sched: Validate CFS quota hierarchies
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
199static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200{
201 ktime_t now;
202
cac64d00 203 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
204 return;
205
206 if (hrtimer_active(&rt_b->rt_period_timer))
207 return;
208
0986b11b 209 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 210 for (;;) {
7f1e2ca9
PZ
211 unsigned long delta;
212 ktime_t soft, hard;
213
d0b27fa7
PZ
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 break;
216
217 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
218 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
219
220 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
221 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
222 delta = ktime_to_ns(ktime_sub(hard, soft));
223 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 224 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 225 }
0986b11b 226 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
227}
228
229#ifdef CONFIG_RT_GROUP_SCHED
230static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231{
232 hrtimer_cancel(&rt_b->rt_period_timer);
233}
234#endif
235
712555ee 236/*
c4a8849a 237 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
238 * detach_destroy_domains and partition_sched_domains.
239 */
240static DEFINE_MUTEX(sched_domains_mutex);
241
7c941438 242#ifdef CONFIG_CGROUP_SCHED
29f59db3 243
68318b8e
SV
244#include <linux/cgroup.h>
245
29f59db3
SV
246struct cfs_rq;
247
6f505b16
PZ
248static LIST_HEAD(task_groups);
249
ab84d31e
PT
250struct cfs_bandwidth {
251#ifdef CONFIG_CFS_BANDWIDTH
252 raw_spinlock_t lock;
253 ktime_t period;
254 u64 quota;
a790de99 255 s64 hierarchal_quota;
ab84d31e
PT
256#endif
257};
258
29f59db3 259/* task group related information */
4cf86d77 260struct task_group {
68318b8e 261 struct cgroup_subsys_state css;
6c415b92 262
052f1dc7 263#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
264 /* schedulable entities of this group on each cpu */
265 struct sched_entity **se;
266 /* runqueue "owned" by this group on each cpu */
267 struct cfs_rq **cfs_rq;
268 unsigned long shares;
2069dd75
PZ
269
270 atomic_t load_weight;
052f1dc7
PZ
271#endif
272
273#ifdef CONFIG_RT_GROUP_SCHED
274 struct sched_rt_entity **rt_se;
275 struct rt_rq **rt_rq;
276
d0b27fa7 277 struct rt_bandwidth rt_bandwidth;
052f1dc7 278#endif
6b2d7700 279
ae8393e5 280 struct rcu_head rcu;
6f505b16 281 struct list_head list;
f473aa5e
PZ
282
283 struct task_group *parent;
284 struct list_head siblings;
285 struct list_head children;
5091faa4
MG
286
287#ifdef CONFIG_SCHED_AUTOGROUP
288 struct autogroup *autogroup;
289#endif
ab84d31e
PT
290
291 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
292};
293
3d4b47b4 294/* task_group_lock serializes the addition/removal of task groups */
8ed36996 295static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 296
e9036b36
CG
297#ifdef CONFIG_FAIR_GROUP_SCHED
298
07e06b01 299# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 300
cb4ad1ff 301/*
2e084786
LJ
302 * A weight of 0 or 1 can cause arithmetics problems.
303 * A weight of a cfs_rq is the sum of weights of which entities
304 * are queued on this cfs_rq, so a weight of a entity should not be
305 * too large, so as the shares value of a task group.
cb4ad1ff
MX
306 * (The default weight is 1024 - so there's no practical
307 * limitation from this.)
308 */
cd62287e
MG
309#define MIN_SHARES (1UL << 1)
310#define MAX_SHARES (1UL << 18)
18d95a28 311
07e06b01 312static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
313#endif
314
29f59db3 315/* Default task group.
3a252015 316 * Every task in system belong to this group at bootup.
29f59db3 317 */
07e06b01 318struct task_group root_task_group;
29f59db3 319
7c941438 320#endif /* CONFIG_CGROUP_SCHED */
29f59db3 321
6aa645ea
IM
322/* CFS-related fields in a runqueue */
323struct cfs_rq {
324 struct load_weight load;
953bfcd1 325 unsigned long nr_running, h_nr_running;
6aa645ea 326
6aa645ea 327 u64 exec_clock;
e9acbff6 328 u64 min_vruntime;
3fe1698b
PZ
329#ifndef CONFIG_64BIT
330 u64 min_vruntime_copy;
331#endif
6aa645ea
IM
332
333 struct rb_root tasks_timeline;
334 struct rb_node *rb_leftmost;
4a55bd5e
PZ
335
336 struct list_head tasks;
337 struct list_head *balance_iterator;
338
339 /*
340 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
341 * It is set to NULL otherwise (i.e when none are currently running).
342 */
ac53db59 343 struct sched_entity *curr, *next, *last, *skip;
ddc97297 344
4934a4d3 345#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 346 unsigned int nr_spread_over;
4934a4d3 347#endif
ddc97297 348
62160e3f 349#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
350 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
351
41a2d6cf
IM
352 /*
353 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
354 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
355 * (like users, containers etc.)
356 *
357 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
358 * list is used during load balance.
359 */
3d4b47b4 360 int on_list;
41a2d6cf
IM
361 struct list_head leaf_cfs_rq_list;
362 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
363
364#ifdef CONFIG_SMP
c09595f6 365 /*
c8cba857 366 * the part of load.weight contributed by tasks
c09595f6 367 */
c8cba857 368 unsigned long task_weight;
c09595f6 369
c8cba857
PZ
370 /*
371 * h_load = weight * f(tg)
372 *
373 * Where f(tg) is the recursive weight fraction assigned to
374 * this group.
375 */
376 unsigned long h_load;
c09595f6 377
c8cba857 378 /*
3b3d190e
PT
379 * Maintaining per-cpu shares distribution for group scheduling
380 *
381 * load_stamp is the last time we updated the load average
382 * load_last is the last time we updated the load average and saw load
383 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 384 */
2069dd75
PZ
385 u64 load_avg;
386 u64 load_period;
3b3d190e 387 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 388
2069dd75 389 unsigned long load_contribution;
c09595f6 390#endif
ab84d31e
PT
391#ifdef CONFIG_CFS_BANDWIDTH
392 int runtime_enabled;
393 s64 runtime_remaining;
394#endif
6aa645ea
IM
395#endif
396};
1da177e4 397
ab84d31e
PT
398#ifdef CONFIG_FAIR_GROUP_SCHED
399#ifdef CONFIG_CFS_BANDWIDTH
400static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
401{
402 return &tg->cfs_bandwidth;
403}
404
405static inline u64 default_cfs_period(void);
406
407static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
408{
409 raw_spin_lock_init(&cfs_b->lock);
410 cfs_b->quota = RUNTIME_INF;
411 cfs_b->period = ns_to_ktime(default_cfs_period());
412}
413
414static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
415{
416 cfs_rq->runtime_enabled = 0;
417}
418
419static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
420{}
421#else
422static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
423static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
424static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
425
426static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
427{
428 return NULL;
429}
430#endif /* CONFIG_CFS_BANDWIDTH */
431#endif /* CONFIG_FAIR_GROUP_SCHED */
432
6aa645ea
IM
433/* Real-Time classes' related field in a runqueue: */
434struct rt_rq {
435 struct rt_prio_array active;
63489e45 436 unsigned long rt_nr_running;
052f1dc7 437#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
438 struct {
439 int curr; /* highest queued rt task prio */
398a153b 440#ifdef CONFIG_SMP
e864c499 441 int next; /* next highest */
398a153b 442#endif
e864c499 443 } highest_prio;
6f505b16 444#endif
fa85ae24 445#ifdef CONFIG_SMP
73fe6aae 446 unsigned long rt_nr_migratory;
a1ba4d8b 447 unsigned long rt_nr_total;
a22d7fc1 448 int overloaded;
917b627d 449 struct plist_head pushable_tasks;
fa85ae24 450#endif
6f505b16 451 int rt_throttled;
fa85ae24 452 u64 rt_time;
ac086bc2 453 u64 rt_runtime;
ea736ed5 454 /* Nests inside the rq lock: */
0986b11b 455 raw_spinlock_t rt_runtime_lock;
6f505b16 456
052f1dc7 457#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
458 unsigned long rt_nr_boosted;
459
6f505b16
PZ
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
6f505b16 463#endif
6aa645ea
IM
464};
465
57d885fe
GH
466#ifdef CONFIG_SMP
467
468/*
469 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
472 * exclusive cpuset is created, we also create and attach a new root-domain
473 * object.
474 *
57d885fe
GH
475 */
476struct root_domain {
477 atomic_t refcount;
26a148eb 478 atomic_t rto_count;
dce840a0 479 struct rcu_head rcu;
c6c4927b
RR
480 cpumask_var_t span;
481 cpumask_var_t online;
637f5085 482
0eab9146 483 /*
637f5085
GH
484 * The "RT overload" flag: it gets set if a CPU has more than
485 * one runnable RT task.
486 */
c6c4927b 487 cpumask_var_t rto_mask;
6e0534f2 488 struct cpupri cpupri;
57d885fe
GH
489};
490
dc938520
GH
491/*
492 * By default the system creates a single root-domain with all cpus as
493 * members (mimicking the global state we have today).
494 */
57d885fe
GH
495static struct root_domain def_root_domain;
496
ed2d372c 497#endif /* CONFIG_SMP */
57d885fe 498
1da177e4
LT
499/*
500 * This is the main, per-CPU runqueue data structure.
501 *
502 * Locking rule: those places that want to lock multiple runqueues
503 * (such as the load balancing or the thread migration code), lock
504 * acquire operations must be ordered by ascending &runqueue.
505 */
70b97a7f 506struct rq {
d8016491 507 /* runqueue lock: */
05fa785c 508 raw_spinlock_t lock;
1da177e4
LT
509
510 /*
511 * nr_running and cpu_load should be in the same cacheline because
512 * remote CPUs use both these fields when doing load calculation.
513 */
514 unsigned long nr_running;
6aa645ea
IM
515 #define CPU_LOAD_IDX_MAX 5
516 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 517 unsigned long last_load_update_tick;
46cb4b7c 518#ifdef CONFIG_NO_HZ
39c0cbe2 519 u64 nohz_stamp;
83cd4fe2 520 unsigned char nohz_balance_kick;
46cb4b7c 521#endif
61eadef6 522 int skip_clock_update;
a64692a3 523
d8016491
IM
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
6aa645ea
IM
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
6f505b16 530 struct rt_rq rt;
6f505b16 531
6aa645ea 532#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
535#endif
536#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 537 struct list_head leaf_rt_rq_list;
1da177e4 538#endif
1da177e4
LT
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
34f971f6 548 struct task_struct *curr, *idle, *stop;
c9819f45 549 unsigned long next_balance;
1da177e4 550 struct mm_struct *prev_mm;
6aa645ea 551
3e51f33f 552 u64 clock;
305e6835 553 u64 clock_task;
6aa645ea 554
1da177e4
LT
555 atomic_t nr_iowait;
556
557#ifdef CONFIG_SMP
0eab9146 558 struct root_domain *rd;
1da177e4
LT
559 struct sched_domain *sd;
560
e51fd5e2
PZ
561 unsigned long cpu_power;
562
a0a522ce 563 unsigned char idle_at_tick;
1da177e4 564 /* For active balancing */
3f029d3c 565 int post_schedule;
1da177e4
LT
566 int active_balance;
567 int push_cpu;
969c7921 568 struct cpu_stop_work active_balance_work;
d8016491
IM
569 /* cpu of this runqueue: */
570 int cpu;
1f11eb6a 571 int online;
1da177e4 572
e9e9250b
PZ
573 u64 rt_avg;
574 u64 age_stamp;
1b9508f6
MG
575 u64 idle_stamp;
576 u64 avg_idle;
1da177e4
LT
577#endif
578
aa483808
VP
579#ifdef CONFIG_IRQ_TIME_ACCOUNTING
580 u64 prev_irq_time;
581#endif
e6e6685a
GC
582#ifdef CONFIG_PARAVIRT
583 u64 prev_steal_time;
584#endif
095c0aa8
GC
585#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
586 u64 prev_steal_time_rq;
587#endif
aa483808 588
dce48a84
TG
589 /* calc_load related fields */
590 unsigned long calc_load_update;
591 long calc_load_active;
592
8f4d37ec 593#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
594#ifdef CONFIG_SMP
595 int hrtick_csd_pending;
596 struct call_single_data hrtick_csd;
597#endif
8f4d37ec
PZ
598 struct hrtimer hrtick_timer;
599#endif
600
1da177e4
LT
601#ifdef CONFIG_SCHEDSTATS
602 /* latency stats */
603 struct sched_info rq_sched_info;
9c2c4802
KC
604 unsigned long long rq_cpu_time;
605 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
606
607 /* sys_sched_yield() stats */
480b9434 608 unsigned int yld_count;
1da177e4
LT
609
610 /* schedule() stats */
480b9434
KC
611 unsigned int sched_switch;
612 unsigned int sched_count;
613 unsigned int sched_goidle;
1da177e4
LT
614
615 /* try_to_wake_up() stats */
480b9434
KC
616 unsigned int ttwu_count;
617 unsigned int ttwu_local;
1da177e4 618#endif
317f3941
PZ
619
620#ifdef CONFIG_SMP
621 struct task_struct *wake_list;
622#endif
1da177e4
LT
623};
624
f34e3b61 625static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 626
a64692a3 627
1e5a7405 628static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 629
0a2966b4
CL
630static inline int cpu_of(struct rq *rq)
631{
632#ifdef CONFIG_SMP
633 return rq->cpu;
634#else
635 return 0;
636#endif
637}
638
497f0ab3 639#define rcu_dereference_check_sched_domain(p) \
d11c563d 640 rcu_dereference_check((p), \
d11c563d
PM
641 lockdep_is_held(&sched_domains_mutex))
642
674311d5
NP
643/*
644 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 645 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
646 *
647 * The domain tree of any CPU may only be accessed from within
648 * preempt-disabled sections.
649 */
48f24c4d 650#define for_each_domain(cpu, __sd) \
497f0ab3 651 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
652
653#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
654#define this_rq() (&__get_cpu_var(runqueues))
655#define task_rq(p) cpu_rq(task_cpu(p))
656#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 657#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 658
dc61b1d6
PZ
659#ifdef CONFIG_CGROUP_SCHED
660
661/*
662 * Return the group to which this tasks belongs.
663 *
6c6c54e1
PZ
664 * We use task_subsys_state_check() and extend the RCU verification with
665 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
666 * task it moves into the cgroup. Therefore by holding either of those locks,
667 * we pin the task to the current cgroup.
dc61b1d6
PZ
668 */
669static inline struct task_group *task_group(struct task_struct *p)
670{
5091faa4 671 struct task_group *tg;
dc61b1d6
PZ
672 struct cgroup_subsys_state *css;
673
674 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
675 lockdep_is_held(&p->pi_lock) ||
676 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
677 tg = container_of(css, struct task_group, css);
678
679 return autogroup_task_group(p, tg);
dc61b1d6
PZ
680}
681
682/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
683static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
684{
685#ifdef CONFIG_FAIR_GROUP_SCHED
686 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
687 p->se.parent = task_group(p)->se[cpu];
688#endif
689
690#ifdef CONFIG_RT_GROUP_SCHED
691 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
692 p->rt.parent = task_group(p)->rt_se[cpu];
693#endif
694}
695
696#else /* CONFIG_CGROUP_SCHED */
697
698static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
699static inline struct task_group *task_group(struct task_struct *p)
700{
701 return NULL;
702}
703
704#endif /* CONFIG_CGROUP_SCHED */
705
fe44d621 706static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 707
fe44d621 708static void update_rq_clock(struct rq *rq)
3e51f33f 709{
fe44d621 710 s64 delta;
305e6835 711
61eadef6 712 if (rq->skip_clock_update > 0)
f26f9aff 713 return;
aa483808 714
fe44d621
PZ
715 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
716 rq->clock += delta;
717 update_rq_clock_task(rq, delta);
3e51f33f
PZ
718}
719
bf5c91ba
IM
720/*
721 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
722 */
723#ifdef CONFIG_SCHED_DEBUG
724# define const_debug __read_mostly
725#else
726# define const_debug static const
727#endif
728
017730c1 729/**
1fd06bb1 730 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 731 * @cpu: the processor in question.
017730c1 732 *
017730c1
IM
733 * This interface allows printk to be called with the runqueue lock
734 * held and know whether or not it is OK to wake up the klogd.
735 */
89f19f04 736int runqueue_is_locked(int cpu)
017730c1 737{
05fa785c 738 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
739}
740
bf5c91ba
IM
741/*
742 * Debugging: various feature bits
743 */
f00b45c1
PZ
744
745#define SCHED_FEAT(name, enabled) \
746 __SCHED_FEAT_##name ,
747
bf5c91ba 748enum {
f00b45c1 749#include "sched_features.h"
bf5c91ba
IM
750};
751
f00b45c1
PZ
752#undef SCHED_FEAT
753
754#define SCHED_FEAT(name, enabled) \
755 (1UL << __SCHED_FEAT_##name) * enabled |
756
bf5c91ba 757const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
758#include "sched_features.h"
759 0;
760
761#undef SCHED_FEAT
762
763#ifdef CONFIG_SCHED_DEBUG
764#define SCHED_FEAT(name, enabled) \
765 #name ,
766
983ed7a6 767static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
768#include "sched_features.h"
769 NULL
770};
771
772#undef SCHED_FEAT
773
34f3a814 774static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 775{
f00b45c1
PZ
776 int i;
777
778 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
779 if (!(sysctl_sched_features & (1UL << i)))
780 seq_puts(m, "NO_");
781 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 782 }
34f3a814 783 seq_puts(m, "\n");
f00b45c1 784
34f3a814 785 return 0;
f00b45c1
PZ
786}
787
788static ssize_t
789sched_feat_write(struct file *filp, const char __user *ubuf,
790 size_t cnt, loff_t *ppos)
791{
792 char buf[64];
7740191c 793 char *cmp;
f00b45c1
PZ
794 int neg = 0;
795 int i;
796
797 if (cnt > 63)
798 cnt = 63;
799
800 if (copy_from_user(&buf, ubuf, cnt))
801 return -EFAULT;
802
803 buf[cnt] = 0;
7740191c 804 cmp = strstrip(buf);
f00b45c1 805
524429c3 806 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
807 neg = 1;
808 cmp += 3;
809 }
810
811 for (i = 0; sched_feat_names[i]; i++) {
7740191c 812 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
813 if (neg)
814 sysctl_sched_features &= ~(1UL << i);
815 else
816 sysctl_sched_features |= (1UL << i);
817 break;
818 }
819 }
820
821 if (!sched_feat_names[i])
822 return -EINVAL;
823
42994724 824 *ppos += cnt;
f00b45c1
PZ
825
826 return cnt;
827}
828
34f3a814
LZ
829static int sched_feat_open(struct inode *inode, struct file *filp)
830{
831 return single_open(filp, sched_feat_show, NULL);
832}
833
828c0950 834static const struct file_operations sched_feat_fops = {
34f3a814
LZ
835 .open = sched_feat_open,
836 .write = sched_feat_write,
837 .read = seq_read,
838 .llseek = seq_lseek,
839 .release = single_release,
f00b45c1
PZ
840};
841
842static __init int sched_init_debug(void)
843{
f00b45c1
PZ
844 debugfs_create_file("sched_features", 0644, NULL, NULL,
845 &sched_feat_fops);
846
847 return 0;
848}
849late_initcall(sched_init_debug);
850
851#endif
852
853#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 854
b82d9fdd
PZ
855/*
856 * Number of tasks to iterate in a single balance run.
857 * Limited because this is done with IRQs disabled.
858 */
859const_debug unsigned int sysctl_sched_nr_migrate = 32;
860
e9e9250b
PZ
861/*
862 * period over which we average the RT time consumption, measured
863 * in ms.
864 *
865 * default: 1s
866 */
867const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
868
fa85ae24 869/*
9f0c1e56 870 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
871 * default: 1s
872 */
9f0c1e56 873unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 874
6892b75e
IM
875static __read_mostly int scheduler_running;
876
9f0c1e56
PZ
877/*
878 * part of the period that we allow rt tasks to run in us.
879 * default: 0.95s
880 */
881int sysctl_sched_rt_runtime = 950000;
fa85ae24 882
d0b27fa7
PZ
883static inline u64 global_rt_period(void)
884{
885 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
886}
887
888static inline u64 global_rt_runtime(void)
889{
e26873bb 890 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
891 return RUNTIME_INF;
892
893 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
894}
fa85ae24 895
1da177e4 896#ifndef prepare_arch_switch
4866cde0
NP
897# define prepare_arch_switch(next) do { } while (0)
898#endif
899#ifndef finish_arch_switch
900# define finish_arch_switch(prev) do { } while (0)
901#endif
902
051a1d1a
DA
903static inline int task_current(struct rq *rq, struct task_struct *p)
904{
905 return rq->curr == p;
906}
907
70b97a7f 908static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 909{
3ca7a440
PZ
910#ifdef CONFIG_SMP
911 return p->on_cpu;
912#else
051a1d1a 913 return task_current(rq, p);
3ca7a440 914#endif
4866cde0
NP
915}
916
3ca7a440 917#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 918static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 919{
3ca7a440
PZ
920#ifdef CONFIG_SMP
921 /*
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
925 */
926 next->on_cpu = 1;
927#endif
4866cde0
NP
928}
929
70b97a7f 930static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 931{
3ca7a440
PZ
932#ifdef CONFIG_SMP
933 /*
934 * After ->on_cpu is cleared, the task can be moved to a different CPU.
935 * We must ensure this doesn't happen until the switch is completely
936 * finished.
937 */
938 smp_wmb();
939 prev->on_cpu = 0;
940#endif
da04c035
IM
941#ifdef CONFIG_DEBUG_SPINLOCK
942 /* this is a valid case when another task releases the spinlock */
943 rq->lock.owner = current;
944#endif
8a25d5de
IM
945 /*
946 * If we are tracking spinlock dependencies then we have to
947 * fix up the runqueue lock - which gets 'carried over' from
948 * prev into current:
949 */
950 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
951
05fa785c 952 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
953}
954
955#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 956static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
957{
958#ifdef CONFIG_SMP
959 /*
960 * We can optimise this out completely for !SMP, because the
961 * SMP rebalancing from interrupt is the only thing that cares
962 * here.
963 */
3ca7a440 964 next->on_cpu = 1;
4866cde0
NP
965#endif
966#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 967 raw_spin_unlock_irq(&rq->lock);
4866cde0 968#else
05fa785c 969 raw_spin_unlock(&rq->lock);
4866cde0
NP
970#endif
971}
972
70b97a7f 973static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
974{
975#ifdef CONFIG_SMP
976 /*
3ca7a440 977 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
978 * We must ensure this doesn't happen until the switch is completely
979 * finished.
980 */
981 smp_wmb();
3ca7a440 982 prev->on_cpu = 0;
4866cde0
NP
983#endif
984#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
985 local_irq_enable();
1da177e4 986#endif
4866cde0
NP
987}
988#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 989
0970d299 990/*
0122ec5b 991 * __task_rq_lock - lock the rq @p resides on.
b29739f9 992 */
70b97a7f 993static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
994 __acquires(rq->lock)
995{
0970d299
PZ
996 struct rq *rq;
997
0122ec5b
PZ
998 lockdep_assert_held(&p->pi_lock);
999
3a5c359a 1000 for (;;) {
0970d299 1001 rq = task_rq(p);
05fa785c 1002 raw_spin_lock(&rq->lock);
65cc8e48 1003 if (likely(rq == task_rq(p)))
3a5c359a 1004 return rq;
05fa785c 1005 raw_spin_unlock(&rq->lock);
b29739f9 1006 }
b29739f9
IM
1007}
1008
1da177e4 1009/*
0122ec5b 1010 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1011 */
70b97a7f 1012static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1013 __acquires(p->pi_lock)
1da177e4
LT
1014 __acquires(rq->lock)
1015{
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a 1018 for (;;) {
0122ec5b 1019 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1020 rq = task_rq(p);
05fa785c 1021 raw_spin_lock(&rq->lock);
65cc8e48 1022 if (likely(rq == task_rq(p)))
3a5c359a 1023 return rq;
0122ec5b
PZ
1024 raw_spin_unlock(&rq->lock);
1025 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1026 }
1da177e4
LT
1027}
1028
a9957449 1029static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1030 __releases(rq->lock)
1031{
05fa785c 1032 raw_spin_unlock(&rq->lock);
b29739f9
IM
1033}
1034
0122ec5b
PZ
1035static inline void
1036task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1037 __releases(rq->lock)
0122ec5b 1038 __releases(p->pi_lock)
1da177e4 1039{
0122ec5b
PZ
1040 raw_spin_unlock(&rq->lock);
1041 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1042}
1043
1da177e4 1044/*
cc2a73b5 1045 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1046 */
a9957449 1047static struct rq *this_rq_lock(void)
1da177e4
LT
1048 __acquires(rq->lock)
1049{
70b97a7f 1050 struct rq *rq;
1da177e4
LT
1051
1052 local_irq_disable();
1053 rq = this_rq();
05fa785c 1054 raw_spin_lock(&rq->lock);
1da177e4
LT
1055
1056 return rq;
1057}
1058
8f4d37ec
PZ
1059#ifdef CONFIG_SCHED_HRTICK
1060/*
1061 * Use HR-timers to deliver accurate preemption points.
1062 *
1063 * Its all a bit involved since we cannot program an hrt while holding the
1064 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1065 * reschedule event.
1066 *
1067 * When we get rescheduled we reprogram the hrtick_timer outside of the
1068 * rq->lock.
1069 */
8f4d37ec
PZ
1070
1071/*
1072 * Use hrtick when:
1073 * - enabled by features
1074 * - hrtimer is actually high res
1075 */
1076static inline int hrtick_enabled(struct rq *rq)
1077{
1078 if (!sched_feat(HRTICK))
1079 return 0;
ba42059f 1080 if (!cpu_active(cpu_of(rq)))
b328ca18 1081 return 0;
8f4d37ec
PZ
1082 return hrtimer_is_hres_active(&rq->hrtick_timer);
1083}
1084
8f4d37ec
PZ
1085static void hrtick_clear(struct rq *rq)
1086{
1087 if (hrtimer_active(&rq->hrtick_timer))
1088 hrtimer_cancel(&rq->hrtick_timer);
1089}
1090
8f4d37ec
PZ
1091/*
1092 * High-resolution timer tick.
1093 * Runs from hardirq context with interrupts disabled.
1094 */
1095static enum hrtimer_restart hrtick(struct hrtimer *timer)
1096{
1097 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1098
1099 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1100
05fa785c 1101 raw_spin_lock(&rq->lock);
3e51f33f 1102 update_rq_clock(rq);
8f4d37ec 1103 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1104 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1105
1106 return HRTIMER_NORESTART;
1107}
1108
95e904c7 1109#ifdef CONFIG_SMP
31656519
PZ
1110/*
1111 * called from hardirq (IPI) context
1112 */
1113static void __hrtick_start(void *arg)
b328ca18 1114{
31656519 1115 struct rq *rq = arg;
b328ca18 1116
05fa785c 1117 raw_spin_lock(&rq->lock);
31656519
PZ
1118 hrtimer_restart(&rq->hrtick_timer);
1119 rq->hrtick_csd_pending = 0;
05fa785c 1120 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1121}
1122
31656519
PZ
1123/*
1124 * Called to set the hrtick timer state.
1125 *
1126 * called with rq->lock held and irqs disabled
1127 */
1128static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1129{
31656519
PZ
1130 struct hrtimer *timer = &rq->hrtick_timer;
1131 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1132
cc584b21 1133 hrtimer_set_expires(timer, time);
31656519
PZ
1134
1135 if (rq == this_rq()) {
1136 hrtimer_restart(timer);
1137 } else if (!rq->hrtick_csd_pending) {
6e275637 1138 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1139 rq->hrtick_csd_pending = 1;
1140 }
b328ca18
PZ
1141}
1142
1143static int
1144hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1145{
1146 int cpu = (int)(long)hcpu;
1147
1148 switch (action) {
1149 case CPU_UP_CANCELED:
1150 case CPU_UP_CANCELED_FROZEN:
1151 case CPU_DOWN_PREPARE:
1152 case CPU_DOWN_PREPARE_FROZEN:
1153 case CPU_DEAD:
1154 case CPU_DEAD_FROZEN:
31656519 1155 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1156 return NOTIFY_OK;
1157 }
1158
1159 return NOTIFY_DONE;
1160}
1161
fa748203 1162static __init void init_hrtick(void)
b328ca18
PZ
1163{
1164 hotcpu_notifier(hotplug_hrtick, 0);
1165}
31656519
PZ
1166#else
1167/*
1168 * Called to set the hrtick timer state.
1169 *
1170 * called with rq->lock held and irqs disabled
1171 */
1172static void hrtick_start(struct rq *rq, u64 delay)
1173{
7f1e2ca9 1174 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1175 HRTIMER_MODE_REL_PINNED, 0);
31656519 1176}
b328ca18 1177
006c75f1 1178static inline void init_hrtick(void)
8f4d37ec 1179{
8f4d37ec 1180}
31656519 1181#endif /* CONFIG_SMP */
8f4d37ec 1182
31656519 1183static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1184{
31656519
PZ
1185#ifdef CONFIG_SMP
1186 rq->hrtick_csd_pending = 0;
8f4d37ec 1187
31656519
PZ
1188 rq->hrtick_csd.flags = 0;
1189 rq->hrtick_csd.func = __hrtick_start;
1190 rq->hrtick_csd.info = rq;
1191#endif
8f4d37ec 1192
31656519
PZ
1193 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1194 rq->hrtick_timer.function = hrtick;
8f4d37ec 1195}
006c75f1 1196#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1197static inline void hrtick_clear(struct rq *rq)
1198{
1199}
1200
8f4d37ec
PZ
1201static inline void init_rq_hrtick(struct rq *rq)
1202{
1203}
1204
b328ca18
PZ
1205static inline void init_hrtick(void)
1206{
1207}
006c75f1 1208#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1209
c24d20db
IM
1210/*
1211 * resched_task - mark a task 'to be rescheduled now'.
1212 *
1213 * On UP this means the setting of the need_resched flag, on SMP it
1214 * might also involve a cross-CPU call to trigger the scheduler on
1215 * the target CPU.
1216 */
1217#ifdef CONFIG_SMP
1218
1219#ifndef tsk_is_polling
1220#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1221#endif
1222
31656519 1223static void resched_task(struct task_struct *p)
c24d20db
IM
1224{
1225 int cpu;
1226
05fa785c 1227 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1228
5ed0cec0 1229 if (test_tsk_need_resched(p))
c24d20db
IM
1230 return;
1231
5ed0cec0 1232 set_tsk_need_resched(p);
c24d20db
IM
1233
1234 cpu = task_cpu(p);
1235 if (cpu == smp_processor_id())
1236 return;
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(p))
1241 smp_send_reschedule(cpu);
1242}
1243
1244static void resched_cpu(int cpu)
1245{
1246 struct rq *rq = cpu_rq(cpu);
1247 unsigned long flags;
1248
05fa785c 1249 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1250 return;
1251 resched_task(cpu_curr(cpu));
05fa785c 1252 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1253}
06d8308c
TG
1254
1255#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1256/*
1257 * In the semi idle case, use the nearest busy cpu for migrating timers
1258 * from an idle cpu. This is good for power-savings.
1259 *
1260 * We don't do similar optimization for completely idle system, as
1261 * selecting an idle cpu will add more delays to the timers than intended
1262 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1263 */
1264int get_nohz_timer_target(void)
1265{
1266 int cpu = smp_processor_id();
1267 int i;
1268 struct sched_domain *sd;
1269
057f3fad 1270 rcu_read_lock();
83cd4fe2 1271 for_each_domain(cpu, sd) {
057f3fad
PZ
1272 for_each_cpu(i, sched_domain_span(sd)) {
1273 if (!idle_cpu(i)) {
1274 cpu = i;
1275 goto unlock;
1276 }
1277 }
83cd4fe2 1278 }
057f3fad
PZ
1279unlock:
1280 rcu_read_unlock();
83cd4fe2
VP
1281 return cpu;
1282}
06d8308c
TG
1283/*
1284 * When add_timer_on() enqueues a timer into the timer wheel of an
1285 * idle CPU then this timer might expire before the next timer event
1286 * which is scheduled to wake up that CPU. In case of a completely
1287 * idle system the next event might even be infinite time into the
1288 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1289 * leaves the inner idle loop so the newly added timer is taken into
1290 * account when the CPU goes back to idle and evaluates the timer
1291 * wheel for the next timer event.
1292 */
1293void wake_up_idle_cpu(int cpu)
1294{
1295 struct rq *rq = cpu_rq(cpu);
1296
1297 if (cpu == smp_processor_id())
1298 return;
1299
1300 /*
1301 * This is safe, as this function is called with the timer
1302 * wheel base lock of (cpu) held. When the CPU is on the way
1303 * to idle and has not yet set rq->curr to idle then it will
1304 * be serialized on the timer wheel base lock and take the new
1305 * timer into account automatically.
1306 */
1307 if (rq->curr != rq->idle)
1308 return;
1309
1310 /*
1311 * We can set TIF_RESCHED on the idle task of the other CPU
1312 * lockless. The worst case is that the other CPU runs the
1313 * idle task through an additional NOOP schedule()
1314 */
5ed0cec0 1315 set_tsk_need_resched(rq->idle);
06d8308c
TG
1316
1317 /* NEED_RESCHED must be visible before we test polling */
1318 smp_mb();
1319 if (!tsk_is_polling(rq->idle))
1320 smp_send_reschedule(cpu);
1321}
39c0cbe2 1322
6d6bc0ad 1323#endif /* CONFIG_NO_HZ */
06d8308c 1324
e9e9250b
PZ
1325static u64 sched_avg_period(void)
1326{
1327 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1328}
1329
1330static void sched_avg_update(struct rq *rq)
1331{
1332 s64 period = sched_avg_period();
1333
1334 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1335 /*
1336 * Inline assembly required to prevent the compiler
1337 * optimising this loop into a divmod call.
1338 * See __iter_div_u64_rem() for another example of this.
1339 */
1340 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1341 rq->age_stamp += period;
1342 rq->rt_avg /= 2;
1343 }
1344}
1345
1346static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1347{
1348 rq->rt_avg += rt_delta;
1349 sched_avg_update(rq);
1350}
1351
6d6bc0ad 1352#else /* !CONFIG_SMP */
31656519 1353static void resched_task(struct task_struct *p)
c24d20db 1354{
05fa785c 1355 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1356 set_tsk_need_resched(p);
c24d20db 1357}
e9e9250b
PZ
1358
1359static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1360{
1361}
da2b71ed
SS
1362
1363static void sched_avg_update(struct rq *rq)
1364{
1365}
6d6bc0ad 1366#endif /* CONFIG_SMP */
c24d20db 1367
45bf76df
IM
1368#if BITS_PER_LONG == 32
1369# define WMULT_CONST (~0UL)
1370#else
1371# define WMULT_CONST (1UL << 32)
1372#endif
1373
1374#define WMULT_SHIFT 32
1375
194081eb
IM
1376/*
1377 * Shift right and round:
1378 */
cf2ab469 1379#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1380
a7be37ac
PZ
1381/*
1382 * delta *= weight / lw
1383 */
cb1c4fc9 1384static unsigned long
45bf76df
IM
1385calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1386 struct load_weight *lw)
1387{
1388 u64 tmp;
1389
c8b28116
NR
1390 /*
1391 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1392 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1393 * 2^SCHED_LOAD_RESOLUTION.
