[PATCH] sched: less locking
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
48c08d3f 169static unsigned int task_timeslice(task_t *p)
1da177e4
LT
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
7897986b 209 unsigned long cpu_load[3];
1da177e4
LT
210#endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229#ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238#endif
239
240#ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258#endif
259};
260
261static DEFINE_PER_CPU(struct runqueue, runqueues);
262
674311d5
NP
263/*
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 265 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
266 *
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
269 */
1da177e4 270#define for_each_domain(cpu, domain) \
674311d5 271for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
272
273#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274#define this_rq() (&__get_cpu_var(runqueues))
275#define task_rq(p) cpu_rq(task_cpu(p))
276#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
277
1da177e4 278#ifndef prepare_arch_switch
4866cde0
NP
279# define prepare_arch_switch(next) do { } while (0)
280#endif
281#ifndef finish_arch_switch
282# define finish_arch_switch(prev) do { } while (0)
283#endif
284
285#ifndef __ARCH_WANT_UNLOCKED_CTXSW
286static inline int task_running(runqueue_t *rq, task_t *p)
287{
288 return rq->curr == p;
289}
290
291static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292{
293}
294
295static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296{
297 spin_unlock_irq(&rq->lock);
298}
299
300#else /* __ARCH_WANT_UNLOCKED_CTXSW */
301static inline int task_running(runqueue_t *rq, task_t *p)
302{
303#ifdef CONFIG_SMP
304 return p->oncpu;
305#else
306 return rq->curr == p;
307#endif
308}
309
310static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311{
312#ifdef CONFIG_SMP
313 /*
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
317 */
318 next->oncpu = 1;
319#endif
320#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322#else
323 spin_unlock(&rq->lock);
324#endif
325}
326
327static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328{
329#ifdef CONFIG_SMP
330 /*
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
334 */
335 smp_wmb();
336 prev->oncpu = 0;
337#endif
338#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
1da177e4 340#endif
4866cde0
NP
341}
342#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
343
344/*
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
348 */
349static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
351{
352 struct runqueue *rq;
353
354repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
361 }
362 return rq;
363}
364
365static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
367{
368 spin_unlock_irqrestore(&rq->lock, *flags);
369}
370
371#ifdef CONFIG_SCHEDSTATS
372/*
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
375 */
68767a0a 376#define SCHEDSTAT_VERSION 12
1da177e4
LT
377
378static int show_schedstat(struct seq_file *seq, void *v)
379{
380 int cpu;
381
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386#ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389#endif
390
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401 seq_printf(seq, "\n");
402
403#ifdef CONFIG_SMP
404 /* domain-specific stats */
674311d5 405 preempt_disable();
1da177e4
LT
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
409
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
423 }
68767a0a 424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429 }
674311d5 430 preempt_enable();
1da177e4
LT
431#endif
432 }
433 return 0;
434}
435
436static int schedstat_open(struct inode *inode, struct file *file)
437{
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
442
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
453}
454
455struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
460};
461
462# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464#else /* !CONFIG_SCHEDSTATS */
465# define schedstat_inc(rq, field) do { } while (0)
466# define schedstat_add(rq, field, amt) do { } while (0)
467#endif
468
469/*
470 * rq_lock - lock a given runqueue and disable interrupts.
471 */
472static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
474{
475 runqueue_t *rq;
476
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
480
481 return rq;
482}
483
1da177e4
LT
484#ifdef CONFIG_SCHEDSTATS
485/*
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
493 *
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
499 */
500static inline void sched_info_dequeued(task_t *t)
501{
502 t->sched_info.last_queued = 0;
503}
504
505/*
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
509 */
510static inline void sched_info_arrive(task_t *t)
511{
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
514
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
521
522 if (!rq)
523 return;
524
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
527}
528
529/*
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
539 *
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
543 */
544static inline void sched_info_queued(task_t *t)
545{
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
548}
549
550/*
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
553 */
554static inline void sched_info_depart(task_t *t)
555{
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559 t->sched_info.cpu_time += diff;
560
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
563}
564
565/*
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
569 */
570static inline void sched_info_switch(task_t *prev, task_t *next)
571{
572 struct runqueue *rq = task_rq(prev);
573
574 /*
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
578 */
579 if (prev != rq->idle)
580 sched_info_depart(prev);
581
582 if (next != rq->idle)
583 sched_info_arrive(next);
584}
585#else
586#define sched_info_queued(t) do { } while (0)
587#define sched_info_switch(t, next) do { } while (0)
588#endif /* CONFIG_SCHEDSTATS */
589
590/*
591 * Adding/removing a task to/from a priority array:
592 */
593static void dequeue_task(struct task_struct *p, prio_array_t *array)
594{
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
599}
600
601static void enqueue_task(struct task_struct *p, prio_array_t *array)
602{
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
608}
609
610/*
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
613 */
614static void requeue_task(struct task_struct *p, prio_array_t *array)
615{
616 list_move_tail(&p->run_list, array->queue + p->prio);
617}
618
619static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620{
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
625}
626
627/*
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
630 *
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
633 *
634 * We use 25% of the full 0...39 priority range so that:
635 *
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638 *
639 * Both properties are important to certain workloads.
640 */
641static int effective_prio(task_t *p)
642{
643 int bonus, prio;
644
645 if (rt_task(p))
646 return p->prio;
647
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
656}
657
658/*
659 * __activate_task - move a task to the runqueue.
660 */
661static inline void __activate_task(task_t *p, runqueue_t *rq)
662{
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
665}
666
667/*
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
669 */
670static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671{
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
674}
675
a3464a10 676static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
677{
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
681
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
686
687 if (likely(sleep_time > 0)) {
688 /*
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
693 */
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
699 /*
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
702 */
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705 /*
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
709 */
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
717 }
718 }
719
720 /*
721 * This code gives a bonus to interactive tasks.
722 *
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
727 */
728 p->sleep_avg += sleep_time;
729
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
732 }
733 }
734
a3464a10 735 return effective_prio(p);
1da177e4
LT
736}
737
738/*
739 * activate_task - move a task to the runqueue and do priority recalculation
740 *
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
743 */
744static void activate_task(task_t *p, runqueue_t *rq, int local)
745{
746 unsigned long long now;
747
748 now = sched_clock();
749#ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
755 }
756#endif
757
a3464a10 758 p->prio = recalc_task_prio(p, now);
1da177e4
LT
759
760 /*
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
763 */
764 if (!p->activated) {
765 /*
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
771 */
772 if (in_interrupt())
773 p->activated = 2;
774 else {
775 /*
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
778 */
779 p->activated = 1;
780 }
781 }
782 p->timestamp = now;
783
784 __activate_task(p, rq);
785}
786
787/*
788 * deactivate_task - remove a task from the runqueue.
789 */
790static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791{
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
795}
796
797/*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804#ifdef CONFIG_SMP
805static void resched_task(task_t *p)
806{
807 int need_resched, nrpolling;
808
809 assert_spin_locked(&task_rq(p)->lock);
810
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
818}
819#else
820static inline void resched_task(task_t *p)
821{
822 set_tsk_need_resched(p);
823}
824#endif
825
826/**
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
829 */
830inline int task_curr(const task_t *p)
831{
832 return cpu_curr(task_cpu(p)) == p;
833}
834
835#ifdef CONFIG_SMP
1da177e4
LT
836typedef struct {
837 struct list_head list;
1da177e4 838
1da177e4
LT
839 task_t *task;
840 int dest_cpu;
841
1da177e4
LT
842 struct completion done;
843} migration_req_t;
844
845/*
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
848 */
849static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850{
851 runqueue_t *rq = task_rq(p);
852
853 /*
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
856 */
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
860 }
861
862 init_completion(&req->done);
1da177e4
LT
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
867}
868
869/*
870 * wait_task_inactive - wait for a thread to unschedule.
871 *
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
877 */
95cdf3b7 878void wait_task_inactive(task_t *p)
1da177e4
LT
879{
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
883
884repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
895 }
896 task_rq_unlock(rq, &flags);
897}
898
899/***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
902 *
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
905 *
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
911 */
912void kick_process(task_t *p)
913{
914 int cpu;
915
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
921}
922
923/*
924 * Return a low guess at the load of a migration-source cpu.
925 *
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
928 */
7897986b 929static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
930{
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
933 if (type == 0)
934 return load_now;
1da177e4 935
7897986b 936 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
937}
938
939/*
940 * Return a high guess at the load of a migration-target cpu
941 */
7897986b 942static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
943{
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
946 if (type == 0)
947 return load_now;
1da177e4 948
7897986b 949 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
950}
951
147cbb4b
NP
952/*
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
955 */
956static struct sched_group *
957find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958{
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
968
da5a5522
BD
969 /* Skip over this group if it has no CPUs allowed */
970 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971 goto nextgroup;
972
147cbb4b 973 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
974
975 /* Tally up the load of all CPUs in the group */
976 avg_load = 0;
977
978 for_each_cpu_mask(i, group->cpumask) {
979 /* Bias balancing toward cpus of our domain */
980 if (local_group)
981 load = source_load(i, load_idx);
982 else
983 load = target_load(i, load_idx);
984
985 avg_load += load;
986 }
987
988 /* Adjust by relative CPU power of the group */
989 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
990
991 if (local_group) {
992 this_load = avg_load;
993 this = group;
994 } else if (avg_load < min_load) {
995 min_load = avg_load;
996 idlest = group;
997 }
da5a5522 998nextgroup:
147cbb4b
NP
999 group = group->next;
1000 } while (group != sd->groups);
1001
1002 if (!idlest || 100*this_load < imbalance*min_load)
1003 return NULL;
1004 return idlest;
1005}
1006
1007/*
1008 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1009 */
95cdf3b7
IM
1010static int
1011find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1012{
da5a5522 1013 cpumask_t tmp;
147cbb4b
NP
1014 unsigned long load, min_load = ULONG_MAX;
1015 int idlest = -1;
1016 int i;
1017
da5a5522
BD
1018 /* Traverse only the allowed CPUs */
1019 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1020
1021 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1022 load = source_load(i, 0);
1023
1024 if (load < min_load || (load == min_load && i == this_cpu)) {
1025 min_load = load;
1026 idlest = i;
1027 }
1028 }
1029
1030 return idlest;
1031}
1032
476d139c
NP
1033/*
1034 * sched_balance_self: balance the current task (running on cpu) in domains
1035 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036 * SD_BALANCE_EXEC.
1037 *
1038 * Balance, ie. select the least loaded group.
1039 *
1040 * Returns the target CPU number, or the same CPU if no balancing is needed.
1041 *
1042 * preempt must be disabled.
1043 */
1044static int sched_balance_self(int cpu, int flag)
1045{
1046 struct task_struct *t = current;
1047 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1048
476d139c
NP
1049 for_each_domain(cpu, tmp)
1050 if (tmp->flags & flag)
1051 sd = tmp;
1052
1053 while (sd) {
1054 cpumask_t span;
1055 struct sched_group *group;
1056 int new_cpu;
1057 int weight;
1058
1059 span = sd->span;
1060 group = find_idlest_group(sd, t, cpu);
1061 if (!group)
1062 goto nextlevel;
1063
da5a5522 1064 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1065 if (new_cpu == -1 || new_cpu == cpu)
1066 goto nextlevel;
1067
1068 /* Now try balancing at a lower domain level */
1069 cpu = new_cpu;
1070nextlevel:
1071 sd = NULL;
1072 weight = cpus_weight(span);
1073 for_each_domain(cpu, tmp) {
1074 if (weight <= cpus_weight(tmp->span))
1075 break;
1076 if (tmp->flags & flag)
1077 sd = tmp;
1078 }
1079 /* while loop will break here if sd == NULL */
1080 }
1081
1082 return cpu;
1083}
1084
1085#endif /* CONFIG_SMP */
1da177e4
LT
1086
1087/*
1088 * wake_idle() will wake a task on an idle cpu if task->cpu is
1089 * not idle and an idle cpu is available. The span of cpus to
1090 * search starts with cpus closest then further out as needed,
1091 * so we always favor a closer, idle cpu.
1092 *
1093 * Returns the CPU we should wake onto.
1094 */
1095#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096static int wake_idle(int cpu, task_t *p)
1097{
1098 cpumask_t tmp;
1099 struct sched_domain *sd;
1100 int i;
1101
1102 if (idle_cpu(cpu))
1103 return cpu;
1104
1105 for_each_domain(cpu, sd) {
1106 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1107 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1108 for_each_cpu_mask(i, tmp) {
1109 if (idle_cpu(i))
1110 return i;
1111 }
1112 }
e0f364f4
NP
1113 else
1114 break;
1da177e4
LT
1115 }
1116 return cpu;
1117}
1118#else
1119static inline int wake_idle(int cpu, task_t *p)
1120{
1121 return cpu;
1122}
1123#endif
1124
1125/***
1126 * try_to_wake_up - wake up a thread
1127 * @p: the to-be-woken-up thread
1128 * @state: the mask of task states that can be woken
1129 * @sync: do a synchronous wakeup?
1130 *
1131 * Put it on the run-queue if it's not already there. The "current"
1132 * thread is always on the run-queue (except when the actual
1133 * re-schedule is in progress), and as such you're allowed to do
1134 * the simpler "current->state = TASK_RUNNING" to mark yourself
1135 * runnable without the overhead of this.
1136 *
1137 * returns failure only if the task is already active.
1138 */
95cdf3b7 1139static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1140{
1141 int cpu, this_cpu, success = 0;
1142 unsigned long flags;
1143 long old_state;
1144 runqueue_t *rq;
1145#ifdef CONFIG_SMP
1146 unsigned long load, this_load;
7897986b 1147 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1148 int new_cpu;
1149#endif
1150
1151 rq = task_rq_lock(p, &flags);
1152 old_state = p->state;
1153 if (!(old_state & state))
1154 goto out;
1155
1156 if (p->array)
1157 goto out_running;
1158
1159 cpu = task_cpu(p);
1160 this_cpu = smp_processor_id();
1161
1162#ifdef CONFIG_SMP
1163 if (unlikely(task_running(rq, p)))
1164 goto out_activate;
1165
7897986b
NP
1166 new_cpu = cpu;
1167
1da177e4
LT
1168 schedstat_inc(rq, ttwu_cnt);
1169 if (cpu == this_cpu) {
1170 schedstat_inc(rq, ttwu_local);
7897986b
NP
1171 goto out_set_cpu;
1172 }
1173
1174 for_each_domain(this_cpu, sd) {
1175 if (cpu_isset(cpu, sd->span)) {
1176 schedstat_inc(sd, ttwu_wake_remote);
1177 this_sd = sd;
1178 break;
1da177e4
LT
1179 }
1180 }
1da177e4 1181
7897986b 1182 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1183 goto out_set_cpu;
1184
1da177e4 1185 /*
7897986b 1186 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1187 */
7897986b
NP
1188 if (this_sd) {
1189 int idx = this_sd->wake_idx;
1190 unsigned int imbalance;
1da177e4 1191
a3f21bce
NP
1192 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1193
7897986b
NP
1194 load = source_load(cpu, idx);
1195 this_load = target_load(this_cpu, idx);
1da177e4 1196
7897986b
NP
1197 new_cpu = this_cpu; /* Wake to this CPU if we can */
1198
a3f21bce
NP
1199 if (this_sd->flags & SD_WAKE_AFFINE) {
1200 unsigned long tl = this_load;
1da177e4 1201 /*
a3f21bce
NP
1202 * If sync wakeup then subtract the (maximum possible)
1203 * effect of the currently running task from the load
1204 * of the current CPU:
1da177e4 1205 */
a3f21bce
NP
1206 if (sync)
1207 tl -= SCHED_LOAD_SCALE;
1208
1209 if ((tl <= load &&
1210 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1212 /*
1213 * This domain has SD_WAKE_AFFINE and
1214 * p is cache cold in this domain, and
1215 * there is no bad imbalance.
1216 */
1217 schedstat_inc(this_sd, ttwu_move_affine);
1218 goto out_set_cpu;
1219 }
1220 }
1221
1222 /*
1223 * Start passive balancing when half the imbalance_pct
1224 * limit is reached.
1225 */
1226 if (this_sd->flags & SD_WAKE_BALANCE) {
1227 if (imbalance*this_load <= 100*load) {
1228 schedstat_inc(this_sd, ttwu_move_balance);
1229 goto out_set_cpu;
1230 }
1da177e4
LT
1231 }
1232 }
1233
1234 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235out_set_cpu:
1236 new_cpu = wake_idle(new_cpu, p);
1237 if (new_cpu != cpu) {
1238 set_task_cpu(p, new_cpu);
1239 task_rq_unlock(rq, &flags);
1240 /* might preempt at this point */
1241 rq = task_rq_lock(p, &flags);
1242 old_state = p->state;
1243 if (!(old_state & state))
1244 goto out;
1245 if (p->array)
1246 goto out_running;
1247
1248 this_cpu = smp_processor_id();
1249 cpu = task_cpu(p);
1250 }
1251
1252out_activate:
1253#endif /* CONFIG_SMP */
1254 if (old_state == TASK_UNINTERRUPTIBLE) {
1255 rq->nr_uninterruptible--;
1256 /*
1257 * Tasks on involuntary sleep don't earn
1258 * sleep_avg beyond just interactive state.
1259 */
1260 p->activated = -1;
1261 }
1262
d79fc0fc
IM
1263 /*
1264 * Tasks that have marked their sleep as noninteractive get
1265 * woken up without updating their sleep average. (i.e. their
1266 * sleep is handled in a priority-neutral manner, no priority
1267 * boost and no penalty.)
1268 */
1269 if (old_state & TASK_NONINTERACTIVE)
1270 __activate_task(p, rq);
1271 else
1272 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1273 /*
1274 * Sync wakeups (i.e. those types of wakeups where the waker
1275 * has indicated that it will leave the CPU in short order)
1276 * don't trigger a preemption, if the woken up task will run on
1277 * this cpu. (in this case the 'I will reschedule' promise of
1278 * the waker guarantees that the freshly woken up task is going
1279 * to be considered on this CPU.)
1280 */
1da177e4
LT
1281 if (!sync || cpu != this_cpu) {
1282 if (TASK_PREEMPTS_CURR(p, rq))
1283 resched_task(rq->curr);
1284 }
1285 success = 1;
1286
1287out_running:
1288 p->state = TASK_RUNNING;
1289out:
1290 task_rq_unlock(rq, &flags);
1291
1292 return success;
1293}
1294
95cdf3b7 1295int fastcall wake_up_process(task_t *p)
1da177e4
LT
1296{
1297 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1298 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1299}
1300
1301EXPORT_SYMBOL(wake_up_process);
1302
1303int fastcall wake_up_state(task_t *p, unsigned int state)
1304{
1305 return try_to_wake_up(p, state, 0);
1306}
1307
1da177e4
LT
1308/*
1309 * Perform scheduler related setup for a newly forked process p.
1310 * p is forked by current.
