (oldsg != sched_group_nodes[i])
5905 goto next_sg;
5906 }
5907 kfree(sched_group_nodes);
5908 sched_group_nodes_bycpu[cpu] = NULL;
5909 }
51888ca2 5910}
a616058b
SS
5911#else
5912static void free_sched_groups(const cpumask_t *cpu_map)
5913{
5914}
5915#endif
51888ca2 5916
89c4710e
SS
5917/*
5918 * Initialize sched groups cpu_power.
5919 *
5920 * cpu_power indicates the capacity of sched group, which is used while
5921 * distributing the load between different sched groups in a sched domain.
5922 * Typically cpu_power for all the groups in a sched domain will be same unless
5923 * there are asymmetries in the topology. If there are asymmetries, group
5924 * having more cpu_power will pickup more load compared to the group having
5925 * less cpu_power.
5926 *
5927 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5928 * the maximum number of tasks a group can handle in the presence of other idle
5929 * or lightly loaded groups in the same sched domain.
5930 */
5931static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5932{
5933 struct sched_domain *child;
5934 struct sched_group *group;
5935
5936 WARN_ON(!sd || !sd->groups);
5937
5938 if (cpu != first_cpu(sd->groups->cpumask))
5939 return;
5940
5941 child = sd->child;
5942
5517d86b
ED
5943 sd->groups->__cpu_power = 0;
5944
89c4710e
SS
5945 /*
5946 * For perf policy, if the groups in child domain share resources
5947 * (for example cores sharing some portions of the cache hierarchy
5948 * or SMT), then set this domain groups cpu_power such that each group
5949 * can handle only one task, when there are other idle groups in the
5950 * same sched domain.
5951 */
5952 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5953 (child->flags &
5954 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5955 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5956 return;
5957 }
5958
89c4710e
SS
5959 /*
5960 * add cpu_power of each child group to this groups cpu_power
5961 */
5962 group = child->groups;
5963 do {
5517d86b 5964 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5965 group = group->next;
5966 } while (group != child->groups);
5967}
5968
1da177e4 5969/*
1a20ff27
DG
5970 * Build sched domains for a given set of cpus and attach the sched domains
5971 * to the individual cpus
1da177e4 5972 */
51888ca2 5973static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5974{
5975 int i;
d1b55138
JH
5976#ifdef CONFIG_NUMA
5977 struct sched_group **sched_group_nodes = NULL;
6711cab4 5978 int sd_allnodes = 0;
d1b55138
JH
5979
5980 /*
5981 * Allocate the per-node list of sched groups
5982 */
dd41f596 5983 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5984 GFP_KERNEL);
d1b55138
JH
5985 if (!sched_group_nodes) {
5986 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5987 return -ENOMEM;
d1b55138
JH
5988 }
5989 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5990#endif
1da177e4
LT
5991
5992 /*
1a20ff27 5993 * Set up domains for cpus specified by the cpu_map.
1da177e4 5994 */
1a20ff27 5995 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5996 struct sched_domain *sd = NULL, *p;
5997 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5998
1a20ff27 5999 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6000
6001#ifdef CONFIG_NUMA
dd41f596
IM
6002 if (cpus_weight(*cpu_map) >
6003 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6004 sd = &per_cpu(allnodes_domains, i);
6005 *sd = SD_ALLNODES_INIT;
6006 sd->span = *cpu_map;
6711cab4 6007 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6008 p = sd;
6711cab4 6009 sd_allnodes = 1;
9c1cfda2
JH
6010 } else
6011 p = NULL;
6012
1da177e4 6013 sd = &per_cpu(node_domains, i);
1da177e4 6014 *sd = SD_NODE_INIT;
9c1cfda2
JH
