Merge branch 'sched/urgent' into sched/devel
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229}
230
231#ifdef CONFIG_RT_GROUP_SCHED
232static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233{
234 hrtimer_cancel(&rt_b->rt_period_timer);
235}
236#endif
237
712555ee
HC
238/*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242static DEFINE_MUTEX(sched_domains_mutex);
243
052f1dc7 244#ifdef CONFIG_GROUP_SCHED
29f59db3 245
68318b8e
SV
246#include <linux/cgroup.h>
247
29f59db3
SV
248struct cfs_rq;
249
6f505b16
PZ
250static LIST_HEAD(task_groups);
251
29f59db3 252/* task group related information */
4cf86d77 253struct task_group {
052f1dc7 254#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
255 struct cgroup_subsys_state css;
256#endif
052f1dc7
PZ
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
052f1dc7
PZ
264#endif
265
266#ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
d0b27fa7 270 struct rt_bandwidth rt_bandwidth;
052f1dc7 271#endif
6b2d7700 272
ae8393e5 273 struct rcu_head rcu;
6f505b16 274 struct list_head list;
f473aa5e
PZ
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
29f59db3
SV
279};
280
354d60c2 281#ifdef CONFIG_USER_SCHED
eff766a6
PZ
282
283/*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288struct task_group root_task_group;
289
052f1dc7 290#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
291/* Default task group's sched entity on each cpu */
292static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293/* Default task group's cfs_rq on each cpu */
294static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 295#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
296
297#ifdef CONFIG_RT_GROUP_SCHED
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
300#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 302#define root_task_group init_task_group
6d6bc0ad 303#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 304
8ed36996 305/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
306 * a task group's cpu shares.
307 */
8ed36996 308static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 309
052f1dc7 310#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
311#ifdef CONFIG_USER_SCHED
312# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 313#else /* !CONFIG_USER_SCHED */
052f1dc7 314# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 315#endif /* CONFIG_USER_SCHED */
052f1dc7 316
cb4ad1ff 317/*
2e084786
LJ
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
cb4ad1ff
MX
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
18d95a28 325#define MIN_SHARES 2
2e084786 326#define MAX_SHARES (1UL << 18)
18d95a28 327
052f1dc7
PZ
328static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329#endif
330
29f59db3 331/* Default task group.
3a252015 332 * Every task in system belong to this group at bootup.
29f59db3 333 */
434d53b0 334struct task_group init_task_group;
29f59db3
SV
335
336/* return group to which a task belongs */
4cf86d77 337static inline struct task_group *task_group(struct task_struct *p)
29f59db3 338{
4cf86d77 339 struct task_group *tg;
9b5b7751 340
052f1dc7 341#ifdef CONFIG_USER_SCHED
24e377a8 342 tg = p->user->tg;
052f1dc7 343#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
24e377a8 346#else
41a2d6cf 347 tg = &init_task_group;
24e377a8 348#endif
9b5b7751 349 return tg;
29f59db3
SV
350}
351
352/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 353static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 354{
052f1dc7 355#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
052f1dc7 358#endif
6f505b16 359
052f1dc7 360#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 363#endif
29f59db3
SV
364}
365
366#else
367
6f505b16 368static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
369static inline struct task_group *task_group(struct task_struct *p)
370{
371 return NULL;
372}
29f59db3 373
052f1dc7 374#endif /* CONFIG_GROUP_SCHED */
29f59db3 375
6aa645ea
IM
376/* CFS-related fields in a runqueue */
377struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
6aa645ea 381 u64 exec_clock;
e9acbff6 382 u64 min_vruntime;
103638d9 383 u64 pair_start;
6aa645ea
IM
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
4a55bd5e
PZ
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
aa2ac252 395 struct sched_entity *curr, *next;
ddc97297
PZ
396
397 unsigned long nr_spread_over;
398
62160e3f 399#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
41a2d6cf
IM
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
41a2d6cf
IM
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
412
413#ifdef CONFIG_SMP
c09595f6 414 /*
c8cba857 415 * the part of load.weight contributed by tasks
c09595f6 416 */
c8cba857 417 unsigned long task_weight;
c09595f6 418
c8cba857
PZ
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
c09595f6 426
c8cba857
PZ
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
f1d239f7
PZ
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
c09595f6 436#endif
6aa645ea
IM
437#endif
438};
1da177e4 439
6aa645ea
IM
440/* Real-Time classes' related field in a runqueue: */
441struct rt_rq {
442 struct rt_prio_array active;
63489e45 443 unsigned long rt_nr_running;
052f1dc7 444#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
445 int highest_prio; /* highest queued rt task prio */
446#endif
fa85ae24 447#ifdef CONFIG_SMP
73fe6aae 448 unsigned long rt_nr_migratory;
a22d7fc1 449 int overloaded;
fa85ae24 450#endif
6f505b16 451 int rt_throttled;
fa85ae24 452 u64 rt_time;
ac086bc2 453 u64 rt_runtime;
ea736ed5 454 /* Nests inside the rq lock: */
ac086bc2 455 spinlock_t rt_runtime_lock;
6f505b16 456
052f1dc7 457#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
458 unsigned long rt_nr_boosted;
459
6f505b16
PZ
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464#endif
6aa645ea
IM
465};
466
57d885fe
GH
467#ifdef CONFIG_SMP
468
469/*
470 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
57d885fe
GH
476 */
477struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
637f5085 481
0eab9146 482 /*
637f5085
GH
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
0eab9146 487 atomic_t rto_count;
6e0534f2
GH
488#ifdef CONFIG_SMP
489 struct cpupri cpupri;
490#endif
57d885fe
GH
491};
492
dc938520
GH
493/*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
57d885fe
GH
497static struct root_domain def_root_domain;
498
499#endif
500
1da177e4
LT
501/*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
70b97a7f 508struct rq {
d8016491
IM
509 /* runqueue lock: */
510 spinlock_t lock;
1da177e4
LT
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
6aa645ea
IM
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 519 unsigned char idle_at_tick;
46cb4b7c 520#ifdef CONFIG_NO_HZ
15934a37 521 unsigned long last_tick_seen;
46cb4b7c
SS
522 unsigned char in_nohz_recently;
523#endif
d8016491
IM
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
6aa645ea
IM
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
6f505b16 530 struct rt_rq rt;
6f505b16 531
6aa645ea 532#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
535#endif
536#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 537 struct list_head leaf_rt_rq_list;
1da177e4 538#endif
1da177e4
LT
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
36c8b586 548 struct task_struct *curr, *idle;
c9819f45 549 unsigned long next_balance;
1da177e4 550 struct mm_struct *prev_mm;
6aa645ea 551
3e51f33f 552 u64 clock;
6aa645ea 553
1da177e4
LT
554 atomic_t nr_iowait;
555
556#ifdef CONFIG_SMP
0eab9146 557 struct root_domain *rd;
1da177e4
LT
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
d8016491
IM
563 /* cpu of this runqueue: */
564 int cpu;
1f11eb6a 565 int online;
1da177e4 566
a8a51d5e 567 unsigned long avg_load_per_task;
1da177e4 568
36c8b586 569 struct task_struct *migration_thread;
1da177e4
LT
570 struct list_head migration_queue;
571#endif
572
8f4d37ec 573#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
574#ifdef CONFIG_SMP
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
577#endif
8f4d37ec
PZ
578 struct hrtimer hrtick_timer;
579#endif
580
1da177e4
LT
581#ifdef CONFIG_SCHEDSTATS
582 /* latency stats */
583 struct sched_info rq_sched_info;
584
585 /* sys_sched_yield() stats */
480b9434
KC
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
1da177e4
LT
590
591 /* schedule() stats */
480b9434
KC
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
1da177e4
LT
595
596 /* try_to_wake_up() stats */
480b9434
KC
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
b8efb561
IM
599
600 /* BKL stats */
480b9434 601 unsigned int bkl_count;
1da177e4 602#endif
fcb99371 603 struct lock_class_key rq_lock_key;
1da177e4
LT
604};
605
f34e3b61 606static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 607
dd41f596
IM
608static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
609{
610 rq->curr->sched_class->check_preempt_curr(rq, p);
611}
612
0a2966b4
CL
613static inline int cpu_of(struct rq *rq)
614{
615#ifdef CONFIG_SMP
616 return rq->cpu;
617#else
618 return 0;
619#endif
620}
621
674311d5
NP
622/*
623 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 624 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
625 *
626 * The domain tree of any CPU may only be accessed from within
627 * preempt-disabled sections.
628 */
48f24c4d
IM
629#define for_each_domain(cpu, __sd) \
630 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
631
632#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
633#define this_rq() (&__get_cpu_var(runqueues))
634#define task_rq(p) cpu_rq(task_cpu(p))
635#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
636
3e51f33f
PZ
637static inline void update_rq_clock(struct rq *rq)
638{
639 rq->clock = sched_clock_cpu(cpu_of(rq));
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
653 *
654 * Returns true if the current cpu runqueue is locked.
655 * This interface allows printk to be called with the runqueue lock
656 * held and know whether or not it is OK to wake up the klogd.
657 */
658int runqueue_is_locked(void)
659{
660 int cpu = get_cpu();
661 struct rq *rq = cpu_rq(cpu);
662 int ret;
663
664 ret = spin_is_locked(&rq->lock);
665 put_cpu();
666 return ret;
667}
668
bf5c91ba
IM
669/*
670 * Debugging: various feature bits
671 */
f00b45c1
PZ
672
673#define SCHED_FEAT(name, enabled) \
674 __SCHED_FEAT_##name ,
675
bf5c91ba 676enum {
f00b45c1 677#include "sched_features.h"
bf5c91ba
IM
678};
679
f00b45c1
PZ
680#undef SCHED_FEAT
681
682#define SCHED_FEAT(name, enabled) \
683 (1UL << __SCHED_FEAT_##name) * enabled |
684
bf5c91ba 685const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
686#include "sched_features.h"
687 0;
688
689#undef SCHED_FEAT
690
691#ifdef CONFIG_SCHED_DEBUG
692#define SCHED_FEAT(name, enabled) \
693 #name ,
694
983ed7a6 695static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
696#include "sched_features.h"
697 NULL
698};
699
700#undef SCHED_FEAT
701
983ed7a6 702static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
703{
704 filp->private_data = inode->i_private;
705 return 0;
706}
707
708static ssize_t
709sched_feat_read(struct file *filp, char __user *ubuf,
710 size_t cnt, loff_t *ppos)
711{
712 char *buf;
713 int r = 0;
714 int len = 0;
715 int i;
716
717 for (i = 0; sched_feat_names[i]; i++) {
718 len += strlen(sched_feat_names[i]);
719 len += 4;
720 }
721
722 buf = kmalloc(len + 2, GFP_KERNEL);
723 if (!buf)
724 return -ENOMEM;
725
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (sysctl_sched_features & (1UL << i))
728 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
729 else
c24b7c52 730 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
731 }
732
733 r += sprintf(buf + r, "\n");
734 WARN_ON(r >= len + 2);
735
736 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
737
738 kfree(buf);
739
740 return r;
741}
742
743static ssize_t
744sched_feat_write(struct file *filp, const char __user *ubuf,
745 size_t cnt, loff_t *ppos)
746{
747 char buf[64];
748 char *cmp = buf;
749 int neg = 0;
750 int i;
751
752 if (cnt > 63)
753 cnt = 63;
754
755 if (copy_from_user(&buf, ubuf, cnt))
756 return -EFAULT;
757
758 buf[cnt] = 0;
759
c24b7c52 760 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
761 neg = 1;
762 cmp += 3;
763 }
764
765 for (i = 0; sched_feat_names[i]; i++) {
766 int len = strlen(sched_feat_names[i]);
767
768 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
769 if (neg)
770 sysctl_sched_features &= ~(1UL << i);
771 else
772 sysctl_sched_features |= (1UL << i);
773 break;
774 }
775 }
776
777 if (!sched_feat_names[i])
778 return -EINVAL;
779
780 filp->f_pos += cnt;
781
782 return cnt;
783}
784
785static struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .read = sched_feat_read,
788 .write = sched_feat_write,
789};
790
791static __init int sched_init_debug(void)
792{
f00b45c1
PZ
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797}
798late_initcall(sched_init_debug);
799
800#endif
801
802#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 803
b82d9fdd
PZ
804/*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
2398f2c6
PZ
810/*
811 * ratelimit for updating the group shares.
812 * default: 0.5ms
813 */
814const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
815
fa85ae24 816/*
9f0c1e56 817 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
818 * default: 1s
819 */
9f0c1e56 820unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 821
6892b75e
IM
822static __read_mostly int scheduler_running;
823
9f0c1e56
PZ
824/*
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
827 */
828int sysctl_sched_rt_runtime = 950000;
fa85ae24 829
d0b27fa7
PZ
830static inline u64 global_rt_period(void)
831{
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833}
834
835static inline u64 global_rt_runtime(void)
836{
837 if (sysctl_sched_rt_period < 0)
838 return RUNTIME_INF;
839
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841}
fa85ae24 842
1da177e4 843#ifndef prepare_arch_switch
4866cde0
NP
844# define prepare_arch_switch(next) do { } while (0)
845#endif
846#ifndef finish_arch_switch
847# define finish_arch_switch(prev) do { } while (0)
848#endif
849
051a1d1a
DA
850static inline int task_current(struct rq *rq, struct task_struct *p)
851{
852 return rq->curr == p;
853}
854
4866cde0 855#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 856static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 857{
051a1d1a 858 return task_current(rq, p);
4866cde0
NP
859}
860
70b97a7f 861static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
862{
863}
864
70b97a7f 865static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 866{
da04c035
IM
867#ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870#endif
8a25d5de
IM
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
4866cde0
NP
878 spin_unlock_irq(&rq->lock);
879}
880
881#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 882static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 return p->oncpu;
886#else
051a1d1a 887 return task_current(rq, p);
4866cde0
NP
888#endif
889}
890
70b97a7f 891static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
892{
893#ifdef CONFIG_SMP
894 /*
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
898 */
899 next->oncpu = 1;
900#endif
901#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 spin_unlock_irq(&rq->lock);
903#else
904 spin_unlock(&rq->lock);
905#endif
906}
907
70b97a7f 908static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
915 */
916 smp_wmb();
917 prev->oncpu = 0;
918#endif
919#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
1da177e4 921#endif
4866cde0
NP
922}
923#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
3a5c359a
AK
932 for (;;) {
933 struct rq *rq = task_rq(p);
934 spin_lock(&rq->lock);
935 if (likely(rq == task_rq(p)))
936 return rq;
b29739f9 937 spin_unlock(&rq->lock);
b29739f9 938 }
b29739f9
IM
939}
940
1da177e4
LT
941/*
942 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 943 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
944 * explicitly disabling preemption.
945 */
70b97a7f 946static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
947 __acquires(rq->lock)
948{
70b97a7f 949 struct rq *rq;
1da177e4 950
3a5c359a
AK
951 for (;;) {
952 local_irq_save(*flags);
953 rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
1da177e4 957 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 958 }
1da177e4
LT
959}
960
a9957449 961static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
962 __releases(rq->lock)
963{
964 spin_unlock(&rq->lock);
965}
966
70b97a7f 967static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
968 __releases(rq->lock)
969{
970 spin_unlock_irqrestore(&rq->lock, *flags);
971}
972
1da177e4 973/*
cc2a73b5 974 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 975 */
a9957449 976static struct rq *this_rq_lock(void)
1da177e4
LT
977 __acquires(rq->lock)
978{
70b97a7f 979 struct rq *rq;
1da177e4
LT
980
981 local_irq_disable();
982 rq = this_rq();
983 spin_lock(&rq->lock);
984
985 return rq;
986}
987
8f4d37ec
PZ
988#ifdef CONFIG_SCHED_HRTICK
989/*
990 * Use HR-timers to deliver accurate preemption points.
991 *
992 * Its all a bit involved since we cannot program an hrt while holding the
993 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
994 * reschedule event.
995 *
996 * When we get rescheduled we reprogram the hrtick_timer outside of the
997 * rq->lock.
998 */
8f4d37ec
PZ
999
1000/*
1001 * Use hrtick when:
1002 * - enabled by features
1003 * - hrtimer is actually high res
1004 */
1005static inline int hrtick_enabled(struct rq *rq)
1006{
1007 if (!sched_feat(HRTICK))
1008 return 0;
31656519 1009 if (!cpu_online(cpu_of(rq)))
b328ca18 1010 return 0;
8f4d37ec
PZ
1011 return hrtimer_is_hres_active(&rq->hrtick_timer);
1012}
1013
8f4d37ec
PZ
1014static void hrtick_clear(struct rq *rq)
1015{
1016 if (hrtimer_active(&rq->hrtick_timer))
1017 hrtimer_cancel(&rq->hrtick_timer);
1018}
1019
8f4d37ec
PZ
1020/*
1021 * High-resolution timer tick.
1022 * Runs from hardirq context with interrupts disabled.
1023 */
1024static enum hrtimer_restart hrtick(struct hrtimer *timer)
1025{
1026 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1027
1028 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1029
1030 spin_lock(&rq->lock);
3e51f33f 1031 update_rq_clock(rq);
8f4d37ec
PZ
1032 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1033 spin_unlock(&rq->lock);
1034
1035 return HRTIMER_NORESTART;
1036}
1037
95e904c7 1038#ifdef CONFIG_SMP
31656519
PZ
1039/*
1040 * called from hardirq (IPI) context
1041 */
1042static void __hrtick_start(void *arg)
b328ca18 1043{
31656519 1044 struct rq *rq = arg;
b328ca18 1045
31656519
PZ
1046 spin_lock(&rq->lock);
1047 hrtimer_restart(&rq->hrtick_timer);
1048 rq->hrtick_csd_pending = 0;
1049 spin_unlock(&rq->lock);
b328ca18
PZ
1050}
1051
31656519
PZ
1052/*
1053 * Called to set the hrtick timer state.
1054 *
1055 * called with rq->lock held and irqs disabled
1056 */
1057static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1058{
31656519
PZ
1059 struct hrtimer *timer = &rq->hrtick_timer;
1060 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1061
31656519
PZ
1062 timer->expires = time;
1063
1064 if (rq == this_rq()) {
1065 hrtimer_restart(timer);
1066 } else if (!rq->hrtick_csd_pending) {
1067 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1068 rq->hrtick_csd_pending = 1;
1069 }
b328ca18
PZ
1070}
1071
1072static int
1073hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1074{
1075 int cpu = (int)(long)hcpu;
1076
1077 switch (action) {
1078 case CPU_UP_CANCELED:
1079 case CPU_UP_CANCELED_FROZEN:
1080 case CPU_DOWN_PREPARE:
1081 case CPU_DOWN_PREPARE_FROZEN:
1082 case CPU_DEAD:
1083 case CPU_DEAD_FROZEN:
31656519 1084 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1085 return NOTIFY_OK;
1086 }
1087
1088 return NOTIFY_DONE;
1089}
1090
1091static void init_hrtick(void)
1092{
1093 hotcpu_notifier(hotplug_hrtick, 0);
1094}
31656519
PZ
1095#else
1096/*
1097 * Called to set the hrtick timer state.
1098 *
1099 * called with rq->lock held and irqs disabled
1100 */
1101static void hrtick_start(struct rq *rq, u64 delay)
1102{
1103 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1104}
b328ca18 1105
31656519 1106static void init_hrtick(void)
8f4d37ec 1107{
8f4d37ec 1108}
31656519 1109#endif /* CONFIG_SMP */
8f4d37ec 1110
31656519 1111static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1112{
31656519
PZ
1113#ifdef CONFIG_SMP
1114 rq->hrtick_csd_pending = 0;
8f4d37ec 1115
31656519
PZ
1116 rq->hrtick_csd.flags = 0;
1117 rq->hrtick_csd.func = __hrtick_start;
1118 rq->hrtick_csd.info = rq;
1119#endif
8f4d37ec 1120
31656519
PZ
1121 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1122 rq->hrtick_timer.function = hrtick;
1123 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
8f4d37ec
PZ
1124}
1125#else
1126static inline void hrtick_clear(struct rq *rq)
1127{
1128}
1129
8f4d37ec
PZ
1130static inline void init_rq_hrtick(struct rq *rq)
1131{
1132}
1133
b328ca18
PZ
1134static inline void init_hrtick(void)
1135{
1136}
8f4d37ec
PZ
1137#endif
1138
c24d20db
IM
1139/*
1140 * resched_task - mark a task 'to be rescheduled now'.
1141 *
1142 * On UP this means the setting of the need_resched flag, on SMP it
1143 * might also involve a cross-CPU call to trigger the scheduler on
1144 * the target CPU.
1145 */
1146#ifdef CONFIG_SMP
1147
1148#ifndef tsk_is_polling
1149#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1150#endif
1151
31656519 1152static void resched_task(struct task_struct *p)
c24d20db
IM
1153{
1154 int cpu;
1155
1156 assert_spin_locked(&task_rq(p)->lock);
1157
31656519 1158 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1159 return;
1160
31656519 1161 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1162
1163 cpu = task_cpu(p);
1164 if (cpu == smp_processor_id())
1165 return;
1166
1167 /* NEED_RESCHED must be visible before we test polling */
1168 smp_mb();
1169 if (!tsk_is_polling(p))
1170 smp_send_reschedule(cpu);
1171}
1172
1173static void resched_cpu(int cpu)
1174{
1175 struct rq *rq = cpu_rq(cpu);
1176 unsigned long flags;
1177
1178 if (!spin_trylock_irqsave(&rq->lock, flags))
1179 return;
1180 resched_task(cpu_curr(cpu));
1181 spin_unlock_irqrestore(&rq->lock, flags);
1182}
06d8308c
TG
1183
1184#ifdef CONFIG_NO_HZ
1185/*
1186 * When add_timer_on() enqueues a timer into the timer wheel of an
1187 * idle CPU then this timer might expire before the next timer event
1188 * which is scheduled to wake up that CPU. In case of a completely
1189 * idle system the next event might even be infinite time into the
1190 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1191 * leaves the inner idle loop so the newly added timer is taken into
1192 * account when the CPU goes back to idle and evaluates the timer
1193 * wheel for the next timer event.
1194 */
1195void wake_up_idle_cpu(int cpu)
1196{
1197 struct rq *rq = cpu_rq(cpu);
1198
1199 if (cpu == smp_processor_id())
1200 return;
1201
1202 /*
1203 * This is safe, as this function is called with the timer
1204 * wheel base lock of (cpu) held. When the CPU is on the way
1205 * to idle and has not yet set rq->curr to idle then it will
1206 * be serialized on the timer wheel base lock and take the new
1207 * timer into account automatically.
1208 */
1209 if (rq->curr != rq->idle)
1210 return;
1211
1212 /*
1213 * We can set TIF_RESCHED on the idle task of the other CPU
1214 * lockless. The worst case is that the other CPU runs the
1215 * idle task through an additional NOOP schedule()
1216 */
1217 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1218
1219 /* NEED_RESCHED must be visible before we test polling */
1220 smp_mb();
1221 if (!tsk_is_polling(rq->idle))
1222 smp_send_reschedule(cpu);
1223}
6d6bc0ad 1224#endif /* CONFIG_NO_HZ */
06d8308c 1225
6d6bc0ad 1226#else /* !CONFIG_SMP */
31656519 1227static void resched_task(struct task_struct *p)
c24d20db
IM
1228{
1229 assert_spin_locked(&task_rq(p)->lock);
31656519 1230 set_tsk_need_resched(p);
c24d20db 1231}
6d6bc0ad 1232#endif /* CONFIG_SMP */
c24d20db 1233
45bf76df
IM
1234#if BITS_PER_LONG == 32
1235# define WMULT_CONST (~0UL)
1236#else
1237# define WMULT_CONST (1UL << 32)
1238#endif
1239
1240#define WMULT_SHIFT 32
1241
194081eb
IM
1242/*
1243 * Shift right and round:
1244 */
cf2ab469 1245#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1246
a7be37ac
PZ
1247/*
1248 * delta *= weight / lw
1249 */
cb1c4fc9 1250static unsigned long
45bf76df
IM
1251calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1252 struct load_weight *lw)
1253{
1254 u64 tmp;
1255
7a232e03
LJ
1256 if (!lw->inv_weight) {
1257 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1258 lw->inv_weight = 1;
1259 else
1260 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1261 / (lw->weight+1);
1262 }
45bf76df
IM
1263
1264 tmp = (u64)delta_exec * weight;
1265 /*
1266 * Check whether we'd overflow the 64-bit multiplication:
1267 */
194081eb 1268 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1269 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1270 WMULT_SHIFT/2);
1271 else
cf2ab469 1272 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1273
ecf691da 1274 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1275}
1276
1091985b 1277static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1278{
1279 lw->weight += inc;
e89996ae 1280 lw->inv_weight = 0;
45bf76df
IM
1281}
1282
1091985b 1283static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1284{
1285 lw->weight -= dec;
e89996ae 1286 lw->inv_weight = 0;
45bf76df
IM
1287}
1288
2dd73a4f
PW
1289/*
1290 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1291 * of tasks with abnormal "nice" values across CPUs the contribution that
1292 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1293 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1294 * scaled version of the new time slice allocation that they receive on time
1295 * slice expiry etc.
1296 */
1297
dd41f596
IM
1298#define WEIGHT_IDLEPRIO 2
1299#define WMULT_IDLEPRIO (1 << 31)
1300
1301/*
1302 * Nice levels are multiplicative, with a gentle 10% change for every
1303 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1304 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1305 * that remained on nice 0.
1306 *
1307 * The "10% effect" is relative and cumulative: from _any_ nice level,
1308 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1309 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1310 * If a task goes up by ~10% and another task goes down by ~10% then
1311 * the relative distance between them is ~25%.)
dd41f596
IM
1312 */
1313static const int prio_to_weight[40] = {
254753dc
IM
1314 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1315 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1316 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1317 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1318 /* 0 */ 1024, 820, 655, 526, 423,
1319 /* 5 */ 335, 272, 215, 172, 137,
1320 /* 10 */ 110, 87, 70, 56, 45,
1321 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1322};
1323
5714d2de
IM
1324/*
1325 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1326 *
1327 * In cases where the weight does not change often, we can use the
1328 * precalculated inverse to speed up arithmetics by turning divisions
1329 * into multiplications:
1330 */
dd41f596 1331static const u32 prio_to_wmult[40] = {
254753dc
IM
1332 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1333 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1334 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1335 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1336 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1337 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1338 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1339 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1340};
2dd73a4f 1341
dd41f596
IM
1342static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1343
1344/*
1345 * runqueue iterator, to support SMP load-balancing between different
1346 * scheduling classes, without having to expose their internal data
1347 * structures to the load-balancing proper:
1348 */
1349struct rq_iterator {
1350 void *arg;
1351 struct task_struct *(*start)(void *);
1352 struct task_struct *(*next)(void *);
1353};
1354
e1d1484f
PW
1355#ifdef CONFIG_SMP
1356static unsigned long
1357balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1358 unsigned long max_load_move, struct sched_domain *sd,
1359 enum cpu_idle_type idle, int *all_pinned,
1360 int *this_best_prio, struct rq_iterator *iterator);
1361
1362static int
1363iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1364 struct sched_domain *sd, enum cpu_idle_type idle,
1365 struct rq_iterator *iterator);
e1d1484f 1366#endif
dd41f596 1367
d842de87
SV
1368#ifdef CONFIG_CGROUP_CPUACCT
1369static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1370#else
1371static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1372#endif
1373
18d95a28
PZ
1374static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1375{
1376 update_load_add(&rq->load, load);
1377}
1378
1379static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1380{
1381 update_load_sub(&rq->load, load);
1382}
1383
e7693a36
GH
1384#ifdef CONFIG_SMP
1385static unsigned long source_load(int cpu, int type);
1386static unsigned long target_load(int cpu, int type);
e7693a36 1387static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1388
a8a51d5e
PZ
1389static unsigned long cpu_avg_load_per_task(int cpu)
1390{
1391 struct rq *rq = cpu_rq(cpu);
1392
1393 if (rq->nr_running)
1394 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1395
1396 return rq->avg_load_per_task;
1397}
18d95a28
PZ
1398
1399#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1400
c8cba857 1401typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1402
1403/*
1404 * Iterate the full tree, calling @down when first entering a node and @up when
1405 * leaving it for the final time.
1406 */
c8cba857
PZ
1407static void
1408walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1409{
1410 struct task_group *parent, *child;
1411
1412 rcu_read_lock();
1413 parent = &root_task_group;
1414down:
b6a86c74 1415 (*down)(parent, cpu, sd);
c09595f6
PZ
1416 list_for_each_entry_rcu(child, &parent->children, siblings) {
1417 parent = child;
1418 goto down;
1419
1420up:
1421 continue;
1422 }
b6a86c74 1423 (*up)(parent, cpu, sd);
c09595f6
PZ
1424
1425 child = parent;
1426 parent = parent->parent;
1427 if (parent)
1428 goto up;
1429 rcu_read_unlock();
1430}
1431
c09595f6
PZ
1432static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1433
1434/*
1435 * Calculate and set the cpu's group shares.
1436 */
1437static void
b6a86c74 1438__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1439 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1440{
c09595f6
PZ
1441 int boost = 0;
1442 unsigned long shares;
1443 unsigned long rq_weight;
1444
c8cba857 1445 if (!tg->se[cpu])
c09595f6
PZ
1446 return;
1447
c8cba857 1448 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1449
1450 /*
1451 * If there are currently no tasks on the cpu pretend there is one of
1452 * average load so that when a new task gets to run here it will not
1453 * get delayed by group starvation.
1454 */
1455 if (!rq_weight) {
1456 boost = 1;
1457 rq_weight = NICE_0_LOAD;
1458 }
1459
c8cba857
PZ
1460 if (unlikely(rq_weight > sd_rq_weight))
1461 rq_weight = sd_rq_weight;
1462
c09595f6
PZ
1463 /*
1464 * \Sum shares * rq_weight
1465 * shares = -----------------------
1466 * \Sum rq_weight
1467 *
1468 */
c8cba857 1469 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1470
1471 /*
1472 * record the actual number of shares, not the boosted amount.
1473 */
c8cba857 1474 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1475 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1476
1477 if (shares < MIN_SHARES)
1478 shares = MIN_SHARES;
1479 else if (shares > MAX_SHARES)
1480 shares = MAX_SHARES;
1481
c8cba857 1482 __set_se_shares(tg->se[cpu], shares);
18d95a28 1483}
c09595f6
PZ
1484
1485/*
c8cba857
PZ
1486 * Re-compute the task group their per cpu shares over the given domain.
1487 * This needs to be done in a bottom-up fashion because the rq weight of a
1488 * parent group depends on the shares of its child groups.
c09595f6
PZ
1489 */
1490static void
c8cba857 1491tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1492{
c8cba857
PZ
1493 unsigned long rq_weight = 0;
1494 unsigned long shares = 0;
1495 int i;
c09595f6 1496
c8cba857
PZ
1497 for_each_cpu_mask(i, sd->span) {
1498 rq_weight += tg->cfs_rq[i]->load.weight;
1499 shares += tg->cfs_rq[i]->shares;
c09595f6 1500 }
c09595f6 1501
c8cba857
PZ
1502 if ((!shares && rq_weight) || shares > tg->shares)
1503 shares = tg->shares;
1504
1505 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1506 shares = tg->shares;
c09595f6 1507
cd80917e
PZ
1508 if (!rq_weight)
1509 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1510
c09595f6
PZ
1511 for_each_cpu_mask(i, sd->span) {
1512 struct rq *rq = cpu_rq(i);
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1516 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1517 spin_unlock_irqrestore(&rq->lock, flags);
1518 }
c09595f6
PZ
1519}
1520
1521/*
c8cba857
PZ
1522 * Compute the cpu's hierarchical load factor for each task group.
1523 * This needs to be done in a top-down fashion because the load of a child
1524 * group is a fraction of its parents load.
c09595f6 1525 */
b6a86c74 1526static void
c8cba857 1527tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1528{
c8cba857 1529 unsigned long load;
c09595f6 1530
c8cba857
PZ
1531 if (!tg->parent) {
1532 load = cpu_rq(cpu)->load.weight;
1533 } else {
1534 load = tg->parent->cfs_rq[cpu]->h_load;
1535 load *= tg->cfs_rq[cpu]->shares;
1536 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1537 }
c09595f6 1538
c8cba857 1539 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1540}
1541
c8cba857
PZ
1542static void
1543tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1544{
c09595f6
PZ
1545}
1546
c8cba857 1547static void update_shares(struct sched_domain *sd)
4d8d595d 1548{
2398f2c6
PZ
1549 u64 now = cpu_clock(raw_smp_processor_id());
1550 s64 elapsed = now - sd->last_update;
1551
1552 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1553 sd->last_update = now;
1554 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1555 }
4d8d595d
PZ
1556}
1557
3e5459b4
PZ
1558static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1559{
1560 spin_unlock(&rq->lock);
1561 update_shares(sd);
1562 spin_lock(&rq->lock);
1563}
1564
c8cba857 1565static void update_h_load(int cpu)
c09595f6 1566{
c8cba857 1567 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1568}
1569
c09595f6
PZ
1570#else
1571
c8cba857 1572static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1573{
1574}
1575
3e5459b4
PZ
1576static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1577{
1578}
1579
18d95a28
PZ
1580#endif
1581
18d95a28
PZ
1582#endif
1583
30432094 1584#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1585static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1586{
30432094 1587#ifdef CONFIG_SMP
34e83e85
IM
1588 cfs_rq->shares = shares;
1589#endif
1590}
30432094 1591#endif
e7693a36 1592
dd41f596 1593#include "sched_stats.h"
dd41f596 1594#include "sched_idletask.c"
5522d5d5
IM
1595#include "sched_fair.c"
1596#include "sched_rt.c"
dd41f596
IM
1597#ifdef CONFIG_SCHED_DEBUG
1598# include "sched_debug.c"
1599#endif
1600
1601#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1602#define for_each_class(class) \
1603 for (class = sched_class_highest; class; class = class->next)
dd41f596 1604
c09595f6 1605static void inc_nr_running(struct rq *rq)
9c217245
IM
1606{
1607 rq->nr_running++;
9c217245
IM
1608}
1609
c09595f6 1610static void dec_nr_running(struct rq *rq)
9c217245
IM
1611{
1612 rq->nr_running--;
9c217245
IM
1613}
1614
45bf76df
IM
1615static void set_load_weight(struct task_struct *p)
1616{
1617 if (task_has_rt_policy(p)) {
dd41f596
IM
1618 p->se.load.weight = prio_to_weight[0] * 2;
1619 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1620 return;
1621 }
45bf76df 1622
dd41f596
IM
1623 /*
1624 * SCHED_IDLE tasks get minimal weight:
1625 */
1626 if (p->policy == SCHED_IDLE) {
1627 p->se.load.weight = WEIGHT_IDLEPRIO;
1628 p->se.load.inv_weight = WMULT_IDLEPRIO;
1629 return;
1630 }
71f8bd46 1631
dd41f596
IM
1632 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1633 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1634}
1635
2087a1ad
GH
1636static void update_avg(u64 *avg, u64 sample)
1637{
1638 s64 diff = sample - *avg;
1639 *avg += diff >> 3;
1640}
1641
8159f87e 1642static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1643{
dd41f596 1644 sched_info_queued(p);
fd390f6a 1645 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1646 p->se.on_rq = 1;
71f8bd46
IM
1647}
1648
69be72c1 1649static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1650{
2087a1ad
GH
1651 if (sleep && p->se.last_wakeup) {
1652 update_avg(&p->se.avg_overlap,
1653 p->se.sum_exec_runtime - p->se.last_wakeup);
1654 p->se.last_wakeup = 0;
1655 }
1656
46ac22ba 1657 sched_info_dequeued(p);
f02231e5 1658 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1659 p->se.on_rq = 0;
71f8bd46
IM
1660}
1661
14531189 1662/*
dd41f596 1663 * __normal_prio - return the priority that is based on the static prio
14531189 1664 */
14531189
IM
1665static inline int __normal_prio(struct task_struct *p)
1666{
dd41f596 1667 return p->static_prio;
14531189
IM
1668}
1669
b29739f9
IM
1670/*
1671 * Calculate the expected normal priority: i.e. priority
1672 * without taking RT-inheritance into account. Might be
1673 * boosted by interactivity modifiers. Changes upon fork,
1674 * setprio syscalls, and whenever the interactivity
1675 * estimator recalculates.