1311 */
476d139c 1312void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1313{
476d139c
NP
1314 int cpu = get_cpu();
1315
1316#ifdef CONFIG_SMP
1317 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1318#endif
1319 set_task_cpu(p, cpu);
1320
1da177e4
LT
1321 /*
1322 * We mark the process as running here, but have not actually
1323 * inserted it onto the runqueue yet. This guarantees that
1324 * nobody will actually run it, and a signal or other external
1325 * event cannot wake it up and insert it on the runqueue either.
1326 */
1327 p->state = TASK_RUNNING;
1328 INIT_LIST_HEAD(&p->run_list);
1329 p->array = NULL;
1da177e4
LT
1330#ifdef CONFIG_SCHEDSTATS
1331 memset(&p->sched_info, 0, sizeof(p->sched_info));
1332#endif
4866cde0
NP
1333#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1334 p->oncpu = 0;
1335#endif
1da177e4 1336#ifdef CONFIG_PREEMPT
4866cde0 1337 /* Want to start with kernel preemption disabled. */
1da177e4
LT
1338 p->thread_info->preempt_count = 1;
1339#endif
1340 /*
1341 * Share the timeslice between parent and child, thus the
1342 * total amount of pending timeslices in the system doesn't change,
1343 * resulting in more scheduling fairness.
1344 */
1345 local_irq_disable();
1346 p->time_slice = (current->time_slice + 1) >> 1;
1347 /*
1348 * The remainder of the first timeslice might be recovered by
1349 * the parent if the child exits early enough.
1350 */
1351 p->first_time_slice = 1;
1352 current->time_slice >>= 1;
1353 p->timestamp = sched_clock();
1354 if (unlikely(!current->time_slice)) {
1355 /*
1356 * This case is rare, it happens when the parent has only
1357 * a single jiffy left from its timeslice. Taking the
1358 * runqueue lock is not a problem.
1359 */
1360 current->time_slice = 1;
1da177e4 1361 scheduler_tick();
476d139c
NP
1362 }
1363 local_irq_enable();
1364 put_cpu();
1da177e4
LT
1365}
1366
1367/*
1368 * wake_up_new_task - wake up a newly created task for the first time.
1369 *
1370 * This function will do some initial scheduler statistics housekeeping
1371 * that must be done for every newly created context, then puts the task
1372 * on the runqueue and wakes it.
1373 */
95cdf3b7 1374void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1375{
1376 unsigned long flags;
1377 int this_cpu, cpu;
1378 runqueue_t *rq, *this_rq;
1379
1380 rq = task_rq_lock(p, &flags);
147cbb4b 1381 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1382 this_cpu = smp_processor_id();
147cbb4b 1383 cpu = task_cpu(p);
1da177e4 1384
1da177e4
LT
1385 /*
1386 * We decrease the sleep average of forking parents
1387 * and children as well, to keep max-interactive tasks
1388 * from forking tasks that are max-interactive. The parent
1389 * (current) is done further down, under its lock.
1390 */
1391 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1392 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1393
1394 p->prio = effective_prio(p);
1395
1396 if (likely(cpu == this_cpu)) {
1397 if (!(clone_flags & CLONE_VM)) {
1398 /*
1399 * The VM isn't cloned, so we're in a good position to
1400 * do child-runs-first in anticipation of an exec. This
1401 * usually avoids a lot of COW overhead.
1402 */
1403 if (unlikely(!current->array))
1404 __activate_task(p, rq);
1405 else {
1406 p->prio = current->prio;
1407 list_add_tail(&p->run_list, &current->run_list);
1408 p->array = current->array;
1409 p->array->nr_active++;
1410 rq->nr_running++;
1411 }
1412 set_need_resched();
1413 } else
1414 /* Run child last */
1415 __activate_task(p, rq);
1416 /*
1417 * We skip the following code due to cpu == this_cpu
1418 *
1419 * task_rq_unlock(rq, &flags);
1420 * this_rq = task_rq_lock(current, &flags);
1421 */
1422 this_rq = rq;
1423 } else {
1424 this_rq = cpu_rq(this_cpu);
1425
1426 /*
1427 * Not the local CPU - must adjust timestamp. This should
1428 * get optimised away in the !CONFIG_SMP case.
1429 */
1430 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1431 + rq->timestamp_last_tick;
1432 __activate_task(p, rq);
1433 if (TASK_PREEMPTS_CURR(p, rq))
1434 resched_task(rq->curr);
1435
1436 /*
1437 * Parent and child are on different CPUs, now get the
1438 * parent runqueue to update the parent's ->sleep_avg:
1439 */
1440 task_rq_unlock(rq, &flags);
1441 this_rq = task_rq_lock(current, &flags);
1442 }
1443 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1444 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1445 task_rq_unlock(this_rq, &flags);
1446}
1447
1448/*
1449 * Potentially available exiting-child timeslices are
1450 * retrieved here - this way the parent does not get
1451 * penalized for creating too many threads.
1452 *
1453 * (this cannot be used to 'generate' timeslices
1454 * artificially, because any timeslice recovered here
1455 * was given away by the parent in the first place.)
1456 */
95cdf3b7 1457void fastcall sched_exit(task_t *p)
1da177e4
LT
1458{
1459 unsigned long flags;
1460 runqueue_t *rq;
1461
1462 /*
1463 * If the child was a (relative-) CPU hog then decrease
1464 * the sleep_avg of the parent as well.
1465 */
1466 rq = task_rq_lock(p->parent, &flags);
1467 if (p->first_time_slice) {
1468 p->parent->time_slice += p->time_slice;
1469 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1470 p->parent->time_slice = task_timeslice(p);
1471 }
1472 if (p->sleep_avg < p->parent->sleep_avg)
1473 p->parent->sleep_avg = p->parent->sleep_avg /
1474 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1475 (EXIT_WEIGHT + 1);
1476 task_rq_unlock(rq, &flags);
1477}
1478
4866cde0
NP
1479/**
1480 * prepare_task_switch - prepare to switch tasks
1481 * @rq: the runqueue preparing to switch
1482 * @next: the task we are going to switch to.
1483 *
1484 * This is called with the rq lock held and interrupts off. It must
1485 * be paired with a subsequent finish_task_switch after the context
1486 * switch.
1487 *
1488 * prepare_task_switch sets up locking and calls architecture specific
1489 * hooks.
1490 */
1491static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1492{
1493 prepare_lock_switch(rq, next);
1494 prepare_arch_switch(next);
1495}
1496
1da177e4
LT
1497/**
1498 * finish_task_switch - clean up after a task-switch
344babaa 1499 * @rq: runqueue associated with task-switch
1da177e4
LT
1500 * @prev: the thread we just switched away from.
1501 *
4866cde0
NP
1502 * finish_task_switch must be called after the context switch, paired
1503 * with a prepare_task_switch call before the context switch.
1504 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1505 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1506 *
1507 * Note that we may have delayed dropping an mm in context_switch(). If
1508 * so, we finish that here outside of the runqueue lock. (Doing it
1509 * with the lock held can cause deadlocks; see schedule() for
1510 * details.)
1511 */
4866cde0 1512static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1513 __releases(rq->lock)
1514{
1da177e4
LT
1515 struct mm_struct *mm = rq->prev_mm;
1516 unsigned long prev_task_flags;
1517
1518 rq->prev_mm = NULL;
1519
1520 /*
1521 * A task struct has one reference for the use as "current".
1522 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1523 * calls schedule one last time. The schedule call will never return,
1524 * and the scheduled task must drop that reference.
1525 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1526 * still held, otherwise prev could be scheduled on another cpu, die
1527 * there before we look at prev->state, and then the reference would
1528 * be dropped twice.
1529 * Manfred Spraul <manfred@colorfullife.com>
1530 */
1531 prev_task_flags = prev->flags;
fb1c8f93
IM
1532#ifdef CONFIG_DEBUG_SPINLOCK
1533 /* this is a valid case when another task releases the spinlock */
1534 rq->lock.owner = current;
1535#endif
4866cde0
NP
1536 finish_arch_switch(prev);
1537 finish_lock_switch(rq, prev);
1da177e4
LT
1538 if (mm)
1539 mmdrop(mm);
1540 if (unlikely(prev_task_flags & PF_DEAD))
1541 put_task_struct(prev);
1542}
1543
1544/**
1545 * schedule_tail - first thing a freshly forked thread must call.
1546 * @prev: the thread we just switched away from.
1547 */
1548asmlinkage void schedule_tail(task_t *prev)
1549 __releases(rq->lock)
1550{
4866cde0
NP
1551 runqueue_t *rq = this_rq();
1552 finish_task_switch(rq, prev);
1553#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554 /* In this case, finish_task_switch does not reenable preemption */
1555 preempt_enable();
1556#endif
1da177e4
LT
1557 if (current->set_child_tid)
1558 put_user(current->pid, current->set_child_tid);
1559}
1560
1561/*
1562 * context_switch - switch to the new MM and the new
1563 * thread's register state.
1564 */
1565static inline
1566task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1567{
1568 struct mm_struct *mm = next->mm;
1569 struct mm_struct *oldmm = prev->active_mm;
1570
1571 if (unlikely(!mm)) {
1572 next->active_mm = oldmm;
1573 atomic_inc(&oldmm->mm_count);
1574 enter_lazy_tlb(oldmm, next);
1575 } else
1576 switch_mm(oldmm, mm, next);
1577
1578 if (unlikely(!prev->mm)) {
1579 prev->active_mm = NULL;
1580 WARN_ON(rq->prev_mm);
1581 rq->prev_mm = oldmm;
1582 }
1583
1584 /* Here we just switch the register state and the stack. */
1585 switch_to(prev, next, prev);
1586
1587 return prev;
1588}
1589
1590/*
1591 * nr_running, nr_uninterruptible and nr_context_switches:
1592 *
1593 * externally visible scheduler statistics: current number of runnable
1594 * threads, current number of uninterruptible-sleeping threads, total
1595 * number of context switches performed since bootup.
1596 */
1597unsigned long nr_running(void)
1598{
1599 unsigned long i, sum = 0;
1600
1601 for_each_online_cpu(i)
1602 sum += cpu_rq(i)->nr_running;
1603
1604 return sum;
1605}
1606
1607unsigned long nr_uninterruptible(void)
1608{
1609 unsigned long i, sum = 0;
1610
1611 for_each_cpu(i)
1612 sum += cpu_rq(i)->nr_uninterruptible;
1613
1614 /*
1615 * Since we read the counters lockless, it might be slightly
1616 * inaccurate. Do not allow it to go below zero though:
1617 */
1618 if (unlikely((long)sum < 0))
1619 sum = 0;
1620
1621 return sum;
1622}
1623
1624unsigned long long nr_context_switches(void)
1625{
1626 unsigned long long i, sum = 0;
1627
1628 for_each_cpu(i)
1629 sum += cpu_rq(i)->nr_switches;
1630
1631 return sum;
1632}
1633
1634unsigned long nr_iowait(void)
1635{
1636 unsigned long i, sum = 0;
1637
1638 for_each_cpu(i)
1639 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1640
1641 return sum;
1642}
1643
1644#ifdef CONFIG_SMP
1645
1646/*
1647 * double_rq_lock - safely lock two runqueues
1648 *
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1651 */
1652static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1655{
1656 if (rq1 == rq2) {
1657 spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1659 } else {
1660 if (rq1 < rq2) {
1661 spin_lock(&rq1->lock);
1662 spin_lock(&rq2->lock);
1663 } else {
1664 spin_lock(&rq2->lock);
1665 spin_lock(&rq1->lock);
1666 }
1667 }
1668}
1669
1670/*
1671 * double_rq_unlock - safely unlock two runqueues
1672 *
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1675 */
1676static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1679{
1680 spin_unlock(&rq1->lock);
1681 if (rq1 != rq2)
1682 spin_unlock(&rq2->lock);
1683 else
1684 __release(rq2->lock);
1685}
1686
1687/*
1688 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1689 */
1690static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691 __releases(this_rq->lock)
1692 __acquires(busiest->lock)
1693 __acquires(this_rq->lock)
1694{
1695 if (unlikely(!spin_trylock(&busiest->lock))) {
1696 if (busiest < this_rq) {
1697 spin_unlock(&this_rq->lock);
1698 spin_lock(&busiest->lock);
1699 spin_lock(&this_rq->lock);
1700 } else
1701 spin_lock(&busiest->lock);
1702 }
1703}
1704
1da177e4
LT
1705/*
1706 * If dest_cpu is allowed for this process, migrate the task to it.
1707 * This is accomplished by forcing the cpu_allowed mask to only
1708 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1709 * the cpu_allowed mask is restored.
1710 */
1711static void sched_migrate_task(task_t *p, int dest_cpu)
1712{
1713 migration_req_t req;
1714 runqueue_t *rq;
1715 unsigned long flags;
1716
1717 rq = task_rq_lock(p, &flags);
1718 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719 || unlikely(cpu_is_offline(dest_cpu)))
1720 goto out;
1721
1722 /* force the process onto the specified CPU */
1723 if (migrate_task(p, dest_cpu, &req)) {
1724 /* Need to wait for migration thread (might exit: take ref). */
1725 struct task_struct *mt = rq->migration_thread;
1726 get_task_struct(mt);
1727 task_rq_unlock(rq, &flags);
1728 wake_up_process(mt);
1729 put_task_struct(mt);
1730 wait_for_completion(&req.done);
1731 return;
1732 }
1733out:
1734 task_rq_unlock(rq, &flags);
1735}
1736
1737/*
476d139c
NP
1738 * sched_exec - execve() is a valuable balancing opportunity, because at
1739 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1740 */
1741void sched_exec(void)
1742{
1da177e4 1743 int new_cpu, this_cpu = get_cpu();
476d139c 1744 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1745 put_cpu();
476d139c
NP
1746 if (new_cpu != this_cpu)
1747 sched_migrate_task(current, new_cpu);
1da177e4
LT
1748}
1749
1750/*
1751 * pull_task - move a task from a remote runqueue to the local runqueue.
1752 * Both runqueues must be locked.
1753 */
1754static inline
1755void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1757{
1758 dequeue_task(p, src_array);
1759 src_rq->nr_running--;
1760 set_task_cpu(p, this_cpu);
1761 this_rq->nr_running++;
1762 enqueue_task(p, this_array);
1763 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764 + this_rq->timestamp_last_tick;
1765 /*
1766 * Note that idle threads have a prio of MAX_PRIO, for this test
1767 * to be always true for them.
1768 */
1769 if (TASK_PREEMPTS_CURR(p, this_rq))
1770 resched_task(this_rq->curr);
1771}
1772
1773/*
1774 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1775 */
1776static inline
1777int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1778 struct sched_domain *sd, enum idle_type idle,
1779 int *all_pinned)
1da177e4
LT
1780{
1781 /*
1782 * We do not migrate tasks that are:
1783 * 1) running (obviously), or
1784 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785 * 3) are cache-hot on their current CPU.
1786 */
1da177e4
LT
1787 if (!cpu_isset(this_cpu, p->cpus_allowed))
1788 return 0;
81026794
NP
1789 *all_pinned = 0;
1790
1791 if (task_running(rq, p))
1792 return 0;
1da177e4
LT
1793
1794 /*
1795 * Aggressive migration if:
cafb20c1 1796 * 1) task is cache cold, or
1da177e4
LT
1797 * 2) too many balance attempts have failed.
1798 */
1799
cafb20c1 1800 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1801 return 1;
1802
1803 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1804 return 0;
1da177e4
LT
1805 return 1;
1806}
1807
1808/*
1809 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810 * as part of a balancing operation within "domain". Returns the number of
1811 * tasks moved.
1812 *
1813 * Called with both runqueues locked.
1814 */
1815static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1817 enum idle_type idle, int *all_pinned)
1da177e4
LT
1818{
1819 prio_array_t *array, *dst_array;
1820 struct list_head *head, *curr;
81026794 1821 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1822 task_t *tmp;
1823
81026794 1824 if (max_nr_move == 0)
1da177e4
LT
1825 goto out;
1826
81026794
NP
1827 pinned = 1;
1828
1da177e4
LT
1829 /*
1830 * We first consider expired tasks. Those will likely not be
1831 * executed in the near future, and they are most likely to
1832 * be cache-cold, thus switching CPUs has the least effect
1833 * on them.
1834 */
1835 if (busiest->expired->nr_active) {
1836 array = busiest->expired;
1837 dst_array = this_rq->expired;
1838 } else {
1839 array = busiest->active;
1840 dst_array = this_rq->active;
1841 }
1842
1843new_array:
1844 /* Start searching at priority 0: */
1845 idx = 0;
1846skip_bitmap:
1847 if (!idx)
1848 idx = sched_find_first_bit(array->bitmap);
1849 else
1850 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851 if (idx >= MAX_PRIO) {
1852 if (array == busiest->expired && busiest->active->nr_active) {
1853 array = busiest->active;
1854 dst_array = this_rq->active;
1855 goto new_array;
1856 }
1857 goto out;
1858 }
1859
1860 head = array->queue + idx;
1861 curr = head->prev;
1862skip_queue:
1863 tmp = list_entry(curr, task_t, run_list);
1864
1865 curr = curr->prev;
1866
81026794 1867 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1868 if (curr != head)
1869 goto skip_queue;
1870 idx++;
1871 goto skip_bitmap;
1872 }
1873
1874#ifdef CONFIG_SCHEDSTATS
1875 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876 schedstat_inc(sd, lb_hot_gained[idle]);
1877#endif
1878
1879 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880 pulled++;
1881
1882 /* We only want to steal up to the prescribed number of tasks. */
1883 if (pulled < max_nr_move) {
1884 if (curr != head)
1885 goto skip_queue;
1886 idx++;
1887 goto skip_bitmap;
1888 }
1889out:
1890 /*
1891 * Right now, this is the only place pull_task() is called,
1892 * so we can safely collect pull_task() stats here rather than
1893 * inside pull_task().
1894 */
1895 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1896
1897 if (all_pinned)
1898 *all_pinned = pinned;
1da177e4
LT
1899 return pulled;
1900}
1901
1902/*
1903 * find_busiest_group finds and returns the busiest CPU group within the
1904 * domain. It calculates and returns the number of tasks which should be
1905 * moved to restore balance via the imbalance parameter.