1394 */
1395 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1396 tmp = (u64)delta_exec * scale_load_down(weight);
1397 else
1398 tmp = (u64)delta_exec;
db670dac 1399
7a232e03 1400 if (!lw->inv_weight) {
c8b28116
NR
1401 unsigned long w = scale_load_down(lw->weight);
1402
1403 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1404 lw->inv_weight = 1;
c8b28116
NR
1405 else if (unlikely(!w))
1406 lw->inv_weight = WMULT_CONST;
7a232e03 1407 else
c8b28116 1408 lw->inv_weight = WMULT_CONST / w;
7a232e03 1409 }
45bf76df 1410
45bf76df
IM
1411 /*
1412 * Check whether we'd overflow the 64-bit multiplication:
1413 */
194081eb 1414 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1415 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1416 WMULT_SHIFT/2);
1417 else
cf2ab469 1418 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1419
ecf691da 1420 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1421}
1422
1091985b 1423static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1424{
1425 lw->weight += inc;
e89996ae 1426 lw->inv_weight = 0;
45bf76df
IM
1427}
1428
1091985b 1429static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1430{
1431 lw->weight -= dec;
e89996ae 1432 lw->inv_weight = 0;
45bf76df
IM
1433}
1434
2069dd75
PZ
1435static inline void update_load_set(struct load_weight *lw, unsigned long w)
1436{
1437 lw->weight = w;
1438 lw->inv_weight = 0;
1439}
1440
2dd73a4f
PW
1441/*
1442 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1443 * of tasks with abnormal "nice" values across CPUs the contribution that
1444 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1445 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1446 * scaled version of the new time slice allocation that they receive on time
1447 * slice expiry etc.
1448 */
1449
cce7ade8
PZ
1450#define WEIGHT_IDLEPRIO 3
1451#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1452
1453/*
1454 * Nice levels are multiplicative, with a gentle 10% change for every
1455 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1456 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1457 * that remained on nice 0.
1458 *
1459 * The "10% effect" is relative and cumulative: from _any_ nice level,
1460 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1461 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1462 * If a task goes up by ~10% and another task goes down by ~10% then
1463 * the relative distance between them is ~25%.)
dd41f596
IM
1464 */
1465static const int prio_to_weight[40] = {
254753dc
IM
1466 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1467 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1468 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1469 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1470 /* 0 */ 1024, 820, 655, 526, 423,
1471 /* 5 */ 335, 272, 215, 172, 137,
1472 /* 10 */ 110, 87, 70, 56, 45,
1473 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1474};
1475
5714d2de
IM
1476/*
1477 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1478 *
1479 * In cases where the weight does not change often, we can use the
1480 * precalculated inverse to speed up arithmetics by turning divisions
1481 * into multiplications:
1482 */
dd41f596 1483static const u32 prio_to_wmult[40] = {
254753dc
IM
1484 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1485 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1486 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1487 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1488 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1489 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1490 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1491 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1492};
2dd73a4f 1493
ef12fefa
BR
1494/* Time spent by the tasks of the cpu accounting group executing in ... */
1495enum cpuacct_stat_index {
1496 CPUACCT_STAT_USER, /* ... user mode */
1497 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1498
1499 CPUACCT_STAT_NSTATS,
1500};
1501
d842de87
SV
1502#ifdef CONFIG_CGROUP_CPUACCT
1503static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1504static void cpuacct_update_stats(struct task_struct *tsk,
1505 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1506#else
1507static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1508static inline void cpuacct_update_stats(struct task_struct *tsk,
1509 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1510#endif
1511
18d95a28
PZ
1512static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1513{
1514 update_load_add(&rq->load, load);
1515}
1516
1517static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1518{
1519 update_load_sub(&rq->load, load);
1520}
1521
a790de99
PT
1522#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1523 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1524typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1525
1526/*
1527 * Iterate the full tree, calling @down when first entering a node and @up when
1528 * leaving it for the final time.
1529 */
eb755805 1530static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1531{
1532 struct task_group *parent, *child;
eb755805 1533 int ret;
c09595f6
PZ
1534
1535 rcu_read_lock();
1536 parent = &root_task_group;
1537down:
eb755805
PZ
1538 ret = (*down)(parent, data);
1539 if (ret)
1540 goto out_unlock;
c09595f6
PZ
1541 list_for_each_entry_rcu(child, &parent->children, siblings) {
1542 parent = child;
1543 goto down;
1544
1545up:
1546 continue;
1547 }
eb755805
PZ
1548 ret = (*up)(parent, data);
1549 if (ret)
1550 goto out_unlock;
c09595f6
PZ
1551
1552 child = parent;
1553 parent = parent->parent;
1554 if (parent)
1555 goto up;
eb755805 1556out_unlock:
c09595f6 1557 rcu_read_unlock();
eb755805
PZ
1558
1559 return ret;
c09595f6
PZ
1560}
1561
eb755805
PZ
1562static int tg_nop(struct task_group *tg, void *data)
1563{
1564 return 0;
c09595f6 1565}
eb755805
PZ
1566#endif
1567
1568#ifdef CONFIG_SMP
f5f08f39
PZ
1569/* Used instead of source_load when we know the type == 0 */
1570static unsigned long weighted_cpuload(const int cpu)
1571{
1572 return cpu_rq(cpu)->load.weight;
1573}
1574
1575/*
1576 * Return a low guess at the load of a migration-source cpu weighted
1577 * according to the scheduling class and "nice" value.
1578 *
1579 * We want to under-estimate the load of migration sources, to
1580 * balance conservatively.
1581 */
1582static unsigned long source_load(int cpu, int type)
1583{
1584 struct rq *rq = cpu_rq(cpu);
1585 unsigned long total = weighted_cpuload(cpu);
1586
1587 if (type == 0 || !sched_feat(LB_BIAS))
1588 return total;
1589
1590 return min(rq->cpu_load[type-1], total);
1591}
1592
1593/*
1594 * Return a high guess at the load of a migration-target cpu weighted
1595 * according to the scheduling class and "nice" value.
1596 */
1597static unsigned long target_load(int cpu, int type)
1598{
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long total = weighted_cpuload(cpu);
1601
1602 if (type == 0 || !sched_feat(LB_BIAS))
1603 return total;
1604
1605 return max(rq->cpu_load[type-1], total);
1606}
1607
ae154be1
PZ
1608static unsigned long power_of(int cpu)
1609{
e51fd5e2 1610 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1611}
1612
eb755805
PZ
1613static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1614
1615static unsigned long cpu_avg_load_per_task(int cpu)
1616{
1617 struct rq *rq = cpu_rq(cpu);
af6d596f 1618 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1619
4cd42620 1620 if (nr_running)
e2b245f8 1621 return rq->load.weight / nr_running;
eb755805 1622
e2b245f8 1623 return 0;
eb755805
PZ
1624}
1625
8f45e2b5
GH
1626#ifdef CONFIG_PREEMPT
1627
b78bb868
PZ
1628static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1629
70574a99 1630/*
8f45e2b5
GH
1631 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1632 * way at the expense of forcing extra atomic operations in all
1633 * invocations. This assures that the double_lock is acquired using the
1634 * same underlying policy as the spinlock_t on this architecture, which
1635 * reduces latency compared to the unfair variant below. However, it
1636 * also adds more overhead and therefore may reduce throughput.
70574a99 1637 */
8f45e2b5
GH
1638static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1639 __releases(this_rq->lock)
1640 __acquires(busiest->lock)
1641 __acquires(this_rq->lock)
1642{
05fa785c 1643 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1644 double_rq_lock(this_rq, busiest);
1645
1646 return 1;
1647}
1648
1649#else
1650/*
1651 * Unfair double_lock_balance: Optimizes throughput at the expense of
1652 * latency by eliminating extra atomic operations when the locks are
1653 * already in proper order on entry. This favors lower cpu-ids and will
1654 * grant the double lock to lower cpus over higher ids under contention,
1655 * regardless of entry order into the function.
1656 */
1657static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1658 __releases(this_rq->lock)
1659 __acquires(busiest->lock)
1660 __acquires(this_rq->lock)
1661{
1662 int ret = 0;
1663
05fa785c 1664 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1665 if (busiest < this_rq) {
05fa785c
TG
1666 raw_spin_unlock(&this_rq->lock);
1667 raw_spin_lock(&busiest->lock);
1668 raw_spin_lock_nested(&this_rq->lock,
1669 SINGLE_DEPTH_NESTING);
70574a99
AD
1670 ret = 1;
1671 } else
05fa785c
TG
1672 raw_spin_lock_nested(&busiest->lock,
1673 SINGLE_DEPTH_NESTING);
70574a99
AD
1674 }
1675 return ret;
1676}
1677
8f45e2b5
GH
1678#endif /* CONFIG_PREEMPT */
1679
1680/*
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1682 */
1683static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684{
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
05fa785c 1687 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1688 BUG_ON(1);
1689 }
1690
1691 return _double_lock_balance(this_rq, busiest);
1692}
1693
70574a99
AD
1694static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1696{
05fa785c 1697 raw_spin_unlock(&busiest->lock);
70574a99
AD
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1699}
1e3c88bd
PZ
1700
1701/*
1702 * double_rq_lock - safely lock two runqueues
1703 *
1704 * Note this does not disable interrupts like task_rq_lock,
1705 * you need to do so manually before calling.
1706 */
1707static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1708 __acquires(rq1->lock)
1709 __acquires(rq2->lock)
1710{
1711 BUG_ON(!irqs_disabled());
1712 if (rq1 == rq2) {
1713 raw_spin_lock(&rq1->lock);
1714 __acquire(rq2->lock); /* Fake it out ;) */
1715 } else {
1716 if (rq1 < rq2) {
1717 raw_spin_lock(&rq1->lock);
1718 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1719 } else {
1720 raw_spin_lock(&rq2->lock);
1721 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1722 }
1723 }
1e3c88bd
PZ
1724}
1725
1726/*
1727 * double_rq_unlock - safely unlock two runqueues
1728 *
1729 * Note this does not restore interrupts like task_rq_unlock,
1730 * you need to do so manually after calling.
1731 */
1732static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1733 __releases(rq1->lock)
1734 __releases(rq2->lock)
1735{
1736 raw_spin_unlock(&rq1->lock);
1737 if (rq1 != rq2)
1738 raw_spin_unlock(&rq2->lock);
1739 else
1740 __release(rq2->lock);
1741}
1742
d95f4122
MG
1743#else /* CONFIG_SMP */
1744
1745/*
1746 * double_rq_lock - safely lock two runqueues
1747 *
1748 * Note this does not disable interrupts like task_rq_lock,
1749 * you need to do so manually before calling.
1750 */
1751static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1752 __acquires(rq1->lock)
1753 __acquires(rq2->lock)
1754{
1755 BUG_ON(!irqs_disabled());
1756 BUG_ON(rq1 != rq2);
1757 raw_spin_lock(&rq1->lock);
1758 __acquire(rq2->lock); /* Fake it out ;) */
1759}
1760
1761/*
1762 * double_rq_unlock - safely unlock two runqueues
1763 *
1764 * Note this does not restore interrupts like task_rq_unlock,
1765 * you need to do so manually after calling.
1766 */
1767static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1768 __releases(rq1->lock)
1769 __releases(rq2->lock)
1770{
1771 BUG_ON(rq1 != rq2);
1772 raw_spin_unlock(&rq1->lock);
1773 __release(rq2->lock);
1774}
1775
18d95a28
PZ
1776#endif
1777
74f5187a 1778static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1779static void update_sysctl(void);
acb4a848 1780static int get_update_sysctl_factor(void);
fdf3e95d 1781static void update_cpu_load(struct rq *this_rq);
dce48a84 1782
cd29fe6f
PZ
1783static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1784{
1785 set_task_rq(p, cpu);
1786#ifdef CONFIG_SMP
1787 /*
1788 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1789 * successfuly executed on another CPU. We must ensure that updates of
1790 * per-task data have been completed by this moment.
1791 */
1792 smp_wmb();
1793 task_thread_info(p)->cpu = cpu;
1794#endif
1795}
dce48a84 1796
1e3c88bd 1797static const struct sched_class rt_sched_class;
dd41f596 1798
34f971f6 1799#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1800#define for_each_class(class) \
1801 for (class = sched_class_highest; class; class = class->next)
dd41f596 1802
1e3c88bd
PZ
1803#include "sched_stats.h"
1804
c09595f6 1805static void inc_nr_running(struct rq *rq)
9c217245
IM
1806{
1807 rq->nr_running++;
9c217245
IM
1808}
1809
c09595f6 1810static void dec_nr_running(struct rq *rq)
9c217245
IM
1811{
1812 rq->nr_running--;
9c217245
IM
1813}
1814
45bf76df
IM
1815static void set_load_weight(struct task_struct *p)
1816{
f05998d4
NR
1817 int prio = p->static_prio - MAX_RT_PRIO;
1818 struct load_weight *load = &p->se.load;
1819
dd41f596
IM
1820 /*
1821 * SCHED_IDLE tasks get minimal weight:
1822 */
1823 if (p->policy == SCHED_IDLE) {
c8b28116 1824 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1825 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1826 return;
1827 }
71f8bd46 1828
c8b28116 1829 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1830 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1831}
1832
371fd7e7 1833static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1834{
a64692a3 1835 update_rq_clock(rq);
dd41f596 1836 sched_info_queued(p);
371fd7e7 1837 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1838}
1839
371fd7e7 1840static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1841{
a64692a3 1842 update_rq_clock(rq);
46ac22ba 1843 sched_info_dequeued(p);
371fd7e7 1844 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1845}
1846
1e3c88bd
PZ
1847/*
1848 * activate_task - move a task to the runqueue.
1849 */
371fd7e7 1850static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1851{
1852 if (task_contributes_to_load(p))
1853 rq->nr_uninterruptible--;
1854
371fd7e7 1855 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1856}
1857
1858/*
1859 * deactivate_task - remove a task from the runqueue.
1860 */
371fd7e7 1861static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1862{
1863 if (task_contributes_to_load(p))
1864 rq->nr_uninterruptible++;
1865
371fd7e7 1866 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1867}
1868
b52bfee4
VP
1869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1870
305e6835
VP
1871/*
1872 * There are no locks covering percpu hardirq/softirq time.
1873 * They are only modified in account_system_vtime, on corresponding CPU
1874 * with interrupts disabled. So, writes are safe.
1875 * They are read and saved off onto struct rq in update_rq_clock().
1876 * This may result in other CPU reading this CPU's irq time and can
1877 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1878 * or new value with a side effect of accounting a slice of irq time to wrong
1879 * task when irq is in progress while we read rq->clock. That is a worthy
1880 * compromise in place of having locks on each irq in account_system_time.
305e6835 1881 */
b52bfee4
VP
1882static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1883static DEFINE_PER_CPU(u64, cpu_softirq_time);
1884
1885static DEFINE_PER_CPU(u64, irq_start_time);
1886static int sched_clock_irqtime;
1887
1888void enable_sched_clock_irqtime(void)
1889{
1890 sched_clock_irqtime = 1;
1891}
1892
1893void disable_sched_clock_irqtime(void)
1894{
1895 sched_clock_irqtime = 0;
1896}
1897
8e92c201
PZ
1898#ifndef CONFIG_64BIT
1899static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1900
1901static inline void irq_time_write_begin(void)
1902{
1903 __this_cpu_inc(irq_time_seq.sequence);
1904 smp_wmb();
1905}
1906
1907static inline void irq_time_write_end(void)
1908{
1909 smp_wmb();
1910 __this_cpu_inc(irq_time_seq.sequence);
1911}
1912
1913static inline u64 irq_time_read(int cpu)
1914{
1915 u64 irq_time;
1916 unsigned seq;
1917
1918 do {
1919 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1920 irq_time = per_cpu(cpu_softirq_time, cpu) +
1921 per_cpu(cpu_hardirq_time, cpu);
1922 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1923
1924 return irq_time;
1925}
1926#else /* CONFIG_64BIT */
1927static inline void irq_time_write_begin(void)
1928{
1929}
1930
1931static inline void irq_time_write_end(void)
1932{
1933}
1934
1935static inline u64 irq_time_read(int cpu)
305e6835 1936{
305e6835
VP
1937 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1938}
8e92c201 1939#endif /* CONFIG_64BIT */
305e6835 1940
fe44d621
PZ
1941/*
1942 * Called before incrementing preempt_count on {soft,}irq_enter
1943 * and before decrementing preempt_count on {soft,}irq_exit.
1944 */
b52bfee4
VP
1945void account_system_vtime(struct task_struct *curr)
1946{
1947 unsigned long flags;
fe44d621 1948 s64 delta;
b52bfee4 1949 int cpu;
b52bfee4
VP
1950
1951 if (!sched_clock_irqtime)
1952 return;
1953
1954 local_irq_save(flags);
1955
b52bfee4 1956 cpu = smp_processor_id();
fe44d621
PZ
1957 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1958 __this_cpu_add(irq_start_time, delta);
1959
8e92c201 1960 irq_time_write_begin();
b52bfee4
VP
1961 /*
1962 * We do not account for softirq time from ksoftirqd here.
1963 * We want to continue accounting softirq time to ksoftirqd thread
1964 * in that case, so as not to confuse scheduler with a special task
1965 * that do not consume any time, but still wants to run.
1966 */
1967 if (hardirq_count())
fe44d621 1968 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1969 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1970 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1971
8e92c201 1972 irq_time_write_end();
b52bfee4
VP
1973 local_irq_restore(flags);
1974}
b7dadc38 1975EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1976
e6e6685a
GC
1977#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1978
1979#ifdef CONFIG_PARAVIRT
1980static inline u64 steal_ticks(u64 steal)
aa483808 1981{
e6e6685a
GC
1982 if (unlikely(steal > NSEC_PER_SEC))
1983 return div_u64(steal, TICK_NSEC);
fe44d621 1984
e6e6685a
GC
1985 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1986}
1987#endif
1988
fe44d621 1989static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1990{
095c0aa8
GC
1991/*
1992 * In theory, the compile should just see 0 here, and optimize out the call
1993 * to sched_rt_avg_update. But I don't trust it...
1994 */
1995#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1996 s64 steal = 0, irq_delta = 0;
1997#endif
1998#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 1999 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2000
2001 /*
2002 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2003 * this case when a previous update_rq_clock() happened inside a
2004 * {soft,}irq region.
2005 *
2006 * When this happens, we stop ->clock_task and only update the
2007 * prev_irq_time stamp to account for the part that fit, so that a next
2008 * update will consume the rest. This ensures ->clock_task is
2009 * monotonic.
2010 *
2011 * It does however cause some slight miss-attribution of {soft,}irq
2012 * time, a more accurate solution would be to update the irq_time using
2013 * the current rq->clock timestamp, except that would require using
2014 * atomic ops.
2015 */
2016 if (irq_delta > delta)
2017 irq_delta = delta;
2018
2019 rq->prev_irq_time += irq_delta;
2020 delta -= irq_delta;
095c0aa8
GC
2021#endif
2022#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2023 if (static_branch((&paravirt_steal_rq_enabled))) {
2024 u64 st;
2025
2026 steal = paravirt_steal_clock(cpu_of(rq));
2027 steal -= rq->prev_steal_time_rq;
2028
2029 if (unlikely(steal > delta))
2030 steal = delta;
2031
2032 st = steal_ticks(steal);
2033 steal = st * TICK_NSEC;
2034
2035 rq->prev_steal_time_rq += steal;
2036
2037 delta -= steal;
2038 }
2039#endif
2040
fe44d621
PZ
2041 rq->clock_task += delta;
2042
095c0aa8
GC
2043#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2044 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2045 sched_rt_avg_update(rq, irq_delta + steal);
2046#endif
aa483808
VP
2047}
2048
095c0aa8 2049#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2050static int irqtime_account_hi_update(void)
2051{
2052 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2053 unsigned long flags;
2054 u64 latest_ns;
2055 int ret = 0;
2056
2057 local_irq_save(flags);
2058 latest_ns = this_cpu_read(cpu_hardirq_time);
2059 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2060 ret = 1;
2061 local_irq_restore(flags);
2062 return ret;
2063}
2064
2065static int irqtime_account_si_update(void)
2066{
2067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2068 unsigned long flags;
2069 u64 latest_ns;
2070 int ret = 0;
2071
2072 local_irq_save(flags);
2073 latest_ns = this_cpu_read(cpu_softirq_time);
2074 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2075 ret = 1;
2076 local_irq_restore(flags);
2077 return ret;
2078}
2079
fe44d621 2080#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2081
abb74cef
VP
2082#define sched_clock_irqtime (0)
2083
095c0aa8 2084#endif
b52bfee4 2085
1e3c88bd
PZ
2086#include "sched_idletask.c"
2087#include "sched_fair.c"
2088#include "sched_rt.c"
5091faa4 2089#include "sched_autogroup.c"
34f971f6 2090#include "sched_stoptask.c"
1e3c88bd
PZ
2091#ifdef CONFIG_SCHED_DEBUG
2092# include "sched_debug.c"
2093#endif
2094
34f971f6
PZ
2095void sched_set_stop_task(int cpu, struct task_struct *stop)
2096{
2097 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2098 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2099
2100 if (stop) {
2101 /*
2102 * Make it appear like a SCHED_FIFO task, its something
2103 * userspace knows about and won't get confused about.
2104 *
2105 * Also, it will make PI more or less work without too
2106 * much confusion -- but then, stop work should not
2107 * rely on PI working anyway.
2108 */
2109 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2110
2111 stop->sched_class = &stop_sched_class;
2112 }
2113
2114 cpu_rq(cpu)->stop = stop;
2115
2116 if (old_stop) {
2117 /*
2118 * Reset it back to a normal scheduling class so that
2119 * it can die in pieces.
2120 */
2121 old_stop->sched_class = &rt_sched_class;
2122 }
2123}
2124
14531189 2125/*
dd41f596 2126 * __normal_prio - return the priority that is based on the static prio
14531189 2127 */
14531189
IM
2128static inline int __normal_prio(struct task_struct *p)
2129{
dd41f596 2130 return p->static_prio;
14531189
IM
2131}
2132
b29739f9
IM
2133/*
2134 * Calculate the expected normal priority: i.e. priority
2135 * without taking RT-inheritance into account. Might be
2136 * boosted by interactivity modifiers. Changes upon fork,
2137 * setprio syscalls, and whenever the interactivity
2138 * estimator recalculates.
2139 */
36c8b586 2140static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2141{
2142 int prio;
2143
e05606d3 2144 if (task_has_rt_policy(p))
b29739f9
IM
2145 prio = MAX_RT_PRIO-1 - p->rt_priority;
2146 else
2147 prio = __normal_prio(p);
2148 return prio;
2149}
2150
2151/*
2152 * Calculate the current priority, i.e. the priority
2153 * taken into account by the scheduler. This value might
2154 * be boosted by RT tasks, or might be boosted by
2155 * interactivity modifiers. Will be RT if the task got
2156 * RT-boosted. If not then it returns p->normal_prio.
2157 */
36c8b586 2158static int effective_prio(struct task_struct *p)
b29739f9
IM
2159{
2160 p->normal_prio = normal_prio(p);
2161 /*
2162 * If we are RT tasks or we were boosted to RT priority,
2163 * keep the priority unchanged. Otherwise, update priority
2164 * to the normal priority:
2165 */
2166 if (!rt_prio(p->prio))
2167 return p->normal_prio;
2168 return p->prio;
2169}
2170
1da177e4
LT
2171/**
2172 * task_curr - is this task currently executing on a CPU?
2173 * @p: the task in question.
2174 */
36c8b586 2175inline int task_curr(const struct task_struct *p)
1da177e4
LT
2176{
2177 return cpu_curr(task_cpu(p)) == p;
2178}
2179
cb469845
SR
2180static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2181 const struct sched_class *prev_class,
da7a735e 2182 int oldprio)
cb469845
SR
2183{
2184 if (prev_class != p->sched_class) {
2185 if (prev_class->switched_from)
da7a735e
PZ
2186 prev_class->switched_from(rq, p);
2187 p->sched_class->switched_to(rq, p);
2188 } else if (oldprio != p->prio)
2189 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2190}
2191
1e5a7405
PZ
2192static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2193{
2194 const struct sched_class *class;
2195
2196 if (p->sched_class == rq->curr->sched_class) {
2197 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2198 } else {
2199 for_each_class(class) {
2200 if (class == rq->curr->sched_class)
2201 break;
2202 if (class == p->sched_class) {
2203 resched_task(rq->curr);
2204 break;
2205 }
2206 }
2207 }
2208
2209 /*
2210 * A queue event has occurred, and we're going to schedule. In
2211 * this case, we can save a useless back to back clock update.
2212 */
fd2f4419 2213 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2214 rq->skip_clock_update = 1;
2215}
2216
1da177e4 2217#ifdef CONFIG_SMP
cc367732
IM
2218/*
2219 * Is this task likely cache-hot:
2220 */
e7693a36 2221static int
cc367732
IM
2222task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2223{
2224 s64 delta;
2225
e6c8fba7
PZ
2226 if (p->sched_class != &fair_sched_class)
2227 return 0;
2228
ef8002f6
NR
2229 if (unlikely(p->policy == SCHED_IDLE))
2230 return 0;
2231
f540a608
IM
2232 /*
2233 * Buddy candidates are cache hot:
2234 */
f685ceac 2235 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2236 (&p->se == cfs_rq_of(&p->se)->next ||
2237 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2238 return 1;
2239
6bc1665b
IM
2240 if (sysctl_sched_migration_cost == -1)
2241 return 1;
2242 if (sysctl_sched_migration_cost == 0)
2243 return 0;
2244
cc367732
IM
2245 delta = now - p->se.exec_start;
2246
2247 return delta < (s64)sysctl_sched_migration_cost;
2248}
2249
dd41f596 2250void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2251{
e2912009
PZ
2252#ifdef CONFIG_SCHED_DEBUG
2253 /*
2254 * We should never call set_task_cpu() on a blocked task,
2255 * ttwu() will sort out the placement.
2256 */
077614ee
PZ
2257 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2258 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2259
2260#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2261 /*
2262 * The caller should hold either p->pi_lock or rq->lock, when changing
2263 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2264 *
2265 * sched_move_task() holds both and thus holding either pins the cgroup,
2266 * see set_task_rq().
2267 *
2268 * Furthermore, all task_rq users should acquire both locks, see
2269 * task_rq_lock().
2270 */
0122ec5b
PZ
2271 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2272 lockdep_is_held(&task_rq(p)->lock)));
2273#endif
e2912009
PZ
2274#endif
2275
de1d7286 2276 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2277
0c69774e
PZ
2278 if (task_cpu(p) != new_cpu) {
2279 p->se.nr_migrations++;
a8b0ca17 2280 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2281 }
dd41f596
IM
2282
2283 __set_task_cpu(p, new_cpu);
c65cc870
IM
2284}
2285
969c7921 2286struct migration_arg {
36c8b586 2287 struct task_struct *task;
1da177e4 2288 int dest_cpu;
70b97a7f 2289};
1da177e4 2290
969c7921
TH
2291static int migration_cpu_stop(void *data);
2292
1da177e4
LT
2293/*
2294 * wait_task_inactive - wait for a thread to unschedule.
2295 *
85ba2d86
RM
2296 * If @match_state is nonzero, it's the @p->state value just checked and
2297 * not expected to change. If it changes, i.e. @p might have woken up,
2298 * then return zero. When we succeed in waiting for @p to be off its CPU,
2299 * we return a positive number (its total switch count). If a second call
2300 * a short while later returns the same number, the caller can be sure that
2301 * @p has remained unscheduled the whole time.
2302 *
1da177e4
LT
2303 * The caller must ensure that the task *will* unschedule sometime soon,
2304 * else this function might spin for a *long* time. This function can't
2305 * be called with interrupts off, or it may introduce deadlock with
2306 * smp_call_function() if an IPI is sent by the same process we are
2307 * waiting to become inactive.
2308 */
85ba2d86 2309unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2310{
2311 unsigned long flags;
dd41f596 2312 int running, on_rq;
85ba2d86 2313 unsigned long ncsw;
70b97a7f 2314 struct rq *rq;
1da177e4 2315
3a5c359a
AK
2316 for (;;) {
2317 /*
2318 * We do the initial early heuristics without holding
2319 * any task-queue locks at all. We'll only try to get
2320 * the runqueue lock when things look like they will
2321 * work out!
2322 */
2323 rq = task_rq(p);
fa490cfd 2324
3a5c359a
AK
2325 /*
2326 * If the task is actively running on another CPU
2327 * still, just relax and busy-wait without holding
2328 * any locks.
2329 *
2330 * NOTE! Since we don't hold any locks, it's not
2331 * even sure that "rq" stays as the right runqueue!
2332 * But we don't care, since "task_running()" will
2333 * return false if the runqueue has changed and p
2334 * is actually now running somewhere else!
2335 */
85ba2d86
RM
2336 while (task_running(rq, p)) {
2337 if (match_state && unlikely(p->state != match_state))
2338 return 0;
3a5c359a 2339 cpu_relax();
85ba2d86 2340 }
fa490cfd 2341
3a5c359a
AK
2342 /*
2343 * Ok, time to look more closely! We need the rq
2344 * lock now, to be *sure*. If we're wrong, we'll
2345 * just go back and repeat.
2346 */
2347 rq = task_rq_lock(p, &flags);
27a9da65 2348 trace_sched_wait_task(p);
3a5c359a 2349 running = task_running(rq, p);
fd2f4419 2350 on_rq = p->on_rq;
85ba2d86 2351 ncsw = 0;
f31e11d8 2352 if (!match_state || p->state == match_state)
93dcf55f 2353 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2354 task_rq_unlock(rq, p, &flags);
fa490cfd 2355
85ba2d86
RM
2356 /*
2357 * If it changed from the expected state, bail out now.
2358 */
2359 if (unlikely(!ncsw))
2360 break;
2361
3a5c359a
AK
2362 /*
2363 * Was it really running after all now that we
2364 * checked with the proper locks actually held?
2365 *
2366 * Oops. Go back and try again..
2367 */
2368 if (unlikely(running)) {
2369 cpu_relax();
2370 continue;
2371 }
fa490cfd 2372
3a5c359a
AK
2373 /*
2374 * It's not enough that it's not actively running,
2375 * it must be off the runqueue _entirely_, and not
2376 * preempted!
2377 *
80dd99b3 2378 * So if it was still runnable (but just not actively
3a5c359a
AK
2379 * running right now), it's preempted, and we should
2380 * yield - it could be a while.
2381 */
2382 if (unlikely(on_rq)) {
8eb90c30
TG
2383 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2384
2385 set_current_state(TASK_UNINTERRUPTIBLE);
2386 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2387 continue;
2388 }
fa490cfd 2389
3a5c359a
AK
2390 /*
2391 * Ahh, all good. It wasn't running, and it wasn't
2392 * runnable, which means that it will never become
2393 * running in the future either. We're all done!
2394 */
2395 break;
2396 }
85ba2d86
RM
2397
2398 return ncsw;
1da177e4
LT
2399}
2400
2401/***
2402 * kick_process - kick a running thread to enter/exit the kernel
2403 * @p: the to-be-kicked thread
2404 *
2405 * Cause a process which is running on another CPU to enter
2406 * kernel-mode, without any delay. (to get signals handled.)
2407 *
25985edc 2408 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2409 * because all it wants to ensure is that the remote task enters
2410 * the kernel. If the IPI races and the task has been migrated
2411 * to another CPU then no harm is done and the purpose has been
2412 * achieved as well.
2413 */
36c8b586 2414void kick_process(struct task_struct *p)
1da177e4
LT
2415{
2416 int cpu;
2417
2418 preempt_disable();
2419 cpu = task_cpu(p);
2420 if ((cpu != smp_processor_id()) && task_curr(p))
2421 smp_send_reschedule(cpu);
2422 preempt_enable();
2423}
b43e3521 2424EXPORT_SYMBOL_GPL(kick_process);
476d139c 2425#endif /* CONFIG_SMP */
1da177e4 2426
970b13ba 2427#ifdef CONFIG_SMP
30da688e 2428/*
013fdb80 2429 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2430 */
5da9a0fb
PZ
2431static int select_fallback_rq(int cpu, struct task_struct *p)
2432{
2433 int dest_cpu;
2434 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2435
2436 /* Look for allowed, online CPU in same node. */
2437 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2438 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2439 return dest_cpu;
2440
2441 /* Any allowed, online CPU? */
2442 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2443 if (dest_cpu < nr_cpu_ids)
2444 return dest_cpu;
2445
2446 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2447 dest_cpu = cpuset_cpus_allowed_fallback(p);
2448 /*
2449 * Don't tell them about moving exiting tasks or
2450 * kernel threads (both mm NULL), since they never
2451 * leave kernel.
2452 */
2453 if (p->mm && printk_ratelimit()) {
2454 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2455 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2456 }
2457
2458 return dest_cpu;
2459}
2460
e2912009 2461/*
013fdb80 2462 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2463 */
970b13ba 2464static inline
7608dec2 2465int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2466{
7608dec2 2467 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2468
2469 /*
2470 * In order not to call set_task_cpu() on a blocking task we need
2471 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2472 * cpu.
2473 *
2474 * Since this is common to all placement strategies, this lives here.
2475 *
2476 * [ this allows ->select_task() to simply return task_cpu(p) and
2477 * not worry about this generic constraint ]
2478 */
2479 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2480 !cpu_online(cpu)))
5da9a0fb 2481 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2482
2483 return cpu;
970b13ba 2484}
09a40af5
MG
2485
2486static void update_avg(u64 *avg, u64 sample)
2487{
2488 s64 diff = sample - *avg;
2489 *avg += diff >> 3;
2490}
970b13ba
PZ
2491#endif
2492
d7c01d27 2493static void
b84cb5df 2494ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2495{
d7c01d27 2496#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2497 struct rq *rq = this_rq();
2498
d7c01d27
PZ
2499#ifdef CONFIG_SMP
2500 int this_cpu = smp_processor_id();
2501
2502 if (cpu == this_cpu) {
2503 schedstat_inc(rq, ttwu_local);
2504 schedstat_inc(p, se.statistics.nr_wakeups_local);
2505 } else {
2506 struct sched_domain *sd;
2507
2508 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2509 rcu_read_lock();
d7c01d27
PZ
2510 for_each_domain(this_cpu, sd) {
2511 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2512 schedstat_inc(sd, ttwu_wake_remote);
2513 break;
2514 }
2515 }
057f3fad 2516 rcu_read_unlock();
d7c01d27 2517 }
f339b9dc
PZ
2518
2519 if (wake_flags & WF_MIGRATED)
2520 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2521
d7c01d27
PZ
2522#endif /* CONFIG_SMP */
2523
2524 schedstat_inc(rq, ttwu_count);
9ed3811a 2525 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2526
2527 if (wake_flags & WF_SYNC)
9ed3811a 2528 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2529
d7c01d27
PZ
2530#endif /* CONFIG_SCHEDSTATS */
2531}
2532
2533static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2534{
9ed3811a 2535 activate_task(rq, p, en_flags);
fd2f4419 2536 p->on_rq = 1;
c2f7115e
PZ
2537
2538 /* if a worker is waking up, notify workqueue */
2539 if (p->flags & PF_WQ_WORKER)
2540 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2541}
2542
23f41eeb
PZ
2543/*
2544 * Mark the task runnable and perform wakeup-preemption.
2545 */
89363381 2546static void
23f41eeb 2547ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2548{
89363381 2549 trace_sched_wakeup(p, true);
9ed3811a
TH
2550 check_preempt_curr(rq, p, wake_flags);
2551
2552 p->state = TASK_RUNNING;
2553#ifdef CONFIG_SMP
2554 if (p->sched_class->task_woken)
2555 p->sched_class->task_woken(rq, p);
2556
e69c6341 2557 if (rq->idle_stamp) {
9ed3811a
TH
2558 u64 delta = rq->clock - rq->idle_stamp;
2559 u64 max = 2*sysctl_sched_migration_cost;
2560
2561 if (delta > max)
2562 rq->avg_idle = max;
2563 else
2564 update_avg(&rq->avg_idle, delta);
2565 rq->idle_stamp = 0;
2566 }
2567#endif
2568}
2569
c05fbafb
PZ
2570static void
2571ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2572{
2573#ifdef CONFIG_SMP
2574 if (p->sched_contributes_to_load)
2575 rq->nr_uninterruptible--;
2576#endif
2577
2578 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2579 ttwu_do_wakeup(rq, p, wake_flags);
2580}
2581
2582/*
2583 * Called in case the task @p isn't fully descheduled from its runqueue,
2584 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2585 * since all we need to do is flip p->state to TASK_RUNNING, since
2586 * the task is still ->on_rq.