6015 sd->span = sched_domain_node_span(cpu_to_node(i));
6016 sd->parent = p;
1a848870
SS
6017 if (p)
6018 p->child = sd;
9c1cfda2 6019 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6020#endif
6021
6022 p = sd;
6023 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6024 *sd = SD_CPU_INIT;
6025 sd->span = nodemask;
6026 sd->parent = p;
1a848870
SS
6027 if (p)
6028 p->child = sd;
6711cab4 6029 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6030
1e9f28fa
SS
6031#ifdef CONFIG_SCHED_MC
6032 p = sd;
6033 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6034 *sd = SD_MC_INIT;
6035 sd->span = cpu_coregroup_map(i);
6036 cpus_and(sd->span, sd->span, *cpu_map);
6037 sd->parent = p;
1a848870 6038 p->child = sd;
6711cab4 6039 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6040#endif
6041
1da177e4
LT
6042#ifdef CONFIG_SCHED_SMT
6043 p = sd;
6044 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6045 *sd = SD_SIBLING_INIT;
6046 sd->span = cpu_sibling_map[i];
1a20ff27 6047 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6048 sd->parent = p;
1a848870 6049 p->child = sd;
6711cab4 6050 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6051#endif
6052 }
6053
6054#ifdef CONFIG_SCHED_SMT
6055 /* Set up CPU (sibling) groups */
9c1cfda2 6056 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6057 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6058 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6059 if (i != first_cpu(this_sibling_map))
6060 continue;
6061
dd41f596
IM
6062 init_sched_build_groups(this_sibling_map, cpu_map,
6063 &cpu_to_cpu_group);
1da177e4
LT
6064 }
6065#endif
6066
1e9f28fa
SS
6067#ifdef CONFIG_SCHED_MC
6068 /* Set up multi-core groups */
6069 for_each_cpu_mask(i, *cpu_map) {
6070 cpumask_t this_core_map = cpu_coregroup_map(i);
6071 cpus_and(this_core_map, this_core_map, *cpu_map);
6072 if (i != first_cpu(this_core_map))
6073 continue;
dd41f596
IM
6074 init_sched_build_groups(this_core_map, cpu_map,
6075 &cpu_to_core_group);
1e9f28fa
SS
6076 }
6077#endif
6078
1da177e4
LT
6079 /* Set up physical groups */
6080 for (i = 0; i < MAX_NUMNODES; i++) {
6081 cpumask_t nodemask = node_to_cpumask(i);
6082
1a20ff27 6083 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6084 if (cpus_empty(nodemask))
6085 continue;
6086
6711cab4 6087 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6088 }
6089
6090#ifdef CONFIG_NUMA
6091 /* Set up node groups */
6711cab4 6092 if (sd_allnodes)
dd41f596
IM
6093 init_sched_build_groups(*cpu_map, cpu_map,
6094 &cpu_to_allnodes_group);
9c1cfda2
JH
6095
6096 for (i = 0; i < MAX_NUMNODES; i++) {
6097 /* Set up node groups */
6098 struct sched_group *sg, *prev;
6099 cpumask_t nodemask = node_to_cpumask(i);
6100 cpumask_t domainspan;
6101 cpumask_t covered = CPU_MASK_NONE;
6102 int j;
6103
6104 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6105 if (cpus_empty(nodemask)) {
6106 sched_group_nodes[i] = NULL;
9c1cfda2 6107 continue;
d1b55138 6108 }
9c1cfda2
JH
6109
6110 domainspan = sched_domain_node_span(i);
6111 cpus_and(domainspan, domainspan, *cpu_map);
6112
15f0b676 6113 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6114 if (!sg) {
6115 printk(KERN_WARNING "Can not alloc domain group for "
6116 "node %d\n", i);
6117 goto error;
6118 }
9c1cfda2
JH
6119 sched_group_nodes[i] = sg;
6120 for_each_cpu_mask(j, nodemask) {
6121 struct sched_domain *sd;
9761eea8 6122
9c1cfda2
JH
6123 sd = &per_cpu(node_domains, j);
6124 sd->groups = sg;
9c1cfda2 6125 }
5517d86b 6126 sg->__cpu_power = 0;
9c1cfda2 6127 sg->cpumask = nodemask;
51888ca2 6128 sg->next = sg;
9c1cfda2
JH
6129 cpus_or(covered, covered, nodemask);
6130 prev = sg;
6131
6132 for (j = 0; j < MAX_NUMNODES; j++) {
6133 cpumask_t tmp, notcovered;