1676 */
36c8b586 1677static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1678{
1679 int prio;
1680
e05606d3 1681 if (task_has_rt_policy(p))
b29739f9
IM
1682 prio = MAX_RT_PRIO-1 - p->rt_priority;
1683 else
1684 prio = __normal_prio(p);
1685 return prio;
1686}
1687
1688/*
1689 * Calculate the current priority, i.e. the priority
1690 * taken into account by the scheduler. This value might
1691 * be boosted by RT tasks, or might be boosted by
1692 * interactivity modifiers. Will be RT if the task got
1693 * RT-boosted. If not then it returns p->normal_prio.
1694 */
36c8b586 1695static int effective_prio(struct task_struct *p)
b29739f9
IM
1696{
1697 p->normal_prio = normal_prio(p);
1698 /*
1699 * If we are RT tasks or we were boosted to RT priority,
1700 * keep the priority unchanged. Otherwise, update priority
1701 * to the normal priority:
1702 */
1703 if (!rt_prio(p->prio))
1704 return p->normal_prio;
1705 return p->prio;
1706}
1707
1da177e4 1708/*
dd41f596 1709 * activate_task - move a task to the runqueue.
1da177e4 1710 */
dd41f596 1711static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1712{
d9514f6c 1713 if (task_contributes_to_load(p))
dd41f596 1714 rq->nr_uninterruptible--;
1da177e4 1715
8159f87e 1716 enqueue_task(rq, p, wakeup);
c09595f6 1717 inc_nr_running(rq);
1da177e4
LT
1718}
1719
1da177e4
LT
1720/*
1721 * deactivate_task - remove a task from the runqueue.
1722 */
2e1cb74a 1723static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1724{
d9514f6c 1725 if (task_contributes_to_load(p))
dd41f596
IM
1726 rq->nr_uninterruptible++;
1727
69be72c1 1728 dequeue_task(rq, p, sleep);
c09595f6 1729 dec_nr_running(rq);
1da177e4
LT
1730}
1731
1da177e4
LT
1732/**
1733 * task_curr - is this task currently executing on a CPU?
1734 * @p: the task in question.
1735 */
36c8b586 1736inline int task_curr(const struct task_struct *p)
1da177e4
LT
1737{
1738 return cpu_curr(task_cpu(p)) == p;
1739}
1740
dd41f596
IM
1741static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1742{
6f505b16 1743 set_task_rq(p, cpu);
dd41f596 1744#ifdef CONFIG_SMP
ce96b5ac
DA
1745 /*
1746 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1747 * successfuly executed on another CPU. We must ensure that updates of
1748 * per-task data have been completed by this moment.
1749 */
1750 smp_wmb();
dd41f596 1751 task_thread_info(p)->cpu = cpu;
dd41f596 1752#endif
2dd73a4f
PW
1753}
1754
cb469845
SR
1755static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1756 const struct sched_class *prev_class,
1757 int oldprio, int running)
1758{
1759 if (prev_class != p->sched_class) {
1760 if (prev_class->switched_from)
1761 prev_class->switched_from(rq, p, running);
1762 p->sched_class->switched_to(rq, p, running);
1763 } else
1764 p->sched_class->prio_changed(rq, p, oldprio, running);
1765}
1766
1da177e4 1767#ifdef CONFIG_SMP
c65cc870 1768
e958b360
TG
1769/* Used instead of source_load when we know the type == 0 */
1770static unsigned long weighted_cpuload(const int cpu)
1771{
1772 return cpu_rq(cpu)->load.weight;
1773}
1774
cc367732
IM
1775/*
1776 * Is this task likely cache-hot:
1777 */
e7693a36 1778static int
cc367732
IM
1779task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1780{
1781 s64 delta;
1782
f540a608
IM
1783 /*
1784 * Buddy candidates are cache hot:
1785 */
d25ce4cd 1786 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1787 return 1;
1788
cc367732
IM
1789 if (p->sched_class != &fair_sched_class)
1790 return 0;
1791
6bc1665b
IM
1792 if (sysctl_sched_migration_cost == -1)
1793 return 1;
1794 if (sysctl_sched_migration_cost == 0)
1795 return 0;
1796
cc367732
IM
1797 delta = now - p->se.exec_start;
1798
1799 return delta < (s64)sysctl_sched_migration_cost;
1800}
1801
1802
dd41f596 1803void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1804{
dd41f596
IM
1805 int old_cpu = task_cpu(p);
1806 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1807 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1808 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1809 u64 clock_offset;
dd41f596
IM
1810
1811 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1812
1813#ifdef CONFIG_SCHEDSTATS
1814 if (p->se.wait_start)
1815 p->se.wait_start -= clock_offset;
dd41f596
IM
1816 if (p->se.sleep_start)
1817 p->se.sleep_start -= clock_offset;
1818 if (p->se.block_start)
1819 p->se.block_start -= clock_offset;
cc367732
IM
1820 if (old_cpu != new_cpu) {
1821 schedstat_inc(p, se.nr_migrations);
1822 if (task_hot(p, old_rq->clock, NULL))
1823 schedstat_inc(p, se.nr_forced2_migrations);
1824 }
6cfb0d5d 1825#endif
2830cf8c
SV
1826 p->se.vruntime -= old_cfsrq->min_vruntime -
1827 new_cfsrq->min_vruntime;
dd41f596
IM
1828
1829 __set_task_cpu(p, new_cpu);
c65cc870
IM
1830}
1831
70b97a7f 1832struct migration_req {
1da177e4 1833 struct list_head list;
1da177e4 1834
36c8b586 1835 struct task_struct *task;
1da177e4
LT
1836 int dest_cpu;
1837
1da177e4 1838 struct completion done;
70b97a7f 1839};
1da177e4
LT
1840
1841/*
1842 * The task's runqueue lock must be held.
1843 * Returns true if you have to wait for migration thread.
1844 */
36c8b586 1845static int
70b97a7f 1846migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1847{
70b97a7f 1848 struct rq *rq = task_rq(p);
1da177e4
LT
1849
1850 /*
1851 * If the task is not on a runqueue (and not running), then
1852 * it is sufficient to simply update the task's cpu field.
1853 */
dd41f596 1854 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1855 set_task_cpu(p, dest_cpu);
1856 return 0;
1857 }
1858
1859 init_completion(&req->done);
1da177e4
LT
1860 req->task = p;
1861 req->dest_cpu = dest_cpu;
1862 list_add(&req->list, &rq->migration_queue);
48f24c4d 1863
1da177e4
LT
1864 return 1;
1865}
1866
1867/*
1868 * wait_task_inactive - wait for a thread to unschedule.
1869 *
1870 * The caller must ensure that the task *will* unschedule sometime soon,
1871 * else this function might spin for a *long* time. This function can't
1872 * be called with interrupts off, or it may introduce deadlock with
1873 * smp_call_function() if an IPI is sent by the same process we are
1874 * waiting to become inactive.
1875 */
36c8b586 1876void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1877{
1878 unsigned long flags;
dd41f596 1879 int running, on_rq;
70b97a7f 1880 struct rq *rq;
1da177e4 1881
3a5c359a
AK
1882 for (;;) {
1883 /*
1884 * We do the initial early heuristics without holding
1885 * any task-queue locks at all. We'll only try to get
1886 * the runqueue lock when things look like they will
1887 * work out!
1888 */
1889 rq = task_rq(p);
fa490cfd 1890
3a5c359a
AK
1891 /*
1892 * If the task is actively running on another CPU
1893 * still, just relax and busy-wait without holding
1894 * any locks.
1895 *
1896 * NOTE! Since we don't hold any locks, it's not
1897 * even sure that "rq" stays as the right runqueue!
1898 * But we don't care, since "task_running()" will
1899 * return false if the runqueue has changed and p
1900 * is actually now running somewhere else!
1901 */
1902 while (task_running(rq, p))
1903 cpu_relax();
fa490cfd 1904
3a5c359a
AK
1905 /*
1906 * Ok, time to look more closely! We need the rq
1907 * lock now, to be *sure*. If we're wrong, we'll
1908 * just go back and repeat.
1909 */
1910 rq = task_rq_lock(p, &flags);
1911 running = task_running(rq, p);
1912 on_rq = p->se.on_rq;
1913 task_rq_unlock(rq, &flags);
fa490cfd 1914
3a5c359a
AK
1915 /*
1916 * Was it really running after all now that we
1917 * checked with the proper locks actually held?
1918 *
1919 * Oops. Go back and try again..
1920 */
1921 if (unlikely(running)) {
1922 cpu_relax();
1923 continue;
1924 }
fa490cfd 1925
3a5c359a
AK
1926 /*
1927 * It's not enough that it's not actively running,
1928 * it must be off the runqueue _entirely_, and not
1929 * preempted!
1930 *
1931 * So if it wa still runnable (but just not actively
1932 * running right now), it's preempted, and we should
1933 * yield - it could be a while.
1934 */
1935 if (unlikely(on_rq)) {
1936 schedule_timeout_uninterruptible(1);
1937 continue;
1938 }
fa490cfd 1939
3a5c359a
AK
1940 /*
1941 * Ahh, all good. It wasn't running, and it wasn't
1942 * runnable, which means that it will never become
1943 * running in the future either. We're all done!
1944 */
1945 break;
1946 }
1da177e4
LT
1947}
1948
1949/***
1950 * kick_process - kick a running thread to enter/exit the kernel
1951 * @p: the to-be-kicked thread
1952 *
1953 * Cause a process which is running on another CPU to enter
1954 * kernel-mode, without any delay. (to get signals handled.)
1955 *
1956 * NOTE: this function doesnt have to take the runqueue lock,
1957 * because all it wants to ensure is that the remote task enters
1958 * the kernel. If the IPI races and the task has been migrated
1959 * to another CPU then no harm is done and the purpose has been
1960 * achieved as well.
1961 */
36c8b586 1962void kick_process(struct task_struct *p)
1da177e4
LT
1963{
1964 int cpu;
1965
1966 preempt_disable();
1967 cpu = task_cpu(p);
1968 if ((cpu != smp_processor_id()) && task_curr(p))
1969 smp_send_reschedule(cpu);
1970 preempt_enable();
1971}
1972
1973/*
2dd73a4f
PW
1974 * Return a low guess at the load of a migration-source cpu weighted
1975 * according to the scheduling class and "nice" value.
1da177e4
LT
1976 *
1977 * We want to under-estimate the load of migration sources, to
1978 * balance conservatively.
1979 */
a9957449 1980static unsigned long source_load(int cpu, int type)
1da177e4 1981{
70b97a7f 1982 struct rq *rq = cpu_rq(cpu);
dd41f596 1983 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1984
93b75217 1985 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 1986 return total;
b910472d 1987
dd41f596 1988 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1989}
1990
1991/*
2dd73a4f
PW
1992 * Return a high guess at the load of a migration-target cpu weighted
1993 * according to the scheduling class and "nice" value.
1da177e4 1994 */
a9957449 1995static unsigned long target_load(int cpu, int type)
1da177e4 1996{
70b97a7f 1997 struct rq *rq = cpu_rq(cpu);
dd41f596 1998 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1999
93b75217 2000 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2001 return total;
3b0bd9bc 2002
dd41f596 2003 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2004}
2005
147cbb4b
NP
2006/*
2007 * find_idlest_group finds and returns the least busy CPU group within the
2008 * domain.
2009 */
2010static struct sched_group *
2011find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2012{
2013 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2014 unsigned long min_load = ULONG_MAX, this_load = 0;
2015 int load_idx = sd->forkexec_idx;
2016 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2017
2018 do {
2019 unsigned long load, avg_load;
2020 int local_group;
2021 int i;
2022
da5a5522
BD
2023 /* Skip over this group if it has no CPUs allowed */
2024 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2025 continue;
da5a5522 2026
147cbb4b 2027 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2028
2029 /* Tally up the load of all CPUs in the group */
2030 avg_load = 0;
2031
2032 for_each_cpu_mask(i, group->cpumask) {
2033 /* Bias balancing toward cpus of our domain */
2034 if (local_group)
2035 load = source_load(i, load_idx);
2036 else
2037 load = target_load(i, load_idx);
2038
2039 avg_load += load;
2040 }
2041
2042 /* Adjust by relative CPU power of the group */
5517d86b
ED
2043 avg_load = sg_div_cpu_power(group,
2044 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2045
2046 if (local_group) {
2047 this_load = avg_load;
2048 this = group;
2049 } else if (avg_load < min_load) {
2050 min_load = avg_load;
2051 idlest = group;
2052 }
3a5c359a 2053 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2054
2055 if (!idlest || 100*this_load < imbalance*min_load)
2056 return NULL;
2057 return idlest;
2058}
2059
2060/*
0feaece9 2061 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2062 */
95cdf3b7 2063static int
7c16ec58
MT
2064find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2065 cpumask_t *tmp)
147cbb4b
NP
2066{
2067 unsigned long load, min_load = ULONG_MAX;
2068 int idlest = -1;
2069 int i;
2070
da5a5522 2071 /* Traverse only the allowed CPUs */
7c16ec58 2072 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2073
7c16ec58 2074 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2075 load = weighted_cpuload(i);
147cbb4b
NP
2076
2077 if (load < min_load || (load == min_load && i == this_cpu)) {
2078 min_load = load;
2079 idlest = i;
2080 }
2081 }
2082
2083 return idlest;
2084}
2085
476d139c
NP
2086/*
2087 * sched_balance_self: balance the current task (running on cpu) in domains
2088 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2089 * SD_BALANCE_EXEC.
2090 *
2091 * Balance, ie. select the least loaded group.
2092 *
2093 * Returns the target CPU number, or the same CPU if no balancing is needed.
2094 *
2095 * preempt must be disabled.
2096 */
2097static int sched_balance_self(int cpu, int flag)
2098{
2099 struct task_struct *t = current;
2100 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2101
c96d145e 2102 for_each_domain(cpu, tmp) {
9761eea8
IM
2103 /*
2104 * If power savings logic is enabled for a domain, stop there.
2105 */
5c45bf27
SS
2106 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2107 break;
476d139c
NP
2108 if (tmp->flags & flag)
2109 sd = tmp;
c96d145e 2110 }
476d139c 2111
039a1c41
PZ
2112 if (sd)
2113 update_shares(sd);
2114
476d139c 2115 while (sd) {
7c16ec58 2116 cpumask_t span, tmpmask;
476d139c 2117 struct sched_group *group;
1a848870
SS
2118 int new_cpu, weight;
2119
2120 if (!(sd->flags & flag)) {
2121 sd = sd->child;
2122 continue;
2123 }
476d139c
NP
2124
2125 span = sd->span;
2126 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2127 if (!group) {
2128 sd = sd->child;
2129 continue;
2130 }
476d139c 2131
7c16ec58 2132 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2133 if (new_cpu == -1 || new_cpu == cpu) {
2134 /* Now try balancing at a lower domain level of cpu */
2135 sd = sd->child;
2136 continue;
2137 }
476d139c 2138
1a848870 2139 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2140 cpu = new_cpu;
476d139c
NP
2141 sd = NULL;
2142 weight = cpus_weight(span);
2143 for_each_domain(cpu, tmp) {
2144 if (weight <= cpus_weight(tmp->span))
2145 break;
2146 if (tmp->flags & flag)
2147 sd = tmp;
2148 }
2149 /* while loop will break here if sd == NULL */
2150 }
2151
2152 return cpu;
2153}
2154
2155#endif /* CONFIG_SMP */
1da177e4 2156
1da177e4
LT
2157/***
2158 * try_to_wake_up - wake up a thread
2159 * @p: the to-be-woken-up thread
2160 * @state: the mask of task states that can be woken
2161 * @sync: do a synchronous wakeup?
2162 *
2163 * Put it on the run-queue if it's not already there. The "current"
2164 * thread is always on the run-queue (except when the actual
2165 * re-schedule is in progress), and as such you're allowed to do
2166 * the simpler "current->state = TASK_RUNNING" to mark yourself
2167 * runnable without the overhead of this.
2168 *
2169 * returns failure only if the task is already active.
2170 */
36c8b586 2171static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2172{
cc367732 2173 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2174 unsigned long flags;
2175 long old_state;
70b97a7f 2176 struct rq *rq;
1da177e4 2177
b85d0667
IM
2178 if (!sched_feat(SYNC_WAKEUPS))
2179 sync = 0;
2180
2398f2c6
PZ
2181#ifdef CONFIG_SMP
2182 if (sched_feat(LB_WAKEUP_UPDATE)) {
2183 struct sched_domain *sd;
2184
2185 this_cpu = raw_smp_processor_id();
2186 cpu = task_cpu(p);
2187
2188 for_each_domain(this_cpu, sd) {
2189 if (cpu_isset(cpu, sd->span)) {
2190 update_shares(sd);
2191 break;
2192 }
2193 }
2194 }
2195#endif
2196
04e2f174 2197 smp_wmb();
1da177e4
LT
2198 rq = task_rq_lock(p, &flags);
2199 old_state = p->state;
2200 if (!(old_state & state))
2201 goto out;
2202
dd41f596 2203 if (p->se.on_rq)
1da177e4
LT
2204 goto out_running;
2205
2206 cpu = task_cpu(p);
cc367732 2207 orig_cpu = cpu;
1da177e4
LT
2208 this_cpu = smp_processor_id();
2209
2210#ifdef CONFIG_SMP
2211 if (unlikely(task_running(rq, p)))
2212 goto out_activate;
2213
5d2f5a61
DA
2214 cpu = p->sched_class->select_task_rq(p, sync);
2215 if (cpu != orig_cpu) {
2216 set_task_cpu(p, cpu);
1da177e4
LT
2217 task_rq_unlock(rq, &flags);
2218 /* might preempt at this point */
2219 rq = task_rq_lock(p, &flags);
2220 old_state = p->state;
2221 if (!(old_state & state))
2222 goto out;
dd41f596 2223 if (p->se.on_rq)
1da177e4
LT
2224 goto out_running;
2225
2226 this_cpu = smp_processor_id();
2227 cpu = task_cpu(p);
2228 }
2229
e7693a36
GH
2230#ifdef CONFIG_SCHEDSTATS
2231 schedstat_inc(rq, ttwu_count);
2232 if (cpu == this_cpu)
2233 schedstat_inc(rq, ttwu_local);
2234 else {
2235 struct sched_domain *sd;
2236 for_each_domain(this_cpu, sd) {
2237 if (cpu_isset(cpu, sd->span)) {
2238 schedstat_inc(sd, ttwu_wake_remote);
2239 break;
2240 }
2241 }
2242 }
6d6bc0ad 2243#endif /* CONFIG_SCHEDSTATS */
e7693a36 2244
1da177e4
LT
2245out_activate:
2246#endif /* CONFIG_SMP */
cc367732
IM
2247 schedstat_inc(p, se.nr_wakeups);
2248 if (sync)
2249 schedstat_inc(p, se.nr_wakeups_sync);
2250 if (orig_cpu != cpu)
2251 schedstat_inc(p, se.nr_wakeups_migrate);
2252 if (cpu == this_cpu)
2253 schedstat_inc(p, se.nr_wakeups_local);
2254 else
2255 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2256 update_rq_clock(rq);
dd41f596 2257 activate_task(rq, p, 1);
1da177e4
LT
2258 success = 1;
2259
2260out_running:
5b82a1b0
MD
2261 trace_mark(kernel_sched_wakeup,
2262 "pid %d state %ld ## rq %p task %p rq->curr %p",
2263 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2264 check_preempt_curr(rq, p);
2265
1da177e4 2266 p->state = TASK_RUNNING;
9a897c5a
SR
2267#ifdef CONFIG_SMP
2268 if (p->sched_class->task_wake_up)
2269 p->sched_class->task_wake_up(rq, p);
2270#endif
1da177e4 2271out:
2087a1ad
GH
2272 current->se.last_wakeup = current->se.sum_exec_runtime;
2273
1da177e4
LT
2274 task_rq_unlock(rq, &flags);
2275
2276 return success;
2277}
2278
7ad5b3a5 2279int wake_up_process(struct task_struct *p)
1da177e4 2280{
d9514f6c 2281 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2282}
1da177e4
LT
2283EXPORT_SYMBOL(wake_up_process);
2284
7ad5b3a5 2285int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2286{
2287 return try_to_wake_up(p, state, 0);
2288}
2289
1da177e4
LT
2290/*
2291 * Perform scheduler related setup for a newly forked process p.
2292 * p is forked by current.
dd41f596
IM
2293 *
2294 * __sched_fork() is basic setup used by init_idle() too:
2295 */
2296static void __sched_fork(struct task_struct *p)
2297{
dd41f596
IM
2298 p->se.exec_start = 0;
2299 p->se.sum_exec_runtime = 0;
f6cf891c 2300 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2301 p->se.last_wakeup = 0;
2302 p->se.avg_overlap = 0;
6cfb0d5d
IM
2303
2304#ifdef CONFIG_SCHEDSTATS
2305 p->se.wait_start = 0;
dd41f596
IM
2306 p->se.sum_sleep_runtime = 0;
2307 p->se.sleep_start = 0;
dd41f596
IM
2308 p->se.block_start = 0;
2309 p->se.sleep_max = 0;
2310 p->se.block_max = 0;
2311 p->se.exec_max = 0;
eba1ed4b 2312 p->se.slice_max = 0;
dd41f596 2313 p->se.wait_max = 0;
6cfb0d5d 2314#endif
476d139c 2315
fa717060 2316 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2317 p->se.on_rq = 0;
4a55bd5e 2318 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2319
e107be36
AK
2320#ifdef CONFIG_PREEMPT_NOTIFIERS
2321 INIT_HLIST_HEAD(&p->preempt_notifiers);
2322#endif
2323
1da177e4
LT
2324 /*
2325 * We mark the process as running here, but have not actually
2326 * inserted it onto the runqueue yet. This guarantees that
2327 * nobody will actually run it, and a signal or other external
2328 * event cannot wake it up and insert it on the runqueue either.
2329 */
2330 p->state = TASK_RUNNING;
dd41f596
IM
2331}
2332
2333/*
2334 * fork()/clone()-time setup:
2335 */
2336void sched_fork(struct task_struct *p, int clone_flags)
2337{
2338 int cpu = get_cpu();
2339
2340 __sched_fork(p);
2341
2342#ifdef CONFIG_SMP
2343 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2344#endif
02e4bac2 2345 set_task_cpu(p, cpu);
b29739f9
IM
2346
2347 /*
2348 * Make sure we do not leak PI boosting priority to the child:
2349 */
2350 p->prio = current->normal_prio;
2ddbf952
HS
2351 if (!rt_prio(p->prio))
2352 p->sched_class = &fair_sched_class;
b29739f9 2353
52f17b6c 2354#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2355 if (likely(sched_info_on()))
52f17b6c 2356 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2357#endif
d6077cb8 2358#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2359 p->oncpu = 0;
2360#endif
1da177e4 2361#ifdef CONFIG_PREEMPT
4866cde0 2362 /* Want to start with kernel preemption disabled. */
a1261f54 2363 task_thread_info(p)->preempt_count = 1;
1da177e4 2364#endif
476d139c 2365 put_cpu();
1da177e4
LT
2366}
2367
2368/*
2369 * wake_up_new_task - wake up a newly created task for the first time.
2370 *
2371 * This function will do some initial scheduler statistics housekeeping
2372 * that must be done for every newly created context, then puts the task
2373 * on the runqueue and wakes it.
2374 */
7ad5b3a5 2375void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2376{
2377 unsigned long flags;
dd41f596 2378 struct rq *rq;
1da177e4
LT
2379
2380 rq = task_rq_lock(p, &flags);
147cbb4b 2381 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2382 update_rq_clock(rq);
1da177e4
LT
2383
2384 p->prio = effective_prio(p);
2385
b9dca1e0 2386 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2387 activate_task(rq, p, 0);
1da177e4 2388 } else {
1da177e4 2389 /*
dd41f596
IM
2390 * Let the scheduling class do new task startup
2391 * management (if any):
1da177e4 2392 */
ee0827d8 2393 p->sched_class->task_new(rq, p);
c09595f6 2394 inc_nr_running(rq);
1da177e4 2395 }
5b82a1b0
MD
2396 trace_mark(kernel_sched_wakeup_new,
2397 "pid %d state %ld ## rq %p task %p rq->curr %p",
2398 p->pid, p->state, rq, p, rq->curr);
dd41f596 2399 check_preempt_curr(rq, p);
9a897c5a
SR
2400#ifdef CONFIG_SMP
2401 if (p->sched_class->task_wake_up)
2402 p->sched_class->task_wake_up(rq, p);
2403#endif
dd41f596 2404 task_rq_unlock(rq, &flags);
1da177e4
LT
2405}
2406
e107be36
AK
2407#ifdef CONFIG_PREEMPT_NOTIFIERS
2408
2409/**
421cee29
RD
2410 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2411 * @notifier: notifier struct to register
e107be36
AK
2412 */
2413void preempt_notifier_register(struct preempt_notifier *notifier)
2414{
2415 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2416}
2417EXPORT_SYMBOL_GPL(preempt_notifier_register);
2418
2419/**
2420 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2421 * @notifier: notifier struct to unregister
e107be36
AK
2422 *
2423 * This is safe to call from within a preemption notifier.
2424 */
2425void preempt_notifier_unregister(struct preempt_notifier *notifier)
2426{
2427 hlist_del(&notifier->link);
2428}
2429EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2430
2431static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2432{
2433 struct preempt_notifier *notifier;
2434 struct hlist_node *node;
2435
2436 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2437 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2438}
2439
2440static void
2441fire_sched_out_preempt_notifiers(struct task_struct *curr,
2442 struct task_struct *next)
2443{
2444 struct preempt_notifier *notifier;
2445 struct hlist_node *node;
2446
2447 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2448 notifier->ops->sched_out(notifier, next);
2449}
2450
6d6bc0ad 2451#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2452
2453static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2454{
2455}
2456
2457static void
2458fire_sched_out_preempt_notifiers(struct task_struct *curr,
2459 struct task_struct *next)
2460{
2461}
2462
6d6bc0ad 2463#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2464
4866cde0
NP
2465/**
2466 * prepare_task_switch - prepare to switch tasks
2467 * @rq: the runqueue preparing to switch
421cee29 2468 * @prev: the current task that is being switched out
4866cde0
NP
2469 * @next: the task we are going to switch to.
2470 *
2471 * This is called with the rq lock held and interrupts off. It must
2472 * be paired with a subsequent finish_task_switch after the context
2473 * switch.
2474 *
2475 * prepare_task_switch sets up locking and calls architecture specific
2476 * hooks.
2477 */
e107be36
AK
2478static inline void
2479prepare_task_switch(struct rq *rq, struct task_struct *prev,
2480 struct task_struct *next)
4866cde0 2481{
e107be36 2482 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2483 prepare_lock_switch(rq, next);
2484 prepare_arch_switch(next);
2485}
2486
1da177e4
LT
2487/**
2488 * finish_task_switch - clean up after a task-switch
344babaa 2489 * @rq: runqueue associated with task-switch
1da177e4
LT
2490 * @prev: the thread we just switched away from.
2491 *
4866cde0
NP
2492 * finish_task_switch must be called after the context switch, paired
2493 * with a prepare_task_switch call before the context switch.
2494 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2495 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2496 *
2497 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2498 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2499 * with the lock held can cause deadlocks; see schedule() for
2500 * details.)
2501 */
a9957449 2502static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2503 __releases(rq->lock)
2504{
1da177e4 2505 struct mm_struct *mm = rq->prev_mm;
55a101f8 2506 long prev_state;
1da177e4
LT
2507
2508 rq->prev_mm = NULL;
2509
2510 /*
2511 * A task struct has one reference for the use as "current".
c394cc9f 2512 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2513 * schedule one last time. The schedule call will never return, and
2514 * the scheduled task must drop that reference.
c394cc9f 2515 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2516 * still held, otherwise prev could be scheduled on another cpu, die
2517 * there before we look at prev->state, and then the reference would
2518 * be dropped twice.
2519 * Manfred Spraul <manfred@colorfullife.com>
2520 */
55a101f8 2521 prev_state = prev->state;
4866cde0
NP
2522 finish_arch_switch(prev);
2523 finish_lock_switch(rq, prev);
9a897c5a
SR
2524#ifdef CONFIG_SMP
2525 if (current->sched_class->post_schedule)
2526 current->sched_class->post_schedule(rq);
2527#endif
e8fa1362 2528
e107be36 2529 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2530 if (mm)
2531 mmdrop(mm);
c394cc9f 2532 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2533 /*
2534 * Remove function-return probe instances associated with this
2535 * task and put them back on the free list.
9761eea8 2536 */
c6fd91f0 2537 kprobe_flush_task(prev);
1da177e4 2538 put_task_struct(prev);
c6fd91f0 2539 }
1da177e4
LT
2540}
2541
2542/**
2543 * schedule_tail - first thing a freshly forked thread must call.
2544 * @prev: the thread we just switched away from.
2545 */
36c8b586 2546asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2547 __releases(rq->lock)
2548{
70b97a7f
IM
2549 struct rq *rq = this_rq();
2550
4866cde0
NP
2551 finish_task_switch(rq, prev);
2552#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2553 /* In this case, finish_task_switch does not reenable preemption */
2554 preempt_enable();
2555#endif
1da177e4 2556 if (current->set_child_tid)
b488893a 2557 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2558}
2559
2560/*
2561 * context_switch - switch to the new MM and the new
2562 * thread's register state.
2563 */
dd41f596 2564static inline void
70b97a7f 2565context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2566 struct task_struct *next)
1da177e4 2567{
dd41f596 2568 struct mm_struct *mm, *oldmm;
1da177e4 2569
e107be36 2570 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2571 trace_mark(kernel_sched_schedule,
2572 "prev_pid %d next_pid %d prev_state %ld "
2573 "## rq %p prev %p next %p",
2574 prev->pid, next->pid, prev->state,
2575 rq, prev, next);
dd41f596
IM
2576 mm = next->mm;
2577 oldmm = prev->active_mm;
9226d125
ZA
2578 /*
2579 * For paravirt, this is coupled with an exit in switch_to to
2580 * combine the page table reload and the switch backend into
2581 * one hypercall.
2582 */
2583 arch_enter_lazy_cpu_mode();
2584
dd41f596 2585 if (unlikely(!mm)) {
1da177e4
LT
2586 next->active_mm = oldmm;
2587 atomic_inc(&oldmm->mm_count);
2588 enter_lazy_tlb(oldmm, next);
2589 } else
2590 switch_mm(oldmm, mm, next);
2591
dd41f596 2592 if (unlikely(!prev->mm)) {
1da177e4 2593 prev->active_mm = NULL;
1da177e4
LT
2594 rq->prev_mm = oldmm;
2595 }
3a5f5e48
IM
2596 /*
2597 * Since the runqueue lock will be released by the next
2598 * task (which is an invalid locking op but in the case
2599 * of the scheduler it's an obvious special-case), so we
2600 * do an early lockdep release here:
2601 */
2602#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2603 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2604#endif
1da177e4
LT
2605
2606 /* Here we just switch the register state and the stack. */
2607 switch_to(prev, next, prev);
2608
dd41f596
IM
2609 barrier();
2610 /*
2611 * this_rq must be evaluated again because prev may have moved
2612 * CPUs since it called schedule(), thus the 'rq' on its stack
2613 * frame will be invalid.
2614 */
2615 finish_task_switch(this_rq(), prev);
1da177e4
LT
2616}
2617
2618/*
2619 * nr_running, nr_uninterruptible and nr_context_switches:
2620 *
2621 * externally visible scheduler statistics: current number of runnable
2622 * threads, current number of uninterruptible-sleeping threads, total
2623 * number of context switches performed since bootup.
