Merge commit 'v2.6.31-rc8' into sched/core
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
84e9dabf
AS
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
eff766a6
PZ
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
84e9dabf 321static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4 618 /* For active balancing */
3f029d3c 619 int post_schedule;
1da177e4
LT
620 int active_balance;
621 int push_cpu;
d8016491
IM
622 /* cpu of this runqueue: */
623 int cpu;
1f11eb6a 624 int online;
1da177e4 625
a8a51d5e 626 unsigned long avg_load_per_task;
1da177e4 627
36c8b586 628 struct task_struct *migration_thread;
1da177e4
LT
629 struct list_head migration_queue;
630#endif
631
dce48a84
TG
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
8f4d37ec 636#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
637#ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640#endif
8f4d37ec
PZ
641 struct hrtimer hrtick_timer;
642#endif
643
1da177e4
LT
644#ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
9c2c4802
KC
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
649
650 /* sys_sched_yield() stats */
480b9434 651 unsigned int yld_count;
1da177e4
LT
652
653 /* schedule() stats */
480b9434
KC
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
1da177e4
LT
657
658 /* try_to_wake_up() stats */
480b9434
KC
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
b8efb561
IM
661
662 /* BKL stats */
480b9434 663 unsigned int bkl_count;
1da177e4
LT
664#endif
665};
666
f34e3b61 667static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 668
15afe09b 669static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 670{
15afe09b 671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
672}
673
0a2966b4
CL
674static inline int cpu_of(struct rq *rq)
675{
676#ifdef CONFIG_SMP
677 return rq->cpu;
678#else
679 return 0;
680#endif
681}
682
674311d5
NP
683/*
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 685 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
686 *
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
689 */
48f24c4d
IM
690#define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
692
693#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694#define this_rq() (&__get_cpu_var(runqueues))
695#define task_rq(p) cpu_rq(task_cpu(p))
696#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 697#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 698
aa9c4c0f 699inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
700{
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702}
703
bf5c91ba
IM
704/*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707#ifdef CONFIG_SCHED_DEBUG
708# define const_debug __read_mostly
709#else
710# define const_debug static const
711#endif
712
017730c1
IM
713/**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720int runqueue_is_locked(void)
721{
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729}
730
bf5c91ba
IM
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
34f3a814 764static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 765{
f00b45c1
PZ
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 772 }
34f3a814 773 seq_puts(m, "\n");
f00b45c1 774
34f3a814 775 return 0;
f00b45c1
PZ
776}
777
778static ssize_t
779sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781{
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
c24b7c52 795 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818}
819
34f3a814
LZ
820static int sched_feat_open(struct inode *inode, struct file *filp)
821{
822 return single_open(filp, sched_feat_show, NULL);
823}
824
f00b45c1 825static struct file_operations sched_feat_fops = {
34f3a814
LZ
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
f00b45c1
PZ
831};
832
833static __init int sched_init_debug(void)
834{
f00b45c1
PZ
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839}
840late_initcall(sched_init_debug);
841
842#endif
843
844#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 845
b82d9fdd
PZ
846/*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
2398f2c6
PZ
852/*
853 * ratelimit for updating the group shares.