6134 int n = (i + j) % MAX_NUMNODES;
6135
6136 cpus_complement(notcovered, covered);
6137 cpus_and(tmp, notcovered, *cpu_map);
6138 cpus_and(tmp, tmp, domainspan);
6139 if (cpus_empty(tmp))
6140 break;
6141
6142 nodemask = node_to_cpumask(n);
6143 cpus_and(tmp, tmp, nodemask);
6144 if (cpus_empty(tmp))
6145 continue;
6146
15f0b676
SV
6147 sg = kmalloc_node(sizeof(struct sched_group),
6148 GFP_KERNEL, i);
9c1cfda2
JH
6149 if (!sg) {
6150 printk(KERN_WARNING
6151 "Can not alloc domain group for node %d\n", j);
51888ca2 6152 goto error;
9c1cfda2 6153 }
5517d86b 6154 sg->__cpu_power = 0;
9c1cfda2 6155 sg->cpumask = tmp;
51888ca2 6156 sg->next = prev->next;
9c1cfda2
JH
6157 cpus_or(covered, covered, tmp);
6158 prev->next = sg;
6159 prev = sg;
6160 }
9c1cfda2 6161 }
1da177e4
LT
6162#endif
6163
6164 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6165#ifdef CONFIG_SCHED_SMT
1a20ff27 6166 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6167 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6168
89c4710e 6169 init_sched_groups_power(i, sd);
5c45bf27 6170 }
1da177e4 6171#endif
1e9f28fa 6172#ifdef CONFIG_SCHED_MC
5c45bf27 6173 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6174 struct sched_domain *sd = &per_cpu(core_domains, i);
6175
89c4710e 6176 init_sched_groups_power(i, sd);
5c45bf27
SS
6177 }
6178#endif
1e9f28fa 6179
5c45bf27 6180 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6181 struct sched_domain *sd = &per_cpu(phys_domains, i);
6182
89c4710e 6183 init_sched_groups_power(i, sd);
1da177e4
LT
6184 }
6185
9c1cfda2 6186#ifdef CONFIG_NUMA
08069033
SS
6187 for (i = 0; i < MAX_NUMNODES; i++)
6188 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6189
6711cab4
SS
6190 if (sd_allnodes) {
6191 struct sched_group *sg;
f712c0c7 6192
6711cab4 6193 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6194 init_numa_sched_groups_power(sg);
6195 }
9c1cfda2
JH
6196#endif
6197
1da177e4 6198 /* Attach the domains */
1a20ff27 6199 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6200 struct sched_domain *sd;
6201#ifdef CONFIG_SCHED_SMT
6202 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6203#elif defined(CONFIG_SCHED_MC)
6204 sd = &per_cpu(core_domains, i);
1da177e4
LT
6205#else
6206 sd = &per_cpu(phys_domains, i);
6207#endif
6208 cpu_attach_domain(sd, i);
6209 }
51888ca2
SV
6210
6211 return 0;
6212
a616058b 6213#ifdef CONFIG_NUMA
51888ca2
SV
6214error:
6215 free_sched_groups(cpu_map);
6216 return -ENOMEM;
a616058b 6217#endif
1da177e4 6218}
1a20ff27
DG
6219/*
6220 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6221 */
51888ca2 6222static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6223{
6224 cpumask_t cpu_default_map;
51888ca2 6225 int err;
1da177e4 6226
1a20ff27
DG
6227 /*
6228 * Setup mask for cpus without special case scheduling requirements.
6229 * For now this just excludes isolated cpus, but could be used to
6230 * exclude other special cases in the future.
6231 */
6232 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6233
51888ca2
SV
6234 err = build_sched_domains(&cpu_default_map);
6235
6236 return err;
1a20ff27
DG
6237}
6238
6239static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6240{
51888ca2 6241 free_sched_groups(cpu_map);
9c1cfda2 6242}
1da177e4 6243
1a20ff27
DG
6244/*
6245 * Detach sched domains from a group of cpus specified in cpu_map
6246 * These cpus will now be attached to the NULL domain
6247 */
858119e1 6248static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6249{
6250 int i;
6251
6252 for_each_cpu_mask(i, *cpu_map)
6253 cpu_attach_domain(NULL, i);
6254 synchronize_sched();
6255 arch_destroy_sched_domains(cpu_map);
6256}
6257
6258/*
6259 * Partition sched domains as specified by the cpumasks below.