2587 */
2588static int ttwu_remote(struct task_struct *p, int wake_flags)
2589{
2590 struct rq *rq;
2591 int ret = 0;
2592
2593 rq = __task_rq_lock(p);
2594 if (p->on_rq) {
2595 ttwu_do_wakeup(rq, p, wake_flags);
2596 ret = 1;
2597 }
2598 __task_rq_unlock(rq);
2599
2600 return ret;
2601}
2602
317f3941 2603#ifdef CONFIG_SMP
c5d753a5 2604static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2605{
2606 struct rq *rq = this_rq();
317f3941
PZ
2607
2608 raw_spin_lock(&rq->lock);
2609
2610 while (list) {
2611 struct task_struct *p = list;
2612 list = list->wake_entry;
2613 ttwu_do_activate(rq, p, 0);
2614 }
2615
2616 raw_spin_unlock(&rq->lock);
2617}
2618
c5d753a5
PZ
2619#ifdef CONFIG_HOTPLUG_CPU
2620
2621static void sched_ttwu_pending(void)
2622{
2623 struct rq *rq = this_rq();
2624 struct task_struct *list = xchg(&rq->wake_list, NULL);
2625
2626 if (!list)
2627 return;
2628
2629 sched_ttwu_do_pending(list);
2630}
2631
2632#endif /* CONFIG_HOTPLUG_CPU */
2633
317f3941
PZ
2634void scheduler_ipi(void)
2635{
c5d753a5
PZ
2636 struct rq *rq = this_rq();
2637 struct task_struct *list = xchg(&rq->wake_list, NULL);
2638
2639 if (!list)
2640 return;
2641
2642 /*
2643 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2644 * traditionally all their work was done from the interrupt return
2645 * path. Now that we actually do some work, we need to make sure
2646 * we do call them.
2647 *
2648 * Some archs already do call them, luckily irq_enter/exit nest
2649 * properly.
2650 *
2651 * Arguably we should visit all archs and update all handlers,
2652 * however a fair share of IPIs are still resched only so this would
2653 * somewhat pessimize the simple resched case.
2654 */
2655 irq_enter();
2656 sched_ttwu_do_pending(list);
2657 irq_exit();
317f3941
PZ
2658}
2659
2660static void ttwu_queue_remote(struct task_struct *p, int cpu)
2661{
2662 struct rq *rq = cpu_rq(cpu);
2663 struct task_struct *next = rq->wake_list;
2664
2665 for (;;) {
2666 struct task_struct *old = next;
2667
2668 p->wake_entry = next;
2669 next = cmpxchg(&rq->wake_list, old, p);
2670 if (next == old)
2671 break;
2672 }
2673
2674 if (!next)
2675 smp_send_reschedule(cpu);
2676}
d6aa8f85
PZ
2677
2678#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2679static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2680{
2681 struct rq *rq;
2682 int ret = 0;
2683
2684 rq = __task_rq_lock(p);
2685 if (p->on_cpu) {
2686 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2687 ttwu_do_wakeup(rq, p, wake_flags);
2688 ret = 1;
2689 }
2690 __task_rq_unlock(rq);
2691
2692 return ret;
2693
2694}
2695#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2696#endif /* CONFIG_SMP */
317f3941 2697
c05fbafb
PZ
2698static void ttwu_queue(struct task_struct *p, int cpu)
2699{
2700 struct rq *rq = cpu_rq(cpu);
2701
17d9f311 2702#if defined(CONFIG_SMP)
317f3941 2703 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2704 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2705 ttwu_queue_remote(p, cpu);
2706 return;
2707 }
2708#endif
2709
c05fbafb
PZ
2710 raw_spin_lock(&rq->lock);
2711 ttwu_do_activate(rq, p, 0);
2712 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2713}
2714
2715/**
1da177e4 2716 * try_to_wake_up - wake up a thread
9ed3811a 2717 * @p: the thread to be awakened
1da177e4 2718 * @state: the mask of task states that can be woken
9ed3811a 2719 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2720 *
2721 * Put it on the run-queue if it's not already there. The "current"
2722 * thread is always on the run-queue (except when the actual
2723 * re-schedule is in progress), and as such you're allowed to do
2724 * the simpler "current->state = TASK_RUNNING" to mark yourself
2725 * runnable without the overhead of this.
2726 *
9ed3811a
TH
2727 * Returns %true if @p was woken up, %false if it was already running
2728 * or @state didn't match @p's state.
1da177e4 2729 */
e4a52bcb
PZ
2730static int
2731try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2732{
1da177e4 2733 unsigned long flags;
c05fbafb 2734 int cpu, success = 0;
2398f2c6 2735
04e2f174 2736 smp_wmb();
013fdb80 2737 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2738 if (!(p->state & state))
1da177e4
LT
2739 goto out;
2740
c05fbafb 2741 success = 1; /* we're going to change ->state */
1da177e4 2742 cpu = task_cpu(p);
1da177e4 2743
c05fbafb
PZ
2744 if (p->on_rq && ttwu_remote(p, wake_flags))
2745 goto stat;
1da177e4 2746
1da177e4 2747#ifdef CONFIG_SMP
e9c84311 2748 /*
c05fbafb
PZ
2749 * If the owning (remote) cpu is still in the middle of schedule() with
2750 * this task as prev, wait until its done referencing the task.
e9c84311 2751 */
e4a52bcb
PZ
2752 while (p->on_cpu) {
2753#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2754 /*
d6aa8f85
PZ
2755 * In case the architecture enables interrupts in
2756 * context_switch(), we cannot busy wait, since that
2757 * would lead to deadlocks when an interrupt hits and
2758 * tries to wake up @prev. So bail and do a complete
2759 * remote wakeup.
e4a52bcb 2760 */
d6aa8f85 2761 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2762 goto stat;
d6aa8f85 2763#else
e4a52bcb 2764 cpu_relax();
d6aa8f85 2765#endif
371fd7e7 2766 }
0970d299 2767 /*
e4a52bcb 2768 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2769 */
e4a52bcb 2770 smp_rmb();
1da177e4 2771
a8e4f2ea 2772 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2773 p->state = TASK_WAKING;
e7693a36 2774
e4a52bcb 2775 if (p->sched_class->task_waking)
74f8e4b2 2776 p->sched_class->task_waking(p);
efbbd05a 2777
7608dec2 2778 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2779 if (task_cpu(p) != cpu) {
2780 wake_flags |= WF_MIGRATED;
e4a52bcb 2781 set_task_cpu(p, cpu);
f339b9dc 2782 }
1da177e4 2783#endif /* CONFIG_SMP */
1da177e4 2784
c05fbafb
PZ
2785 ttwu_queue(p, cpu);
2786stat:
b84cb5df 2787 ttwu_stat(p, cpu, wake_flags);
1da177e4 2788out:
013fdb80 2789 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2790
2791 return success;
2792}
2793
21aa9af0
TH
2794/**
2795 * try_to_wake_up_local - try to wake up a local task with rq lock held
2796 * @p: the thread to be awakened
2797 *
2acca55e 2798 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2799 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2800 * the current task.
21aa9af0
TH
2801 */
2802static void try_to_wake_up_local(struct task_struct *p)
2803{
2804 struct rq *rq = task_rq(p);
21aa9af0
TH
2805
2806 BUG_ON(rq != this_rq());
2807 BUG_ON(p == current);
2808 lockdep_assert_held(&rq->lock);
2809
2acca55e
PZ
2810 if (!raw_spin_trylock(&p->pi_lock)) {
2811 raw_spin_unlock(&rq->lock);
2812 raw_spin_lock(&p->pi_lock);
2813 raw_spin_lock(&rq->lock);
2814 }
2815
21aa9af0 2816 if (!(p->state & TASK_NORMAL))
2acca55e 2817 goto out;
21aa9af0 2818
fd2f4419 2819 if (!p->on_rq)
d7c01d27
PZ
2820 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2821
23f41eeb 2822 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2823 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2824out:
2825 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2826}
2827
50fa610a
DH
2828/**
2829 * wake_up_process - Wake up a specific process
2830 * @p: The process to be woken up.
2831 *
2832 * Attempt to wake up the nominated process and move it to the set of runnable
2833 * processes. Returns 1 if the process was woken up, 0 if it was already
2834 * running.
2835 *
2836 * It may be assumed that this function implies a write memory barrier before
2837 * changing the task state if and only if any tasks are woken up.
2838 */
7ad5b3a5 2839int wake_up_process(struct task_struct *p)
1da177e4 2840{
d9514f6c 2841 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2842}
1da177e4
LT
2843EXPORT_SYMBOL(wake_up_process);
2844
7ad5b3a5 2845int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2846{
2847 return try_to_wake_up(p, state, 0);
2848}
2849
1da177e4
LT
2850/*
2851 * Perform scheduler related setup for a newly forked process p.
2852 * p is forked by current.
dd41f596
IM
2853 *
2854 * __sched_fork() is basic setup used by init_idle() too:
2855 */
2856static void __sched_fork(struct task_struct *p)
2857{
fd2f4419
PZ
2858 p->on_rq = 0;
2859
2860 p->se.on_rq = 0;
dd41f596
IM
2861 p->se.exec_start = 0;
2862 p->se.sum_exec_runtime = 0;
f6cf891c 2863 p->se.prev_sum_exec_runtime = 0;
6c594c21 2864 p->se.nr_migrations = 0;
da7a735e 2865 p->se.vruntime = 0;
fd2f4419 2866 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2867
2868#ifdef CONFIG_SCHEDSTATS
41acab88 2869 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2870#endif
476d139c 2871
fa717060 2872 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2873
e107be36
AK
2874#ifdef CONFIG_PREEMPT_NOTIFIERS
2875 INIT_HLIST_HEAD(&p->preempt_notifiers);
2876#endif
dd41f596
IM
2877}
2878
2879/*
2880 * fork()/clone()-time setup:
2881 */
3e51e3ed 2882void sched_fork(struct task_struct *p)
dd41f596 2883{
0122ec5b 2884 unsigned long flags;
dd41f596
IM
2885 int cpu = get_cpu();
2886
2887 __sched_fork(p);
06b83b5f 2888 /*
0017d735 2889 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2890 * nobody will actually run it, and a signal or other external
2891 * event cannot wake it up and insert it on the runqueue either.
2892 */
0017d735 2893 p->state = TASK_RUNNING;
dd41f596 2894
c350a04e
MG
2895 /*
2896 * Make sure we do not leak PI boosting priority to the child.
2897 */
2898 p->prio = current->normal_prio;
2899
b9dc29e7
MG
2900 /*
2901 * Revert to default priority/policy on fork if requested.
2902 */
2903 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2904 if (task_has_rt_policy(p)) {
b9dc29e7 2905 p->policy = SCHED_NORMAL;
6c697bdf 2906 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2907 p->rt_priority = 0;
2908 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2909 p->static_prio = NICE_TO_PRIO(0);
2910
2911 p->prio = p->normal_prio = __normal_prio(p);
2912 set_load_weight(p);
6c697bdf 2913
b9dc29e7
MG
2914 /*
2915 * We don't need the reset flag anymore after the fork. It has
2916 * fulfilled its duty:
2917 */
2918 p->sched_reset_on_fork = 0;
2919 }
ca94c442 2920
2ddbf952
HS
2921 if (!rt_prio(p->prio))
2922 p->sched_class = &fair_sched_class;
b29739f9 2923
cd29fe6f
PZ
2924 if (p->sched_class->task_fork)
2925 p->sched_class->task_fork(p);
2926
86951599
PZ
2927 /*
2928 * The child is not yet in the pid-hash so no cgroup attach races,
2929 * and the cgroup is pinned to this child due to cgroup_fork()
2930 * is ran before sched_fork().
2931 *
2932 * Silence PROVE_RCU.
2933 */
0122ec5b 2934 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2935 set_task_cpu(p, cpu);
0122ec5b 2936 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2937
52f17b6c 2938#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2939 if (likely(sched_info_on()))
52f17b6c 2940 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2941#endif
3ca7a440
PZ
2942#if defined(CONFIG_SMP)
2943 p->on_cpu = 0;
4866cde0 2944#endif
bdd4e85d 2945#ifdef CONFIG_PREEMPT_COUNT
4866cde0 2946 /* Want to start with kernel preemption disabled. */
a1261f54 2947 task_thread_info(p)->preempt_count = 1;
1da177e4 2948#endif
806c09a7 2949#ifdef CONFIG_SMP
917b627d 2950 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2951#endif
917b627d 2952
476d139c 2953 put_cpu();
1da177e4
LT
2954}
2955
2956/*
2957 * wake_up_new_task - wake up a newly created task for the first time.
2958 *
2959 * This function will do some initial scheduler statistics housekeeping
2960 * that must be done for every newly created context, then puts the task
2961 * on the runqueue and wakes it.
2962 */
3e51e3ed 2963void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2964{
2965 unsigned long flags;
dd41f596 2966 struct rq *rq;
fabf318e 2967
ab2515c4 2968 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2969#ifdef CONFIG_SMP
2970 /*
2971 * Fork balancing, do it here and not earlier because:
2972 * - cpus_allowed can change in the fork path
2973 * - any previously selected cpu might disappear through hotplug
fabf318e 2974 */
ab2515c4 2975 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2976#endif
2977
ab2515c4 2978 rq = __task_rq_lock(p);
cd29fe6f 2979 activate_task(rq, p, 0);
fd2f4419 2980 p->on_rq = 1;
89363381 2981 trace_sched_wakeup_new(p, true);
a7558e01 2982 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2983#ifdef CONFIG_SMP
efbbd05a
PZ
2984 if (p->sched_class->task_woken)
2985 p->sched_class->task_woken(rq, p);
9a897c5a 2986#endif
0122ec5b 2987 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2988}
2989
e107be36
AK
2990#ifdef CONFIG_PREEMPT_NOTIFIERS
2991
2992/**
80dd99b3 2993 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2994 * @notifier: notifier struct to register
e107be36
AK
2995 */
2996void preempt_notifier_register(struct preempt_notifier *notifier)
2997{
2998 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2999}
3000EXPORT_SYMBOL_GPL(preempt_notifier_register);
3001
3002/**
3003 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3004 * @notifier: notifier struct to unregister
e107be36
AK
3005 *
3006 * This is safe to call from within a preemption notifier.
3007 */
3008void preempt_notifier_unregister(struct preempt_notifier *notifier)
3009{
3010 hlist_del(&notifier->link);
3011}
3012EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3013
3014static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3015{
3016 struct preempt_notifier *notifier;
3017 struct hlist_node *node;
3018
3019 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3020 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3021}
3022
3023static void
3024fire_sched_out_preempt_notifiers(struct task_struct *curr,
3025 struct task_struct *next)
3026{
3027 struct preempt_notifier *notifier;
3028 struct hlist_node *node;
3029
3030 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3031 notifier->ops->sched_out(notifier, next);
3032}
3033
6d6bc0ad 3034#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3035
3036static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3037{
3038}
3039
3040static void
3041fire_sched_out_preempt_notifiers(struct task_struct *curr,
3042 struct task_struct *next)
3043{
3044}
3045
6d6bc0ad 3046#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3047
4866cde0
NP
3048/**
3049 * prepare_task_switch - prepare to switch tasks
3050 * @rq: the runqueue preparing to switch
421cee29 3051 * @prev: the current task that is being switched out
4866cde0
NP
3052 * @next: the task we are going to switch to.
3053 *
3054 * This is called with the rq lock held and interrupts off. It must
3055 * be paired with a subsequent finish_task_switch after the context
3056 * switch.
3057 *
3058 * prepare_task_switch sets up locking and calls architecture specific
3059 * hooks.
3060 */
e107be36
AK
3061static inline void
3062prepare_task_switch(struct rq *rq, struct task_struct *prev,
3063 struct task_struct *next)
4866cde0 3064{
fe4b04fa
PZ
3065 sched_info_switch(prev, next);
3066 perf_event_task_sched_out(prev, next);
e107be36 3067 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3068 prepare_lock_switch(rq, next);
3069 prepare_arch_switch(next);
fe4b04fa 3070 trace_sched_switch(prev, next);
4866cde0
NP
3071}
3072
1da177e4
LT
3073/**
3074 * finish_task_switch - clean up after a task-switch
344babaa 3075 * @rq: runqueue associated with task-switch
1da177e4
LT
3076 * @prev: the thread we just switched away from.
3077 *
4866cde0
NP
3078 * finish_task_switch must be called after the context switch, paired
3079 * with a prepare_task_switch call before the context switch.
3080 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3081 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3082 *
3083 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3084 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3085 * with the lock held can cause deadlocks; see schedule() for
3086 * details.)
3087 */
a9957449 3088static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3089 __releases(rq->lock)
3090{
1da177e4 3091 struct mm_struct *mm = rq->prev_mm;
55a101f8 3092 long prev_state;
1da177e4
LT
3093
3094 rq->prev_mm = NULL;
3095
3096 /*
3097 * A task struct has one reference for the use as "current".
c394cc9f 3098 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3099 * schedule one last time. The schedule call will never return, and
3100 * the scheduled task must drop that reference.
c394cc9f 3101 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3102 * still held, otherwise prev could be scheduled on another cpu, die
3103 * there before we look at prev->state, and then the reference would
3104 * be dropped twice.
3105 * Manfred Spraul <manfred@colorfullife.com>
3106 */
55a101f8 3107 prev_state = prev->state;
4866cde0 3108 finish_arch_switch(prev);
8381f65d
JI
3109#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3110 local_irq_disable();
3111#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3112 perf_event_task_sched_in(current);
8381f65d
JI
3113#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3114 local_irq_enable();
3115#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3116 finish_lock_switch(rq, prev);
e8fa1362 3117
e107be36 3118 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3119 if (mm)
3120 mmdrop(mm);
c394cc9f 3121 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3122 /*
3123 * Remove function-return probe instances associated with this
3124 * task and put them back on the free list.
9761eea8 3125 */
c6fd91f0 3126 kprobe_flush_task(prev);
1da177e4 3127 put_task_struct(prev);
c6fd91f0 3128 }
1da177e4
LT
3129}
3130
3f029d3c
GH
3131#ifdef CONFIG_SMP
3132
3133/* assumes rq->lock is held */
3134static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3135{
3136 if (prev->sched_class->pre_schedule)
3137 prev->sched_class->pre_schedule(rq, prev);
3138}
3139
3140/* rq->lock is NOT held, but preemption is disabled */
3141static inline void post_schedule(struct rq *rq)
3142{
3143 if (rq->post_schedule) {
3144 unsigned long flags;
3145
05fa785c 3146 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3147 if (rq->curr->sched_class->post_schedule)
3148 rq->curr->sched_class->post_schedule(rq);
05fa785c 3149 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3150
3151 rq->post_schedule = 0;
3152 }
3153}
3154
3155#else
da19ab51 3156
3f029d3c
GH
3157static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3158{
3159}
3160
3161static inline void post_schedule(struct rq *rq)
3162{
1da177e4
LT
3163}
3164
3f029d3c
GH
3165#endif
3166
1da177e4
LT
3167/**
3168 * schedule_tail - first thing a freshly forked thread must call.
3169 * @prev: the thread we just switched away from.
3170 */
36c8b586 3171asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3172 __releases(rq->lock)
3173{
70b97a7f
IM
3174 struct rq *rq = this_rq();
3175
4866cde0 3176 finish_task_switch(rq, prev);
da19ab51 3177
3f029d3c
GH
3178 /*
3179 * FIXME: do we need to worry about rq being invalidated by the
3180 * task_switch?
3181 */
3182 post_schedule(rq);
70b97a7f 3183
4866cde0
NP
3184#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3185 /* In this case, finish_task_switch does not reenable preemption */
3186 preempt_enable();
3187#endif
1da177e4 3188 if (current->set_child_tid)
b488893a 3189 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3190}
3191
3192/*
3193 * context_switch - switch to the new MM and the new
3194 * thread's register state.
3195 */
dd41f596 3196static inline void
70b97a7f 3197context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3198 struct task_struct *next)
1da177e4 3199{
dd41f596 3200 struct mm_struct *mm, *oldmm;
1da177e4 3201
e107be36 3202 prepare_task_switch(rq, prev, next);
fe4b04fa 3203
dd41f596
IM
3204 mm = next->mm;
3205 oldmm = prev->active_mm;
9226d125
ZA
3206 /*
3207 * For paravirt, this is coupled with an exit in switch_to to
3208 * combine the page table reload and the switch backend into
3209 * one hypercall.
3210 */
224101ed 3211 arch_start_context_switch(prev);
9226d125 3212
31915ab4 3213 if (!mm) {
1da177e4
LT
3214 next->active_mm = oldmm;
3215 atomic_inc(&oldmm->mm_count);
3216 enter_lazy_tlb(oldmm, next);
3217 } else
3218 switch_mm(oldmm, mm, next);
3219
31915ab4 3220 if (!prev->mm) {
1da177e4 3221 prev->active_mm = NULL;
1da177e4
LT
3222 rq->prev_mm = oldmm;
3223 }
3a5f5e48
IM
3224 /*
3225 * Since the runqueue lock will be released by the next
3226 * task (which is an invalid locking op but in the case
3227 * of the scheduler it's an obvious special-case), so we
3228 * do an early lockdep release here:
3229 */
3230#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3231 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3232#endif
1da177e4
LT
3233
3234 /* Here we just switch the register state and the stack. */
3235 switch_to(prev, next, prev);
3236
dd41f596
IM
3237 barrier();
3238 /*
3239 * this_rq must be evaluated again because prev may have moved
3240 * CPUs since it called schedule(), thus the 'rq' on its stack
3241 * frame will be invalid.
3242 */
3243 finish_task_switch(this_rq(), prev);
1da177e4
LT
3244}
3245
3246/*
3247 * nr_running, nr_uninterruptible and nr_context_switches:
3248 *
3249 * externally visible scheduler statistics: current number of runnable
3250 * threads, current number of uninterruptible-sleeping threads, total
3251 * number of context switches performed since bootup.
3252 */
3253unsigned long nr_running(void)
3254{
3255 unsigned long i, sum = 0;
3256
3257 for_each_online_cpu(i)
3258 sum += cpu_rq(i)->nr_running;
3259
3260 return sum;
f711f609 3261}
1da177e4
LT
3262
3263unsigned long nr_uninterruptible(void)
f711f609 3264{
1da177e4 3265 unsigned long i, sum = 0;
f711f609 3266
0a945022 3267 for_each_possible_cpu(i)
1da177e4 3268 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3269
3270 /*
1da177e4
LT
3271 * Since we read the counters lockless, it might be slightly
3272 * inaccurate. Do not allow it to go below zero though:
f711f609 3273 */
1da177e4
LT
3274 if (unlikely((long)sum < 0))
3275 sum = 0;
f711f609 3276
1da177e4 3277 return sum;
f711f609 3278}
f711f609 3279
1da177e4 3280unsigned long long nr_context_switches(void)
46cb4b7c 3281{
cc94abfc
SR
3282 int i;
3283 unsigned long long sum = 0;
46cb4b7c 3284
0a945022 3285 for_each_possible_cpu(i)
1da177e4 3286 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3287
1da177e4
LT
3288 return sum;
3289}
483b4ee6 3290
1da177e4
LT
3291unsigned long nr_iowait(void)
3292{
3293 unsigned long i, sum = 0;
483b4ee6 3294
0a945022 3295 for_each_possible_cpu(i)
1da177e4 3296 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3297
1da177e4
LT
3298 return sum;
3299}
483b4ee6 3300
8c215bd3 3301unsigned long nr_iowait_cpu(int cpu)
69d25870 3302{
8c215bd3 3303 struct rq *this = cpu_rq(cpu);
69d25870
AV
3304 return atomic_read(&this->nr_iowait);
3305}
46cb4b7c 3306
69d25870
AV
3307unsigned long this_cpu_load(void)
3308{
3309 struct rq *this = this_rq();
3310 return this->cpu_load[0];
3311}
e790fb0b 3312
46cb4b7c 3313
dce48a84
TG
3314/* Variables and functions for calc_load */
3315static atomic_long_t calc_load_tasks;
3316static unsigned long calc_load_update;
3317unsigned long avenrun[3];
3318EXPORT_SYMBOL(avenrun);
46cb4b7c 3319
74f5187a
PZ
3320static long calc_load_fold_active(struct rq *this_rq)
3321{
3322 long nr_active, delta = 0;
3323
3324 nr_active = this_rq->nr_running;
3325 nr_active += (long) this_rq->nr_uninterruptible;
3326
3327 if (nr_active != this_rq->calc_load_active) {
3328 delta = nr_active - this_rq->calc_load_active;
3329 this_rq->calc_load_active = nr_active;
3330 }
3331
3332 return delta;
3333}
3334
0f004f5a
PZ
3335static unsigned long
3336calc_load(unsigned long load, unsigned long exp, unsigned long active)
3337{
3338 load *= exp;
3339 load += active * (FIXED_1 - exp);
3340 load += 1UL << (FSHIFT - 1);
3341 return load >> FSHIFT;
3342}
3343
74f5187a
PZ
3344#ifdef CONFIG_NO_HZ
3345/*
3346 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3347 *
3348 * When making the ILB scale, we should try to pull this in as well.
3349 */
3350static atomic_long_t calc_load_tasks_idle;
3351
3352static void calc_load_account_idle(struct rq *this_rq)
3353{
3354 long delta;
3355
3356 delta = calc_load_fold_active(this_rq);
3357 if (delta)
3358 atomic_long_add(delta, &calc_load_tasks_idle);
3359}
3360
3361static long calc_load_fold_idle(void)
3362{
3363 long delta = 0;
3364
3365 /*
3366 * Its got a race, we don't care...
3367 */
3368 if (atomic_long_read(&calc_load_tasks_idle))
3369 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3370
3371 return delta;
3372}
0f004f5a
PZ
3373
3374/**
3375 * fixed_power_int - compute: x^n, in O(log n) time
3376 *
3377 * @x: base of the power
3378 * @frac_bits: fractional bits of @x
3379 * @n: power to raise @x to.
3380 *
3381 * By exploiting the relation between the definition of the natural power
3382 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3383 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3384 * (where: n_i \elem {0, 1}, the binary vector representing n),
3385 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3386 * of course trivially computable in O(log_2 n), the length of our binary
3387 * vector.
3388 */
3389static unsigned long
3390fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3391{
3392 unsigned long result = 1UL << frac_bits;
3393
3394 if (n) for (;;) {
3395 if (n & 1) {
3396 result *= x;
3397 result += 1UL << (frac_bits - 1);
3398 result >>= frac_bits;
3399 }
3400 n >>= 1;
3401 if (!n)
3402 break;
3403 x *= x;
3404 x += 1UL << (frac_bits - 1);
3405 x >>= frac_bits;
3406 }
3407
3408 return result;
3409}
3410
3411/*
3412 * a1 = a0 * e + a * (1 - e)
3413 *
3414 * a2 = a1 * e + a * (1 - e)
3415 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3416 * = a0 * e^2 + a * (1 - e) * (1 + e)
3417 *
3418 * a3 = a2 * e + a * (1 - e)
3419 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3420 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3421 *
3422 * ...
3423 *
3424 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3425 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3426 * = a0 * e^n + a * (1 - e^n)
3427 *
3428 * [1] application of the geometric series:
3429 *
3430 * n 1 - x^(n+1)
3431 * S_n := \Sum x^i = -------------
3432 * i=0 1 - x
3433 */
3434static unsigned long
3435calc_load_n(unsigned long load, unsigned long exp,
3436 unsigned long active, unsigned int n)
3437{
3438
3439 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3440}
3441
3442/*
3443 * NO_HZ can leave us missing all per-cpu ticks calling
3444 * calc_load_account_active(), but since an idle CPU folds its delta into
3445 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3446 * in the pending idle delta if our idle period crossed a load cycle boundary.
3447 *
3448 * Once we've updated the global active value, we need to apply the exponential
3449 * weights adjusted to the number of cycles missed.
3450 */
3451static void calc_global_nohz(unsigned long ticks)
3452{
3453 long delta, active, n;
3454
3455 if (time_before(jiffies, calc_load_update))
3456 return;
3457
3458 /*
3459 * If we crossed a calc_load_update boundary, make sure to fold
3460 * any pending idle changes, the respective CPUs might have
3461 * missed the tick driven calc_load_account_active() update
3462 * due to NO_HZ.
3463 */
3464 delta = calc_load_fold_idle();
3465 if (delta)
3466 atomic_long_add(delta, &calc_load_tasks);
3467
3468 /*
3469 * If we were idle for multiple load cycles, apply them.
3470 */
3471 if (ticks >= LOAD_FREQ) {
3472 n = ticks / LOAD_FREQ;
3473
3474 active = atomic_long_read(&calc_load_tasks);
3475 active = active > 0 ? active * FIXED_1 : 0;
3476
3477 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3478 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3479 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3480
3481 calc_load_update += n * LOAD_FREQ;
3482 }
3483
3484 /*
3485 * Its possible the remainder of the above division also crosses
3486 * a LOAD_FREQ period, the regular check in calc_global_load()
3487 * which comes after this will take care of that.
3488 *
3489 * Consider us being 11 ticks before a cycle completion, and us
3490 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3491 * age us 4 cycles, and the test in calc_global_load() will
3492 * pick up the final one.
3493 */
3494}
74f5187a
PZ
3495#else
3496static void calc_load_account_idle(struct rq *this_rq)
3497{
3498}
3499
3500static inline long calc_load_fold_idle(void)
3501{
3502 return 0;
3503}
0f004f5a
PZ
3504
3505static void calc_global_nohz(unsigned long ticks)
3506{
3507}
74f5187a
PZ
3508#endif
3509
2d02494f
TG
3510/**
3511 * get_avenrun - get the load average array
3512 * @loads: pointer to dest load array
3513 * @offset: offset to add
3514 * @shift: shift count to shift the result left
3515 *
3516 * These values are estimates at best, so no need for locking.
3517 */
3518void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3519{
3520 loads[0] = (avenrun[0] + offset) << shift;
3521 loads[1] = (avenrun[1] + offset) << shift;
3522 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3523}
46cb4b7c 3524
46cb4b7c 3525/*
dce48a84
TG
3526 * calc_load - update the avenrun load estimates 10 ticks after the
3527 * CPUs have updated calc_load_tasks.
7835b98b 3528 */
0f004f5a 3529void calc_global_load(unsigned long ticks)
7835b98b 3530{
dce48a84 3531 long active;
1da177e4 3532
0f004f5a
PZ
3533 calc_global_nohz(ticks);
3534
3535 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3536 return;
1da177e4 3537
dce48a84
TG
3538 active = atomic_long_read(&calc_load_tasks);
3539 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3540
dce48a84
TG
3541 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3542 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3543 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3544
dce48a84
TG
3545 calc_load_update += LOAD_FREQ;
3546}
1da177e4 3547
dce48a84 3548/*
74f5187a
PZ
3549 * Called from update_cpu_load() to periodically update this CPU's
3550 * active count.
dce48a84
TG
3551 */
3552static void calc_load_account_active(struct rq *this_rq)
3553{
74f5187a 3554 long delta;
08c183f3 3555
74f5187a
PZ
3556 if (time_before(jiffies, this_rq->calc_load_update))
3557 return;
783609c6 3558
74f5187a
PZ
3559 delta = calc_load_fold_active(this_rq);
3560 delta += calc_load_fold_idle();
3561 if (delta)
dce48a84 3562 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3563
3564 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3565}
3566
fdf3e95d
VP
3567/*
3568 * The exact cpuload at various idx values, calculated at every tick would be
3569 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3570 *
3571 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3572 * on nth tick when cpu may be busy, then we have:
3573 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3574 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3575 *
3576 * decay_load_missed() below does efficient calculation of
3577 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3578 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3579 *
3580 * The calculation is approximated on a 128 point scale.
3581 * degrade_zero_ticks is the number of ticks after which load at any
3582 * particular idx is approximated to be zero.
3583 * degrade_factor is a precomputed table, a row for each load idx.
3584 * Each column corresponds to degradation factor for a power of two ticks,
3585 * based on 128 point scale.
3586 * Example:
3587 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3588 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3589 *
3590 * With this power of 2 load factors, we can degrade the load n times
3591 * by looking at 1 bits in n and doing as many mult/shift instead of
3592 * n mult/shifts needed by the exact degradation.
3593 */
3594#define DEGRADE_SHIFT 7
3595static const unsigned char
3596 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3597static const unsigned char
3598 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3599 {0, 0, 0, 0, 0, 0, 0, 0},
3600 {64, 32, 8, 0, 0, 0, 0, 0},
3601 {96, 72, 40, 12, 1, 0, 0},
3602 {112, 98, 75, 43, 15, 1, 0},
3603 {120, 112, 98, 76, 45, 16, 2} };
3604
3605/*
3606 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3607 * would be when CPU is idle and so we just decay the old load without
3608 * adding any new load.
3609 */
3610static unsigned long
3611decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3612{
3613 int j = 0;
3614
3615 if (!missed_updates)
3616 return load;
3617
3618 if (missed_updates >= degrade_zero_ticks[idx])
3619 return 0;
3620
3621 if (idx == 1)
3622 return load >> missed_updates;
3623
3624 while (missed_updates) {
3625 if (missed_updates % 2)
3626 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3627
3628 missed_updates >>= 1;
3629 j++;
3630 }
3631 return load;
3632}
3633
46cb4b7c 3634/*
dd41f596 3635 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3636 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3637 * every tick. We fix it up based on jiffies.
46cb4b7c 3638 */
dd41f596 3639static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3640{
495eca49 3641 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3642 unsigned long curr_jiffies = jiffies;
3643 unsigned long pending_updates;
dd41f596 3644 int i, scale;
46cb4b7c 3645
dd41f596 3646 this_rq->nr_load_updates++;
46cb4b7c 3647
fdf3e95d
VP
3648 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3649 if (curr_jiffies == this_rq->last_load_update_tick)
3650 return;
3651
3652 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3653 this_rq->last_load_update_tick = curr_jiffies;
3654
dd41f596 3655 /* Update our load: */
fdf3e95d
VP
3656 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3657 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3658 unsigned long old_load, new_load;
7d1e6a9b 3659
dd41f596 3660 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3661
dd41f596 3662 old_load = this_rq->cpu_load[i];
fdf3e95d 3663 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3664 new_load = this_load;
a25707f3
IM
3665 /*
3666 * Round up the averaging division if load is increasing. This
3667 * prevents us from getting stuck on 9 if the load is 10, for
3668 * example.
3669 */
3670 if (new_load > old_load)
fdf3e95d
VP
3671 new_load += scale - 1;
3672
3673 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3674 }
da2b71ed
SS
3675
3676 sched_avg_update(this_rq);
fdf3e95d
VP
3677}
3678
3679static void update_cpu_load_active(struct rq *this_rq)
3680{
3681 update_cpu_load(this_rq);
46cb4b7c 3682
74f5187a 3683 calc_load_account_active(this_rq);
46cb4b7c
SS
3684}
3685
dd41f596 3686#ifdef CONFIG_SMP
8a0be9ef 3687
46cb4b7c 3688/*
38022906
PZ
3689 * sched_exec - execve() is a valuable balancing opportunity, because at
3690 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3691 */
38022906 3692void sched_exec(void)
46cb4b7c 3693{
38022906 3694 struct task_struct *p = current;
1da177e4 3695 unsigned long flags;
0017d735 3696 int dest_cpu;
46cb4b7c 3697
8f42ced9 3698 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3699 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3700 if (dest_cpu == smp_processor_id())
3701 goto unlock;
38022906 3702
8f42ced9 3703 if (likely(cpu_active(dest_cpu))) {
969c7921 3704 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3705
8f42ced9
PZ
3706 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3707 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3708 return;
3709 }
0017d735 3710unlock:
8f42ced9 3711 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3712}
dd41f596 3713
1da177e4
LT
3714#endif
3715
1da177e4
LT
3716DEFINE_PER_CPU(struct kernel_stat, kstat);
3717
3718EXPORT_PER_CPU_SYMBOL(kstat);
3719
3720/*
c5f8d995 3721 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3722 * @p in case that task is currently running.
c5f8d995
HS
3723 *
3724 * Called with task_rq_lock() held on @rq.