2624 */
2625unsigned long nr_running(void)
2626{
2627 unsigned long i, sum = 0;
2628
2629 for_each_online_cpu(i)
2630 sum += cpu_rq(i)->nr_running;
2631
2632 return sum;
2633}
2634
2635unsigned long nr_uninterruptible(void)
2636{
2637 unsigned long i, sum = 0;
2638
0a945022 2639 for_each_possible_cpu(i)
1da177e4
LT
2640 sum += cpu_rq(i)->nr_uninterruptible;
2641
2642 /*
2643 * Since we read the counters lockless, it might be slightly
2644 * inaccurate. Do not allow it to go below zero though:
2645 */
2646 if (unlikely((long)sum < 0))
2647 sum = 0;
2648
2649 return sum;
2650}
2651
2652unsigned long long nr_context_switches(void)
2653{
cc94abfc
SR
2654 int i;
2655 unsigned long long sum = 0;
1da177e4 2656
0a945022 2657 for_each_possible_cpu(i)
1da177e4
LT
2658 sum += cpu_rq(i)->nr_switches;
2659
2660 return sum;
2661}
2662
2663unsigned long nr_iowait(void)
2664{
2665 unsigned long i, sum = 0;
2666
0a945022 2667 for_each_possible_cpu(i)
1da177e4
LT
2668 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2669
2670 return sum;
2671}
2672
db1b1fef
JS
2673unsigned long nr_active(void)
2674{
2675 unsigned long i, running = 0, uninterruptible = 0;
2676
2677 for_each_online_cpu(i) {
2678 running += cpu_rq(i)->nr_running;
2679 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2680 }
2681
2682 if (unlikely((long)uninterruptible < 0))
2683 uninterruptible = 0;
2684
2685 return running + uninterruptible;
2686}
2687
48f24c4d 2688/*
dd41f596
IM
2689 * Update rq->cpu_load[] statistics. This function is usually called every
2690 * scheduler tick (TICK_NSEC).
48f24c4d 2691 */
dd41f596 2692static void update_cpu_load(struct rq *this_rq)
48f24c4d 2693{
495eca49 2694 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2695 int i, scale;
2696
2697 this_rq->nr_load_updates++;
dd41f596
IM
2698
2699 /* Update our load: */
2700 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2701 unsigned long old_load, new_load;
2702
2703 /* scale is effectively 1 << i now, and >> i divides by scale */
2704
2705 old_load = this_rq->cpu_load[i];
2706 new_load = this_load;
a25707f3
IM
2707 /*
2708 * Round up the averaging division if load is increasing. This
2709 * prevents us from getting stuck on 9 if the load is 10, for
2710 * example.
2711 */
2712 if (new_load > old_load)
2713 new_load += scale-1;
dd41f596
IM
2714 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2715 }
48f24c4d
IM
2716}
2717
dd41f596
IM
2718#ifdef CONFIG_SMP
2719
1da177e4
LT
2720/*
2721 * double_rq_lock - safely lock two runqueues
2722 *
2723 * Note this does not disable interrupts like task_rq_lock,
2724 * you need to do so manually before calling.
2725 */
70b97a7f 2726static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2727 __acquires(rq1->lock)
2728 __acquires(rq2->lock)
2729{
054b9108 2730 BUG_ON(!irqs_disabled());
1da177e4
LT
2731 if (rq1 == rq2) {
2732 spin_lock(&rq1->lock);
2733 __acquire(rq2->lock); /* Fake it out ;) */
2734 } else {
c96d145e 2735 if (rq1 < rq2) {
1da177e4
LT
2736 spin_lock(&rq1->lock);
2737 spin_lock(&rq2->lock);
2738 } else {
2739 spin_lock(&rq2->lock);
2740 spin_lock(&rq1->lock);
2741 }
2742 }
6e82a3be
IM
2743 update_rq_clock(rq1);
2744 update_rq_clock(rq2);
1da177e4
LT
2745}
2746
2747/*
2748 * double_rq_unlock - safely unlock two runqueues
2749 *
2750 * Note this does not restore interrupts like task_rq_unlock,
2751 * you need to do so manually after calling.
2752 */
70b97a7f 2753static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2754 __releases(rq1->lock)
2755 __releases(rq2->lock)
2756{
2757 spin_unlock(&rq1->lock);
2758 if (rq1 != rq2)
2759 spin_unlock(&rq2->lock);
2760 else
2761 __release(rq2->lock);
2762}
2763
2764/*
2765 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2766 */
e8fa1362 2767static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2768 __releases(this_rq->lock)
2769 __acquires(busiest->lock)
2770 __acquires(this_rq->lock)
2771{
e8fa1362
SR
2772 int ret = 0;
2773
054b9108
KK
2774 if (unlikely(!irqs_disabled())) {
2775 /* printk() doesn't work good under rq->lock */
2776 spin_unlock(&this_rq->lock);
2777 BUG_ON(1);
2778 }
1da177e4 2779 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2780 if (busiest < this_rq) {
1da177e4
LT
2781 spin_unlock(&this_rq->lock);
2782 spin_lock(&busiest->lock);
2783 spin_lock(&this_rq->lock);
e8fa1362 2784 ret = 1;
1da177e4
LT
2785 } else
2786 spin_lock(&busiest->lock);
2787 }
e8fa1362 2788 return ret;
1da177e4
LT
2789}
2790
1da177e4
LT
2791/*
2792 * If dest_cpu is allowed for this process, migrate the task to it.
2793 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2794 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2795 * the cpu_allowed mask is restored.
2796 */
36c8b586 2797static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2798{
70b97a7f 2799 struct migration_req req;
1da177e4 2800 unsigned long flags;
70b97a7f 2801 struct rq *rq;
1da177e4
LT
2802
2803 rq = task_rq_lock(p, &flags);
2804 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2805 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2806 goto out;
2807
2808 /* force the process onto the specified CPU */
2809 if (migrate_task(p, dest_cpu, &req)) {
2810 /* Need to wait for migration thread (might exit: take ref). */
2811 struct task_struct *mt = rq->migration_thread;
36c8b586 2812
1da177e4
LT
2813 get_task_struct(mt);
2814 task_rq_unlock(rq, &flags);
2815 wake_up_process(mt);
2816 put_task_struct(mt);
2817 wait_for_completion(&req.done);
36c8b586 2818
1da177e4
LT
2819 return;
2820 }
2821out:
2822 task_rq_unlock(rq, &flags);
2823}
2824
2825/*
476d139c
NP
2826 * sched_exec - execve() is a valuable balancing opportunity, because at
2827 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2828 */
2829void sched_exec(void)
2830{
1da177e4 2831 int new_cpu, this_cpu = get_cpu();
476d139c 2832 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2833 put_cpu();
476d139c
NP
2834 if (new_cpu != this_cpu)
2835 sched_migrate_task(current, new_cpu);
1da177e4
LT
2836}
2837
2838/*
2839 * pull_task - move a task from a remote runqueue to the local runqueue.
2840 * Both runqueues must be locked.
2841 */
dd41f596
IM
2842static void pull_task(struct rq *src_rq, struct task_struct *p,
2843 struct rq *this_rq, int this_cpu)
1da177e4 2844{
2e1cb74a 2845 deactivate_task(src_rq, p, 0);
1da177e4 2846 set_task_cpu(p, this_cpu);
dd41f596 2847 activate_task(this_rq, p, 0);
1da177e4
LT
2848 /*
2849 * Note that idle threads have a prio of MAX_PRIO, for this test
2850 * to be always true for them.
2851 */
dd41f596 2852 check_preempt_curr(this_rq, p);
1da177e4
LT
2853}
2854
2855/*
2856 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2857 */
858119e1 2858static
70b97a7f 2859int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2860 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2861 int *all_pinned)
1da177e4
LT
2862{
2863 /*
2864 * We do not migrate tasks that are:
2865 * 1) running (obviously), or
2866 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2867 * 3) are cache-hot on their current CPU.
2868 */
cc367732
IM
2869 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2870 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2871 return 0;
cc367732 2872 }
81026794
NP
2873 *all_pinned = 0;
2874
cc367732
IM
2875 if (task_running(rq, p)) {
2876 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2877 return 0;
cc367732 2878 }
1da177e4 2879
da84d961
IM
2880 /*
2881 * Aggressive migration if:
2882 * 1) task is cache cold, or
2883 * 2) too many balance attempts have failed.
2884 */
2885
6bc1665b
IM
2886 if (!task_hot(p, rq->clock, sd) ||
2887 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2888#ifdef CONFIG_SCHEDSTATS
cc367732 2889 if (task_hot(p, rq->clock, sd)) {
da84d961 2890 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2891 schedstat_inc(p, se.nr_forced_migrations);
2892 }
da84d961
IM
2893#endif
2894 return 1;
2895 }
2896
cc367732
IM
2897 if (task_hot(p, rq->clock, sd)) {
2898 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2899 return 0;
cc367732 2900 }
1da177e4
LT
2901 return 1;
2902}
2903
e1d1484f
PW
2904static unsigned long
2905balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2906 unsigned long max_load_move, struct sched_domain *sd,
2907 enum cpu_idle_type idle, int *all_pinned,
2908 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2909{
051c6764 2910 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2911 struct task_struct *p;
2912 long rem_load_move = max_load_move;
1da177e4 2913
e1d1484f 2914 if (max_load_move == 0)
1da177e4
LT
2915 goto out;
2916
81026794
NP
2917 pinned = 1;
2918
1da177e4 2919 /*
dd41f596 2920 * Start the load-balancing iterator:
1da177e4 2921 */
dd41f596
IM
2922 p = iterator->start(iterator->arg);
2923next:
b82d9fdd 2924 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2925 goto out;
051c6764
PZ
2926
2927 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2928 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2929 p = iterator->next(iterator->arg);
2930 goto next;
1da177e4
LT
2931 }
2932
dd41f596 2933 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2934 pulled++;
dd41f596 2935 rem_load_move -= p->se.load.weight;
1da177e4 2936
2dd73a4f 2937 /*
b82d9fdd 2938 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2939 */
e1d1484f 2940 if (rem_load_move > 0) {
a4ac01c3
PW
2941 if (p->prio < *this_best_prio)
2942 *this_best_prio = p->prio;
dd41f596
IM
2943 p = iterator->next(iterator->arg);
2944 goto next;
1da177e4
LT
2945 }
2946out:
2947 /*
e1d1484f 2948 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2949 * so we can safely collect pull_task() stats here rather than
2950 * inside pull_task().
2951 */
2952 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2953
2954 if (all_pinned)
2955 *all_pinned = pinned;
e1d1484f
PW
2956
2957 return max_load_move - rem_load_move;
1da177e4
LT
2958}
2959
dd41f596 2960/*
43010659
PW
2961 * move_tasks tries to move up to max_load_move weighted load from busiest to
2962 * this_rq, as part of a balancing operation within domain "sd".
2963 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2964 *
2965 * Called with both runqueues locked.
2966 */
2967static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2968 unsigned long max_load_move,
dd41f596
IM
2969 struct sched_domain *sd, enum cpu_idle_type idle,
2970 int *all_pinned)
2971{
5522d5d5 2972 const struct sched_class *class = sched_class_highest;
43010659 2973 unsigned long total_load_moved = 0;
a4ac01c3 2974 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2975
2976 do {
43010659
PW
2977 total_load_moved +=
2978 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2979 max_load_move - total_load_moved,
a4ac01c3 2980 sd, idle, all_pinned, &this_best_prio);
dd41f596 2981 class = class->next;
c4acb2c0
GH
2982
2983 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2984 break;
2985
43010659 2986 } while (class && max_load_move > total_load_moved);
dd41f596 2987
43010659
PW
2988 return total_load_moved > 0;
2989}
2990
e1d1484f
PW
2991static int
2992iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2993 struct sched_domain *sd, enum cpu_idle_type idle,
2994 struct rq_iterator *iterator)
2995{
2996 struct task_struct *p = iterator->start(iterator->arg);
2997 int pinned = 0;
2998
2999 while (p) {
3000 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3001 pull_task(busiest, p, this_rq, this_cpu);
3002 /*
3003 * Right now, this is only the second place pull_task()
3004 * is called, so we can safely collect pull_task()
3005 * stats here rather than inside pull_task().
3006 */
3007 schedstat_inc(sd, lb_gained[idle]);
3008
3009 return 1;
3010 }
3011 p = iterator->next(iterator->arg);
3012 }
3013
3014 return 0;
3015}
3016
43010659
PW
3017/*
3018 * move_one_task tries to move exactly one task from busiest to this_rq, as
3019 * part of active balancing operations within "domain".
3020 * Returns 1 if successful and 0 otherwise.
3021 *
3022 * Called with both runqueues locked.
3023 */
3024static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3025 struct sched_domain *sd, enum cpu_idle_type idle)
3026{
5522d5d5 3027 const struct sched_class *class;
43010659
PW
3028
3029 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3030 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3031 return 1;
3032
3033 return 0;
dd41f596
IM
3034}
3035
1da177e4
LT
3036/*
3037 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3038 * domain. It calculates and returns the amount of weighted load which
3039 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3040 */
3041static struct sched_group *
3042find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3043 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3044 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3045{
3046 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3047 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3048 unsigned long max_pull;
2dd73a4f
PW
3049 unsigned long busiest_load_per_task, busiest_nr_running;
3050 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3051 int load_idx, group_imb = 0;
5c45bf27
SS
3052#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3053 int power_savings_balance = 1;
3054 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3055 unsigned long min_nr_running = ULONG_MAX;
3056 struct sched_group *group_min = NULL, *group_leader = NULL;
3057#endif
1da177e4
LT
3058
3059 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3060 busiest_load_per_task = busiest_nr_running = 0;
3061 this_load_per_task = this_nr_running = 0;
408ed066 3062
d15bcfdb 3063 if (idle == CPU_NOT_IDLE)
7897986b 3064 load_idx = sd->busy_idx;
d15bcfdb 3065 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3066 load_idx = sd->newidle_idx;
3067 else
3068 load_idx = sd->idle_idx;
1da177e4
LT
3069
3070 do {
908a7c1b 3071 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3072 int local_group;
3073 int i;
908a7c1b 3074 int __group_imb = 0;
783609c6 3075 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3076 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3077 unsigned long sum_avg_load_per_task;
3078 unsigned long avg_load_per_task;
1da177e4
LT
3079
3080 local_group = cpu_isset(this_cpu, group->cpumask);
3081
783609c6
SS
3082 if (local_group)
3083 balance_cpu = first_cpu(group->cpumask);
3084
1da177e4 3085 /* Tally up the load of all CPUs in the group */
2dd73a4f 3086 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3087 sum_avg_load_per_task = avg_load_per_task = 0;
3088
908a7c1b
KC
3089 max_cpu_load = 0;
3090 min_cpu_load = ~0UL;
1da177e4
LT
3091
3092 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3093 struct rq *rq;
3094
3095 if (!cpu_isset(i, *cpus))
3096 continue;
3097
3098 rq = cpu_rq(i);
2dd73a4f 3099
9439aab8 3100 if (*sd_idle && rq->nr_running)
5969fe06
NP
3101 *sd_idle = 0;
3102
1da177e4 3103 /* Bias balancing toward cpus of our domain */
783609c6
SS
3104 if (local_group) {
3105 if (idle_cpu(i) && !first_idle_cpu) {
3106 first_idle_cpu = 1;
3107 balance_cpu = i;
3108 }
3109
a2000572 3110 load = target_load(i, load_idx);
908a7c1b 3111 } else {
a2000572 3112 load = source_load(i, load_idx);
908a7c1b
KC
3113 if (load > max_cpu_load)
3114 max_cpu_load = load;
3115 if (min_cpu_load > load)
3116 min_cpu_load = load;
3117 }
1da177e4
LT
3118
3119 avg_load += load;
2dd73a4f 3120 sum_nr_running += rq->nr_running;
dd41f596 3121 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3122
3123 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3124 }
3125
783609c6
SS
3126 /*
3127 * First idle cpu or the first cpu(busiest) in this sched group
3128 * is eligible for doing load balancing at this and above
9439aab8
SS
3129 * domains. In the newly idle case, we will allow all the cpu's
3130 * to do the newly idle load balance.
783609c6 3131 */
9439aab8
SS
3132 if (idle != CPU_NEWLY_IDLE && local_group &&
3133 balance_cpu != this_cpu && balance) {
783609c6
SS
3134 *balance = 0;
3135 goto ret;
3136 }
3137
1da177e4 3138 total_load += avg_load;
5517d86b 3139 total_pwr += group->__cpu_power;
1da177e4
LT
3140
3141 /* Adjust by relative CPU power of the group */
5517d86b
ED
3142 avg_load = sg_div_cpu_power(group,
3143 avg_load * SCHED_LOAD_SCALE);
1da177e4 3144
408ed066
PZ
3145
3146 /*
3147 * Consider the group unbalanced when the imbalance is larger
3148 * than the average weight of two tasks.
3149 *
3150 * APZ: with cgroup the avg task weight can vary wildly and
3151 * might not be a suitable number - should we keep a
3152 * normalized nr_running number somewhere that negates
3153 * the hierarchy?
3154 */
3155 avg_load_per_task = sg_div_cpu_power(group,
3156 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3157
3158 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3159 __group_imb = 1;
3160
5517d86b 3161 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3162
1da177e4
LT
3163 if (local_group) {
3164 this_load = avg_load;
3165 this = group;
2dd73a4f
PW
3166 this_nr_running = sum_nr_running;
3167 this_load_per_task = sum_weighted_load;
3168 } else if (avg_load > max_load &&
908a7c1b 3169 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3170 max_load = avg_load;
3171 busiest = group;
2dd73a4f
PW
3172 busiest_nr_running = sum_nr_running;
3173 busiest_load_per_task = sum_weighted_load;
908a7c1b 3174 group_imb = __group_imb;
1da177e4 3175 }
5c45bf27
SS
3176
3177#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3178 /*
3179 * Busy processors will not participate in power savings
3180 * balance.
3181 */
dd41f596
IM
3182 if (idle == CPU_NOT_IDLE ||
3183 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3184 goto group_next;
5c45bf27
SS
3185
3186 /*
3187 * If the local group is idle or completely loaded
3188 * no need to do power savings balance at this domain
3189 */
3190 if (local_group && (this_nr_running >= group_capacity ||
3191 !this_nr_running))
3192 power_savings_balance = 0;
3193
dd41f596 3194 /*
5c45bf27
SS
3195 * If a group is already running at full capacity or idle,
3196 * don't include that group in power savings calculations
dd41f596
IM
3197 */
3198 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3199 || !sum_nr_running)
dd41f596 3200 goto group_next;
5c45bf27 3201
dd41f596 3202 /*
5c45bf27 3203 * Calculate the group which has the least non-idle load.
dd41f596
IM
3204 * This is the group from where we need to pick up the load
3205 * for saving power
3206 */
3207 if ((sum_nr_running < min_nr_running) ||
3208 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3209 first_cpu(group->cpumask) <
3210 first_cpu(group_min->cpumask))) {
dd41f596
IM
3211 group_min = group;
3212 min_nr_running = sum_nr_running;
5c45bf27
SS
3213 min_load_per_task = sum_weighted_load /
3214 sum_nr_running;
dd41f596 3215 }
5c45bf27 3216
dd41f596 3217 /*
5c45bf27 3218 * Calculate the group which is almost near its
dd41f596
IM
3219 * capacity but still has some space to pick up some load
3220 * from other group and save more power
3221 */
3222 if (sum_nr_running <= group_capacity - 1) {
3223 if (sum_nr_running > leader_nr_running ||
3224 (sum_nr_running == leader_nr_running &&
3225 first_cpu(group->cpumask) >
3226 first_cpu(group_leader->cpumask))) {
3227 group_leader = group;
3228 leader_nr_running = sum_nr_running;
3229 }
48f24c4d 3230 }
5c45bf27
SS
3231group_next:
3232#endif
1da177e4
LT
3233 group = group->next;
3234 } while (group != sd->groups);
3235
2dd73a4f 3236 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3237 goto out_balanced;
3238
3239 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3240
3241 if (this_load >= avg_load ||
3242 100*max_load <= sd->imbalance_pct*this_load)
3243 goto out_balanced;
3244
2dd73a4f 3245 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3246 if (group_imb)
3247 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3248
1da177e4
LT
3249 /*
3250 * We're trying to get all the cpus to the average_load, so we don't
3251 * want to push ourselves above the average load, nor do we wish to
3252 * reduce the max loaded cpu below the average load, as either of these
3253 * actions would just result in more rebalancing later, and ping-pong
3254 * tasks around. Thus we look for the minimum possible imbalance.
3255 * Negative imbalances (*we* are more loaded than anyone else) will
3256 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3257 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3258 * appear as very large values with unsigned longs.
3259 */
2dd73a4f
PW
3260 if (max_load <= busiest_load_per_task)
3261 goto out_balanced;
3262
3263 /*
3264 * In the presence of smp nice balancing, certain scenarios can have
3265 * max load less than avg load(as we skip the groups at or below
3266 * its cpu_power, while calculating max_load..)
3267 */
3268 if (max_load < avg_load) {
3269 *imbalance = 0;
3270 goto small_imbalance;
3271 }
0c117f1b
SS
3272
3273 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3274 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3275
1da177e4 3276 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3277 *imbalance = min(max_pull * busiest->__cpu_power,
3278 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3279 / SCHED_LOAD_SCALE;
3280
2dd73a4f
PW
3281 /*
3282 * if *imbalance is less than the average load per runnable task
3283 * there is no gaurantee that any tasks will be moved so we'll have
3284 * a think about bumping its value to force at least one task to be
3285 * moved
3286 */
7fd0d2dd 3287 if (*imbalance < busiest_load_per_task) {
48f24c4d 3288 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3289 unsigned int imbn;
3290
3291small_imbalance:
3292 pwr_move = pwr_now = 0;
3293 imbn = 2;
3294 if (this_nr_running) {
3295 this_load_per_task /= this_nr_running;
3296 if (busiest_load_per_task > this_load_per_task)
3297 imbn = 1;
3298 } else
408ed066 3299 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3300
408ed066 3301 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3302 busiest_load_per_task * imbn) {
2dd73a4f 3303 *imbalance = busiest_load_per_task;
1da177e4
LT
3304 return busiest;
3305 }
3306
3307 /*
3308 * OK, we don't have enough imbalance to justify moving tasks,
3309 * however we may be able to increase total CPU power used by
3310 * moving them.
3311 */
3312
5517d86b
ED
3313 pwr_now += busiest->__cpu_power *
3314 min(busiest_load_per_task, max_load);
3315 pwr_now += this->__cpu_power *
3316 min(this_load_per_task, this_load);
1da177e4
LT
3317 pwr_now /= SCHED_LOAD_SCALE;
3318
3319 /* Amount of load we'd subtract */
5517d86b
ED
3320 tmp = sg_div_cpu_power(busiest,
3321 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3322 if (max_load > tmp)
5517d86b 3323 pwr_move += busiest->__cpu_power *
2dd73a4f 3324 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3325
3326 /* Amount of load we'd add */
5517d86b 3327 if (max_load * busiest->__cpu_power <
33859f7f 3328 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3329 tmp = sg_div_cpu_power(this,
3330 max_load * busiest->__cpu_power);
1da177e4 3331 else
5517d86b
ED
3332 tmp = sg_div_cpu_power(this,
3333 busiest_load_per_task * SCHED_LOAD_SCALE);
3334 pwr_move += this->__cpu_power *
3335 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3336 pwr_move /= SCHED_LOAD_SCALE;
3337
3338 /* Move if we gain throughput */
7fd0d2dd
SS
3339 if (pwr_move > pwr_now)
3340 *imbalance = busiest_load_per_task;
1da177e4
LT
3341 }
3342
1da177e4
LT
3343 return busiest;
3344
3345out_balanced:
5c45bf27 3346#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3347 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3348 goto ret;
1da177e4 3349
5c45bf27
SS
3350 if (this == group_leader && group_leader != group_min) {
3351 *imbalance = min_load_per_task;
3352 return group_min;
3353 }
5c45bf27 3354#endif
783609c6 3355ret:
1da177e4
LT
3356 *imbalance = 0;
3357 return NULL;
3358}
3359
3360/*
3361 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3362 */
70b97a7f 3363static struct rq *
d15bcfdb 3364find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3365 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3366{
70b97a7f 3367 struct rq *busiest = NULL, *rq;
2dd73a4f 3368 unsigned long max_load = 0;
1da177e4
LT
3369 int i;
3370
3371 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3372 unsigned long wl;
0a2966b4
CL
3373
3374 if (!cpu_isset(i, *cpus))
3375 continue;
3376
48f24c4d 3377 rq = cpu_rq(i);
dd41f596 3378 wl = weighted_cpuload(i);
2dd73a4f 3379
dd41f596 3380 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3381 continue;
1da177e4 3382
dd41f596
IM
3383 if (wl > max_load) {
3384 max_load = wl;
48f24c4d 3385 busiest = rq;
1da177e4
LT
3386 }
3387 }
3388
3389 return busiest;
3390}
3391
77391d71
NP
3392/*
3393 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3394 * so long as it is large enough.
3395 */
3396#define MAX_PINNED_INTERVAL 512
3397
1da177e4
LT
3398/*
3399 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3400 * tasks if there is an imbalance.
1da177e4 3401 */
70b97a7f 3402static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3403 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3404 int *balance, cpumask_t *cpus)
1da177e4 3405{
43010659 3406 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3407 struct sched_group *group;
1da177e4 3408 unsigned long imbalance;
70b97a7f 3409 struct rq *busiest;
fe2eea3f 3410 unsigned long flags;
5969fe06 3411
7c16ec58
MT
3412 cpus_setall(*cpus);
3413
89c4710e
SS
3414 /*
3415 * When power savings policy is enabled for the parent domain, idle
3416 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3417 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3418 * portraying it as CPU_NOT_IDLE.
89c4710e 3419 */
d15bcfdb 3420 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3421 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3422 sd_idle = 1;
1da177e4 3423
2d72376b 3424 schedstat_inc(sd, lb_count[idle]);
1da177e4 3425
0a2966b4 3426redo:
c8cba857 3427 update_shares(sd);
0a2966b4 3428 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3429 cpus, balance);
783609c6 3430
06066714 3431 if (*balance == 0)
783609c6 3432 goto out_balanced;
783609c6 3433
1da177e4
LT
3434 if (!group) {
3435 schedstat_inc(sd, lb_nobusyg[idle]);
3436 goto out_balanced;
3437 }
3438
7c16ec58 3439 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3440 if (!busiest) {
3441 schedstat_inc(sd, lb_nobusyq[idle]);
3442 goto out_balanced;
3443 }
3444
db935dbd 3445 BUG_ON(busiest == this_rq);
1da177e4
LT
3446
3447 schedstat_add(sd, lb_imbalance[idle], imbalance);
3448
43010659 3449 ld_moved = 0;
1da177e4
LT
3450 if (busiest->nr_running > 1) {
3451 /*
3452 * Attempt to move tasks. If find_busiest_group has found
3453 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3454 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3455 * correctly treated as an imbalance.
3456 */
fe2eea3f 3457 local_irq_save(flags);
e17224bf 3458 double_rq_lock(this_rq, busiest);
43010659 3459 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3460 imbalance, sd, idle, &all_pinned);
e17224bf 3461 double_rq_unlock(this_rq, busiest);
fe2eea3f 3462 local_irq_restore(flags);
81026794 3463
46cb4b7c
SS
3464 /*
3465 * some other cpu did the load balance for us.
3466 */
43010659 3467 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3468 resched_cpu(this_cpu);
3469
81026794 3470 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3471 if (unlikely(all_pinned)) {
7c16ec58
MT
3472 cpu_clear(cpu_of(busiest), *cpus);
3473 if (!cpus_empty(*cpus))
0a2966b4 3474 goto redo;
81026794 3475 goto out_balanced;
0a2966b4 3476 }
1da177e4 3477 }
81026794 3478
43010659 3479 if (!ld_moved) {
1da177e4
LT
3480 schedstat_inc(sd, lb_failed[idle]);
3481 sd->nr_balance_failed++;
3482
3483 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3484
fe2eea3f 3485 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3486
3487 /* don't kick the migration_thread, if the curr
3488 * task on busiest cpu can't be moved to this_cpu
3489 */
3490 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3491 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3492 all_pinned = 1;
3493 goto out_one_pinned;
3494 }
3495
1da177e4
LT
3496 if (!busiest->active_balance) {
3497 busiest->active_balance = 1;
3498 busiest->push_cpu = this_cpu;
81026794 3499 active_balance = 1;
1da177e4 3500 }
fe2eea3f 3501 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3502 if (active_balance)
1da177e4
LT
3503 wake_up_process(busiest->migration_thread);
3504
3505 /*
3506 * We've kicked active balancing, reset the failure
3507 * counter.
3508 */
39507451 3509 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3510 }
81026794 3511 } else
1da177e4
LT
3512 sd->nr_balance_failed = 0;
3513
81026794 3514 if (likely(!active_balance)) {
1da177e4
LT
3515 /* We were unbalanced, so reset the balancing interval */
3516 sd->balance_interval = sd->min_interval;
81026794
NP
3517 } else {
3518 /*
3519 * If we've begun active balancing, start to back off. This
3520 * case may not be covered by the all_pinned logic if there
3521 * is only 1 task on the busy runqueue (because we don't call
3522 * move_tasks).
3523 */
3524 if (sd->balance_interval < sd->max_interval)
3525 sd->balance_interval *= 2;
1da177e4
LT
3526 }
3527
43010659 3528 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3529 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3530 ld_moved = -1;
3531
3532 goto out;
1da177e4
LT
3533
3534out_balanced:
1da177e4
LT
3535 schedstat_inc(sd, lb_balanced[idle]);
3536
16cfb1c0 3537 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3538
3539out_one_pinned:
1da177e4 3540 /* tune up the balancing interval */
77391d71
NP
3541 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3542 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3543 sd->balance_interval *= 2;
3544
48f24c4d 3545 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3546 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3547 ld_moved = -1;
3548 else
3549 ld_moved = 0;
3550out:
c8cba857
PZ
3551 if (ld_moved)
3552 update_shares(sd);
c09595f6 3553 return ld_moved;
1da177e4
LT
3554}
3555
3556/*
3557 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3558 * tasks if there is an imbalance.
3559 *
d15bcfdb 3560 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3561 * this_rq is locked.
3562 */
48f24c4d 3563static int
7c16ec58
MT
3564load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3565 cpumask_t *cpus)
1da177e4
LT
3566{
3567 struct sched_group *group;
70b97a7f 3568 struct rq *busiest = NULL;
1da177e4 3569 unsigned long imbalance;
43010659 3570 int ld_moved = 0;
5969fe06 3571 int sd_idle = 0;
969bb4e4 3572 int all_pinned = 0;
7c16ec58
MT
3573
3574 cpus_setall(*cpus);
5969fe06 3575
89c4710e
SS
3576 /*
3577 * When power savings policy is enabled for the parent domain, idle
3578 * sibling can pick up load irrespective of busy siblings. In this case,
3579 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3580 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3581 */
3582 if (sd->flags & SD_SHARE_CPUPOWER &&
3583 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3584 sd_idle = 1;
1da177e4 3585
2d72376b 3586 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3587redo:
3e5459b4 3588 update_shares_locked(this_rq, sd);
d15bcfdb 3589 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3590 &sd_idle, cpus, NULL);
1da177e4 3591 if (!group) {
d15bcfdb 3592 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3593 goto out_balanced;
1da177e4
LT
3594 }
3595
7c16ec58 3596 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3597 if (!busiest) {
d15bcfdb 3598 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3599 goto out_balanced;
1da177e4
LT
3600 }
3601
db935dbd
NP
3602 BUG_ON(busiest == this_rq);
3603
d15bcfdb 3604 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3605
43010659 3606 ld_moved = 0;
d6d5cfaf
NP
3607 if (busiest->nr_running > 1) {
3608 /* Attempt to move tasks */
3609 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3610 /* this_rq->clock is already updated */
3611 update_rq_clock(busiest);
43010659 3612 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3613 imbalance, sd, CPU_NEWLY_IDLE,
3614 &all_pinned);
d6d5cfaf 3615 spin_unlock(&busiest->lock);
0a2966b4 3616
969bb4e4 3617 if (unlikely(all_pinned)) {
7c16ec58
MT
3618 cpu_clear(cpu_of(busiest), *cpus);
3619 if (!cpus_empty(*cpus))
0a2966b4
CL
3620 goto redo;
3621 }
d6d5cfaf
NP
3622 }
3623
43010659 3624 if (!ld_moved) {
d15bcfdb 3625 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3626 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3627 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3628 return -1;
3629 } else
16cfb1c0 3630 sd->nr_balance_failed = 0;
1da177e4 3631
3e5459b4 3632 update_shares_locked(this_rq, sd);
43010659 3633 return ld_moved;
16cfb1c0
NP
3634
3635out_balanced:
d15bcfdb 3636 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3637 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3638 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3639 return -1;
16cfb1c0 3640 sd->nr_balance_failed = 0;
48f24c4d 3641
16cfb1c0 3642 return 0;
1da177e4
LT
3643}
3644
3645/*
3646 * idle_balance is called by schedule() if this_cpu is about to become
3647 * idle. Attempts to pull tasks from other CPUs.
3648 */
70b97a7f 3649static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3650{
3651 struct sched_domain *sd;
dd41f596
IM
3652 int pulled_task = -1;
3653 unsigned long next_balance = jiffies + HZ;
7c16ec58 3654 cpumask_t tmpmask;
1da177e4
LT
3655
3656 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3657 unsigned long interval;
3658
3659 if (!(sd->flags & SD_LOAD_BALANCE))
3660 continue;
3661
3662 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3663 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3664 pulled_task = load_balance_newidle(this_cpu, this_rq,
3665 sd, &tmpmask);
92c4ca5c
CL
3666
3667 interval = msecs_to_jiffies(sd->balance_interval);
3668 if (time_after(next_balance, sd->last_balance + interval))
3669 next_balance = sd->last_balance + interval;
3670 if (pulled_task)
3671 break;
1da177e4 3672 }
dd41f596 3673 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3674 /*
3675 * We are going idle. next_balance may be set based on
3676 * a busy processor. So reset next_balance.