6260 * This attaches all cpus from the cpumasks to the NULL domain,
6261 * waits for a RCU quiescent period, recalculates sched
6262 * domain information and then attaches them back to the
6263 * correct sched domains
6264 * Call with hotplug lock held
6265 */
51888ca2 6266int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6267{
6268 cpumask_t change_map;
51888ca2 6269 int err = 0;
1a20ff27
DG
6270
6271 cpus_and(*partition1, *partition1, cpu_online_map);
6272 cpus_and(*partition2, *partition2, cpu_online_map);
6273 cpus_or(change_map, *partition1, *partition2);
6274
6275 /* Detach sched domains from all of the affected cpus */
6276 detach_destroy_domains(&change_map);
6277 if (!cpus_empty(*partition1))
51888ca2
SV
6278 err = build_sched_domains(partition1);
6279 if (!err && !cpus_empty(*partition2))
6280 err = build_sched_domains(partition2);
6281
6282 return err;
1a20ff27
DG
6283}
6284
5c45bf27 6285#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6286static int arch_reinit_sched_domains(void)
5c45bf27
SS
6287{
6288 int err;
6289
5be9361c 6290 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6291 detach_destroy_domains(&cpu_online_map);
6292 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6293 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6294
6295 return err;
6296}
6297
6298static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6299{
6300 int ret;
6301
6302 if (buf[0] != '0' && buf[0] != '1')
6303 return -EINVAL;
6304
6305 if (smt)
6306 sched_smt_power_savings = (buf[0] == '1');
6307 else
6308 sched_mc_power_savings = (buf[0] == '1');
6309
6310 ret = arch_reinit_sched_domains();
6311
6312 return ret ? ret : count;
6313}
6314
5c45bf27
SS
6315#ifdef CONFIG_SCHED_MC
6316static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6317{
6318 return sprintf(page, "%u\n", sched_mc_power_savings);
6319}
48f24c4d
IM
6320static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6321 const char *buf, size_t count)
5c45bf27
SS
6322{
6323 return sched_power_savings_store(buf, count, 0);
6324}
6707de00
AB
6325static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6326 sched_mc_power_savings_store);
5c45bf27
SS
6327#endif
6328
6329#ifdef CONFIG_SCHED_SMT
6330static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6331{
6332 return sprintf(page, "%u\n", sched_smt_power_savings);
6333}
48f24c4d
IM
6334static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6335 const char *buf, size_t count)
5c45bf27
SS
6336{
6337 return sched_power_savings_store(buf, count, 1);
6338}
6707de00
AB
6339static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6340 sched_smt_power_savings_store);
6341#endif
6342
6343int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6344{
6345 int err = 0;
6346
6347#ifdef CONFIG_SCHED_SMT
6348 if (smt_capable())
6349 err = sysfs_create_file(&cls->kset.kobj,
6350 &attr_sched_smt_power_savings.attr);
6351#endif
6352#ifdef CONFIG_SCHED_MC
6353 if (!err && mc_capable())
6354 err = sysfs_create_file(&cls->kset.kobj,
6355 &attr_sched_mc_power_savings.attr);
6356#endif
6357 return err;
6358}
5c45bf27
SS
6359#endif
6360
1da177e4
LT
6361/*
6362 * Force a reinitialization of the sched domains hierarchy. The domains
6363 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6364 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6365 * which will prevent rebalancing while the sched domains are recalculated.
6366 */
6367static int update_sched_domains(struct notifier_block *nfb,
6368 unsigned long action, void *hcpu)
6369{
1da177e4
LT
6370 switch (action) {
6371 case CPU_UP_PREPARE:
8bb78442 6372 case CPU_UP_PREPARE_FROZEN:
1da177e4 6373 case CPU_DOWN_PREPARE:
8bb78442 6374 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6375 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6376 return NOTIFY_OK;
6377
6378 case CPU_UP_CANCELED:
8bb78442 6379 case CPU_UP_CANCELED_FROZEN:
1da177e4 6380 case CPU_DOWN_FAILED:
8bb78442 6381 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6382 case CPU_ONLINE:
8bb78442 6383 case CPU_ONLINE_FROZEN:
1da177e4 6384 case CPU_DEAD:
8bb78442 6385 case CPU_DEAD_FROZEN:
1da177e4
LT
6386 /*
6387 * Fall through and re-initialise the domains.