1da177e4 3725 */
c5f8d995
HS
3726static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3727{
3728 u64 ns = 0;
3729
3730 if (task_current(rq, p)) {
3731 update_rq_clock(rq);
305e6835 3732 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3733 if ((s64)ns < 0)
3734 ns = 0;
3735 }
3736
3737 return ns;
3738}
3739
bb34d92f 3740unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3741{
1da177e4 3742 unsigned long flags;
41b86e9c 3743 struct rq *rq;
bb34d92f 3744 u64 ns = 0;
48f24c4d 3745
41b86e9c 3746 rq = task_rq_lock(p, &flags);
c5f8d995 3747 ns = do_task_delta_exec(p, rq);
0122ec5b 3748 task_rq_unlock(rq, p, &flags);
1508487e 3749
c5f8d995
HS
3750 return ns;
3751}
f06febc9 3752
c5f8d995
HS
3753/*
3754 * Return accounted runtime for the task.
3755 * In case the task is currently running, return the runtime plus current's
3756 * pending runtime that have not been accounted yet.
3757 */
3758unsigned long long task_sched_runtime(struct task_struct *p)
3759{
3760 unsigned long flags;
3761 struct rq *rq;
3762 u64 ns = 0;
3763
3764 rq = task_rq_lock(p, &flags);
3765 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3766 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3767
3768 return ns;
3769}
48f24c4d 3770
c5f8d995
HS
3771/*
3772 * Return sum_exec_runtime for the thread group.
3773 * In case the task is currently running, return the sum plus current's
3774 * pending runtime that have not been accounted yet.
3775 *
3776 * Note that the thread group might have other running tasks as well,
3777 * so the return value not includes other pending runtime that other
3778 * running tasks might have.
3779 */
3780unsigned long long thread_group_sched_runtime(struct task_struct *p)
3781{
3782 struct task_cputime totals;
3783 unsigned long flags;
3784 struct rq *rq;
3785 u64 ns;
3786
3787 rq = task_rq_lock(p, &flags);
3788 thread_group_cputime(p, &totals);
3789 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3790 task_rq_unlock(rq, p, &flags);
48f24c4d 3791
1da177e4
LT
3792 return ns;
3793}
3794
1da177e4
LT
3795/*
3796 * Account user cpu time to a process.
3797 * @p: the process that the cpu time gets accounted to
1da177e4 3798 * @cputime: the cpu time spent in user space since the last update
457533a7 3799 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3800 */
457533a7
MS
3801void account_user_time(struct task_struct *p, cputime_t cputime,
3802 cputime_t cputime_scaled)
1da177e4
LT
3803{
3804 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3805 cputime64_t tmp;
3806
457533a7 3807 /* Add user time to process. */
1da177e4 3808 p->utime = cputime_add(p->utime, cputime);
457533a7 3809 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3810 account_group_user_time(p, cputime);
1da177e4
LT
3811
3812 /* Add user time to cpustat. */
3813 tmp = cputime_to_cputime64(cputime);
3814 if (TASK_NICE(p) > 0)
3815 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3816 else
3817 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3818
3819 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3820 /* Account for user time used */
3821 acct_update_integrals(p);
1da177e4
LT
3822}
3823
94886b84
LV
3824/*
3825 * Account guest cpu time to a process.
3826 * @p: the process that the cpu time gets accounted to
3827 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3828 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3829 */
457533a7
MS
3830static void account_guest_time(struct task_struct *p, cputime_t cputime,
3831 cputime_t cputime_scaled)
94886b84
LV
3832{
3833 cputime64_t tmp;
3834 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3835
3836 tmp = cputime_to_cputime64(cputime);
3837
457533a7 3838 /* Add guest time to process. */
94886b84 3839 p->utime = cputime_add(p->utime, cputime);
457533a7 3840 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3841 account_group_user_time(p, cputime);
94886b84
LV
3842 p->gtime = cputime_add(p->gtime, cputime);
3843
457533a7 3844 /* Add guest time to cpustat. */
ce0e7b28
RO
3845 if (TASK_NICE(p) > 0) {
3846 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3847 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3848 } else {
3849 cpustat->user = cputime64_add(cpustat->user, tmp);
3850 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3851 }
94886b84
LV
3852}
3853
70a89a66
VP
3854/*
3855 * Account system cpu time to a process and desired cpustat field
3856 * @p: the process that the cpu time gets accounted to
3857 * @cputime: the cpu time spent in kernel space since the last update
3858 * @cputime_scaled: cputime scaled by cpu frequency
3859 * @target_cputime64: pointer to cpustat field that has to be updated
3860 */
3861static inline
3862void __account_system_time(struct task_struct *p, cputime_t cputime,
3863 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3864{
3865 cputime64_t tmp = cputime_to_cputime64(cputime);
3866
3867 /* Add system time to process. */
3868 p->stime = cputime_add(p->stime, cputime);
3869 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3870 account_group_system_time(p, cputime);
3871
3872 /* Add system time to cpustat. */
3873 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3874 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3875
3876 /* Account for system time used */
3877 acct_update_integrals(p);
3878}
3879
1da177e4
LT
3880/*
3881 * Account system cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
3883 * @hardirq_offset: the offset to subtract from hardirq_count()
3884 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3885 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3886 */
3887void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3888 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3889{
3890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3891 cputime64_t *target_cputime64;
1da177e4 3892
983ed7a6 3893 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3894 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3895 return;
3896 }
94886b84 3897
1da177e4 3898 if (hardirq_count() - hardirq_offset)
70a89a66 3899 target_cputime64 = &cpustat->irq;
75e1056f 3900 else if (in_serving_softirq())
70a89a66 3901 target_cputime64 = &cpustat->softirq;
1da177e4 3902 else
70a89a66 3903 target_cputime64 = &cpustat->system;
ef12fefa 3904
70a89a66 3905 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3906}
3907
c66f08be 3908/*
1da177e4 3909 * Account for involuntary wait time.
544b4a1f 3910 * @cputime: the cpu time spent in involuntary wait
c66f08be 3911 */
79741dd3 3912void account_steal_time(cputime_t cputime)
c66f08be 3913{
79741dd3
MS
3914 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3915 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3916
3917 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3918}
3919
1da177e4 3920/*
79741dd3
MS
3921 * Account for idle time.
3922 * @cputime: the cpu time spent in idle wait
1da177e4 3923 */
79741dd3 3924void account_idle_time(cputime_t cputime)
1da177e4
LT
3925{
3926 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3927 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3928 struct rq *rq = this_rq();
1da177e4 3929
79741dd3
MS
3930 if (atomic_read(&rq->nr_iowait) > 0)
3931 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3932 else
3933 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3934}
3935
e6e6685a
GC
3936static __always_inline bool steal_account_process_tick(void)
3937{
3938#ifdef CONFIG_PARAVIRT
3939 if (static_branch(&paravirt_steal_enabled)) {
3940 u64 steal, st = 0;
3941
3942 steal = paravirt_steal_clock(smp_processor_id());
3943 steal -= this_rq()->prev_steal_time;
3944
3945 st = steal_ticks(steal);
3946 this_rq()->prev_steal_time += st * TICK_NSEC;
3947
3948 account_steal_time(st);
3949 return st;
3950 }
3951#endif
3952 return false;
3953}
3954
79741dd3
MS
3955#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3956
abb74cef
VP
3957#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3958/*
3959 * Account a tick to a process and cpustat
3960 * @p: the process that the cpu time gets accounted to
3961 * @user_tick: is the tick from userspace
3962 * @rq: the pointer to rq
3963 *
3964 * Tick demultiplexing follows the order
3965 * - pending hardirq update
3966 * - pending softirq update
3967 * - user_time
3968 * - idle_time
3969 * - system time
3970 * - check for guest_time
3971 * - else account as system_time
3972 *
3973 * Check for hardirq is done both for system and user time as there is
3974 * no timer going off while we are on hardirq and hence we may never get an
3975 * opportunity to update it solely in system time.
3976 * p->stime and friends are only updated on system time and not on irq
3977 * softirq as those do not count in task exec_runtime any more.
3978 */
3979static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3980 struct rq *rq)
3981{
3982 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3983 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3984 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3985
e6e6685a
GC
3986 if (steal_account_process_tick())
3987 return;
3988
abb74cef
VP
3989 if (irqtime_account_hi_update()) {
3990 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3991 } else if (irqtime_account_si_update()) {
3992 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3993 } else if (this_cpu_ksoftirqd() == p) {
3994 /*
3995 * ksoftirqd time do not get accounted in cpu_softirq_time.
3996 * So, we have to handle it separately here.
3997 * Also, p->stime needs to be updated for ksoftirqd.
3998 */
3999 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4000 &cpustat->softirq);
abb74cef
VP
4001 } else if (user_tick) {
4002 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4003 } else if (p == rq->idle) {
4004 account_idle_time(cputime_one_jiffy);
4005 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4006 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4007 } else {
4008 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4009 &cpustat->system);
4010 }
4011}
4012
4013static void irqtime_account_idle_ticks(int ticks)
4014{
4015 int i;
4016 struct rq *rq = this_rq();
4017
4018 for (i = 0; i < ticks; i++)
4019 irqtime_account_process_tick(current, 0, rq);
4020}
544b4a1f 4021#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4022static void irqtime_account_idle_ticks(int ticks) {}
4023static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4024 struct rq *rq) {}
544b4a1f 4025#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4026
4027/*
4028 * Account a single tick of cpu time.
4029 * @p: the process that the cpu time gets accounted to
4030 * @user_tick: indicates if the tick is a user or a system tick
4031 */
4032void account_process_tick(struct task_struct *p, int user_tick)
4033{
a42548a1 4034 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4035 struct rq *rq = this_rq();
4036
abb74cef
VP
4037 if (sched_clock_irqtime) {
4038 irqtime_account_process_tick(p, user_tick, rq);
4039 return;
4040 }
4041
e6e6685a
GC
4042 if (steal_account_process_tick())
4043 return;
4044
79741dd3 4045 if (user_tick)
a42548a1 4046 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4047 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4048 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4049 one_jiffy_scaled);
4050 else
a42548a1 4051 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4052}
4053
4054/*
4055 * Account multiple ticks of steal time.
4056 * @p: the process from which the cpu time has been stolen
4057 * @ticks: number of stolen ticks
4058 */
4059void account_steal_ticks(unsigned long ticks)
4060{
4061 account_steal_time(jiffies_to_cputime(ticks));
4062}
4063
4064/*
4065 * Account multiple ticks of idle time.
4066 * @ticks: number of stolen ticks
4067 */
4068void account_idle_ticks(unsigned long ticks)
4069{
abb74cef
VP
4070
4071 if (sched_clock_irqtime) {
4072 irqtime_account_idle_ticks(ticks);
4073 return;
4074 }
4075
79741dd3 4076 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4077}
4078
79741dd3
MS
4079#endif
4080
49048622
BS
4081/*
4082 * Use precise platform statistics if available:
4083 */
4084#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4085void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4086{
d99ca3b9
HS
4087 *ut = p->utime;
4088 *st = p->stime;
49048622
BS
4089}
4090
0cf55e1e 4091void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4092{
0cf55e1e
HS
4093 struct task_cputime cputime;
4094
4095 thread_group_cputime(p, &cputime);
4096
4097 *ut = cputime.utime;
4098 *st = cputime.stime;
49048622
BS
4099}
4100#else
761b1d26
HS
4101
4102#ifndef nsecs_to_cputime
b7b20df9 4103# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4104#endif
4105
d180c5bc 4106void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4107{
d99ca3b9 4108 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4109
4110 /*
4111 * Use CFS's precise accounting:
4112 */
d180c5bc 4113 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4114
4115 if (total) {
e75e863d 4116 u64 temp = rtime;
d180c5bc 4117
e75e863d 4118 temp *= utime;
49048622 4119 do_div(temp, total);
d180c5bc
HS
4120 utime = (cputime_t)temp;
4121 } else
4122 utime = rtime;
49048622 4123
d180c5bc
HS
4124 /*
4125 * Compare with previous values, to keep monotonicity:
4126 */
761b1d26 4127 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4128 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4129
d99ca3b9
HS
4130 *ut = p->prev_utime;
4131 *st = p->prev_stime;
49048622
BS
4132}
4133
0cf55e1e
HS
4134/*
4135 * Must be called with siglock held.
4136 */
4137void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4138{
0cf55e1e
HS
4139 struct signal_struct *sig = p->signal;
4140 struct task_cputime cputime;
4141 cputime_t rtime, utime, total;
49048622 4142
0cf55e1e 4143 thread_group_cputime(p, &cputime);
49048622 4144
0cf55e1e
HS
4145 total = cputime_add(cputime.utime, cputime.stime);
4146 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4147
0cf55e1e 4148 if (total) {
e75e863d 4149 u64 temp = rtime;
49048622 4150
e75e863d 4151 temp *= cputime.utime;
0cf55e1e
HS
4152 do_div(temp, total);
4153 utime = (cputime_t)temp;
4154 } else
4155 utime = rtime;
4156
4157 sig->prev_utime = max(sig->prev_utime, utime);
4158 sig->prev_stime = max(sig->prev_stime,
4159 cputime_sub(rtime, sig->prev_utime));
4160
4161 *ut = sig->prev_utime;
4162 *st = sig->prev_stime;
49048622 4163}
49048622 4164#endif
49048622 4165
7835b98b
CL
4166/*
4167 * This function gets called by the timer code, with HZ frequency.
4168 * We call it with interrupts disabled.
7835b98b
CL
4169 */
4170void scheduler_tick(void)
4171{
7835b98b
CL
4172 int cpu = smp_processor_id();
4173 struct rq *rq = cpu_rq(cpu);
dd41f596 4174 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4175
4176 sched_clock_tick();
dd41f596 4177
05fa785c 4178 raw_spin_lock(&rq->lock);
3e51f33f 4179 update_rq_clock(rq);
fdf3e95d 4180 update_cpu_load_active(rq);
fa85ae24 4181 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4182 raw_spin_unlock(&rq->lock);
7835b98b 4183
e9d2b064 4184 perf_event_task_tick();
e220d2dc 4185
e418e1c2 4186#ifdef CONFIG_SMP
dd41f596
IM
4187 rq->idle_at_tick = idle_cpu(cpu);
4188 trigger_load_balance(rq, cpu);
e418e1c2 4189#endif
1da177e4
LT
4190}
4191
132380a0 4192notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4193{
4194 if (in_lock_functions(addr)) {
4195 addr = CALLER_ADDR2;
4196 if (in_lock_functions(addr))
4197 addr = CALLER_ADDR3;
4198 }
4199 return addr;
4200}
1da177e4 4201
7e49fcce
SR
4202#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4203 defined(CONFIG_PREEMPT_TRACER))
4204
43627582 4205void __kprobes add_preempt_count(int val)
1da177e4 4206{
6cd8a4bb 4207#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4208 /*
4209 * Underflow?
4210 */
9a11b49a
IM
4211 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4212 return;
6cd8a4bb 4213#endif
1da177e4 4214 preempt_count() += val;
6cd8a4bb 4215#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4216 /*
4217 * Spinlock count overflowing soon?
4218 */
33859f7f
MOS
4219 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4220 PREEMPT_MASK - 10);
6cd8a4bb
SR
4221#endif
4222 if (preempt_count() == val)
4223 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4224}
4225EXPORT_SYMBOL(add_preempt_count);
4226
43627582 4227void __kprobes sub_preempt_count(int val)
1da177e4 4228{
6cd8a4bb 4229#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4230 /*
4231 * Underflow?
4232 */
01e3eb82 4233 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4234 return;
1da177e4
LT
4235 /*
4236 * Is the spinlock portion underflowing?
4237 */
9a11b49a
IM
4238 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4239 !(preempt_count() & PREEMPT_MASK)))
4240 return;
6cd8a4bb 4241#endif
9a11b49a 4242
6cd8a4bb
SR
4243 if (preempt_count() == val)
4244 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4245 preempt_count() -= val;
4246}
4247EXPORT_SYMBOL(sub_preempt_count);
4248
4249#endif
4250
4251/*
dd41f596 4252 * Print scheduling while atomic bug:
1da177e4 4253 */
dd41f596 4254static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4255{
838225b4
SS
4256 struct pt_regs *regs = get_irq_regs();
4257
3df0fc5b
PZ
4258 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4259 prev->comm, prev->pid, preempt_count());
838225b4 4260
dd41f596 4261 debug_show_held_locks(prev);
e21f5b15 4262 print_modules();
dd41f596
IM
4263 if (irqs_disabled())
4264 print_irqtrace_events(prev);
838225b4
SS
4265
4266 if (regs)
4267 show_regs(regs);
4268 else
4269 dump_stack();
dd41f596 4270}
1da177e4 4271
dd41f596
IM
4272/*
4273 * Various schedule()-time debugging checks and statistics:
4274 */
4275static inline void schedule_debug(struct task_struct *prev)
4276{
1da177e4 4277 /*
41a2d6cf 4278 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4279 * schedule() atomically, we ignore that path for now.
4280 * Otherwise, whine if we are scheduling when we should not be.
4281 */
3f33a7ce 4282 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4283 __schedule_bug(prev);
4284
1da177e4
LT
4285 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4286
2d72376b 4287 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4288}
4289
6cecd084 4290static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4291{
61eadef6 4292 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4293 update_rq_clock(rq);
6cecd084 4294 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4295}
4296
dd41f596
IM
4297/*
4298 * Pick up the highest-prio task:
4299 */
4300static inline struct task_struct *
b67802ea 4301pick_next_task(struct rq *rq)
dd41f596 4302{
5522d5d5 4303 const struct sched_class *class;
dd41f596 4304 struct task_struct *p;
1da177e4
LT
4305
4306 /*
dd41f596
IM
4307 * Optimization: we know that if all tasks are in
4308 * the fair class we can call that function directly:
1da177e4 4309 */
953bfcd1 4310 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4311 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4312 if (likely(p))
4313 return p;
1da177e4
LT
4314 }
4315
34f971f6 4316 for_each_class(class) {
fb8d4724 4317 p = class->pick_next_task(rq);
dd41f596
IM
4318 if (p)
4319 return p;
dd41f596 4320 }
34f971f6
PZ
4321
4322 BUG(); /* the idle class will always have a runnable task */
dd41f596 4323}
1da177e4 4324
dd41f596
IM
4325/*
4326 * schedule() is the main scheduler function.
4327 */
ff743345 4328asmlinkage void __sched schedule(void)
dd41f596
IM
4329{
4330 struct task_struct *prev, *next;
67ca7bde 4331 unsigned long *switch_count;
dd41f596 4332 struct rq *rq;
31656519 4333 int cpu;
dd41f596 4334
ff743345
PZ
4335need_resched:
4336 preempt_disable();
dd41f596
IM
4337 cpu = smp_processor_id();
4338 rq = cpu_rq(cpu);
25502a6c 4339 rcu_note_context_switch(cpu);
dd41f596 4340 prev = rq->curr;
dd41f596 4341
dd41f596 4342 schedule_debug(prev);
1da177e4 4343
31656519 4344 if (sched_feat(HRTICK))
f333fdc9 4345 hrtick_clear(rq);
8f4d37ec 4346
05fa785c 4347 raw_spin_lock_irq(&rq->lock);
1da177e4 4348
246d86b5 4349 switch_count = &prev->nivcsw;
1da177e4 4350 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4351 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4352 prev->state = TASK_RUNNING;
21aa9af0 4353 } else {
2acca55e
PZ
4354 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4355 prev->on_rq = 0;
4356
21aa9af0 4357 /*
2acca55e
PZ
4358 * If a worker went to sleep, notify and ask workqueue
4359 * whether it wants to wake up a task to maintain
4360 * concurrency.
21aa9af0
TH
4361 */
4362 if (prev->flags & PF_WQ_WORKER) {
4363 struct task_struct *to_wakeup;
4364
4365 to_wakeup = wq_worker_sleeping(prev, cpu);
4366 if (to_wakeup)
4367 try_to_wake_up_local(to_wakeup);
4368 }
fd2f4419 4369
6631e635 4370 /*
2acca55e
PZ
4371 * If we are going to sleep and we have plugged IO
4372 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4373 */
4374 if (blk_needs_flush_plug(prev)) {
4375 raw_spin_unlock(&rq->lock);
a237c1c5 4376 blk_schedule_flush_plug(prev);
6631e635
LT
4377 raw_spin_lock(&rq->lock);
4378 }
21aa9af0 4379 }
dd41f596 4380 switch_count = &prev->nvcsw;
1da177e4
LT
4381 }
4382
3f029d3c 4383 pre_schedule(rq, prev);
f65eda4f 4384
dd41f596 4385 if (unlikely(!rq->nr_running))
1da177e4 4386 idle_balance(cpu, rq);
1da177e4 4387
df1c99d4 4388 put_prev_task(rq, prev);
b67802ea 4389 next = pick_next_task(rq);
f26f9aff
MG
4390 clear_tsk_need_resched(prev);
4391 rq->skip_clock_update = 0;
1da177e4 4392
1da177e4 4393 if (likely(prev != next)) {
1da177e4
LT
4394 rq->nr_switches++;
4395 rq->curr = next;
4396 ++*switch_count;
4397
dd41f596 4398 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4399 /*
246d86b5
ON
4400 * The context switch have flipped the stack from under us
4401 * and restored the local variables which were saved when
4402 * this task called schedule() in the past. prev == current
4403 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4404 */
4405 cpu = smp_processor_id();
4406 rq = cpu_rq(cpu);
1da177e4 4407 } else
05fa785c 4408 raw_spin_unlock_irq(&rq->lock);
1da177e4 4409
3f029d3c 4410 post_schedule(rq);
1da177e4 4411
1da177e4 4412 preempt_enable_no_resched();
ff743345 4413 if (need_resched())
1da177e4
LT
4414 goto need_resched;
4415}
1da177e4
LT
4416EXPORT_SYMBOL(schedule);
4417
c08f7829 4418#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4419
c6eb3dda
PZ
4420static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4421{
c6eb3dda 4422 if (lock->owner != owner)
307bf980 4423 return false;
0d66bf6d
PZ
4424
4425 /*
c6eb3dda
PZ
4426 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4427 * lock->owner still matches owner, if that fails, owner might
4428 * point to free()d memory, if it still matches, the rcu_read_lock()
4429 * ensures the memory stays valid.
0d66bf6d 4430 */
c6eb3dda 4431 barrier();
0d66bf6d 4432
307bf980 4433 return owner->on_cpu;
c6eb3dda 4434}
0d66bf6d 4435
c6eb3dda
PZ
4436/*
4437 * Look out! "owner" is an entirely speculative pointer
4438 * access and not reliable.
4439 */
4440int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4441{
4442 if (!sched_feat(OWNER_SPIN))
4443 return 0;
0d66bf6d 4444
307bf980 4445 rcu_read_lock();
c6eb3dda
PZ
4446 while (owner_running(lock, owner)) {
4447 if (need_resched())
307bf980 4448 break;
0d66bf6d 4449
335d7afb 4450 arch_mutex_cpu_relax();
0d66bf6d 4451 }
307bf980 4452 rcu_read_unlock();
4b402210 4453
c6eb3dda 4454 /*
307bf980
TG
4455 * We break out the loop above on need_resched() and when the
4456 * owner changed, which is a sign for heavy contention. Return
4457 * success only when lock->owner is NULL.
c6eb3dda 4458 */
307bf980 4459 return lock->owner == NULL;
0d66bf6d
PZ
4460}
4461#endif
4462
1da177e4
LT
4463#ifdef CONFIG_PREEMPT
4464/*
2ed6e34f 4465 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4466 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4467 * occur there and call schedule directly.
4468 */
d1f74e20 4469asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4470{
4471 struct thread_info *ti = current_thread_info();
6478d880 4472
1da177e4
LT
4473 /*
4474 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4475 * we do not want to preempt the current task. Just return..
1da177e4 4476 */
beed33a8 4477 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4478 return;
4479
3a5c359a 4480 do {
d1f74e20 4481 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4482 schedule();
d1f74e20 4483 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4484
3a5c359a
AK
4485 /*
4486 * Check again in case we missed a preemption opportunity
4487 * between schedule and now.
4488 */
4489 barrier();
5ed0cec0 4490 } while (need_resched());
1da177e4 4491}
1da177e4
LT
4492EXPORT_SYMBOL(preempt_schedule);
4493
4494/*
2ed6e34f 4495 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4496 * off of irq context.
4497 * Note, that this is called and return with irqs disabled. This will
4498 * protect us against recursive calling from irq.
4499 */
4500asmlinkage void __sched preempt_schedule_irq(void)
4501{
4502 struct thread_info *ti = current_thread_info();
6478d880 4503
2ed6e34f 4504 /* Catch callers which need to be fixed */
1da177e4
LT
4505 BUG_ON(ti->preempt_count || !irqs_disabled());
4506
3a5c359a
AK
4507 do {
4508 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4509 local_irq_enable();
4510 schedule();
4511 local_irq_disable();
3a5c359a 4512 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4513
3a5c359a
AK
4514 /*
4515 * Check again in case we missed a preemption opportunity
4516 * between schedule and now.
4517 */
4518 barrier();
5ed0cec0 4519 } while (need_resched());
1da177e4
LT
4520}
4521
4522#endif /* CONFIG_PREEMPT */
4523
63859d4f 4524int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4525 void *key)
1da177e4 4526{
63859d4f 4527 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4528}
1da177e4
LT
4529EXPORT_SYMBOL(default_wake_function);
4530
4531/*
41a2d6cf
IM
4532 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4533 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4534 * number) then we wake all the non-exclusive tasks and one exclusive task.
4535 *
4536 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4537 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4538 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4539 */
78ddb08f 4540static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4541 int nr_exclusive, int wake_flags, void *key)
1da177e4 4542{
2e45874c 4543 wait_queue_t *curr, *next;
1da177e4 4544
2e45874c 4545 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4546 unsigned flags = curr->flags;
4547
63859d4f 4548 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4549 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4550 break;
4551 }
4552}
4553
4554/**
4555 * __wake_up - wake up threads blocked on a waitqueue.
4556 * @q: the waitqueue
4557 * @mode: which threads
4558 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4559 * @key: is directly passed to the wakeup function
50fa610a
DH
4560 *
4561 * It may be assumed that this function implies a write memory barrier before
4562 * changing the task state if and only if any tasks are woken up.
1da177e4 4563 */
7ad5b3a5 4564void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4565 int nr_exclusive, void *key)
1da177e4
LT
4566{
4567 unsigned long flags;
4568
4569 spin_lock_irqsave(&q->lock, flags);
4570 __wake_up_common(q, mode, nr_exclusive, 0, key);
4571 spin_unlock_irqrestore(&q->lock, flags);
4572}
1da177e4
LT
4573EXPORT_SYMBOL(__wake_up);
4574
4575/*
4576 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4577 */
7ad5b3a5 4578void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4579{
4580 __wake_up_common(q, mode, 1, 0, NULL);
4581}
22c43c81 4582EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4583
4ede816a
DL
4584void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4585{
4586 __wake_up_common(q, mode, 1, 0, key);
4587}
bf294b41 4588EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4589
1da177e4 4590/**
4ede816a 4591 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4592 * @q: the waitqueue
4593 * @mode: which threads
4594 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4595 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4596 *
4597 * The sync wakeup differs that the waker knows that it will schedule
4598 * away soon, so while the target thread will be woken up, it will not
4599 * be migrated to another CPU - ie. the two threads are 'synchronized'
4600 * with each other. This can prevent needless bouncing between CPUs.
4601 *
4602 * On UP it can prevent extra preemption.
50fa610a
DH
4603 *
4604 * It may be assumed that this function implies a write memory barrier before
4605 * changing the task state if and only if any tasks are woken up.
1da177e4 4606 */
4ede816a
DL
4607void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4608 int nr_exclusive, void *key)
1da177e4
LT
4609{
4610 unsigned long flags;
7d478721 4611 int wake_flags = WF_SYNC;
1da177e4
LT
4612
4613 if (unlikely(!q))
4614 return;
4615
4616 if (unlikely(!nr_exclusive))
7d478721 4617 wake_flags = 0;
1da177e4
LT
4618
4619 spin_lock_irqsave(&q->lock, flags);
7d478721 4620 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4621 spin_unlock_irqrestore(&q->lock, flags);
4622}
4ede816a
DL
4623EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4624
4625/*
4626 * __wake_up_sync - see __wake_up_sync_key()
4627 */
4628void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4629{
4630 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4631}
1da177e4
LT
4632EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4633
65eb3dc6
KD
4634/**
4635 * complete: - signals a single thread waiting on this completion
4636 * @x: holds the state of this particular completion
4637 *
4638 * This will wake up a single thread waiting on this completion. Threads will be
4639 * awakened in the same order in which they were queued.
4640 *
4641 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4642 *
4643 * It may be assumed that this function implies a write memory barrier before
4644 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4645 */
b15136e9 4646void complete(struct completion *x)
1da177e4
LT
4647{
4648 unsigned long flags;
4649
4650 spin_lock_irqsave(&x->wait.lock, flags);
4651 x->done++;
d9514f6c 4652 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4653 spin_unlock_irqrestore(&x->wait.lock, flags);
4654}
4655EXPORT_SYMBOL(complete);
4656
65eb3dc6
KD
4657/**
4658 * complete_all: - signals all threads waiting on this completion
4659 * @x: holds the state of this particular completion
4660 *
4661 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4662 *
4663 * It may be assumed that this function implies a write memory barrier before
4664 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4665 */
b15136e9 4666void complete_all(struct completion *x)
1da177e4
LT
4667{
4668 unsigned long flags;
4669
4670 spin_lock_irqsave(&x->wait.lock, flags);
4671 x->done += UINT_MAX/2;
d9514f6c 4672 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4673 spin_unlock_irqrestore(&x->wait.lock, flags);
4674}
4675EXPORT_SYMBOL(complete_all);
4676
8cbbe86d
AK
4677static inline long __sched
4678do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4679{
1da177e4
LT
4680 if (!x->done) {
4681 DECLARE_WAITQUEUE(wait, current);
4682
a93d2f17 4683 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4684 do {
94d3d824 4685 if (signal_pending_state(state, current)) {
ea71a546
ON
4686 timeout = -ERESTARTSYS;
4687 break;
8cbbe86d
AK
4688 }
4689 __set_current_state(state);
1da177e4
LT
4690 spin_unlock_irq(&x->wait.lock);
4691 timeout = schedule_timeout(timeout);
4692 spin_lock_irq(&x->wait.lock);
ea71a546 4693 } while (!x->done && timeout);
1da177e4 4694 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4695 if (!x->done)
4696 return timeout;
1da177e4
LT
4697 }
4698 x->done--;
ea71a546 4699 return timeout ?: 1;
1da177e4 4700}
1da177e4 4701
8cbbe86d
AK
4702static long __sched
4703wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4704{
1da177e4
LT
4705 might_sleep();
4706
4707 spin_lock_irq(&x->wait.lock);
8cbbe86d 4708 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4709 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4710 return timeout;
4711}
1da177e4 4712
65eb3dc6
KD
4713/**
4714 * wait_for_completion: - waits for completion of a task
4715 * @x: holds the state of this particular completion
4716 *
4717 * This waits to be signaled for completion of a specific task. It is NOT
4718 * interruptible and there is no timeout.
4719 *
4720 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4721 * and interrupt capability. Also see complete().
4722 */
b15136e9 4723void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4724{
4725 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4726}
8cbbe86d 4727EXPORT_SYMBOL(wait_for_completion);
1da177e4 4728
65eb3dc6
KD
4729/**
4730 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4731 * @x: holds the state of this particular completion
4732 * @timeout: timeout value in jiffies
4733 *
4734 * This waits for either a completion of a specific task to be signaled or for a
4735 * specified timeout to expire. The timeout is in jiffies. It is not
4736 * interruptible.
4737 */
b15136e9 4738unsigned long __sched
8cbbe86d 4739wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4740{
8cbbe86d 4741 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4742}
8cbbe86d 4743EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4744
65eb3dc6
KD
4745/**
4746 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4747 * @x: holds the state of this particular completion
4748 *
4749 * This waits for completion of a specific task to be signaled. It is
4750 * interruptible.
4751 */
8cbbe86d 4752int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4753{
51e97990
AK
4754 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4755 if (t == -ERESTARTSYS)
4756 return t;
4757 return 0;
0fec171c 4758}
8cbbe86d 4759EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4760
65eb3dc6
KD
4761/**
4762 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4763 * @x: holds the state of this particular completion
4764 * @timeout: timeout value in jiffies
4765 *
4766 * This waits for either a completion of a specific task to be signaled or for a
4767 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4768 */
6bf41237 4769long __sched
8cbbe86d
AK
4770wait_for_completion_interruptible_timeout(struct completion *x,
4771 unsigned long timeout)
0fec171c 4772{
8cbbe86d 4773 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4774}
8cbbe86d 4775EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4776
65eb3dc6
KD
4777/**
4778 * wait_for_completion_killable: - waits for completion of a task (killable)
4779 * @x: holds the state of this particular completion
4780 *
4781 * This waits to be signaled for completion of a specific task. It can be
4782 * interrupted by a kill signal.
4783 */
009e577e
MW
4784int __sched wait_for_completion_killable(struct completion *x)
4785{
4786 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4787 if (t == -ERESTARTSYS)
4788 return t;
4789 return 0;
4790}
4791EXPORT_SYMBOL(wait_for_completion_killable);
4792
0aa12fb4
SW
4793/**
4794 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4795 * @x: holds the state of this particular completion
4796 * @timeout: timeout value in jiffies
4797 *
4798 * This waits for either a completion of a specific task to be
4799 * signaled or for a specified timeout to expire. It can be
4800 * interrupted by a kill signal. The timeout is in jiffies.
4801 */
6bf41237 4802long __sched
0aa12fb4
SW
4803wait_for_completion_killable_timeout(struct completion *x,
4804 unsigned long timeout)
4805{
4806 return wait_for_common(x, timeout, TASK_KILLABLE);
4807}
4808EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4809
be4de352
DC
4810/**
4811 * try_wait_for_completion - try to decrement a completion without blocking
4812 * @x: completion structure
4813 *
4814 * Returns: 0 if a decrement cannot be done without blocking
4815 * 1 if a decrement succeeded.
4816 *
4817 * If a completion is being used as a counting completion,
4818 * attempt to decrement the counter without blocking. This
4819 * enables us to avoid waiting if the resource the completion
4820 * is protecting is not available.
4821 */
4822bool try_wait_for_completion(struct completion *x)
4823{
7539a3b3 4824 unsigned long flags;
be4de352
DC
4825 int ret = 1;
4826
7539a3b3 4827 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4828 if (!x->done)
4829 ret = 0;
4830 else
4831 x->done--;
7539a3b3 4832 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4833 return ret;
4834}
4835EXPORT_SYMBOL(try_wait_for_completion);
4836
4837/**
4838 * completion_done - Test to see if a completion has any waiters
4839 * @x: completion structure
4840 *
4841 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4842 * 1 if there are no waiters.
4843 *
4844 */
4845bool completion_done(struct completion *x)
4846{
7539a3b3 4847 unsigned long flags;
be4de352
DC
4848 int ret = 1;
4849
7539a3b3 4850 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4851 if (!x->done)
4852 ret = 0;
7539a3b3 4853 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4854 return ret;
4855}
4856EXPORT_SYMBOL(completion_done);
4857
8cbbe86d
AK
4858static long __sched
4859sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4860{
0fec171c
IM
4861 unsigned long flags;
4862 wait_queue_t wait;
4863
4864 init_waitqueue_entry(&wait, current);
1da177e4 4865
8cbbe86d 4866 __set_current_state(state);
1da177e4 4867
8cbbe86d
AK
4868 spin_lock_irqsave(&q->lock, flags);
4869 __add_wait_queue(q, &wait);
4870 spin_unlock(&q->lock);
4871 timeout = schedule_timeout(timeout);
4872 spin_lock_irq(&q->lock);
4873 __remove_wait_queue(q, &wait);
4874 spin_unlock_irqrestore(&q->lock, flags);
4875
4876 return timeout;
4877}
4878
4879void __sched interruptible_sleep_on(wait_queue_head_t *q)
4880{
4881 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4882}
1da177e4
LT
4883EXPORT_SYMBOL(interruptible_sleep_on);
4884
0fec171c 4885long __sched
95cdf3b7 4886interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4887{
8cbbe86d 4888 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4889}
1da177e4
LT
4890EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4891
0fec171c 4892void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4893{
8cbbe86d 4894 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4895}
1da177e4
LT
4896EXPORT_SYMBOL(sleep_on);
4897
0fec171c 4898long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4899{
8cbbe86d 4900 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4901}
1da177e4
LT
4902EXPORT_SYMBOL(sleep_on_timeout);
4903
b29739f9
IM
4904#ifdef CONFIG_RT_MUTEXES
4905
4906/*
4907 * rt_mutex_setprio - set the current priority of a task
4908 * @p: task
4909 * @prio: prio value (kernel-internal form)
4910 *
4911 * This function changes the 'effective' priority of a task. It does
4912 * not touch ->normal_prio like __setscheduler().