3677 */
3678 this_rq->next_balance = next_balance;
dd41f596 3679 }
1da177e4
LT
3680}
3681
3682/*
3683 * active_load_balance is run by migration threads. It pushes running tasks
3684 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3685 * running on each physical CPU where possible, and avoids physical /
3686 * logical imbalances.
3687 *
3688 * Called with busiest_rq locked.
3689 */
70b97a7f 3690static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3691{
39507451 3692 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3693 struct sched_domain *sd;
3694 struct rq *target_rq;
39507451 3695
48f24c4d 3696 /* Is there any task to move? */
39507451 3697 if (busiest_rq->nr_running <= 1)
39507451
NP
3698 return;
3699
3700 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3701
3702 /*
39507451 3703 * This condition is "impossible", if it occurs
41a2d6cf 3704 * we need to fix it. Originally reported by
39507451 3705 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3706 */
39507451 3707 BUG_ON(busiest_rq == target_rq);
1da177e4 3708
39507451
NP
3709 /* move a task from busiest_rq to target_rq */
3710 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3711 update_rq_clock(busiest_rq);
3712 update_rq_clock(target_rq);
39507451
NP
3713
3714 /* Search for an sd spanning us and the target CPU. */
c96d145e 3715 for_each_domain(target_cpu, sd) {
39507451 3716 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3717 cpu_isset(busiest_cpu, sd->span))
39507451 3718 break;
c96d145e 3719 }
39507451 3720
48f24c4d 3721 if (likely(sd)) {
2d72376b 3722 schedstat_inc(sd, alb_count);
39507451 3723
43010659
PW
3724 if (move_one_task(target_rq, target_cpu, busiest_rq,
3725 sd, CPU_IDLE))
48f24c4d
IM
3726 schedstat_inc(sd, alb_pushed);
3727 else
3728 schedstat_inc(sd, alb_failed);
3729 }
39507451 3730 spin_unlock(&target_rq->lock);
1da177e4
LT
3731}
3732
46cb4b7c
SS
3733#ifdef CONFIG_NO_HZ
3734static struct {
3735 atomic_t load_balancer;
41a2d6cf 3736 cpumask_t cpu_mask;
46cb4b7c
SS
3737} nohz ____cacheline_aligned = {
3738 .load_balancer = ATOMIC_INIT(-1),
3739 .cpu_mask = CPU_MASK_NONE,
3740};
3741
7835b98b 3742/*
46cb4b7c
SS
3743 * This routine will try to nominate the ilb (idle load balancing)
3744 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3745 * load balancing on behalf of all those cpus. If all the cpus in the system
3746 * go into this tickless mode, then there will be no ilb owner (as there is
3747 * no need for one) and all the cpus will sleep till the next wakeup event
3748 * arrives...
3749 *
3750 * For the ilb owner, tick is not stopped. And this tick will be used
3751 * for idle load balancing. ilb owner will still be part of
3752 * nohz.cpu_mask..
7835b98b 3753 *
46cb4b7c
SS
3754 * While stopping the tick, this cpu will become the ilb owner if there
3755 * is no other owner. And will be the owner till that cpu becomes busy
3756 * or if all cpus in the system stop their ticks at which point
3757 * there is no need for ilb owner.
3758 *
3759 * When the ilb owner becomes busy, it nominates another owner, during the
3760 * next busy scheduler_tick()
3761 */
3762int select_nohz_load_balancer(int stop_tick)
3763{
3764 int cpu = smp_processor_id();
3765
3766 if (stop_tick) {
3767 cpu_set(cpu, nohz.cpu_mask);
3768 cpu_rq(cpu)->in_nohz_recently = 1;
3769
3770 /*
3771 * If we are going offline and still the leader, give up!
3772 */
e761b772 3773 if (!cpu_active(cpu) &&
46cb4b7c
SS
3774 atomic_read(&nohz.load_balancer) == cpu) {
3775 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3776 BUG();
3777 return 0;
3778 }
3779
3780 /* time for ilb owner also to sleep */
3781 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3782 if (atomic_read(&nohz.load_balancer) == cpu)
3783 atomic_set(&nohz.load_balancer, -1);
3784 return 0;
3785 }
3786
3787 if (atomic_read(&nohz.load_balancer) == -1) {
3788 /* make me the ilb owner */
3789 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3790 return 1;
3791 } else if (atomic_read(&nohz.load_balancer) == cpu)
3792 return 1;
3793 } else {
3794 if (!cpu_isset(cpu, nohz.cpu_mask))
3795 return 0;
3796
3797 cpu_clear(cpu, nohz.cpu_mask);
3798
3799 if (atomic_read(&nohz.load_balancer) == cpu)
3800 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3801 BUG();
3802 }
3803 return 0;
3804}
3805#endif
3806
3807static DEFINE_SPINLOCK(balancing);
3808
3809/*
7835b98b
CL
3810 * It checks each scheduling domain to see if it is due to be balanced,
3811 * and initiates a balancing operation if so.
3812 *
3813 * Balancing parameters are set up in arch_init_sched_domains.
3814 */
a9957449 3815static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3816{
46cb4b7c
SS
3817 int balance = 1;
3818 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3819 unsigned long interval;
3820 struct sched_domain *sd;
46cb4b7c 3821 /* Earliest time when we have to do rebalance again */
c9819f45 3822 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3823 int update_next_balance = 0;
d07355f5 3824 int need_serialize;
7c16ec58 3825 cpumask_t tmp;
1da177e4 3826
46cb4b7c 3827 for_each_domain(cpu, sd) {
1da177e4
LT
3828 if (!(sd->flags & SD_LOAD_BALANCE))
3829 continue;
3830
3831 interval = sd->balance_interval;
d15bcfdb 3832 if (idle != CPU_IDLE)
1da177e4
LT
3833 interval *= sd->busy_factor;
3834
3835 /* scale ms to jiffies */
3836 interval = msecs_to_jiffies(interval);
3837 if (unlikely(!interval))
3838 interval = 1;
dd41f596
IM
3839 if (interval > HZ*NR_CPUS/10)
3840 interval = HZ*NR_CPUS/10;
3841
d07355f5 3842 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3843
d07355f5 3844 if (need_serialize) {
08c183f3
CL
3845 if (!spin_trylock(&balancing))
3846 goto out;
3847 }
3848
c9819f45 3849 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3850 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3851 /*
3852 * We've pulled tasks over so either we're no
5969fe06
NP
3853 * longer idle, or one of our SMT siblings is
3854 * not idle.
3855 */
d15bcfdb 3856 idle = CPU_NOT_IDLE;
1da177e4 3857 }
1bd77f2d 3858 sd->last_balance = jiffies;
1da177e4 3859 }
d07355f5 3860 if (need_serialize)
08c183f3
CL
3861 spin_unlock(&balancing);
3862out:
f549da84 3863 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3864 next_balance = sd->last_balance + interval;
f549da84
SS
3865 update_next_balance = 1;
3866 }
783609c6
SS
3867
3868 /*
3869 * Stop the load balance at this level. There is another
3870 * CPU in our sched group which is doing load balancing more
3871 * actively.
3872 */
3873 if (!balance)
3874 break;
1da177e4 3875 }
f549da84
SS
3876
3877 /*
3878 * next_balance will be updated only when there is a need.
3879 * When the cpu is attached to null domain for ex, it will not be
3880 * updated.
3881 */
3882 if (likely(update_next_balance))
3883 rq->next_balance = next_balance;
46cb4b7c
SS
3884}
3885
3886/*
3887 * run_rebalance_domains is triggered when needed from the scheduler tick.
3888 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3889 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3890 */
3891static void run_rebalance_domains(struct softirq_action *h)
3892{
dd41f596
IM
3893 int this_cpu = smp_processor_id();
3894 struct rq *this_rq = cpu_rq(this_cpu);
3895 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3896 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3897
dd41f596 3898 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3899
3900#ifdef CONFIG_NO_HZ
3901 /*
3902 * If this cpu is the owner for idle load balancing, then do the
3903 * balancing on behalf of the other idle cpus whose ticks are
3904 * stopped.
3905 */
dd41f596
IM
3906 if (this_rq->idle_at_tick &&
3907 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3908 cpumask_t cpus = nohz.cpu_mask;
3909 struct rq *rq;
3910 int balance_cpu;
3911
dd41f596 3912 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3913 for_each_cpu_mask(balance_cpu, cpus) {
3914 /*
3915 * If this cpu gets work to do, stop the load balancing
3916 * work being done for other cpus. Next load
3917 * balancing owner will pick it up.
3918 */
3919 if (need_resched())
3920 break;
3921
de0cf899 3922 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3923
3924 rq = cpu_rq(balance_cpu);
dd41f596
IM
3925 if (time_after(this_rq->next_balance, rq->next_balance))
3926 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3927 }
3928 }
3929#endif
3930}
3931
3932/*
3933 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3934 *
3935 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3936 * idle load balancing owner or decide to stop the periodic load balancing,
3937 * if the whole system is idle.
3938 */
dd41f596 3939static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3940{
46cb4b7c
SS
3941#ifdef CONFIG_NO_HZ
3942 /*
3943 * If we were in the nohz mode recently and busy at the current
3944 * scheduler tick, then check if we need to nominate new idle
3945 * load balancer.
3946 */
3947 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3948 rq->in_nohz_recently = 0;
3949
3950 if (atomic_read(&nohz.load_balancer) == cpu) {
3951 cpu_clear(cpu, nohz.cpu_mask);
3952 atomic_set(&nohz.load_balancer, -1);
3953 }
3954
3955 if (atomic_read(&nohz.load_balancer) == -1) {
3956 /*
3957 * simple selection for now: Nominate the
3958 * first cpu in the nohz list to be the next
3959 * ilb owner.
3960 *
3961 * TBD: Traverse the sched domains and nominate
3962 * the nearest cpu in the nohz.cpu_mask.
3963 */
3964 int ilb = first_cpu(nohz.cpu_mask);
3965
434d53b0 3966 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3967 resched_cpu(ilb);
3968 }
3969 }
3970
3971 /*
3972 * If this cpu is idle and doing idle load balancing for all the
3973 * cpus with ticks stopped, is it time for that to stop?
3974 */
3975 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3976 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3977 resched_cpu(cpu);
3978 return;
3979 }
3980
3981 /*
3982 * If this cpu is idle and the idle load balancing is done by
3983 * someone else, then no need raise the SCHED_SOFTIRQ
3984 */
3985 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3986 cpu_isset(cpu, nohz.cpu_mask))
3987 return;
3988#endif
3989 if (time_after_eq(jiffies, rq->next_balance))
3990 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3991}
dd41f596
IM
3992
3993#else /* CONFIG_SMP */
3994
1da177e4
LT
3995/*
3996 * on UP we do not need to balance between CPUs:
3997 */
70b97a7f 3998static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3999{
4000}
dd41f596 4001
1da177e4
LT
4002#endif
4003
1da177e4
LT
4004DEFINE_PER_CPU(struct kernel_stat, kstat);
4005
4006EXPORT_PER_CPU_SYMBOL(kstat);
4007
4008/*
41b86e9c
IM
4009 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4010 * that have not yet been banked in case the task is currently running.
1da177e4 4011 */
41b86e9c 4012unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4013{
1da177e4 4014 unsigned long flags;
41b86e9c
IM
4015 u64 ns, delta_exec;
4016 struct rq *rq;
48f24c4d 4017
41b86e9c
IM
4018 rq = task_rq_lock(p, &flags);
4019 ns = p->se.sum_exec_runtime;
051a1d1a 4020 if (task_current(rq, p)) {
a8e504d2
IM
4021 update_rq_clock(rq);
4022 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4023 if ((s64)delta_exec > 0)
4024 ns += delta_exec;
4025 }
4026 task_rq_unlock(rq, &flags);
48f24c4d 4027
1da177e4
LT
4028 return ns;
4029}
4030
1da177e4
LT
4031/*
4032 * Account user cpu time to a process.
4033 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4034 * @cputime: the cpu time spent in user space since the last update
4035 */
4036void account_user_time(struct task_struct *p, cputime_t cputime)
4037{
4038 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4039 cputime64_t tmp;
4040
4041 p->utime = cputime_add(p->utime, cputime);
4042
4043 /* Add user time to cpustat. */
4044 tmp = cputime_to_cputime64(cputime);
4045 if (TASK_NICE(p) > 0)
4046 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4047 else
4048 cpustat->user = cputime64_add(cpustat->user, tmp);
4049}
4050
94886b84
LV
4051/*
4052 * Account guest cpu time to a process.
4053 * @p: the process that the cpu time gets accounted to
4054 * @cputime: the cpu time spent in virtual machine since the last update
4055 */
f7402e03 4056static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4057{
4058 cputime64_t tmp;
4059 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4060
4061 tmp = cputime_to_cputime64(cputime);
4062
4063 p->utime = cputime_add(p->utime, cputime);
4064 p->gtime = cputime_add(p->gtime, cputime);
4065
4066 cpustat->user = cputime64_add(cpustat->user, tmp);
4067 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4068}
4069
c66f08be
MN
4070/*
4071 * Account scaled user cpu time to a process.
4072 * @p: the process that the cpu time gets accounted to
4073 * @cputime: the cpu time spent in user space since the last update
4074 */
4075void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4076{
4077 p->utimescaled = cputime_add(p->utimescaled, cputime);
4078}
4079
1da177e4
LT
4080/*
4081 * Account system cpu time to a process.
4082 * @p: the process that the cpu time gets accounted to
4083 * @hardirq_offset: the offset to subtract from hardirq_count()
4084 * @cputime: the cpu time spent in kernel space since the last update
4085 */
4086void account_system_time(struct task_struct *p, int hardirq_offset,
4087 cputime_t cputime)
4088{
4089 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4090 struct rq *rq = this_rq();
1da177e4
LT
4091 cputime64_t tmp;
4092
983ed7a6
HH
4093 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4094 account_guest_time(p, cputime);
4095 return;
4096 }
94886b84 4097
1da177e4
LT
4098 p->stime = cputime_add(p->stime, cputime);
4099
4100 /* Add system time to cpustat. */
4101 tmp = cputime_to_cputime64(cputime);
4102 if (hardirq_count() - hardirq_offset)
4103 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4104 else if (softirq_count())
4105 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4106 else if (p != rq->idle)
1da177e4 4107 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4108 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4109 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4110 else
4111 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4112 /* Account for system time used */
4113 acct_update_integrals(p);
1da177e4
LT
4114}
4115
c66f08be
MN
4116/*
4117 * Account scaled system cpu time to a process.
4118 * @p: the process that the cpu time gets accounted to
4119 * @hardirq_offset: the offset to subtract from hardirq_count()
4120 * @cputime: the cpu time spent in kernel space since the last update
4121 */
4122void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4123{
4124 p->stimescaled = cputime_add(p->stimescaled, cputime);
4125}
4126
1da177e4
LT
4127/*
4128 * Account for involuntary wait time.
4129 * @p: the process from which the cpu time has been stolen
4130 * @steal: the cpu time spent in involuntary wait
4131 */
4132void account_steal_time(struct task_struct *p, cputime_t steal)
4133{
4134 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4135 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4136 struct rq *rq = this_rq();
1da177e4
LT
4137
4138 if (p == rq->idle) {
4139 p->stime = cputime_add(p->stime, steal);
4140 if (atomic_read(&rq->nr_iowait) > 0)
4141 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4142 else
4143 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4144 } else
1da177e4
LT
4145 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4146}
4147
7835b98b
CL
4148/*
4149 * This function gets called by the timer code, with HZ frequency.
4150 * We call it with interrupts disabled.
4151 *
4152 * It also gets called by the fork code, when changing the parent's
4153 * timeslices.
4154 */
4155void scheduler_tick(void)
4156{
7835b98b
CL
4157 int cpu = smp_processor_id();
4158 struct rq *rq = cpu_rq(cpu);
dd41f596 4159 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4160
4161 sched_clock_tick();
dd41f596
IM
4162
4163 spin_lock(&rq->lock);
3e51f33f 4164 update_rq_clock(rq);
f1a438d8 4165 update_cpu_load(rq);
fa85ae24 4166 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4167 spin_unlock(&rq->lock);
7835b98b 4168
e418e1c2 4169#ifdef CONFIG_SMP
dd41f596
IM
4170 rq->idle_at_tick = idle_cpu(cpu);
4171 trigger_load_balance(rq, cpu);
e418e1c2 4172#endif
1da177e4
LT
4173}
4174
6cd8a4bb
SR
4175#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4176 defined(CONFIG_PREEMPT_TRACER))
4177
4178static inline unsigned long get_parent_ip(unsigned long addr)
4179{
4180 if (in_lock_functions(addr)) {
4181 addr = CALLER_ADDR2;
4182 if (in_lock_functions(addr))
4183 addr = CALLER_ADDR3;
4184 }
4185 return addr;
4186}
1da177e4 4187
43627582 4188void __kprobes add_preempt_count(int val)
1da177e4 4189{
6cd8a4bb 4190#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4191 /*
4192 * Underflow?
4193 */
9a11b49a
IM
4194 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4195 return;
6cd8a4bb 4196#endif
1da177e4 4197 preempt_count() += val;
6cd8a4bb 4198#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4199 /*
4200 * Spinlock count overflowing soon?
4201 */
33859f7f
MOS
4202 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4203 PREEMPT_MASK - 10);
6cd8a4bb
SR
4204#endif
4205 if (preempt_count() == val)
4206 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4207}
4208EXPORT_SYMBOL(add_preempt_count);
4209
43627582 4210void __kprobes sub_preempt_count(int val)
1da177e4 4211{
6cd8a4bb 4212#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4213 /*
4214 * Underflow?
4215 */
9a11b49a
IM
4216 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4217 return;
1da177e4
LT
4218 /*
4219 * Is the spinlock portion underflowing?
4220 */
9a11b49a
IM
4221 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4222 !(preempt_count() & PREEMPT_MASK)))
4223 return;
6cd8a4bb 4224#endif
9a11b49a 4225
6cd8a4bb
SR
4226 if (preempt_count() == val)
4227 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4228 preempt_count() -= val;
4229}
4230EXPORT_SYMBOL(sub_preempt_count);
4231
4232#endif
4233
4234/*
dd41f596 4235 * Print scheduling while atomic bug:
1da177e4 4236 */
dd41f596 4237static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4238{
838225b4
SS
4239 struct pt_regs *regs = get_irq_regs();
4240
4241 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4242 prev->comm, prev->pid, preempt_count());
4243
dd41f596 4244 debug_show_held_locks(prev);
e21f5b15 4245 print_modules();
dd41f596
IM
4246 if (irqs_disabled())
4247 print_irqtrace_events(prev);
838225b4
SS
4248
4249 if (regs)
4250 show_regs(regs);
4251 else
4252 dump_stack();
dd41f596 4253}
1da177e4 4254
dd41f596
IM
4255/*
4256 * Various schedule()-time debugging checks and statistics:
4257 */
4258static inline void schedule_debug(struct task_struct *prev)
4259{
1da177e4 4260 /*
41a2d6cf 4261 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4262 * schedule() atomically, we ignore that path for now.
4263 * Otherwise, whine if we are scheduling when we should not be.
4264 */
3f33a7ce 4265 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4266 __schedule_bug(prev);
4267
1da177e4
LT
4268 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4269
2d72376b 4270 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4271#ifdef CONFIG_SCHEDSTATS
4272 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4273 schedstat_inc(this_rq(), bkl_count);
4274 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4275 }
4276#endif
dd41f596
IM
4277}
4278
4279/*
4280 * Pick up the highest-prio task:
4281 */
4282static inline struct task_struct *
ff95f3df 4283pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4284{
5522d5d5 4285 const struct sched_class *class;
dd41f596 4286 struct task_struct *p;
1da177e4
LT
4287
4288 /*
dd41f596
IM
4289 * Optimization: we know that if all tasks are in
4290 * the fair class we can call that function directly:
1da177e4 4291 */
dd41f596 4292 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4293 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4294 if (likely(p))
4295 return p;
1da177e4
LT
4296 }
4297
dd41f596
IM
4298 class = sched_class_highest;
4299 for ( ; ; ) {
fb8d4724 4300 p = class->pick_next_task(rq);
dd41f596
IM
4301 if (p)
4302 return p;
4303 /*
4304 * Will never be NULL as the idle class always
4305 * returns a non-NULL p:
4306 */
4307 class = class->next;
4308 }
4309}
1da177e4 4310
dd41f596
IM
4311/*
4312 * schedule() is the main scheduler function.
4313 */
4314asmlinkage void __sched schedule(void)
4315{
4316 struct task_struct *prev, *next;
67ca7bde 4317 unsigned long *switch_count;
dd41f596 4318 struct rq *rq;
31656519 4319 int cpu;
dd41f596
IM
4320
4321need_resched:
4322 preempt_disable();
4323 cpu = smp_processor_id();
4324 rq = cpu_rq(cpu);
4325 rcu_qsctr_inc(cpu);
4326 prev = rq->curr;
4327 switch_count = &prev->nivcsw;
4328
4329 release_kernel_lock(prev);
4330need_resched_nonpreemptible:
4331
4332 schedule_debug(prev);
1da177e4 4333
31656519 4334 if (sched_feat(HRTICK))
f333fdc9 4335 hrtick_clear(rq);
8f4d37ec 4336
1e819950
IM
4337 /*
4338 * Do the rq-clock update outside the rq lock:
4339 */
4340 local_irq_disable();
3e51f33f 4341 update_rq_clock(rq);
1e819950
IM
4342 spin_lock(&rq->lock);
4343 clear_tsk_need_resched(prev);
1da177e4 4344
1da177e4 4345 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4346 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4347 prev->state = TASK_RUNNING;
16882c1e 4348 else
2e1cb74a 4349 deactivate_task(rq, prev, 1);
dd41f596 4350 switch_count = &prev->nvcsw;
1da177e4
LT
4351 }
4352
9a897c5a
SR
4353#ifdef CONFIG_SMP
4354 if (prev->sched_class->pre_schedule)
4355 prev->sched_class->pre_schedule(rq, prev);
4356#endif
f65eda4f 4357
dd41f596 4358 if (unlikely(!rq->nr_running))
1da177e4 4359 idle_balance(cpu, rq);
1da177e4 4360
31ee529c 4361 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4362 next = pick_next_task(rq, prev);
1da177e4 4363
1da177e4 4364 if (likely(prev != next)) {
673a90a1
DS
4365 sched_info_switch(prev, next);
4366
1da177e4
LT
4367 rq->nr_switches++;
4368 rq->curr = next;
4369 ++*switch_count;
4370
dd41f596 4371 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4372 /*
4373 * the context switch might have flipped the stack from under
4374 * us, hence refresh the local variables.
4375 */
4376 cpu = smp_processor_id();
4377 rq = cpu_rq(cpu);
1da177e4
LT
4378 } else
4379 spin_unlock_irq(&rq->lock);
4380
8f4d37ec 4381 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4382 goto need_resched_nonpreemptible;
8f4d37ec 4383
1da177e4
LT
4384 preempt_enable_no_resched();
4385 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4386 goto need_resched;
4387}
1da177e4
LT
4388EXPORT_SYMBOL(schedule);
4389
4390#ifdef CONFIG_PREEMPT
4391/*
2ed6e34f 4392 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4393 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4394 * occur there and call schedule directly.
4395 */
4396asmlinkage void __sched preempt_schedule(void)
4397{
4398 struct thread_info *ti = current_thread_info();
6478d880 4399
1da177e4
LT
4400 /*
4401 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4402 * we do not want to preempt the current task. Just return..
1da177e4 4403 */
beed33a8 4404 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4405 return;
4406
3a5c359a
AK
4407 do {
4408 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4409 schedule();
3a5c359a 4410 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4411
3a5c359a
AK
4412 /*
4413 * Check again in case we missed a preemption opportunity
4414 * between schedule and now.
4415 */
4416 barrier();
4417 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4418}
1da177e4
LT
4419EXPORT_SYMBOL(preempt_schedule);
4420
4421/*
2ed6e34f 4422 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4423 * off of irq context.
4424 * Note, that this is called and return with irqs disabled. This will
4425 * protect us against recursive calling from irq.
4426 */
4427asmlinkage void __sched preempt_schedule_irq(void)
4428{
4429 struct thread_info *ti = current_thread_info();
6478d880 4430
2ed6e34f 4431 /* Catch callers which need to be fixed */
1da177e4
LT
4432 BUG_ON(ti->preempt_count || !irqs_disabled());
4433
3a5c359a
AK
4434 do {
4435 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4436 local_irq_enable();
4437 schedule();
4438 local_irq_disable();
3a5c359a 4439 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4440
3a5c359a
AK
4441 /*
4442 * Check again in case we missed a preemption opportunity
4443 * between schedule and now.
4444 */
4445 barrier();
4446 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4447}
4448
4449#endif /* CONFIG_PREEMPT */
4450
95cdf3b7
IM
4451int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4452 void *key)
1da177e4 4453{
48f24c4d 4454 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4455}
1da177e4
LT
4456EXPORT_SYMBOL(default_wake_function);
4457
4458/*
41a2d6cf
IM
4459 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4460 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4461 * number) then we wake all the non-exclusive tasks and one exclusive task.
4462 *
4463 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4464 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4465 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4466 */
4467static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4468 int nr_exclusive, int sync, void *key)
4469{
2e45874c 4470 wait_queue_t *curr, *next;
1da177e4 4471
2e45874c 4472 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4473 unsigned flags = curr->flags;
4474
1da177e4 4475 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4476 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4477 break;
4478 }
4479}
4480
4481/**
4482 * __wake_up - wake up threads blocked on a waitqueue.
4483 * @q: the waitqueue
4484 * @mode: which threads
4485 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4486 * @key: is directly passed to the wakeup function
1da177e4 4487 */
7ad5b3a5 4488void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4489 int nr_exclusive, void *key)
1da177e4
LT
4490{
4491 unsigned long flags;
4492
4493 spin_lock_irqsave(&q->lock, flags);
4494 __wake_up_common(q, mode, nr_exclusive, 0, key);
4495 spin_unlock_irqrestore(&q->lock, flags);
4496}
1da177e4
LT
4497EXPORT_SYMBOL(__wake_up);
4498
4499/*
4500 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4501 */
7ad5b3a5 4502void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4503{
4504 __wake_up_common(q, mode, 1, 0, NULL);
4505}
4506
4507/**
67be2dd1 4508 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4509 * @q: the waitqueue
4510 * @mode: which threads
4511 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4512 *
4513 * The sync wakeup differs that the waker knows that it will schedule
4514 * away soon, so while the target thread will be woken up, it will not
4515 * be migrated to another CPU - ie. the two threads are 'synchronized'
4516 * with each other. This can prevent needless bouncing between CPUs.
4517 *
4518 * On UP it can prevent extra preemption.
4519 */
7ad5b3a5 4520void
95cdf3b7 4521__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4522{
4523 unsigned long flags;
4524 int sync = 1;
4525
4526 if (unlikely(!q))
4527 return;
4528
4529 if (unlikely(!nr_exclusive))
4530 sync = 0;
4531
4532 spin_lock_irqsave(&q->lock, flags);
4533 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4534 spin_unlock_irqrestore(&q->lock, flags);
4535}
4536EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4537
b15136e9 4538void complete(struct completion *x)
1da177e4
LT
4539{
4540 unsigned long flags;
4541
4542 spin_lock_irqsave(&x->wait.lock, flags);
4543 x->done++;
d9514f6c 4544 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4545 spin_unlock_irqrestore(&x->wait.lock, flags);
4546}
4547EXPORT_SYMBOL(complete);
4548
b15136e9 4549void complete_all(struct completion *x)
1da177e4
LT
4550{
4551 unsigned long flags;
4552
4553 spin_lock_irqsave(&x->wait.lock, flags);
4554 x->done += UINT_MAX/2;
d9514f6c 4555 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4556 spin_unlock_irqrestore(&x->wait.lock, flags);
4557}
4558EXPORT_SYMBOL(complete_all);
4559
8cbbe86d
AK
4560static inline long __sched
4561do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4562{
1da177e4
LT
4563 if (!x->done) {
4564 DECLARE_WAITQUEUE(wait, current);
4565
4566 wait.flags |= WQ_FLAG_EXCLUSIVE;
4567 __add_wait_queue_tail(&x->wait, &wait);
4568 do {
009e577e
MW
4569 if ((state == TASK_INTERRUPTIBLE &&
4570 signal_pending(current)) ||
4571 (state == TASK_KILLABLE &&
4572 fatal_signal_pending(current))) {
ea71a546
ON
4573 timeout = -ERESTARTSYS;
4574 break;
8cbbe86d
AK
4575 }
4576 __set_current_state(state);
1da177e4
LT
4577 spin_unlock_irq(&x->wait.lock);
4578 timeout = schedule_timeout(timeout);
4579 spin_lock_irq(&x->wait.lock);
ea71a546 4580 } while (!x->done && timeout);
1da177e4 4581 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4582 if (!x->done)
4583 return timeout;
1da177e4
LT
4584 }
4585 x->done--;
ea71a546 4586 return timeout ?: 1;
1da177e4 4587}
1da177e4 4588
8cbbe86d
AK
4589static long __sched
4590wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4591{
1da177e4
LT
4592 might_sleep();
4593
4594 spin_lock_irq(&x->wait.lock);
8cbbe86d 4595 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4596 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4597 return timeout;
4598}
1da177e4 4599
b15136e9 4600void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4601{
4602 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4603}
8cbbe86d 4604EXPORT_SYMBOL(wait_for_completion);
1da177e4 4605
b15136e9 4606unsigned long __sched
8cbbe86d 4607wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4608{
8cbbe86d 4609 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4610}
8cbbe86d 4611EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4612
8cbbe86d 4613int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4614{
51e97990
AK
4615 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4616 if (t == -ERESTARTSYS)
4617 return t;
4618 return 0;
0fec171c 4619}
8cbbe86d 4620EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4621
b15136e9 4622unsigned long __sched
8cbbe86d
AK
4623wait_for_completion_interruptible_timeout(struct completion *x,
4624 unsigned long timeout)
0fec171c 4625{
8cbbe86d 4626 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4627}
8cbbe86d 4628EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4629
009e577e
MW
4630int __sched wait_for_completion_killable(struct completion *x)
4631{
4632 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4633 if (t == -ERESTARTSYS)
4634 return t;
4635 return 0;
4636}
4637EXPORT_SYMBOL(wait_for_completion_killable);
4638
8cbbe86d
AK
4639static long __sched
4640sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4641{
0fec171c
IM
4642 unsigned long flags;
4643 wait_queue_t wait;
4644
4645 init_waitqueue_entry(&wait, current);
1da177e4 4646
8cbbe86d 4647 __set_current_state(state);
1da177e4 4648
8cbbe86d
AK
4649 spin_lock_irqsave(&q->lock, flags);
4650 __add_wait_queue(q, &wait);
4651 spin_unlock(&q->lock);
4652 timeout = schedule_timeout(timeout);
4653 spin_lock_irq(&q->lock);
4654 __remove_wait_queue(q, &wait);
4655 spin_unlock_irqrestore(&q->lock, flags);
4656
4657 return timeout;
4658}
4659
4660void __sched interruptible_sleep_on(wait_queue_head_t *q)
4661{
4662 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4663}
1da177e4
LT
4664EXPORT_SYMBOL(interruptible_sleep_on);
4665
0fec171c 4666long __sched
95cdf3b7 4667interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4668{
8cbbe86d 4669 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4670}
1da177e4
LT
4671EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4672
0fec171c 4673void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4674{
8cbbe86d 4675 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4676}
1da177e4
LT
4677EXPORT_SYMBOL(sleep_on);
4678
0fec171c 4679long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4680{
8cbbe86d 4681 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4682}
1da177e4
LT
4683EXPORT_SYMBOL(sleep_on_timeout);
4684
b29739f9
IM
4685#ifdef CONFIG_RT_MUTEXES
4686
4687/*
4688 * rt_mutex_setprio - set the current priority of a task
4689 * @p: task
4690 * @prio: prio value (kernel-internal form)
4691 *
4692 * This function changes the 'effective' priority of a task. It does
4693 * not touch ->normal_prio like __setscheduler().
4694 *
4695 * Used by the rt_mutex code to implement priority inheritance logic.
4696 */
36c8b586 4697void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4698{
4699 unsigned long flags;
83b699ed 4700 int oldprio, on_rq, running;
70b97a7f 4701 struct rq *rq;
cb469845 4702 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4703
4704 BUG_ON(prio < 0 || prio > MAX_PRIO);
4705
4706 rq = task_rq_lock(p, &flags);
a8e504d2 4707 update_rq_clock(rq);
b29739f9 4708
d5f9f942 4709 oldprio = p->prio;
dd41f596 4710 on_rq = p->se.on_rq;
051a1d1a 4711 running = task_current(rq, p);
0e1f3483 4712 if (on_rq)
69be72c1 4713 dequeue_task(rq, p, 0);
0e1f3483
HS
4714 if (running)
4715 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4716
4717 if (rt_prio(prio))
4718 p->sched_class = &rt_sched_class;
4719 else
4720 p->sched_class = &fair_sched_class;
4721
b29739f9
IM
4722 p->prio = prio;
4723
0e1f3483
HS
4724 if (running)
4725 p->sched_class->set_curr_task(rq);
dd41f596 4726 if (on_rq) {
8159f87e 4727 enqueue_task(rq, p, 0);
cb469845
SR
4728
4729 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4730 }
4731 task_rq_unlock(rq, &flags);
4732}
4733
4734#endif
4735
36c8b586 4736void set_user_nice(struct task_struct *p, long nice)
1da177e4 4737{
dd41f596 4738 int old_prio, delta, on_rq;
1da177e4 4739 unsigned long flags;
70b97a7f 4740 struct rq *rq;
1da177e4
LT
4741
4742 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4743 return;
4744 /*
4745 * We have to be careful, if called from sys_setpriority(),
4746 * the task might be in the middle of scheduling on another CPU.