55cd5340 854 * default: 0.25ms
2398f2c6 855 */
55cd5340 856unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 857
ffda12a1
PZ
858/*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863unsigned int sysctl_sched_shares_thresh = 4;
864
fa85ae24 865/*
9f0c1e56 866 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
867 * default: 1s
868 */
9f0c1e56 869unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 870
6892b75e
IM
871static __read_mostly int scheduler_running;
872
9f0c1e56
PZ
873/*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877int sysctl_sched_rt_runtime = 950000;
fa85ae24 878
d0b27fa7
PZ
879static inline u64 global_rt_period(void)
880{
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882}
883
884static inline u64 global_rt_runtime(void)
885{
e26873bb 886 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890}
fa85ae24 891
1da177e4 892#ifndef prepare_arch_switch
4866cde0
NP
893# define prepare_arch_switch(next) do { } while (0)
894#endif
895#ifndef finish_arch_switch
896# define finish_arch_switch(prev) do { } while (0)
897#endif
898
051a1d1a
DA
899static inline int task_current(struct rq *rq, struct task_struct *p)
900{
901 return rq->curr == p;
902}
903
4866cde0 904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 906{
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 915{
da04c035
IM
916#ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919#endif
8a25d5de
IM
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
4866cde0
NP
927 spin_unlock_irq(&rq->lock);
928}
929
930#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 931static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 return p->oncpu;
935#else
051a1d1a 936 return task_current(rq, p);
4866cde0
NP
937#endif
938}
939
70b97a7f 940static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
941{
942#ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949#endif
950#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952#else
953 spin_unlock(&rq->lock);
954#endif
955}
956
70b97a7f 957static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
958{
959#ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967#endif
968#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
1da177e4 970#endif
4866cde0
NP
971}
972#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 973
b29739f9
IM
974/*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
70b97a7f 978static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
979 __acquires(rq->lock)
980{
3a5c359a
AK
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
b29739f9 986 spin_unlock(&rq->lock);
b29739f9 987 }
b29739f9
IM
988}
989
1da177e4
LT
990/*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 992 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
993 * explicitly disabling preemption.
994 */
70b97a7f 995static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1da177e4 1006 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1007 }
1da177e4
LT
1008}
1009
ad474cac
ON
1010void task_rq_unlock_wait(struct task_struct *p)
1011{
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016}
1017
a9957449 1018static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1019 __releases(rq->lock)
1020{
1021 spin_unlock(&rq->lock);
1022}
1023
70b97a7f 1024static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1025 __releases(rq->lock)
1026{
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028}
1029
1da177e4 1030/*
cc2a73b5 1031 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1032 */
a9957449 1033static struct rq *this_rq_lock(void)
1da177e4
LT
1034 __acquires(rq->lock)
1035{
70b97a7f 1036 struct rq *rq;
1da177e4
LT
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043}
1044
8f4d37ec
PZ
1045#ifdef CONFIG_SCHED_HRTICK
1046/*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
8f4d37ec
PZ
1056
1057/*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062static inline int hrtick_enabled(struct rq *rq)
1063{
1064 if (!sched_feat(HRTICK))
1065 return 0;
ba42059f 1066 if (!cpu_active(cpu_of(rq)))
b328ca18 1067 return 0;
8f4d37ec
PZ
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069}
1070
8f4d37ec
PZ
1071static void hrtick_clear(struct rq *rq)
1072{
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075}
1076
8f4d37ec
PZ
1077/*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082{
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
3e51f33f 1088 update_rq_clock(rq);
8f4d37ec
PZ
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093}
1094
95e904c7 1095#ifdef CONFIG_SMP
31656519
PZ
1096/*
1097 * called from hardirq (IPI) context
1098 */
1099static void __hrtick_start(void *arg)
b328ca18 1100{
31656519 1101 struct rq *rq = arg;
b328ca18 1102
31656519
PZ
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
b328ca18
PZ
1107}
1108
31656519
PZ
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1115{
31656519
PZ
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1118
cc584b21 1119 hrtimer_set_expires(timer, time);
31656519
PZ
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
6e275637 1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1125 rq->hrtick_csd_pending = 1;
1126 }
b328ca18
PZ
1127}
1128
1129static int
1130hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131{
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
31656519 1141 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146}
1147
fa748203 1148static __init void init_hrtick(void)
b328ca18
PZ
1149{
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151}
31656519
PZ
1152#else
1153/*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158static void hrtick_start(struct rq *rq, u64 delay)
1159{
7f1e2ca9 1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1161 HRTIMER_MODE_REL_PINNED, 0);
31656519 1162}
b328ca18 1163
006c75f1 1164static inline void init_hrtick(void)