6388 */
6389 break;
6390 default:
6391 return NOTIFY_DONE;
6392 }
6393
6394 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6395 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6396
6397 return NOTIFY_OK;
6398}
1da177e4
LT
6399
6400void __init sched_init_smp(void)
6401{
5c1e1767
NP
6402 cpumask_t non_isolated_cpus;
6403
5be9361c 6404 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6405 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6406 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6407 if (cpus_empty(non_isolated_cpus))
6408 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6409 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6410 /* XXX: Theoretical race here - CPU may be hotplugged now */
6411 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6412
e692ab53
NP
6413 init_sched_domain_sysctl();
6414
5c1e1767
NP
6415 /* Move init over to a non-isolated CPU */
6416 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6417 BUG();
1da177e4
LT
6418}
6419#else
6420void __init sched_init_smp(void)
6421{
6422}
6423#endif /* CONFIG_SMP */
6424
6425int in_sched_functions(unsigned long addr)
6426{
6427 /* Linker adds these: start and end of __sched functions */
6428 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6429
1da177e4
LT
6430 return in_lock_functions(addr) ||
6431 (addr >= (unsigned long)__sched_text_start
6432 && addr < (unsigned long)__sched_text_end);
6433}
6434
a9957449 6435static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6436{
6437 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6438#ifdef CONFIG_FAIR_GROUP_SCHED
6439 cfs_rq->rq = rq;
6440#endif
67e9fb2a 6441 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6442}
6443
1da177e4
LT
6444void __init sched_init(void)
6445{
476f3534 6446 int highest_cpu = 0;
dd41f596
IM
6447 int i, j;
6448
0a945022 6449 for_each_possible_cpu(i) {
dd41f596 6450 struct rt_prio_array *array;
70b97a7f 6451 struct rq *rq;
1da177e4
LT
6452
6453 rq = cpu_rq(i);
6454 spin_lock_init(&rq->lock);
fcb99371 6455 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6456 rq->nr_running = 0;
dd41f596
IM
6457 rq->clock = 1;
6458 init_cfs_rq(&rq->cfs, rq);
6459#ifdef CONFIG_FAIR_GROUP_SCHED
6460 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6461 {
6462 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6463 struct sched_entity *se =
6464 &per_cpu(init_sched_entity, i);
6465
6466 init_cfs_rq_p[i] = cfs_rq;
6467 init_cfs_rq(cfs_rq, rq);
4cf86d77 6468 cfs_rq->tg = &init_task_group;
3a252015 6469 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6470 &rq->leaf_cfs_rq_list);
6471
3a252015
IM
6472 init_sched_entity_p[i] = se;
6473 se->cfs_rq = &rq->cfs;
6474 se->my_q = cfs_rq;
4cf86d77 6475 se->load.weight = init_task_group_load;
9b5b7751 6476 se->load.inv_weight =
4cf86d77 6477 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6478 se->parent = NULL;
6479 }
4cf86d77 6480 init_task_group.shares = init_task_group_load;
5cb350ba 6481 spin_lock_init(&init_task_group.lock);
dd41f596 6482#endif
1da177e4 6483
dd41f596
IM
6484 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6485 rq->cpu_load[j] = 0;
1da177e4 6486#ifdef CONFIG_SMP
41c7ce9a 6487 rq->sd = NULL;
1da177e4 6488 rq->active_balance = 0;
dd41f596 6489 rq->next_balance = jiffies;
1da177e4 6490 rq->push_cpu = 0;
0a2966b4 6491 rq->cpu = i;
1da177e4
LT
6492 rq->migration_thread = NULL;
6493 INIT_LIST_HEAD(&rq->migration_queue);
6494#endif
6495 atomic_set(&rq->nr_iowait, 0);
6496
dd41f596
IM
6497 array = &rq->rt.active;
6498 for (j = 0; j < MAX_RT_PRIO; j++) {
6499 INIT_LIST_HEAD(array->queue + j);
6500 __clear_bit(j, array->bitmap);
1da177e4 6501 }
476f3534 6502 highest_cpu = i;
dd41f596
IM
6503 /* delimiter for bitsearch: */
6504 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6505 }
6506
2dd73a4f 6507 set_load_weight(&init_task);
b50f60ce 6508
e107be36
AK
6509#ifdef CONFIG_PREEMPT_NOTIFIERS
6510 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6511#endif
6512
c9819f45 6513#ifdef CONFIG_SMP
476f3534 6514 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6515 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6516#endif
6517
b50f60ce
HC
6518#ifdef CONFIG_RT_MUTEXES
6519 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6520#endif
6521
1da177e4
LT
6522 /*
6523 * The boot idle thread does lazy MMU switching as well:
6524 */
6525 atomic_inc(&init_mm.mm_count);
6526 enter_lazy_tlb(&init_mm, current);
6527
6528 /*
6529 * Make us the idle thread. Technically, schedule() should not be
6530 * called from this thread, however somewhere below it might be,
6531 * but because we are the idle thread, we just pick up running again
6532 * when this runqueue becomes "idle".