1906 */
1907static struct sched_group *
1908find_busiest_group(struct sched_domain *sd, int this_cpu,
1909 unsigned long *imbalance, enum idle_type idle)
1910{
1911 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
7897986b 1913 int load_idx;
1da177e4
LT
1914
1915 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1916 if (idle == NOT_IDLE)
1917 load_idx = sd->busy_idx;
1918 else if (idle == NEWLY_IDLE)
1919 load_idx = sd->newidle_idx;
1920 else
1921 load_idx = sd->idle_idx;
1da177e4
LT
1922
1923 do {
1924 unsigned long load;
1925 int local_group;
1926 int i;
1927
1928 local_group = cpu_isset(this_cpu, group->cpumask);
1929
1930 /* Tally up the load of all CPUs in the group */
1931 avg_load = 0;
1932
1933 for_each_cpu_mask(i, group->cpumask) {
1934 /* Bias balancing toward cpus of our domain */
1935 if (local_group)
7897986b 1936 load = target_load(i, load_idx);
1da177e4 1937 else
7897986b 1938 load = source_load(i, load_idx);
1da177e4
LT
1939
1940 avg_load += load;
1941 }
1942
1943 total_load += avg_load;
1944 total_pwr += group->cpu_power;
1945
1946 /* Adjust by relative CPU power of the group */
1947 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1948
1949 if (local_group) {
1950 this_load = avg_load;
1951 this = group;
1da177e4
LT
1952 } else if (avg_load > max_load) {
1953 max_load = avg_load;
1954 busiest = group;
1955 }
1da177e4
LT
1956 group = group->next;
1957 } while (group != sd->groups);
1958
1959 if (!busiest || this_load >= max_load)
1960 goto out_balanced;
1961
1962 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1963
1964 if (this_load >= avg_load ||
1965 100*max_load <= sd->imbalance_pct*this_load)
1966 goto out_balanced;
1967
1968 /*
1969 * We're trying to get all the cpus to the average_load, so we don't
1970 * want to push ourselves above the average load, nor do we wish to
1971 * reduce the max loaded cpu below the average load, as either of these
1972 * actions would just result in more rebalancing later, and ping-pong
1973 * tasks around. Thus we look for the minimum possible imbalance.
1974 * Negative imbalances (*we* are more loaded than anyone else) will
1975 * be counted as no imbalance for these purposes -- we can't fix that
1976 * by pulling tasks to us. Be careful of negative numbers as they'll
1977 * appear as very large values with unsigned longs.
1978 */
1979 /* How much load to actually move to equalise the imbalance */
1980 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1981 (avg_load - this_load) * this->cpu_power)
1982 / SCHED_LOAD_SCALE;
1983
1984 if (*imbalance < SCHED_LOAD_SCALE) {
1985 unsigned long pwr_now = 0, pwr_move = 0;
1986 unsigned long tmp;
1987
1988 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1989 *imbalance = 1;
1990 return busiest;
1991 }
1992
1993 /*
1994 * OK, we don't have enough imbalance to justify moving tasks,
1995 * however we may be able to increase total CPU power used by
1996 * moving them.
1997 */
1998
1999 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2000 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2001 pwr_now /= SCHED_LOAD_SCALE;
2002
2003 /* Amount of load we'd subtract */
2004 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2005 if (max_load > tmp)
2006 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2007 max_load - tmp);
2008
2009 /* Amount of load we'd add */
2010 if (max_load*busiest->cpu_power <
2011 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2012 tmp = max_load*busiest->cpu_power/this->cpu_power;
2013 else
2014 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2015 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2016 pwr_move /= SCHED_LOAD_SCALE;
2017
2018 /* Move if we gain throughput */
2019 if (pwr_move <= pwr_now)
2020 goto out_balanced;
2021
2022 *imbalance = 1;
2023 return busiest;
2024 }
2025
2026 /* Get rid of the scaling factor, rounding down as we divide */
2027 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2028 return busiest;
2029
2030out_balanced:
1da177e4
LT
2031
2032 *imbalance = 0;
2033 return NULL;
2034}
2035
2036/*
2037 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2038 */
2039static runqueue_t *find_busiest_queue(struct sched_group *group)
2040{
2041 unsigned long load, max_load = 0;
2042 runqueue_t *busiest = NULL;
2043 int i;
2044
2045 for_each_cpu_mask(i, group->cpumask) {
7897986b 2046 load = source_load(i, 0);
1da177e4
LT
2047
2048 if (load > max_load) {
2049 max_load = load;
2050 busiest = cpu_rq(i);
2051 }
2052 }
2053
2054 return busiest;
2055}
2056
77391d71
NP
2057/*
2058 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2059 * so long as it is large enough.
2060 */
2061#define MAX_PINNED_INTERVAL 512
2062
1da177e4
LT
2063/*
2064 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2065 * tasks if there is an imbalance.
2066 *
2067 * Called with this_rq unlocked.
2068 */
2069static int load_balance(int this_cpu, runqueue_t *this_rq,
2070 struct sched_domain *sd, enum idle_type idle)
2071{
2072 struct sched_group *group;
2073 runqueue_t *busiest;
2074 unsigned long imbalance;
77391d71 2075 int nr_moved, all_pinned = 0;
81026794 2076 int active_balance = 0;
1da177e4 2077
1da177e4
LT
2078 schedstat_inc(sd, lb_cnt[idle]);
2079
2080 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2081 if (!group) {
2082 schedstat_inc(sd, lb_nobusyg[idle]);
2083 goto out_balanced;
2084 }
2085
2086 busiest = find_busiest_queue(group);
2087 if (!busiest) {
2088 schedstat_inc(sd, lb_nobusyq[idle]);
2089 goto out_balanced;
2090 }
2091
db935dbd 2092 BUG_ON(busiest == this_rq);
1da177e4
LT
2093
2094 schedstat_add(sd, lb_imbalance[idle], imbalance);
2095
2096 nr_moved = 0;
2097 if (busiest->nr_running > 1) {
2098 /*
2099 * Attempt to move tasks. If find_busiest_group has found
2100 * an imbalance but busiest->nr_running <= 1, the group is
2101 * still unbalanced. nr_moved simply stays zero, so it is
2102 * correctly treated as an imbalance.
2103 */
e17224bf 2104 double_rq_lock(this_rq, busiest);
1da177e4 2105 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2106 imbalance, sd, idle, &all_pinned);
e17224bf 2107 double_rq_unlock(this_rq, busiest);
81026794
NP
2108
2109 /* All tasks on this runqueue were pinned by CPU affinity */
2110 if (unlikely(all_pinned))
2111 goto out_balanced;
1da177e4 2112 }
81026794 2113
1da177e4
LT
2114 if (!nr_moved) {
2115 schedstat_inc(sd, lb_failed[idle]);
2116 sd->nr_balance_failed++;
2117
2118 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2119
2120 spin_lock(&busiest->lock);
2121 if (!busiest->active_balance) {
2122 busiest->active_balance = 1;
2123 busiest->push_cpu = this_cpu;
81026794 2124 active_balance = 1;
1da177e4
LT
2125 }
2126 spin_unlock(&busiest->lock);
81026794 2127 if (active_balance)
1da177e4
LT
2128 wake_up_process(busiest->migration_thread);
2129
2130 /*
2131 * We've kicked active balancing, reset the failure
2132 * counter.
2133 */
39507451 2134 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2135 }
81026794 2136 } else
1da177e4
LT
2137 sd->nr_balance_failed = 0;
2138
81026794 2139 if (likely(!active_balance)) {
1da177e4
LT
2140 /* We were unbalanced, so reset the balancing interval */
2141 sd->balance_interval = sd->min_interval;
81026794
NP
2142 } else {
2143 /*
2144 * If we've begun active balancing, start to back off. This
2145 * case may not be covered by the all_pinned logic if there
2146 * is only 1 task on the busy runqueue (because we don't call
2147 * move_tasks).
2148 */
2149 if (sd->balance_interval < sd->max_interval)
2150 sd->balance_interval *= 2;
1da177e4
LT
2151 }
2152
2153 return nr_moved;
2154
2155out_balanced:
1da177e4
LT
2156 schedstat_inc(sd, lb_balanced[idle]);
2157
16cfb1c0 2158 sd->nr_balance_failed = 0;
1da177e4 2159 /* tune up the balancing interval */
77391d71
NP
2160 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2161 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2162 sd->balance_interval *= 2;
2163
2164 return 0;
2165}
2166
2167/*
2168 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2169 * tasks if there is an imbalance.
2170 *
2171 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2172 * this_rq is locked.
2173 */
2174static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2175 struct sched_domain *sd)
2176{
2177 struct sched_group *group;
2178 runqueue_t *busiest = NULL;
2179 unsigned long imbalance;
2180 int nr_moved = 0;
2181
2182 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2183 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2184 if (!group) {
1da177e4 2185 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2186 goto out_balanced;
1da177e4
LT
2187 }
2188
2189 busiest = find_busiest_queue(group);
db935dbd 2190 if (!busiest) {
1da177e4 2191 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2192 goto out_balanced;
1da177e4
LT
2193 }
2194
db935dbd
NP
2195 BUG_ON(busiest == this_rq);
2196
1da177e4 2197 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2198
2199 nr_moved = 0;
2200 if (busiest->nr_running > 1) {
2201 /* Attempt to move tasks */
2202 double_lock_balance(this_rq, busiest);
2203 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2204 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2205 spin_unlock(&busiest->lock);
2206 }
2207
1da177e4
LT
2208 if (!nr_moved)
2209 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
16cfb1c0
NP
2210 else
2211 sd->nr_balance_failed = 0;
1da177e4 2212
1da177e4 2213 return nr_moved;
16cfb1c0
NP
2214
2215out_balanced:
2216 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2217 sd->nr_balance_failed = 0;
2218 return 0;
1da177e4
LT
2219}
2220
2221/*
2222 * idle_balance is called by schedule() if this_cpu is about to become
2223 * idle. Attempts to pull tasks from other CPUs.
2224 */
2225static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2226{
2227 struct sched_domain *sd;
2228
2229 for_each_domain(this_cpu, sd) {
2230 if (sd->flags & SD_BALANCE_NEWIDLE) {
2231 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2232 /* We've pulled tasks over so stop searching */
2233 break;
2234 }
2235 }
2236 }
2237}
2238
2239/*
2240 * active_load_balance is run by migration threads. It pushes running tasks
2241 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2242 * running on each physical CPU where possible, and avoids physical /
2243 * logical imbalances.
2244 *
2245 * Called with busiest_rq locked.
2246 */
2247static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2248{
2249 struct sched_domain *sd;
1da177e4 2250 runqueue_t *target_rq;
39507451
NP
2251 int target_cpu = busiest_rq->push_cpu;
2252
2253 if (busiest_rq->nr_running <= 1)
2254 /* no task to move */
2255 return;
2256
2257 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2258
2259 /*
39507451
NP
2260 * This condition is "impossible", if it occurs
2261 * we need to fix it. Originally reported by
2262 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2263 */
39507451 2264 BUG_ON(busiest_rq == target_rq);
1da177e4 2265
39507451
NP
2266 /* move a task from busiest_rq to target_rq */
2267 double_lock_balance(busiest_rq, target_rq);
2268
2269 /* Search for an sd spanning us and the target CPU. */
2270 for_each_domain(target_cpu, sd)
2271 if ((sd->flags & SD_LOAD_BALANCE) &&
2272 cpu_isset(busiest_cpu, sd->span))
2273 break;
2274
2275 if (unlikely(sd == NULL))
2276 goto out;
2277
2278 schedstat_inc(sd, alb_cnt);
2279
2280 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2281 schedstat_inc(sd, alb_pushed);
2282 else
2283 schedstat_inc(sd, alb_failed);
2284out:
2285 spin_unlock(&target_rq->lock);
1da177e4
LT
2286}
2287
2288/*
2289 * rebalance_tick will get called every timer tick, on every CPU.
2290 *
2291 * It checks each scheduling domain to see if it is due to be balanced,
2292 * and initiates a balancing operation if so.
2293 *
2294 * Balancing parameters are set up in arch_init_sched_domains.
2295 */
2296
2297/* Don't have all balancing operations going off at once */
2298#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2299
2300static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2301 enum idle_type idle)
2302{
2303 unsigned long old_load, this_load;
2304 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2305 struct sched_domain *sd;
7897986b 2306 int i;
1da177e4 2307
1da177e4 2308 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2309 /* Update our load */
2310 for (i = 0; i < 3; i++) {
2311 unsigned long new_load = this_load;
2312 int scale = 1 << i;
2313 old_load = this_rq->cpu_load[i];
2314 /*
2315 * Round up the averaging division if load is increasing. This
2316 * prevents us from getting stuck on 9 if the load is 10, for
2317 * example.
2318 */
2319 if (new_load > old_load)
2320 new_load += scale-1;
2321 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2322 }
1da177e4
LT
2323
2324 for_each_domain(this_cpu, sd) {
2325 unsigned long interval;
2326
2327 if (!(sd->flags & SD_LOAD_BALANCE))
2328 continue;
2329
2330 interval = sd->balance_interval;
2331 if (idle != SCHED_IDLE)
2332 interval *= sd->busy_factor;
2333
2334 /* scale ms to jiffies */
2335 interval = msecs_to_jiffies(interval);
2336 if (unlikely(!interval))
2337 interval = 1;
2338
2339 if (j - sd->last_balance >= interval) {
2340 if (load_balance(this_cpu, this_rq, sd, idle)) {
2341 /* We've pulled tasks over so no longer idle */
2342 idle = NOT_IDLE;
2343 }
2344 sd->last_balance += interval;
2345 }
2346 }
2347}
2348#else
2349/*
2350 * on UP we do not need to balance between CPUs:
2351 */
2352static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2353{
2354}
2355static inline void idle_balance(int cpu, runqueue_t *rq)
2356{
2357}
2358#endif
2359
2360static inline int wake_priority_sleeper(runqueue_t *rq)
2361{
2362 int ret = 0;
2363#ifdef CONFIG_SCHED_SMT
2364 spin_lock(&rq->lock);
2365 /*
2366 * If an SMT sibling task has been put to sleep for priority
2367 * reasons reschedule the idle task to see if it can now run.
2368 */
2369 if (rq->nr_running) {
2370 resched_task(rq->idle);
2371 ret = 1;
2372 }
2373 spin_unlock(&rq->lock);
2374#endif
2375 return ret;
2376}
2377
2378DEFINE_PER_CPU(struct kernel_stat, kstat);
2379
2380EXPORT_PER_CPU_SYMBOL(kstat);
2381
2382/*
2383 * This is called on clock ticks and on context switches.
2384 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2385 */
2386static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2387 unsigned long long now)
2388{
2389 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2390 p->sched_time += now - last;
2391}
2392
2393/*
2394 * Return current->sched_time plus any more ns on the sched_clock
2395 * that have not yet been banked.
2396 */
2397unsigned long long current_sched_time(const task_t *tsk)
2398{
2399 unsigned long long ns;
2400 unsigned long flags;
2401 local_irq_save(flags);
2402 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2403 ns = tsk->sched_time + (sched_clock() - ns);
2404 local_irq_restore(flags);
2405 return ns;
2406}
2407
2408/*
2409 * We place interactive tasks back into the active array, if possible.
2410 *
2411 * To guarantee that this does not starve expired tasks we ignore the
2412 * interactivity of a task if the first expired task had to wait more
2413 * than a 'reasonable' amount of time. This deadline timeout is
2414 * load-dependent, as the frequency of array switched decreases with
2415 * increasing number of running tasks. We also ignore the interactivity
2416 * if a better static_prio task has expired:
2417 */
2418#define EXPIRED_STARVING(rq) \
2419 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2420 (jiffies - (rq)->expired_timestamp >= \
2421 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2422 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2423
2424/*
2425 * Account user cpu time to a process.
2426 * @p: the process that the cpu time gets accounted to
2427 * @hardirq_offset: the offset to subtract from hardirq_count()
2428 * @cputime: the cpu time spent in user space since the last update
2429 */
2430void account_user_time(struct task_struct *p, cputime_t cputime)
2431{
2432 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2433 cputime64_t tmp;
2434
2435 p->utime = cputime_add(p->utime, cputime);
2436
2437 /* Add user time to cpustat. */
2438 tmp = cputime_to_cputime64(cputime);
2439 if (TASK_NICE(p) > 0)
2440 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2441 else
2442 cpustat->user = cputime64_add(cpustat->user, tmp);
2443}
2444
2445/*
2446 * Account system cpu time to a process.
2447 * @p: the process that the cpu time gets accounted to
2448 * @hardirq_offset: the offset to subtract from hardirq_count()
2449 * @cputime: the cpu time spent in kernel space since the last update
2450 */
2451void account_system_time(struct task_struct *p, int hardirq_offset,
2452 cputime_t cputime)
2453{
2454 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2455 runqueue_t *rq = this_rq();
2456 cputime64_t tmp;
2457
2458 p->stime = cputime_add(p->stime, cputime);
2459
2460 /* Add system time to cpustat. */
2461 tmp = cputime_to_cputime64(cputime);
2462 if (hardirq_count() - hardirq_offset)
2463 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2464 else if (softirq_count())
2465 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2466 else if (p != rq->idle)
2467 cpustat->system = cputime64_add(cpustat->system, tmp);
2468 else if (atomic_read(&rq->nr_iowait) > 0)
2469 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2470 else
2471 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2472 /* Account for system time used */
2473 acct_update_integrals(p);
2474 /* Update rss highwater mark */
2475 update_mem_hiwater(p);
2476}
2477
2478/*
2479 * Account for involuntary wait time.
2480 * @p: the process from which the cpu time has been stolen
2481 * @steal: the cpu time spent in involuntary wait
2482 */
2483void account_steal_time(struct task_struct *p, cputime_t steal)
2484{
2485 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2486 cputime64_t tmp = cputime_to_cputime64(steal);
2487 runqueue_t *rq = this_rq();
2488
2489 if (p == rq->idle) {
2490 p->stime = cputime_add(p->stime, steal);
2491 if (atomic_read(&rq->nr_iowait) > 0)
2492 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2493 else
2494 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2495 } else
2496 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2497}
2498
2499/*
2500 * This function gets called by the timer code, with HZ frequency.
2501 * We call it with interrupts disabled.
2502 *
2503 * It also gets called by the fork code, when changing the parent's
2504 * timeslices.
2505 */
2506void scheduler_tick(void)
2507{
2508 int cpu = smp_processor_id();
2509 runqueue_t *rq = this_rq();
2510 task_t *p = current;
2511 unsigned long long now = sched_clock();
2512
2513 update_cpu_clock(p, rq, now);
2514
2515 rq->timestamp_last_tick = now;
2516
2517 if (p == rq->idle) {
2518 if (wake_priority_sleeper(rq))
2519 goto out;
2520 rebalance_tick(cpu, rq, SCHED_IDLE);
2521 return;
2522 }
2523
2524 /* Task might have expired already, but not scheduled off yet */
2525 if (p->array != rq->active) {
2526 set_tsk_need_resched(p);
2527 goto out;
2528 }
2529 spin_lock(&rq->lock);
2530 /*
2531 * The task was running during this tick - update the
2532 * time slice counter. Note: we do not update a thread's
2533 * priority until it either goes to sleep or uses up its
2534 * timeslice. This makes it possible for interactive tasks
2535 * to use up their timeslices at their highest priority levels.
2536 */
2537 if (rt_task(p)) {
2538 /*
2539 * RR tasks need a special form of timeslice management.
2540 * FIFO tasks have no timeslices.