4747 */
4748 rq = task_rq_lock(p, &flags);
a8e504d2 4749 update_rq_clock(rq);
1da177e4
LT
4750 /*
4751 * The RT priorities are set via sched_setscheduler(), but we still
4752 * allow the 'normal' nice value to be set - but as expected
4753 * it wont have any effect on scheduling until the task is
dd41f596 4754 * SCHED_FIFO/SCHED_RR:
1da177e4 4755 */
e05606d3 4756 if (task_has_rt_policy(p)) {
1da177e4
LT
4757 p->static_prio = NICE_TO_PRIO(nice);
4758 goto out_unlock;
4759 }
dd41f596 4760 on_rq = p->se.on_rq;
c09595f6 4761 if (on_rq)
69be72c1 4762 dequeue_task(rq, p, 0);
1da177e4 4763
1da177e4 4764 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4765 set_load_weight(p);
b29739f9
IM
4766 old_prio = p->prio;
4767 p->prio = effective_prio(p);
4768 delta = p->prio - old_prio;
1da177e4 4769
dd41f596 4770 if (on_rq) {
8159f87e 4771 enqueue_task(rq, p, 0);
1da177e4 4772 /*
d5f9f942
AM
4773 * If the task increased its priority or is running and
4774 * lowered its priority, then reschedule its CPU:
1da177e4 4775 */
d5f9f942 4776 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4777 resched_task(rq->curr);
4778 }
4779out_unlock:
4780 task_rq_unlock(rq, &flags);
4781}
1da177e4
LT
4782EXPORT_SYMBOL(set_user_nice);
4783
e43379f1
MM
4784/*
4785 * can_nice - check if a task can reduce its nice value
4786 * @p: task
4787 * @nice: nice value
4788 */
36c8b586 4789int can_nice(const struct task_struct *p, const int nice)
e43379f1 4790{
024f4747
MM
4791 /* convert nice value [19,-20] to rlimit style value [1,40] */
4792 int nice_rlim = 20 - nice;
48f24c4d 4793
e43379f1
MM
4794 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4795 capable(CAP_SYS_NICE));
4796}
4797
1da177e4
LT
4798#ifdef __ARCH_WANT_SYS_NICE
4799
4800/*
4801 * sys_nice - change the priority of the current process.
4802 * @increment: priority increment
4803 *
4804 * sys_setpriority is a more generic, but much slower function that
4805 * does similar things.
4806 */
4807asmlinkage long sys_nice(int increment)
4808{
48f24c4d 4809 long nice, retval;
1da177e4
LT
4810
4811 /*
4812 * Setpriority might change our priority at the same moment.
4813 * We don't have to worry. Conceptually one call occurs first
4814 * and we have a single winner.
4815 */
e43379f1
MM
4816 if (increment < -40)
4817 increment = -40;
1da177e4
LT
4818 if (increment > 40)
4819 increment = 40;
4820
4821 nice = PRIO_TO_NICE(current->static_prio) + increment;
4822 if (nice < -20)
4823 nice = -20;
4824 if (nice > 19)
4825 nice = 19;
4826
e43379f1
MM
4827 if (increment < 0 && !can_nice(current, nice))
4828 return -EPERM;
4829
1da177e4
LT
4830 retval = security_task_setnice(current, nice);
4831 if (retval)
4832 return retval;
4833
4834 set_user_nice(current, nice);
4835 return 0;
4836}
4837
4838#endif
4839
4840/**
4841 * task_prio - return the priority value of a given task.
4842 * @p: the task in question.
4843 *
4844 * This is the priority value as seen by users in /proc.
4845 * RT tasks are offset by -200. Normal tasks are centered
4846 * around 0, value goes from -16 to +15.
4847 */
36c8b586 4848int task_prio(const struct task_struct *p)
1da177e4
LT
4849{
4850 return p->prio - MAX_RT_PRIO;
4851}
4852
4853/**
4854 * task_nice - return the nice value of a given task.
4855 * @p: the task in question.
4856 */
36c8b586 4857int task_nice(const struct task_struct *p)
1da177e4
LT
4858{
4859 return TASK_NICE(p);
4860}
150d8bed 4861EXPORT_SYMBOL(task_nice);
1da177e4
LT
4862
4863/**
4864 * idle_cpu - is a given cpu idle currently?
4865 * @cpu: the processor in question.
4866 */
4867int idle_cpu(int cpu)
4868{
4869 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4870}
4871
1da177e4
LT
4872/**
4873 * idle_task - return the idle task for a given cpu.
4874 * @cpu: the processor in question.
4875 */
36c8b586 4876struct task_struct *idle_task(int cpu)
1da177e4
LT
4877{
4878 return cpu_rq(cpu)->idle;
4879}
4880
4881/**
4882 * find_process_by_pid - find a process with a matching PID value.
4883 * @pid: the pid in question.
4884 */
a9957449 4885static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4886{
228ebcbe 4887 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4888}
4889
4890/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4891static void
4892__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4893{
dd41f596 4894 BUG_ON(p->se.on_rq);
48f24c4d 4895
1da177e4 4896 p->policy = policy;
dd41f596
IM
4897 switch (p->policy) {
4898 case SCHED_NORMAL:
4899 case SCHED_BATCH:
4900 case SCHED_IDLE:
4901 p->sched_class = &fair_sched_class;
4902 break;
4903 case SCHED_FIFO:
4904 case SCHED_RR:
4905 p->sched_class = &rt_sched_class;
4906 break;
4907 }
4908
1da177e4 4909 p->rt_priority = prio;
b29739f9
IM
4910 p->normal_prio = normal_prio(p);
4911 /* we are holding p->pi_lock already */
4912 p->prio = rt_mutex_getprio(p);
2dd73a4f 4913 set_load_weight(p);
1da177e4
LT
4914}
4915
961ccddd
RR
4916static int __sched_setscheduler(struct task_struct *p, int policy,
4917 struct sched_param *param, bool user)
1da177e4 4918{
83b699ed 4919 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4920 unsigned long flags;
cb469845 4921 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4922 struct rq *rq;
1da177e4 4923
66e5393a
SR
4924 /* may grab non-irq protected spin_locks */
4925 BUG_ON(in_interrupt());
1da177e4
LT
4926recheck:
4927 /* double check policy once rq lock held */
4928 if (policy < 0)
4929 policy = oldpolicy = p->policy;
4930 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4931 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4932 policy != SCHED_IDLE)
b0a9499c 4933 return -EINVAL;
1da177e4
LT
4934 /*
4935 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4936 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4937 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4938 */
4939 if (param->sched_priority < 0 ||
95cdf3b7 4940 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4941 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4942 return -EINVAL;
e05606d3 4943 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4944 return -EINVAL;
4945
37e4ab3f
OC
4946 /*
4947 * Allow unprivileged RT tasks to decrease priority:
4948 */
961ccddd 4949 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4950 if (rt_policy(policy)) {
8dc3e909 4951 unsigned long rlim_rtprio;
8dc3e909
ON
4952
4953 if (!lock_task_sighand(p, &flags))
4954 return -ESRCH;
4955 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4956 unlock_task_sighand(p, &flags);
4957
4958 /* can't set/change the rt policy */
4959 if (policy != p->policy && !rlim_rtprio)
4960 return -EPERM;
4961
4962 /* can't increase priority */
4963 if (param->sched_priority > p->rt_priority &&
4964 param->sched_priority > rlim_rtprio)
4965 return -EPERM;
4966 }
dd41f596
IM
4967 /*
4968 * Like positive nice levels, dont allow tasks to
4969 * move out of SCHED_IDLE either:
4970 */
4971 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4972 return -EPERM;
5fe1d75f 4973
37e4ab3f
OC
4974 /* can't change other user's priorities */
4975 if ((current->euid != p->euid) &&
4976 (current->euid != p->uid))
4977 return -EPERM;
4978 }
1da177e4 4979
b68aa230
PZ
4980#ifdef CONFIG_RT_GROUP_SCHED
4981 /*
4982 * Do not allow realtime tasks into groups that have no runtime
4983 * assigned.
4984 */
961ccddd
RR
4985 if (user
4986 && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4987 return -EPERM;
4988#endif
4989
1da177e4
LT
4990 retval = security_task_setscheduler(p, policy, param);
4991 if (retval)
4992 return retval;
b29739f9
IM
4993 /*
4994 * make sure no PI-waiters arrive (or leave) while we are
4995 * changing the priority of the task:
4996 */
4997 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4998 /*
4999 * To be able to change p->policy safely, the apropriate
5000 * runqueue lock must be held.
5001 */
b29739f9 5002 rq = __task_rq_lock(p);
1da177e4
LT
5003 /* recheck policy now with rq lock held */
5004 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5005 policy = oldpolicy = -1;
b29739f9
IM
5006 __task_rq_unlock(rq);
5007 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5008 goto recheck;
5009 }
2daa3577 5010 update_rq_clock(rq);
dd41f596 5011 on_rq = p->se.on_rq;
051a1d1a 5012 running = task_current(rq, p);
0e1f3483 5013 if (on_rq)
2e1cb74a 5014 deactivate_task(rq, p, 0);
0e1f3483
HS
5015 if (running)
5016 p->sched_class->put_prev_task(rq, p);
f6b53205 5017
1da177e4 5018 oldprio = p->prio;
dd41f596 5019 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5020
0e1f3483
HS
5021 if (running)
5022 p->sched_class->set_curr_task(rq);
dd41f596
IM
5023 if (on_rq) {
5024 activate_task(rq, p, 0);
cb469845
SR
5025
5026 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5027 }
b29739f9
IM
5028 __task_rq_unlock(rq);
5029 spin_unlock_irqrestore(&p->pi_lock, flags);
5030
95e02ca9
TG
5031 rt_mutex_adjust_pi(p);
5032
1da177e4
LT
5033 return 0;
5034}
961ccddd
RR
5035
5036/**
5037 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5038 * @p: the task in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
5041 *
5042 * NOTE that the task may be already dead.
5043 */
5044int sched_setscheduler(struct task_struct *p, int policy,
5045 struct sched_param *param)
5046{
5047 return __sched_setscheduler(p, policy, param, true);
5048}
1da177e4
LT
5049EXPORT_SYMBOL_GPL(sched_setscheduler);
5050
961ccddd
RR
5051/**
5052 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5053 * @p: the task in question.
5054 * @policy: new policy.
5055 * @param: structure containing the new RT priority.
5056 *
5057 * Just like sched_setscheduler, only don't bother checking if the
5058 * current context has permission. For example, this is needed in
5059 * stop_machine(): we create temporary high priority worker threads,
5060 * but our caller might not have that capability.
5061 */
5062int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5063 struct sched_param *param)
5064{
5065 return __sched_setscheduler(p, policy, param, false);
5066}
5067
95cdf3b7
IM
5068static int
5069do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5070{
1da177e4
LT
5071 struct sched_param lparam;
5072 struct task_struct *p;
36c8b586 5073 int retval;
1da177e4
LT
5074
5075 if (!param || pid < 0)
5076 return -EINVAL;
5077 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5078 return -EFAULT;
5fe1d75f
ON
5079
5080 rcu_read_lock();
5081 retval = -ESRCH;
1da177e4 5082 p = find_process_by_pid(pid);
5fe1d75f
ON
5083 if (p != NULL)
5084 retval = sched_setscheduler(p, policy, &lparam);
5085 rcu_read_unlock();
36c8b586 5086
1da177e4
LT
5087 return retval;
5088}
5089
5090/**
5091 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5092 * @pid: the pid in question.
5093 * @policy: new policy.
5094 * @param: structure containing the new RT priority.
5095 */
41a2d6cf
IM
5096asmlinkage long
5097sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5098{
c21761f1
JB
5099 /* negative values for policy are not valid */
5100 if (policy < 0)
5101 return -EINVAL;
5102
1da177e4
LT
5103 return do_sched_setscheduler(pid, policy, param);
5104}
5105
5106/**
5107 * sys_sched_setparam - set/change the RT priority of a thread
5108 * @pid: the pid in question.
5109 * @param: structure containing the new RT priority.
5110 */
5111asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5112{
5113 return do_sched_setscheduler(pid, -1, param);
5114}
5115
5116/**
5117 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5118 * @pid: the pid in question.
5119 */
5120asmlinkage long sys_sched_getscheduler(pid_t pid)
5121{
36c8b586 5122 struct task_struct *p;
3a5c359a 5123 int retval;
1da177e4
LT
5124
5125 if (pid < 0)
3a5c359a 5126 return -EINVAL;
1da177e4
LT
5127
5128 retval = -ESRCH;
5129 read_lock(&tasklist_lock);
5130 p = find_process_by_pid(pid);
5131 if (p) {
5132 retval = security_task_getscheduler(p);
5133 if (!retval)
5134 retval = p->policy;
5135 }
5136 read_unlock(&tasklist_lock);
1da177e4
LT
5137 return retval;
5138}
5139
5140/**
5141 * sys_sched_getscheduler - get the RT priority of a thread
5142 * @pid: the pid in question.
5143 * @param: structure containing the RT priority.
5144 */
5145asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5146{
5147 struct sched_param lp;
36c8b586 5148 struct task_struct *p;
3a5c359a 5149 int retval;
1da177e4
LT
5150
5151 if (!param || pid < 0)
3a5c359a 5152 return -EINVAL;
1da177e4
LT
5153
5154 read_lock(&tasklist_lock);
5155 p = find_process_by_pid(pid);
5156 retval = -ESRCH;
5157 if (!p)
5158 goto out_unlock;
5159
5160 retval = security_task_getscheduler(p);
5161 if (retval)
5162 goto out_unlock;
5163
5164 lp.sched_priority = p->rt_priority;
5165 read_unlock(&tasklist_lock);
5166
5167 /*
5168 * This one might sleep, we cannot do it with a spinlock held ...
5169 */
5170 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5171
1da177e4
LT
5172 return retval;
5173
5174out_unlock:
5175 read_unlock(&tasklist_lock);
5176 return retval;
5177}
5178
b53e921b 5179long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5180{
1da177e4 5181 cpumask_t cpus_allowed;
b53e921b 5182 cpumask_t new_mask = *in_mask;
36c8b586
IM
5183 struct task_struct *p;
5184 int retval;
1da177e4 5185
95402b38 5186 get_online_cpus();
1da177e4
LT
5187 read_lock(&tasklist_lock);
5188
5189 p = find_process_by_pid(pid);
5190 if (!p) {
5191 read_unlock(&tasklist_lock);
95402b38 5192 put_online_cpus();
1da177e4
LT
5193 return -ESRCH;
5194 }
5195
5196 /*
5197 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5198 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5199 * usage count and then drop tasklist_lock.
5200 */
5201 get_task_struct(p);
5202 read_unlock(&tasklist_lock);
5203
5204 retval = -EPERM;
5205 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5206 !capable(CAP_SYS_NICE))
5207 goto out_unlock;
5208
e7834f8f
DQ
5209 retval = security_task_setscheduler(p, 0, NULL);
5210 if (retval)
5211 goto out_unlock;
5212
f9a86fcb 5213 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5214 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5215 again:
7c16ec58 5216 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5217
8707d8b8 5218 if (!retval) {
f9a86fcb 5219 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5220 if (!cpus_subset(new_mask, cpus_allowed)) {
5221 /*
5222 * We must have raced with a concurrent cpuset
5223 * update. Just reset the cpus_allowed to the
5224 * cpuset's cpus_allowed
5225 */
5226 new_mask = cpus_allowed;
5227 goto again;
5228 }
5229 }
1da177e4
LT
5230out_unlock:
5231 put_task_struct(p);
95402b38 5232 put_online_cpus();
1da177e4
LT
5233 return retval;
5234}
5235
5236static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5237 cpumask_t *new_mask)
5238{
5239 if (len < sizeof(cpumask_t)) {
5240 memset(new_mask, 0, sizeof(cpumask_t));
5241 } else if (len > sizeof(cpumask_t)) {
5242 len = sizeof(cpumask_t);
5243 }
5244 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5245}
5246
5247/**
5248 * sys_sched_setaffinity - set the cpu affinity of a process
5249 * @pid: pid of the process
5250 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5251 * @user_mask_ptr: user-space pointer to the new cpu mask
5252 */
5253asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5254 unsigned long __user *user_mask_ptr)
5255{
5256 cpumask_t new_mask;
5257 int retval;
5258
5259 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5260 if (retval)
5261 return retval;
5262
b53e921b 5263 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5264}
5265
1da177e4
LT
5266long sched_getaffinity(pid_t pid, cpumask_t *mask)
5267{
36c8b586 5268 struct task_struct *p;
1da177e4 5269 int retval;
1da177e4 5270
95402b38 5271 get_online_cpus();
1da177e4
LT
5272 read_lock(&tasklist_lock);
5273
5274 retval = -ESRCH;
5275 p = find_process_by_pid(pid);
5276 if (!p)
5277 goto out_unlock;
5278
e7834f8f
DQ
5279 retval = security_task_getscheduler(p);
5280 if (retval)
5281 goto out_unlock;
5282
2f7016d9 5283 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5284
5285out_unlock:
5286 read_unlock(&tasklist_lock);
95402b38 5287 put_online_cpus();
1da177e4 5288
9531b62f 5289 return retval;
1da177e4
LT
5290}
5291
5292/**
5293 * sys_sched_getaffinity - get the cpu affinity of a process
5294 * @pid: pid of the process
5295 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5296 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5297 */
5298asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5299 unsigned long __user *user_mask_ptr)
5300{
5301 int ret;
5302 cpumask_t mask;
5303
5304 if (len < sizeof(cpumask_t))
5305 return -EINVAL;
5306
5307 ret = sched_getaffinity(pid, &mask);
5308 if (ret < 0)
5309 return ret;
5310
5311 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5312 return -EFAULT;
5313
5314 return sizeof(cpumask_t);
5315}
5316
5317/**
5318 * sys_sched_yield - yield the current processor to other threads.
5319 *
dd41f596
IM
5320 * This function yields the current CPU to other tasks. If there are no
5321 * other threads running on this CPU then this function will return.
1da177e4
LT
5322 */
5323asmlinkage long sys_sched_yield(void)
5324{
70b97a7f 5325 struct rq *rq = this_rq_lock();
1da177e4 5326
2d72376b 5327 schedstat_inc(rq, yld_count);
4530d7ab 5328 current->sched_class->yield_task(rq);
1da177e4
LT
5329
5330 /*
5331 * Since we are going to call schedule() anyway, there's
5332 * no need to preempt or enable interrupts:
5333 */
5334 __release(rq->lock);
8a25d5de 5335 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5336 _raw_spin_unlock(&rq->lock);
5337 preempt_enable_no_resched();
5338
5339 schedule();
5340
5341 return 0;
5342}
5343
e7b38404 5344static void __cond_resched(void)
1da177e4 5345{
8e0a43d8
IM
5346#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5347 __might_sleep(__FILE__, __LINE__);
5348#endif
5bbcfd90
IM
5349 /*
5350 * The BKS might be reacquired before we have dropped
5351 * PREEMPT_ACTIVE, which could trigger a second
5352 * cond_resched() call.
5353 */
1da177e4
LT
5354 do {
5355 add_preempt_count(PREEMPT_ACTIVE);
5356 schedule();
5357 sub_preempt_count(PREEMPT_ACTIVE);
5358 } while (need_resched());
5359}
5360
02b67cc3 5361int __sched _cond_resched(void)
1da177e4 5362{
9414232f
IM
5363 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5364 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5365 __cond_resched();
5366 return 1;
5367 }
5368 return 0;
5369}
02b67cc3 5370EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5371
5372/*
5373 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5374 * call schedule, and on return reacquire the lock.
5375 *
41a2d6cf 5376 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5377 * operations here to prevent schedule() from being called twice (once via
5378 * spin_unlock(), once by hand).
5379 */
95cdf3b7 5380int cond_resched_lock(spinlock_t *lock)
1da177e4 5381{
95c354fe 5382 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5383 int ret = 0;
5384
95c354fe 5385 if (spin_needbreak(lock) || resched) {
1da177e4 5386 spin_unlock(lock);
95c354fe
NP
5387 if (resched && need_resched())
5388 __cond_resched();
5389 else
5390 cpu_relax();
6df3cecb 5391 ret = 1;
1da177e4 5392 spin_lock(lock);
1da177e4 5393 }
6df3cecb 5394 return ret;
1da177e4 5395}
1da177e4
LT
5396EXPORT_SYMBOL(cond_resched_lock);
5397
5398int __sched cond_resched_softirq(void)
5399{
5400 BUG_ON(!in_softirq());
5401
9414232f 5402 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5403 local_bh_enable();
1da177e4
LT
5404 __cond_resched();
5405 local_bh_disable();
5406 return 1;
5407 }
5408 return 0;
5409}
1da177e4
LT
5410EXPORT_SYMBOL(cond_resched_softirq);
5411
1da177e4
LT
5412/**
5413 * yield - yield the current processor to other threads.
5414 *
72fd4a35 5415 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5416 * thread runnable and calls sys_sched_yield().
5417 */
5418void __sched yield(void)
5419{
5420 set_current_state(TASK_RUNNING);
5421 sys_sched_yield();
5422}
1da177e4
LT
5423EXPORT_SYMBOL(yield);
5424
5425/*
41a2d6cf 5426 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5427 * that process accounting knows that this is a task in IO wait state.
5428 *
5429 * But don't do that if it is a deliberate, throttling IO wait (this task
5430 * has set its backing_dev_info: the queue against which it should throttle)
5431 */
5432void __sched io_schedule(void)
5433{
70b97a7f 5434 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5435
0ff92245 5436 delayacct_blkio_start();
1da177e4
LT
5437 atomic_inc(&rq->nr_iowait);
5438 schedule();
5439 atomic_dec(&rq->nr_iowait);
0ff92245 5440 delayacct_blkio_end();
1da177e4 5441}
1da177e4
LT
5442EXPORT_SYMBOL(io_schedule);
5443
5444long __sched io_schedule_timeout(long timeout)
5445{
70b97a7f 5446 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5447 long ret;
5448
0ff92245 5449 delayacct_blkio_start();
1da177e4
LT
5450 atomic_inc(&rq->nr_iowait);
5451 ret = schedule_timeout(timeout);
5452 atomic_dec(&rq->nr_iowait);
0ff92245 5453 delayacct_blkio_end();
1da177e4
LT
5454 return ret;
5455}
5456
5457/**
5458 * sys_sched_get_priority_max - return maximum RT priority.
5459 * @policy: scheduling class.
5460 *
5461 * this syscall returns the maximum rt_priority that can be used
5462 * by a given scheduling class.
5463 */
5464asmlinkage long sys_sched_get_priority_max(int policy)
5465{
5466 int ret = -EINVAL;
5467
5468 switch (policy) {
5469 case SCHED_FIFO:
5470 case SCHED_RR:
5471 ret = MAX_USER_RT_PRIO-1;
5472 break;
5473 case SCHED_NORMAL:
b0a9499c 5474 case SCHED_BATCH:
dd41f596 5475 case SCHED_IDLE:
1da177e4
LT
5476 ret = 0;
5477 break;
5478 }
5479 return ret;
5480}
5481
5482/**
5483 * sys_sched_get_priority_min - return minimum RT priority.
5484 * @policy: scheduling class.
5485 *
5486 * this syscall returns the minimum rt_priority that can be used
5487 * by a given scheduling class.
5488 */
5489asmlinkage long sys_sched_get_priority_min(int policy)
5490{
5491 int ret = -EINVAL;
5492
5493 switch (policy) {
5494 case SCHED_FIFO:
5495 case SCHED_RR:
5496 ret = 1;
5497 break;
5498 case SCHED_NORMAL:
b0a9499c 5499 case SCHED_BATCH:
dd41f596 5500 case SCHED_IDLE:
1da177e4
LT
5501 ret = 0;
5502 }
5503 return ret;
5504}
5505
5506/**
5507 * sys_sched_rr_get_interval - return the default timeslice of a process.
5508 * @pid: pid of the process.
5509 * @interval: userspace pointer to the timeslice value.
5510 *
5511 * this syscall writes the default timeslice value of a given process
5512 * into the user-space timespec buffer. A value of '0' means infinity.
5513 */
5514asmlinkage
5515long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5516{
36c8b586 5517 struct task_struct *p;
a4ec24b4 5518 unsigned int time_slice;
3a5c359a 5519 int retval;
1da177e4 5520 struct timespec t;
1da177e4
LT
5521
5522 if (pid < 0)
3a5c359a 5523 return -EINVAL;
1da177e4
LT
5524
5525 retval = -ESRCH;
5526 read_lock(&tasklist_lock);
5527 p = find_process_by_pid(pid);
5528 if (!p)
5529 goto out_unlock;
5530
5531 retval = security_task_getscheduler(p);
5532 if (retval)
5533 goto out_unlock;
5534
77034937
IM
5535 /*
5536 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5537 * tasks that are on an otherwise idle runqueue:
5538 */
5539 time_slice = 0;
5540 if (p->policy == SCHED_RR) {
a4ec24b4 5541 time_slice = DEF_TIMESLICE;
1868f958 5542 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5543 struct sched_entity *se = &p->se;
5544 unsigned long flags;
5545 struct rq *rq;
5546
5547 rq = task_rq_lock(p, &flags);
77034937
IM
5548 if (rq->cfs.load.weight)
5549 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5550 task_rq_unlock(rq, &flags);
5551 }
1da177e4 5552 read_unlock(&tasklist_lock);
a4ec24b4 5553 jiffies_to_timespec(time_slice, &t);
1da177e4 5554 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5555 return retval;
3a5c359a 5556
1da177e4
LT
5557out_unlock:
5558 read_unlock(&tasklist_lock);
5559 return retval;
5560}
5561
7c731e0a 5562static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5563
82a1fcb9 5564void sched_show_task(struct task_struct *p)
1da177e4 5565{
1da177e4 5566 unsigned long free = 0;
36c8b586 5567 unsigned state;
1da177e4 5568
1da177e4 5569 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5570 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5571 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5572#if BITS_PER_LONG == 32
1da177e4 5573 if (state == TASK_RUNNING)
cc4ea795 5574 printk(KERN_CONT " running ");
1da177e4 5575 else
cc4ea795 5576 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5577#else
5578 if (state == TASK_RUNNING)
cc4ea795 5579 printk(KERN_CONT " running task ");
1da177e4 5580 else
cc4ea795 5581 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5582#endif
5583#ifdef CONFIG_DEBUG_STACK_USAGE
5584 {
10ebffde 5585 unsigned long *n = end_of_stack(p);
1da177e4
LT
5586 while (!*n)
5587 n++;
10ebffde 5588 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5589 }
5590#endif
ba25f9dc 5591 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5592 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5593
5fb5e6de 5594 show_stack(p, NULL);
1da177e4
LT
5595}
5596
e59e2ae2 5597void show_state_filter(unsigned long state_filter)
1da177e4 5598{
36c8b586 5599 struct task_struct *g, *p;
1da177e4 5600
4bd77321
IM
5601#if BITS_PER_LONG == 32
5602 printk(KERN_INFO
5603 " task PC stack pid father\n");
1da177e4 5604#else
4bd77321
IM
5605 printk(KERN_INFO
5606 " task PC stack pid father\n");
1da177e4
LT
5607#endif
5608 read_lock(&tasklist_lock);
5609 do_each_thread(g, p) {
5610 /*
5611 * reset the NMI-timeout, listing all files on a slow
5612 * console might take alot of time:
5613 */
5614 touch_nmi_watchdog();
39bc89fd 5615 if (!state_filter || (p->state & state_filter))
82a1fcb9 5616 sched_show_task(p);
1da177e4
LT
5617 } while_each_thread(g, p);
5618
04c9167f
JF
5619 touch_all_softlockup_watchdogs();
5620
dd41f596
IM
5621#ifdef CONFIG_SCHED_DEBUG
5622 sysrq_sched_debug_show();
5623#endif
1da177e4 5624 read_unlock(&tasklist_lock);
e59e2ae2
IM
5625 /*
5626 * Only show locks if all tasks are dumped:
5627 */
5628 if (state_filter == -1)
5629 debug_show_all_locks();
1da177e4
LT
5630}
5631
1df21055
IM
5632void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5633{
dd41f596 5634 idle->sched_class = &idle_sched_class;
1df21055
IM
5635}
5636
f340c0d1
IM
5637/**
5638 * init_idle - set up an idle thread for a given CPU
5639 * @idle: task in question
5640 * @cpu: cpu the idle task belongs to
5641 *
5642 * NOTE: this function does not set the idle thread's NEED_RESCHED
5643 * flag, to make booting more robust.
5644 */
5c1e1767 5645void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5646{
70b97a7f 5647 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5648 unsigned long flags;
5649
dd41f596
IM
5650 __sched_fork(idle);
5651 idle->se.exec_start = sched_clock();
5652
b29739f9 5653 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5654 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5655 __set_task_cpu(idle, cpu);
1da177e4
LT
5656
5657 spin_lock_irqsave(&rq->lock, flags);
5658 rq->curr = rq->idle = idle;
4866cde0
NP
5659#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5660 idle->oncpu = 1;
5661#endif
1da177e4
LT
5662 spin_unlock_irqrestore(&rq->lock, flags);
5663
5664 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5665#if defined(CONFIG_PREEMPT)
5666 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5667#else
a1261f54 5668 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5669#endif
dd41f596
IM
5670 /*
5671 * The idle tasks have their own, simple scheduling class:
5672 */
5673 idle->sched_class = &idle_sched_class;
1da177e4
LT
5674}
5675
5676/*
5677 * In a system that switches off the HZ timer nohz_cpu_mask
5678 * indicates which cpus entered this state. This is used
5679 * in the rcu update to wait only for active cpus. For system
5680 * which do not switch off the HZ timer nohz_cpu_mask should
5681 * always be CPU_MASK_NONE.
5682 */
5683cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5684
19978ca6
IM
5685/*
5686 * Increase the granularity value when there are more CPUs,
5687 * because with more CPUs the 'effective latency' as visible
5688 * to users decreases. But the relationship is not linear,
5689 * so pick a second-best guess by going with the log2 of the
5690 * number of CPUs.
5691 *
5692 * This idea comes from the SD scheduler of Con Kolivas:
5693 */
5694static inline void sched_init_granularity(void)
5695{
5696 unsigned int factor = 1 + ilog2(num_online_cpus());
5697 const unsigned long limit = 200000000;
5698
5699 sysctl_sched_min_granularity *= factor;
5700 if (sysctl_sched_min_granularity > limit)
5701 sysctl_sched_min_granularity = limit;
5702
5703 sysctl_sched_latency *= factor;
5704 if (sysctl_sched_latency > limit)
5705 sysctl_sched_latency = limit;
5706
5707 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5708}
5709
1da177e4
LT
5710#ifdef CONFIG_SMP
5711/*
5712 * This is how migration works:
5713 *
70b97a7f 5714 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5715 * runqueue and wake up that CPU's migration thread.
5716 * 2) we down() the locked semaphore => thread blocks.
5717 * 3) migration thread wakes up (implicitly it forces the migrated
5718 * thread off the CPU)
5719 * 4) it gets the migration request and checks whether the migrated
5720 * task is still in the wrong runqueue.
5721 * 5) if it's in the wrong runqueue then the migration thread removes
5722 * it and puts it into the right queue.
5723 * 6) migration thread up()s the semaphore.
5724 * 7) we wake up and the migration is done.
5725 */
5726
5727/*
5728 * Change a given task's CPU affinity. Migrate the thread to a
5729 * proper CPU and schedule it away if the CPU it's executing on
5730 * is removed from the allowed bitmask.
5731 *
5732 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5733 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5734 * call is not atomic; no spinlocks may be held.
5735 */
cd8ba7cd 5736int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5737{
70b97a7f 5738 struct migration_req req;
1da177e4 5739 unsigned long flags;
70b97a7f 5740 struct rq *rq;
48f24c4d 5741 int ret = 0;
1da177e4
LT
5742
5743 rq = task_rq_lock(p, &flags);
cd8ba7cd 5744 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5745 ret = -EINVAL;
5746 goto out;
5747 }
5748
9985b0ba
DR
5749 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5750 !cpus_equal(p->cpus_allowed, *new_mask))) {
5751 ret = -EINVAL;
5752 goto out;
5753 }
5754
73fe6aae 5755 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5756 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5757 else {
cd8ba7cd
MT
5758 p->cpus_allowed = *new_mask;
5759 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5760 }
5761
1da177e4 5762 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5763 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5764 goto out;
5765
cd8ba7cd 5766 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5767 /* Need help from migration thread: drop lock and wait. */
5768 task_rq_unlock(rq, &flags);
5769 wake_up_process(rq->migration_thread);
5770 wait_for_completion(&req.done);
5771 tlb_migrate_finish(p->mm);
5772 return 0;
5773 }
5774out:
5775 task_rq_unlock(rq, &flags);
48f24c4d 5776
1da177e4
LT
5777 return ret;
5778}
cd8ba7cd 5779EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5780
5781/*
41a2d6cf 5782 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5783 * this because either it can't run here any more (set_cpus_allowed()
5784 * away from this CPU, or CPU going down), or because we're
5785 * attempting to rebalance this task on exec (sched_exec).
5786 *
5787 * So we race with normal scheduler movements, but that's OK, as long
5788 * as the task is no longer on this CPU.
efc30814
KK
5789 *
5790 * Returns non-zero if task was successfully migrated.
1da177e4 5791 */
efc30814 5792static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5793{
70b97a7f 5794 struct rq *rq_dest, *rq_src;
dd41f596 5795 int ret = 0, on_rq;
1da177e4 5796
e761b772 5797 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5798 return ret;
1da177e4
LT
5799
5800 rq_src = cpu_rq(src_cpu);
5801 rq_dest = cpu_rq(dest_cpu);
5802
5803 double_rq_lock(rq_src, rq_dest);
5804 /* Already moved. */
5805 if (task_cpu(p) != src_cpu)
b1e38734 5806 goto done;
1da177e4
LT
5807 /* Affinity changed (again). */
5808 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 5809 goto fail;
1da177e4 5810
dd41f596 5811 on_rq = p->se.on_rq;
6e82a3be 5812 if (on_rq)
2e1cb74a 5813 deactivate_task(rq_src, p, 0);
6e82a3be 5814
1da177e4 5815 set_task_cpu(p, dest_cpu);
dd41f596
IM
5816 if (on_rq) {
5817 activate_task(rq_dest, p, 0);
5818 check_preempt_curr(rq_dest, p);
1da177e4 5819 }
b1e38734 5820done:
efc30814 5821 ret = 1;
b1e38734 5822fail:
1da177e4 5823 double_rq_unlock(rq_src, rq_dest);
efc30814 5824 return ret;
1da177e4
LT
5825}
5826
5827/*
5828 * migration_thread - this is a highprio system thread that performs
5829 * thread migration by bumping thread off CPU then 'pushing' onto
5830 * another runqueue.