6533 */
6534 init_idle(current, smp_processor_id());
dd41f596
IM
6535 /*
6536 * During early bootup we pretend to be a normal task:
6537 */
6538 current->sched_class = &fair_sched_class;
1da177e4
LT
6539}
6540
6541#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6542void __might_sleep(char *file, int line)
6543{
48f24c4d 6544#ifdef in_atomic
1da177e4
LT
6545 static unsigned long prev_jiffy; /* ratelimiting */
6546
6547 if ((in_atomic() || irqs_disabled()) &&
6548 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6549 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6550 return;
6551 prev_jiffy = jiffies;
91368d73 6552 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6553 " context at %s:%d\n", file, line);
6554 printk("in_atomic():%d, irqs_disabled():%d\n",
6555 in_atomic(), irqs_disabled());
a4c410f0 6556 debug_show_held_locks(current);
3117df04
IM
6557 if (irqs_disabled())
6558 print_irqtrace_events(current);
1da177e4
LT
6559 dump_stack();
6560 }
6561#endif
6562}
6563EXPORT_SYMBOL(__might_sleep);
6564#endif
6565
6566#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6567static void normalize_task(struct rq *rq, struct task_struct *p)
6568{
6569 int on_rq;
6570 update_rq_clock(rq);
6571 on_rq = p->se.on_rq;
6572 if (on_rq)
6573 deactivate_task(rq, p, 0);
6574 __setscheduler(rq, p, SCHED_NORMAL, 0);
6575 if (on_rq) {
6576 activate_task(rq, p, 0);
6577 resched_task(rq->curr);
6578 }
6579}
6580
1da177e4
LT
6581void normalize_rt_tasks(void)
6582{
a0f98a1c 6583 struct task_struct *g, *p;
1da177e4 6584 unsigned long flags;
70b97a7f 6585 struct rq *rq;
1da177e4
LT
6586
6587 read_lock_irq(&tasklist_lock);
a0f98a1c 6588 do_each_thread(g, p) {
178be793
IM
6589 /*
6590 * Only normalize user tasks:
6591 */
6592 if (!p->mm)
6593 continue;
6594
6cfb0d5d 6595 p->se.exec_start = 0;
6cfb0d5d 6596#ifdef CONFIG_SCHEDSTATS
dd41f596 6597 p->se.wait_start = 0;
dd41f596 6598 p->se.sleep_start = 0;
dd41f596 6599 p->se.block_start = 0;
6cfb0d5d 6600#endif
dd41f596
IM
6601 task_rq(p)->clock = 0;
6602
6603 if (!rt_task(p)) {
6604 /*
6605 * Renice negative nice level userspace
6606 * tasks back to 0:
6607 */
6608 if (TASK_NICE(p) < 0 && p->mm)
6609 set_user_nice(p, 0);
1da177e4 6610 continue;
dd41f596 6611 }
1da177e4 6612
b29739f9
IM
6613 spin_lock_irqsave(&p->pi_lock, flags);
6614 rq = __task_rq_lock(p);
1da177e4 6615
178be793 6616 normalize_task(rq, p);
3a5e4dc1 6617
b29739f9
IM
6618 __task_rq_unlock(rq);
6619 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6620 } while_each_thread(g, p);
6621
1da177e4
LT
6622 read_unlock_irq(&tasklist_lock);
6623}
6624
6625#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6626
6627#ifdef CONFIG_IA64
6628/*
6629 * These functions are only useful for the IA64 MCA handling.