2541 */
2542 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2543 p->time_slice = task_timeslice(p);
2544 p->first_time_slice = 0;
2545 set_tsk_need_resched(p);
2546
2547 /* put it at the end of the queue: */
2548 requeue_task(p, rq->active);
2549 }
2550 goto out_unlock;
2551 }
2552 if (!--p->time_slice) {
2553 dequeue_task(p, rq->active);
2554 set_tsk_need_resched(p);
2555 p->prio = effective_prio(p);
2556 p->time_slice = task_timeslice(p);
2557 p->first_time_slice = 0;
2558
2559 if (!rq->expired_timestamp)
2560 rq->expired_timestamp = jiffies;
2561 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2562 enqueue_task(p, rq->expired);
2563 if (p->static_prio < rq->best_expired_prio)
2564 rq->best_expired_prio = p->static_prio;
2565 } else
2566 enqueue_task(p, rq->active);
2567 } else {
2568 /*
2569 * Prevent a too long timeslice allowing a task to monopolize
2570 * the CPU. We do this by splitting up the timeslice into
2571 * smaller pieces.
2572 *
2573 * Note: this does not mean the task's timeslices expire or
2574 * get lost in any way, they just might be preempted by
2575 * another task of equal priority. (one with higher
2576 * priority would have preempted this task already.) We
2577 * requeue this task to the end of the list on this priority
2578 * level, which is in essence a round-robin of tasks with
2579 * equal priority.
2580 *
2581 * This only applies to tasks in the interactive
2582 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2583 */
2584 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2585 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2586 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2587 (p->array == rq->active)) {
2588
2589 requeue_task(p, rq->active);
2590 set_tsk_need_resched(p);
2591 }
2592 }
2593out_unlock:
2594 spin_unlock(&rq->lock);
2595out:
2596 rebalance_tick(cpu, rq, NOT_IDLE);
2597}
2598
2599#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2600static inline void wakeup_busy_runqueue(runqueue_t *rq)
2601{
2602 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2603 if (rq->curr == rq->idle && rq->nr_running)
2604 resched_task(rq->idle);
2605}
2606
1da177e4
LT
2607static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2608{
41c7ce9a 2609 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2610 cpumask_t sibling_map;
2611 int i;
2612
41c7ce9a
NP
2613 for_each_domain(this_cpu, tmp)
2614 if (tmp->flags & SD_SHARE_CPUPOWER)
2615 sd = tmp;
2616
2617 if (!sd)
1da177e4
LT
2618 return;
2619
2620 /*
2621 * Unlock the current runqueue because we have to lock in
2622 * CPU order to avoid deadlocks. Caller knows that we might
2623 * unlock. We keep IRQs disabled.
2624 */
2625 spin_unlock(&this_rq->lock);
2626
2627 sibling_map = sd->span;
2628
2629 for_each_cpu_mask(i, sibling_map)
2630 spin_lock(&cpu_rq(i)->lock);
2631 /*
2632 * We clear this CPU from the mask. This both simplifies the
2633 * inner loop and keps this_rq locked when we exit:
2634 */
2635 cpu_clear(this_cpu, sibling_map);
2636
2637 for_each_cpu_mask(i, sibling_map) {
2638 runqueue_t *smt_rq = cpu_rq(i);
2639
fc38ed75 2640 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2641 }
2642
2643 for_each_cpu_mask(i, sibling_map)
2644 spin_unlock(&cpu_rq(i)->lock);
2645 /*
2646 * We exit with this_cpu's rq still held and IRQs
2647 * still disabled:
2648 */
2649}
2650
67f9a619
IM
2651/*
2652 * number of 'lost' timeslices this task wont be able to fully
2653 * utilize, if another task runs on a sibling. This models the
2654 * slowdown effect of other tasks running on siblings:
2655 */
2656static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2657{
2658 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2659}
2660
1da177e4
LT
2661static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2662{
41c7ce9a 2663 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2664 cpumask_t sibling_map;
2665 prio_array_t *array;
2666 int ret = 0, i;
2667 task_t *p;
2668
41c7ce9a
NP
2669 for_each_domain(this_cpu, tmp)
2670 if (tmp->flags & SD_SHARE_CPUPOWER)
2671 sd = tmp;
2672
2673 if (!sd)
1da177e4
LT
2674 return 0;
2675
2676 /*
2677 * The same locking rules and details apply as for
2678 * wake_sleeping_dependent():
2679 */
2680 spin_unlock(&this_rq->lock);
2681 sibling_map = sd->span;
2682 for_each_cpu_mask(i, sibling_map)
2683 spin_lock(&cpu_rq(i)->lock);
2684 cpu_clear(this_cpu, sibling_map);
2685
2686 /*
2687 * Establish next task to be run - it might have gone away because
2688 * we released the runqueue lock above:
2689 */
2690 if (!this_rq->nr_running)
2691 goto out_unlock;
2692 array = this_rq->active;
2693 if (!array->nr_active)
2694 array = this_rq->expired;
2695 BUG_ON(!array->nr_active);
2696
2697 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2698 task_t, run_list);
2699
2700 for_each_cpu_mask(i, sibling_map) {
2701 runqueue_t *smt_rq = cpu_rq(i);
2702 task_t *smt_curr = smt_rq->curr;
2703
fc38ed75
CK
2704 /* Kernel threads do not participate in dependent sleeping */
2705 if (!p->mm || !smt_curr->mm || rt_task(p))
2706 goto check_smt_task;
2707
1da177e4
LT
2708 /*
2709 * If a user task with lower static priority than the
2710 * running task on the SMT sibling is trying to schedule,
2711 * delay it till there is proportionately less timeslice
2712 * left of the sibling task to prevent a lower priority
2713 * task from using an unfair proportion of the
2714 * physical cpu's resources. -ck
2715 */
fc38ed75
CK
2716 if (rt_task(smt_curr)) {
2717 /*
2718 * With real time tasks we run non-rt tasks only
2719 * per_cpu_gain% of the time.
2720 */
2721 if ((jiffies % DEF_TIMESLICE) >
2722 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2723 ret = 1;
2724 } else
67f9a619
IM
2725 if (smt_curr->static_prio < p->static_prio &&
2726 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2727 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2728 ret = 1;
2729
2730check_smt_task:
2731 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2732 rt_task(smt_curr))
2733 continue;
2734 if (!p->mm) {
2735 wakeup_busy_runqueue(smt_rq);
2736 continue;
2737 }
1da177e4
LT
2738
2739 /*
fc38ed75
CK
2740 * Reschedule a lower priority task on the SMT sibling for
2741 * it to be put to sleep, or wake it up if it has been put to
2742 * sleep for priority reasons to see if it should run now.
1da177e4 2743 */
fc38ed75
CK
2744 if (rt_task(p)) {
2745 if ((jiffies % DEF_TIMESLICE) >
2746 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2747 resched_task(smt_curr);
2748 } else {
67f9a619
IM
2749 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2750 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2751 resched_task(smt_curr);
2752 else
2753 wakeup_busy_runqueue(smt_rq);
2754 }
1da177e4
LT
2755 }
2756out_unlock:
2757 for_each_cpu_mask(i, sibling_map)
2758 spin_unlock(&cpu_rq(i)->lock);
2759 return ret;
2760}
2761#else
2762static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2763{
2764}
2765
2766static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2767{
2768 return 0;
2769}
2770#endif
2771
2772#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2773
2774void fastcall add_preempt_count(int val)
2775{
2776 /*
2777 * Underflow?
2778 */
be5b4fbd 2779 BUG_ON((preempt_count() < 0));
1da177e4
LT
2780 preempt_count() += val;
2781 /*
2782 * Spinlock count overflowing soon?
2783 */
2784 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2785}
2786EXPORT_SYMBOL(add_preempt_count);
2787
2788void fastcall sub_preempt_count(int val)
2789{
2790 /*
2791 * Underflow?
2792 */
2793 BUG_ON(val > preempt_count());
2794 /*
2795 * Is the spinlock portion underflowing?
2796 */
2797 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2798 preempt_count() -= val;
2799}
2800EXPORT_SYMBOL(sub_preempt_count);
2801
2802#endif
2803
2804/*
2805 * schedule() is the main scheduler function.
2806 */
2807asmlinkage void __sched schedule(void)
2808{
2809 long *switch_count;
2810 task_t *prev, *next;
2811 runqueue_t *rq;
2812 prio_array_t *array;
2813 struct list_head *queue;
2814 unsigned long long now;
2815 unsigned long run_time;
a3464a10 2816 int cpu, idx, new_prio;
1da177e4
LT
2817
2818 /*
2819 * Test if we are atomic. Since do_exit() needs to call into
2820 * schedule() atomically, we ignore that path for now.
2821 * Otherwise, whine if we are scheduling when we should not be.
2822 */
2823 if (likely(!current->exit_state)) {
2824 if (unlikely(in_atomic())) {
2825 printk(KERN_ERR "scheduling while atomic: "
2826 "%s/0x%08x/%d\n",
2827 current->comm, preempt_count(), current->pid);
2828 dump_stack();
2829 }
2830 }
2831 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2832
2833need_resched:
2834 preempt_disable();
2835 prev = current;
2836 release_kernel_lock(prev);
2837need_resched_nonpreemptible:
2838 rq = this_rq();
2839
2840 /*
2841 * The idle thread is not allowed to schedule!
2842 * Remove this check after it has been exercised a bit.
2843 */
2844 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2845 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2846 dump_stack();
2847 }
2848
2849 schedstat_inc(rq, sched_cnt);
2850 now = sched_clock();
238628ed 2851 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2852 run_time = now - prev->timestamp;
238628ed 2853 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2854 run_time = 0;
2855 } else
2856 run_time = NS_MAX_SLEEP_AVG;
2857
2858 /*
2859 * Tasks charged proportionately less run_time at high sleep_avg to
2860 * delay them losing their interactive status
2861 */
2862 run_time /= (CURRENT_BONUS(prev) ? : 1);
2863
2864 spin_lock_irq(&rq->lock);
2865
2866 if (unlikely(prev->flags & PF_DEAD))
2867 prev->state = EXIT_DEAD;
2868
2869 switch_count = &prev->nivcsw;
2870 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2871 switch_count = &prev->nvcsw;
2872 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2873 unlikely(signal_pending(prev))))
2874 prev->state = TASK_RUNNING;
2875 else {
2876 if (prev->state == TASK_UNINTERRUPTIBLE)
2877 rq->nr_uninterruptible++;
2878 deactivate_task(prev, rq);
2879 }
2880 }
2881
2882 cpu = smp_processor_id();
2883 if (unlikely(!rq->nr_running)) {
2884go_idle:
2885 idle_balance(cpu, rq);
2886 if (!rq->nr_running) {
2887 next = rq->idle;
2888 rq->expired_timestamp = 0;
2889 wake_sleeping_dependent(cpu, rq);
2890 /*
2891 * wake_sleeping_dependent() might have released
2892 * the runqueue, so break out if we got new
2893 * tasks meanwhile:
2894 */
2895 if (!rq->nr_running)
2896 goto switch_tasks;
2897 }
2898 } else {
2899 if (dependent_sleeper(cpu, rq)) {
2900 next = rq->idle;
2901 goto switch_tasks;
2902 }
2903 /*
2904 * dependent_sleeper() releases and reacquires the runqueue
2905 * lock, hence go into the idle loop if the rq went
2906 * empty meanwhile:
2907 */
2908 if (unlikely(!rq->nr_running))
2909 goto go_idle;
2910 }
2911
2912 array = rq->active;
2913 if (unlikely(!array->nr_active)) {
2914 /*
2915 * Switch the active and expired arrays.
2916 */
2917 schedstat_inc(rq, sched_switch);
2918 rq->active = rq->expired;
2919 rq->expired = array;
2920 array = rq->active;
2921 rq->expired_timestamp = 0;
2922 rq->best_expired_prio = MAX_PRIO;
2923 }
2924
2925 idx = sched_find_first_bit(array->bitmap);
2926 queue = array->queue + idx;
2927 next = list_entry(queue->next, task_t, run_list);
2928
2929 if (!rt_task(next) && next->activated > 0) {
2930 unsigned long long delta = now - next->timestamp;
238628ed 2931 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2932 delta = 0;
2933
2934 if (next->activated == 1)
2935 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2936
2937 array = next->array;
a3464a10
CS
2938 new_prio = recalc_task_prio(next, next->timestamp + delta);
2939
2940 if (unlikely(next->prio != new_prio)) {
2941 dequeue_task(next, array);
2942 next->prio = new_prio;
2943 enqueue_task(next, array);
2944 } else
2945 requeue_task(next, array);
1da177e4
LT
2946 }
2947 next->activated = 0;
2948switch_tasks:
2949 if (next == rq->idle)
2950 schedstat_inc(rq, sched_goidle);
2951 prefetch(next);
383f2835 2952 prefetch_stack(next);
1da177e4
LT
2953 clear_tsk_need_resched(prev);
2954 rcu_qsctr_inc(task_cpu(prev));
2955
2956 update_cpu_clock(prev, rq, now);
2957
2958 prev->sleep_avg -= run_time;
2959 if ((long)prev->sleep_avg <= 0)
2960 prev->sleep_avg = 0;
2961 prev->timestamp = prev->last_ran = now;
2962
2963 sched_info_switch(prev, next);
2964 if (likely(prev != next)) {
2965 next->timestamp = now;
2966 rq->nr_switches++;
2967 rq->curr = next;
2968 ++*switch_count;
2969
4866cde0 2970 prepare_task_switch(rq, next);
1da177e4
LT
2971 prev = context_switch(rq, prev, next);
2972 barrier();
4866cde0
NP
2973 /*
2974 * this_rq must be evaluated again because prev may have moved
2975 * CPUs since it called schedule(), thus the 'rq' on its stack
2976 * frame will be invalid.
2977 */
2978 finish_task_switch(this_rq(), prev);
1da177e4
LT
2979 } else
2980 spin_unlock_irq(&rq->lock);
2981
2982 prev = current;
2983 if (unlikely(reacquire_kernel_lock(prev) < 0))
2984 goto need_resched_nonpreemptible;
2985 preempt_enable_no_resched();
2986 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2987 goto need_resched;
2988}
2989
2990EXPORT_SYMBOL(schedule);
2991
2992#ifdef CONFIG_PREEMPT
2993/*
2994 * this is is the entry point to schedule() from in-kernel preemption
2995 * off of preempt_enable. Kernel preemptions off return from interrupt
2996 * occur there and call schedule directly.
2997 */
2998asmlinkage void __sched preempt_schedule(void)
2999{
3000 struct thread_info *ti = current_thread_info();
3001#ifdef CONFIG_PREEMPT_BKL
3002 struct task_struct *task = current;
3003 int saved_lock_depth;
3004#endif
3005 /*
3006 * If there is a non-zero preempt_count or interrupts are disabled,
3007 * we do not want to preempt the current task. Just return..
3008 */
3009 if (unlikely(ti->preempt_count || irqs_disabled()))
3010 return;
3011
3012need_resched:
3013 add_preempt_count(PREEMPT_ACTIVE);
3014 /*
3015 * We keep the big kernel semaphore locked, but we
3016 * clear ->lock_depth so that schedule() doesnt
3017 * auto-release the semaphore:
3018 */
3019#ifdef CONFIG_PREEMPT_BKL
3020 saved_lock_depth = task->lock_depth;
3021 task->lock_depth = -1;
3022#endif
3023 schedule();
3024#ifdef CONFIG_PREEMPT_BKL
3025 task->lock_depth = saved_lock_depth;
3026#endif
3027 sub_preempt_count(PREEMPT_ACTIVE);
3028
3029 /* we could miss a preemption opportunity between schedule and now */
3030 barrier();
3031 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3032 goto need_resched;
3033}
3034
3035EXPORT_SYMBOL(preempt_schedule);
3036
3037/*
3038 * this is is the entry point to schedule() from kernel preemption
3039 * off of irq context.
3040 * Note, that this is called and return with irqs disabled. This will
3041 * protect us against recursive calling from irq.
3042 */
3043asmlinkage void __sched preempt_schedule_irq(void)
3044{
3045 struct thread_info *ti = current_thread_info();
3046#ifdef CONFIG_PREEMPT_BKL
3047 struct task_struct *task = current;
3048 int saved_lock_depth;
3049#endif
3050 /* Catch callers which need to be fixed*/
3051 BUG_ON(ti->preempt_count || !irqs_disabled());
3052
3053need_resched:
3054 add_preempt_count(PREEMPT_ACTIVE);
3055 /*
3056 * We keep the big kernel semaphore locked, but we
3057 * clear ->lock_depth so that schedule() doesnt
3058 * auto-release the semaphore:
3059 */
3060#ifdef CONFIG_PREEMPT_BKL
3061 saved_lock_depth = task->lock_depth;
3062 task->lock_depth = -1;
3063#endif
3064 local_irq_enable();
3065 schedule();
3066 local_irq_disable();
3067#ifdef CONFIG_PREEMPT_BKL
3068 task->lock_depth = saved_lock_depth;
3069#endif
3070 sub_preempt_count(PREEMPT_ACTIVE);
3071
3072 /* we could miss a preemption opportunity between schedule and now */
3073 barrier();
3074 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3075 goto need_resched;
3076}
3077
3078#endif /* CONFIG_PREEMPT */
3079
95cdf3b7
IM
3080int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3081 void *key)
1da177e4 3082{
c43dc2fd 3083 task_t *p = curr->private;
1da177e4
LT
3084 return try_to_wake_up(p, mode, sync);
3085}
3086
3087EXPORT_SYMBOL(default_wake_function);
3088
3089/*
3090 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3091 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3092 * number) then we wake all the non-exclusive tasks and one exclusive task.
3093 *
3094 * There are circumstances in which we can try to wake a task which has already
3095 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3096 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3097 */
3098static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3099 int nr_exclusive, int sync, void *key)
3100{
3101 struct list_head *tmp, *next;
3102
3103 list_for_each_safe(tmp, next, &q->task_list) {
3104 wait_queue_t *curr;
3105 unsigned flags;
3106 curr = list_entry(tmp, wait_queue_t, task_list);
3107 flags = curr->flags;
3108 if (curr->func(curr, mode, sync, key) &&
3109 (flags & WQ_FLAG_EXCLUSIVE) &&
3110 !--nr_exclusive)
3111 break;
3112 }
3113}
3114
3115/**
3116 * __wake_up - wake up threads blocked on a waitqueue.
3117 * @q: the waitqueue
3118 * @mode: which threads
3119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3120 * @key: is directly passed to the wakeup function
1da177e4
LT
3121 */
3122void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3123 int nr_exclusive, void *key)
1da177e4
LT
3124{
3125 unsigned long flags;
3126
3127 spin_lock_irqsave(&q->lock, flags);
3128 __wake_up_common(q, mode, nr_exclusive, 0, key);
3129 spin_unlock_irqrestore(&q->lock, flags);
3130}
3131
3132EXPORT_SYMBOL(__wake_up);
3133
3134/*
3135 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3136 */
3137void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3138{
3139 __wake_up_common(q, mode, 1, 0, NULL);
3140}
3141
3142/**
67be2dd1 3143 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3144 * @q: the waitqueue
3145 * @mode: which threads
3146 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3147 *
3148 * The sync wakeup differs that the waker knows that it will schedule
3149 * away soon, so while the target thread will be woken up, it will not
3150 * be migrated to another CPU - ie. the two threads are 'synchronized'
3151 * with each other. This can prevent needless bouncing between CPUs.