5831 */
95cdf3b7 5832static int migration_thread(void *data)
1da177e4 5833{
1da177e4 5834 int cpu = (long)data;
70b97a7f 5835 struct rq *rq;
1da177e4
LT
5836
5837 rq = cpu_rq(cpu);
5838 BUG_ON(rq->migration_thread != current);
5839
5840 set_current_state(TASK_INTERRUPTIBLE);
5841 while (!kthread_should_stop()) {
70b97a7f 5842 struct migration_req *req;
1da177e4 5843 struct list_head *head;
1da177e4 5844
1da177e4
LT
5845 spin_lock_irq(&rq->lock);
5846
5847 if (cpu_is_offline(cpu)) {
5848 spin_unlock_irq(&rq->lock);
5849 goto wait_to_die;
5850 }
5851
5852 if (rq->active_balance) {
5853 active_load_balance(rq, cpu);
5854 rq->active_balance = 0;
5855 }
5856
5857 head = &rq->migration_queue;
5858
5859 if (list_empty(head)) {
5860 spin_unlock_irq(&rq->lock);
5861 schedule();
5862 set_current_state(TASK_INTERRUPTIBLE);
5863 continue;
5864 }
70b97a7f 5865 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5866 list_del_init(head->next);
5867
674311d5
NP
5868 spin_unlock(&rq->lock);
5869 __migrate_task(req->task, cpu, req->dest_cpu);
5870 local_irq_enable();
1da177e4
LT
5871
5872 complete(&req->done);
5873 }
5874 __set_current_state(TASK_RUNNING);
5875 return 0;
5876
5877wait_to_die:
5878 /* Wait for kthread_stop */
5879 set_current_state(TASK_INTERRUPTIBLE);
5880 while (!kthread_should_stop()) {
5881 schedule();
5882 set_current_state(TASK_INTERRUPTIBLE);
5883 }
5884 __set_current_state(TASK_RUNNING);
5885 return 0;
5886}
5887
5888#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5889
5890static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5891{
5892 int ret;
5893
5894 local_irq_disable();
5895 ret = __migrate_task(p, src_cpu, dest_cpu);
5896 local_irq_enable();
5897 return ret;
5898}
5899
054b9108 5900/*
3a4fa0a2 5901 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5902 * NOTE: interrupts should be disabled by the caller
5903 */
48f24c4d 5904static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5905{
efc30814 5906 unsigned long flags;
1da177e4 5907 cpumask_t mask;
70b97a7f
IM
5908 struct rq *rq;
5909 int dest_cpu;
1da177e4 5910
3a5c359a
AK
5911 do {
5912 /* On same node? */
5913 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5914 cpus_and(mask, mask, p->cpus_allowed);
5915 dest_cpu = any_online_cpu(mask);
5916
5917 /* On any allowed CPU? */
434d53b0 5918 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5919 dest_cpu = any_online_cpu(p->cpus_allowed);
5920
5921 /* No more Mr. Nice Guy. */
434d53b0 5922 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5923 cpumask_t cpus_allowed;
5924
5925 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5926 /*
5927 * Try to stay on the same cpuset, where the
5928 * current cpuset may be a subset of all cpus.
5929 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5930 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5931 * called within calls to cpuset_lock/cpuset_unlock.
5932 */
3a5c359a 5933 rq = task_rq_lock(p, &flags);
470fd646 5934 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5935 dest_cpu = any_online_cpu(p->cpus_allowed);
5936 task_rq_unlock(rq, &flags);
1da177e4 5937
3a5c359a
AK
5938 /*
5939 * Don't tell them about moving exiting tasks or
5940 * kernel threads (both mm NULL), since they never
5941 * leave kernel.
5942 */
41a2d6cf 5943 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5944 printk(KERN_INFO "process %d (%s) no "
5945 "longer affine to cpu%d\n",
41a2d6cf
IM
5946 task_pid_nr(p), p->comm, dead_cpu);
5947 }
3a5c359a 5948 }
f7b4cddc 5949 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5950}
5951
5952/*
5953 * While a dead CPU has no uninterruptible tasks queued at this point,
5954 * it might still have a nonzero ->nr_uninterruptible counter, because
5955 * for performance reasons the counter is not stricly tracking tasks to
5956 * their home CPUs. So we just add the counter to another CPU's counter,
5957 * to keep the global sum constant after CPU-down:
5958 */
70b97a7f 5959static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5960{
7c16ec58 5961 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5962 unsigned long flags;
5963
5964 local_irq_save(flags);
5965 double_rq_lock(rq_src, rq_dest);
5966 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5967 rq_src->nr_uninterruptible = 0;
5968 double_rq_unlock(rq_src, rq_dest);
5969 local_irq_restore(flags);
5970}
5971
5972/* Run through task list and migrate tasks from the dead cpu. */
5973static void migrate_live_tasks(int src_cpu)
5974{
48f24c4d 5975 struct task_struct *p, *t;
1da177e4 5976
f7b4cddc 5977 read_lock(&tasklist_lock);
1da177e4 5978
48f24c4d
IM
5979 do_each_thread(t, p) {
5980 if (p == current)
1da177e4
LT
5981 continue;
5982
48f24c4d
IM
5983 if (task_cpu(p) == src_cpu)
5984 move_task_off_dead_cpu(src_cpu, p);
5985 } while_each_thread(t, p);
1da177e4 5986
f7b4cddc 5987 read_unlock(&tasklist_lock);
1da177e4
LT
5988}
5989
dd41f596
IM
5990/*
5991 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5992 * It does so by boosting its priority to highest possible.
5993 * Used by CPU offline code.
1da177e4
LT
5994 */
5995void sched_idle_next(void)
5996{
48f24c4d 5997 int this_cpu = smp_processor_id();
70b97a7f 5998 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5999 struct task_struct *p = rq->idle;
6000 unsigned long flags;
6001
6002 /* cpu has to be offline */
48f24c4d 6003 BUG_ON(cpu_online(this_cpu));
1da177e4 6004
48f24c4d
IM
6005 /*
6006 * Strictly not necessary since rest of the CPUs are stopped by now
6007 * and interrupts disabled on the current cpu.
1da177e4
LT
6008 */
6009 spin_lock_irqsave(&rq->lock, flags);
6010
dd41f596 6011 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6012
94bc9a7b
DA
6013 update_rq_clock(rq);
6014 activate_task(rq, p, 0);
1da177e4
LT
6015
6016 spin_unlock_irqrestore(&rq->lock, flags);
6017}
6018
48f24c4d
IM
6019/*
6020 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6021 * offline.
6022 */
6023void idle_task_exit(void)
6024{
6025 struct mm_struct *mm = current->active_mm;
6026
6027 BUG_ON(cpu_online(smp_processor_id()));
6028
6029 if (mm != &init_mm)
6030 switch_mm(mm, &init_mm, current);
6031 mmdrop(mm);
6032}
6033
054b9108 6034/* called under rq->lock with disabled interrupts */
36c8b586 6035static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6036{
70b97a7f 6037 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6038
6039 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6040 BUG_ON(!p->exit_state);
1da177e4
LT
6041
6042 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6043 BUG_ON(p->state == TASK_DEAD);
1da177e4 6044
48f24c4d 6045 get_task_struct(p);
1da177e4
LT
6046
6047 /*
6048 * Drop lock around migration; if someone else moves it,
41a2d6cf 6049 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6050 * fine.
6051 */
f7b4cddc 6052 spin_unlock_irq(&rq->lock);
48f24c4d 6053 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6054 spin_lock_irq(&rq->lock);
1da177e4 6055
48f24c4d 6056 put_task_struct(p);
1da177e4
LT
6057}
6058
6059/* release_task() removes task from tasklist, so we won't find dead tasks. */
6060static void migrate_dead_tasks(unsigned int dead_cpu)
6061{
70b97a7f 6062 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6063 struct task_struct *next;
48f24c4d 6064
dd41f596
IM
6065 for ( ; ; ) {
6066 if (!rq->nr_running)
6067 break;
a8e504d2 6068 update_rq_clock(rq);
ff95f3df 6069 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6070 if (!next)
6071 break;
79c53799 6072 next->sched_class->put_prev_task(rq, next);
dd41f596 6073 migrate_dead(dead_cpu, next);
e692ab53 6074
1da177e4
LT
6075 }
6076}
6077#endif /* CONFIG_HOTPLUG_CPU */
6078
e692ab53
NP
6079#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6080
6081static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6082 {
6083 .procname = "sched_domain",
c57baf1e 6084 .mode = 0555,
e0361851 6085 },
38605cae 6086 {0, },
e692ab53
NP
6087};
6088
6089static struct ctl_table sd_ctl_root[] = {
e0361851 6090 {
c57baf1e 6091 .ctl_name = CTL_KERN,
e0361851 6092 .procname = "kernel",
c57baf1e 6093 .mode = 0555,
e0361851
AD
6094 .child = sd_ctl_dir,
6095 },
38605cae 6096 {0, },
e692ab53
NP
6097};
6098
6099static struct ctl_table *sd_alloc_ctl_entry(int n)
6100{
6101 struct ctl_table *entry =
5cf9f062 6102 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6103
e692ab53
NP
6104 return entry;
6105}
6106
6382bc90
MM
6107static void sd_free_ctl_entry(struct ctl_table **tablep)
6108{
cd790076 6109 struct ctl_table *entry;
6382bc90 6110
cd790076
MM
6111 /*
6112 * In the intermediate directories, both the child directory and
6113 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6114 * will always be set. In the lowest directory the names are
cd790076
MM
6115 * static strings and all have proc handlers.
6116 */
6117 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6118 if (entry->child)
6119 sd_free_ctl_entry(&entry->child);
cd790076
MM
6120 if (entry->proc_handler == NULL)
6121 kfree(entry->procname);
6122 }
6382bc90
MM
6123
6124 kfree(*tablep);
6125 *tablep = NULL;
6126}
6127
e692ab53 6128static void
e0361851 6129set_table_entry(struct ctl_table *entry,
e692ab53
NP
6130 const char *procname, void *data, int maxlen,
6131 mode_t mode, proc_handler *proc_handler)
6132{
e692ab53
NP
6133 entry->procname = procname;
6134 entry->data = data;
6135 entry->maxlen = maxlen;
6136 entry->mode = mode;
6137 entry->proc_handler = proc_handler;
6138}
6139
6140static struct ctl_table *
6141sd_alloc_ctl_domain_table(struct sched_domain *sd)
6142{
ace8b3d6 6143 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6144
ad1cdc1d
MM
6145 if (table == NULL)
6146 return NULL;
6147
e0361851 6148 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6149 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6150 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6151 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6152 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6153 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6154 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6155 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6156 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6157 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6158 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6159 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6160 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6161 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6162 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6163 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6164 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6165 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6166 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6167 &sd->cache_nice_tries,
6168 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6169 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6170 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6171 /* &table[11] is terminator */
e692ab53
NP
6172
6173 return table;
6174}
6175
9a4e7159 6176static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6177{
6178 struct ctl_table *entry, *table;
6179 struct sched_domain *sd;
6180 int domain_num = 0, i;
6181 char buf[32];
6182
6183 for_each_domain(cpu, sd)
6184 domain_num++;
6185 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6186 if (table == NULL)
6187 return NULL;
e692ab53
NP
6188
6189 i = 0;
6190 for_each_domain(cpu, sd) {
6191 snprintf(buf, 32, "domain%d", i);
e692ab53 6192 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6193 entry->mode = 0555;
e692ab53
NP
6194 entry->child = sd_alloc_ctl_domain_table(sd);
6195 entry++;
6196 i++;
6197 }
6198 return table;
6199}
6200
6201static struct ctl_table_header *sd_sysctl_header;
6382bc90 6202static void register_sched_domain_sysctl(void)
e692ab53
NP
6203{
6204 int i, cpu_num = num_online_cpus();
6205 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6206 char buf[32];
6207
7378547f
MM
6208 WARN_ON(sd_ctl_dir[0].child);
6209 sd_ctl_dir[0].child = entry;
6210
ad1cdc1d
MM
6211 if (entry == NULL)
6212 return;
6213
97b6ea7b 6214 for_each_online_cpu(i) {
e692ab53 6215 snprintf(buf, 32, "cpu%d", i);
e692ab53 6216 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6217 entry->mode = 0555;
e692ab53 6218 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6219 entry++;
e692ab53 6220 }
7378547f
MM
6221
6222 WARN_ON(sd_sysctl_header);
e692ab53
NP
6223 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6224}
6382bc90 6225
7378547f 6226/* may be called multiple times per register */
6382bc90
MM
6227static void unregister_sched_domain_sysctl(void)
6228{
7378547f
MM
6229 if (sd_sysctl_header)
6230 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6231 sd_sysctl_header = NULL;
7378547f
MM
6232 if (sd_ctl_dir[0].child)
6233 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6234}
e692ab53 6235#else
6382bc90
MM
6236static void register_sched_domain_sysctl(void)
6237{
6238}
6239static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6240{
6241}
6242#endif
6243
1f11eb6a
GH
6244static void set_rq_online(struct rq *rq)
6245{
6246 if (!rq->online) {
6247 const struct sched_class *class;
6248
6249 cpu_set(rq->cpu, rq->rd->online);
6250 rq->online = 1;
6251
6252 for_each_class(class) {
6253 if (class->rq_online)
6254 class->rq_online(rq);
6255 }
6256 }
6257}
6258
6259static void set_rq_offline(struct rq *rq)
6260{
6261 if (rq->online) {
6262 const struct sched_class *class;
6263
6264 for_each_class(class) {
6265 if (class->rq_offline)
6266 class->rq_offline(rq);
6267 }
6268
6269 cpu_clear(rq->cpu, rq->rd->online);
6270 rq->online = 0;
6271 }
6272}
6273
1da177e4
LT
6274/*
6275 * migration_call - callback that gets triggered when a CPU is added.
6276 * Here we can start up the necessary migration thread for the new CPU.
6277 */
48f24c4d
IM
6278static int __cpuinit
6279migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6280{
1da177e4 6281 struct task_struct *p;
48f24c4d 6282 int cpu = (long)hcpu;
1da177e4 6283 unsigned long flags;
70b97a7f 6284 struct rq *rq;
1da177e4
LT
6285
6286 switch (action) {
5be9361c 6287
1da177e4 6288 case CPU_UP_PREPARE:
8bb78442 6289 case CPU_UP_PREPARE_FROZEN:
dd41f596 6290 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6291 if (IS_ERR(p))
6292 return NOTIFY_BAD;
1da177e4
LT
6293 kthread_bind(p, cpu);
6294 /* Must be high prio: stop_machine expects to yield to it. */
6295 rq = task_rq_lock(p, &flags);
dd41f596 6296 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6297 task_rq_unlock(rq, &flags);
6298 cpu_rq(cpu)->migration_thread = p;
6299 break;
48f24c4d 6300
1da177e4 6301 case CPU_ONLINE:
8bb78442 6302 case CPU_ONLINE_FROZEN:
3a4fa0a2 6303 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6304 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6305
6306 /* Update our root-domain */
6307 rq = cpu_rq(cpu);
6308 spin_lock_irqsave(&rq->lock, flags);
6309 if (rq->rd) {
6310 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6311
6312 set_rq_online(rq);
1f94ef59
GH
6313 }
6314 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6315 break;
48f24c4d 6316
1da177e4
LT
6317#ifdef CONFIG_HOTPLUG_CPU
6318 case CPU_UP_CANCELED:
8bb78442 6319 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6320 if (!cpu_rq(cpu)->migration_thread)
6321 break;
41a2d6cf 6322 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6323 kthread_bind(cpu_rq(cpu)->migration_thread,
6324 any_online_cpu(cpu_online_map));
1da177e4
LT
6325 kthread_stop(cpu_rq(cpu)->migration_thread);
6326 cpu_rq(cpu)->migration_thread = NULL;
6327 break;
48f24c4d 6328
1da177e4 6329 case CPU_DEAD:
8bb78442 6330 case CPU_DEAD_FROZEN:
470fd646 6331 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6332 migrate_live_tasks(cpu);
6333 rq = cpu_rq(cpu);
6334 kthread_stop(rq->migration_thread);
6335 rq->migration_thread = NULL;
6336 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6337 spin_lock_irq(&rq->lock);
a8e504d2 6338 update_rq_clock(rq);
2e1cb74a 6339 deactivate_task(rq, rq->idle, 0);
1da177e4 6340 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6341 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6342 rq->idle->sched_class = &idle_sched_class;
1da177e4 6343 migrate_dead_tasks(cpu);
d2da272a 6344 spin_unlock_irq(&rq->lock);
470fd646 6345 cpuset_unlock();
1da177e4
LT
6346 migrate_nr_uninterruptible(rq);
6347 BUG_ON(rq->nr_running != 0);
6348
41a2d6cf
IM
6349 /*
6350 * No need to migrate the tasks: it was best-effort if
6351 * they didn't take sched_hotcpu_mutex. Just wake up
6352 * the requestors.
6353 */
1da177e4
LT
6354 spin_lock_irq(&rq->lock);
6355 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6356 struct migration_req *req;
6357
1da177e4 6358 req = list_entry(rq->migration_queue.next,
70b97a7f 6359 struct migration_req, list);
1da177e4
LT
6360 list_del_init(&req->list);
6361 complete(&req->done);
6362 }
6363 spin_unlock_irq(&rq->lock);
6364 break;
57d885fe 6365
08f503b0
GH
6366 case CPU_DYING:
6367 case CPU_DYING_FROZEN:
57d885fe
GH
6368 /* Update our root-domain */
6369 rq = cpu_rq(cpu);
6370 spin_lock_irqsave(&rq->lock, flags);
6371 if (rq->rd) {
6372 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6373 set_rq_offline(rq);
57d885fe
GH
6374 }
6375 spin_unlock_irqrestore(&rq->lock, flags);
6376 break;
1da177e4
LT
6377#endif
6378 }
6379 return NOTIFY_OK;
6380}
6381
6382/* Register at highest priority so that task migration (migrate_all_tasks)
6383 * happens before everything else.
6384 */
26c2143b 6385static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6386 .notifier_call = migration_call,
6387 .priority = 10
6388};
6389
e6fe6649 6390void __init migration_init(void)
1da177e4
LT
6391{
6392 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6393 int err;
48f24c4d
IM
6394
6395 /* Start one for the boot CPU: */
07dccf33
AM
6396 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6397 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6398 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6399 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6400}
6401#endif
6402
6403#ifdef CONFIG_SMP
476f3534 6404
3e9830dc 6405#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6406
099f98c8
GS
6407static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6408{
6409 switch (lvl) {
6410 case SD_LV_NONE:
6411 return "NONE";
6412 case SD_LV_SIBLING:
6413 return "SIBLING";
6414 case SD_LV_MC:
6415 return "MC";
6416 case SD_LV_CPU:
6417 return "CPU";
6418 case SD_LV_NODE:
6419 return "NODE";
6420 case SD_LV_ALLNODES:
6421 return "ALLNODES";
6422 case SD_LV_MAX:
6423 return "MAX";
6424
6425 }
6426 return "MAX";
6427}
6428
7c16ec58
MT
6429static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6430 cpumask_t *groupmask)
1da177e4 6431{
4dcf6aff 6432 struct sched_group *group = sd->groups;
434d53b0 6433 char str[256];
1da177e4 6434
434d53b0 6435 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6436 cpus_clear(*groupmask);
4dcf6aff
IM
6437
6438 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6439
6440 if (!(sd->flags & SD_LOAD_BALANCE)) {
6441 printk("does not load-balance\n");
6442 if (sd->parent)
6443 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6444 " has parent");
6445 return -1;
41c7ce9a
NP
6446 }
6447
099f98c8
GS
6448 printk(KERN_CONT "span %s level %s\n",
6449 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6450
6451 if (!cpu_isset(cpu, sd->span)) {
6452 printk(KERN_ERR "ERROR: domain->span does not contain "
6453 "CPU%d\n", cpu);
6454 }
6455 if (!cpu_isset(cpu, group->cpumask)) {
6456 printk(KERN_ERR "ERROR: domain->groups does not contain"
6457 " CPU%d\n", cpu);
6458 }
1da177e4 6459
4dcf6aff 6460 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6461 do {
4dcf6aff
IM
6462 if (!group) {
6463 printk("\n");
6464 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6465 break;
6466 }
6467
4dcf6aff
IM
6468 if (!group->__cpu_power) {
6469 printk(KERN_CONT "\n");
6470 printk(KERN_ERR "ERROR: domain->cpu_power not "
6471 "set\n");
6472 break;
6473 }
1da177e4 6474
4dcf6aff
IM
6475 if (!cpus_weight(group->cpumask)) {
6476 printk(KERN_CONT "\n");
6477 printk(KERN_ERR "ERROR: empty group\n");
6478 break;
6479 }
1da177e4 6480
7c16ec58 6481 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6482 printk(KERN_CONT "\n");
6483 printk(KERN_ERR "ERROR: repeated CPUs\n");
6484 break;
6485 }
1da177e4 6486
7c16ec58 6487 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6488
434d53b0 6489 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6490 printk(KERN_CONT " %s", str);
1da177e4 6491
4dcf6aff
IM
6492 group = group->next;
6493 } while (group != sd->groups);
6494 printk(KERN_CONT "\n");
1da177e4 6495
7c16ec58 6496 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6497 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6498
7c16ec58 6499 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6500 printk(KERN_ERR "ERROR: parent span is not a superset "
6501 "of domain->span\n");
6502 return 0;
6503}
1da177e4 6504
4dcf6aff
IM
6505static void sched_domain_debug(struct sched_domain *sd, int cpu)
6506{
7c16ec58 6507 cpumask_t *groupmask;
4dcf6aff 6508 int level = 0;
1da177e4 6509
4dcf6aff
IM
6510 if (!sd) {
6511 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6512 return;
6513 }
1da177e4 6514
4dcf6aff
IM
6515 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6516
7c16ec58
MT
6517 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6518 if (!groupmask) {
6519 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6520 return;
6521 }
6522
4dcf6aff 6523 for (;;) {
7c16ec58 6524 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6525 break;
1da177e4
LT
6526 level++;
6527 sd = sd->parent;
33859f7f 6528 if (!sd)
4dcf6aff
IM
6529 break;
6530 }
7c16ec58 6531 kfree(groupmask);
1da177e4 6532}
6d6bc0ad 6533#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6534# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6535#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6536
1a20ff27 6537static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6538{
6539 if (cpus_weight(sd->span) == 1)
6540 return 1;
6541
6542 /* Following flags need at least 2 groups */
6543 if (sd->flags & (SD_LOAD_BALANCE |
6544 SD_BALANCE_NEWIDLE |
6545 SD_BALANCE_FORK |
89c4710e
SS
6546 SD_BALANCE_EXEC |
6547 SD_SHARE_CPUPOWER |
6548 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6549 if (sd->groups != sd->groups->next)
6550 return 0;
6551 }
6552
6553 /* Following flags don't use groups */
6554 if (sd->flags & (SD_WAKE_IDLE |
6555 SD_WAKE_AFFINE |
6556 SD_WAKE_BALANCE))
6557 return 0;
6558
6559 return 1;
6560}
6561
48f24c4d
IM
6562static int
6563sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6564{
6565 unsigned long cflags = sd->flags, pflags = parent->flags;
6566
6567 if (sd_degenerate(parent))
6568 return 1;
6569
6570 if (!cpus_equal(sd->span, parent->span))
6571 return 0;
6572
6573 /* Does parent contain flags not in child? */
6574 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6575 if (cflags & SD_WAKE_AFFINE)
6576 pflags &= ~SD_WAKE_BALANCE;
6577 /* Flags needing groups don't count if only 1 group in parent */
6578 if (parent->groups == parent->groups->next) {
6579 pflags &= ~(SD_LOAD_BALANCE |
6580 SD_BALANCE_NEWIDLE |
6581 SD_BALANCE_FORK |
89c4710e
SS
6582 SD_BALANCE_EXEC |
6583 SD_SHARE_CPUPOWER |
6584 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6585 }
6586 if (~cflags & pflags)
6587 return 0;
6588
6589 return 1;
6590}
6591
57d885fe
GH
6592static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6593{
6594 unsigned long flags;
57d885fe
GH
6595
6596 spin_lock_irqsave(&rq->lock, flags);
6597
6598 if (rq->rd) {
6599 struct root_domain *old_rd = rq->rd;
6600
1f11eb6a
GH
6601 if (cpu_isset(rq->cpu, old_rd->online))
6602 set_rq_offline(rq);
57d885fe 6603
dc938520 6604 cpu_clear(rq->cpu, old_rd->span);
dc938520 6605
57d885fe
GH
6606 if (atomic_dec_and_test(&old_rd->refcount))
6607 kfree(old_rd);
6608 }
6609
6610 atomic_inc(&rd->refcount);
6611 rq->rd = rd;
6612
dc938520 6613 cpu_set(rq->cpu, rd->span);
1f94ef59 6614 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6615 set_rq_online(rq);
57d885fe
GH
6616
6617 spin_unlock_irqrestore(&rq->lock, flags);
6618}
6619
dc938520 6620static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6621{
6622 memset(rd, 0, sizeof(*rd));
6623
dc938520
GH
6624 cpus_clear(rd->span);
6625 cpus_clear(rd->online);
6e0534f2
GH
6626
6627 cpupri_init(&rd->cpupri);
57d885fe
GH
6628}
6629
6630static void init_defrootdomain(void)
6631{
dc938520 6632 init_rootdomain(&def_root_domain);
57d885fe
GH
6633 atomic_set(&def_root_domain.refcount, 1);
6634}
6635
dc938520 6636static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6637{
6638 struct root_domain *rd;
6639
6640 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6641 if (!rd)
6642 return NULL;
6643
dc938520 6644 init_rootdomain(rd);
57d885fe
GH
6645
6646 return rd;
6647}
6648
1da177e4 6649/*
0eab9146 6650 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6651 * hold the hotplug lock.
6652 */
0eab9146
IM
6653static void
6654cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6655{
70b97a7f 6656 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6657 struct sched_domain *tmp;
6658
6659 /* Remove the sched domains which do not contribute to scheduling. */
6660 for (tmp = sd; tmp; tmp = tmp->parent) {
6661 struct sched_domain *parent = tmp->parent;
6662 if (!parent)
6663 break;
1a848870 6664 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6665 tmp->parent = parent->parent;
1a848870
SS
6666 if (parent->parent)
6667 parent->parent->child = tmp;
6668 }
245af2c7
SS
6669 }
6670
1a848870 6671 if (sd && sd_degenerate(sd)) {
245af2c7 6672 sd = sd->parent;
1a848870
SS
6673 if (sd)
6674 sd->child = NULL;
6675 }
1da177e4
LT
6676
6677 sched_domain_debug(sd, cpu);
6678
57d885fe 6679 rq_attach_root(rq, rd);
674311d5 6680 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6681}
6682
6683/* cpus with isolated domains */
67af63a6 6684static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6685
6686/* Setup the mask of cpus configured for isolated domains */
6687static int __init isolated_cpu_setup(char *str)
6688{
13b40c1e
MT
6689 static int __initdata ints[NR_CPUS];
6690 int i;
1da177e4
LT
6691
6692 str = get_options(str, ARRAY_SIZE(ints), ints);
6693 cpus_clear(cpu_isolated_map);
6694 for (i = 1; i <= ints[0]; i++)
6695 if (ints[i] < NR_CPUS)
6696 cpu_set(ints[i], cpu_isolated_map);
6697 return 1;
6698}
6699
8927f494 6700__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6701
6702/*
6711cab4
SS
6703 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6704 * to a function which identifies what group(along with sched group) a CPU
6705 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6706 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6707 *
6708 * init_sched_build_groups will build a circular linked list of the groups
6709 * covered by the given span, and will set each group's ->cpumask correctly,
6710 * and ->cpu_power to 0.
6711 */
a616058b 6712static void
7c16ec58 6713init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6714 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6715 struct sched_group **sg,
6716 cpumask_t *tmpmask),
6717 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6718{
6719 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6720 int i;
6721
7c16ec58
MT
6722 cpus_clear(*covered);
6723
6724 for_each_cpu_mask(i, *span) {
6711cab4 6725 struct sched_group *sg;
7c16ec58 6726 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6727 int j;
6728
7c16ec58 6729 if (cpu_isset(i, *covered))
1da177e4
LT
6730 continue;
6731
7c16ec58 6732 cpus_clear(sg->cpumask);
5517d86b 6733 sg->__cpu_power = 0;
1da177e4 6734
7c16ec58
MT
6735 for_each_cpu_mask(j, *span) {
6736 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6737 continue;
6738
7c16ec58 6739 cpu_set(j, *covered);
1da177e4
LT
6740 cpu_set(j, sg->cpumask);
6741 }
6742 if (!first)
6743 first = sg;
6744 if (last)
6745 last->next = sg;
6746 last = sg;
6747 }
6748 last->next = first;
6749}
6750
9c1cfda2 6751#define SD_NODES_PER_DOMAIN 16
1da177e4 6752
9c1cfda2 6753#ifdef CONFIG_NUMA
198e2f18 6754
9c1cfda2
JH
6755/**
6756 * find_next_best_node - find the next node to include in a sched_domain
6757 * @node: node whose sched_domain we're building
6758 * @used_nodes: nodes already in the sched_domain
6759 *
41a2d6cf 6760 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6761 * finds the closest node not already in the @used_nodes map.
6762 *
6763 * Should use nodemask_t.
6764 */
c5f59f08 6765static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6766{
6767 int i, n, val, min_val, best_node = 0;
6768
6769 min_val = INT_MAX;
6770
076ac2af 6771 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6772 /* Start at @node */
076ac2af 6773 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6774
6775 if (!nr_cpus_node(n))
6776 continue;
6777
6778 /* Skip already used nodes */
c5f59f08 6779 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6780 continue;
6781
6782 /* Simple min distance search */
6783 val = node_distance(node, n);
6784
6785 if (val < min_val) {
6786 min_val = val;
6787 best_node = n;
6788 }
6789 }
6790
c5f59f08 6791 node_set(best_node, *used_nodes);
9c1cfda2
JH
6792 return best_node;
6793}
6794
6795/**
6796 * sched_domain_node_span - get a cpumask for a node's sched_domain
6797 * @node: node whose cpumask we're constructing
73486722 6798 * @span: resulting cpumask
9c1cfda2 6799 *
41a2d6cf 6800 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6801 * should be one that prevents unnecessary balancing, but also spreads tasks
6802 * out optimally.
6803 */
4bdbaad3 6804static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6805{
c5f59f08 6806 nodemask_t used_nodes;
c5f59f08 6807 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6808 int i;
9c1cfda2 6809
4bdbaad3 6810 cpus_clear(*span);
c5f59f08 6811 nodes_clear(used_nodes);
9c1cfda2 6812
4bdbaad3 6813 cpus_or(*span, *span, *nodemask);
c5f59f08 6814 node_set(node, used_nodes);
9c1cfda2
JH
6815
6816 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6817 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6818
c5f59f08 6819 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6820 cpus_or(*span, *span, *nodemask);
9c1cfda2 6821 }
9c1cfda2 6822}
6d6bc0ad 6823#endif /* CONFIG_NUMA */
9c1cfda2 6824
5c45bf27 6825int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6826
9c1cfda2 6827/*
48f24c4d 6828 * SMT sched-domains:
9c1cfda2 6829 */
1da177e4
LT
6830#ifdef CONFIG_SCHED_SMT
6831static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6832static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6833
41a2d6cf 6834static int
7c16ec58
MT
6835cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6836 cpumask_t *unused)
1da177e4 6837{
6711cab4
SS
6838 if (sg)
6839 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6840 return cpu;
6841}
6d6bc0ad 6842#endif /* CONFIG_SCHED_SMT */
1da177e4 6843
48f24c4d
IM
6844/*
6845 * multi-core sched-domains:
6846 */
1e9f28fa
SS
6847#ifdef CONFIG_SCHED_MC
6848static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6849static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6850#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6851
6852#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6853static int
7c16ec58
MT
6854cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6855 cpumask_t *mask)
1e9f28fa 6856{
6711cab4 6857 int group;
7c16ec58
MT
6858
6859 *mask = per_cpu(cpu_sibling_map, cpu);
6860 cpus_and(*mask, *mask, *cpu_map);
6861 group = first_cpu(*mask);
6711cab4
SS
6862 if (sg)
6863 *sg = &per_cpu(sched_group_core, group);
6864 return group;
1e9f28fa
SS
6865}
6866#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6867static int
7c16ec58
MT
6868cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6869 cpumask_t *unused)
1e9f28fa 6870{
6711cab4
SS
6871 if (sg)
6872 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6873 return cpu;
6874}
6875#endif
6876
1da177e4 6877static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6878static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6879
41a2d6cf 6880static int
7c16ec58
MT
6881cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6882 cpumask_t *mask)
1da177e4 6883{
6711cab4 6884 int group;
48f24c4d 6885#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6886 *mask = cpu_coregroup_map(cpu);
6887 cpus_and(*mask, *mask, *cpu_map);
6888 group = first_cpu(*mask);
1e9f28fa 6889#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6890 *mask = per_cpu(cpu_sibling_map, cpu);
6891 cpus_and(*mask, *mask, *cpu_map);
6892 group = first_cpu(*mask);
1da177e4 6893#else
6711cab4 6894 group = cpu;
1da177e4 6895#endif
6711cab4
SS
6896 if (sg)
6897 *sg = &per_cpu(sched_group_phys, group);
6898 return group;
1da177e4
LT
6899}
6900
6901#ifdef CONFIG_NUMA
1da177e4 6902/*
9c1cfda2
JH
6903 * The init_sched_build_groups can't handle what we want to do with node
6904 * groups, so roll our own. Now each node has its own list of groups which
6905 * gets dynamically allocated.