8f4d37ec 1165{
8f4d37ec 1166}
31656519 1167#endif /* CONFIG_SMP */
8f4d37ec 1168
31656519 1169static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1170{
31656519
PZ
1171#ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
8f4d37ec 1173
31656519
PZ
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177#endif
8f4d37ec 1178
31656519
PZ
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
8f4d37ec 1181}
006c75f1 1182#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1183static inline void hrtick_clear(struct rq *rq)
1184{
1185}
1186
8f4d37ec
PZ
1187static inline void init_rq_hrtick(struct rq *rq)
1188{
1189}
1190
b328ca18
PZ
1191static inline void init_hrtick(void)
1192{
1193}
006c75f1 1194#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1195
c24d20db
IM
1196/*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203#ifdef CONFIG_SMP
1204
1205#ifndef tsk_is_polling
1206#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207#endif
1208
31656519 1209static void resched_task(struct task_struct *p)
c24d20db
IM
1210{
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
5ed0cec0 1215 if (test_tsk_need_resched(p))
c24d20db
IM
1216 return;
1217
5ed0cec0 1218 set_tsk_need_resched(p);
c24d20db
IM
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228}
1229
1230static void resched_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239}
06d8308c
TG
1240
1241#ifdef CONFIG_NO_HZ
1242/*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252void wake_up_idle_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
5ed0cec0 1274 set_tsk_need_resched(rq->idle);
06d8308c
TG
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280}
6d6bc0ad 1281#endif /* CONFIG_NO_HZ */
06d8308c 1282
6d6bc0ad 1283#else /* !CONFIG_SMP */
31656519 1284static void resched_task(struct task_struct *p)
c24d20db
IM
1285{
1286 assert_spin_locked(&task_rq(p)->lock);
31656519 1287 set_tsk_need_resched(p);
c24d20db 1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2dd73a4f
PW
1346/*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
cce7ade8
PZ
1355#define WEIGHT_IDLEPRIO 3
1356#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1357
1358/*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
dd41f596
IM
1369 */
1370static const int prio_to_weight[40] = {
254753dc
IM
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1379};
1380
5714d2de
IM
1381/*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
dd41f596 1388static const u32 prio_to_wmult[40] = {
254753dc
IM
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1397};
2dd73a4f 1398
dd41f596
IM
1399static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401/*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410};
1411
e1d1484f
PW
1412#ifdef CONFIG_SMP
1413static unsigned long
1414balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419static int
1420iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
e1d1484f 1423#endif
dd41f596 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503static unsigned long cpu_avg_load_per_task(int cpu)
1504{
1505 struct rq *rq = cpu_rq(cpu);
af6d596f 1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1507
4cd42620
SR
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1510 else
1511 rq->avg_load_per_task = 0;
eb755805
PZ
1512
1513 return rq->avg_load_per_task;
1514}
1515
1516#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1517
34d76c41
PZ
1518struct update_shares_data {
1519 unsigned long rq_weight[NR_CPUS];
1520};
1521
1522static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1523
c09595f6
PZ
1524static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1525
1526/*
1527 * Calculate and set the cpu's group shares.
1528 */
34d76c41
PZ
1529static void update_group_shares_cpu(struct task_group *tg, int cpu,
1530 unsigned long sd_shares,
1531 unsigned long sd_rq_weight,
1532 struct update_shares_data *usd)
18d95a28 1533{
34d76c41 1534 unsigned long shares, rq_weight;
a5004278 1535 int boost = 0;
c09595f6 1536
34d76c41 1537 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1538 if (!rq_weight) {
1539 boost = 1;
1540 rq_weight = NICE_0_LOAD;
1541 }
c8cba857 1542
c09595f6 1543 /*
a8af7246
PZ
1544 * \Sum_j shares_j * rq_weight_i
1545 * shares_i = -----------------------------
1546 * \Sum_j rq_weight_j
c09595f6 1547 */
ec4e0e2f 1548 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1549 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1550
ffda12a1
PZ
1551 if (abs(shares - tg->se[cpu]->load.weight) >
1552 sysctl_sched_shares_thresh) {
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long flags;
c09595f6 1555
ffda12a1 1556 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1557 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1558 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1559 __set_se_shares(tg->se[cpu], shares);
1560 spin_unlock_irqrestore(&rq->lock, flags);
1561 }
18d95a28 1562}
c09595f6
PZ
1563
1564/*
c8cba857
PZ
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
c09595f6 1568 */
eb755805 1569static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1570{
34d76c41
PZ
1571 unsigned long weight, rq_weight = 0, shares = 0;
1572 struct update_shares_data *usd;
eb755805 1573 struct sched_domain *sd = data;
34d76c41 1574 unsigned long flags;
c8cba857 1575 int i;
c09595f6 1576
34d76c41
PZ
1577 if (!tg->se[0])
1578 return 0;
1579
1580 local_irq_save(flags);
1581 usd = &__get_cpu_var(update_shares_data);
1582
758b2cdc 1583 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1584 weight = tg->cfs_rq[i]->load.weight;
1585 usd->rq_weight[i] = weight;
1586
ec4e0e2f
KC
1587 /*
1588 * If there are currently no tasks on the cpu pretend there
1589 * is one of average load so that when a new task gets to
1590 * run here it will not get delayed by group starvation.