3152 *
3153 * On UP it can prevent extra preemption.
3154 */
95cdf3b7
IM
3155void fastcall
3156__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3157{
3158 unsigned long flags;
3159 int sync = 1;
3160
3161 if (unlikely(!q))
3162 return;
3163
3164 if (unlikely(!nr_exclusive))
3165 sync = 0;
3166
3167 spin_lock_irqsave(&q->lock, flags);
3168 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3169 spin_unlock_irqrestore(&q->lock, flags);
3170}
3171EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3172
3173void fastcall complete(struct completion *x)
3174{
3175 unsigned long flags;
3176
3177 spin_lock_irqsave(&x->wait.lock, flags);
3178 x->done++;
3179 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3180 1, 0, NULL);
3181 spin_unlock_irqrestore(&x->wait.lock, flags);
3182}
3183EXPORT_SYMBOL(complete);
3184
3185void fastcall complete_all(struct completion *x)
3186{
3187 unsigned long flags;
3188
3189 spin_lock_irqsave(&x->wait.lock, flags);
3190 x->done += UINT_MAX/2;
3191 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3192 0, 0, NULL);
3193 spin_unlock_irqrestore(&x->wait.lock, flags);
3194}
3195EXPORT_SYMBOL(complete_all);
3196
3197void fastcall __sched wait_for_completion(struct completion *x)
3198{
3199 might_sleep();
3200 spin_lock_irq(&x->wait.lock);
3201 if (!x->done) {
3202 DECLARE_WAITQUEUE(wait, current);
3203
3204 wait.flags |= WQ_FLAG_EXCLUSIVE;
3205 __add_wait_queue_tail(&x->wait, &wait);
3206 do {
3207 __set_current_state(TASK_UNINTERRUPTIBLE);
3208 spin_unlock_irq(&x->wait.lock);
3209 schedule();
3210 spin_lock_irq(&x->wait.lock);
3211 } while (!x->done);
3212 __remove_wait_queue(&x->wait, &wait);
3213 }
3214 x->done--;
3215 spin_unlock_irq(&x->wait.lock);
3216}
3217EXPORT_SYMBOL(wait_for_completion);
3218
3219unsigned long fastcall __sched
3220wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3221{
3222 might_sleep();
3223
3224 spin_lock_irq(&x->wait.lock);
3225 if (!x->done) {
3226 DECLARE_WAITQUEUE(wait, current);
3227
3228 wait.flags |= WQ_FLAG_EXCLUSIVE;
3229 __add_wait_queue_tail(&x->wait, &wait);
3230 do {
3231 __set_current_state(TASK_UNINTERRUPTIBLE);
3232 spin_unlock_irq(&x->wait.lock);
3233 timeout = schedule_timeout(timeout);
3234 spin_lock_irq(&x->wait.lock);
3235 if (!timeout) {
3236 __remove_wait_queue(&x->wait, &wait);
3237 goto out;
3238 }
3239 } while (!x->done);
3240 __remove_wait_queue(&x->wait, &wait);
3241 }
3242 x->done--;
3243out:
3244 spin_unlock_irq(&x->wait.lock);
3245 return timeout;
3246}
3247EXPORT_SYMBOL(wait_for_completion_timeout);
3248
3249int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3250{
3251 int ret = 0;
3252
3253 might_sleep();
3254
3255 spin_lock_irq(&x->wait.lock);
3256 if (!x->done) {
3257 DECLARE_WAITQUEUE(wait, current);
3258
3259 wait.flags |= WQ_FLAG_EXCLUSIVE;
3260 __add_wait_queue_tail(&x->wait, &wait);
3261 do {
3262 if (signal_pending(current)) {
3263 ret = -ERESTARTSYS;
3264 __remove_wait_queue(&x->wait, &wait);
3265 goto out;
3266 }
3267 __set_current_state(TASK_INTERRUPTIBLE);
3268 spin_unlock_irq(&x->wait.lock);
3269 schedule();
3270 spin_lock_irq(&x->wait.lock);
3271 } while (!x->done);
3272 __remove_wait_queue(&x->wait, &wait);
3273 }
3274 x->done--;
3275out:
3276 spin_unlock_irq(&x->wait.lock);
3277
3278 return ret;
3279}
3280EXPORT_SYMBOL(wait_for_completion_interruptible);
3281
3282unsigned long fastcall __sched
3283wait_for_completion_interruptible_timeout(struct completion *x,
3284 unsigned long timeout)
3285{
3286 might_sleep();
3287
3288 spin_lock_irq(&x->wait.lock);
3289 if (!x->done) {
3290 DECLARE_WAITQUEUE(wait, current);
3291
3292 wait.flags |= WQ_FLAG_EXCLUSIVE;
3293 __add_wait_queue_tail(&x->wait, &wait);
3294 do {
3295 if (signal_pending(current)) {
3296 timeout = -ERESTARTSYS;
3297 __remove_wait_queue(&x->wait, &wait);
3298 goto out;
3299 }
3300 __set_current_state(TASK_INTERRUPTIBLE);
3301 spin_unlock_irq(&x->wait.lock);
3302 timeout = schedule_timeout(timeout);
3303 spin_lock_irq(&x->wait.lock);
3304 if (!timeout) {
3305 __remove_wait_queue(&x->wait, &wait);
3306 goto out;
3307 }
3308 } while (!x->done);
3309 __remove_wait_queue(&x->wait, &wait);
3310 }
3311 x->done--;
3312out:
3313 spin_unlock_irq(&x->wait.lock);
3314 return timeout;
3315}
3316EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3317
3318
3319#define SLEEP_ON_VAR \
3320 unsigned long flags; \
3321 wait_queue_t wait; \
3322 init_waitqueue_entry(&wait, current);
3323
3324#define SLEEP_ON_HEAD \
3325 spin_lock_irqsave(&q->lock,flags); \
3326 __add_wait_queue(q, &wait); \
3327 spin_unlock(&q->lock);
3328
3329#define SLEEP_ON_TAIL \
3330 spin_lock_irq(&q->lock); \
3331 __remove_wait_queue(q, &wait); \
3332 spin_unlock_irqrestore(&q->lock, flags);
3333
3334void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3335{
3336 SLEEP_ON_VAR
3337
3338 current->state = TASK_INTERRUPTIBLE;
3339
3340 SLEEP_ON_HEAD
3341 schedule();
3342 SLEEP_ON_TAIL
3343}
3344
3345EXPORT_SYMBOL(interruptible_sleep_on);
3346
95cdf3b7
IM
3347long fastcall __sched
3348interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3349{
3350 SLEEP_ON_VAR
3351
3352 current->state = TASK_INTERRUPTIBLE;
3353
3354 SLEEP_ON_HEAD
3355 timeout = schedule_timeout(timeout);
3356 SLEEP_ON_TAIL
3357
3358 return timeout;
3359}
3360
3361EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3362
3363void fastcall __sched sleep_on(wait_queue_head_t *q)
3364{
3365 SLEEP_ON_VAR
3366
3367 current->state = TASK_UNINTERRUPTIBLE;
3368
3369 SLEEP_ON_HEAD
3370 schedule();
3371 SLEEP_ON_TAIL
3372}
3373
3374EXPORT_SYMBOL(sleep_on);
3375
3376long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3377{
3378 SLEEP_ON_VAR
3379
3380 current->state = TASK_UNINTERRUPTIBLE;
3381
3382 SLEEP_ON_HEAD
3383 timeout = schedule_timeout(timeout);
3384 SLEEP_ON_TAIL
3385
3386 return timeout;
3387}
3388
3389EXPORT_SYMBOL(sleep_on_timeout);
3390
3391void set_user_nice(task_t *p, long nice)
3392{
3393 unsigned long flags;
3394 prio_array_t *array;
3395 runqueue_t *rq;
3396 int old_prio, new_prio, delta;
3397
3398 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3399 return;
3400 /*
3401 * We have to be careful, if called from sys_setpriority(),
3402 * the task might be in the middle of scheduling on another CPU.
3403 */
3404 rq = task_rq_lock(p, &flags);
3405 /*
3406 * The RT priorities are set via sched_setscheduler(), but we still
3407 * allow the 'normal' nice value to be set - but as expected
3408 * it wont have any effect on scheduling until the task is
3409 * not SCHED_NORMAL:
3410 */
3411 if (rt_task(p)) {
3412 p->static_prio = NICE_TO_PRIO(nice);
3413 goto out_unlock;
3414 }
3415 array = p->array;
3416 if (array)
3417 dequeue_task(p, array);
3418
3419 old_prio = p->prio;
3420 new_prio = NICE_TO_PRIO(nice);
3421 delta = new_prio - old_prio;
3422 p->static_prio = NICE_TO_PRIO(nice);
3423 p->prio += delta;
3424
3425 if (array) {
3426 enqueue_task(p, array);
3427 /*
3428 * If the task increased its priority or is running and
3429 * lowered its priority, then reschedule its CPU:
3430 */
3431 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3432 resched_task(rq->curr);
3433 }
3434out_unlock:
3435 task_rq_unlock(rq, &flags);
3436}
3437
3438EXPORT_SYMBOL(set_user_nice);
3439
e43379f1
MM
3440/*
3441 * can_nice - check if a task can reduce its nice value
3442 * @p: task
3443 * @nice: nice value
3444 */
3445int can_nice(const task_t *p, const int nice)
3446{
024f4747
MM
3447 /* convert nice value [19,-20] to rlimit style value [1,40] */
3448 int nice_rlim = 20 - nice;
e43379f1
MM
3449 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3450 capable(CAP_SYS_NICE));
3451}
3452
1da177e4
LT
3453#ifdef __ARCH_WANT_SYS_NICE
3454
3455/*
3456 * sys_nice - change the priority of the current process.
3457 * @increment: priority increment
3458 *
3459 * sys_setpriority is a more generic, but much slower function that
3460 * does similar things.
3461 */
3462asmlinkage long sys_nice(int increment)
3463{
3464 int retval;
3465 long nice;
3466
3467 /*
3468 * Setpriority might change our priority at the same moment.
3469 * We don't have to worry. Conceptually one call occurs first
3470 * and we have a single winner.
3471 */
e43379f1
MM
3472 if (increment < -40)
3473 increment = -40;
1da177e4
LT
3474 if (increment > 40)
3475 increment = 40;
3476
3477 nice = PRIO_TO_NICE(current->static_prio) + increment;
3478 if (nice < -20)
3479 nice = -20;
3480 if (nice > 19)
3481 nice = 19;
3482
e43379f1
MM
3483 if (increment < 0 && !can_nice(current, nice))
3484 return -EPERM;
3485
1da177e4
LT
3486 retval = security_task_setnice(current, nice);
3487 if (retval)
3488 return retval;
3489
3490 set_user_nice(current, nice);
3491 return 0;
3492}
3493
3494#endif
3495
3496/**
3497 * task_prio - return the priority value of a given task.
3498 * @p: the task in question.
3499 *
3500 * This is the priority value as seen by users in /proc.
3501 * RT tasks are offset by -200. Normal tasks are centered
3502 * around 0, value goes from -16 to +15.
3503 */
3504int task_prio(const task_t *p)
3505{
3506 return p->prio - MAX_RT_PRIO;
3507}
3508
3509/**
3510 * task_nice - return the nice value of a given task.
3511 * @p: the task in question.
3512 */
3513int task_nice(const task_t *p)
3514{
3515 return TASK_NICE(p);
3516}
1da177e4 3517EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3518
3519/**
3520 * idle_cpu - is a given cpu idle currently?
3521 * @cpu: the processor in question.
3522 */
3523int idle_cpu(int cpu)
3524{
3525 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3526}
3527
3528EXPORT_SYMBOL_GPL(idle_cpu);
3529
3530/**
3531 * idle_task - return the idle task for a given cpu.
3532 * @cpu: the processor in question.
3533 */
3534task_t *idle_task(int cpu)
3535{
3536 return cpu_rq(cpu)->idle;
3537}
3538
3539/**
3540 * find_process_by_pid - find a process with a matching PID value.
3541 * @pid: the pid in question.
3542 */
3543static inline task_t *find_process_by_pid(pid_t pid)
3544{
3545 return pid ? find_task_by_pid(pid) : current;
3546}
3547
3548/* Actually do priority change: must hold rq lock. */
3549static void __setscheduler(struct task_struct *p, int policy, int prio)
3550{
3551 BUG_ON(p->array);
3552 p->policy = policy;
3553 p->rt_priority = prio;
3554 if (policy != SCHED_NORMAL)
d46523ea 3555 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
1da177e4
LT
3556 else
3557 p->prio = p->static_prio;
3558}
3559
3560/**
3561 * sched_setscheduler - change the scheduling policy and/or RT priority of
3562 * a thread.
3563 * @p: the task in question.
3564 * @policy: new policy.
3565 * @param: structure containing the new RT priority.
3566 */
95cdf3b7
IM
3567int sched_setscheduler(struct task_struct *p, int policy,
3568 struct sched_param *param)
1da177e4
LT
3569{
3570 int retval;
3571 int oldprio, oldpolicy = -1;
3572 prio_array_t *array;
3573 unsigned long flags;
3574 runqueue_t *rq;
3575
3576recheck:
3577 /* double check policy once rq lock held */
3578 if (policy < 0)
3579 policy = oldpolicy = p->policy;
3580 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3581 policy != SCHED_NORMAL)
3582 return -EINVAL;
3583 /*
3584 * Valid priorities for SCHED_FIFO and SCHED_RR are
3585 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3586 */
3587 if (param->sched_priority < 0 ||
95cdf3b7 3588 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3589 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4
LT
3590 return -EINVAL;
3591 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3592 return -EINVAL;
3593
37e4ab3f
OC
3594 /*
3595 * Allow unprivileged RT tasks to decrease priority:
3596 */
3597 if (!capable(CAP_SYS_NICE)) {
3598 /* can't change policy */
18586e72
AS
3599 if (policy != p->policy &&
3600 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3601 return -EPERM;
3602 /* can't increase priority */
3603 if (policy != SCHED_NORMAL &&
3604 param->sched_priority > p->rt_priority &&
3605 param->sched_priority >
3606 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3607 return -EPERM;
3608 /* can't change other user's priorities */
3609 if ((current->euid != p->euid) &&
3610 (current->euid != p->uid))
3611 return -EPERM;
3612 }
1da177e4
LT
3613
3614 retval = security_task_setscheduler(p, policy, param);
3615 if (retval)
3616 return retval;
3617 /*
3618 * To be able to change p->policy safely, the apropriate
3619 * runqueue lock must be held.
3620 */
3621 rq = task_rq_lock(p, &flags);
3622 /* recheck policy now with rq lock held */
3623 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3624 policy = oldpolicy = -1;
3625 task_rq_unlock(rq, &flags);
3626 goto recheck;
3627 }
3628 array = p->array;
3629 if (array)
3630 deactivate_task(p, rq);
3631 oldprio = p->prio;
3632 __setscheduler(p, policy, param->sched_priority);
3633 if (array) {
3634 __activate_task(p, rq);
3635 /*
3636 * Reschedule if we are currently running on this runqueue and
3637 * our priority decreased, or if we are not currently running on
3638 * this runqueue and our priority is higher than the current's
3639 */
3640 if (task_running(rq, p)) {
3641 if (p->prio > oldprio)
3642 resched_task(rq->curr);
3643 } else if (TASK_PREEMPTS_CURR(p, rq))
3644 resched_task(rq->curr);
3645 }
3646 task_rq_unlock(rq, &flags);
3647 return 0;
3648}
3649EXPORT_SYMBOL_GPL(sched_setscheduler);
3650
95cdf3b7
IM
3651static int
3652do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3653{
3654 int retval;
3655 struct sched_param lparam;
3656 struct task_struct *p;
3657
3658 if (!param || pid < 0)
3659 return -EINVAL;
3660 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3661 return -EFAULT;
3662 read_lock_irq(&tasklist_lock);
3663 p = find_process_by_pid(pid);
3664 if (!p) {
3665 read_unlock_irq(&tasklist_lock);
3666 return -ESRCH;
3667 }
3668 retval = sched_setscheduler(p, policy, &lparam);
3669 read_unlock_irq(&tasklist_lock);
3670 return retval;
3671}
3672
3673/**
3674 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3675 * @pid: the pid in question.
3676 * @policy: new policy.
3677 * @param: structure containing the new RT priority.
3678 */
3679asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3680 struct sched_param __user *param)
3681{
3682 return do_sched_setscheduler(pid, policy, param);
3683}
3684
3685/**
3686 * sys_sched_setparam - set/change the RT priority of a thread
3687 * @pid: the pid in question.
3688 * @param: structure containing the new RT priority.
3689 */
3690asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3691{
3692 return do_sched_setscheduler(pid, -1, param);
3693}
3694
3695/**
3696 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3697 * @pid: the pid in question.
3698 */
3699asmlinkage long sys_sched_getscheduler(pid_t pid)
3700{
3701 int retval = -EINVAL;
3702 task_t *p;
3703
3704 if (pid < 0)
3705 goto out_nounlock;
3706
3707 retval = -ESRCH;
3708 read_lock(&tasklist_lock);
3709 p = find_process_by_pid(pid);
3710 if (p) {
3711 retval = security_task_getscheduler(p);
3712 if (!retval)
3713 retval = p->policy;
3714 }
3715 read_unlock(&tasklist_lock);
3716
3717out_nounlock:
3718 return retval;
3719}
3720
3721/**
3722 * sys_sched_getscheduler - get the RT priority of a thread
3723 * @pid: the pid in question.
3724 * @param: structure containing the RT priority.
3725 */
3726asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3727{
3728 struct sched_param lp;
3729 int retval = -EINVAL;
3730 task_t *p;
3731
3732 if (!param || pid < 0)
3733 goto out_nounlock;
3734
3735 read_lock(&tasklist_lock);
3736 p = find_process_by_pid(pid);
3737 retval = -ESRCH;
3738 if (!p)
3739 goto out_unlock;
3740
3741 retval = security_task_getscheduler(p);
3742 if (retval)
3743 goto out_unlock;
3744
3745 lp.sched_priority = p->rt_priority;
3746 read_unlock(&tasklist_lock);
3747
3748 /*
3749 * This one might sleep, we cannot do it with a spinlock held ...
3750 */
3751 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3752
3753out_nounlock:
3754 return retval;
3755
3756out_unlock:
3757 read_unlock(&tasklist_lock);
3758 return retval;
3759}
3760
3761long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3762{
3763 task_t *p;
3764 int retval;
3765 cpumask_t cpus_allowed;
3766
3767 lock_cpu_hotplug();
3768 read_lock(&tasklist_lock);
3769
3770 p = find_process_by_pid(pid);
3771 if (!p) {
3772 read_unlock(&tasklist_lock);
3773 unlock_cpu_hotplug();
3774 return -ESRCH;
3775 }
3776
3777 /*
3778 * It is not safe to call set_cpus_allowed with the
3779 * tasklist_lock held. We will bump the task_struct's
3780 * usage count and then drop tasklist_lock.