6630 *
6631 * They can only be called when the whole system has been
6632 * stopped - every CPU needs to be quiescent, and no scheduling
6633 * activity can take place. Using them for anything else would
6634 * be a serious bug, and as a result, they aren't even visible
6635 * under any other configuration.
6636 */
6637
6638/**
6639 * curr_task - return the current task for a given cpu.
6640 * @cpu: the processor in question.
6641 *
6642 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6643 */
36c8b586 6644struct task_struct *curr_task(int cpu)
1df5c10a
LT
6645{
6646 return cpu_curr(cpu);
6647}
6648
6649/**
6650 * set_curr_task - set the current task for a given cpu.
6651 * @cpu: the processor in question.
6652 * @p: the task pointer to set.
6653 *
6654 * Description: This function must only be used when non-maskable interrupts
6655 * are serviced on a separate stack. It allows the architecture to switch the
6656 * notion of the current task on a cpu in a non-blocking manner. This function
6657 * must be called with all CPU's synchronized, and interrupts disabled, the
6658 * and caller must save the original value of the current task (see
6659 * curr_task() above) and restore that value before reenabling interrupts and
6660 * re-starting the system.
6661 *
6662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6663 */
36c8b586 6664void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6665{
6666 cpu_curr(cpu) = p;
6667}
6668
6669#endif
29f59db3
SV
6670
6671#ifdef CONFIG_FAIR_GROUP_SCHED
6672
29f59db3 6673/* allocate runqueue etc for a new task group */
4cf86d77 6674struct task_group *sched_create_group(void)
29f59db3 6675{
4cf86d77 6676 struct task_group *tg;
29f59db3
SV
6677 struct cfs_rq *cfs_rq;
6678 struct sched_entity *se;
9b5b7751 6679 struct rq *rq;
29f59db3
SV
6680 int i;
6681
29f59db3
SV
6682 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6683 if (!tg)
6684 return ERR_PTR(-ENOMEM);
6685
9b5b7751 6686 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6687 if (!tg->cfs_rq)
6688 goto err;
9b5b7751 6689 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6690 if (!tg->se)
6691 goto err;
6692
6693 for_each_possible_cpu(i) {
9b5b7751 6694 rq = cpu_rq(i);
29f59db3
SV
6695
6696 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6697 cpu_to_node(i));
6698 if (!cfs_rq)
6699 goto err;
6700
6701 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6702 cpu_to_node(i));
6703 if (!se)
6704 goto err;
6705
6706 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6707 memset(se, 0, sizeof(struct sched_entity));
6708
6709 tg->cfs_rq[i] = cfs_rq;
6710 init_cfs_rq(cfs_rq, rq);
6711 cfs_rq->tg = tg;
29f59db3
SV
6712
6713 tg->se[i] = se;
6714 se->cfs_rq = &rq->cfs;
6715 se->my_q = cfs_rq;
6716 se->load.weight = NICE_0_LOAD;
6717 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6718 se->parent = NULL;
6719 }
6720
9b5b7751
SV
6721 for_each_possible_cpu(i) {
6722 rq = cpu_rq(i);
6723 cfs_rq = tg->cfs_rq[i];
6724 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6725 }
29f59db3 6726
9b5b7751 6727 tg->shares = NICE_0_LOAD;
5cb350ba 6728 spin_lock_init(&tg->lock);
29f59db3 6729
9b5b7751 6730 return tg;
29f59db3
SV
6731
6732err:
6733 for_each_possible_cpu(i) {
a65914b3 6734 if (tg->cfs_rq)
29f59db3 6735 kfree(tg->cfs_rq[i]);
a65914b3 6736 if (tg->se)
29f59db3
SV
6737 kfree(tg->se[i]);
6738 }
a65914b3
IM
6739 kfree(tg->cfs_rq);
6740 kfree(tg->se);
6741 kfree(tg);