1591 */
ec4e0e2f
KC
1592 if (!weight)
1593 weight = NICE_0_LOAD;
1594
34d76c41 1595 rq_weight += weight;
c8cba857 1596 shares += tg->cfs_rq[i]->shares;
c09595f6 1597 }
c09595f6 1598
c8cba857
PZ
1599 if ((!shares && rq_weight) || shares > tg->shares)
1600 shares = tg->shares;
1601
1602 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1603 shares = tg->shares;
c09595f6 1604
a8af7246 1605 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1606 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1607
1608 local_irq_restore(flags);
eb755805
PZ
1609
1610 return 0;
c09595f6
PZ
1611}
1612
1613/*
c8cba857
PZ
1614 * Compute the cpu's hierarchical load factor for each task group.
1615 * This needs to be done in a top-down fashion because the load of a child
1616 * group is a fraction of its parents load.
c09595f6 1617 */
eb755805 1618static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1619{
c8cba857 1620 unsigned long load;
eb755805 1621 long cpu = (long)data;
c09595f6 1622
c8cba857
PZ
1623 if (!tg->parent) {
1624 load = cpu_rq(cpu)->load.weight;
1625 } else {
1626 load = tg->parent->cfs_rq[cpu]->h_load;
1627 load *= tg->cfs_rq[cpu]->shares;
1628 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1629 }
c09595f6 1630
c8cba857 1631 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1632
eb755805 1633 return 0;
c09595f6
PZ
1634}
1635
c8cba857 1636static void update_shares(struct sched_domain *sd)
4d8d595d 1637{
e7097159
PZ
1638 s64 elapsed;
1639 u64 now;
1640
1641 if (root_task_group_empty())
1642 return;
1643
1644 now = cpu_clock(raw_smp_processor_id());
1645 elapsed = now - sd->last_update;
2398f2c6
PZ
1646
1647 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1648 sd->last_update = now;
eb755805 1649 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1650 }
4d8d595d
PZ
1651}
1652
3e5459b4
PZ
1653static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1654{
e7097159
PZ
1655 if (root_task_group_empty())
1656 return;
1657
3e5459b4
PZ
1658 spin_unlock(&rq->lock);
1659 update_shares(sd);
1660 spin_lock(&rq->lock);
1661}
1662
eb755805 1663static void update_h_load(long cpu)
c09595f6 1664{
e7097159
PZ
1665 if (root_task_group_empty())
1666 return;
1667
eb755805 1668 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1669}
1670
c09595f6
PZ
1671#else
1672
c8cba857 1673static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1674{
1675}
1676
3e5459b4
PZ
1677static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1678{
1679}
1680
18d95a28
PZ
1681#endif
1682
8f45e2b5
GH
1683#ifdef CONFIG_PREEMPT
1684
70574a99 1685/*
8f45e2b5
GH
1686 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1687 * way at the expense of forcing extra atomic operations in all
1688 * invocations. This assures that the double_lock is acquired using the
1689 * same underlying policy as the spinlock_t on this architecture, which
1690 * reduces latency compared to the unfair variant below. However, it
1691 * also adds more overhead and therefore may reduce throughput.