3781 */
3782 get_task_struct(p);
3783 read_unlock(&tasklist_lock);
3784
3785 retval = -EPERM;
3786 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3787 !capable(CAP_SYS_NICE))
3788 goto out_unlock;
3789
3790 cpus_allowed = cpuset_cpus_allowed(p);
3791 cpus_and(new_mask, new_mask, cpus_allowed);
3792 retval = set_cpus_allowed(p, new_mask);
3793
3794out_unlock:
3795 put_task_struct(p);
3796 unlock_cpu_hotplug();
3797 return retval;
3798}
3799
3800static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3801 cpumask_t *new_mask)
3802{
3803 if (len < sizeof(cpumask_t)) {
3804 memset(new_mask, 0, sizeof(cpumask_t));
3805 } else if (len > sizeof(cpumask_t)) {
3806 len = sizeof(cpumask_t);
3807 }
3808 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3809}
3810
3811/**
3812 * sys_sched_setaffinity - set the cpu affinity of a process
3813 * @pid: pid of the process
3814 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3815 * @user_mask_ptr: user-space pointer to the new cpu mask
3816 */
3817asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3818 unsigned long __user *user_mask_ptr)
3819{
3820 cpumask_t new_mask;
3821 int retval;
3822
3823 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3824 if (retval)
3825 return retval;
3826
3827 return sched_setaffinity(pid, new_mask);
3828}
3829
3830/*
3831 * Represents all cpu's present in the system
3832 * In systems capable of hotplug, this map could dynamically grow
3833 * as new cpu's are detected in the system via any platform specific
3834 * method, such as ACPI for e.g.
3835 */
3836
3837cpumask_t cpu_present_map;
3838EXPORT_SYMBOL(cpu_present_map);
3839
3840#ifndef CONFIG_SMP
3841cpumask_t cpu_online_map = CPU_MASK_ALL;
3842cpumask_t cpu_possible_map = CPU_MASK_ALL;
3843#endif
3844
3845long sched_getaffinity(pid_t pid, cpumask_t *mask)
3846{
3847 int retval;
3848 task_t *p;
3849
3850 lock_cpu_hotplug();
3851 read_lock(&tasklist_lock);
3852
3853 retval = -ESRCH;
3854 p = find_process_by_pid(pid);
3855 if (!p)
3856 goto out_unlock;
3857
3858 retval = 0;
3859 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3860
3861out_unlock:
3862 read_unlock(&tasklist_lock);
3863 unlock_cpu_hotplug();
3864 if (retval)
3865 return retval;
3866
3867 return 0;
3868}
3869
3870/**
3871 * sys_sched_getaffinity - get the cpu affinity of a process
3872 * @pid: pid of the process
3873 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3874 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3875 */
3876asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3877 unsigned long __user *user_mask_ptr)
3878{
3879 int ret;
3880 cpumask_t mask;
3881
3882 if (len < sizeof(cpumask_t))
3883 return -EINVAL;
3884
3885 ret = sched_getaffinity(pid, &mask);
3886 if (ret < 0)
3887 return ret;
3888
3889 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3890 return -EFAULT;
3891
3892 return sizeof(cpumask_t);
3893}
3894
3895/**
3896 * sys_sched_yield - yield the current processor to other threads.
3897 *
3898 * this function yields the current CPU by moving the calling thread
3899 * to the expired array. If there are no other threads running on this
3900 * CPU then this function will return.
3901 */
3902asmlinkage long sys_sched_yield(void)
3903{
3904 runqueue_t *rq = this_rq_lock();
3905 prio_array_t *array = current->array;
3906 prio_array_t *target = rq->expired;
3907
3908 schedstat_inc(rq, yld_cnt);
3909 /*
3910 * We implement yielding by moving the task into the expired
3911 * queue.
3912 *
3913 * (special rule: RT tasks will just roundrobin in the active
3914 * array.)
3915 */
3916 if (rt_task(current))
3917 target = rq->active;
3918
3919 if (current->array->nr_active == 1) {
3920 schedstat_inc(rq, yld_act_empty);
3921 if (!rq->expired->nr_active)
3922 schedstat_inc(rq, yld_both_empty);
3923 } else if (!rq->expired->nr_active)
3924 schedstat_inc(rq, yld_exp_empty);
3925
3926 if (array != target) {
3927 dequeue_task(current, array);
3928 enqueue_task(current, target);
3929 } else
3930 /*
3931 * requeue_task is cheaper so perform that if possible.
3932 */
3933 requeue_task(current, array);
3934
3935 /*
3936 * Since we are going to call schedule() anyway, there's
3937 * no need to preempt or enable interrupts:
3938 */
3939 __release(rq->lock);
3940 _raw_spin_unlock(&rq->lock);
3941 preempt_enable_no_resched();
3942
3943 schedule();
3944
3945 return 0;
3946}
3947
3948static inline void __cond_resched(void)
3949{
5bbcfd90
IM
3950 /*
3951 * The BKS might be reacquired before we have dropped
3952 * PREEMPT_ACTIVE, which could trigger a second
3953 * cond_resched() call.
3954 */
3955 if (unlikely(preempt_count()))
3956 return;
1da177e4
LT
3957 do {
3958 add_preempt_count(PREEMPT_ACTIVE);
3959 schedule();
3960 sub_preempt_count(PREEMPT_ACTIVE);
3961 } while (need_resched());
3962}
3963
3964int __sched cond_resched(void)
3965{
3966 if (need_resched()) {
3967 __cond_resched();
3968 return 1;
3969 }
3970 return 0;
3971}
3972
3973EXPORT_SYMBOL(cond_resched);
3974
3975/*
3976 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3977 * call schedule, and on return reacquire the lock.
3978 *
3979 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3980 * operations here to prevent schedule() from being called twice (once via
3981 * spin_unlock(), once by hand).
3982 */
95cdf3b7 3983int cond_resched_lock(spinlock_t *lock)
1da177e4 3984{
6df3cecb
JK
3985 int ret = 0;
3986
1da177e4
LT
3987 if (need_lockbreak(lock)) {
3988 spin_unlock(lock);
3989 cpu_relax();
6df3cecb 3990 ret = 1;
1da177e4
LT
3991 spin_lock(lock);
3992 }
3993 if (need_resched()) {
3994 _raw_spin_unlock(lock);
3995 preempt_enable_no_resched();
3996 __cond_resched();
6df3cecb 3997 ret = 1;
1da177e4 3998 spin_lock(lock);
1da177e4 3999 }
6df3cecb 4000 return ret;
1da177e4
LT
4001}
4002
4003EXPORT_SYMBOL(cond_resched_lock);
4004
4005int __sched cond_resched_softirq(void)
4006{
4007 BUG_ON(!in_softirq());
4008
4009 if (need_resched()) {
4010 __local_bh_enable();
4011 __cond_resched();
4012 local_bh_disable();
4013 return 1;
4014 }
4015 return 0;
4016}
4017
4018EXPORT_SYMBOL(cond_resched_softirq);
4019
4020
4021/**
4022 * yield - yield the current processor to other threads.
4023 *
4024 * this is a shortcut for kernel-space yielding - it marks the
4025 * thread runnable and calls sys_sched_yield().
4026 */
4027void __sched yield(void)
4028{
4029 set_current_state(TASK_RUNNING);
4030 sys_sched_yield();
4031}
4032
4033EXPORT_SYMBOL(yield);
4034
4035/*
4036 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4037 * that process accounting knows that this is a task in IO wait state.
4038 *
4039 * But don't do that if it is a deliberate, throttling IO wait (this task
4040 * has set its backing_dev_info: the queue against which it should throttle)
4041 */
4042void __sched io_schedule(void)
4043{
39c715b7 4044 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4045
4046 atomic_inc(&rq->nr_iowait);
4047 schedule();
4048 atomic_dec(&rq->nr_iowait);
4049}
4050
4051EXPORT_SYMBOL(io_schedule);
4052
4053long __sched io_schedule_timeout(long timeout)
4054{
39c715b7 4055 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4056 long ret;
4057
4058 atomic_inc(&rq->nr_iowait);
4059 ret = schedule_timeout(timeout);
4060 atomic_dec(&rq->nr_iowait);
4061 return ret;
4062}
4063
4064/**
4065 * sys_sched_get_priority_max - return maximum RT priority.
4066 * @policy: scheduling class.
4067 *
4068 * this syscall returns the maximum rt_priority that can be used
4069 * by a given scheduling class.
4070 */
4071asmlinkage long sys_sched_get_priority_max(int policy)
4072{
4073 int ret = -EINVAL;
4074
4075 switch (policy) {
4076 case SCHED_FIFO:
4077 case SCHED_RR:
4078 ret = MAX_USER_RT_PRIO-1;
4079 break;
4080 case SCHED_NORMAL:
4081 ret = 0;
4082 break;
4083 }
4084 return ret;
4085}
4086
4087/**
4088 * sys_sched_get_priority_min - return minimum RT priority.
4089 * @policy: scheduling class.
4090 *
4091 * this syscall returns the minimum rt_priority that can be used
4092 * by a given scheduling class.
4093 */
4094asmlinkage long sys_sched_get_priority_min(int policy)
4095{
4096 int ret = -EINVAL;
4097
4098 switch (policy) {
4099 case SCHED_FIFO:
4100 case SCHED_RR:
4101 ret = 1;
4102 break;
4103 case SCHED_NORMAL:
4104 ret = 0;
4105 }
4106 return ret;
4107}
4108
4109/**
4110 * sys_sched_rr_get_interval - return the default timeslice of a process.
4111 * @pid: pid of the process.
4112 * @interval: userspace pointer to the timeslice value.
4113 *
4114 * this syscall writes the default timeslice value of a given process
4115 * into the user-space timespec buffer. A value of '0' means infinity.
4116 */
4117asmlinkage
4118long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4119{
4120 int retval = -EINVAL;
4121 struct timespec t;
4122 task_t *p;
4123
4124 if (pid < 0)
4125 goto out_nounlock;
4126
4127 retval = -ESRCH;
4128 read_lock(&tasklist_lock);
4129 p = find_process_by_pid(pid);
4130 if (!p)
4131 goto out_unlock;
4132
4133 retval = security_task_getscheduler(p);
4134 if (retval)
4135 goto out_unlock;
4136
4137 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4138 0 : task_timeslice(p), &t);
4139 read_unlock(&tasklist_lock);
4140 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4141out_nounlock:
4142 return retval;
4143out_unlock:
4144 read_unlock(&tasklist_lock);
4145 return retval;
4146}
4147
4148static inline struct task_struct *eldest_child(struct task_struct *p)
4149{
4150 if (list_empty(&p->children)) return NULL;
4151 return list_entry(p->children.next,struct task_struct,sibling);
4152}
4153
4154static inline struct task_struct *older_sibling(struct task_struct *p)
4155{
4156 if (p->sibling.prev==&p->parent->children) return NULL;
4157 return list_entry(p->sibling.prev,struct task_struct,sibling);
4158}
4159
4160static inline struct task_struct *younger_sibling(struct task_struct *p)
4161{
4162 if (p->sibling.next==&p->parent->children) return NULL;
4163 return list_entry(p->sibling.next,struct task_struct,sibling);
4164}
4165
95cdf3b7 4166static void show_task(task_t *p)
1da177e4
LT
4167{
4168 task_t *relative;
4169 unsigned state;
4170 unsigned long free = 0;
4171 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4172
4173 printk("%-13.13s ", p->comm);
4174 state = p->state ? __ffs(p->state) + 1 : 0;
4175 if (state < ARRAY_SIZE(stat_nam))
4176 printk(stat_nam[state]);
4177 else
4178 printk("?");
4179#if (BITS_PER_LONG == 32)
4180 if (state == TASK_RUNNING)
4181 printk(" running ");
4182 else
4183 printk(" %08lX ", thread_saved_pc(p));
4184#else
4185 if (state == TASK_RUNNING)
4186 printk(" running task ");
4187 else
4188 printk(" %016lx ", thread_saved_pc(p));
4189#endif
4190#ifdef CONFIG_DEBUG_STACK_USAGE
4191 {
95cdf3b7 4192 unsigned long *n = (unsigned long *) (p->thread_info+1);
1da177e4
LT
4193 while (!*n)
4194 n++;
4195 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4196 }
4197#endif
4198 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4199 if ((relative = eldest_child(p)))
4200 printk("%5d ", relative->pid);
4201 else
4202 printk(" ");
4203 if ((relative = younger_sibling(p)))
4204 printk("%7d", relative->pid);
4205 else
4206 printk(" ");
4207 if ((relative = older_sibling(p)))
4208 printk(" %5d", relative->pid);
4209 else
4210 printk(" ");
4211 if (!p->mm)
4212 printk(" (L-TLB)\n");
4213 else
4214 printk(" (NOTLB)\n");
4215
4216 if (state != TASK_RUNNING)
4217 show_stack(p, NULL);
4218}
4219
4220void show_state(void)
4221{
4222 task_t *g, *p;
4223
4224#if (BITS_PER_LONG == 32)
4225 printk("\n"
4226 " sibling\n");
4227 printk(" task PC pid father child younger older\n");
4228#else
4229 printk("\n"
4230 " sibling\n");
4231 printk(" task PC pid father child younger older\n");
4232#endif
4233 read_lock(&tasklist_lock);
4234 do_each_thread(g, p) {
4235 /*
4236 * reset the NMI-timeout, listing all files on a slow
4237 * console might take alot of time:
4238 */
4239 touch_nmi_watchdog();
4240 show_task(p);
4241 } while_each_thread(g, p);
4242
4243 read_unlock(&tasklist_lock);
4244}
4245
f340c0d1
IM
4246/**
4247 * init_idle - set up an idle thread for a given CPU
4248 * @idle: task in question
4249 * @cpu: cpu the idle task belongs to
4250 *
4251 * NOTE: this function does not set the idle thread's NEED_RESCHED
4252 * flag, to make booting more robust.
4253 */
1da177e4
LT
4254void __devinit init_idle(task_t *idle, int cpu)
4255{
4256 runqueue_t *rq = cpu_rq(cpu);
4257 unsigned long flags;
4258
4259 idle->sleep_avg = 0;
4260 idle->array = NULL;
4261 idle->prio = MAX_PRIO;
4262 idle->state = TASK_RUNNING;
4263 idle->cpus_allowed = cpumask_of_cpu(cpu);
4264 set_task_cpu(idle, cpu);
4265
4266 spin_lock_irqsave(&rq->lock, flags);
4267 rq->curr = rq->idle = idle;
4866cde0
NP
4268#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4269 idle->oncpu = 1;
4270#endif
1da177e4
LT
4271 spin_unlock_irqrestore(&rq->lock, flags);
4272
4273 /* Set the preempt count _outside_ the spinlocks! */
4274#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4275 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4276#else
4277 idle->thread_info->preempt_count = 0;
4278#endif
4279}
4280
4281/*
4282 * In a system that switches off the HZ timer nohz_cpu_mask
4283 * indicates which cpus entered this state. This is used
4284 * in the rcu update to wait only for active cpus. For system
4285 * which do not switch off the HZ timer nohz_cpu_mask should
4286 * always be CPU_MASK_NONE.
4287 */
4288cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4289
4290#ifdef CONFIG_SMP
4291/*
4292 * This is how migration works:
4293 *
4294 * 1) we queue a migration_req_t structure in the source CPU's
4295 * runqueue and wake up that CPU's migration thread.
4296 * 2) we down() the locked semaphore => thread blocks.
4297 * 3) migration thread wakes up (implicitly it forces the migrated
4298 * thread off the CPU)
4299 * 4) it gets the migration request and checks whether the migrated
4300 * task is still in the wrong runqueue.
4301 * 5) if it's in the wrong runqueue then the migration thread removes
4302 * it and puts it into the right queue.
4303 * 6) migration thread up()s the semaphore.
4304 * 7) we wake up and the migration is done.
4305 */
4306
4307/*
4308 * Change a given task's CPU affinity. Migrate the thread to a
4309 * proper CPU and schedule it away if the CPU it's executing on
4310 * is removed from the allowed bitmask.
4311 *
4312 * NOTE: the caller must have a valid reference to the task, the
4313 * task must not exit() & deallocate itself prematurely. The
4314 * call is not atomic; no spinlocks may be held.
4315 */
4316int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4317{
4318 unsigned long flags;
4319 int ret = 0;
4320 migration_req_t req;
4321 runqueue_t *rq;
4322
4323 rq = task_rq_lock(p, &flags);
4324 if (!cpus_intersects(new_mask, cpu_online_map)) {
4325 ret = -EINVAL;
4326 goto out;
4327 }
4328
4329 p->cpus_allowed = new_mask;
4330 /* Can the task run on the task's current CPU? If so, we're done */
4331 if (cpu_isset(task_cpu(p), new_mask))
4332 goto out;
4333
4334 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4335 /* Need help from migration thread: drop lock and wait. */
4336 task_rq_unlock(rq, &flags);
4337 wake_up_process(rq->migration_thread);
4338 wait_for_completion(&req.done);
4339 tlb_migrate_finish(p->mm);
4340 return 0;
4341 }
4342out:
4343 task_rq_unlock(rq, &flags);
4344 return ret;
4345}
4346
4347EXPORT_SYMBOL_GPL(set_cpus_allowed);
4348
4349/*
4350 * Move (not current) task off this cpu, onto dest cpu. We're doing
4351 * this because either it can't run here any more (set_cpus_allowed()
4352 * away from this CPU, or CPU going down), or because we're
4353 * attempting to rebalance this task on exec (sched_exec).
4354 *
4355 * So we race with normal scheduler movements, but that's OK, as long
4356 * as the task is no longer on this CPU.
4357 */
4358static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4359{
4360 runqueue_t *rq_dest, *rq_src;
4361
4362 if (unlikely(cpu_is_offline(dest_cpu)))
4363 return;
4364
4365 rq_src = cpu_rq(src_cpu);
4366 rq_dest = cpu_rq(dest_cpu);
4367
4368 double_rq_lock(rq_src, rq_dest);
4369 /* Already moved. */
4370 if (task_cpu(p) != src_cpu)
4371 goto out;
4372 /* Affinity changed (again). */
4373 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4374 goto out;
4375
4376 set_task_cpu(p, dest_cpu);
4377 if (p->array) {
4378 /*
4379 * Sync timestamp with rq_dest's before activating.
4380 * The same thing could be achieved by doing this step
4381 * afterwards, and pretending it was a local activate.
4382 * This way is cleaner and logically correct.