4913 *
4914 * Used by the rt_mutex code to implement priority inheritance logic.
4915 */
36c8b586 4916void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4917{
83b699ed 4918 int oldprio, on_rq, running;
70b97a7f 4919 struct rq *rq;
83ab0aa0 4920 const struct sched_class *prev_class;
b29739f9
IM
4921
4922 BUG_ON(prio < 0 || prio > MAX_PRIO);
4923
0122ec5b 4924 rq = __task_rq_lock(p);
b29739f9 4925
a8027073 4926 trace_sched_pi_setprio(p, prio);
d5f9f942 4927 oldprio = p->prio;
83ab0aa0 4928 prev_class = p->sched_class;
fd2f4419 4929 on_rq = p->on_rq;
051a1d1a 4930 running = task_current(rq, p);
0e1f3483 4931 if (on_rq)
69be72c1 4932 dequeue_task(rq, p, 0);
0e1f3483
HS
4933 if (running)
4934 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4935
4936 if (rt_prio(prio))
4937 p->sched_class = &rt_sched_class;
4938 else
4939 p->sched_class = &fair_sched_class;
4940
b29739f9
IM
4941 p->prio = prio;
4942
0e1f3483
HS
4943 if (running)
4944 p->sched_class->set_curr_task(rq);
da7a735e 4945 if (on_rq)
371fd7e7 4946 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4947
da7a735e 4948 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4949 __task_rq_unlock(rq);
b29739f9
IM
4950}
4951
4952#endif
4953
36c8b586 4954void set_user_nice(struct task_struct *p, long nice)
1da177e4 4955{
dd41f596 4956 int old_prio, delta, on_rq;
1da177e4 4957 unsigned long flags;
70b97a7f 4958 struct rq *rq;
1da177e4
LT
4959
4960 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4961 return;
4962 /*
4963 * We have to be careful, if called from sys_setpriority(),
4964 * the task might be in the middle of scheduling on another CPU.
4965 */
4966 rq = task_rq_lock(p, &flags);
4967 /*
4968 * The RT priorities are set via sched_setscheduler(), but we still
4969 * allow the 'normal' nice value to be set - but as expected
4970 * it wont have any effect on scheduling until the task is
dd41f596 4971 * SCHED_FIFO/SCHED_RR:
1da177e4 4972 */
e05606d3 4973 if (task_has_rt_policy(p)) {
1da177e4
LT
4974 p->static_prio = NICE_TO_PRIO(nice);
4975 goto out_unlock;
4976 }
fd2f4419 4977 on_rq = p->on_rq;
c09595f6 4978 if (on_rq)
69be72c1 4979 dequeue_task(rq, p, 0);
1da177e4 4980
1da177e4 4981 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4982 set_load_weight(p);
b29739f9
IM
4983 old_prio = p->prio;
4984 p->prio = effective_prio(p);
4985 delta = p->prio - old_prio;
1da177e4 4986
dd41f596 4987 if (on_rq) {
371fd7e7 4988 enqueue_task(rq, p, 0);
1da177e4 4989 /*
d5f9f942
AM
4990 * If the task increased its priority or is running and
4991 * lowered its priority, then reschedule its CPU:
1da177e4 4992 */
d5f9f942 4993 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4994 resched_task(rq->curr);
4995 }
4996out_unlock:
0122ec5b 4997 task_rq_unlock(rq, p, &flags);
1da177e4 4998}
1da177e4
LT
4999EXPORT_SYMBOL(set_user_nice);
5000
e43379f1
MM
5001/*
5002 * can_nice - check if a task can reduce its nice value
5003 * @p: task
5004 * @nice: nice value
5005 */
36c8b586 5006int can_nice(const struct task_struct *p, const int nice)
e43379f1 5007{
024f4747
MM
5008 /* convert nice value [19,-20] to rlimit style value [1,40] */
5009 int nice_rlim = 20 - nice;
48f24c4d 5010
78d7d407 5011 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5012 capable(CAP_SYS_NICE));
5013}
5014
1da177e4
LT
5015#ifdef __ARCH_WANT_SYS_NICE
5016
5017/*
5018 * sys_nice - change the priority of the current process.
5019 * @increment: priority increment
5020 *
5021 * sys_setpriority is a more generic, but much slower function that
5022 * does similar things.
5023 */
5add95d4 5024SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5025{
48f24c4d 5026 long nice, retval;
1da177e4
LT
5027
5028 /*
5029 * Setpriority might change our priority at the same moment.
5030 * We don't have to worry. Conceptually one call occurs first
5031 * and we have a single winner.
5032 */
e43379f1
MM
5033 if (increment < -40)
5034 increment = -40;
1da177e4
LT
5035 if (increment > 40)
5036 increment = 40;
5037
2b8f836f 5038 nice = TASK_NICE(current) + increment;
1da177e4
LT
5039 if (nice < -20)
5040 nice = -20;
5041 if (nice > 19)
5042 nice = 19;
5043
e43379f1
MM
5044 if (increment < 0 && !can_nice(current, nice))
5045 return -EPERM;
5046
1da177e4
LT
5047 retval = security_task_setnice(current, nice);
5048 if (retval)
5049 return retval;
5050
5051 set_user_nice(current, nice);
5052 return 0;
5053}
5054
5055#endif
5056
5057/**
5058 * task_prio - return the priority value of a given task.
5059 * @p: the task in question.
5060 *
5061 * This is the priority value as seen by users in /proc.
5062 * RT tasks are offset by -200. Normal tasks are centered
5063 * around 0, value goes from -16 to +15.
5064 */
36c8b586 5065int task_prio(const struct task_struct *p)
1da177e4
LT
5066{
5067 return p->prio - MAX_RT_PRIO;
5068}
5069
5070/**
5071 * task_nice - return the nice value of a given task.
5072 * @p: the task in question.
5073 */
36c8b586 5074int task_nice(const struct task_struct *p)
1da177e4
LT
5075{
5076 return TASK_NICE(p);
5077}
150d8bed 5078EXPORT_SYMBOL(task_nice);
1da177e4
LT
5079
5080/**
5081 * idle_cpu - is a given cpu idle currently?
5082 * @cpu: the processor in question.
5083 */
5084int idle_cpu(int cpu)
5085{
5086 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5087}
5088
1da177e4
LT
5089/**
5090 * idle_task - return the idle task for a given cpu.
5091 * @cpu: the processor in question.
5092 */
36c8b586 5093struct task_struct *idle_task(int cpu)
1da177e4
LT
5094{
5095 return cpu_rq(cpu)->idle;
5096}
5097
5098/**
5099 * find_process_by_pid - find a process with a matching PID value.
5100 * @pid: the pid in question.
5101 */
a9957449 5102static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5103{
228ebcbe 5104 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5105}
5106
5107/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5108static void
5109__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5110{
1da177e4
LT
5111 p->policy = policy;
5112 p->rt_priority = prio;
b29739f9
IM
5113 p->normal_prio = normal_prio(p);
5114 /* we are holding p->pi_lock already */
5115 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5116 if (rt_prio(p->prio))
5117 p->sched_class = &rt_sched_class;
5118 else
5119 p->sched_class = &fair_sched_class;
2dd73a4f 5120 set_load_weight(p);
1da177e4
LT
5121}
5122
c69e8d9c
DH
5123/*
5124 * check the target process has a UID that matches the current process's
5125 */
5126static bool check_same_owner(struct task_struct *p)
5127{
5128 const struct cred *cred = current_cred(), *pcred;
5129 bool match;
5130
5131 rcu_read_lock();
5132 pcred = __task_cred(p);
b0e77598
SH
5133 if (cred->user->user_ns == pcred->user->user_ns)
5134 match = (cred->euid == pcred->euid ||
5135 cred->euid == pcred->uid);
5136 else
5137 match = false;
c69e8d9c
DH
5138 rcu_read_unlock();
5139 return match;
5140}
5141
961ccddd 5142static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5143 const struct sched_param *param, bool user)
1da177e4 5144{
83b699ed 5145 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5146 unsigned long flags;
83ab0aa0 5147 const struct sched_class *prev_class;
70b97a7f 5148 struct rq *rq;
ca94c442 5149 int reset_on_fork;
1da177e4 5150
66e5393a
SR
5151 /* may grab non-irq protected spin_locks */
5152 BUG_ON(in_interrupt());
1da177e4
LT
5153recheck:
5154 /* double check policy once rq lock held */
ca94c442
LP
5155 if (policy < 0) {
5156 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5157 policy = oldpolicy = p->policy;
ca94c442
LP
5158 } else {
5159 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5160 policy &= ~SCHED_RESET_ON_FORK;
5161
5162 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5163 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5164 policy != SCHED_IDLE)
5165 return -EINVAL;
5166 }
5167
1da177e4
LT
5168 /*
5169 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5170 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5171 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5172 */
5173 if (param->sched_priority < 0 ||
95cdf3b7 5174 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5175 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5176 return -EINVAL;
e05606d3 5177 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5178 return -EINVAL;
5179
37e4ab3f
OC
5180 /*
5181 * Allow unprivileged RT tasks to decrease priority:
5182 */
961ccddd 5183 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5184 if (rt_policy(policy)) {
a44702e8
ON
5185 unsigned long rlim_rtprio =
5186 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5187
5188 /* can't set/change the rt policy */
5189 if (policy != p->policy && !rlim_rtprio)
5190 return -EPERM;
5191
5192 /* can't increase priority */
5193 if (param->sched_priority > p->rt_priority &&
5194 param->sched_priority > rlim_rtprio)
5195 return -EPERM;
5196 }
c02aa73b 5197
dd41f596 5198 /*
c02aa73b
DH
5199 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5200 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5201 */
c02aa73b
DH
5202 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5203 if (!can_nice(p, TASK_NICE(p)))
5204 return -EPERM;
5205 }
5fe1d75f 5206
37e4ab3f 5207 /* can't change other user's priorities */
c69e8d9c 5208 if (!check_same_owner(p))
37e4ab3f 5209 return -EPERM;
ca94c442
LP
5210
5211 /* Normal users shall not reset the sched_reset_on_fork flag */
5212 if (p->sched_reset_on_fork && !reset_on_fork)
5213 return -EPERM;
37e4ab3f 5214 }
1da177e4 5215
725aad24 5216 if (user) {
b0ae1981 5217 retval = security_task_setscheduler(p);
725aad24
JF
5218 if (retval)
5219 return retval;
5220 }
5221
b29739f9
IM
5222 /*
5223 * make sure no PI-waiters arrive (or leave) while we are
5224 * changing the priority of the task:
0122ec5b 5225 *
25985edc 5226 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5227 * runqueue lock must be held.
5228 */
0122ec5b 5229 rq = task_rq_lock(p, &flags);
dc61b1d6 5230
34f971f6
PZ
5231 /*
5232 * Changing the policy of the stop threads its a very bad idea
5233 */
5234 if (p == rq->stop) {
0122ec5b 5235 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5236 return -EINVAL;
5237 }
5238
a51e9198
DF
5239 /*
5240 * If not changing anything there's no need to proceed further:
5241 */
5242 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5243 param->sched_priority == p->rt_priority))) {
5244
5245 __task_rq_unlock(rq);
5246 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5247 return 0;
5248 }
5249
dc61b1d6
PZ
5250#ifdef CONFIG_RT_GROUP_SCHED
5251 if (user) {
5252 /*
5253 * Do not allow realtime tasks into groups that have no runtime
5254 * assigned.
5255 */
5256 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5257 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5258 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5259 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5260 return -EPERM;
5261 }
5262 }
5263#endif
5264
1da177e4
LT
5265 /* recheck policy now with rq lock held */
5266 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5267 policy = oldpolicy = -1;
0122ec5b 5268 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5269 goto recheck;
5270 }
fd2f4419 5271 on_rq = p->on_rq;
051a1d1a 5272 running = task_current(rq, p);
0e1f3483 5273 if (on_rq)
2e1cb74a 5274 deactivate_task(rq, p, 0);
0e1f3483
HS
5275 if (running)
5276 p->sched_class->put_prev_task(rq, p);
f6b53205 5277
ca94c442
LP
5278 p->sched_reset_on_fork = reset_on_fork;
5279
1da177e4 5280 oldprio = p->prio;
83ab0aa0 5281 prev_class = p->sched_class;
dd41f596 5282 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5283
0e1f3483
HS
5284 if (running)
5285 p->sched_class->set_curr_task(rq);
da7a735e 5286 if (on_rq)
dd41f596 5287 activate_task(rq, p, 0);
cb469845 5288
da7a735e 5289 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5290 task_rq_unlock(rq, p, &flags);
b29739f9 5291
95e02ca9
TG
5292 rt_mutex_adjust_pi(p);
5293
1da177e4
LT
5294 return 0;
5295}
961ccddd
RR
5296
5297/**
5298 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5299 * @p: the task in question.
5300 * @policy: new policy.
5301 * @param: structure containing the new RT priority.
5302 *
5303 * NOTE that the task may be already dead.
5304 */
5305int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5306 const struct sched_param *param)
961ccddd
RR
5307{
5308 return __sched_setscheduler(p, policy, param, true);
5309}
1da177e4
LT
5310EXPORT_SYMBOL_GPL(sched_setscheduler);
5311
961ccddd
RR
5312/**
5313 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5314 * @p: the task in question.
5315 * @policy: new policy.
5316 * @param: structure containing the new RT priority.
5317 *
5318 * Just like sched_setscheduler, only don't bother checking if the
5319 * current context has permission. For example, this is needed in
5320 * stop_machine(): we create temporary high priority worker threads,
5321 * but our caller might not have that capability.
5322 */
5323int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5324 const struct sched_param *param)
961ccddd
RR
5325{
5326 return __sched_setscheduler(p, policy, param, false);
5327}
5328
95cdf3b7
IM
5329static int
5330do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5331{
1da177e4
LT
5332 struct sched_param lparam;
5333 struct task_struct *p;
36c8b586 5334 int retval;
1da177e4
LT
5335
5336 if (!param || pid < 0)
5337 return -EINVAL;
5338 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5339 return -EFAULT;
5fe1d75f
ON
5340
5341 rcu_read_lock();
5342 retval = -ESRCH;
1da177e4 5343 p = find_process_by_pid(pid);
5fe1d75f
ON
5344 if (p != NULL)
5345 retval = sched_setscheduler(p, policy, &lparam);
5346 rcu_read_unlock();
36c8b586 5347
1da177e4
LT
5348 return retval;
5349}
5350
5351/**
5352 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5353 * @pid: the pid in question.
5354 * @policy: new policy.
5355 * @param: structure containing the new RT priority.
5356 */
5add95d4
HC
5357SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5358 struct sched_param __user *, param)
1da177e4 5359{
c21761f1
JB
5360 /* negative values for policy are not valid */
5361 if (policy < 0)
5362 return -EINVAL;
5363
1da177e4
LT
5364 return do_sched_setscheduler(pid, policy, param);
5365}
5366
5367/**
5368 * sys_sched_setparam - set/change the RT priority of a thread
5369 * @pid: the pid in question.
5370 * @param: structure containing the new RT priority.
5371 */
5add95d4 5372SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5373{
5374 return do_sched_setscheduler(pid, -1, param);
5375}
5376
5377/**
5378 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5379 * @pid: the pid in question.
5380 */
5add95d4 5381SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5382{
36c8b586 5383 struct task_struct *p;
3a5c359a 5384 int retval;
1da177e4
LT
5385
5386 if (pid < 0)
3a5c359a 5387 return -EINVAL;
1da177e4
LT
5388
5389 retval = -ESRCH;
5fe85be0 5390 rcu_read_lock();
1da177e4
LT
5391 p = find_process_by_pid(pid);
5392 if (p) {
5393 retval = security_task_getscheduler(p);
5394 if (!retval)
ca94c442
LP
5395 retval = p->policy
5396 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5397 }
5fe85be0 5398 rcu_read_unlock();
1da177e4
LT
5399 return retval;
5400}
5401
5402/**
ca94c442 5403 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5404 * @pid: the pid in question.
5405 * @param: structure containing the RT priority.
5406 */
5add95d4 5407SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5408{
5409 struct sched_param lp;
36c8b586 5410 struct task_struct *p;
3a5c359a 5411 int retval;
1da177e4
LT
5412
5413 if (!param || pid < 0)
3a5c359a 5414 return -EINVAL;
1da177e4 5415
5fe85be0 5416 rcu_read_lock();
1da177e4
LT
5417 p = find_process_by_pid(pid);
5418 retval = -ESRCH;
5419 if (!p)
5420 goto out_unlock;
5421
5422 retval = security_task_getscheduler(p);
5423 if (retval)
5424 goto out_unlock;
5425
5426 lp.sched_priority = p->rt_priority;
5fe85be0 5427 rcu_read_unlock();
1da177e4
LT
5428
5429 /*
5430 * This one might sleep, we cannot do it with a spinlock held ...
5431 */
5432 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5433
1da177e4
LT
5434 return retval;
5435
5436out_unlock:
5fe85be0 5437 rcu_read_unlock();
1da177e4
LT
5438 return retval;
5439}
5440
96f874e2 5441long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5442{
5a16f3d3 5443 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5444 struct task_struct *p;
5445 int retval;
1da177e4 5446
95402b38 5447 get_online_cpus();
23f5d142 5448 rcu_read_lock();
1da177e4
LT
5449
5450 p = find_process_by_pid(pid);
5451 if (!p) {
23f5d142 5452 rcu_read_unlock();
95402b38 5453 put_online_cpus();
1da177e4
LT
5454 return -ESRCH;
5455 }
5456
23f5d142 5457 /* Prevent p going away */
1da177e4 5458 get_task_struct(p);
23f5d142 5459 rcu_read_unlock();
1da177e4 5460
5a16f3d3
RR
5461 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5462 retval = -ENOMEM;
5463 goto out_put_task;
5464 }
5465 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5466 retval = -ENOMEM;
5467 goto out_free_cpus_allowed;
5468 }
1da177e4 5469 retval = -EPERM;
b0e77598 5470 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5471 goto out_unlock;
5472
b0ae1981 5473 retval = security_task_setscheduler(p);
e7834f8f
DQ
5474 if (retval)
5475 goto out_unlock;
5476
5a16f3d3
RR
5477 cpuset_cpus_allowed(p, cpus_allowed);
5478 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5479again:
5a16f3d3 5480 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5481
8707d8b8 5482 if (!retval) {
5a16f3d3
RR
5483 cpuset_cpus_allowed(p, cpus_allowed);
5484 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5485 /*
5486 * We must have raced with a concurrent cpuset
5487 * update. Just reset the cpus_allowed to the
5488 * cpuset's cpus_allowed
5489 */
5a16f3d3 5490 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5491 goto again;
5492 }
5493 }
1da177e4 5494out_unlock:
5a16f3d3
RR
5495 free_cpumask_var(new_mask);
5496out_free_cpus_allowed:
5497 free_cpumask_var(cpus_allowed);
5498out_put_task:
1da177e4 5499 put_task_struct(p);
95402b38 5500 put_online_cpus();
1da177e4
LT
5501 return retval;
5502}
5503
5504static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5505 struct cpumask *new_mask)
1da177e4 5506{
96f874e2
RR
5507 if (len < cpumask_size())
5508 cpumask_clear(new_mask);
5509 else if (len > cpumask_size())
5510 len = cpumask_size();
5511
1da177e4
LT
5512 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5513}
5514
5515/**
5516 * sys_sched_setaffinity - set the cpu affinity of a process
5517 * @pid: pid of the process
5518 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5519 * @user_mask_ptr: user-space pointer to the new cpu mask
5520 */
5add95d4
HC
5521SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5522 unsigned long __user *, user_mask_ptr)
1da177e4 5523{
5a16f3d3 5524 cpumask_var_t new_mask;
1da177e4
LT
5525 int retval;
5526
5a16f3d3
RR
5527 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5528 return -ENOMEM;
1da177e4 5529
5a16f3d3
RR
5530 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5531 if (retval == 0)
5532 retval = sched_setaffinity(pid, new_mask);
5533 free_cpumask_var(new_mask);
5534 return retval;
1da177e4
LT
5535}
5536
96f874e2 5537long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5538{
36c8b586 5539 struct task_struct *p;
31605683 5540 unsigned long flags;
1da177e4 5541 int retval;
1da177e4 5542
95402b38 5543 get_online_cpus();
23f5d142 5544 rcu_read_lock();
1da177e4
LT
5545
5546 retval = -ESRCH;
5547 p = find_process_by_pid(pid);
5548 if (!p)
5549 goto out_unlock;
5550
e7834f8f
DQ
5551 retval = security_task_getscheduler(p);
5552 if (retval)
5553 goto out_unlock;
5554
013fdb80 5555 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5556 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5557 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5558
5559out_unlock:
23f5d142 5560 rcu_read_unlock();
95402b38 5561 put_online_cpus();
1da177e4 5562
9531b62f 5563 return retval;
1da177e4
LT
5564}
5565
5566/**
5567 * sys_sched_getaffinity - get the cpu affinity of a process
5568 * @pid: pid of the process
5569 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5570 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5571 */
5add95d4
HC
5572SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5573 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5574{
5575 int ret;
f17c8607 5576 cpumask_var_t mask;
1da177e4 5577
84fba5ec 5578 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5579 return -EINVAL;
5580 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5581 return -EINVAL;
5582
f17c8607
RR
5583 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5584 return -ENOMEM;
1da177e4 5585
f17c8607
RR
5586 ret = sched_getaffinity(pid, mask);
5587 if (ret == 0) {
8bc037fb 5588 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5589
5590 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5591 ret = -EFAULT;
5592 else
cd3d8031 5593 ret = retlen;
f17c8607
RR
5594 }
5595 free_cpumask_var(mask);
1da177e4 5596
f17c8607 5597 return ret;
1da177e4
LT
5598}
5599
5600/**
5601 * sys_sched_yield - yield the current processor to other threads.
5602 *
dd41f596
IM
5603 * This function yields the current CPU to other tasks. If there are no
5604 * other threads running on this CPU then this function will return.
1da177e4 5605 */
5add95d4 5606SYSCALL_DEFINE0(sched_yield)
1da177e4 5607{
70b97a7f 5608 struct rq *rq = this_rq_lock();
1da177e4 5609
2d72376b 5610 schedstat_inc(rq, yld_count);
4530d7ab 5611 current->sched_class->yield_task(rq);
1da177e4
LT
5612
5613 /*
5614 * Since we are going to call schedule() anyway, there's
5615 * no need to preempt or enable interrupts:
5616 */
5617 __release(rq->lock);
8a25d5de 5618 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5619 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5620 preempt_enable_no_resched();
5621
5622 schedule();
5623
5624 return 0;
5625}
5626
d86ee480
PZ
5627static inline int should_resched(void)
5628{
5629 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5630}
5631
e7b38404 5632static void __cond_resched(void)
1da177e4 5633{
e7aaaa69
FW
5634 add_preempt_count(PREEMPT_ACTIVE);
5635 schedule();
5636 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5637}
5638
02b67cc3 5639int __sched _cond_resched(void)
1da177e4 5640{
d86ee480 5641 if (should_resched()) {
1da177e4
LT
5642 __cond_resched();
5643 return 1;
5644 }
5645 return 0;
5646}
02b67cc3 5647EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5648
5649/*
613afbf8 5650 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5651 * call schedule, and on return reacquire the lock.
5652 *
41a2d6cf 5653 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5654 * operations here to prevent schedule() from being called twice (once via
5655 * spin_unlock(), once by hand).
5656 */
613afbf8 5657int __cond_resched_lock(spinlock_t *lock)
1da177e4 5658{
d86ee480 5659 int resched = should_resched();
6df3cecb
JK
5660 int ret = 0;
5661
f607c668
PZ
5662 lockdep_assert_held(lock);
5663
95c354fe 5664 if (spin_needbreak(lock) || resched) {
1da177e4 5665 spin_unlock(lock);
d86ee480 5666 if (resched)
95c354fe
NP
5667 __cond_resched();
5668 else
5669 cpu_relax();
6df3cecb 5670 ret = 1;
1da177e4 5671 spin_lock(lock);
1da177e4 5672 }
6df3cecb 5673 return ret;
1da177e4 5674}
613afbf8 5675EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5676
613afbf8 5677int __sched __cond_resched_softirq(void)
1da177e4
LT
5678{
5679 BUG_ON(!in_softirq());
5680
d86ee480 5681 if (should_resched()) {
98d82567 5682 local_bh_enable();
1da177e4
LT
5683 __cond_resched();
5684 local_bh_disable();
5685 return 1;
5686 }
5687 return 0;
5688}
613afbf8 5689EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5690
1da177e4
LT
5691/**
5692 * yield - yield the current processor to other threads.
5693 *
72fd4a35 5694 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5695 * thread runnable and calls sys_sched_yield().
5696 */
5697void __sched yield(void)
5698{
5699 set_current_state(TASK_RUNNING);
5700 sys_sched_yield();
5701}
1da177e4
LT
5702EXPORT_SYMBOL(yield);
5703
d95f4122
MG
5704/**
5705 * yield_to - yield the current processor to another thread in
5706 * your thread group, or accelerate that thread toward the
5707 * processor it's on.
16addf95
RD
5708 * @p: target task
5709 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5710 *
5711 * It's the caller's job to ensure that the target task struct
5712 * can't go away on us before we can do any checks.
5713 *
5714 * Returns true if we indeed boosted the target task.
5715 */
5716bool __sched yield_to(struct task_struct *p, bool preempt)
5717{
5718 struct task_struct *curr = current;
5719 struct rq *rq, *p_rq;
5720 unsigned long flags;
5721 bool yielded = 0;
5722
5723 local_irq_save(flags);
5724 rq = this_rq();
5725
5726again:
5727 p_rq = task_rq(p);
5728 double_rq_lock(rq, p_rq);
5729 while (task_rq(p) != p_rq) {
5730 double_rq_unlock(rq, p_rq);
5731 goto again;
5732 }
5733
5734 if (!curr->sched_class->yield_to_task)
5735 goto out;
5736
5737 if (curr->sched_class != p->sched_class)
5738 goto out;
5739
5740 if (task_running(p_rq, p) || p->state)
5741 goto out;
5742
5743 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5744 if (yielded) {
d95f4122 5745 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5746 /*
5747 * Make p's CPU reschedule; pick_next_entity takes care of
5748 * fairness.
5749 */
5750 if (preempt && rq != p_rq)
5751 resched_task(p_rq->curr);
5752 }
d95f4122
MG
5753
5754out:
5755 double_rq_unlock(rq, p_rq);
5756 local_irq_restore(flags);
5757
5758 if (yielded)
5759 schedule();
5760
5761 return yielded;
5762}
5763EXPORT_SYMBOL_GPL(yield_to);
5764
1da177e4 5765/*
41a2d6cf 5766 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5767 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5768 */
5769void __sched io_schedule(void)
5770{
54d35f29 5771 struct rq *rq = raw_rq();
1da177e4 5772
0ff92245 5773 delayacct_blkio_start();
1da177e4 5774 atomic_inc(&rq->nr_iowait);
73c10101 5775 blk_flush_plug(current);
8f0dfc34 5776 current->in_iowait = 1;
1da177e4 5777 schedule();
8f0dfc34 5778 current->in_iowait = 0;
1da177e4 5779 atomic_dec(&rq->nr_iowait);
0ff92245 5780 delayacct_blkio_end();
1da177e4 5781}
1da177e4
LT
5782EXPORT_SYMBOL(io_schedule);
5783
5784long __sched io_schedule_timeout(long timeout)
5785{
54d35f29 5786 struct rq *rq = raw_rq();
1da177e4
LT
5787 long ret;
5788
0ff92245 5789 delayacct_blkio_start();
1da177e4 5790 atomic_inc(&rq->nr_iowait);
73c10101 5791 blk_flush_plug(current);
8f0dfc34 5792 current->in_iowait = 1;
1da177e4 5793 ret = schedule_timeout(timeout);
8f0dfc34 5794 current->in_iowait = 0;
1da177e4 5795 atomic_dec(&rq->nr_iowait);
0ff92245 5796 delayacct_blkio_end();
1da177e4
LT
5797 return ret;
5798}
5799
5800/**
5801 * sys_sched_get_priority_max - return maximum RT priority.
5802 * @policy: scheduling class.
5803 *
5804 * this syscall returns the maximum rt_priority that can be used
5805 * by a given scheduling class.
5806 */
5add95d4 5807SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5808{
5809 int ret = -EINVAL;
5810
5811 switch (policy) {
5812 case SCHED_FIFO:
5813 case SCHED_RR:
5814 ret = MAX_USER_RT_PRIO-1;
5815 break;
5816 case SCHED_NORMAL:
b0a9499c 5817 case SCHED_BATCH:
dd41f596 5818 case SCHED_IDLE:
1da177e4
LT
5819 ret = 0;
5820 break;
5821 }
5822 return ret;
5823}
5824
5825/**
5826 * sys_sched_get_priority_min - return minimum RT priority.
5827 * @policy: scheduling class.
5828 *
5829 * this syscall returns the minimum rt_priority that can be used
5830 * by a given scheduling class.
5831 */
5add95d4 5832SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5833{
5834 int ret = -EINVAL;
5835
5836 switch (policy) {
5837 case SCHED_FIFO:
5838 case SCHED_RR:
5839 ret = 1;
5840 break;
5841 case SCHED_NORMAL:
b0a9499c 5842 case SCHED_BATCH:
dd41f596 5843 case SCHED_IDLE:
1da177e4
LT
5844 ret = 0;
5845 }
5846 return ret;
5847}
5848
5849/**
5850 * sys_sched_rr_get_interval - return the default timeslice of a process.
5851 * @pid: pid of the process.
5852 * @interval: userspace pointer to the timeslice value.
5853 *
5854 * this syscall writes the default timeslice value of a given process
5855 * into the user-space timespec buffer. A value of '0' means infinity.
5856 */
17da2bd9 5857SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5858 struct timespec __user *, interval)
1da177e4 5859{
36c8b586 5860 struct task_struct *p;
a4ec24b4 5861 unsigned int time_slice;
dba091b9
TG
5862 unsigned long flags;
5863 struct rq *rq;
3a5c359a 5864 int retval;
1da177e4 5865 struct timespec t;
1da177e4
LT
5866
5867 if (pid < 0)
3a5c359a 5868 return -EINVAL;
1da177e4
LT
5869
5870 retval = -ESRCH;
1a551ae7 5871 rcu_read_lock();
1da177e4
LT
5872 p = find_process_by_pid(pid);
5873 if (!p)
5874 goto out_unlock;
5875
5876 retval = security_task_getscheduler(p);
5877 if (retval)
5878 goto out_unlock;
5879
dba091b9
TG
5880 rq = task_rq_lock(p, &flags);
5881 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5882 task_rq_unlock(rq, p, &flags);
a4ec24b4 5883
1a551ae7 5884 rcu_read_unlock();
a4ec24b4 5885 jiffies_to_timespec(time_slice, &t);
1da177e4 5886 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5887 return retval;
3a5c359a 5888
1da177e4 5889out_unlock:
1a551ae7 5890 rcu_read_unlock();
1da177e4
LT
5891 return retval;
5892}
5893
7c731e0a 5894static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5895
82a1fcb9 5896void sched_show_task(struct task_struct *p)
1da177e4 5897{
1da177e4 5898 unsigned long free = 0;
36c8b586 5899 unsigned state;
1da177e4 5900
1da177e4 5901 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5902 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5903 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5904#if BITS_PER_LONG == 32
1da177e4 5905 if (state == TASK_RUNNING)
3df0fc5b 5906 printk(KERN_CONT " running ");
1da177e4 5907 else
3df0fc5b 5908 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5909#else
5910 if (state == TASK_RUNNING)
3df0fc5b 5911 printk(KERN_CONT " running task ");
1da177e4 5912 else
3df0fc5b 5913 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5914#endif
5915#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5916 free = stack_not_used(p);
1da177e4 5917#endif
3df0fc5b 5918 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5919 task_pid_nr(p), task_pid_nr(p->real_parent),
5920 (unsigned long)task_thread_info(p)->flags);
1da177e4 5921
5fb5e6de 5922 show_stack(p, NULL);
1da177e4
LT
5923}
5924
e59e2ae2 5925void show_state_filter(unsigned long state_filter)
1da177e4 5926{
36c8b586 5927 struct task_struct *g, *p;
1da177e4 5928
4bd77321 5929#if BITS_PER_LONG == 32
3df0fc5b
PZ
5930 printk(KERN_INFO
5931 " task PC stack pid father\n");
1da177e4 5932#else
3df0fc5b
PZ
5933 printk(KERN_INFO
5934 " task PC stack pid father\n");
1da177e4
LT
5935#endif
5936 read_lock(&tasklist_lock);
5937 do_each_thread(g, p) {
5938 /*
5939 * reset the NMI-timeout, listing all files on a slow
25985edc 5940 * console might take a lot of time:
1da177e4
LT
5941 */
5942 touch_nmi_watchdog();
39bc89fd 5943 if (!state_filter || (p->state & state_filter))
82a1fcb9 5944 sched_show_task(p);
1da177e4
LT
5945 } while_each_thread(g, p);
5946
04c9167f
JF
5947 touch_all_softlockup_watchdogs();
5948
dd41f596
IM
5949#ifdef CONFIG_SCHED_DEBUG
5950 sysrq_sched_debug_show();
5951#endif
1da177e4 5952 read_unlock(&tasklist_lock);
e59e2ae2
IM
5953 /*
5954 * Only show locks if all tasks are dumped:
5955 */
93335a21 5956 if (!state_filter)
e59e2ae2 5957 debug_show_all_locks();
1da177e4
LT
5958}
5959
1df21055
IM
5960void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5961{
dd41f596 5962 idle->sched_class = &idle_sched_class;
1df21055
IM
5963}
5964
f340c0d1
IM
5965/**
5966 * init_idle - set up an idle thread for a given CPU
5967 * @idle: task in question
5968 * @cpu: cpu the idle task belongs to
5969 *
5970 * NOTE: this function does not set the idle thread's NEED_RESCHED
5971 * flag, to make booting more robust.
5972 */
5c1e1767 5973void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5974{
70b97a7f 5975 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5976 unsigned long flags;
5977
05fa785c 5978 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5979
dd41f596 5980 __sched_fork(idle);
06b83b5f 5981 idle->state = TASK_RUNNING;
dd41f596
IM
5982 idle->se.exec_start = sched_clock();
5983
1e1b6c51 5984 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5985 /*
5986 * We're having a chicken and egg problem, even though we are
5987 * holding rq->lock, the cpu isn't yet set to this cpu so the
5988 * lockdep check in task_group() will fail.
5989 *
5990 * Similar case to sched_fork(). / Alternatively we could
5991 * use task_rq_lock() here and obtain the other rq->lock.
5992 *
5993 * Silence PROVE_RCU
5994 */
5995 rcu_read_lock();
dd41f596 5996 __set_task_cpu(idle, cpu);
6506cf6c 5997 rcu_read_unlock();
1da177e4 5998
1da177e4 5999 rq->curr = rq->idle = idle;
3ca7a440
PZ
6000#if defined(CONFIG_SMP)
6001 idle->on_cpu = 1;
4866cde0 6002#endif
05fa785c 6003 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6004
6005 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6006 task_thread_info(idle)->preempt_count = 0;
625f2a37 6007
dd41f596
IM
6008 /*
6009 * The idle tasks have their own, simple scheduling class:
6010 */
6011 idle->sched_class = &idle_sched_class;
868baf07 6012 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6013}
6014
6015/*
6016 * In a system that switches off the HZ timer nohz_cpu_mask
6017 * indicates which cpus entered this state. This is used
6018 * in the rcu update to wait only for active cpus. For system
6019 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6020 * always be CPU_BITS_NONE.