70574a99 1692 */
8f45e2b5
GH
1693static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1694 __releases(this_rq->lock)
1695 __acquires(busiest->lock)
1696 __acquires(this_rq->lock)
1697{
1698 spin_unlock(&this_rq->lock);
1699 double_rq_lock(this_rq, busiest);
1700
1701 return 1;
1702}
1703
1704#else
1705/*
1706 * Unfair double_lock_balance: Optimizes throughput at the expense of
1707 * latency by eliminating extra atomic operations when the locks are
1708 * already in proper order on entry. This favors lower cpu-ids and will
1709 * grant the double lock to lower cpus over higher ids under contention,
1710 * regardless of entry order into the function.
1711 */
1712static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1713 __releases(this_rq->lock)
1714 __acquires(busiest->lock)
1715 __acquires(this_rq->lock)
1716{
1717 int ret = 0;
1718
70574a99
AD
1719 if (unlikely(!spin_trylock(&busiest->lock))) {
1720 if (busiest < this_rq) {
1721 spin_unlock(&this_rq->lock);
1722 spin_lock(&busiest->lock);
1723 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1724 ret = 1;
1725 } else
1726 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1727 }
1728 return ret;
1729}
1730
8f45e2b5
GH
1731#endif /* CONFIG_PREEMPT */
1732
1733/*
1734 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1735 */
1736static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1737{
1738 if (unlikely(!irqs_disabled())) {
1739 /* printk() doesn't work good under rq->lock */
1740 spin_unlock(&this_rq->lock);
1741 BUG_ON(1);
1742 }
1743
1744 return _double_lock_balance(this_rq, busiest);
1745}
1746
70574a99
AD
1747static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(busiest->lock)
1749{
1750 spin_unlock(&busiest->lock);
1751 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1752}
18d95a28
PZ
1753#endif
1754
30432094 1755#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1756static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1757{
30432094 1758#ifdef CONFIG_SMP
34e83e85
IM
1759 cfs_rq->shares = shares;
1760#endif
1761}
30432094 1762#endif
e7693a36 1763
dce48a84
TG
1764static void calc_load_account_active(struct rq *this_rq);
1765
dd41f596 1766#include "sched_stats.h"
dd41f596 1767#include "sched_idletask.c"
5522d5d5
IM
1768#include "sched_fair.c"
1769#include "sched_rt.c"
dd41f596
IM
1770#ifdef CONFIG_SCHED_DEBUG
1771# include "sched_debug.c"
1772#endif
1773
1774#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1775#define for_each_class(class) \
1776 for (class = sched_class_highest; class; class = class->next)
dd41f596 1777
c09595f6 1778static void inc_nr_running(struct rq *rq)
9c217245
IM
1779{
1780 rq->nr_running++;
9c217245
IM
1781}
1782
c09595f6 1783static void dec_nr_running(struct rq *rq)
9c217245
IM
1784{
1785 rq->nr_running--;
9c217245
IM
1786}
1787
45bf76df
IM
1788static void set_load_weight(struct task_struct *p)
1789{
1790 if (task_has_rt_policy(p)) {
dd41f596
IM
1791 p->se.load.weight = prio_to_weight[0] * 2;
1792 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1793 return;
1794 }
45bf76df 1795
dd41f596
IM
1796 /*
1797 * SCHED_IDLE tasks get minimal weight:
1798 */
1799 if (p->policy == SCHED_IDLE) {
1800 p->se.load.weight = WEIGHT_IDLEPRIO;
1801 p->se.load.inv_weight = WMULT_IDLEPRIO;
1802 return;
1803 }
71f8bd46 1804
dd41f596
IM
1805 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1806 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1807}
1808
2087a1ad
GH
1809static void update_avg(u64 *avg, u64 sample)