4383 */
4384 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4385 + rq_dest->timestamp_last_tick;
4386 deactivate_task(p, rq_src);
4387 activate_task(p, rq_dest, 0);
4388 if (TASK_PREEMPTS_CURR(p, rq_dest))
4389 resched_task(rq_dest->curr);
4390 }
4391
4392out:
4393 double_rq_unlock(rq_src, rq_dest);
4394}
4395
4396/*
4397 * migration_thread - this is a highprio system thread that performs
4398 * thread migration by bumping thread off CPU then 'pushing' onto
4399 * another runqueue.
4400 */
95cdf3b7 4401static int migration_thread(void *data)
1da177e4
LT
4402{
4403 runqueue_t *rq;
4404 int cpu = (long)data;
4405
4406 rq = cpu_rq(cpu);
4407 BUG_ON(rq->migration_thread != current);
4408
4409 set_current_state(TASK_INTERRUPTIBLE);
4410 while (!kthread_should_stop()) {
4411 struct list_head *head;
4412 migration_req_t *req;
4413
3e1d1d28 4414 try_to_freeze();
1da177e4
LT
4415
4416 spin_lock_irq(&rq->lock);
4417
4418 if (cpu_is_offline(cpu)) {
4419 spin_unlock_irq(&rq->lock);
4420 goto wait_to_die;
4421 }
4422
4423 if (rq->active_balance) {
4424 active_load_balance(rq, cpu);
4425 rq->active_balance = 0;
4426 }
4427
4428 head = &rq->migration_queue;
4429
4430 if (list_empty(head)) {
4431 spin_unlock_irq(&rq->lock);
4432 schedule();
4433 set_current_state(TASK_INTERRUPTIBLE);
4434 continue;
4435 }
4436 req = list_entry(head->next, migration_req_t, list);
4437 list_del_init(head->next);
4438
674311d5
NP
4439 spin_unlock(&rq->lock);
4440 __migrate_task(req->task, cpu, req->dest_cpu);
4441 local_irq_enable();
1da177e4
LT
4442
4443 complete(&req->done);
4444 }
4445 __set_current_state(TASK_RUNNING);
4446 return 0;
4447
4448wait_to_die:
4449 /* Wait for kthread_stop */
4450 set_current_state(TASK_INTERRUPTIBLE);
4451 while (!kthread_should_stop()) {
4452 schedule();
4453 set_current_state(TASK_INTERRUPTIBLE);
4454 }
4455 __set_current_state(TASK_RUNNING);
4456 return 0;
4457}
4458
4459#ifdef CONFIG_HOTPLUG_CPU
4460/* Figure out where task on dead CPU should go, use force if neccessary. */
4461static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4462{
4463 int dest_cpu;
4464 cpumask_t mask;
4465
4466 /* On same node? */
4467 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4468 cpus_and(mask, mask, tsk->cpus_allowed);
4469 dest_cpu = any_online_cpu(mask);
4470
4471 /* On any allowed CPU? */
4472 if (dest_cpu == NR_CPUS)
4473 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4474
4475 /* No more Mr. Nice Guy. */
4476 if (dest_cpu == NR_CPUS) {
b39c4fab 4477 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4478 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4479
4480 /*
4481 * Don't tell them about moving exiting tasks or
4482 * kernel threads (both mm NULL), since they never
4483 * leave kernel.
4484 */
4485 if (tsk->mm && printk_ratelimit())
4486 printk(KERN_INFO "process %d (%s) no "
4487 "longer affine to cpu%d\n",
4488 tsk->pid, tsk->comm, dead_cpu);
4489 }
4490 __migrate_task(tsk, dead_cpu, dest_cpu);
4491}
4492
4493/*
4494 * While a dead CPU has no uninterruptible tasks queued at this point,
4495 * it might still have a nonzero ->nr_uninterruptible counter, because
4496 * for performance reasons the counter is not stricly tracking tasks to
4497 * their home CPUs. So we just add the counter to another CPU's counter,
4498 * to keep the global sum constant after CPU-down:
4499 */
4500static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4501{
4502 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4503 unsigned long flags;
4504
4505 local_irq_save(flags);
4506 double_rq_lock(rq_src, rq_dest);
4507 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4508 rq_src->nr_uninterruptible = 0;
4509 double_rq_unlock(rq_src, rq_dest);
4510 local_irq_restore(flags);
4511}
4512
4513/* Run through task list and migrate tasks from the dead cpu. */
4514static void migrate_live_tasks(int src_cpu)
4515{
4516 struct task_struct *tsk, *t;
4517
4518 write_lock_irq(&tasklist_lock);
4519
4520 do_each_thread(t, tsk) {
4521 if (tsk == current)
4522 continue;
4523
4524 if (task_cpu(tsk) == src_cpu)
4525 move_task_off_dead_cpu(src_cpu, tsk);
4526 } while_each_thread(t, tsk);
4527
4528 write_unlock_irq(&tasklist_lock);
4529}
4530
4531/* Schedules idle task to be the next runnable task on current CPU.
4532 * It does so by boosting its priority to highest possible and adding it to
4533 * the _front_ of runqueue. Used by CPU offline code.
4534 */
4535void sched_idle_next(void)
4536{
4537 int cpu = smp_processor_id();
4538 runqueue_t *rq = this_rq();
4539 struct task_struct *p = rq->idle;
4540 unsigned long flags;
4541
4542 /* cpu has to be offline */
4543 BUG_ON(cpu_online(cpu));
4544
4545 /* Strictly not necessary since rest of the CPUs are stopped by now
4546 * and interrupts disabled on current cpu.
4547 */
4548 spin_lock_irqsave(&rq->lock, flags);
4549
4550 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4551 /* Add idle task to _front_ of it's priority queue */
4552 __activate_idle_task(p, rq);
4553
4554 spin_unlock_irqrestore(&rq->lock, flags);
4555}
4556
4557/* Ensures that the idle task is using init_mm right before its cpu goes
4558 * offline.
4559 */
4560void idle_task_exit(void)
4561{
4562 struct mm_struct *mm = current->active_mm;
4563
4564 BUG_ON(cpu_online(smp_processor_id()));
4565
4566 if (mm != &init_mm)
4567 switch_mm(mm, &init_mm, current);
4568 mmdrop(mm);
4569}
4570
4571static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4572{
4573 struct runqueue *rq = cpu_rq(dead_cpu);
4574
4575 /* Must be exiting, otherwise would be on tasklist. */
4576 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4577
4578 /* Cannot have done final schedule yet: would have vanished. */
4579 BUG_ON(tsk->flags & PF_DEAD);
4580
4581 get_task_struct(tsk);
4582
4583 /*
4584 * Drop lock around migration; if someone else moves it,
4585 * that's OK. No task can be added to this CPU, so iteration is
4586 * fine.
4587 */
4588 spin_unlock_irq(&rq->lock);
4589 move_task_off_dead_cpu(dead_cpu, tsk);
4590 spin_lock_irq(&rq->lock);
4591
4592 put_task_struct(tsk);
4593}
4594
4595/* release_task() removes task from tasklist, so we won't find dead tasks. */
4596static void migrate_dead_tasks(unsigned int dead_cpu)
4597{
4598 unsigned arr, i;
4599 struct runqueue *rq = cpu_rq(dead_cpu);
4600
4601 for (arr = 0; arr < 2; arr++) {
4602 for (i = 0; i < MAX_PRIO; i++) {
4603 struct list_head *list = &rq->arrays[arr].queue[i];
4604 while (!list_empty(list))
4605 migrate_dead(dead_cpu,
4606 list_entry(list->next, task_t,
4607 run_list));
4608 }
4609 }
4610}
4611#endif /* CONFIG_HOTPLUG_CPU */
4612
4613/*
4614 * migration_call - callback that gets triggered when a CPU is added.
4615 * Here we can start up the necessary migration thread for the new CPU.
4616 */
4617static int migration_call(struct notifier_block *nfb, unsigned long action,
4618 void *hcpu)
4619{
4620 int cpu = (long)hcpu;
4621 struct task_struct *p;
4622 struct runqueue *rq;
4623 unsigned long flags;
4624
4625 switch (action) {
4626 case CPU_UP_PREPARE:
4627 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4628 if (IS_ERR(p))
4629 return NOTIFY_BAD;
4630 p->flags |= PF_NOFREEZE;
4631 kthread_bind(p, cpu);
4632 /* Must be high prio: stop_machine expects to yield to it. */
4633 rq = task_rq_lock(p, &flags);
4634 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4635 task_rq_unlock(rq, &flags);
4636 cpu_rq(cpu)->migration_thread = p;
4637 break;
4638 case CPU_ONLINE:
4639 /* Strictly unneccessary, as first user will wake it. */
4640 wake_up_process(cpu_rq(cpu)->migration_thread);
4641 break;
4642#ifdef CONFIG_HOTPLUG_CPU
4643 case CPU_UP_CANCELED:
4644 /* Unbind it from offline cpu so it can run. Fall thru. */
4645 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4646 kthread_stop(cpu_rq(cpu)->migration_thread);
4647 cpu_rq(cpu)->migration_thread = NULL;
4648 break;
4649 case CPU_DEAD:
4650 migrate_live_tasks(cpu);
4651 rq = cpu_rq(cpu);
4652 kthread_stop(rq->migration_thread);
4653 rq->migration_thread = NULL;
4654 /* Idle task back to normal (off runqueue, low prio) */
4655 rq = task_rq_lock(rq->idle, &flags);
4656 deactivate_task(rq->idle, rq);
4657 rq->idle->static_prio = MAX_PRIO;
4658 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4659 migrate_dead_tasks(cpu);
4660 task_rq_unlock(rq, &flags);
4661 migrate_nr_uninterruptible(rq);
4662 BUG_ON(rq->nr_running != 0);
4663
4664 /* No need to migrate the tasks: it was best-effort if
4665 * they didn't do lock_cpu_hotplug(). Just wake up
4666 * the requestors. */
4667 spin_lock_irq(&rq->lock);
4668 while (!list_empty(&rq->migration_queue)) {
4669 migration_req_t *req;
4670 req = list_entry(rq->migration_queue.next,
4671 migration_req_t, list);
1da177e4
LT
4672 list_del_init(&req->list);
4673 complete(&req->done);
4674 }
4675 spin_unlock_irq(&rq->lock);
4676 break;
4677#endif
4678 }
4679 return NOTIFY_OK;
4680}
4681
4682/* Register at highest priority so that task migration (migrate_all_tasks)
4683 * happens before everything else.
4684 */
4685static struct notifier_block __devinitdata migration_notifier = {
4686 .notifier_call = migration_call,
4687 .priority = 10
4688};
4689
4690int __init migration_init(void)
4691{
4692 void *cpu = (void *)(long)smp_processor_id();
4693 /* Start one for boot CPU. */
4694 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4695 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4696 register_cpu_notifier(&migration_notifier);
4697 return 0;
4698}
4699#endif
4700
4701#ifdef CONFIG_SMP
1a20ff27 4702#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4703#ifdef SCHED_DOMAIN_DEBUG
4704static void sched_domain_debug(struct sched_domain *sd, int cpu)
4705{
4706 int level = 0;
4707
41c7ce9a
NP
4708 if (!sd) {
4709 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4710 return;
4711 }
4712
1da177e4
LT
4713 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4714
4715 do {
4716 int i;
4717 char str[NR_CPUS];
4718 struct sched_group *group = sd->groups;
4719 cpumask_t groupmask;
4720
4721 cpumask_scnprintf(str, NR_CPUS, sd->span);
4722 cpus_clear(groupmask);
4723
4724 printk(KERN_DEBUG);
4725 for (i = 0; i < level + 1; i++)
4726 printk(" ");
4727 printk("domain %d: ", level);
4728
4729 if (!(sd->flags & SD_LOAD_BALANCE)) {
4730 printk("does not load-balance\n");
4731 if (sd->parent)
4732 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4733 break;
4734 }
4735
4736 printk("span %s\n", str);
4737
4738 if (!cpu_isset(cpu, sd->span))
4739 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4740 if (!cpu_isset(cpu, group->cpumask))
4741 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4742
4743 printk(KERN_DEBUG);
4744 for (i = 0; i < level + 2; i++)
4745 printk(" ");
4746 printk("groups:");
4747 do {
4748 if (!group) {
4749 printk("\n");
4750 printk(KERN_ERR "ERROR: group is NULL\n");
4751 break;
4752 }
4753
4754 if (!group->cpu_power) {
4755 printk("\n");
4756 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4757 }
4758
4759 if (!cpus_weight(group->cpumask)) {
4760 printk("\n");
4761 printk(KERN_ERR "ERROR: empty group\n");
4762 }
4763
4764 if (cpus_intersects(groupmask, group->cpumask)) {
4765 printk("\n");
4766 printk(KERN_ERR "ERROR: repeated CPUs\n");
4767 }
4768
4769 cpus_or(groupmask, groupmask, group->cpumask);
4770
4771 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4772 printk(" %s", str);
4773
4774 group = group->next;
4775 } while (group != sd->groups);
4776 printk("\n");
4777
4778 if (!cpus_equal(sd->span, groupmask))
4779 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4780
4781 level++;
4782 sd = sd->parent;
4783
4784 if (sd) {
4785 if (!cpus_subset(groupmask, sd->span))
4786 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4787 }
4788
4789 } while (sd);
4790}
4791#else
4792#define sched_domain_debug(sd, cpu) {}
4793#endif
4794
1a20ff27 4795static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4796{
4797 if (cpus_weight(sd->span) == 1)
4798 return 1;
4799
4800 /* Following flags need at least 2 groups */
4801 if (sd->flags & (SD_LOAD_BALANCE |
4802 SD_BALANCE_NEWIDLE |
4803 SD_BALANCE_FORK |
4804 SD_BALANCE_EXEC)) {
4805 if (sd->groups != sd->groups->next)
4806 return 0;
4807 }
4808
4809 /* Following flags don't use groups */
4810 if (sd->flags & (SD_WAKE_IDLE |
4811 SD_WAKE_AFFINE |
4812 SD_WAKE_BALANCE))
4813 return 0;
4814
4815 return 1;
4816}
4817
1a20ff27 4818static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4819 struct sched_domain *parent)
4820{
4821 unsigned long cflags = sd->flags, pflags = parent->flags;
4822
4823 if (sd_degenerate(parent))
4824 return 1;
4825
4826 if (!cpus_equal(sd->span, parent->span))
4827 return 0;
4828
4829 /* Does parent contain flags not in child? */
4830 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4831 if (cflags & SD_WAKE_AFFINE)
4832 pflags &= ~SD_WAKE_BALANCE;
4833 /* Flags needing groups don't count if only 1 group in parent */
4834 if (parent->groups == parent->groups->next) {
4835 pflags &= ~(SD_LOAD_BALANCE |
4836 SD_BALANCE_NEWIDLE |
4837 SD_BALANCE_FORK |
4838 SD_BALANCE_EXEC);
4839 }
4840 if (~cflags & pflags)
4841 return 0;
4842
4843 return 1;
4844}
4845
1da177e4
LT
4846/*
4847 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4848 * hold the hotplug lock.
4849 */
9c1cfda2 4850static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 4851{
1da177e4 4852 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4853 struct sched_domain *tmp;
4854
4855 /* Remove the sched domains which do not contribute to scheduling. */
4856 for (tmp = sd; tmp; tmp = tmp->parent) {
4857 struct sched_domain *parent = tmp->parent;
4858 if (!parent)
4859 break;
4860 if (sd_parent_degenerate(tmp, parent))
4861 tmp->parent = parent->parent;
4862 }
4863
4864 if (sd && sd_degenerate(sd))
4865 sd = sd->parent;
1da177e4
LT
4866
4867 sched_domain_debug(sd, cpu);
4868
674311d5 4869 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
4870}
4871
4872/* cpus with isolated domains */
9c1cfda2 4873static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
4874
4875/* Setup the mask of cpus configured for isolated domains */
4876static int __init isolated_cpu_setup(char *str)
4877{
4878 int ints[NR_CPUS], i;
4879
4880 str = get_options(str, ARRAY_SIZE(ints), ints);
4881 cpus_clear(cpu_isolated_map);
4882 for (i = 1; i <= ints[0]; i++)
4883 if (ints[i] < NR_CPUS)
4884 cpu_set(ints[i], cpu_isolated_map);
4885 return 1;
4886}
4887
4888__setup ("isolcpus=", isolated_cpu_setup);
4889
4890/*
4891 * init_sched_build_groups takes an array of groups, the cpumask we wish
4892 * to span, and a pointer to a function which identifies what group a CPU
4893 * belongs to. The return value of group_fn must be a valid index into the
4894 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4895 * keep track of groups covered with a cpumask_t).
4896 *
4897 * init_sched_build_groups will build a circular linked list of the groups
4898 * covered by the given span, and will set each group's ->cpumask correctly,
4899 * and ->cpu_power to 0.
4900 */
9c1cfda2
JH
4901static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4902 int (*group_fn)(int cpu))
1da177e4
LT
4903{
4904 struct sched_group *first = NULL, *last = NULL;
4905 cpumask_t covered = CPU_MASK_NONE;
4906 int i;
4907
4908 for_each_cpu_mask(i, span) {
4909 int group = group_fn(i);
4910 struct sched_group *sg = &groups[group];
4911 int j;
4912
4913 if (cpu_isset(i, covered))
4914 continue;
4915
4916 sg->cpumask = CPU_MASK_NONE;
4917 sg->cpu_power = 0;
4918
4919 for_each_cpu_mask(j, span) {
4920 if (group_fn(j) != group)
4921 continue;
4922
4923 cpu_set(j, covered);
4924 cpu_set(j, sg->cpumask);
4925 }
4926 if (!first)
4927 first = sg;
4928 if (last)
4929 last->next = sg;
4930 last = sg;
4931 }
4932 last->next = first;
4933}
4934
9c1cfda2 4935#define SD_NODES_PER_DOMAIN 16
1da177e4 4936
9c1cfda2
JH
4937#ifdef CONFIG_NUMA
4938/**
4939 * find_next_best_node - find the next node to include in a sched_domain
4940 * @node: node whose sched_domain we're building
4941 * @used_nodes: nodes already in the sched_domain
4942 *
4943 * Find the next node to include in a given scheduling domain. Simply
4944 * finds the closest node not already in the @used_nodes map.
4945 *
4946 * Should use nodemask_t.
4947 */
4948static int find_next_best_node(int node, unsigned long *used_nodes)
4949{
4950 int i, n, val, min_val, best_node = 0;
4951
4952 min_val = INT_MAX;
4953
4954 for (i = 0; i < MAX_NUMNODES; i++) {
4955 /* Start at @node */
4956 n = (node + i) % MAX_NUMNODES;
4957
4958 if (!nr_cpus_node(n))
4959 continue;
4960
4961 /* Skip already used nodes */
4962 if (test_bit(n, used_nodes))
4963 continue;
4964
4965 /* Simple min distance search */
4966 val = node_distance(node, n);
4967
4968 if (val < min_val) {
4969 min_val = val;
4970 best_node = n;
4971 }
4972 }
4973
4974 set_bit(best_node, used_nodes);
4975 return best_node;
4976}
4977
4978/**
4979 * sched_domain_node_span - get a cpumask for a node's sched_domain
4980 * @node: node whose cpumask we're constructing
4981 * @size: number of nodes to include in this span
4982 *
4983 * Given a node, construct a good cpumask for its sched_domain to span. It
4984 * should be one that prevents unnecessary balancing, but also spreads tasks
4985 * out optimally.