1da177e4 6021 */
6a7b3dc3 6022cpumask_var_t nohz_cpu_mask;
1da177e4 6023
19978ca6
IM
6024/*
6025 * Increase the granularity value when there are more CPUs,
6026 * because with more CPUs the 'effective latency' as visible
6027 * to users decreases. But the relationship is not linear,
6028 * so pick a second-best guess by going with the log2 of the
6029 * number of CPUs.
6030 *
6031 * This idea comes from the SD scheduler of Con Kolivas:
6032 */
acb4a848 6033static int get_update_sysctl_factor(void)
19978ca6 6034{
4ca3ef71 6035 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6036 unsigned int factor;
6037
6038 switch (sysctl_sched_tunable_scaling) {
6039 case SCHED_TUNABLESCALING_NONE:
6040 factor = 1;
6041 break;
6042 case SCHED_TUNABLESCALING_LINEAR:
6043 factor = cpus;
6044 break;
6045 case SCHED_TUNABLESCALING_LOG:
6046 default:
6047 factor = 1 + ilog2(cpus);
6048 break;
6049 }
19978ca6 6050
acb4a848
CE
6051 return factor;
6052}
19978ca6 6053
acb4a848
CE
6054static void update_sysctl(void)
6055{
6056 unsigned int factor = get_update_sysctl_factor();
19978ca6 6057
0bcdcf28
CE
6058#define SET_SYSCTL(name) \
6059 (sysctl_##name = (factor) * normalized_sysctl_##name)
6060 SET_SYSCTL(sched_min_granularity);
6061 SET_SYSCTL(sched_latency);
6062 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6063#undef SET_SYSCTL
6064}
55cd5340 6065
0bcdcf28
CE
6066static inline void sched_init_granularity(void)
6067{
6068 update_sysctl();
19978ca6
IM
6069}
6070
1da177e4 6071#ifdef CONFIG_SMP
1e1b6c51
KM
6072void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6073{
6074 if (p->sched_class && p->sched_class->set_cpus_allowed)
6075 p->sched_class->set_cpus_allowed(p, new_mask);
6076 else {
6077 cpumask_copy(&p->cpus_allowed, new_mask);
6078 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6079 }
6080}
6081
1da177e4
LT
6082/*
6083 * This is how migration works:
6084 *
969c7921
TH
6085 * 1) we invoke migration_cpu_stop() on the target CPU using
6086 * stop_one_cpu().
6087 * 2) stopper starts to run (implicitly forcing the migrated thread
6088 * off the CPU)
6089 * 3) it checks whether the migrated task is still in the wrong runqueue.
6090 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6091 * it and puts it into the right queue.
969c7921
TH
6092 * 5) stopper completes and stop_one_cpu() returns and the migration
6093 * is done.
1da177e4
LT
6094 */
6095
6096/*
6097 * Change a given task's CPU affinity. Migrate the thread to a
6098 * proper CPU and schedule it away if the CPU it's executing on
6099 * is removed from the allowed bitmask.
6100 *
6101 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6102 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6103 * call is not atomic; no spinlocks may be held.
6104 */
96f874e2 6105int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6106{
6107 unsigned long flags;
70b97a7f 6108 struct rq *rq;
969c7921 6109 unsigned int dest_cpu;
48f24c4d 6110 int ret = 0;
1da177e4
LT
6111
6112 rq = task_rq_lock(p, &flags);
e2912009 6113
db44fc01
YZ
6114 if (cpumask_equal(&p->cpus_allowed, new_mask))
6115 goto out;
6116
6ad4c188 6117 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6118 ret = -EINVAL;
6119 goto out;
6120 }
6121
db44fc01 6122 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6123 ret = -EINVAL;
6124 goto out;
6125 }
6126
1e1b6c51 6127 do_set_cpus_allowed(p, new_mask);
73fe6aae 6128
1da177e4 6129 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6130 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6131 goto out;
6132
969c7921 6133 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6134 if (p->on_rq) {
969c7921 6135 struct migration_arg arg = { p, dest_cpu };
1da177e4 6136 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6137 task_rq_unlock(rq, p, &flags);
969c7921 6138 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6139 tlb_migrate_finish(p->mm);
6140 return 0;
6141 }
6142out:
0122ec5b 6143 task_rq_unlock(rq, p, &flags);
48f24c4d 6144
1da177e4
LT
6145 return ret;
6146}
cd8ba7cd 6147EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6148
6149/*
41a2d6cf 6150 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6151 * this because either it can't run here any more (set_cpus_allowed()
6152 * away from this CPU, or CPU going down), or because we're
6153 * attempting to rebalance this task on exec (sched_exec).
6154 *
6155 * So we race with normal scheduler movements, but that's OK, as long
6156 * as the task is no longer on this CPU.
efc30814
KK
6157 *
6158 * Returns non-zero if task was successfully migrated.
1da177e4 6159 */
efc30814 6160static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6161{
70b97a7f 6162 struct rq *rq_dest, *rq_src;
e2912009 6163 int ret = 0;
1da177e4 6164
e761b772 6165 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6166 return ret;
1da177e4
LT
6167
6168 rq_src = cpu_rq(src_cpu);
6169 rq_dest = cpu_rq(dest_cpu);
6170
0122ec5b 6171 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6172 double_rq_lock(rq_src, rq_dest);
6173 /* Already moved. */
6174 if (task_cpu(p) != src_cpu)
b1e38734 6175 goto done;
1da177e4 6176 /* Affinity changed (again). */
96f874e2 6177 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6178 goto fail;
1da177e4 6179
e2912009
PZ
6180 /*
6181 * If we're not on a rq, the next wake-up will ensure we're
6182 * placed properly.
6183 */
fd2f4419 6184 if (p->on_rq) {
2e1cb74a 6185 deactivate_task(rq_src, p, 0);
e2912009 6186 set_task_cpu(p, dest_cpu);
dd41f596 6187 activate_task(rq_dest, p, 0);
15afe09b 6188 check_preempt_curr(rq_dest, p, 0);
1da177e4 6189 }
b1e38734 6190done:
efc30814 6191 ret = 1;
b1e38734 6192fail:
1da177e4 6193 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6194 raw_spin_unlock(&p->pi_lock);
efc30814 6195 return ret;
1da177e4
LT
6196}
6197
6198/*
969c7921
TH
6199 * migration_cpu_stop - this will be executed by a highprio stopper thread
6200 * and performs thread migration by bumping thread off CPU then
6201 * 'pushing' onto another runqueue.
1da177e4 6202 */
969c7921 6203static int migration_cpu_stop(void *data)
1da177e4 6204{
969c7921 6205 struct migration_arg *arg = data;
f7b4cddc 6206
969c7921
TH
6207 /*
6208 * The original target cpu might have gone down and we might
6209 * be on another cpu but it doesn't matter.
6210 */
f7b4cddc 6211 local_irq_disable();
969c7921 6212 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6213 local_irq_enable();
1da177e4 6214 return 0;
f7b4cddc
ON
6215}
6216
1da177e4 6217#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6218
054b9108 6219/*
48c5ccae
PZ
6220 * Ensures that the idle task is using init_mm right before its cpu goes
6221 * offline.
054b9108 6222 */
48c5ccae 6223void idle_task_exit(void)
1da177e4 6224{
48c5ccae 6225 struct mm_struct *mm = current->active_mm;
e76bd8d9 6226
48c5ccae 6227 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6228
48c5ccae
PZ
6229 if (mm != &init_mm)
6230 switch_mm(mm, &init_mm, current);
6231 mmdrop(mm);
1da177e4
LT
6232}
6233
6234/*
6235 * While a dead CPU has no uninterruptible tasks queued at this point,
6236 * it might still have a nonzero ->nr_uninterruptible counter, because
6237 * for performance reasons the counter is not stricly tracking tasks to
6238 * their home CPUs. So we just add the counter to another CPU's counter,
6239 * to keep the global sum constant after CPU-down:
6240 */
70b97a7f 6241static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6242{
6ad4c188 6243 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6244
1da177e4
LT
6245 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6246 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6247}
6248
dd41f596 6249/*
48c5ccae 6250 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6251 */
48c5ccae 6252static void calc_global_load_remove(struct rq *rq)
1da177e4 6253{
48c5ccae
PZ
6254 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6255 rq->calc_load_active = 0;
1da177e4
LT
6256}
6257
48f24c4d 6258/*
48c5ccae
PZ
6259 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6260 * try_to_wake_up()->select_task_rq().
6261 *
6262 * Called with rq->lock held even though we'er in stop_machine() and
6263 * there's no concurrency possible, we hold the required locks anyway
6264 * because of lock validation efforts.
1da177e4 6265 */
48c5ccae 6266static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6267{
70b97a7f 6268 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6269 struct task_struct *next, *stop = rq->stop;
6270 int dest_cpu;
1da177e4
LT
6271
6272 /*
48c5ccae
PZ
6273 * Fudge the rq selection such that the below task selection loop
6274 * doesn't get stuck on the currently eligible stop task.
6275 *
6276 * We're currently inside stop_machine() and the rq is either stuck
6277 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6278 * either way we should never end up calling schedule() until we're
6279 * done here.
1da177e4 6280 */
48c5ccae 6281 rq->stop = NULL;
48f24c4d 6282
dd41f596 6283 for ( ; ; ) {
48c5ccae
PZ
6284 /*
6285 * There's this thread running, bail when that's the only
6286 * remaining thread.
6287 */
6288 if (rq->nr_running == 1)
dd41f596 6289 break;
48c5ccae 6290
b67802ea 6291 next = pick_next_task(rq);
48c5ccae 6292 BUG_ON(!next);
79c53799 6293 next->sched_class->put_prev_task(rq, next);
e692ab53 6294
48c5ccae
PZ
6295 /* Find suitable destination for @next, with force if needed. */
6296 dest_cpu = select_fallback_rq(dead_cpu, next);
6297 raw_spin_unlock(&rq->lock);
6298
6299 __migrate_task(next, dead_cpu, dest_cpu);
6300
6301 raw_spin_lock(&rq->lock);
1da177e4 6302 }
dce48a84 6303
48c5ccae 6304 rq->stop = stop;
dce48a84 6305}
48c5ccae 6306
1da177e4
LT
6307#endif /* CONFIG_HOTPLUG_CPU */
6308
e692ab53
NP
6309#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6310
6311static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6312 {
6313 .procname = "sched_domain",
c57baf1e 6314 .mode = 0555,
e0361851 6315 },
56992309 6316 {}
e692ab53
NP
6317};
6318
6319static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6320 {
6321 .procname = "kernel",
c57baf1e 6322 .mode = 0555,
e0361851
AD
6323 .child = sd_ctl_dir,
6324 },
56992309 6325 {}
e692ab53
NP
6326};
6327
6328static struct ctl_table *sd_alloc_ctl_entry(int n)
6329{
6330 struct ctl_table *entry =
5cf9f062 6331 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6332
e692ab53
NP
6333 return entry;
6334}
6335
6382bc90
MM
6336static void sd_free_ctl_entry(struct ctl_table **tablep)
6337{
cd790076 6338 struct ctl_table *entry;
6382bc90 6339
cd790076
MM
6340 /*
6341 * In the intermediate directories, both the child directory and
6342 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6343 * will always be set. In the lowest directory the names are
cd790076
MM
6344 * static strings and all have proc handlers.
6345 */
6346 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6347 if (entry->child)
6348 sd_free_ctl_entry(&entry->child);
cd790076
MM
6349 if (entry->proc_handler == NULL)
6350 kfree(entry->procname);
6351 }
6382bc90
MM
6352
6353 kfree(*tablep);
6354 *tablep = NULL;
6355}
6356
e692ab53 6357static void
e0361851 6358set_table_entry(struct ctl_table *entry,
e692ab53
NP
6359 const char *procname, void *data, int maxlen,
6360 mode_t mode, proc_handler *proc_handler)
6361{
e692ab53
NP
6362 entry->procname = procname;
6363 entry->data = data;
6364 entry->maxlen = maxlen;
6365 entry->mode = mode;
6366 entry->proc_handler = proc_handler;
6367}
6368
6369static struct ctl_table *
6370sd_alloc_ctl_domain_table(struct sched_domain *sd)
6371{
a5d8c348 6372 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6373
ad1cdc1d
MM
6374 if (table == NULL)
6375 return NULL;
6376
e0361851 6377 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6378 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6379 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6380 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6381 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6382 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6383 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6384 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6385 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6386 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6387 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6388 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6389 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6390 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6391 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6392 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6393 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6394 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6395 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6396 &sd->cache_nice_tries,
6397 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6398 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6399 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6400 set_table_entry(&table[11], "name", sd->name,
6401 CORENAME_MAX_SIZE, 0444, proc_dostring);
6402 /* &table[12] is terminator */
e692ab53
NP
6403
6404 return table;
6405}
6406
9a4e7159 6407static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6408{
6409 struct ctl_table *entry, *table;
6410 struct sched_domain *sd;
6411 int domain_num = 0, i;
6412 char buf[32];
6413
6414 for_each_domain(cpu, sd)
6415 domain_num++;
6416 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6417 if (table == NULL)
6418 return NULL;
e692ab53
NP
6419
6420 i = 0;
6421 for_each_domain(cpu, sd) {
6422 snprintf(buf, 32, "domain%d", i);
e692ab53 6423 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6424 entry->mode = 0555;
e692ab53
NP
6425 entry->child = sd_alloc_ctl_domain_table(sd);
6426 entry++;
6427 i++;
6428 }
6429 return table;
6430}
6431
6432static struct ctl_table_header *sd_sysctl_header;
6382bc90 6433static void register_sched_domain_sysctl(void)
e692ab53 6434{
6ad4c188 6435 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6436 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6437 char buf[32];
6438
7378547f
MM
6439 WARN_ON(sd_ctl_dir[0].child);
6440 sd_ctl_dir[0].child = entry;
6441
ad1cdc1d
MM
6442 if (entry == NULL)
6443 return;
6444
6ad4c188 6445 for_each_possible_cpu(i) {
e692ab53 6446 snprintf(buf, 32, "cpu%d", i);
e692ab53 6447 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6448 entry->mode = 0555;
e692ab53 6449 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6450 entry++;
e692ab53 6451 }
7378547f
MM
6452
6453 WARN_ON(sd_sysctl_header);
e692ab53
NP
6454 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6455}
6382bc90 6456
7378547f 6457/* may be called multiple times per register */
6382bc90
MM
6458static void unregister_sched_domain_sysctl(void)
6459{
7378547f
MM
6460 if (sd_sysctl_header)
6461 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6462 sd_sysctl_header = NULL;
7378547f
MM
6463 if (sd_ctl_dir[0].child)
6464 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6465}
e692ab53 6466#else
6382bc90
MM
6467static void register_sched_domain_sysctl(void)
6468{
6469}
6470static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6471{
6472}
6473#endif
6474
1f11eb6a
GH
6475static void set_rq_online(struct rq *rq)
6476{
6477 if (!rq->online) {
6478 const struct sched_class *class;
6479
c6c4927b 6480 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6481 rq->online = 1;
6482
6483 for_each_class(class) {
6484 if (class->rq_online)
6485 class->rq_online(rq);
6486 }
6487 }
6488}
6489
6490static void set_rq_offline(struct rq *rq)
6491{
6492 if (rq->online) {
6493 const struct sched_class *class;
6494
6495 for_each_class(class) {
6496 if (class->rq_offline)
6497 class->rq_offline(rq);
6498 }
6499
c6c4927b 6500 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6501 rq->online = 0;
6502 }
6503}
6504
1da177e4
LT
6505/*
6506 * migration_call - callback that gets triggered when a CPU is added.
6507 * Here we can start up the necessary migration thread for the new CPU.
6508 */
48f24c4d
IM
6509static int __cpuinit
6510migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6511{
48f24c4d 6512 int cpu = (long)hcpu;
1da177e4 6513 unsigned long flags;
969c7921 6514 struct rq *rq = cpu_rq(cpu);
1da177e4 6515
48c5ccae 6516 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6517
1da177e4 6518 case CPU_UP_PREPARE:
a468d389 6519 rq->calc_load_update = calc_load_update;
1da177e4 6520 break;
48f24c4d 6521
1da177e4 6522 case CPU_ONLINE:
1f94ef59 6523 /* Update our root-domain */
05fa785c 6524 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6525 if (rq->rd) {
c6c4927b 6526 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6527
6528 set_rq_online(rq);
1f94ef59 6529 }
05fa785c 6530 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6531 break;
48f24c4d 6532
1da177e4 6533#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6534 case CPU_DYING:
317f3941 6535 sched_ttwu_pending();
57d885fe 6536 /* Update our root-domain */
05fa785c 6537 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6538 if (rq->rd) {
c6c4927b 6539 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6540 set_rq_offline(rq);
57d885fe 6541 }
48c5ccae
PZ
6542 migrate_tasks(cpu);
6543 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6544 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6545
6546 migrate_nr_uninterruptible(rq);
6547 calc_global_load_remove(rq);
57d885fe 6548 break;
1da177e4
LT
6549#endif
6550 }
49c022e6
PZ
6551
6552 update_max_interval();
6553
1da177e4
LT
6554 return NOTIFY_OK;
6555}
6556
f38b0820
PM
6557/*
6558 * Register at high priority so that task migration (migrate_all_tasks)
6559 * happens before everything else. This has to be lower priority than
cdd6c482 6560 * the notifier in the perf_event subsystem, though.
1da177e4 6561 */
26c2143b 6562static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6563 .notifier_call = migration_call,
50a323b7 6564 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6565};
6566
3a101d05
TH
6567static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6568 unsigned long action, void *hcpu)
6569{
6570 switch (action & ~CPU_TASKS_FROZEN) {
6571 case CPU_ONLINE:
6572 case CPU_DOWN_FAILED:
6573 set_cpu_active((long)hcpu, true);
6574 return NOTIFY_OK;
6575 default:
6576 return NOTIFY_DONE;
6577 }
6578}
6579
6580static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6581 unsigned long action, void *hcpu)
6582{
6583 switch (action & ~CPU_TASKS_FROZEN) {
6584 case CPU_DOWN_PREPARE:
6585 set_cpu_active((long)hcpu, false);
6586 return NOTIFY_OK;
6587 default:
6588 return NOTIFY_DONE;
6589 }
6590}
6591
7babe8db 6592static int __init migration_init(void)
1da177e4
LT
6593{
6594 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6595 int err;
48f24c4d 6596
3a101d05 6597 /* Initialize migration for the boot CPU */
07dccf33
AM
6598 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6599 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6600 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6601 register_cpu_notifier(&migration_notifier);
7babe8db 6602
3a101d05
TH
6603 /* Register cpu active notifiers */
6604 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6605 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6606
a004cd42 6607 return 0;
1da177e4 6608}
7babe8db 6609early_initcall(migration_init);
1da177e4
LT
6610#endif
6611
6612#ifdef CONFIG_SMP
476f3534 6613
4cb98839
PZ
6614static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6615
3e9830dc 6616#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6617
f6630114
MT
6618static __read_mostly int sched_domain_debug_enabled;
6619
6620static int __init sched_domain_debug_setup(char *str)
6621{
6622 sched_domain_debug_enabled = 1;
6623
6624 return 0;
6625}
6626early_param("sched_debug", sched_domain_debug_setup);
6627
7c16ec58 6628static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6629 struct cpumask *groupmask)
1da177e4 6630{
4dcf6aff 6631 struct sched_group *group = sd->groups;
434d53b0 6632 char str[256];
1da177e4 6633
968ea6d8 6634 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6635 cpumask_clear(groupmask);
4dcf6aff
IM
6636
6637 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6638
6639 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6640 printk("does not load-balance\n");
4dcf6aff 6641 if (sd->parent)
3df0fc5b
PZ
6642 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6643 " has parent");
4dcf6aff 6644 return -1;
41c7ce9a
NP
6645 }
6646
3df0fc5b 6647 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6648
758b2cdc 6649 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6650 printk(KERN_ERR "ERROR: domain->span does not contain "
6651 "CPU%d\n", cpu);
4dcf6aff 6652 }
758b2cdc 6653 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6654 printk(KERN_ERR "ERROR: domain->groups does not contain"
6655 " CPU%d\n", cpu);
4dcf6aff 6656 }
1da177e4 6657
4dcf6aff 6658 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6659 do {
4dcf6aff 6660 if (!group) {
3df0fc5b
PZ
6661 printk("\n");
6662 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6663 break;
6664 }
6665
9c3f75cb 6666 if (!group->sgp->power) {
3df0fc5b
PZ
6667 printk(KERN_CONT "\n");
6668 printk(KERN_ERR "ERROR: domain->cpu_power not "
6669 "set\n");
4dcf6aff
IM
6670 break;
6671 }
1da177e4 6672
758b2cdc 6673 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6674 printk(KERN_CONT "\n");
6675 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6676 break;
6677 }
1da177e4 6678
758b2cdc 6679 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6680 printk(KERN_CONT "\n");
6681 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6682 break;
6683 }
1da177e4 6684
758b2cdc 6685 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6686
968ea6d8 6687 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6688
3df0fc5b 6689 printk(KERN_CONT " %s", str);
9c3f75cb 6690 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6691 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6692 group->sgp->power);
381512cf 6693 }
1da177e4 6694
4dcf6aff
IM
6695 group = group->next;
6696 } while (group != sd->groups);
3df0fc5b 6697 printk(KERN_CONT "\n");
1da177e4 6698
758b2cdc 6699 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6700 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6701
758b2cdc
RR
6702 if (sd->parent &&
6703 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6704 printk(KERN_ERR "ERROR: parent span is not a superset "
6705 "of domain->span\n");
4dcf6aff
IM
6706 return 0;
6707}
1da177e4 6708
4dcf6aff
IM
6709static void sched_domain_debug(struct sched_domain *sd, int cpu)
6710{
6711 int level = 0;
1da177e4 6712
f6630114
MT
6713 if (!sched_domain_debug_enabled)
6714 return;
6715
4dcf6aff
IM
6716 if (!sd) {
6717 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6718 return;
6719 }
1da177e4 6720
4dcf6aff
IM
6721 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6722
6723 for (;;) {
4cb98839 6724 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6725 break;
1da177e4
LT
6726 level++;
6727 sd = sd->parent;
33859f7f 6728 if (!sd)
4dcf6aff
IM
6729 break;
6730 }
1da177e4 6731}
6d6bc0ad 6732#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6733# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6734#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6735
1a20ff27 6736static int sd_degenerate(struct sched_domain *sd)
245af2c7 6737{
758b2cdc 6738 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6739 return 1;
6740
6741 /* Following flags need at least 2 groups */
6742 if (sd->flags & (SD_LOAD_BALANCE |
6743 SD_BALANCE_NEWIDLE |
6744 SD_BALANCE_FORK |
89c4710e
SS
6745 SD_BALANCE_EXEC |
6746 SD_SHARE_CPUPOWER |
6747 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6748 if (sd->groups != sd->groups->next)
6749 return 0;
6750 }
6751
6752 /* Following flags don't use groups */
c88d5910 6753 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6754 return 0;
6755
6756 return 1;
6757}
6758
48f24c4d
IM
6759static int
6760sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6761{
6762 unsigned long cflags = sd->flags, pflags = parent->flags;
6763
6764 if (sd_degenerate(parent))
6765 return 1;
6766
758b2cdc 6767 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6768 return 0;
6769
245af2c7
SS
6770 /* Flags needing groups don't count if only 1 group in parent */
6771 if (parent->groups == parent->groups->next) {
6772 pflags &= ~(SD_LOAD_BALANCE |
6773 SD_BALANCE_NEWIDLE |
6774 SD_BALANCE_FORK |
89c4710e
SS
6775 SD_BALANCE_EXEC |
6776 SD_SHARE_CPUPOWER |
6777 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6778 if (nr_node_ids == 1)
6779 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6780 }
6781 if (~cflags & pflags)
6782 return 0;
6783
6784 return 1;
6785}
6786
dce840a0 6787static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6788{
dce840a0 6789 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6790
68e74568 6791 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6792 free_cpumask_var(rd->rto_mask);
6793 free_cpumask_var(rd->online);
6794 free_cpumask_var(rd->span);
6795 kfree(rd);
6796}
6797
57d885fe
GH
6798static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6799{
a0490fa3 6800 struct root_domain *old_rd = NULL;
57d885fe 6801 unsigned long flags;
57d885fe 6802
05fa785c 6803 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6804
6805 if (rq->rd) {
a0490fa3 6806 old_rd = rq->rd;
57d885fe 6807
c6c4927b 6808 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6809 set_rq_offline(rq);
57d885fe 6810
c6c4927b 6811 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6812
a0490fa3
IM
6813 /*
6814 * If we dont want to free the old_rt yet then
6815 * set old_rd to NULL to skip the freeing later
6816 * in this function:
6817 */
6818 if (!atomic_dec_and_test(&old_rd->refcount))
6819 old_rd = NULL;
57d885fe
GH
6820 }
6821
6822 atomic_inc(&rd->refcount);
6823 rq->rd = rd;
6824
c6c4927b 6825 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6826 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6827 set_rq_online(rq);
57d885fe 6828
05fa785c 6829 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6830
6831 if (old_rd)
dce840a0 6832 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6833}
6834
68c38fc3 6835static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6836{
6837 memset(rd, 0, sizeof(*rd));
6838
68c38fc3 6839 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6840 goto out;
68c38fc3 6841 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6842 goto free_span;
68c38fc3 6843 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6844 goto free_online;
6e0534f2 6845
68c38fc3 6846 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6847 goto free_rto_mask;
c6c4927b 6848 return 0;
6e0534f2 6849
68e74568
RR
6850free_rto_mask:
6851 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6852free_online:
6853 free_cpumask_var(rd->online);
6854free_span:
6855 free_cpumask_var(rd->span);
0c910d28 6856out:
c6c4927b 6857 return -ENOMEM;
57d885fe
GH
6858}
6859
6860static void init_defrootdomain(void)
6861{
68c38fc3 6862 init_rootdomain(&def_root_domain);
c6c4927b 6863
57d885fe
GH
6864 atomic_set(&def_root_domain.refcount, 1);
6865}
6866
dc938520 6867static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6868{
6869 struct root_domain *rd;
6870
6871 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6872 if (!rd)
6873 return NULL;
6874
68c38fc3 6875 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6876 kfree(rd);
6877 return NULL;
6878 }
57d885fe
GH
6879
6880 return rd;
6881}
6882
e3589f6c
PZ
6883static void free_sched_groups(struct sched_group *sg, int free_sgp)
6884{
6885 struct sched_group *tmp, *first;
6886
6887 if (!sg)
6888 return;
6889
6890 first = sg;
6891 do {
6892 tmp = sg->next;
6893
6894 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6895 kfree(sg->sgp);
6896
6897 kfree(sg);
6898 sg = tmp;
6899 } while (sg != first);
6900}
6901
dce840a0
PZ
6902static void free_sched_domain(struct rcu_head *rcu)
6903{
6904 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6905
6906 /*
6907 * If its an overlapping domain it has private groups, iterate and
6908 * nuke them all.
6909 */
6910 if (sd->flags & SD_OVERLAP) {
6911 free_sched_groups(sd->groups, 1);
6912 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6913 kfree(sd->groups->sgp);
dce840a0 6914 kfree(sd->groups);
9c3f75cb 6915 }
dce840a0
PZ
6916 kfree(sd);
6917}
6918
6919static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6920{
6921 call_rcu(&sd->rcu, free_sched_domain);
6922}
6923
6924static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6925{
6926 for (; sd; sd = sd->parent)
6927 destroy_sched_domain(sd, cpu);
6928}
6929
1da177e4 6930/*
0eab9146 6931 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6932 * hold the hotplug lock.
6933 */
0eab9146
IM
6934static void
6935cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6936{
70b97a7f 6937 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6938 struct sched_domain *tmp;
6939
6940 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6941 for (tmp = sd; tmp; ) {
245af2c7
SS
6942 struct sched_domain *parent = tmp->parent;
6943 if (!parent)
6944 break;
f29c9b1c 6945
1a848870 6946 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6947 tmp->parent = parent->parent;
1a848870
SS
6948 if (parent->parent)
6949 parent->parent->child = tmp;
dce840a0 6950 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6951 } else
6952 tmp = tmp->parent;
245af2c7
SS
6953 }
6954
1a848870 6955 if (sd && sd_degenerate(sd)) {
dce840a0 6956 tmp = sd;
245af2c7 6957 sd = sd->parent;
dce840a0 6958 destroy_sched_domain(tmp, cpu);
1a848870
SS
6959 if (sd)
6960 sd->child = NULL;
6961 }
1da177e4 6962
4cb98839 6963 sched_domain_debug(sd, cpu);
1da177e4 6964
57d885fe 6965 rq_attach_root(rq, rd);
dce840a0 6966 tmp = rq->sd;
674311d5 6967 rcu_assign_pointer(rq->sd, sd);
dce840a0 6968 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6969}
6970
6971/* cpus with isolated domains */
dcc30a35 6972static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6973
6974/* Setup the mask of cpus configured for isolated domains */
6975static int __init isolated_cpu_setup(char *str)
6976{
bdddd296 6977 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6978 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6979 return 1;
6980}
6981
8927f494 6982__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6983
9c1cfda2 6984#define SD_NODES_PER_DOMAIN 16
1da177e4 6985
9c1cfda2 6986#ifdef CONFIG_NUMA
198e2f18 6987
9c1cfda2
JH
6988/**
6989 * find_next_best_node - find the next node to include in a sched_domain
6990 * @node: node whose sched_domain we're building
6991 * @used_nodes: nodes already in the sched_domain
6992 *
41a2d6cf 6993 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6994 * finds the closest node not already in the @used_nodes map.
6995 *
6996 * Should use nodemask_t.
6997 */
c5f59f08 6998static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6999{
7142d17e 7000 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7001
7002 min_val = INT_MAX;
7003
076ac2af 7004 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7005 /* Start at @node */
076ac2af 7006 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7007
7008 if (!nr_cpus_node(n))
7009 continue;
7010
7011 /* Skip already used nodes */
c5f59f08 7012 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7013 continue;
7014
7015 /* Simple min distance search */
7016 val = node_distance(node, n);
7017
7018 if (val < min_val) {
7019 min_val = val;
7020 best_node = n;
7021 }
7022 }
7023
7142d17e
HD
7024 if (best_node != -1)
7025 node_set(best_node, *used_nodes);
9c1cfda2
JH
7026 return best_node;
7027}
7028
7029/**
7030 * sched_domain_node_span - get a cpumask for a node's sched_domain
7031 * @node: node whose cpumask we're constructing
73486722 7032 * @span: resulting cpumask
9c1cfda2 7033 *
41a2d6cf 7034 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7035 * should be one that prevents unnecessary balancing, but also spreads tasks
7036 * out optimally.
7037 */
96f874e2 7038static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7039{
c5f59f08 7040 nodemask_t used_nodes;
48f24c4d 7041 int i;
9c1cfda2 7042
6ca09dfc 7043 cpumask_clear(span);
c5f59f08 7044 nodes_clear(used_nodes);
9c1cfda2 7045
6ca09dfc 7046 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7047 node_set(node, used_nodes);
9c1cfda2
JH
7048
7049 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7050 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7051 if (next_node < 0)
7052 break;
6ca09dfc 7053 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7054 }
9c1cfda2 7055}
d3081f52
PZ
7056
7057static const struct cpumask *cpu_node_mask(int cpu)
7058{
7059 lockdep_assert_held(&sched_domains_mutex);
7060
7061 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7062
7063 return sched_domains_tmpmask;
7064}
2c402dc3
PZ
7065
7066static const struct cpumask *cpu_allnodes_mask(int cpu)
7067{
7068 return cpu_possible_mask;
7069}
6d6bc0ad 7070#endif /* CONFIG_NUMA */
9c1cfda2 7071
d3081f52
PZ
7072static const struct cpumask *cpu_cpu_mask(int cpu)
7073{
7074 return cpumask_of_node(cpu_to_node(cpu));
7075}
7076
5c45bf27 7077int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7078
dce840a0
PZ
7079struct sd_data {
7080 struct sched_domain **__percpu sd;
7081 struct sched_group **__percpu sg;
9c3f75cb 7082 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7083};
7084
49a02c51 7085struct s_data {
21d42ccf 7086 struct sched_domain ** __percpu sd;
49a02c51
AH
7087 struct root_domain *rd;
7088};
7089
2109b99e 7090enum s_alloc {
2109b99e 7091 sa_rootdomain,
21d42ccf 7092 sa_sd,
dce840a0 7093 sa_sd_storage,
2109b99e
AH
7094 sa_none,
7095};
7096
54ab4ff4
PZ
7097struct sched_domain_topology_level;
7098
7099typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7100typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7101
e3589f6c
PZ
7102#define SDTL_OVERLAP 0x01
7103
eb7a74e6 7104struct sched_domain_topology_level {
2c402dc3
PZ
7105 sched_domain_init_f init;
7106 sched_domain_mask_f mask;
e3589f6c 7107 int flags;
54ab4ff4 7108 struct sd_data data;
eb7a74e6
PZ
7109};
7110
e3589f6c
PZ
7111static int
7112build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7113{
7114 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7115 const struct cpumask *span = sched_domain_span(sd);
7116 struct cpumask *covered = sched_domains_tmpmask;
7117 struct sd_data *sdd = sd->private;
7118 struct sched_domain *child;
7119 int i;
7120
7121 cpumask_clear(covered);
7122
7123 for_each_cpu(i, span) {
7124 struct cpumask *sg_span;
7125
7126 if (cpumask_test_cpu(i, covered))
7127 continue;
7128
7129 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7130 GFP_KERNEL, cpu_to_node(i));
7131
7132 if (!sg)
7133 goto fail;
7134
7135 sg_span = sched_group_cpus(sg);
7136
7137 child = *per_cpu_ptr(sdd->sd, i);
7138 if (child->child) {
7139 child = child->child;
7140 cpumask_copy(sg_span, sched_domain_span(child));
7141 } else
7142 cpumask_set_cpu(i, sg_span);
7143
7144 cpumask_or(covered, covered, sg_span);
7145
7146 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7147 atomic_inc(&sg->sgp->ref);
7148
7149 if (cpumask_test_cpu(cpu, sg_span))
7150 groups = sg;
7151
7152 if (!first)
7153 first = sg;
7154 if (last)
7155 last->next = sg;
7156 last = sg;
7157 last->next = first;
7158 }
7159 sd->groups = groups;
7160
7161 return 0;
7162
7163fail:
7164 free_sched_groups(first, 0);
7165
7166 return -ENOMEM;
7167}
7168
dce840a0 7169static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7170{
dce840a0
PZ
7171 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7172 struct sched_domain *child = sd->child;
1da177e4 7173
dce840a0
PZ
7174 if (child)
7175 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7176
9c3f75cb 7177 if (sg) {
dce840a0 7178 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7179 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7180 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7181 }
dce840a0
PZ
7182
7183 return cpu;
1e9f28fa 7184}
1e9f28fa 7185
01a08546 7186/*
dce840a0
PZ
7187 * build_sched_groups will build a circular linked list of the groups
7188 * covered by the given span, and will set each group's ->cpumask correctly,
7189 * and ->cpu_power to 0.
e3589f6c
PZ
7190 *
7191 * Assumes the sched_domain tree is fully constructed
01a08546 7192 */
e3589f6c
PZ
7193static int
7194build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7195{
dce840a0
PZ
7196 struct sched_group *first = NULL, *last = NULL;
7197 struct sd_data *sdd = sd->private;
7198 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7199 struct cpumask *covered;
dce840a0 7200 int i;
9c1cfda2 7201
e3589f6c
PZ
7202 get_group(cpu, sdd, &sd->groups);
7203 atomic_inc(&sd->groups->ref);
7204
7205 if (cpu != cpumask_first(sched_domain_span(sd)))
7206 return 0;
7207
f96225fd
PZ
7208 lockdep_assert_held(&sched_domains_mutex);
7209 covered = sched_domains_tmpmask;
7210
dce840a0 7211 cpumask_clear(covered);
6711cab4 7212
dce840a0
PZ
7213 for_each_cpu(i, span) {
7214 struct sched_group *sg;
7215 int group = get_group(i, sdd, &sg);
7216 int j;
6711cab4 7217
dce840a0
PZ
7218 if (cpumask_test_cpu(i, covered))
7219 continue;
6711cab4 7220
dce840a0 7221 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7222 sg->sgp->power = 0;
0601a88d 7223
dce840a0
PZ
7224 for_each_cpu(j, span) {
7225 if (get_group(j, sdd, NULL) != group)
7226 continue;
0601a88d 7227
dce840a0
PZ
7228 cpumask_set_cpu(j, covered);
7229 cpumask_set_cpu(j, sched_group_cpus(sg));
7230 }
0601a88d 7231
dce840a0
PZ
7232 if (!first)
7233 first = sg;
7234 if (last)
7235 last->next = sg;
7236 last = sg;
7237 }
7238 last->next = first;
e3589f6c
PZ
7239
7240 return 0;
0601a88d 7241}
51888ca2 7242
89c4710e
SS
7243/*
7244 * Initialize sched groups cpu_power.