1da177e4 6906 */
9c1cfda2 6907static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6908static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6909
9c1cfda2 6910static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6911static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6912
6711cab4 6913static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6914 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6915{
6711cab4
SS
6916 int group;
6917
7c16ec58
MT
6918 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6919 cpus_and(*nodemask, *nodemask, *cpu_map);
6920 group = first_cpu(*nodemask);
6711cab4
SS
6921
6922 if (sg)
6923 *sg = &per_cpu(sched_group_allnodes, group);
6924 return group;
1da177e4 6925}
6711cab4 6926
08069033
SS
6927static void init_numa_sched_groups_power(struct sched_group *group_head)
6928{
6929 struct sched_group *sg = group_head;
6930 int j;
6931
6932 if (!sg)
6933 return;
3a5c359a
AK
6934 do {
6935 for_each_cpu_mask(j, sg->cpumask) {
6936 struct sched_domain *sd;
08069033 6937
3a5c359a
AK
6938 sd = &per_cpu(phys_domains, j);
6939 if (j != first_cpu(sd->groups->cpumask)) {
6940 /*
6941 * Only add "power" once for each
6942 * physical package.
6943 */
6944 continue;
6945 }
08069033 6946
3a5c359a
AK
6947 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6948 }
6949 sg = sg->next;
6950 } while (sg != group_head);
08069033 6951}
6d6bc0ad 6952#endif /* CONFIG_NUMA */
1da177e4 6953
a616058b 6954#ifdef CONFIG_NUMA
51888ca2 6955/* Free memory allocated for various sched_group structures */
7c16ec58 6956static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6957{
a616058b 6958 int cpu, i;
51888ca2
SV
6959
6960 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6961 struct sched_group **sched_group_nodes
6962 = sched_group_nodes_bycpu[cpu];
6963
51888ca2
SV
6964 if (!sched_group_nodes)
6965 continue;
6966
076ac2af 6967 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6968 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6969
7c16ec58
MT
6970 *nodemask = node_to_cpumask(i);
6971 cpus_and(*nodemask, *nodemask, *cpu_map);
6972 if (cpus_empty(*nodemask))
51888ca2
SV
6973 continue;
6974
6975 if (sg == NULL)
6976 continue;
6977 sg = sg->next;
6978next_sg:
6979 oldsg = sg;
6980 sg = sg->next;
6981 kfree(oldsg);
6982 if (oldsg != sched_group_nodes[i])
6983 goto next_sg;
6984 }
6985 kfree(sched_group_nodes);
6986 sched_group_nodes_bycpu[cpu] = NULL;
6987 }
51888ca2 6988}
6d6bc0ad 6989#else /* !CONFIG_NUMA */
7c16ec58 6990static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6991{
6992}
6d6bc0ad 6993#endif /* CONFIG_NUMA */
51888ca2 6994
89c4710e
SS
6995/*
6996 * Initialize sched groups cpu_power.
6997 *
6998 * cpu_power indicates the capacity of sched group, which is used while
6999 * distributing the load between different sched groups in a sched domain.
7000 * Typically cpu_power for all the groups in a sched domain will be same unless
7001 * there are asymmetries in the topology. If there are asymmetries, group
7002 * having more cpu_power will pickup more load compared to the group having
7003 * less cpu_power.
7004 *
7005 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7006 * the maximum number of tasks a group can handle in the presence of other idle
7007 * or lightly loaded groups in the same sched domain.
7008 */
7009static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7010{
7011 struct sched_domain *child;
7012 struct sched_group *group;
7013
7014 WARN_ON(!sd || !sd->groups);
7015
7016 if (cpu != first_cpu(sd->groups->cpumask))
7017 return;
7018
7019 child = sd->child;
7020
5517d86b
ED
7021 sd->groups->__cpu_power = 0;
7022
89c4710e
SS
7023 /*
7024 * For perf policy, if the groups in child domain share resources
7025 * (for example cores sharing some portions of the cache hierarchy
7026 * or SMT), then set this domain groups cpu_power such that each group
7027 * can handle only one task, when there are other idle groups in the
7028 * same sched domain.
7029 */
7030 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7031 (child->flags &
7032 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7033 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7034 return;
7035 }
7036
89c4710e
SS
7037 /*
7038 * add cpu_power of each child group to this groups cpu_power
7039 */
7040 group = child->groups;
7041 do {
5517d86b 7042 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7043 group = group->next;
7044 } while (group != child->groups);
7045}
7046
7c16ec58
MT
7047/*
7048 * Initializers for schedule domains
7049 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7050 */
7051
7052#define SD_INIT(sd, type) sd_init_##type(sd)
7053#define SD_INIT_FUNC(type) \
7054static noinline void sd_init_##type(struct sched_domain *sd) \
7055{ \
7056 memset(sd, 0, sizeof(*sd)); \
7057 *sd = SD_##type##_INIT; \
1d3504fc 7058 sd->level = SD_LV_##type; \
7c16ec58
MT
7059}
7060
7061SD_INIT_FUNC(CPU)
7062#ifdef CONFIG_NUMA
7063 SD_INIT_FUNC(ALLNODES)
7064 SD_INIT_FUNC(NODE)
7065#endif
7066#ifdef CONFIG_SCHED_SMT
7067 SD_INIT_FUNC(SIBLING)
7068#endif
7069#ifdef CONFIG_SCHED_MC
7070 SD_INIT_FUNC(MC)
7071#endif
7072
7073/*
7074 * To minimize stack usage kmalloc room for cpumasks and share the
7075 * space as the usage in build_sched_domains() dictates. Used only
7076 * if the amount of space is significant.
7077 */
7078struct allmasks {
7079 cpumask_t tmpmask; /* make this one first */
7080 union {
7081 cpumask_t nodemask;
7082 cpumask_t this_sibling_map;
7083 cpumask_t this_core_map;
7084 };
7085 cpumask_t send_covered;
7086
7087#ifdef CONFIG_NUMA
7088 cpumask_t domainspan;
7089 cpumask_t covered;
7090 cpumask_t notcovered;
7091#endif
7092};
7093
7094#if NR_CPUS > 128
7095#define SCHED_CPUMASK_ALLOC 1
7096#define SCHED_CPUMASK_FREE(v) kfree(v)
7097#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7098#else
7099#define SCHED_CPUMASK_ALLOC 0
7100#define SCHED_CPUMASK_FREE(v)
7101#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7102#endif
7103
7104#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7105 ((unsigned long)(a) + offsetof(struct allmasks, v))
7106
1d3504fc
HS
7107static int default_relax_domain_level = -1;
7108
7109static int __init setup_relax_domain_level(char *str)
7110{
30e0e178
LZ
7111 unsigned long val;
7112
7113 val = simple_strtoul(str, NULL, 0);
7114 if (val < SD_LV_MAX)
7115 default_relax_domain_level = val;
7116
1d3504fc
HS
7117 return 1;
7118}
7119__setup("relax_domain_level=", setup_relax_domain_level);
7120
7121static void set_domain_attribute(struct sched_domain *sd,
7122 struct sched_domain_attr *attr)
7123{
7124 int request;
7125
7126 if (!attr || attr->relax_domain_level < 0) {
7127 if (default_relax_domain_level < 0)
7128 return;
7129 else
7130 request = default_relax_domain_level;
7131 } else
7132 request = attr->relax_domain_level;
7133 if (request < sd->level) {
7134 /* turn off idle balance on this domain */
7135 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7136 } else {
7137 /* turn on idle balance on this domain */
7138 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7139 }
7140}
7141
1da177e4 7142/*
1a20ff27
DG
7143 * Build sched domains for a given set of cpus and attach the sched domains
7144 * to the individual cpus
1da177e4 7145 */
1d3504fc
HS
7146static int __build_sched_domains(const cpumask_t *cpu_map,
7147 struct sched_domain_attr *attr)
1da177e4
LT
7148{
7149 int i;
57d885fe 7150 struct root_domain *rd;
7c16ec58
MT
7151 SCHED_CPUMASK_DECLARE(allmasks);
7152 cpumask_t *tmpmask;
d1b55138
JH
7153#ifdef CONFIG_NUMA
7154 struct sched_group **sched_group_nodes = NULL;
6711cab4 7155 int sd_allnodes = 0;
d1b55138
JH
7156
7157 /*
7158 * Allocate the per-node list of sched groups
7159 */
076ac2af 7160 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7161 GFP_KERNEL);
d1b55138
JH
7162 if (!sched_group_nodes) {
7163 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7164 return -ENOMEM;
d1b55138 7165 }
d1b55138 7166#endif
1da177e4 7167
dc938520 7168 rd = alloc_rootdomain();
57d885fe
GH
7169 if (!rd) {
7170 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7171#ifdef CONFIG_NUMA
7172 kfree(sched_group_nodes);
7173#endif
57d885fe
GH
7174 return -ENOMEM;
7175 }
7176
7c16ec58
MT
7177#if SCHED_CPUMASK_ALLOC
7178 /* get space for all scratch cpumask variables */
7179 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7180 if (!allmasks) {
7181 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7182 kfree(rd);
7183#ifdef CONFIG_NUMA
7184 kfree(sched_group_nodes);
7185#endif
7186 return -ENOMEM;
7187 }
7188#endif
7189 tmpmask = (cpumask_t *)allmasks;
7190
7191
7192#ifdef CONFIG_NUMA
7193 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7194#endif
7195
1da177e4 7196 /*
1a20ff27 7197 * Set up domains for cpus specified by the cpu_map.
1da177e4 7198 */
1a20ff27 7199 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7200 struct sched_domain *sd = NULL, *p;
7c16ec58 7201 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7202
7c16ec58
MT
7203 *nodemask = node_to_cpumask(cpu_to_node(i));
7204 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7205
7206#ifdef CONFIG_NUMA
dd41f596 7207 if (cpus_weight(*cpu_map) >
7c16ec58 7208 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7209 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7210 SD_INIT(sd, ALLNODES);
1d3504fc 7211 set_domain_attribute(sd, attr);
9c1cfda2 7212 sd->span = *cpu_map;
7c16ec58 7213 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7214 p = sd;
6711cab4 7215 sd_allnodes = 1;
9c1cfda2
JH
7216 } else
7217 p = NULL;
7218
1da177e4 7219 sd = &per_cpu(node_domains, i);
7c16ec58 7220 SD_INIT(sd, NODE);
1d3504fc 7221 set_domain_attribute(sd, attr);
4bdbaad3 7222 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7223 sd->parent = p;
1a848870
SS
7224 if (p)
7225 p->child = sd;
9c1cfda2 7226 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7227#endif
7228
7229 p = sd;
7230 sd = &per_cpu(phys_domains, i);
7c16ec58 7231 SD_INIT(sd, CPU);
1d3504fc 7232 set_domain_attribute(sd, attr);
7c16ec58 7233 sd->span = *nodemask;
1da177e4 7234 sd->parent = p;
1a848870
SS
7235 if (p)
7236 p->child = sd;
7c16ec58 7237 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7238
1e9f28fa
SS
7239#ifdef CONFIG_SCHED_MC
7240 p = sd;
7241 sd = &per_cpu(core_domains, i);
7c16ec58 7242 SD_INIT(sd, MC);
1d3504fc 7243 set_domain_attribute(sd, attr);
1e9f28fa
SS
7244 sd->span = cpu_coregroup_map(i);
7245 cpus_and(sd->span, sd->span, *cpu_map);
7246 sd->parent = p;
1a848870 7247 p->child = sd;
7c16ec58 7248 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7249#endif
7250
1da177e4
LT
7251#ifdef CONFIG_SCHED_SMT
7252 p = sd;
7253 sd = &per_cpu(cpu_domains, i);
7c16ec58 7254 SD_INIT(sd, SIBLING);
1d3504fc 7255 set_domain_attribute(sd, attr);
d5a7430d 7256 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7257 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7258 sd->parent = p;
1a848870 7259 p->child = sd;
7c16ec58 7260 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7261#endif
7262 }
7263
7264#ifdef CONFIG_SCHED_SMT
7265 /* Set up CPU (sibling) groups */
9c1cfda2 7266 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7267 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7268 SCHED_CPUMASK_VAR(send_covered, allmasks);
7269
7270 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7271 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7272 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7273 continue;
7274
dd41f596 7275 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7276 &cpu_to_cpu_group,
7277 send_covered, tmpmask);
1da177e4
LT
7278 }
7279#endif
7280
1e9f28fa
SS
7281#ifdef CONFIG_SCHED_MC
7282 /* Set up multi-core groups */
7283 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7284 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7285 SCHED_CPUMASK_VAR(send_covered, allmasks);
7286
7287 *this_core_map = cpu_coregroup_map(i);
7288 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7289 if (i != first_cpu(*this_core_map))
1e9f28fa 7290 continue;
7c16ec58 7291
dd41f596 7292 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7293 &cpu_to_core_group,
7294 send_covered, tmpmask);
1e9f28fa
SS
7295 }
7296#endif
7297
1da177e4 7298 /* Set up physical groups */
076ac2af 7299 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7300 SCHED_CPUMASK_VAR(nodemask, allmasks);
7301 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7302
7c16ec58
MT
7303 *nodemask = node_to_cpumask(i);
7304 cpus_and(*nodemask, *nodemask, *cpu_map);
7305 if (cpus_empty(*nodemask))
1da177e4
LT
7306 continue;
7307
7c16ec58
MT
7308 init_sched_build_groups(nodemask, cpu_map,
7309 &cpu_to_phys_group,
7310 send_covered, tmpmask);
1da177e4
LT
7311 }
7312
7313#ifdef CONFIG_NUMA
7314 /* Set up node groups */
7c16ec58
MT
7315 if (sd_allnodes) {
7316 SCHED_CPUMASK_VAR(send_covered, allmasks);
7317
7318 init_sched_build_groups(cpu_map, cpu_map,
7319 &cpu_to_allnodes_group,
7320 send_covered, tmpmask);
7321 }
9c1cfda2 7322
076ac2af 7323 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7324 /* Set up node groups */
7325 struct sched_group *sg, *prev;
7c16ec58
MT
7326 SCHED_CPUMASK_VAR(nodemask, allmasks);
7327 SCHED_CPUMASK_VAR(domainspan, allmasks);
7328 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7329 int j;
7330
7c16ec58
MT
7331 *nodemask = node_to_cpumask(i);
7332 cpus_clear(*covered);
7333
7334 cpus_and(*nodemask, *nodemask, *cpu_map);
7335 if (cpus_empty(*nodemask)) {
d1b55138 7336 sched_group_nodes[i] = NULL;
9c1cfda2 7337 continue;
d1b55138 7338 }
9c1cfda2 7339
4bdbaad3 7340 sched_domain_node_span(i, domainspan);
7c16ec58 7341 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7342
15f0b676 7343 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7344 if (!sg) {
7345 printk(KERN_WARNING "Can not alloc domain group for "
7346 "node %d\n", i);
7347 goto error;
7348 }
9c1cfda2 7349 sched_group_nodes[i] = sg;
7c16ec58 7350 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7351 struct sched_domain *sd;
9761eea8 7352
9c1cfda2
JH
7353 sd = &per_cpu(node_domains, j);
7354 sd->groups = sg;
9c1cfda2 7355 }
5517d86b 7356 sg->__cpu_power = 0;
7c16ec58 7357 sg->cpumask = *nodemask;
51888ca2 7358 sg->next = sg;
7c16ec58 7359 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7360 prev = sg;
7361
076ac2af 7362 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7363 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7364 int n = (i + j) % nr_node_ids;
c5f59f08 7365 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7366
7c16ec58
MT
7367 cpus_complement(*notcovered, *covered);
7368 cpus_and(*tmpmask, *notcovered, *cpu_map);
7369 cpus_and(*tmpmask, *tmpmask, *domainspan);
7370 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7371 break;
7372
7c16ec58
MT
7373 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7374 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7375 continue;
7376
15f0b676
SV
7377 sg = kmalloc_node(sizeof(struct sched_group),
7378 GFP_KERNEL, i);
9c1cfda2
JH
7379 if (!sg) {
7380 printk(KERN_WARNING
7381 "Can not alloc domain group for node %d\n", j);
51888ca2 7382 goto error;
9c1cfda2 7383 }
5517d86b 7384 sg->__cpu_power = 0;
7c16ec58 7385 sg->cpumask = *tmpmask;
51888ca2 7386 sg->next = prev->next;
7c16ec58 7387 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7388 prev->next = sg;
7389 prev = sg;
7390 }
9c1cfda2 7391 }
1da177e4
LT
7392#endif
7393
7394 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7395#ifdef CONFIG_SCHED_SMT
1a20ff27 7396 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7397 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7398
89c4710e 7399 init_sched_groups_power(i, sd);
5c45bf27 7400 }
1da177e4 7401#endif
1e9f28fa 7402#ifdef CONFIG_SCHED_MC
5c45bf27 7403 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7404 struct sched_domain *sd = &per_cpu(core_domains, i);
7405
89c4710e 7406 init_sched_groups_power(i, sd);
5c45bf27
SS
7407 }
7408#endif
1e9f28fa 7409
5c45bf27 7410 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7411 struct sched_domain *sd = &per_cpu(phys_domains, i);
7412
89c4710e 7413 init_sched_groups_power(i, sd);
1da177e4
LT
7414 }
7415
9c1cfda2 7416#ifdef CONFIG_NUMA
076ac2af 7417 for (i = 0; i < nr_node_ids; i++)
08069033 7418 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7419
6711cab4
SS
7420 if (sd_allnodes) {
7421 struct sched_group *sg;
f712c0c7 7422
7c16ec58
MT
7423 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7424 tmpmask);
f712c0c7
SS
7425 init_numa_sched_groups_power(sg);
7426 }
9c1cfda2
JH
7427#endif
7428
1da177e4 7429 /* Attach the domains */
1a20ff27 7430 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7431 struct sched_domain *sd;
7432#ifdef CONFIG_SCHED_SMT
7433 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7434#elif defined(CONFIG_SCHED_MC)
7435 sd = &per_cpu(core_domains, i);
1da177e4
LT
7436#else
7437 sd = &per_cpu(phys_domains, i);
7438#endif
57d885fe 7439 cpu_attach_domain(sd, rd, i);
1da177e4 7440 }
51888ca2 7441
7c16ec58 7442 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7443 return 0;
7444
a616058b 7445#ifdef CONFIG_NUMA
51888ca2 7446error:
7c16ec58
MT
7447 free_sched_groups(cpu_map, tmpmask);
7448 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7449 return -ENOMEM;
a616058b 7450#endif
1da177e4 7451}
029190c5 7452
1d3504fc
HS
7453static int build_sched_domains(const cpumask_t *cpu_map)
7454{
7455 return __build_sched_domains(cpu_map, NULL);
7456}
7457
029190c5
PJ
7458static cpumask_t *doms_cur; /* current sched domains */
7459static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7460static struct sched_domain_attr *dattr_cur;
7461 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7462
7463/*
7464 * Special case: If a kmalloc of a doms_cur partition (array of
7465 * cpumask_t) fails, then fallback to a single sched domain,
7466 * as determined by the single cpumask_t fallback_doms.
7467 */
7468static cpumask_t fallback_doms;
7469
22e52b07
HC
7470void __attribute__((weak)) arch_update_cpu_topology(void)
7471{
7472}
7473
1a20ff27 7474/*
41a2d6cf 7475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7476 * For now this just excludes isolated cpus, but could be used to
7477 * exclude other special cases in the future.
1a20ff27 7478 */
51888ca2 7479static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7480{
7378547f
MM
7481 int err;
7482
22e52b07 7483 arch_update_cpu_topology();
029190c5
PJ
7484 ndoms_cur = 1;
7485 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7486 if (!doms_cur)
7487 doms_cur = &fallback_doms;
7488 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7489 dattr_cur = NULL;
7378547f 7490 err = build_sched_domains(doms_cur);
6382bc90 7491 register_sched_domain_sysctl();
7378547f
MM
7492
7493 return err;
1a20ff27
DG
7494}
7495
7c16ec58
MT
7496static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7497 cpumask_t *tmpmask)
1da177e4 7498{
7c16ec58 7499 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7500}
1da177e4 7501
1a20ff27
DG
7502/*
7503 * Detach sched domains from a group of cpus specified in cpu_map
7504 * These cpus will now be attached to the NULL domain
7505 */
858119e1 7506static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7507{
7c16ec58 7508 cpumask_t tmpmask;
1a20ff27
DG
7509 int i;
7510
6382bc90
MM
7511 unregister_sched_domain_sysctl();
7512
1a20ff27 7513 for_each_cpu_mask(i, *cpu_map)
57d885fe 7514 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7515 synchronize_sched();
7c16ec58 7516 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7517}
7518
1d3504fc
HS
7519/* handle null as "default" */
7520static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7521 struct sched_domain_attr *new, int idx_new)
7522{
7523 struct sched_domain_attr tmp;
7524
7525 /* fast path */
7526 if (!new && !cur)
7527 return 1;
7528
7529 tmp = SD_ATTR_INIT;
7530 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7531 new ? (new + idx_new) : &tmp,
7532 sizeof(struct sched_domain_attr));
7533}
7534
029190c5
PJ
7535/*
7536 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7537 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7538 * doms_new[] to the current sched domain partitioning, doms_cur[].
7539 * It destroys each deleted domain and builds each new domain.
7540 *
7541 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7542 * The masks don't intersect (don't overlap.) We should setup one
7543 * sched domain for each mask. CPUs not in any of the cpumasks will
7544 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7545 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7546 * it as it is.
7547 *
41a2d6cf
IM
7548 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7549 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7550 * failed the kmalloc call, then it can pass in doms_new == NULL,
7551 * and partition_sched_domains() will fallback to the single partition
e761b772 7552 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5
PJ
7553 *
7554 * Call with hotplug lock held
7555 */
1d3504fc
HS
7556void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7557 struct sched_domain_attr *dattr_new)
029190c5
PJ
7558{
7559 int i, j;
7560
712555ee 7561 mutex_lock(&sched_domains_mutex);
a1835615 7562
7378547f
MM
7563 /* always unregister in case we don't destroy any domains */
7564 unregister_sched_domain_sysctl();
7565
e761b772
MK
7566 if (doms_new == NULL)
7567 ndoms_new = 0;
029190c5
PJ
7568
7569 /* Destroy deleted domains */
7570 for (i = 0; i < ndoms_cur; i++) {
7571 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7572 if (cpus_equal(doms_cur[i], doms_new[j])
7573 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7574 goto match1;
7575 }
7576 /* no match - a current sched domain not in new doms_new[] */
7577 detach_destroy_domains(doms_cur + i);
7578match1:
7579 ;
7580 }
7581
e761b772
MK
7582 if (doms_new == NULL) {
7583 ndoms_cur = 0;
7584 ndoms_new = 1;
7585 doms_new = &fallback_doms;
7586 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7587 dattr_new = NULL;
7588 }
7589
029190c5
PJ
7590 /* Build new domains */
7591 for (i = 0; i < ndoms_new; i++) {
7592 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7593 if (cpus_equal(doms_new[i], doms_cur[j])
7594 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7595 goto match2;
7596 }
7597 /* no match - add a new doms_new */
1d3504fc
HS
7598 __build_sched_domains(doms_new + i,
7599 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7600match2:
7601 ;
7602 }
7603
7604 /* Remember the new sched domains */
7605 if (doms_cur != &fallback_doms)
7606 kfree(doms_cur);
1d3504fc 7607 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7608 doms_cur = doms_new;
1d3504fc 7609 dattr_cur = dattr_new;
029190c5 7610 ndoms_cur = ndoms_new;
7378547f
MM
7611
7612 register_sched_domain_sysctl();
a1835615 7613
712555ee 7614 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7615}
7616
5c45bf27 7617#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7618int arch_reinit_sched_domains(void)
5c45bf27 7619{
95402b38 7620 get_online_cpus();
e761b772 7621 rebuild_sched_domains();
95402b38 7622 put_online_cpus();
e761b772 7623 return 0;
5c45bf27
SS
7624}
7625
7626static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7627{
7628 int ret;
7629
7630 if (buf[0] != '0' && buf[0] != '1')
7631 return -EINVAL;
7632
7633 if (smt)
7634 sched_smt_power_savings = (buf[0] == '1');
7635 else
7636 sched_mc_power_savings = (buf[0] == '1');
7637
7638 ret = arch_reinit_sched_domains();
7639
7640 return ret ? ret : count;
7641}
7642
5c45bf27
SS
7643#ifdef CONFIG_SCHED_MC
7644static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7645{
7646 return sprintf(page, "%u\n", sched_mc_power_savings);
7647}
48f24c4d
IM
7648static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7649 const char *buf, size_t count)
5c45bf27
SS
7650{
7651 return sched_power_savings_store(buf, count, 0);
7652}
6707de00
AB
7653static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7654 sched_mc_power_savings_store);
5c45bf27
SS
7655#endif
7656
7657#ifdef CONFIG_SCHED_SMT
7658static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7659{
7660 return sprintf(page, "%u\n", sched_smt_power_savings);
7661}
48f24c4d
IM
7662static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7663 const char *buf, size_t count)
5c45bf27
SS
7664{
7665 return sched_power_savings_store(buf, count, 1);
7666}
6707de00
AB
7667static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7668 sched_smt_power_savings_store);
7669#endif
7670
7671int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7672{
7673 int err = 0;
7674
7675#ifdef CONFIG_SCHED_SMT
7676 if (smt_capable())
7677 err = sysfs_create_file(&cls->kset.kobj,
7678 &attr_sched_smt_power_savings.attr);
7679#endif
7680#ifdef CONFIG_SCHED_MC
7681 if (!err && mc_capable())
7682 err = sysfs_create_file(&cls->kset.kobj,
7683 &attr_sched_mc_power_savings.attr);
7684#endif
7685 return err;
7686}
6d6bc0ad 7687#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7688
e761b772 7689#ifndef CONFIG_CPUSETS
1da177e4 7690/*
e761b772
MK
7691 * Add online and remove offline CPUs from the scheduler domains.
7692 * When cpusets are enabled they take over this function.
1da177e4
LT
7693 */
7694static int update_sched_domains(struct notifier_block *nfb,
7695 unsigned long action, void *hcpu)
e761b772
MK
7696{
7697 switch (action) {
7698 case CPU_ONLINE:
7699 case CPU_ONLINE_FROZEN:
7700 case CPU_DEAD:
7701 case CPU_DEAD_FROZEN:
7702 partition_sched_domains(0, NULL, NULL);
7703 return NOTIFY_OK;
7704
7705 default:
7706 return NOTIFY_DONE;
7707 }
7708}
7709#endif
7710
7711static int update_runtime(struct notifier_block *nfb,
7712 unsigned long action, void *hcpu)
1da177e4 7713{
7def2be1
PZ
7714 int cpu = (int)(long)hcpu;
7715
1da177e4 7716 switch (action) {
1da177e4 7717 case CPU_DOWN_PREPARE:
8bb78442 7718 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7719 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7720 return NOTIFY_OK;
7721
1da177e4 7722 case CPU_DOWN_FAILED:
8bb78442 7723 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7724 case CPU_ONLINE:
8bb78442 7725 case CPU_ONLINE_FROZEN:
7def2be1 7726 enable_runtime(cpu_rq(cpu));
e761b772
MK
7727 return NOTIFY_OK;
7728
1da177e4
LT
7729 default:
7730 return NOTIFY_DONE;
7731 }
1da177e4 7732}
1da177e4
LT
7733
7734void __init sched_init_smp(void)
7735{
5c1e1767
NP
7736 cpumask_t non_isolated_cpus;
7737
434d53b0
MT
7738#if defined(CONFIG_NUMA)
7739 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7740 GFP_KERNEL);
7741 BUG_ON(sched_group_nodes_bycpu == NULL);
7742#endif
95402b38 7743 get_online_cpus();
712555ee 7744 mutex_lock(&sched_domains_mutex);
1a20ff27 7745 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7746 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7747 if (cpus_empty(non_isolated_cpus))
7748 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7749 mutex_unlock(&sched_domains_mutex);
95402b38 7750 put_online_cpus();
e761b772
MK
7751
7752#ifndef CONFIG_CPUSETS
1da177e4
LT
7753 /* XXX: Theoretical race here - CPU may be hotplugged now */
7754 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7755#endif
7756
7757 /* RT runtime code needs to handle some hotplug events */
7758 hotcpu_notifier(update_runtime, 0);
7759
b328ca18 7760 init_hrtick();
5c1e1767
NP
7761
7762 /* Move init over to a non-isolated CPU */
7c16ec58 7763 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7764 BUG();
19978ca6 7765 sched_init_granularity();
1da177e4
LT
7766}
7767#else
7768void __init sched_init_smp(void)
7769{
19978ca6 7770 sched_init_granularity();
1da177e4
LT
7771}
7772#endif /* CONFIG_SMP */
7773
7774int in_sched_functions(unsigned long addr)
7775{
1da177e4
LT
7776 return in_lock_functions(addr) ||
7777 (addr >= (unsigned long)__sched_text_start
7778 && addr < (unsigned long)__sched_text_end);
7779}
7780
a9957449 7781static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7782{
7783 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7784 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7785#ifdef CONFIG_FAIR_GROUP_SCHED
7786 cfs_rq->rq = rq;
7787#endif
67e9fb2a 7788 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7789}
7790
fa85ae24
PZ
7791static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7792{
7793 struct rt_prio_array *array;
7794 int i;
7795
7796 array = &rt_rq->active;
7797 for (i = 0; i < MAX_RT_PRIO; i++) {
7798 INIT_LIST_HEAD(array->queue + i);
7799 __clear_bit(i, array->bitmap);
7800 }
7801 /* delimiter for bitsearch: */
7802 __set_bit(MAX_RT_PRIO, array->bitmap);
7803
052f1dc7 7804#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7805 rt_rq->highest_prio = MAX_RT_PRIO;
7806#endif
fa85ae24
PZ
7807#ifdef CONFIG_SMP
7808 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7809 rt_rq->overloaded = 0;
7810#endif
7811
7812 rt_rq->rt_time = 0;
7813 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7814 rt_rq->rt_runtime = 0;
7815 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7816
052f1dc7 7817#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7818 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7819 rt_rq->rq = rq;
7820#endif
fa85ae24
PZ
7821}
7822
6f505b16 7823#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7824static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7825 struct sched_entity *se, int cpu, int add,
7826 struct sched_entity *parent)
6f505b16 7827{
ec7dc8ac 7828 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7829 tg->cfs_rq[cpu] = cfs_rq;
7830 init_cfs_rq(cfs_rq, rq);
7831 cfs_rq->tg = tg;
7832 if (add)
7833 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7834
7835 tg->se[cpu] = se;
354d60c2
DG
7836 /* se could be NULL for init_task_group */
7837 if (!se)
7838 return;
7839
ec7dc8ac
DG
7840 if (!parent)
7841 se->cfs_rq = &rq->cfs;
7842 else
7843 se->cfs_rq = parent->my_q;
7844
6f505b16
PZ
7845 se->my_q = cfs_rq;
7846 se->load.weight = tg->shares;
e05510d0 7847 se->load.inv_weight = 0;
ec7dc8ac 7848 se->parent = parent;
6f505b16 7849}
052f1dc7 7850#endif
6f505b16 7851
052f1dc7 7852#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7853static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7854 struct sched_rt_entity *rt_se, int cpu, int add,
7855 struct sched_rt_entity *parent)
6f505b16 7856{
ec7dc8ac
DG
7857 struct rq *rq = cpu_rq(cpu);
7858
6f505b16
PZ
7859 tg->rt_rq[cpu] = rt_rq;
7860 init_rt_rq(rt_rq, rq);
7861 rt_rq->tg = tg;
7862 rt_rq->rt_se = rt_se;
ac086bc2 7863 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7864 if (add)
7865 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7866
7867 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7868 if (!rt_se)
7869 return;
7870
ec7dc8ac
DG
7871 if (!parent)
7872 rt_se->rt_rq = &rq->rt;
7873 else
7874 rt_se->rt_rq = parent->my_q;
7875
6f505b16 7876 rt_se->my_q = rt_rq;
ec7dc8ac 7877 rt_se->parent = parent;
6f505b16
PZ
7878 INIT_LIST_HEAD(&rt_se->run_list);
7879}
7880#endif
7881
1da177e4
LT
7882void __init sched_init(void)
7883{
dd41f596 7884 int i, j;
434d53b0
MT
7885 unsigned long alloc_size = 0, ptr;
7886
7887#ifdef CONFIG_FAIR_GROUP_SCHED
7888 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7889#endif
7890#ifdef CONFIG_RT_GROUP_SCHED
7891 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7892#endif
7893#ifdef CONFIG_USER_SCHED
7894 alloc_size *= 2;
434d53b0
MT
7895#endif
7896 /*
7897 * As sched_init() is called before page_alloc is setup,
7898 * we use alloc_bootmem().
7899 */
7900 if (alloc_size) {
5a9d3225 7901 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7902
7903#ifdef CONFIG_FAIR_GROUP_SCHED
7904 init_task_group.se = (struct sched_entity **)ptr;
7905 ptr += nr_cpu_ids * sizeof(void **);
7906
7907 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7908 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7909
7910#ifdef CONFIG_USER_SCHED
7911 root_task_group.se = (struct sched_entity **)ptr;
7912 ptr += nr_cpu_ids * sizeof(void **);
7913
7914 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7915 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7916#endif /* CONFIG_USER_SCHED */
7917#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7918#ifdef CONFIG_RT_GROUP_SCHED
7919 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7920 ptr += nr_cpu_ids * sizeof(void **);
7921
7922 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7923 ptr += nr_cpu_ids * sizeof(void **);
7924
7925#ifdef CONFIG_USER_SCHED
7926 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7927 ptr += nr_cpu_ids * sizeof(void **);
7928
7929 root_task_group.rt_rq = (struct rt_rq **)ptr;
7930 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7931#endif /* CONFIG_USER_SCHED */
7932#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7933 }
dd41f596 7934
57d885fe
GH
7935#ifdef CONFIG_SMP
7936 init_defrootdomain();
7937#endif
7938
d0b27fa7
PZ
7939 init_rt_bandwidth(&def_rt_bandwidth,
7940 global_rt_period(), global_rt_runtime());
7941
7942#ifdef CONFIG_RT_GROUP_SCHED
7943 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7944 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7945#ifdef CONFIG_USER_SCHED
7946 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7947 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7948#endif /* CONFIG_USER_SCHED */
7949#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7950
052f1dc7 7951#ifdef CONFIG_GROUP_SCHED
6f505b16 7952 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7953 INIT_LIST_HEAD(&init_task_group.children);
7954
7955#ifdef CONFIG_USER_SCHED
7956 INIT_LIST_HEAD(&root_task_group.children);
7957 init_task_group.parent = &root_task_group;
7958 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7959#endif /* CONFIG_USER_SCHED */
7960#endif /* CONFIG_GROUP_SCHED */
6f505b16 7961
0a945022 7962 for_each_possible_cpu(i) {
70b97a7f 7963 struct rq *rq;
1da177e4
LT
7964
7965 rq = cpu_rq(i);
7966 spin_lock_init(&rq->lock);
fcb99371 7967 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7968 rq->nr_running = 0;
dd41f596 7969 init_cfs_rq(&rq->cfs, rq);
6f505b16 7970 init_rt_rq(&rq->rt, rq);
dd41f596 7971#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7972 init_task_group.shares = init_task_group_load;
6f505b16 7973 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7974#ifdef CONFIG_CGROUP_SCHED
7975 /*
7976 * How much cpu bandwidth does init_task_group get?