29f59db3
SV
6742
6743 return ERR_PTR(-ENOMEM);
6744}
6745
9b5b7751
SV
6746/* rcu callback to free various structures associated with a task group */
6747static void free_sched_group(struct rcu_head *rhp)
29f59db3 6748{
9b5b7751 6749 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6750 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6751 struct sched_entity *se;
6752 int i;
6753
29f59db3
SV
6754 /* now it should be safe to free those cfs_rqs */
6755 for_each_possible_cpu(i) {
6756 cfs_rq = tg->cfs_rq[i];
6757 kfree(cfs_rq);
6758
6759 se = tg->se[i];
6760 kfree(se);
6761 }
6762
6763 kfree(tg->cfs_rq);
6764 kfree(tg->se);
6765 kfree(tg);
6766}
6767
9b5b7751 6768/* Destroy runqueue etc associated with a task group */
4cf86d77 6769void sched_destroy_group(struct task_group *tg)
29f59db3 6770{
9b5b7751
SV
6771 struct cfs_rq *cfs_rq;
6772 int i;
29f59db3 6773
9b5b7751
SV
6774 for_each_possible_cpu(i) {
6775 cfs_rq = tg->cfs_rq[i];
6776 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6777 }
6778
6779 cfs_rq = tg->cfs_rq[0];
6780
6781 /* wait for possible concurrent references to cfs_rqs complete */
6782 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6783}
6784
9b5b7751 6785/* change task's runqueue when it moves between groups.
3a252015
IM
6786 * The caller of this function should have put the task in its new group
6787 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6788 * reflect its new group.
9b5b7751
SV
6789 */
6790void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6791{
6792 int on_rq, running;
6793 unsigned long flags;
6794 struct rq *rq;
6795
6796 rq = task_rq_lock(tsk, &flags);
6797
6798 if (tsk->sched_class != &fair_sched_class)
6799 goto done;
6800
6801 update_rq_clock(rq);
6802
6803 running = task_running(rq, tsk);
6804 on_rq = tsk->se.on_rq;
6805
83b699ed 6806 if (on_rq) {
29f59db3 6807 dequeue_task(rq, tsk, 0);
83b699ed
SV
6808 if (unlikely(running))
6809 tsk->sched_class->put_prev_task(rq, tsk);
6810 }
29f59db3
SV
6811
6812 set_task_cfs_rq(tsk);
6813
83b699ed
SV
6814 if (on_rq) {
6815 if (unlikely(running))
6816 tsk->sched_class->set_curr_task(rq);
7074badb 6817 enqueue_task(rq, tsk, 0);
83b699ed 6818 }
29f59db3
SV
6819
6820done:
6821 task_rq_unlock(rq, &flags);
6822}
6823
6824static void set_se_shares(struct sched_entity *se, unsigned long shares)
6825{
6826 struct cfs_rq *cfs_rq = se->cfs_rq;
6827 struct rq *rq = cfs_rq->rq;
6828 int on_rq;
6829
6830 spin_lock_irq(&rq->lock);
6831
6832 on_rq = se->on_rq;
6833 if (on_rq)
6834 dequeue_entity(cfs_rq, se, 0);
6835
6836 se->load.weight = shares;
6837 se->load.inv_weight = div64_64((1ULL<<32), shares);
6838
6839 if (on_rq)
6840 enqueue_entity(cfs_rq, se, 0);
6841
6842 spin_unlock_irq(&rq->lock);
6843}
6844
4cf86d77 6845int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6846{
6847 int i;
29f59db3 6848
5cb350ba 6849 spin_lock(&tg->lock);
9b5b7751 6850 if (tg->shares == shares)
5cb350ba 6851 goto done;
29f59db3 6852
9b5b7751 6853 tg->shares = shares;
29f59db3 6854 for_each_possible_cpu(i)
9b5b7751 6855 set_se_shares(tg->se[i], shares);
29f59db3 6856
5cb350ba
DG
6857done:
6858 spin_unlock(&tg->lock);
9b5b7751 6859 return 0;
29f59db3
SV
6860}
6861
5cb350ba
DG
6862unsigned long sched_group_shares(struct task_group *tg)
6863{
6864 return tg->shares;
6865}
6866
3a252015 6867#endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.811283 seconds and 5 git commands to generate.