7245 *
7246 * cpu_power indicates the capacity of sched group, which is used while
7247 * distributing the load between different sched groups in a sched domain.
7248 * Typically cpu_power for all the groups in a sched domain will be same unless
7249 * there are asymmetries in the topology. If there are asymmetries, group
7250 * having more cpu_power will pickup more load compared to the group having
7251 * less cpu_power.
89c4710e
SS
7252 */
7253static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7254{
e3589f6c 7255 struct sched_group *sg = sd->groups;
89c4710e 7256
e3589f6c
PZ
7257 WARN_ON(!sd || !sg);
7258
7259 do {
7260 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7261 sg = sg->next;
7262 } while (sg != sd->groups);
89c4710e 7263
e3589f6c
PZ
7264 if (cpu != group_first_cpu(sg))
7265 return;
aae6d3dd 7266
d274cb30 7267 update_group_power(sd, cpu);
89c4710e
SS
7268}
7269
7c16ec58
MT
7270/*
7271 * Initializers for schedule domains
7272 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7273 */
7274
a5d8c348
IM
7275#ifdef CONFIG_SCHED_DEBUG
7276# define SD_INIT_NAME(sd, type) sd->name = #type
7277#else
7278# define SD_INIT_NAME(sd, type) do { } while (0)
7279#endif
7280
54ab4ff4
PZ
7281#define SD_INIT_FUNC(type) \
7282static noinline struct sched_domain * \
7283sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7284{ \
7285 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7286 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7287 SD_INIT_NAME(sd, type); \
7288 sd->private = &tl->data; \
7289 return sd; \
7c16ec58
MT
7290}
7291
7292SD_INIT_FUNC(CPU)
7293#ifdef CONFIG_NUMA
7294 SD_INIT_FUNC(ALLNODES)
7295 SD_INIT_FUNC(NODE)
7296#endif
7297#ifdef CONFIG_SCHED_SMT
7298 SD_INIT_FUNC(SIBLING)
7299#endif
7300#ifdef CONFIG_SCHED_MC
7301 SD_INIT_FUNC(MC)
7302#endif
01a08546
HC
7303#ifdef CONFIG_SCHED_BOOK
7304 SD_INIT_FUNC(BOOK)
7305#endif
7c16ec58 7306
1d3504fc 7307static int default_relax_domain_level = -1;
60495e77 7308int sched_domain_level_max;
1d3504fc
HS
7309
7310static int __init setup_relax_domain_level(char *str)
7311{
30e0e178
LZ
7312 unsigned long val;
7313
7314 val = simple_strtoul(str, NULL, 0);
60495e77 7315 if (val < sched_domain_level_max)
30e0e178
LZ
7316 default_relax_domain_level = val;
7317
1d3504fc
HS
7318 return 1;
7319}
7320__setup("relax_domain_level=", setup_relax_domain_level);
7321
7322static void set_domain_attribute(struct sched_domain *sd,
7323 struct sched_domain_attr *attr)
7324{
7325 int request;
7326
7327 if (!attr || attr->relax_domain_level < 0) {
7328 if (default_relax_domain_level < 0)
7329 return;
7330 else
7331 request = default_relax_domain_level;
7332 } else
7333 request = attr->relax_domain_level;
7334 if (request < sd->level) {
7335 /* turn off idle balance on this domain */
c88d5910 7336 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7337 } else {
7338 /* turn on idle balance on this domain */
c88d5910 7339 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7340 }
7341}
7342
54ab4ff4
PZ
7343static void __sdt_free(const struct cpumask *cpu_map);
7344static int __sdt_alloc(const struct cpumask *cpu_map);
7345
2109b99e
AH
7346static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7347 const struct cpumask *cpu_map)
7348{
7349 switch (what) {
2109b99e 7350 case sa_rootdomain:
822ff793
PZ
7351 if (!atomic_read(&d->rd->refcount))
7352 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7353 case sa_sd:
7354 free_percpu(d->sd); /* fall through */
dce840a0 7355 case sa_sd_storage:
54ab4ff4 7356 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7357 case sa_none:
7358 break;
7359 }
7360}
3404c8d9 7361
2109b99e
AH
7362static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7363 const struct cpumask *cpu_map)
7364{
dce840a0
PZ
7365 memset(d, 0, sizeof(*d));
7366
54ab4ff4
PZ
7367 if (__sdt_alloc(cpu_map))
7368 return sa_sd_storage;
dce840a0
PZ
7369 d->sd = alloc_percpu(struct sched_domain *);
7370 if (!d->sd)
7371 return sa_sd_storage;
2109b99e 7372 d->rd = alloc_rootdomain();
dce840a0 7373 if (!d->rd)
21d42ccf 7374 return sa_sd;
2109b99e
AH
7375 return sa_rootdomain;
7376}
57d885fe 7377
dce840a0
PZ
7378/*
7379 * NULL the sd_data elements we've used to build the sched_domain and
7380 * sched_group structure so that the subsequent __free_domain_allocs()
7381 * will not free the data we're using.
7382 */
7383static void claim_allocations(int cpu, struct sched_domain *sd)
7384{
7385 struct sd_data *sdd = sd->private;
dce840a0
PZ
7386
7387 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7388 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7389
e3589f6c 7390 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7391 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7392
7393 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7394 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7395}
7396
2c402dc3
PZ
7397#ifdef CONFIG_SCHED_SMT
7398static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7399{
2c402dc3 7400 return topology_thread_cpumask(cpu);
3bd65a80 7401}
2c402dc3 7402#endif
7f4588f3 7403
d069b916
PZ
7404/*
7405 * Topology list, bottom-up.
7406 */
2c402dc3 7407static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7408#ifdef CONFIG_SCHED_SMT
7409 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7410#endif
1e9f28fa 7411#ifdef CONFIG_SCHED_MC
2c402dc3 7412 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7413#endif
d069b916
PZ
7414#ifdef CONFIG_SCHED_BOOK
7415 { sd_init_BOOK, cpu_book_mask, },
7416#endif
7417 { sd_init_CPU, cpu_cpu_mask, },
7418#ifdef CONFIG_NUMA
e3589f6c 7419 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7420 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7421#endif
eb7a74e6
PZ
7422 { NULL, },
7423};
7424
7425static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7426
54ab4ff4
PZ
7427static int __sdt_alloc(const struct cpumask *cpu_map)
7428{
7429 struct sched_domain_topology_level *tl;
7430 int j;
7431
7432 for (tl = sched_domain_topology; tl->init; tl++) {
7433 struct sd_data *sdd = &tl->data;
7434
7435 sdd->sd = alloc_percpu(struct sched_domain *);
7436 if (!sdd->sd)
7437 return -ENOMEM;
7438
7439 sdd->sg = alloc_percpu(struct sched_group *);
7440 if (!sdd->sg)
7441 return -ENOMEM;
7442
9c3f75cb
PZ
7443 sdd->sgp = alloc_percpu(struct sched_group_power *);
7444 if (!sdd->sgp)
7445 return -ENOMEM;
7446
54ab4ff4
PZ
7447 for_each_cpu(j, cpu_map) {
7448 struct sched_domain *sd;
7449 struct sched_group *sg;
9c3f75cb 7450 struct sched_group_power *sgp;
54ab4ff4
PZ
7451
7452 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7453 GFP_KERNEL, cpu_to_node(j));
7454 if (!sd)
7455 return -ENOMEM;
7456
7457 *per_cpu_ptr(sdd->sd, j) = sd;
7458
7459 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7460 GFP_KERNEL, cpu_to_node(j));
7461 if (!sg)
7462 return -ENOMEM;
7463
7464 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7465
7466 sgp = kzalloc_node(sizeof(struct sched_group_power),
7467 GFP_KERNEL, cpu_to_node(j));
7468 if (!sgp)
7469 return -ENOMEM;
7470
7471 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7472 }
7473 }
7474
7475 return 0;
7476}
7477
7478static void __sdt_free(const struct cpumask *cpu_map)
7479{
7480 struct sched_domain_topology_level *tl;
7481 int j;
7482
7483 for (tl = sched_domain_topology; tl->init; tl++) {
7484 struct sd_data *sdd = &tl->data;
7485
7486 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7487 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7488 if (sd && (sd->flags & SD_OVERLAP))
7489 free_sched_groups(sd->groups, 0);
54ab4ff4 7490 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7491 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7492 }
7493 free_percpu(sdd->sd);
7494 free_percpu(sdd->sg);
9c3f75cb 7495 free_percpu(sdd->sgp);
54ab4ff4
PZ
7496 }
7497}
7498
2c402dc3
PZ
7499struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7500 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7501 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7502 int cpu)
7503{
54ab4ff4 7504 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7505 if (!sd)
d069b916 7506 return child;
2c402dc3
PZ
7507
7508 set_domain_attribute(sd, attr);
7509 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7510 if (child) {
7511 sd->level = child->level + 1;
7512 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7513 child->parent = sd;
60495e77 7514 }
d069b916 7515 sd->child = child;
2c402dc3
PZ
7516
7517 return sd;
7518}
7519
2109b99e
AH
7520/*
7521 * Build sched domains for a given set of cpus and attach the sched domains
7522 * to the individual cpus
7523 */
dce840a0
PZ
7524static int build_sched_domains(const struct cpumask *cpu_map,
7525 struct sched_domain_attr *attr)
2109b99e
AH
7526{
7527 enum s_alloc alloc_state = sa_none;
dce840a0 7528 struct sched_domain *sd;
2109b99e 7529 struct s_data d;
822ff793 7530 int i, ret = -ENOMEM;
9c1cfda2 7531
2109b99e
AH
7532 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7533 if (alloc_state != sa_rootdomain)
7534 goto error;
9c1cfda2 7535
dce840a0 7536 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7537 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7538 struct sched_domain_topology_level *tl;
7539
3bd65a80 7540 sd = NULL;
e3589f6c 7541 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7542 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7543 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7544 sd->flags |= SD_OVERLAP;
d110235d
PZ
7545 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7546 break;
e3589f6c 7547 }
d274cb30 7548
d069b916
PZ
7549 while (sd->child)
7550 sd = sd->child;
7551
21d42ccf 7552 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7553 }
7554
7555 /* Build the groups for the domains */
7556 for_each_cpu(i, cpu_map) {
7557 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7558 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7559 if (sd->flags & SD_OVERLAP) {
7560 if (build_overlap_sched_groups(sd, i))
7561 goto error;
7562 } else {
7563 if (build_sched_groups(sd, i))
7564 goto error;
7565 }
1cf51902 7566 }
a06dadbe 7567 }
9c1cfda2 7568
1da177e4 7569 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7570 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7571 if (!cpumask_test_cpu(i, cpu_map))
7572 continue;
9c1cfda2 7573
dce840a0
PZ
7574 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7575 claim_allocations(i, sd);
cd4ea6ae 7576 init_sched_groups_power(i, sd);
dce840a0 7577 }
f712c0c7 7578 }
9c1cfda2 7579
1da177e4 7580 /* Attach the domains */
dce840a0 7581 rcu_read_lock();
abcd083a 7582 for_each_cpu(i, cpu_map) {
21d42ccf 7583 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7584 cpu_attach_domain(sd, d.rd, i);
1da177e4 7585 }
dce840a0 7586 rcu_read_unlock();
51888ca2 7587
822ff793 7588 ret = 0;
51888ca2 7589error:
2109b99e 7590 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7591 return ret;
1da177e4 7592}
029190c5 7593
acc3f5d7 7594static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7595static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7596static struct sched_domain_attr *dattr_cur;
7597 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7598
7599/*
7600 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7601 * cpumask) fails, then fallback to a single sched domain,
7602 * as determined by the single cpumask fallback_doms.
029190c5 7603 */
4212823f 7604static cpumask_var_t fallback_doms;
029190c5 7605
ee79d1bd
HC
7606/*
7607 * arch_update_cpu_topology lets virtualized architectures update the
7608 * cpu core maps. It is supposed to return 1 if the topology changed
7609 * or 0 if it stayed the same.
7610 */
7611int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7612{
ee79d1bd 7613 return 0;
22e52b07
HC
7614}
7615
acc3f5d7
RR
7616cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7617{
7618 int i;
7619 cpumask_var_t *doms;
7620
7621 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7622 if (!doms)
7623 return NULL;
7624 for (i = 0; i < ndoms; i++) {
7625 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7626 free_sched_domains(doms, i);
7627 return NULL;
7628 }
7629 }
7630 return doms;
7631}
7632
7633void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7634{
7635 unsigned int i;
7636 for (i = 0; i < ndoms; i++)
7637 free_cpumask_var(doms[i]);
7638 kfree(doms);
7639}
7640
1a20ff27 7641/*
41a2d6cf 7642 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7643 * For now this just excludes isolated cpus, but could be used to
7644 * exclude other special cases in the future.
1a20ff27 7645 */
c4a8849a 7646static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7647{
7378547f
MM
7648 int err;
7649
22e52b07 7650 arch_update_cpu_topology();
029190c5 7651 ndoms_cur = 1;
acc3f5d7 7652 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7653 if (!doms_cur)
acc3f5d7
RR
7654 doms_cur = &fallback_doms;
7655 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7656 dattr_cur = NULL;
dce840a0 7657 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7658 register_sched_domain_sysctl();
7378547f
MM
7659
7660 return err;
1a20ff27
DG
7661}
7662
1a20ff27
DG
7663/*
7664 * Detach sched domains from a group of cpus specified in cpu_map
7665 * These cpus will now be attached to the NULL domain
7666 */
96f874e2 7667static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7668{
7669 int i;
7670
dce840a0 7671 rcu_read_lock();
abcd083a 7672 for_each_cpu(i, cpu_map)
57d885fe 7673 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7674 rcu_read_unlock();
1a20ff27
DG
7675}
7676
1d3504fc
HS
7677/* handle null as "default" */
7678static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7679 struct sched_domain_attr *new, int idx_new)
7680{
7681 struct sched_domain_attr tmp;
7682
7683 /* fast path */
7684 if (!new && !cur)
7685 return 1;
7686
7687 tmp = SD_ATTR_INIT;
7688 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7689 new ? (new + idx_new) : &tmp,
7690 sizeof(struct sched_domain_attr));
7691}
7692
029190c5
PJ
7693/*
7694 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7695 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7696 * doms_new[] to the current sched domain partitioning, doms_cur[].
7697 * It destroys each deleted domain and builds each new domain.
7698 *
acc3f5d7 7699 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7700 * The masks don't intersect (don't overlap.) We should setup one
7701 * sched domain for each mask. CPUs not in any of the cpumasks will
7702 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7703 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7704 * it as it is.
7705 *
acc3f5d7
RR
7706 * The passed in 'doms_new' should be allocated using
7707 * alloc_sched_domains. This routine takes ownership of it and will
7708 * free_sched_domains it when done with it. If the caller failed the
7709 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7710 * and partition_sched_domains() will fallback to the single partition
7711 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7712 *
96f874e2 7713 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7714 * ndoms_new == 0 is a special case for destroying existing domains,
7715 * and it will not create the default domain.
dfb512ec 7716 *
029190c5
PJ
7717 * Call with hotplug lock held
7718 */
acc3f5d7 7719void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7720 struct sched_domain_attr *dattr_new)
029190c5 7721{
dfb512ec 7722 int i, j, n;
d65bd5ec 7723 int new_topology;
029190c5 7724
712555ee 7725 mutex_lock(&sched_domains_mutex);
a1835615 7726
7378547f
MM
7727 /* always unregister in case we don't destroy any domains */
7728 unregister_sched_domain_sysctl();
7729
d65bd5ec
HC
7730 /* Let architecture update cpu core mappings. */
7731 new_topology = arch_update_cpu_topology();
7732
dfb512ec 7733 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7734
7735 /* Destroy deleted domains */
7736 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7737 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7738 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7739 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7740 goto match1;
7741 }
7742 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7743 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7744match1:
7745 ;
7746 }
7747
e761b772
MK
7748 if (doms_new == NULL) {
7749 ndoms_cur = 0;
acc3f5d7 7750 doms_new = &fallback_doms;
6ad4c188 7751 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7752 WARN_ON_ONCE(dattr_new);
e761b772
MK
7753 }
7754
029190c5
PJ
7755 /* Build new domains */
7756 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7757 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7758 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7759 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7760 goto match2;
7761 }
7762 /* no match - add a new doms_new */
dce840a0 7763 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7764match2:
7765 ;
7766 }
7767
7768 /* Remember the new sched domains */
acc3f5d7
RR
7769 if (doms_cur != &fallback_doms)
7770 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7771 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7772 doms_cur = doms_new;
1d3504fc 7773 dattr_cur = dattr_new;
029190c5 7774 ndoms_cur = ndoms_new;
7378547f
MM
7775
7776 register_sched_domain_sysctl();
a1835615 7777
712555ee 7778 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7779}
7780
5c45bf27 7781#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7782static void reinit_sched_domains(void)
5c45bf27 7783{
95402b38 7784 get_online_cpus();
dfb512ec
MK
7785
7786 /* Destroy domains first to force the rebuild */
7787 partition_sched_domains(0, NULL, NULL);
7788
e761b772 7789 rebuild_sched_domains();
95402b38 7790 put_online_cpus();
5c45bf27
SS
7791}
7792
7793static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7794{
afb8a9b7 7795 unsigned int level = 0;
5c45bf27 7796
afb8a9b7
GS
7797 if (sscanf(buf, "%u", &level) != 1)
7798 return -EINVAL;
7799
7800 /*
7801 * level is always be positive so don't check for
7802 * level < POWERSAVINGS_BALANCE_NONE which is 0
7803 * What happens on 0 or 1 byte write,
7804 * need to check for count as well?
7805 */
7806
7807 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7808 return -EINVAL;
7809
7810 if (smt)
afb8a9b7 7811 sched_smt_power_savings = level;
5c45bf27 7812 else
afb8a9b7 7813 sched_mc_power_savings = level;
5c45bf27 7814
c4a8849a 7815 reinit_sched_domains();
5c45bf27 7816
c70f22d2 7817 return count;
5c45bf27
SS
7818}
7819
5c45bf27 7820#ifdef CONFIG_SCHED_MC
f718cd4a 7821static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7822 struct sysdev_class_attribute *attr,
f718cd4a 7823 char *page)
5c45bf27
SS
7824{
7825 return sprintf(page, "%u\n", sched_mc_power_savings);
7826}
f718cd4a 7827static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7828 struct sysdev_class_attribute *attr,
48f24c4d 7829 const char *buf, size_t count)
5c45bf27
SS
7830{
7831 return sched_power_savings_store(buf, count, 0);
7832}
f718cd4a
AK
7833static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7834 sched_mc_power_savings_show,
7835 sched_mc_power_savings_store);
5c45bf27
SS
7836#endif
7837
7838#ifdef CONFIG_SCHED_SMT
f718cd4a 7839static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7840 struct sysdev_class_attribute *attr,
f718cd4a 7841 char *page)
5c45bf27
SS
7842{
7843 return sprintf(page, "%u\n", sched_smt_power_savings);
7844}
f718cd4a 7845static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7846 struct sysdev_class_attribute *attr,
48f24c4d 7847 const char *buf, size_t count)
5c45bf27
SS
7848{
7849 return sched_power_savings_store(buf, count, 1);
7850}
f718cd4a
AK
7851static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7852 sched_smt_power_savings_show,
6707de00
AB
7853 sched_smt_power_savings_store);
7854#endif
7855
39aac648 7856int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7857{
7858 int err = 0;
7859
7860#ifdef CONFIG_SCHED_SMT
7861 if (smt_capable())
7862 err = sysfs_create_file(&cls->kset.kobj,
7863 &attr_sched_smt_power_savings.attr);
7864#endif
7865#ifdef CONFIG_SCHED_MC
7866 if (!err && mc_capable())
7867 err = sysfs_create_file(&cls->kset.kobj,
7868 &attr_sched_mc_power_savings.attr);
7869#endif
7870 return err;
7871}
6d6bc0ad 7872#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7873
1da177e4 7874/*
3a101d05
TH
7875 * Update cpusets according to cpu_active mask. If cpusets are
7876 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7877 * around partition_sched_domains().
1da177e4 7878 */
0b2e918a
TH
7879static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7880 void *hcpu)
e761b772 7881{
3a101d05 7882 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7883 case CPU_ONLINE:
6ad4c188 7884 case CPU_DOWN_FAILED:
3a101d05 7885 cpuset_update_active_cpus();
e761b772 7886 return NOTIFY_OK;
3a101d05
TH
7887 default:
7888 return NOTIFY_DONE;
7889 }
7890}
e761b772 7891
0b2e918a
TH
7892static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7893 void *hcpu)
3a101d05
TH
7894{
7895 switch (action & ~CPU_TASKS_FROZEN) {
7896 case CPU_DOWN_PREPARE:
7897 cpuset_update_active_cpus();
7898 return NOTIFY_OK;
e761b772
MK
7899 default:
7900 return NOTIFY_DONE;
7901 }
7902}
e761b772
MK
7903
7904static int update_runtime(struct notifier_block *nfb,
7905 unsigned long action, void *hcpu)
1da177e4 7906{
7def2be1
PZ
7907 int cpu = (int)(long)hcpu;
7908
1da177e4 7909 switch (action) {
1da177e4 7910 case CPU_DOWN_PREPARE:
8bb78442 7911 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7912 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7913 return NOTIFY_OK;
7914
1da177e4 7915 case CPU_DOWN_FAILED:
8bb78442 7916 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7917 case CPU_ONLINE:
8bb78442 7918 case CPU_ONLINE_FROZEN:
7def2be1 7919 enable_runtime(cpu_rq(cpu));
e761b772
MK
7920 return NOTIFY_OK;
7921
1da177e4
LT
7922 default:
7923 return NOTIFY_DONE;
7924 }
1da177e4 7925}
1da177e4
LT
7926
7927void __init sched_init_smp(void)
7928{
dcc30a35
RR
7929 cpumask_var_t non_isolated_cpus;
7930
7931 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7932 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7933
95402b38 7934 get_online_cpus();
712555ee 7935 mutex_lock(&sched_domains_mutex);
c4a8849a 7936 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7937 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7938 if (cpumask_empty(non_isolated_cpus))
7939 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7940 mutex_unlock(&sched_domains_mutex);
95402b38 7941 put_online_cpus();
e761b772 7942
3a101d05
TH
7943 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7944 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7945
7946 /* RT runtime code needs to handle some hotplug events */
7947 hotcpu_notifier(update_runtime, 0);
7948
b328ca18 7949 init_hrtick();
5c1e1767
NP
7950
7951 /* Move init over to a non-isolated CPU */
dcc30a35 7952 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7953 BUG();
19978ca6 7954 sched_init_granularity();
dcc30a35 7955 free_cpumask_var(non_isolated_cpus);
4212823f 7956
0e3900e6 7957 init_sched_rt_class();
1da177e4
LT
7958}
7959#else
7960void __init sched_init_smp(void)
7961{
19978ca6 7962 sched_init_granularity();
1da177e4
LT
7963}
7964#endif /* CONFIG_SMP */
7965
cd1bb94b
AB
7966const_debug unsigned int sysctl_timer_migration = 1;
7967
1da177e4
LT
7968int in_sched_functions(unsigned long addr)
7969{
1da177e4
LT
7970 return in_lock_functions(addr) ||
7971 (addr >= (unsigned long)__sched_text_start
7972 && addr < (unsigned long)__sched_text_end);
7973}
7974
acb5a9ba 7975static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
7976{
7977 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7978 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 7979 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
7980#ifndef CONFIG_64BIT
7981 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7982#endif
dd41f596
IM
7983}
7984
fa85ae24
PZ
7985static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7986{
7987 struct rt_prio_array *array;
7988 int i;
7989
7990 array = &rt_rq->active;
7991 for (i = 0; i < MAX_RT_PRIO; i++) {
7992 INIT_LIST_HEAD(array->queue + i);
7993 __clear_bit(i, array->bitmap);
7994 }
7995 /* delimiter for bitsearch: */
7996 __set_bit(MAX_RT_PRIO, array->bitmap);
7997
acb5a9ba 7998#if defined CONFIG_SMP
e864c499
GH
7999 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8000 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8001 rt_rq->rt_nr_migratory = 0;
fa85ae24 8002 rt_rq->overloaded = 0;
732375c6 8003 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8004#endif
8005
8006 rt_rq->rt_time = 0;
8007 rt_rq->rt_throttled = 0;
ac086bc2 8008 rt_rq->rt_runtime = 0;
0986b11b 8009 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8010}
8011
6f505b16 8012#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8013static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8014 struct sched_entity *se, int cpu,
ec7dc8ac 8015 struct sched_entity *parent)
6f505b16 8016{
ec7dc8ac 8017 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8018
6f505b16 8019 cfs_rq->tg = tg;
acb5a9ba
JS
8020 cfs_rq->rq = rq;
8021#ifdef CONFIG_SMP
8022 /* allow initial update_cfs_load() to truncate */
8023 cfs_rq->load_stamp = 1;
8024#endif
ab84d31e 8025 init_cfs_rq_runtime(cfs_rq);
6f505b16 8026
acb5a9ba 8027 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8028 tg->se[cpu] = se;
acb5a9ba 8029
07e06b01 8030 /* se could be NULL for root_task_group */
354d60c2
DG
8031 if (!se)
8032 return;
8033
ec7dc8ac
DG
8034 if (!parent)
8035 se->cfs_rq = &rq->cfs;
8036 else
8037 se->cfs_rq = parent->my_q;
8038
6f505b16 8039 se->my_q = cfs_rq;
9437178f 8040 update_load_set(&se->load, 0);
ec7dc8ac 8041 se->parent = parent;
6f505b16 8042}
052f1dc7 8043#endif
6f505b16 8044
052f1dc7 8045#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8046static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8047 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8048 struct sched_rt_entity *parent)
6f505b16 8049{
ec7dc8ac
DG
8050 struct rq *rq = cpu_rq(cpu);
8051
acb5a9ba
JS
8052 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8053 rt_rq->rt_nr_boosted = 0;
8054 rt_rq->rq = rq;
6f505b16 8055 rt_rq->tg = tg;
6f505b16 8056
acb5a9ba 8057 tg->rt_rq[cpu] = rt_rq;
6f505b16 8058 tg->rt_se[cpu] = rt_se;
acb5a9ba 8059
354d60c2
DG
8060 if (!rt_se)
8061 return;
8062
ec7dc8ac
DG
8063 if (!parent)
8064 rt_se->rt_rq = &rq->rt;
8065 else
8066 rt_se->rt_rq = parent->my_q;
8067
6f505b16 8068 rt_se->my_q = rt_rq;
ec7dc8ac 8069 rt_se->parent = parent;
6f505b16
PZ
8070 INIT_LIST_HEAD(&rt_se->run_list);
8071}
8072#endif
8073
1da177e4
LT
8074void __init sched_init(void)
8075{
dd41f596 8076 int i, j;
434d53b0
MT
8077 unsigned long alloc_size = 0, ptr;
8078
8079#ifdef CONFIG_FAIR_GROUP_SCHED
8080 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8081#endif
8082#ifdef CONFIG_RT_GROUP_SCHED
8083 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8084#endif
df7c8e84 8085#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8086 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8087#endif
434d53b0 8088 if (alloc_size) {
36b7b6d4 8089 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8090
8091#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8092 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8093 ptr += nr_cpu_ids * sizeof(void **);
8094
07e06b01 8095 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8096 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8097
6d6bc0ad 8098#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8099#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8100 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8101 ptr += nr_cpu_ids * sizeof(void **);
8102
07e06b01 8103 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8104 ptr += nr_cpu_ids * sizeof(void **);
8105
6d6bc0ad 8106#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8107#ifdef CONFIG_CPUMASK_OFFSTACK
8108 for_each_possible_cpu(i) {
8109 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8110 ptr += cpumask_size();
8111 }
8112#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8113 }
dd41f596 8114
57d885fe
GH
8115#ifdef CONFIG_SMP
8116 init_defrootdomain();
8117#endif
8118
d0b27fa7
PZ
8119 init_rt_bandwidth(&def_rt_bandwidth,
8120 global_rt_period(), global_rt_runtime());
8121
8122#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8123 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8124 global_rt_period(), global_rt_runtime());
6d6bc0ad 8125#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8126
7c941438 8127#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8128 list_add(&root_task_group.list, &task_groups);
8129 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8130 autogroup_init(&init_task);
7c941438 8131#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8132
0a945022 8133 for_each_possible_cpu(i) {
70b97a7f 8134 struct rq *rq;
1da177e4
LT
8135
8136 rq = cpu_rq(i);
05fa785c 8137 raw_spin_lock_init(&rq->lock);
7897986b 8138 rq->nr_running = 0;
dce48a84
TG
8139 rq->calc_load_active = 0;
8140 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8141 init_cfs_rq(&rq->cfs);
6f505b16 8142 init_rt_rq(&rq->rt, rq);
dd41f596 8143#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8144 root_task_group.shares = root_task_group_load;
6f505b16 8145 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8146 /*
07e06b01 8147 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8148 *
8149 * In case of task-groups formed thr' the cgroup filesystem, it
8150 * gets 100% of the cpu resources in the system. This overall
8151 * system cpu resource is divided among the tasks of
07e06b01 8152 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8153 * based on each entity's (task or task-group's) weight
8154 * (se->load.weight).
8155 *
07e06b01 8156 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8157 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8158 * then A0's share of the cpu resource is:
8159 *
0d905bca 8160 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8161 *
07e06b01
YZ
8162 * We achieve this by letting root_task_group's tasks sit
8163 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8164 */
ab84d31e 8165 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8166 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8167#endif /* CONFIG_FAIR_GROUP_SCHED */
8168
8169 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8170#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8171 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8172 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8173#endif
1da177e4 8174
dd41f596
IM
8175 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8176 rq->cpu_load[j] = 0;
fdf3e95d
VP
8177
8178 rq->last_load_update_tick = jiffies;
8179
1da177e4 8180#ifdef CONFIG_SMP
41c7ce9a 8181 rq->sd = NULL;
57d885fe 8182 rq->rd = NULL;
1399fa78 8183 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8184 rq->post_schedule = 0;
1da177e4 8185 rq->active_balance = 0;
dd41f596 8186 rq->next_balance = jiffies;
1da177e4 8187 rq->push_cpu = 0;
0a2966b4 8188 rq->cpu = i;
1f11eb6a 8189 rq->online = 0;
eae0c9df
MG
8190 rq->idle_stamp = 0;
8191 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8192 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8193#ifdef CONFIG_NO_HZ
8194 rq->nohz_balance_kick = 0;
8195 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8196#endif
1da177e4 8197#endif
8f4d37ec 8198 init_rq_hrtick(rq);
1da177e4 8199 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8200 }
8201
2dd73a4f 8202 set_load_weight(&init_task);
b50f60ce 8203
e107be36
AK
8204#ifdef CONFIG_PREEMPT_NOTIFIERS
8205 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8206#endif
8207
c9819f45 8208#ifdef CONFIG_SMP
962cf36c 8209 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8210#endif
8211
b50f60ce 8212#ifdef CONFIG_RT_MUTEXES
732375c6 8213 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8214#endif
8215
1da177e4
LT
8216 /*
8217 * The boot idle thread does lazy MMU switching as well:
8218 */
8219 atomic_inc(&init_mm.mm_count);
8220 enter_lazy_tlb(&init_mm, current);
8221
8222 /*
8223 * Make us the idle thread. Technically, schedule() should not be
8224 * called from this thread, however somewhere below it might be,
8225 * but because we are the idle thread, we just pick up running again
8226 * when this runqueue becomes "idle".
8227 */
8228 init_idle(current, smp_processor_id());
dce48a84
TG
8229
8230 calc_load_update = jiffies + LOAD_FREQ;
8231
dd41f596
IM
8232 /*
8233 * During early bootup we pretend to be a normal task:
8234 */
8235 current->sched_class = &fair_sched_class;
6892b75e 8236
6a7b3dc3 8237 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8238 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8239#ifdef CONFIG_SMP
4cb98839 8240 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8241#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8242 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8243 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8244 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8245 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8246 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8247#endif
bdddd296
RR
8248 /* May be allocated at isolcpus cmdline parse time */
8249 if (cpu_isolated_map == NULL)
8250 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8251#endif /* SMP */
6a7b3dc3 8252
6892b75e 8253 scheduler_running = 1;
1da177e4
LT
8254}
8255
d902db1e 8256#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8257static inline int preempt_count_equals(int preempt_offset)
8258{
234da7bc 8259 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8260
4ba8216c 8261 return (nested == preempt_offset);
e4aafea2
FW
8262}
8263
d894837f 8264void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8265{
1da177e4
LT
8266 static unsigned long prev_jiffy; /* ratelimiting */
8267
e4aafea2
FW
8268 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8269 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8270 return;
8271 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8272 return;
8273 prev_jiffy = jiffies;
8274
3df0fc5b
PZ
8275 printk(KERN_ERR
8276 "BUG: sleeping function called from invalid context at %s:%d\n",
8277 file, line);
8278 printk(KERN_ERR
8279 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8280 in_atomic(), irqs_disabled(),
8281 current->pid, current->comm);
aef745fc
IM
8282
8283 debug_show_held_locks(current);
8284 if (irqs_disabled())
8285 print_irqtrace_events(current);
8286 dump_stack();
1da177e4
LT
8287}
8288EXPORT_SYMBOL(__might_sleep);
8289#endif
8290
8291#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8292static void normalize_task(struct rq *rq, struct task_struct *p)
8293{
da7a735e
PZ
8294 const struct sched_class *prev_class = p->sched_class;
8295 int old_prio = p->prio;
3a5e4dc1 8296 int on_rq;
3e51f33f 8297
fd2f4419 8298 on_rq = p->on_rq;
3a5e4dc1
AK
8299 if (on_rq)
8300 deactivate_task(rq, p, 0);
8301 __setscheduler(rq, p, SCHED_NORMAL, 0);
8302 if (on_rq) {
8303 activate_task(rq, p, 0);
8304 resched_task(rq->curr);
8305 }
da7a735e
PZ
8306
8307 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8308}
8309
1da177e4
LT
8310void normalize_rt_tasks(void)
8311{
a0f98a1c 8312 struct task_struct *g, *p;
1da177e4 8313 unsigned long flags;
70b97a7f 8314 struct rq *rq;
1da177e4 8315
4cf5d77a 8316 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8317 do_each_thread(g, p) {
178be793
IM
8318 /*
8319 * Only normalize user tasks:
8320 */
8321 if (!p->mm)
8322 continue;
8323
6cfb0d5d 8324 p->se.exec_start = 0;
6cfb0d5d 8325#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8326 p->se.statistics.wait_start = 0;
8327 p->se.statistics.sleep_start = 0;
8328 p->se.statistics.block_start = 0;
6cfb0d5d 8329#endif
dd41f596
IM
8330
8331 if (!rt_task(p)) {
8332 /*
8333 * Renice negative nice level userspace
8334 * tasks back to 0:
8335 */
8336 if (TASK_NICE(p) < 0 && p->mm)
8337 set_user_nice(p, 0);
1da177e4 8338 continue;
dd41f596 8339 }
1da177e4 8340
1d615482 8341 raw_spin_lock(&p->pi_lock);
b29739f9 8342 rq = __task_rq_lock(p);
1da177e4 8343
178be793 8344 normalize_task(rq, p);
3a5e4dc1 8345
b29739f9 8346 __task_rq_unlock(rq);
1d615482 8347 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8348 } while_each_thread(g, p);
8349
4cf5d77a 8350 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8351}
8352
8353#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8354
67fc4e0c 8355#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8356/*
67fc4e0c 8357 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8358 *
8359 * They can only be called when the whole system has been
8360 * stopped - every CPU needs to be quiescent, and no scheduling
8361 * activity can take place. Using them for anything else would
8362 * be a serious bug, and as a result, they aren't even visible
8363 * under any other configuration.