7977 *
7978 * In case of task-groups formed thr' the cgroup filesystem, it
7979 * gets 100% of the cpu resources in the system. This overall
7980 * system cpu resource is divided among the tasks of
7981 * init_task_group and its child task-groups in a fair manner,
7982 * based on each entity's (task or task-group's) weight
7983 * (se->load.weight).
7984 *
7985 * In other words, if init_task_group has 10 tasks of weight
7986 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7987 * then A0's share of the cpu resource is:
7988 *
7989 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7990 *
7991 * We achieve this by letting init_task_group's tasks sit
7992 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7993 */
ec7dc8ac 7994 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7995#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7996 root_task_group.shares = NICE_0_LOAD;
7997 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7998 /*
7999 * In case of task-groups formed thr' the user id of tasks,
8000 * init_task_group represents tasks belonging to root user.
8001 * Hence it forms a sibling of all subsequent groups formed.
8002 * In this case, init_task_group gets only a fraction of overall
8003 * system cpu resource, based on the weight assigned to root
8004 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8005 * by letting tasks of init_task_group sit in a separate cfs_rq
8006 * (init_cfs_rq) and having one entity represent this group of
8007 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8008 */
ec7dc8ac 8009 init_tg_cfs_entry(&init_task_group,
6f505b16 8010 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8011 &per_cpu(init_sched_entity, i), i, 1,
8012 root_task_group.se[i]);
6f505b16 8013
052f1dc7 8014#endif
354d60c2
DG
8015#endif /* CONFIG_FAIR_GROUP_SCHED */
8016
8017 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8018#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8019 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8020#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8021 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8022#elif defined CONFIG_USER_SCHED
eff766a6 8023 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8024 init_tg_rt_entry(&init_task_group,
6f505b16 8025 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8026 &per_cpu(init_sched_rt_entity, i), i, 1,
8027 root_task_group.rt_se[i]);
354d60c2 8028#endif
dd41f596 8029#endif
1da177e4 8030
dd41f596
IM
8031 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8032 rq->cpu_load[j] = 0;
1da177e4 8033#ifdef CONFIG_SMP
41c7ce9a 8034 rq->sd = NULL;
57d885fe 8035 rq->rd = NULL;
1da177e4 8036 rq->active_balance = 0;
dd41f596 8037 rq->next_balance = jiffies;
1da177e4 8038 rq->push_cpu = 0;
0a2966b4 8039 rq->cpu = i;
1f11eb6a 8040 rq->online = 0;
1da177e4
LT
8041 rq->migration_thread = NULL;
8042 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8043 rq_attach_root(rq, &def_root_domain);
1da177e4 8044#endif
8f4d37ec 8045 init_rq_hrtick(rq);
1da177e4 8046 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8047 }
8048
2dd73a4f 8049 set_load_weight(&init_task);
b50f60ce 8050
e107be36
AK
8051#ifdef CONFIG_PREEMPT_NOTIFIERS
8052 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8053#endif
8054
c9819f45 8055#ifdef CONFIG_SMP
962cf36c 8056 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8057#endif
8058
b50f60ce
HC
8059#ifdef CONFIG_RT_MUTEXES
8060 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8061#endif
8062
1da177e4
LT
8063 /*
8064 * The boot idle thread does lazy MMU switching as well:
8065 */
8066 atomic_inc(&init_mm.mm_count);
8067 enter_lazy_tlb(&init_mm, current);
8068
8069 /*
8070 * Make us the idle thread. Technically, schedule() should not be
8071 * called from this thread, however somewhere below it might be,
8072 * but because we are the idle thread, we just pick up running again
8073 * when this runqueue becomes "idle".
8074 */
8075 init_idle(current, smp_processor_id());
dd41f596
IM
8076 /*
8077 * During early bootup we pretend to be a normal task:
8078 */
8079 current->sched_class = &fair_sched_class;
6892b75e
IM
8080
8081 scheduler_running = 1;
1da177e4
LT
8082}
8083
8084#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8085void __might_sleep(char *file, int line)
8086{
48f24c4d 8087#ifdef in_atomic
1da177e4
LT
8088 static unsigned long prev_jiffy; /* ratelimiting */
8089
8090 if ((in_atomic() || irqs_disabled()) &&
8091 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8092 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8093 return;
8094 prev_jiffy = jiffies;
91368d73 8095 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8096 " context at %s:%d\n", file, line);
8097 printk("in_atomic():%d, irqs_disabled():%d\n",
8098 in_atomic(), irqs_disabled());
a4c410f0 8099 debug_show_held_locks(current);
3117df04
IM
8100 if (irqs_disabled())
8101 print_irqtrace_events(current);
1da177e4
LT
8102 dump_stack();
8103 }
8104#endif
8105}
8106EXPORT_SYMBOL(__might_sleep);
8107#endif
8108
8109#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8110static void normalize_task(struct rq *rq, struct task_struct *p)
8111{
8112 int on_rq;
3e51f33f 8113
3a5e4dc1
AK
8114 update_rq_clock(rq);
8115 on_rq = p->se.on_rq;
8116 if (on_rq)
8117 deactivate_task(rq, p, 0);
8118 __setscheduler(rq, p, SCHED_NORMAL, 0);
8119 if (on_rq) {
8120 activate_task(rq, p, 0);
8121 resched_task(rq->curr);
8122 }
8123}
8124
1da177e4
LT
8125void normalize_rt_tasks(void)
8126{
a0f98a1c 8127 struct task_struct *g, *p;
1da177e4 8128 unsigned long flags;
70b97a7f 8129 struct rq *rq;
1da177e4 8130
4cf5d77a 8131 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8132 do_each_thread(g, p) {
178be793
IM
8133 /*
8134 * Only normalize user tasks:
8135 */
8136 if (!p->mm)
8137 continue;
8138
6cfb0d5d 8139 p->se.exec_start = 0;
6cfb0d5d 8140#ifdef CONFIG_SCHEDSTATS
dd41f596 8141 p->se.wait_start = 0;
dd41f596 8142 p->se.sleep_start = 0;
dd41f596 8143 p->se.block_start = 0;
6cfb0d5d 8144#endif
dd41f596
IM
8145
8146 if (!rt_task(p)) {
8147 /*
8148 * Renice negative nice level userspace
8149 * tasks back to 0:
8150 */
8151 if (TASK_NICE(p) < 0 && p->mm)
8152 set_user_nice(p, 0);
1da177e4 8153 continue;
dd41f596 8154 }
1da177e4 8155
4cf5d77a 8156 spin_lock(&p->pi_lock);
b29739f9 8157 rq = __task_rq_lock(p);
1da177e4 8158
178be793 8159 normalize_task(rq, p);
3a5e4dc1 8160
b29739f9 8161 __task_rq_unlock(rq);
4cf5d77a 8162 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8163 } while_each_thread(g, p);
8164
4cf5d77a 8165 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8166}
8167
8168#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8169
8170#ifdef CONFIG_IA64
8171/*
8172 * These functions are only useful for the IA64 MCA handling.
8173 *
8174 * They can only be called when the whole system has been
8175 * stopped - every CPU needs to be quiescent, and no scheduling
8176 * activity can take place. Using them for anything else would
8177 * be a serious bug, and as a result, they aren't even visible
8178 * under any other configuration.
8179 */
8180
8181/**
8182 * curr_task - return the current task for a given cpu.
8183 * @cpu: the processor in question.
8184 *
8185 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8186 */
36c8b586 8187struct task_struct *curr_task(int cpu)
1df5c10a
LT
8188{
8189 return cpu_curr(cpu);
8190}
8191
8192/**
8193 * set_curr_task - set the current task for a given cpu.
8194 * @cpu: the processor in question.
8195 * @p: the task pointer to set.
8196 *
8197 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8198 * are serviced on a separate stack. It allows the architecture to switch the
8199 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8200 * must be called with all CPU's synchronized, and interrupts disabled, the
8201 * and caller must save the original value of the current task (see
8202 * curr_task() above) and restore that value before reenabling interrupts and
8203 * re-starting the system.
8204 *
8205 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8206 */
36c8b586 8207void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8208{
8209 cpu_curr(cpu) = p;
8210}
8211
8212#endif
29f59db3 8213
bccbe08a
PZ
8214#ifdef CONFIG_FAIR_GROUP_SCHED
8215static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8216{
8217 int i;
8218
8219 for_each_possible_cpu(i) {
8220 if (tg->cfs_rq)
8221 kfree(tg->cfs_rq[i]);
8222 if (tg->se)
8223 kfree(tg->se[i]);
6f505b16
PZ
8224 }
8225
8226 kfree(tg->cfs_rq);
8227 kfree(tg->se);
6f505b16
PZ
8228}
8229
ec7dc8ac
DG
8230static
8231int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8232{
29f59db3 8233 struct cfs_rq *cfs_rq;
ec7dc8ac 8234 struct sched_entity *se, *parent_se;
9b5b7751 8235 struct rq *rq;
29f59db3
SV
8236 int i;
8237
434d53b0 8238 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8239 if (!tg->cfs_rq)
8240 goto err;
434d53b0 8241 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8242 if (!tg->se)
8243 goto err;
052f1dc7
PZ
8244
8245 tg->shares = NICE_0_LOAD;
29f59db3
SV
8246
8247 for_each_possible_cpu(i) {
9b5b7751 8248 rq = cpu_rq(i);
29f59db3 8249
6f505b16
PZ
8250 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8251 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8252 if (!cfs_rq)
8253 goto err;
8254
6f505b16
PZ
8255 se = kmalloc_node(sizeof(struct sched_entity),
8256 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8257 if (!se)
8258 goto err;
8259
ec7dc8ac
DG
8260 parent_se = parent ? parent->se[i] : NULL;
8261 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8262 }
8263
8264 return 1;
8265
8266 err:
8267 return 0;
8268}
8269
8270static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8271{
8272 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8273 &cpu_rq(cpu)->leaf_cfs_rq_list);
8274}
8275
8276static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8277{
8278 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8279}
6d6bc0ad 8280#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8281static inline void free_fair_sched_group(struct task_group *tg)
8282{
8283}
8284
ec7dc8ac
DG
8285static inline
8286int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8287{
8288 return 1;
8289}
8290
8291static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8292{
8293}
8294
8295static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8296{
8297}
6d6bc0ad 8298#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8299
8300#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8301static void free_rt_sched_group(struct task_group *tg)
8302{
8303 int i;
8304
d0b27fa7
PZ
8305 destroy_rt_bandwidth(&tg->rt_bandwidth);
8306
bccbe08a
PZ
8307 for_each_possible_cpu(i) {
8308 if (tg->rt_rq)
8309 kfree(tg->rt_rq[i]);
8310 if (tg->rt_se)
8311 kfree(tg->rt_se[i]);
8312 }
8313
8314 kfree(tg->rt_rq);
8315 kfree(tg->rt_se);
8316}
8317
ec7dc8ac
DG
8318static
8319int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8320{
8321 struct rt_rq *rt_rq;
ec7dc8ac 8322 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8323 struct rq *rq;
8324 int i;
8325
434d53b0 8326 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8327 if (!tg->rt_rq)
8328 goto err;
434d53b0 8329 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8330 if (!tg->rt_se)
8331 goto err;
8332
d0b27fa7
PZ
8333 init_rt_bandwidth(&tg->rt_bandwidth,
8334 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8335
8336 for_each_possible_cpu(i) {
8337 rq = cpu_rq(i);
8338
6f505b16
PZ
8339 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8340 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8341 if (!rt_rq)
8342 goto err;
29f59db3 8343
6f505b16
PZ
8344 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8345 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8346 if (!rt_se)
8347 goto err;
29f59db3 8348
ec7dc8ac
DG
8349 parent_se = parent ? parent->rt_se[i] : NULL;
8350 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8351 }
8352
bccbe08a
PZ
8353 return 1;
8354
8355 err:
8356 return 0;
8357}
8358
8359static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8360{
8361 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8362 &cpu_rq(cpu)->leaf_rt_rq_list);
8363}
8364
8365static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8366{
8367 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8368}
6d6bc0ad 8369#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8370static inline void free_rt_sched_group(struct task_group *tg)
8371{
8372}
8373
ec7dc8ac
DG
8374static inline
8375int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8376{
8377 return 1;
8378}
8379
8380static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8381{
8382}
8383
8384static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8385{
8386}
6d6bc0ad 8387#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8388
d0b27fa7 8389#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8390static void free_sched_group(struct task_group *tg)
8391{
8392 free_fair_sched_group(tg);
8393 free_rt_sched_group(tg);
8394 kfree(tg);
8395}
8396
8397/* allocate runqueue etc for a new task group */
ec7dc8ac 8398struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8399{
8400 struct task_group *tg;
8401 unsigned long flags;
8402 int i;
8403
8404 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8405 if (!tg)
8406 return ERR_PTR(-ENOMEM);
8407
ec7dc8ac 8408 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8409 goto err;
8410
ec7dc8ac 8411 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8412 goto err;
8413
8ed36996 8414 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8415 for_each_possible_cpu(i) {
bccbe08a
PZ
8416 register_fair_sched_group(tg, i);
8417 register_rt_sched_group(tg, i);
9b5b7751 8418 }
6f505b16 8419 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8420
8421 WARN_ON(!parent); /* root should already exist */
8422
8423 tg->parent = parent;
8424 list_add_rcu(&tg->siblings, &parent->children);
8425 INIT_LIST_HEAD(&tg->children);
8ed36996 8426 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8427
9b5b7751 8428 return tg;
29f59db3
SV
8429
8430err:
6f505b16 8431 free_sched_group(tg);
29f59db3
SV
8432 return ERR_PTR(-ENOMEM);
8433}
8434
9b5b7751 8435/* rcu callback to free various structures associated with a task group */
6f505b16 8436static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8437{
29f59db3 8438 /* now it should be safe to free those cfs_rqs */
6f505b16 8439 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8440}
8441
9b5b7751 8442/* Destroy runqueue etc associated with a task group */
4cf86d77 8443void sched_destroy_group(struct task_group *tg)
29f59db3 8444{
8ed36996 8445 unsigned long flags;
9b5b7751 8446 int i;
29f59db3 8447
8ed36996 8448 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8449 for_each_possible_cpu(i) {
bccbe08a
PZ
8450 unregister_fair_sched_group(tg, i);
8451 unregister_rt_sched_group(tg, i);
9b5b7751 8452 }
6f505b16 8453 list_del_rcu(&tg->list);
f473aa5e 8454 list_del_rcu(&tg->siblings);
8ed36996 8455 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8456
9b5b7751 8457 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8458 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8459}
8460
9b5b7751 8461/* change task's runqueue when it moves between groups.
3a252015
IM
8462 * The caller of this function should have put the task in its new group
8463 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8464 * reflect its new group.
9b5b7751
SV
8465 */
8466void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8467{
8468 int on_rq, running;
8469 unsigned long flags;
8470 struct rq *rq;
8471
8472 rq = task_rq_lock(tsk, &flags);
8473
29f59db3
SV
8474 update_rq_clock(rq);
8475
051a1d1a 8476 running = task_current(rq, tsk);
29f59db3
SV
8477 on_rq = tsk->se.on_rq;
8478
0e1f3483 8479 if (on_rq)
29f59db3 8480 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8481 if (unlikely(running))
8482 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8483
6f505b16 8484 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8485
810b3817
PZ
8486#ifdef CONFIG_FAIR_GROUP_SCHED
8487 if (tsk->sched_class->moved_group)
8488 tsk->sched_class->moved_group(tsk);
8489#endif
8490
0e1f3483
HS
8491 if (unlikely(running))
8492 tsk->sched_class->set_curr_task(rq);
8493 if (on_rq)
7074badb 8494 enqueue_task(rq, tsk, 0);
29f59db3 8495
29f59db3
SV
8496 task_rq_unlock(rq, &flags);
8497}
6d6bc0ad 8498#endif /* CONFIG_GROUP_SCHED */
29f59db3 8499
052f1dc7 8500#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8501static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8502{
8503 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8504 int on_rq;
8505
29f59db3 8506 on_rq = se->on_rq;
62fb1851 8507 if (on_rq)
29f59db3
SV
8508 dequeue_entity(cfs_rq, se, 0);
8509
8510 se->load.weight = shares;
e05510d0 8511 se->load.inv_weight = 0;
29f59db3 8512
62fb1851 8513 if (on_rq)
29f59db3 8514 enqueue_entity(cfs_rq, se, 0);
c09595f6 8515}
62fb1851 8516
c09595f6
PZ
8517static void set_se_shares(struct sched_entity *se, unsigned long shares)
8518{
8519 struct cfs_rq *cfs_rq = se->cfs_rq;
8520 struct rq *rq = cfs_rq->rq;
8521 unsigned long flags;
8522
8523 spin_lock_irqsave(&rq->lock, flags);
8524 __set_se_shares(se, shares);
8525 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8526}
8527
8ed36996
PZ
8528static DEFINE_MUTEX(shares_mutex);
8529
4cf86d77 8530int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8531{
8532 int i;
8ed36996 8533 unsigned long flags;
c61935fd 8534
ec7dc8ac
DG
8535 /*
8536 * We can't change the weight of the root cgroup.
8537 */
8538 if (!tg->se[0])
8539 return -EINVAL;
8540
18d95a28
PZ
8541 if (shares < MIN_SHARES)
8542 shares = MIN_SHARES;
cb4ad1ff
MX
8543 else if (shares > MAX_SHARES)
8544 shares = MAX_SHARES;
62fb1851 8545
8ed36996 8546 mutex_lock(&shares_mutex);
9b5b7751 8547 if (tg->shares == shares)
5cb350ba 8548 goto done;
29f59db3 8549
8ed36996 8550 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8551 for_each_possible_cpu(i)
8552 unregister_fair_sched_group(tg, i);
f473aa5e 8553 list_del_rcu(&tg->siblings);
8ed36996 8554 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8555
8556 /* wait for any ongoing reference to this group to finish */
8557 synchronize_sched();
8558
8559 /*
8560 * Now we are free to modify the group's share on each cpu
8561 * w/o tripping rebalance_share or load_balance_fair.
8562 */
9b5b7751 8563 tg->shares = shares;
c09595f6
PZ
8564 for_each_possible_cpu(i) {
8565 /*
8566 * force a rebalance
8567 */
8568 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8569 set_se_shares(tg->se[i], shares);
c09595f6 8570 }
29f59db3 8571
6b2d7700
SV
8572 /*
8573 * Enable load balance activity on this group, by inserting it back on
8574 * each cpu's rq->leaf_cfs_rq_list.
8575 */
8ed36996 8576 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8577 for_each_possible_cpu(i)
8578 register_fair_sched_group(tg, i);
f473aa5e 8579 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8580 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8581done:
8ed36996 8582 mutex_unlock(&shares_mutex);
9b5b7751 8583 return 0;
29f59db3
SV
8584}
8585
5cb350ba
DG
8586unsigned long sched_group_shares(struct task_group *tg)
8587{
8588 return tg->shares;
8589}
052f1dc7 8590#endif
5cb350ba 8591
052f1dc7 8592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8593/*
9f0c1e56 8594 * Ensure that the real time constraints are schedulable.
6f505b16 8595 */
9f0c1e56
PZ
8596static DEFINE_MUTEX(rt_constraints_mutex);
8597
8598static unsigned long to_ratio(u64 period, u64 runtime)
8599{
8600 if (runtime == RUNTIME_INF)
8601 return 1ULL << 16;
8602
6f6d6a1a 8603 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8604}
8605
b40b2e8e
PZ
8606#ifdef CONFIG_CGROUP_SCHED
8607static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8608{
10b612f4 8609 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8610 unsigned long total = 0;
8611
8612 if (!parent) {
8613 if (global_rt_period() < period)
8614 return 0;
8615
8616 return to_ratio(period, runtime) <
8617 to_ratio(global_rt_period(), global_rt_runtime());
8618 }
8619
8620 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8621 return 0;
8622
8623 rcu_read_lock();
8624 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8625 if (tgi == tg)
8626 continue;
8627
8628 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8629 tgi->rt_bandwidth.rt_runtime);
8630 }
8631 rcu_read_unlock();
8632
10b612f4 8633 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8634 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8635 parent->rt_bandwidth.rt_runtime);
8636}
8637#elif defined CONFIG_USER_SCHED
9f0c1e56 8638static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8639{
8640 struct task_group *tgi;
8641 unsigned long total = 0;
9f0c1e56 8642 unsigned long global_ratio =
d0b27fa7 8643 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8644
8645 rcu_read_lock();
9f0c1e56
PZ
8646 list_for_each_entry_rcu(tgi, &task_groups, list) {
8647 if (tgi == tg)
8648 continue;
6f505b16 8649
d0b27fa7
PZ
8650 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8651 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8652 }
8653 rcu_read_unlock();
6f505b16 8654
9f0c1e56 8655 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8656}
b40b2e8e 8657#endif
6f505b16 8658
521f1a24
DG
8659/* Must be called with tasklist_lock held */
8660static inline int tg_has_rt_tasks(struct task_group *tg)
8661{
8662 struct task_struct *g, *p;
8663 do_each_thread(g, p) {
8664 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8665 return 1;
8666 } while_each_thread(g, p);
8667 return 0;
8668}
8669
d0b27fa7
PZ
8670static int tg_set_bandwidth(struct task_group *tg,
8671 u64 rt_period, u64 rt_runtime)
6f505b16 8672{
ac086bc2 8673 int i, err = 0;
9f0c1e56 8674
9f0c1e56 8675 mutex_lock(&rt_constraints_mutex);
521f1a24 8676 read_lock(&tasklist_lock);
ac086bc2 8677 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8678 err = -EBUSY;
8679 goto unlock;
8680 }
9f0c1e56
PZ
8681 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8682 err = -EINVAL;
8683 goto unlock;
8684 }
ac086bc2
PZ
8685
8686 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8687 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8688 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8689
8690 for_each_possible_cpu(i) {
8691 struct rt_rq *rt_rq = tg->rt_rq[i];
8692
8693 spin_lock(&rt_rq->rt_runtime_lock);
8694 rt_rq->rt_runtime = rt_runtime;
8695 spin_unlock(&rt_rq->rt_runtime_lock);
8696 }
8697 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8698 unlock:
521f1a24 8699 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8700 mutex_unlock(&rt_constraints_mutex);
8701
8702 return err;
6f505b16
PZ
8703}
8704
d0b27fa7
PZ
8705int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8706{
8707 u64 rt_runtime, rt_period;
8708
8709 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8710 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8711 if (rt_runtime_us < 0)
8712 rt_runtime = RUNTIME_INF;
8713
8714 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8715}
8716
9f0c1e56
PZ
8717long sched_group_rt_runtime(struct task_group *tg)
8718{
8719 u64 rt_runtime_us;
8720
d0b27fa7 8721 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8722 return -1;
8723
d0b27fa7 8724 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8725 do_div(rt_runtime_us, NSEC_PER_USEC);
8726 return rt_runtime_us;
8727}
d0b27fa7
PZ
8728
8729int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8730{
8731 u64 rt_runtime, rt_period;
8732
8733 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8734 rt_runtime = tg->rt_bandwidth.rt_runtime;
8735
619b0488
R
8736 if (rt_period == 0)
8737 return -EINVAL;
8738
d0b27fa7
PZ
8739 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8740}
8741
8742long sched_group_rt_period(struct task_group *tg)
8743{
8744 u64 rt_period_us;
8745
8746 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8747 do_div(rt_period_us, NSEC_PER_USEC);
8748 return rt_period_us;
8749}
8750
8751static int sched_rt_global_constraints(void)
8752{
10b612f4
PZ
8753 struct task_group *tg = &root_task_group;
8754 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8755 int ret = 0;
8756
10b612f4
PZ
8757 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8758 rt_runtime = tg->rt_bandwidth.rt_runtime;
8759
d0b27fa7 8760 mutex_lock(&rt_constraints_mutex);
10b612f4 8761 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8762 ret = -EINVAL;
8763 mutex_unlock(&rt_constraints_mutex);
8764
8765 return ret;
8766}
6d6bc0ad 8767#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8768static int sched_rt_global_constraints(void)
8769{
ac086bc2
PZ
8770 unsigned long flags;
8771 int i;
8772
8773 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8774 for_each_possible_cpu(i) {
8775 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8776
8777 spin_lock(&rt_rq->rt_runtime_lock);
8778 rt_rq->rt_runtime = global_rt_runtime();
8779 spin_unlock(&rt_rq->rt_runtime_lock);
8780 }
8781 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8782
d0b27fa7
PZ
8783 return 0;
8784}
6d6bc0ad 8785#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8786
8787int sched_rt_handler(struct ctl_table *table, int write,
8788 struct file *filp, void __user *buffer, size_t *lenp,
8789 loff_t *ppos)
8790{
8791 int ret;
8792 int old_period, old_runtime;
8793 static DEFINE_MUTEX(mutex);
8794
8795 mutex_lock(&mutex);
8796 old_period = sysctl_sched_rt_period;
8797 old_runtime = sysctl_sched_rt_runtime;
8798
8799 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8800
8801 if (!ret && write) {
8802 ret = sched_rt_global_constraints();
8803 if (ret) {
8804 sysctl_sched_rt_period = old_period;
8805 sysctl_sched_rt_runtime = old_runtime;
8806 } else {
8807 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8808 def_rt_bandwidth.rt_period =
8809 ns_to_ktime(global_rt_period());
8810 }
8811 }
8812 mutex_unlock(&mutex);
8813
8814 return ret;
8815}
68318b8e 8816
052f1dc7 8817#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8818
8819/* return corresponding task_group object of a cgroup */
2b01dfe3 8820static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8821{
2b01dfe3
PM
8822 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8823 struct task_group, css);
68318b8e
SV
8824}
8825
8826static struct cgroup_subsys_state *
2b01dfe3 8827cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8828{
ec7dc8ac 8829 struct task_group *tg, *parent;
68318b8e 8830
2b01dfe3 8831 if (!cgrp->parent) {
68318b8e 8832 /* This is early initialization for the top cgroup */
2b01dfe3 8833 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8834 return &init_task_group.css;
8835 }
8836
ec7dc8ac
DG
8837 parent = cgroup_tg(cgrp->parent);
8838 tg = sched_create_group(parent);
68318b8e
SV
8839 if (IS_ERR(tg))
8840 return ERR_PTR(-ENOMEM);
8841
8842 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8843 tg->css.cgroup = cgrp;
68318b8e
SV
8844
8845 return &tg->css;
8846}
8847
41a2d6cf
IM
8848static void
8849cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8850{
2b01dfe3 8851 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8852
8853 sched_destroy_group(tg);
8854}
8855
41a2d6cf
IM
8856static int
8857cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8858 struct task_struct *tsk)
68318b8e 8859{
b68aa230
PZ
8860#ifdef CONFIG_RT_GROUP_SCHED
8861 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8862 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8863 return -EINVAL;
8864#else
68318b8e
SV
8865 /* We don't support RT-tasks being in separate groups */
8866 if (tsk->sched_class != &fair_sched_class)
8867 return -EINVAL;
b68aa230 8868#endif
68318b8e
SV
8869
8870 return 0;
8871}
8872
8873static void
2b01dfe3 8874cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8875 struct cgroup *old_cont, struct task_struct *tsk)
8876{
8877 sched_move_task(tsk);
8878}
8879
052f1dc7 8880#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8881static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8882 u64 shareval)
68318b8e 8883{
2b01dfe3 8884 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8885}
8886
f4c753b7 8887static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8888{
2b01dfe3 8889 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8890
8891 return (u64) tg->shares;
8892}
6d6bc0ad 8893#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8894
052f1dc7 8895#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8896static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8897 s64 val)
6f505b16 8898{
06ecb27c 8899 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8900}
8901
06ecb27c 8902static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8903{
06ecb27c 8904 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8905}
d0b27fa7
PZ
8906
8907static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8908 u64 rt_period_us)
8909{
8910 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8911}
8912
8913static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8914{
8915 return sched_group_rt_period(cgroup_tg(cgrp));
8916}
6d6bc0ad 8917#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8918
fe5c7cc2 8919static struct cftype cpu_files[] = {
052f1dc7 8920#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8921 {
8922 .name = "shares",
f4c753b7
PM
8923 .read_u64 = cpu_shares_read_u64,
8924 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8925 },
052f1dc7
PZ
8926#endif
8927#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8928 {
9f0c1e56 8929 .name = "rt_runtime_us",
06ecb27c
PM
8930 .read_s64 = cpu_rt_runtime_read,
8931 .write_s64 = cpu_rt_runtime_write,
6f505b16 8932 },
d0b27fa7
PZ
8933 {
8934 .name = "rt_period_us",
f4c753b7
PM
8935 .read_u64 = cpu_rt_period_read_uint,
8936 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8937 },
052f1dc7 8938#endif
68318b8e
SV
8939};
8940
8941static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8942{
fe5c7cc2 8943 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8944}
8945
8946struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8947 .name = "cpu",
8948 .create = cpu_cgroup_create,
8949 .destroy = cpu_cgroup_destroy,
8950 .can_attach = cpu_cgroup_can_attach,
8951 .attach = cpu_cgroup_attach,
8952 .populate = cpu_cgroup_populate,
8953 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8954 .early_init = 1,
8955};
8956
052f1dc7 8957#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8958
8959#ifdef CONFIG_CGROUP_CPUACCT
8960
8961/*
8962 * CPU accounting code for task groups.
8963 *
8964 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8965 * (balbir@in.ibm.com).
8966 */
8967
8968/* track cpu usage of a group of tasks */
8969struct cpuacct {
8970 struct cgroup_subsys_state css;
8971 /* cpuusage holds pointer to a u64-type object on every cpu */
8972 u64 *cpuusage;
8973};
8974
8975struct cgroup_subsys cpuacct_subsys;
8976
8977/* return cpu accounting group corresponding to this container */
32cd756a 8978static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8979{
32cd756a 8980 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8981 struct cpuacct, css);
8982}
8983
8984/* return cpu accounting group to which this task belongs */
8985static inline struct cpuacct *task_ca(struct task_struct *tsk)
8986{
8987 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8988 struct cpuacct, css);
8989}
8990
8991/* create a new cpu accounting group */
8992static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8993 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8994{
8995 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8996
8997 if (!ca)
8998 return ERR_PTR(-ENOMEM);
8999
9000 ca->cpuusage = alloc_percpu(u64);
9001 if (!ca->cpuusage) {
9002 kfree(ca);
9003 return ERR_PTR(-ENOMEM);
9004 }
9005
9006 return &ca->css;
9007}
9008
9009/* destroy an existing cpu accounting group */
41a2d6cf 9010static void
32cd756a 9011cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9012{
32cd756a 9013 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9014
9015 free_percpu(ca->cpuusage);
9016 kfree(ca);
9017}
9018
9019/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9020static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9021{
32cd756a 9022 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9023 u64 totalcpuusage = 0;
9024 int i;
9025
9026 for_each_possible_cpu(i) {
9027 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9028
9029 /*
9030 * Take rq->lock to make 64-bit addition safe on 32-bit
9031 * platforms.
9032 */
9033 spin_lock_irq(&cpu_rq(i)->lock);
9034 totalcpuusage += *cpuusage;
9035 spin_unlock_irq(&cpu_rq(i)->lock);
9036 }
9037
9038 return totalcpuusage;
9039}
9040
0297b803
DG
9041static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9042 u64 reset)
9043{
9044 struct cpuacct *ca = cgroup_ca(cgrp);
9045 int err = 0;
9046 int i;
9047
9048 if (reset) {
9049 err = -EINVAL;
9050 goto out;
9051 }
9052
9053 for_each_possible_cpu(i) {
9054 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9055
9056 spin_lock_irq(&cpu_rq(i)->lock);
9057 *cpuusage = 0;
9058 spin_unlock_irq(&cpu_rq(i)->lock);
9059 }
9060out:
9061 return err;
9062}
9063
d842de87
SV
9064static struct cftype files[] = {
9065 {
9066 .name = "usage",
f4c753b7
PM
9067 .read_u64 = cpuusage_read,
9068 .write_u64 = cpuusage_write,
d842de87
SV
9069 },
9070};
9071
32cd756a 9072static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9073{
32cd756a 9074 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9075}
9076
9077/*
9078 * charge this task's execution time to its accounting group.
9079 *
9080 * called with rq->lock held.
9081 */
9082static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9083{
9084 struct cpuacct *ca;
9085
9086 if (!cpuacct_subsys.active)
9087 return;
9088
9089 ca = task_ca(tsk);
9090 if (ca) {
9091 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9092
9093 *cpuusage += cputime;
9094 }
9095}
9096
9097struct cgroup_subsys cpuacct_subsys = {
9098 .name = "cpuacct",
9099 .create = cpuacct_create,
9100 .destroy = cpuacct_destroy,
9101 .populate = cpuacct_populate,
9102 .subsys_id = cpuacct_subsys_id,
9103};
9104#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.256598 seconds and 5 git commands to generate.