4986 */
4987static cpumask_t sched_domain_node_span(int node)
4988{
4989 int i;
4990 cpumask_t span, nodemask;
4991 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4992
4993 cpus_clear(span);
4994 bitmap_zero(used_nodes, MAX_NUMNODES);
4995
4996 nodemask = node_to_cpumask(node);
4997 cpus_or(span, span, nodemask);
4998 set_bit(node, used_nodes);
4999
5000 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5001 int next_node = find_next_best_node(node, used_nodes);
5002 nodemask = node_to_cpumask(next_node);
5003 cpus_or(span, span, nodemask);
5004 }
5005
5006 return span;
5007}
5008#endif
5009
5010/*
5011 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5012 * can switch it on easily if needed.
5013 */
1da177e4
LT
5014#ifdef CONFIG_SCHED_SMT
5015static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5016static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5017static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5018{
5019 return cpu;
5020}
5021#endif
5022
5023static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5024static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5025static int cpu_to_phys_group(int cpu)
1da177e4
LT
5026{
5027#ifdef CONFIG_SCHED_SMT
5028 return first_cpu(cpu_sibling_map[cpu]);
5029#else
5030 return cpu;
5031#endif
5032}
5033
5034#ifdef CONFIG_NUMA
1da177e4 5035/*
9c1cfda2
JH
5036 * The init_sched_build_groups can't handle what we want to do with node
5037 * groups, so roll our own. Now each node has its own list of groups which
5038 * gets dynamically allocated.
1da177e4 5039 */
9c1cfda2 5040static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5041static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5042
9c1cfda2 5043static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5044static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5045
5046static int cpu_to_allnodes_group(int cpu)
5047{
5048 return cpu_to_node(cpu);
1da177e4
LT
5049}
5050#endif
5051
5052/*
1a20ff27
DG
5053 * Build sched domains for a given set of cpus and attach the sched domains
5054 * to the individual cpus
1da177e4 5055 */
9c1cfda2 5056void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5057{
5058 int i;
d1b55138
JH
5059#ifdef CONFIG_NUMA
5060 struct sched_group **sched_group_nodes = NULL;
5061 struct sched_group *sched_group_allnodes = NULL;
5062
5063 /*
5064 * Allocate the per-node list of sched groups
5065 */
5066 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5067 GFP_ATOMIC);
5068 if (!sched_group_nodes) {
5069 printk(KERN_WARNING "Can not alloc sched group node list\n");
5070 return;
5071 }
5072 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5073#endif
1da177e4
LT
5074
5075 /*
1a20ff27 5076 * Set up domains for cpus specified by the cpu_map.
1da177e4 5077 */
1a20ff27 5078 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5079 int group;
5080 struct sched_domain *sd = NULL, *p;
5081 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5082
1a20ff27 5083 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5084
5085#ifdef CONFIG_NUMA
d1b55138 5086 if (cpus_weight(*cpu_map)
9c1cfda2 5087 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5088 if (!sched_group_allnodes) {
5089 sched_group_allnodes
5090 = kmalloc(sizeof(struct sched_group)
5091 * MAX_NUMNODES,
5092 GFP_KERNEL);
5093 if (!sched_group_allnodes) {
5094 printk(KERN_WARNING
5095 "Can not alloc allnodes sched group\n");
5096 break;
5097 }
5098 sched_group_allnodes_bycpu[i]
5099 = sched_group_allnodes;
5100 }
9c1cfda2
JH
5101 sd = &per_cpu(allnodes_domains, i);
5102 *sd = SD_ALLNODES_INIT;
5103 sd->span = *cpu_map;
5104 group = cpu_to_allnodes_group(i);
5105 sd->groups = &sched_group_allnodes[group];
5106 p = sd;
5107 } else
5108 p = NULL;
5109
1da177e4 5110 sd = &per_cpu(node_domains, i);
1da177e4 5111 *sd = SD_NODE_INIT;
9c1cfda2
JH
5112 sd->span = sched_domain_node_span(cpu_to_node(i));
5113 sd->parent = p;
5114 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5115#endif
5116
5117 p = sd;
5118 sd = &per_cpu(phys_domains, i);
5119 group = cpu_to_phys_group(i);
5120 *sd = SD_CPU_INIT;
5121 sd->span = nodemask;
5122 sd->parent = p;
5123 sd->groups = &sched_group_phys[group];
5124
5125#ifdef CONFIG_SCHED_SMT
5126 p = sd;
5127 sd = &per_cpu(cpu_domains, i);
5128 group = cpu_to_cpu_group(i);
5129 *sd = SD_SIBLING_INIT;
5130 sd->span = cpu_sibling_map[i];
1a20ff27 5131 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5132 sd->parent = p;
5133 sd->groups = &sched_group_cpus[group];
5134#endif
5135 }
5136
5137#ifdef CONFIG_SCHED_SMT
5138 /* Set up CPU (sibling) groups */
9c1cfda2 5139 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5140 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5141 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5142 if (i != first_cpu(this_sibling_map))
5143 continue;
5144
5145 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5146 &cpu_to_cpu_group);
5147 }
5148#endif
5149
5150 /* Set up physical groups */
5151 for (i = 0; i < MAX_NUMNODES; i++) {
5152 cpumask_t nodemask = node_to_cpumask(i);
5153
1a20ff27 5154 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5155 if (cpus_empty(nodemask))
5156 continue;
5157
5158 init_sched_build_groups(sched_group_phys, nodemask,
5159 &cpu_to_phys_group);
5160 }
5161
5162#ifdef CONFIG_NUMA
5163 /* Set up node groups */
d1b55138
JH
5164 if (sched_group_allnodes)
5165 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5166 &cpu_to_allnodes_group);
9c1cfda2
JH
5167
5168 for (i = 0; i < MAX_NUMNODES; i++) {
5169 /* Set up node groups */
5170 struct sched_group *sg, *prev;
5171 cpumask_t nodemask = node_to_cpumask(i);
5172 cpumask_t domainspan;
5173 cpumask_t covered = CPU_MASK_NONE;
5174 int j;
5175
5176 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5177 if (cpus_empty(nodemask)) {
5178 sched_group_nodes[i] = NULL;
9c1cfda2 5179 continue;
d1b55138 5180 }
9c1cfda2
JH
5181
5182 domainspan = sched_domain_node_span(i);
5183 cpus_and(domainspan, domainspan, *cpu_map);
5184
5185 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5186 sched_group_nodes[i] = sg;
5187 for_each_cpu_mask(j, nodemask) {
5188 struct sched_domain *sd;
5189 sd = &per_cpu(node_domains, j);
5190 sd->groups = sg;
5191 if (sd->groups == NULL) {
5192 /* Turn off balancing if we have no groups */
5193 sd->flags = 0;
5194 }
5195 }
5196 if (!sg) {
5197 printk(KERN_WARNING
5198 "Can not alloc domain group for node %d\n", i);
5199 continue;
5200 }
5201 sg->cpu_power = 0;
5202 sg->cpumask = nodemask;
5203 cpus_or(covered, covered, nodemask);
5204 prev = sg;
5205
5206 for (j = 0; j < MAX_NUMNODES; j++) {
5207 cpumask_t tmp, notcovered;
5208 int n = (i + j) % MAX_NUMNODES;
5209
5210 cpus_complement(notcovered, covered);
5211 cpus_and(tmp, notcovered, *cpu_map);
5212 cpus_and(tmp, tmp, domainspan);
5213 if (cpus_empty(tmp))
5214 break;
5215
5216 nodemask = node_to_cpumask(n);
5217 cpus_and(tmp, tmp, nodemask);
5218 if (cpus_empty(tmp))
5219 continue;
5220
5221 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5222 if (!sg) {
5223 printk(KERN_WARNING
5224 "Can not alloc domain group for node %d\n", j);
5225 break;
5226 }
5227 sg->cpu_power = 0;
5228 sg->cpumask = tmp;
5229 cpus_or(covered, covered, tmp);
5230 prev->next = sg;
5231 prev = sg;
5232 }
5233 prev->next = sched_group_nodes[i];
5234 }
1da177e4
LT
5235#endif
5236
5237 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5238 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5239 int power;
5240 struct sched_domain *sd;
5241#ifdef CONFIG_SCHED_SMT
5242 sd = &per_cpu(cpu_domains, i);
5243 power = SCHED_LOAD_SCALE;
5244 sd->groups->cpu_power = power;
5245#endif
5246
5247 sd = &per_cpu(phys_domains, i);
5248 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5249 (cpus_weight(sd->groups->cpumask)-1) / 10;
5250 sd->groups->cpu_power = power;
5251
5252#ifdef CONFIG_NUMA
9c1cfda2
JH
5253 sd = &per_cpu(allnodes_domains, i);
5254 if (sd->groups) {
5255 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5256 (cpus_weight(sd->groups->cpumask)-1) / 10;
5257 sd->groups->cpu_power = power;
1da177e4
LT
5258 }
5259#endif
5260 }
5261
9c1cfda2
JH
5262#ifdef CONFIG_NUMA
5263 for (i = 0; i < MAX_NUMNODES; i++) {
5264 struct sched_group *sg = sched_group_nodes[i];
5265 int j;
5266
5267 if (sg == NULL)
5268 continue;
5269next_sg:
5270 for_each_cpu_mask(j, sg->cpumask) {
5271 struct sched_domain *sd;
5272 int power;
5273
5274 sd = &per_cpu(phys_domains, j);
5275 if (j != first_cpu(sd->groups->cpumask)) {
5276 /*
5277 * Only add "power" once for each
5278 * physical package.
5279 */
5280 continue;
5281 }
5282 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5283 (cpus_weight(sd->groups->cpumask)-1) / 10;
5284
5285 sg->cpu_power += power;
5286 }
5287 sg = sg->next;
5288 if (sg != sched_group_nodes[i])
5289 goto next_sg;
5290 }
5291#endif
5292
1da177e4 5293 /* Attach the domains */
1a20ff27 5294 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5295 struct sched_domain *sd;
5296#ifdef CONFIG_SCHED_SMT
5297 sd = &per_cpu(cpu_domains, i);
5298#else
5299 sd = &per_cpu(phys_domains, i);
5300#endif
5301 cpu_attach_domain(sd, i);
5302 }
5303}
1a20ff27
DG
5304/*
5305 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5306 */
9c1cfda2 5307static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5308{
5309 cpumask_t cpu_default_map;
1da177e4 5310
1a20ff27
DG
5311 /*
5312 * Setup mask for cpus without special case scheduling requirements.
5313 * For now this just excludes isolated cpus, but could be used to
5314 * exclude other special cases in the future.
5315 */
5316 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5317
5318 build_sched_domains(&cpu_default_map);
5319}
5320
5321static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5322{
9c1cfda2
JH
5323#ifdef CONFIG_NUMA
5324 int i;
d1b55138 5325 int cpu;
1da177e4 5326
d1b55138
JH
5327 for_each_cpu_mask(cpu, *cpu_map) {
5328 struct sched_group *sched_group_allnodes
5329 = sched_group_allnodes_bycpu[cpu];
5330 struct sched_group **sched_group_nodes
5331 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5332
d1b55138
JH
5333 if (sched_group_allnodes) {
5334 kfree(sched_group_allnodes);
5335 sched_group_allnodes_bycpu[cpu] = NULL;
5336 }
5337
5338 if (!sched_group_nodes)
9c1cfda2 5339 continue;
d1b55138
JH
5340
5341 for (i = 0; i < MAX_NUMNODES; i++) {
5342 cpumask_t nodemask = node_to_cpumask(i);
5343 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5344
5345 cpus_and(nodemask, nodemask, *cpu_map);
5346 if (cpus_empty(nodemask))
5347 continue;
5348
5349 if (sg == NULL)
5350 continue;
5351 sg = sg->next;
9c1cfda2 5352next_sg:
d1b55138
JH
5353 oldsg = sg;
5354 sg = sg->next;
5355 kfree(oldsg);
5356 if (oldsg != sched_group_nodes[i])
5357 goto next_sg;
5358 }
5359 kfree(sched_group_nodes);
5360 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
5361 }
5362#endif
5363}
1da177e4 5364
1a20ff27
DG
5365/*
5366 * Detach sched domains from a group of cpus specified in cpu_map
5367 * These cpus will now be attached to the NULL domain
5368 */
5369static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5370{
5371 int i;
5372
5373 for_each_cpu_mask(i, *cpu_map)
5374 cpu_attach_domain(NULL, i);
5375 synchronize_sched();
5376 arch_destroy_sched_domains(cpu_map);
5377}
5378
5379/*
5380 * Partition sched domains as specified by the cpumasks below.
5381 * This attaches all cpus from the cpumasks to the NULL domain,
5382 * waits for a RCU quiescent period, recalculates sched
5383 * domain information and then attaches them back to the
5384 * correct sched domains
5385 * Call with hotplug lock held
5386 */
5387void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5388{
5389 cpumask_t change_map;
5390
5391 cpus_and(*partition1, *partition1, cpu_online_map);
5392 cpus_and(*partition2, *partition2, cpu_online_map);
5393 cpus_or(change_map, *partition1, *partition2);
5394
5395 /* Detach sched domains from all of the affected cpus */
5396 detach_destroy_domains(&change_map);
5397 if (!cpus_empty(*partition1))
5398 build_sched_domains(partition1);
5399 if (!cpus_empty(*partition2))
5400 build_sched_domains(partition2);
5401}
5402
1da177e4
LT
5403#ifdef CONFIG_HOTPLUG_CPU
5404/*
5405 * Force a reinitialization of the sched domains hierarchy. The domains
5406 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 5407 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
5408 * which will prevent rebalancing while the sched domains are recalculated.
5409 */
5410static int update_sched_domains(struct notifier_block *nfb,
5411 unsigned long action, void *hcpu)
5412{
1da177e4
LT
5413 switch (action) {
5414 case CPU_UP_PREPARE:
5415 case CPU_DOWN_PREPARE:
1a20ff27 5416 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
5417 return NOTIFY_OK;
5418
5419 case CPU_UP_CANCELED:
5420 case CPU_DOWN_FAILED:
5421 case CPU_ONLINE:
5422 case CPU_DEAD:
5423 /*
5424 * Fall through and re-initialise the domains.
5425 */
5426 break;
5427 default:
5428 return NOTIFY_DONE;
5429 }
5430
5431 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 5432 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
5433
5434 return NOTIFY_OK;
5435}
5436#endif
5437
5438void __init sched_init_smp(void)
5439{
5440 lock_cpu_hotplug();
1a20ff27 5441 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
5442 unlock_cpu_hotplug();
5443 /* XXX: Theoretical race here - CPU may be hotplugged now */
5444 hotcpu_notifier(update_sched_domains, 0);
5445}
5446#else
5447void __init sched_init_smp(void)
5448{
5449}
5450#endif /* CONFIG_SMP */
5451
5452int in_sched_functions(unsigned long addr)
5453{
5454 /* Linker adds these: start and end of __sched functions */
5455 extern char __sched_text_start[], __sched_text_end[];
5456 return in_lock_functions(addr) ||
5457 (addr >= (unsigned long)__sched_text_start
5458 && addr < (unsigned long)__sched_text_end);
5459}
5460
5461void __init sched_init(void)
5462{
5463 runqueue_t *rq;
5464 int i, j, k;
5465
5466 for (i = 0; i < NR_CPUS; i++) {
5467 prio_array_t *array;
5468
5469 rq = cpu_rq(i);
5470 spin_lock_init(&rq->lock);
7897986b 5471 rq->nr_running = 0;
1da177e4
LT
5472 rq->active = rq->arrays;
5473 rq->expired = rq->arrays + 1;
5474 rq->best_expired_prio = MAX_PRIO;
5475
5476#ifdef CONFIG_SMP
41c7ce9a 5477 rq->sd = NULL;
7897986b
NP
5478 for (j = 1; j < 3; j++)
5479 rq->cpu_load[j] = 0;
1da177e4
LT
5480 rq->active_balance = 0;
5481 rq->push_cpu = 0;
5482 rq->migration_thread = NULL;
5483 INIT_LIST_HEAD(&rq->migration_queue);
5484#endif
5485 atomic_set(&rq->nr_iowait, 0);
5486
5487 for (j = 0; j < 2; j++) {
5488 array = rq->arrays + j;
5489 for (k = 0; k < MAX_PRIO; k++) {
5490 INIT_LIST_HEAD(array->queue + k);
5491 __clear_bit(k, array->bitmap);
5492 }
5493 // delimiter for bitsearch
5494 __set_bit(MAX_PRIO, array->bitmap);
5495 }
5496 }
5497
5498 /*
5499 * The boot idle thread does lazy MMU switching as well:
5500 */
5501 atomic_inc(&init_mm.mm_count);
5502 enter_lazy_tlb(&init_mm, current);
5503
5504 /*
5505 * Make us the idle thread. Technically, schedule() should not be
5506 * called from this thread, however somewhere below it might be,
5507 * but because we are the idle thread, we just pick up running again
5508 * when this runqueue becomes "idle".
5509 */
5510 init_idle(current, smp_processor_id());
5511}
5512
5513#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5514void __might_sleep(char *file, int line)
5515{
5516#if defined(in_atomic)
5517 static unsigned long prev_jiffy; /* ratelimiting */
5518
5519 if ((in_atomic() || irqs_disabled()) &&
5520 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5521 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5522 return;
5523 prev_jiffy = jiffies;
5524 printk(KERN_ERR "Debug: sleeping function called from invalid"
5525 " context at %s:%d\n", file, line);
5526 printk("in_atomic():%d, irqs_disabled():%d\n",
5527 in_atomic(), irqs_disabled());
5528 dump_stack();
5529 }
5530#endif
5531}
5532EXPORT_SYMBOL(__might_sleep);
5533#endif
5534
5535#ifdef CONFIG_MAGIC_SYSRQ
5536void normalize_rt_tasks(void)
5537{
5538 struct task_struct *p;
5539 prio_array_t *array;
5540 unsigned long flags;
5541 runqueue_t *rq;
5542
5543 read_lock_irq(&tasklist_lock);
5544 for_each_process (p) {
5545 if (!rt_task(p))
5546 continue;
5547
5548 rq = task_rq_lock(p, &flags);
5549
5550 array = p->array;
5551 if (array)
5552 deactivate_task(p, task_rq(p));
5553 __setscheduler(p, SCHED_NORMAL, 0);
5554 if (array) {
5555 __activate_task(p, task_rq(p));
5556 resched_task(rq->curr);
5557 }
5558
5559 task_rq_unlock(rq, &flags);
5560 }
5561 read_unlock_irq(&tasklist_lock);
5562}
5563
5564#endif /* CONFIG_MAGIC_SYSRQ */
This page took 0.315946 seconds and 5 git commands to generate.