8364 */
8365
8366/**
8367 * curr_task - return the current task for a given cpu.
8368 * @cpu: the processor in question.
8369 *
8370 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8371 */
36c8b586 8372struct task_struct *curr_task(int cpu)
1df5c10a
LT
8373{
8374 return cpu_curr(cpu);
8375}
8376
67fc4e0c
JW
8377#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8378
8379#ifdef CONFIG_IA64
1df5c10a
LT
8380/**
8381 * set_curr_task - set the current task for a given cpu.
8382 * @cpu: the processor in question.
8383 * @p: the task pointer to set.
8384 *
8385 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8386 * are serviced on a separate stack. It allows the architecture to switch the
8387 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8388 * must be called with all CPU's synchronized, and interrupts disabled, the
8389 * and caller must save the original value of the current task (see
8390 * curr_task() above) and restore that value before reenabling interrupts and
8391 * re-starting the system.
8392 *
8393 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8394 */
36c8b586 8395void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8396{
8397 cpu_curr(cpu) = p;
8398}
8399
8400#endif
29f59db3 8401
bccbe08a
PZ
8402#ifdef CONFIG_FAIR_GROUP_SCHED
8403static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8404{
8405 int i;
8406
ab84d31e
PT
8407 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8408
6f505b16
PZ
8409 for_each_possible_cpu(i) {
8410 if (tg->cfs_rq)
8411 kfree(tg->cfs_rq[i]);
8412 if (tg->se)
8413 kfree(tg->se[i]);
6f505b16
PZ
8414 }
8415
8416 kfree(tg->cfs_rq);
8417 kfree(tg->se);
6f505b16
PZ
8418}
8419
ec7dc8ac
DG
8420static
8421int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8422{
29f59db3 8423 struct cfs_rq *cfs_rq;
eab17229 8424 struct sched_entity *se;
29f59db3
SV
8425 int i;
8426
434d53b0 8427 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8428 if (!tg->cfs_rq)
8429 goto err;
434d53b0 8430 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8431 if (!tg->se)
8432 goto err;
052f1dc7
PZ
8433
8434 tg->shares = NICE_0_LOAD;
29f59db3 8435
ab84d31e
PT
8436 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8437
29f59db3 8438 for_each_possible_cpu(i) {
eab17229
LZ
8439 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8440 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8441 if (!cfs_rq)
8442 goto err;
8443
eab17229
LZ
8444 se = kzalloc_node(sizeof(struct sched_entity),
8445 GFP_KERNEL, cpu_to_node(i));
29f59db3 8446 if (!se)
dfc12eb2 8447 goto err_free_rq;
29f59db3 8448
acb5a9ba 8449 init_cfs_rq(cfs_rq);
3d4b47b4 8450 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8451 }
8452
8453 return 1;
8454
49246274 8455err_free_rq:
dfc12eb2 8456 kfree(cfs_rq);
49246274 8457err:
bccbe08a
PZ
8458 return 0;
8459}
8460
bccbe08a
PZ
8461static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8462{
3d4b47b4
PZ
8463 struct rq *rq = cpu_rq(cpu);
8464 unsigned long flags;
3d4b47b4
PZ
8465
8466 /*
8467 * Only empty task groups can be destroyed; so we can speculatively
8468 * check on_list without danger of it being re-added.
8469 */
8470 if (!tg->cfs_rq[cpu]->on_list)
8471 return;
8472
8473 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8474 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8475 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8476}
5f817d67 8477#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8478static inline void free_fair_sched_group(struct task_group *tg)
8479{
8480}
8481
ec7dc8ac
DG
8482static inline
8483int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8484{
8485 return 1;
8486}
8487
bccbe08a
PZ
8488static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8489{
8490}
6d6bc0ad 8491#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8492
8493#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8494static void free_rt_sched_group(struct task_group *tg)
8495{
8496 int i;
8497
99bc5242
BL
8498 if (tg->rt_se)
8499 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8500
bccbe08a
PZ
8501 for_each_possible_cpu(i) {
8502 if (tg->rt_rq)
8503 kfree(tg->rt_rq[i]);
8504 if (tg->rt_se)
8505 kfree(tg->rt_se[i]);
8506 }
8507
8508 kfree(tg->rt_rq);
8509 kfree(tg->rt_se);
8510}
8511
ec7dc8ac
DG
8512static
8513int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8514{
8515 struct rt_rq *rt_rq;
eab17229 8516 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8517 int i;
8518
434d53b0 8519 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8520 if (!tg->rt_rq)
8521 goto err;
434d53b0 8522 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8523 if (!tg->rt_se)
8524 goto err;
8525
d0b27fa7
PZ
8526 init_rt_bandwidth(&tg->rt_bandwidth,
8527 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8528
8529 for_each_possible_cpu(i) {
eab17229
LZ
8530 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8531 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8532 if (!rt_rq)
8533 goto err;
29f59db3 8534
eab17229
LZ
8535 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8536 GFP_KERNEL, cpu_to_node(i));
6f505b16 8537 if (!rt_se)
dfc12eb2 8538 goto err_free_rq;
29f59db3 8539
acb5a9ba
JS
8540 init_rt_rq(rt_rq, cpu_rq(i));
8541 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8542 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8543 }
8544
bccbe08a
PZ
8545 return 1;
8546
49246274 8547err_free_rq:
dfc12eb2 8548 kfree(rt_rq);
49246274 8549err:
bccbe08a
PZ
8550 return 0;
8551}
6d6bc0ad 8552#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8553static inline void free_rt_sched_group(struct task_group *tg)
8554{
8555}
8556
ec7dc8ac
DG
8557static inline
8558int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8559{
8560 return 1;
8561}
6d6bc0ad 8562#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8563
7c941438 8564#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8565static void free_sched_group(struct task_group *tg)
8566{
8567 free_fair_sched_group(tg);
8568 free_rt_sched_group(tg);
e9aa1dd1 8569 autogroup_free(tg);
bccbe08a
PZ
8570 kfree(tg);
8571}
8572
8573/* allocate runqueue etc for a new task group */
ec7dc8ac 8574struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8575{
8576 struct task_group *tg;
8577 unsigned long flags;
bccbe08a
PZ
8578
8579 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8580 if (!tg)
8581 return ERR_PTR(-ENOMEM);
8582
ec7dc8ac 8583 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8584 goto err;
8585
ec7dc8ac 8586 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8587 goto err;
8588
8ed36996 8589 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8590 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8591
8592 WARN_ON(!parent); /* root should already exist */
8593
8594 tg->parent = parent;
f473aa5e 8595 INIT_LIST_HEAD(&tg->children);
09f2724a 8596 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8597 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8598
9b5b7751 8599 return tg;
29f59db3
SV
8600
8601err:
6f505b16 8602 free_sched_group(tg);
29f59db3
SV
8603 return ERR_PTR(-ENOMEM);
8604}
8605
9b5b7751 8606/* rcu callback to free various structures associated with a task group */
6f505b16 8607static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8608{
29f59db3 8609 /* now it should be safe to free those cfs_rqs */
6f505b16 8610 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8611}
8612
9b5b7751 8613/* Destroy runqueue etc associated with a task group */
4cf86d77 8614void sched_destroy_group(struct task_group *tg)
29f59db3 8615{
8ed36996 8616 unsigned long flags;
9b5b7751 8617 int i;
29f59db3 8618
3d4b47b4
PZ
8619 /* end participation in shares distribution */
8620 for_each_possible_cpu(i)
bccbe08a 8621 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8622
8623 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8624 list_del_rcu(&tg->list);
f473aa5e 8625 list_del_rcu(&tg->siblings);
8ed36996 8626 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8627
9b5b7751 8628 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8629 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8630}
8631
9b5b7751 8632/* change task's runqueue when it moves between groups.
3a252015
IM
8633 * The caller of this function should have put the task in its new group
8634 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8635 * reflect its new group.
9b5b7751
SV
8636 */
8637void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8638{
8639 int on_rq, running;
8640 unsigned long flags;
8641 struct rq *rq;
8642
8643 rq = task_rq_lock(tsk, &flags);
8644
051a1d1a 8645 running = task_current(rq, tsk);
fd2f4419 8646 on_rq = tsk->on_rq;
29f59db3 8647
0e1f3483 8648 if (on_rq)
29f59db3 8649 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8650 if (unlikely(running))
8651 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8652
810b3817 8653#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8654 if (tsk->sched_class->task_move_group)
8655 tsk->sched_class->task_move_group(tsk, on_rq);
8656 else
810b3817 8657#endif
b2b5ce02 8658 set_task_rq(tsk, task_cpu(tsk));
810b3817 8659
0e1f3483
HS
8660 if (unlikely(running))
8661 tsk->sched_class->set_curr_task(rq);
8662 if (on_rq)
371fd7e7 8663 enqueue_task(rq, tsk, 0);
29f59db3 8664
0122ec5b 8665 task_rq_unlock(rq, tsk, &flags);
29f59db3 8666}
7c941438 8667#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8668
052f1dc7 8669#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8670static DEFINE_MUTEX(shares_mutex);
8671
4cf86d77 8672int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8673{
8674 int i;
8ed36996 8675 unsigned long flags;
c61935fd 8676
ec7dc8ac
DG
8677 /*
8678 * We can't change the weight of the root cgroup.
8679 */
8680 if (!tg->se[0])
8681 return -EINVAL;
8682
cd62287e 8683 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8684
8ed36996 8685 mutex_lock(&shares_mutex);
9b5b7751 8686 if (tg->shares == shares)
5cb350ba 8687 goto done;
29f59db3 8688
9b5b7751 8689 tg->shares = shares;
c09595f6 8690 for_each_possible_cpu(i) {
9437178f
PT
8691 struct rq *rq = cpu_rq(i);
8692 struct sched_entity *se;
8693
8694 se = tg->se[i];
8695 /* Propagate contribution to hierarchy */
8696 raw_spin_lock_irqsave(&rq->lock, flags);
8697 for_each_sched_entity(se)
6d5ab293 8698 update_cfs_shares(group_cfs_rq(se));
9437178f 8699 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8700 }
29f59db3 8701
5cb350ba 8702done:
8ed36996 8703 mutex_unlock(&shares_mutex);
9b5b7751 8704 return 0;
29f59db3
SV
8705}
8706
5cb350ba
DG
8707unsigned long sched_group_shares(struct task_group *tg)
8708{
8709 return tg->shares;
8710}
052f1dc7 8711#endif
5cb350ba 8712
a790de99 8713#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8714static unsigned long to_ratio(u64 period, u64 runtime)
8715{
8716 if (runtime == RUNTIME_INF)
9a7e0b18 8717 return 1ULL << 20;
9f0c1e56 8718
9a7e0b18 8719 return div64_u64(runtime << 20, period);
9f0c1e56 8720}
a790de99
PT
8721#endif
8722
8723#ifdef CONFIG_RT_GROUP_SCHED
8724/*
8725 * Ensure that the real time constraints are schedulable.
8726 */
8727static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8728
9a7e0b18
PZ
8729/* Must be called with tasklist_lock held */
8730static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8731{
9a7e0b18 8732 struct task_struct *g, *p;
b40b2e8e 8733
9a7e0b18
PZ
8734 do_each_thread(g, p) {
8735 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8736 return 1;
8737 } while_each_thread(g, p);
b40b2e8e 8738
9a7e0b18
PZ
8739 return 0;
8740}
b40b2e8e 8741
9a7e0b18
PZ
8742struct rt_schedulable_data {
8743 struct task_group *tg;
8744 u64 rt_period;
8745 u64 rt_runtime;
8746};
b40b2e8e 8747
a790de99 8748static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8749{
8750 struct rt_schedulable_data *d = data;
8751 struct task_group *child;
8752 unsigned long total, sum = 0;
8753 u64 period, runtime;
b40b2e8e 8754
9a7e0b18
PZ
8755 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8756 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8757
9a7e0b18
PZ
8758 if (tg == d->tg) {
8759 period = d->rt_period;
8760 runtime = d->rt_runtime;
b40b2e8e 8761 }
b40b2e8e 8762
4653f803
PZ
8763 /*
8764 * Cannot have more runtime than the period.
8765 */
8766 if (runtime > period && runtime != RUNTIME_INF)
8767 return -EINVAL;
6f505b16 8768
4653f803
PZ
8769 /*
8770 * Ensure we don't starve existing RT tasks.
8771 */
9a7e0b18
PZ
8772 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8773 return -EBUSY;
6f505b16 8774
9a7e0b18 8775 total = to_ratio(period, runtime);
6f505b16 8776
4653f803
PZ
8777 /*
8778 * Nobody can have more than the global setting allows.
8779 */
8780 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8781 return -EINVAL;
6f505b16 8782
4653f803
PZ
8783 /*
8784 * The sum of our children's runtime should not exceed our own.
8785 */
9a7e0b18
PZ
8786 list_for_each_entry_rcu(child, &tg->children, siblings) {
8787 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8788 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8789
9a7e0b18
PZ
8790 if (child == d->tg) {
8791 period = d->rt_period;
8792 runtime = d->rt_runtime;
8793 }
6f505b16 8794
9a7e0b18 8795 sum += to_ratio(period, runtime);
9f0c1e56 8796 }
6f505b16 8797
9a7e0b18
PZ
8798 if (sum > total)
8799 return -EINVAL;
8800
8801 return 0;
6f505b16
PZ
8802}
8803
9a7e0b18 8804static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8805{
9a7e0b18
PZ
8806 struct rt_schedulable_data data = {
8807 .tg = tg,
8808 .rt_period = period,
8809 .rt_runtime = runtime,
8810 };
8811
a790de99 8812 return walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
521f1a24
DG
8813}
8814
ab84d31e 8815static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8816 u64 rt_period, u64 rt_runtime)
6f505b16 8817{
ac086bc2 8818 int i, err = 0;
9f0c1e56 8819
9f0c1e56 8820 mutex_lock(&rt_constraints_mutex);
521f1a24 8821 read_lock(&tasklist_lock);
9a7e0b18
PZ
8822 err = __rt_schedulable(tg, rt_period, rt_runtime);
8823 if (err)
9f0c1e56 8824 goto unlock;
ac086bc2 8825
0986b11b 8826 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8827 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8828 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8829
8830 for_each_possible_cpu(i) {
8831 struct rt_rq *rt_rq = tg->rt_rq[i];
8832
0986b11b 8833 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8834 rt_rq->rt_runtime = rt_runtime;
0986b11b 8835 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8836 }
0986b11b 8837 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8838unlock:
521f1a24 8839 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8840 mutex_unlock(&rt_constraints_mutex);
8841
8842 return err;
6f505b16
PZ
8843}
8844
d0b27fa7
PZ
8845int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8846{
8847 u64 rt_runtime, rt_period;
8848
8849 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8850 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8851 if (rt_runtime_us < 0)
8852 rt_runtime = RUNTIME_INF;
8853
ab84d31e 8854 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8855}
8856
9f0c1e56
PZ
8857long sched_group_rt_runtime(struct task_group *tg)
8858{
8859 u64 rt_runtime_us;
8860
d0b27fa7 8861 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8862 return -1;
8863
d0b27fa7 8864 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8865 do_div(rt_runtime_us, NSEC_PER_USEC);
8866 return rt_runtime_us;
8867}
d0b27fa7
PZ
8868
8869int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8870{
8871 u64 rt_runtime, rt_period;
8872
8873 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8874 rt_runtime = tg->rt_bandwidth.rt_runtime;
8875
619b0488
R
8876 if (rt_period == 0)
8877 return -EINVAL;
8878
ab84d31e 8879 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8880}
8881
8882long sched_group_rt_period(struct task_group *tg)
8883{
8884 u64 rt_period_us;
8885
8886 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8887 do_div(rt_period_us, NSEC_PER_USEC);
8888 return rt_period_us;
8889}
8890
8891static int sched_rt_global_constraints(void)
8892{
4653f803 8893 u64 runtime, period;
d0b27fa7
PZ
8894 int ret = 0;
8895
ec5d4989
HS
8896 if (sysctl_sched_rt_period <= 0)
8897 return -EINVAL;
8898
4653f803
PZ
8899 runtime = global_rt_runtime();
8900 period = global_rt_period();
8901
8902 /*
8903 * Sanity check on the sysctl variables.
8904 */
8905 if (runtime > period && runtime != RUNTIME_INF)
8906 return -EINVAL;
10b612f4 8907
d0b27fa7 8908 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8909 read_lock(&tasklist_lock);
4653f803 8910 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8911 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8912 mutex_unlock(&rt_constraints_mutex);
8913
8914 return ret;
8915}
54e99124
DG
8916
8917int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8918{
8919 /* Don't accept realtime tasks when there is no way for them to run */
8920 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8921 return 0;
8922
8923 return 1;
8924}
8925
6d6bc0ad 8926#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8927static int sched_rt_global_constraints(void)
8928{
ac086bc2
PZ
8929 unsigned long flags;
8930 int i;
8931
ec5d4989
HS
8932 if (sysctl_sched_rt_period <= 0)
8933 return -EINVAL;
8934
60aa605d
PZ
8935 /*
8936 * There's always some RT tasks in the root group
8937 * -- migration, kstopmachine etc..
8938 */
8939 if (sysctl_sched_rt_runtime == 0)
8940 return -EBUSY;
8941
0986b11b 8942 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8943 for_each_possible_cpu(i) {
8944 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8945
0986b11b 8946 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8947 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8948 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8949 }
0986b11b 8950 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8951
d0b27fa7
PZ
8952 return 0;
8953}
6d6bc0ad 8954#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8955
8956int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8957 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8958 loff_t *ppos)
8959{
8960 int ret;
8961 int old_period, old_runtime;
8962 static DEFINE_MUTEX(mutex);
8963
8964 mutex_lock(&mutex);
8965 old_period = sysctl_sched_rt_period;
8966 old_runtime = sysctl_sched_rt_runtime;
8967
8d65af78 8968 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8969
8970 if (!ret && write) {
8971 ret = sched_rt_global_constraints();
8972 if (ret) {
8973 sysctl_sched_rt_period = old_period;
8974 sysctl_sched_rt_runtime = old_runtime;
8975 } else {
8976 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8977 def_rt_bandwidth.rt_period =
8978 ns_to_ktime(global_rt_period());
8979 }
8980 }
8981 mutex_unlock(&mutex);
8982
8983 return ret;
8984}
68318b8e 8985
052f1dc7 8986#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8987
8988/* return corresponding task_group object of a cgroup */
2b01dfe3 8989static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8990{
2b01dfe3
PM
8991 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8992 struct task_group, css);
68318b8e
SV
8993}
8994
8995static struct cgroup_subsys_state *
2b01dfe3 8996cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8997{
ec7dc8ac 8998 struct task_group *tg, *parent;
68318b8e 8999
2b01dfe3 9000 if (!cgrp->parent) {
68318b8e 9001 /* This is early initialization for the top cgroup */
07e06b01 9002 return &root_task_group.css;
68318b8e
SV
9003 }
9004
ec7dc8ac
DG
9005 parent = cgroup_tg(cgrp->parent);
9006 tg = sched_create_group(parent);
68318b8e
SV
9007 if (IS_ERR(tg))
9008 return ERR_PTR(-ENOMEM);
9009
68318b8e
SV
9010 return &tg->css;
9011}
9012
41a2d6cf
IM
9013static void
9014cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9015{
2b01dfe3 9016 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9017
9018 sched_destroy_group(tg);
9019}
9020
41a2d6cf 9021static int
be367d09 9022cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9023{
b68aa230 9024#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9025 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9026 return -EINVAL;
9027#else
68318b8e
SV
9028 /* We don't support RT-tasks being in separate groups */
9029 if (tsk->sched_class != &fair_sched_class)
9030 return -EINVAL;
b68aa230 9031#endif
be367d09
BB
9032 return 0;
9033}
68318b8e 9034
68318b8e 9035static void
f780bdb7 9036cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9037{
9038 sched_move_task(tsk);
9039}
9040
068c5cc5 9041static void
d41d5a01
PZ
9042cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9043 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9044{
9045 /*
9046 * cgroup_exit() is called in the copy_process() failure path.
9047 * Ignore this case since the task hasn't ran yet, this avoids
9048 * trying to poke a half freed task state from generic code.
9049 */
9050 if (!(task->flags & PF_EXITING))
9051 return;
9052
9053 sched_move_task(task);
9054}
9055
052f1dc7 9056#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9057static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9058 u64 shareval)
68318b8e 9059{
c8b28116 9060 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9061}
9062
f4c753b7 9063static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9064{
2b01dfe3 9065 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9066
c8b28116 9067 return (u64) scale_load_down(tg->shares);
68318b8e 9068}
ab84d31e
PT
9069
9070#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9071static DEFINE_MUTEX(cfs_constraints_mutex);
9072
ab84d31e
PT
9073const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9074const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9075
a790de99
PT
9076static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9077
ab84d31e
PT
9078static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9079{
a790de99 9080 int i, ret = 0;
ab84d31e 9081 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9082
9083 if (tg == &root_task_group)
9084 return -EINVAL;
9085
9086 /*
9087 * Ensure we have at some amount of bandwidth every period. This is
9088 * to prevent reaching a state of large arrears when throttled via
9089 * entity_tick() resulting in prolonged exit starvation.
9090 */
9091 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9092 return -EINVAL;
9093
9094 /*
9095 * Likewise, bound things on the otherside by preventing insane quota
9096 * periods. This also allows us to normalize in computing quota
9097 * feasibility.
9098 */
9099 if (period > max_cfs_quota_period)
9100 return -EINVAL;
9101
a790de99
PT
9102 mutex_lock(&cfs_constraints_mutex);
9103 ret = __cfs_schedulable(tg, period, quota);
9104 if (ret)
9105 goto out_unlock;
9106
ab84d31e
PT
9107 raw_spin_lock_irq(&cfs_b->lock);
9108 cfs_b->period = ns_to_ktime(period);
9109 cfs_b->quota = quota;
9110 raw_spin_unlock_irq(&cfs_b->lock);
9111
9112 for_each_possible_cpu(i) {
9113 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9114 struct rq *rq = rq_of(cfs_rq);
9115
9116 raw_spin_lock_irq(&rq->lock);
9117 cfs_rq->runtime_enabled = quota != RUNTIME_INF;
9118 cfs_rq->runtime_remaining = 0;
9119 raw_spin_unlock_irq(&rq->lock);
9120 }
a790de99
PT
9121out_unlock:
9122 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9123
a790de99 9124 return ret;
ab84d31e
PT
9125}
9126
9127int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9128{
9129 u64 quota, period;
9130
9131 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9132 if (cfs_quota_us < 0)
9133 quota = RUNTIME_INF;
9134 else
9135 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9136
9137 return tg_set_cfs_bandwidth(tg, period, quota);
9138}
9139
9140long tg_get_cfs_quota(struct task_group *tg)
9141{
9142 u64 quota_us;
9143
9144 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9145 return -1;
9146
9147 quota_us = tg_cfs_bandwidth(tg)->quota;
9148 do_div(quota_us, NSEC_PER_USEC);
9149
9150 return quota_us;
9151}
9152
9153int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9154{
9155 u64 quota, period;
9156
9157 period = (u64)cfs_period_us * NSEC_PER_USEC;
9158 quota = tg_cfs_bandwidth(tg)->quota;
9159
9160 if (period <= 0)
9161 return -EINVAL;
9162
9163 return tg_set_cfs_bandwidth(tg, period, quota);
9164}
9165
9166long tg_get_cfs_period(struct task_group *tg)
9167{
9168 u64 cfs_period_us;
9169
9170 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9171 do_div(cfs_period_us, NSEC_PER_USEC);
9172
9173 return cfs_period_us;
9174}
9175
9176static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9177{
9178 return tg_get_cfs_quota(cgroup_tg(cgrp));
9179}
9180
9181static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9182 s64 cfs_quota_us)
9183{
9184 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9185}
9186
9187static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9188{
9189 return tg_get_cfs_period(cgroup_tg(cgrp));
9190}
9191
9192static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9193 u64 cfs_period_us)
9194{
9195 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9196}
9197
a790de99
PT
9198struct cfs_schedulable_data {
9199 struct task_group *tg;
9200 u64 period, quota;
9201};
9202
9203/*
9204 * normalize group quota/period to be quota/max_period
9205 * note: units are usecs
9206 */
9207static u64 normalize_cfs_quota(struct task_group *tg,
9208 struct cfs_schedulable_data *d)
9209{
9210 u64 quota, period;
9211
9212 if (tg == d->tg) {
9213 period = d->period;
9214 quota = d->quota;
9215 } else {
9216 period = tg_get_cfs_period(tg);
9217 quota = tg_get_cfs_quota(tg);
9218 }
9219
9220 /* note: these should typically be equivalent */
9221 if (quota == RUNTIME_INF || quota == -1)
9222 return RUNTIME_INF;
9223
9224 return to_ratio(period, quota);
9225}
9226
9227static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9228{
9229 struct cfs_schedulable_data *d = data;
9230 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9231 s64 quota = 0, parent_quota = -1;
9232
9233 if (!tg->parent) {
9234 quota = RUNTIME_INF;
9235 } else {
9236 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9237
9238 quota = normalize_cfs_quota(tg, d);
9239 parent_quota = parent_b->hierarchal_quota;
9240
9241 /*
9242 * ensure max(child_quota) <= parent_quota, inherit when no
9243 * limit is set
9244 */
9245 if (quota == RUNTIME_INF)
9246 quota = parent_quota;
9247 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9248 return -EINVAL;
9249 }
9250 cfs_b->hierarchal_quota = quota;
9251
9252 return 0;
9253}
9254
9255static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9256{
9257 struct cfs_schedulable_data data = {
9258 .tg = tg,
9259 .period = period,
9260 .quota = quota,
9261 };
9262
9263 if (quota != RUNTIME_INF) {
9264 do_div(data.period, NSEC_PER_USEC);
9265 do_div(data.quota, NSEC_PER_USEC);
9266 }
9267
9268 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9269}
ab84d31e 9270#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9271#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9272
052f1dc7 9273#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9274static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9275 s64 val)
6f505b16 9276{
06ecb27c 9277 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9278}
9279
06ecb27c 9280static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9281{
06ecb27c 9282 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9283}
d0b27fa7
PZ
9284
9285static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9286 u64 rt_period_us)
9287{
9288 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9289}
9290
9291static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9292{
9293 return sched_group_rt_period(cgroup_tg(cgrp));
9294}
6d6bc0ad 9295#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9296
fe5c7cc2 9297static struct cftype cpu_files[] = {
052f1dc7 9298#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9299 {
9300 .name = "shares",
f4c753b7
PM
9301 .read_u64 = cpu_shares_read_u64,
9302 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9303 },
052f1dc7 9304#endif
ab84d31e
PT
9305#ifdef CONFIG_CFS_BANDWIDTH
9306 {
9307 .name = "cfs_quota_us",
9308 .read_s64 = cpu_cfs_quota_read_s64,
9309 .write_s64 = cpu_cfs_quota_write_s64,
9310 },
9311 {
9312 .name = "cfs_period_us",
9313 .read_u64 = cpu_cfs_period_read_u64,
9314 .write_u64 = cpu_cfs_period_write_u64,
9315 },
9316#endif
052f1dc7 9317#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9318 {
9f0c1e56 9319 .name = "rt_runtime_us",
06ecb27c
PM
9320 .read_s64 = cpu_rt_runtime_read,
9321 .write_s64 = cpu_rt_runtime_write,
6f505b16 9322 },
d0b27fa7
PZ
9323 {
9324 .name = "rt_period_us",
f4c753b7
PM
9325 .read_u64 = cpu_rt_period_read_uint,
9326 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9327 },
052f1dc7 9328#endif
68318b8e
SV
9329};
9330
9331static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9332{
fe5c7cc2 9333 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9334}
9335
9336struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9337 .name = "cpu",
9338 .create = cpu_cgroup_create,
9339 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9340 .can_attach_task = cpu_cgroup_can_attach_task,
9341 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9342 .exit = cpu_cgroup_exit,
38605cae
IM
9343 .populate = cpu_cgroup_populate,
9344 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9345 .early_init = 1,
9346};
9347
052f1dc7 9348#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9349
9350#ifdef CONFIG_CGROUP_CPUACCT
9351
9352/*
9353 * CPU accounting code for task groups.
9354 *
9355 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9356 * (balbir@in.ibm.com).
9357 */
9358
934352f2 9359/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9360struct cpuacct {
9361 struct cgroup_subsys_state css;
9362 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9363 u64 __percpu *cpuusage;
ef12fefa 9364 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9365 struct cpuacct *parent;
d842de87
SV
9366};
9367
9368struct cgroup_subsys cpuacct_subsys;
9369
9370/* return cpu accounting group corresponding to this container */
32cd756a 9371static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9372{
32cd756a 9373 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9374 struct cpuacct, css);
9375}
9376
9377/* return cpu accounting group to which this task belongs */
9378static inline struct cpuacct *task_ca(struct task_struct *tsk)
9379{
9380 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9381 struct cpuacct, css);
9382}
9383
9384/* create a new cpu accounting group */
9385static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9386 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9387{
9388 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9389 int i;
d842de87
SV
9390
9391 if (!ca)
ef12fefa 9392 goto out;
d842de87
SV
9393
9394 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9395 if (!ca->cpuusage)
9396 goto out_free_ca;
9397
9398 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9399 if (percpu_counter_init(&ca->cpustat[i], 0))
9400 goto out_free_counters;
d842de87 9401
934352f2
BR
9402 if (cgrp->parent)
9403 ca->parent = cgroup_ca(cgrp->parent);
9404
d842de87 9405 return &ca->css;
ef12fefa
BR
9406
9407out_free_counters:
9408 while (--i >= 0)
9409 percpu_counter_destroy(&ca->cpustat[i]);
9410 free_percpu(ca->cpuusage);
9411out_free_ca:
9412 kfree(ca);
9413out:
9414 return ERR_PTR(-ENOMEM);
d842de87
SV
9415}
9416
9417/* destroy an existing cpu accounting group */
41a2d6cf 9418static void
32cd756a 9419cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9420{
32cd756a 9421 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9422 int i;
d842de87 9423
ef12fefa
BR
9424 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9425 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9426 free_percpu(ca->cpuusage);
9427 kfree(ca);
9428}
9429
720f5498
KC
9430static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9431{
b36128c8 9432 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9433 u64 data;
9434
9435#ifndef CONFIG_64BIT
9436 /*
9437 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9438 */
05fa785c 9439 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9440 data = *cpuusage;
05fa785c 9441 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9442#else
9443 data = *cpuusage;
9444#endif
9445
9446 return data;
9447}
9448
9449static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9450{
b36128c8 9451 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9452
9453#ifndef CONFIG_64BIT
9454 /*
9455 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9456 */
05fa785c 9457 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9458 *cpuusage = val;
05fa785c 9459 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9460#else
9461 *cpuusage = val;
9462#endif
9463}
9464
d842de87 9465/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9466static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9467{
32cd756a 9468 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9469 u64 totalcpuusage = 0;
9470 int i;
9471
720f5498
KC
9472 for_each_present_cpu(i)
9473 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9474
9475 return totalcpuusage;
9476}
9477
0297b803
DG
9478static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9479 u64 reset)
9480{
9481 struct cpuacct *ca = cgroup_ca(cgrp);
9482 int err = 0;
9483 int i;
9484
9485 if (reset) {
9486 err = -EINVAL;
9487 goto out;
9488 }
9489
720f5498
KC
9490 for_each_present_cpu(i)
9491 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9492
0297b803
DG
9493out:
9494 return err;
9495}
9496
e9515c3c
KC
9497static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9498 struct seq_file *m)
9499{
9500 struct cpuacct *ca = cgroup_ca(cgroup);
9501 u64 percpu;
9502 int i;
9503
9504 for_each_present_cpu(i) {
9505 percpu = cpuacct_cpuusage_read(ca, i);
9506 seq_printf(m, "%llu ", (unsigned long long) percpu);
9507 }
9508 seq_printf(m, "\n");
9509 return 0;
9510}
9511
ef12fefa
BR
9512static const char *cpuacct_stat_desc[] = {
9513 [CPUACCT_STAT_USER] = "user",
9514 [CPUACCT_STAT_SYSTEM] = "system",
9515};
9516
9517static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9518 struct cgroup_map_cb *cb)
9519{
9520 struct cpuacct *ca = cgroup_ca(cgrp);
9521 int i;
9522
9523 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9524 s64 val = percpu_counter_read(&ca->cpustat[i]);
9525 val = cputime64_to_clock_t(val);
9526 cb->fill(cb, cpuacct_stat_desc[i], val);
9527 }
9528 return 0;
9529}
9530
d842de87
SV
9531static struct cftype files[] = {
9532 {
9533 .name = "usage",
f4c753b7
PM
9534 .read_u64 = cpuusage_read,
9535 .write_u64 = cpuusage_write,
d842de87 9536 },
e9515c3c
KC
9537 {
9538 .name = "usage_percpu",
9539 .read_seq_string = cpuacct_percpu_seq_read,
9540 },
ef12fefa
BR
9541 {
9542 .name = "stat",
9543 .read_map = cpuacct_stats_show,
9544 },
d842de87
SV
9545};
9546
32cd756a 9547static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9548{
32cd756a 9549 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9550}
9551
9552/*
9553 * charge this task's execution time to its accounting group.
9554 *
9555 * called with rq->lock held.
9556 */
9557static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9558{
9559 struct cpuacct *ca;
934352f2 9560 int cpu;
d842de87 9561
c40c6f85 9562 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9563 return;
9564
934352f2 9565 cpu = task_cpu(tsk);
a18b83b7
BR
9566
9567 rcu_read_lock();
9568
d842de87 9569 ca = task_ca(tsk);
d842de87 9570
934352f2 9571 for (; ca; ca = ca->parent) {
b36128c8 9572 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9573 *cpuusage += cputime;
9574 }
a18b83b7
BR
9575
9576 rcu_read_unlock();
d842de87
SV
9577}
9578
fa535a77
AB
9579/*
9580 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9581 * in cputime_t units. As a result, cpuacct_update_stats calls
9582 * percpu_counter_add with values large enough to always overflow the
9583 * per cpu batch limit causing bad SMP scalability.
9584 *
9585 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9586 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9587 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9588 */
9589#ifdef CONFIG_SMP
9590#define CPUACCT_BATCH \
9591 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9592#else
9593#define CPUACCT_BATCH 0
9594#endif
9595
ef12fefa
BR
9596/*
9597 * Charge the system/user time to the task's accounting group.
9598 */
9599static void cpuacct_update_stats(struct task_struct *tsk,
9600 enum cpuacct_stat_index idx, cputime_t val)
9601{
9602 struct cpuacct *ca;
fa535a77 9603 int batch = CPUACCT_BATCH;
ef12fefa
BR
9604
9605 if (unlikely(!cpuacct_subsys.active))
9606 return;
9607
9608 rcu_read_lock();
9609 ca = task_ca(tsk);
9610
9611 do {
fa535a77 9612 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9613 ca = ca->parent;
9614 } while (ca);
9615 rcu_read_unlock();
9616}
9617
d842de87
SV
9618struct cgroup_subsys cpuacct_subsys = {
9619 .name = "cpuacct",
9620 .create = cpuacct_create,
9621 .destroy = cpuacct_destroy,
9622 .populate = cpuacct_populate,
9623 .subsys_id = cpuacct_subsys_id,
9624};
9625#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.234641 seconds and 5 git commands to generate.