1810{
1811 s64 diff = sample - *avg;
1812 *avg += diff >> 3;
1813}
1814
8159f87e 1815static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1816{
831451ac
PZ
1817 if (wakeup)
1818 p->se.start_runtime = p->se.sum_exec_runtime;
1819
dd41f596 1820 sched_info_queued(p);
fd390f6a 1821 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1822 p->se.on_rq = 1;
71f8bd46
IM
1823}
1824
69be72c1 1825static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1826{
831451ac
PZ
1827 if (sleep) {
1828 if (p->se.last_wakeup) {
1829 update_avg(&p->se.avg_overlap,
1830 p->se.sum_exec_runtime - p->se.last_wakeup);
1831 p->se.last_wakeup = 0;
1832 } else {
1833 update_avg(&p->se.avg_wakeup,
1834 sysctl_sched_wakeup_granularity);
1835 }
2087a1ad
GH
1836 }
1837
46ac22ba 1838 sched_info_dequeued(p);
f02231e5 1839 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1840 p->se.on_rq = 0;
71f8bd46
IM
1841}
1842
14531189 1843/*
dd41f596 1844 * __normal_prio - return the priority that is based on the static prio
14531189 1845 */
14531189
IM
1846static inline int __normal_prio(struct task_struct *p)
1847{
dd41f596 1848 return p->static_prio;
14531189
IM
1849}
1850
b29739f9
IM
1851/*
1852 * Calculate the expected normal priority: i.e. priority
1853 * without taking RT-inheritance into account. Might be
1854 * boosted by interactivity modifiers. Changes upon fork,
1855 * setprio syscalls, and whenever the interactivity
1856 * estimator recalculates.
1857 */
36c8b586 1858static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1859{
1860 int prio;
1861
e05606d3 1862 if (task_has_rt_policy(p))
b29739f9
IM
1863 prio = MAX_RT_PRIO-1 - p->rt_priority;
1864 else
1865 prio = __normal_prio(p);
1866 return prio;
1867}
1868
1869/*
1870 * Calculate the current priority, i.e. the priority
1871 * taken into account by the scheduler. This value might
1872 * be boosted by RT tasks, or might be boosted by
1873 * interactivity modifiers. Will be RT if the task got
1874 * RT-boosted. If not then it returns p->normal_prio.
1875 */
36c8b586 1876static int effective_prio(struct task_struct *p)
b29739f9
IM
1877{
1878 p->normal_prio = normal_prio(p);
1879 /*
1880 * If we are RT tasks or we were boosted to RT priority,
1881 * keep the priority unchanged. Otherwise, update priority
1882 * to the normal priority:
1883 */
1884 if (!rt_prio(p->prio))
1885 return p->normal_prio;
1886 return p->prio;
1887}
1888
1da177e4 1889/*
dd41f596 1890 * activate_task - move a task to the runqueue.
1da177e4 1891 */
dd41f596 1892static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1893{
d9514f6c 1894 if (task_contributes_to_load(p))
dd41f596 1895 rq->nr_uninterruptible--;
1da177e4 1896
8159f87e 1897 enqueue_task(rq, p, wakeup);
c09595f6 1898 inc_nr_running(rq);
1da177e4
LT
1899}
1900
1da177e4
LT
1901/*
1902 * deactivate_task - remove a task from the runqueue.
1903 */
2e1cb74a 1904static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1905{
d9514f6c 1906 if (task_contributes_to_load(p))
dd41f596
IM
1907 rq->nr_uninterruptible++;
1908
69be72c1 1909 dequeue_task(rq, p, sleep);
c09595f6 1910 dec_nr_running(rq);
1da177e4
LT
1911}
1912
1da177e4
LT
1913/**
1914 * task_curr - is this task currently executing on a CPU?
1915 * @p: the task in question.
1916 */
36c8b586 1917inline int task_curr(const struct task_struct *p)
1da177e4
LT
1918{
1919 return cpu_curr(task_cpu(p)) == p;
1920}
1921
dd41f596
IM
1922static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1923{
6f505b16 1924 set_task_rq(p, cpu);
dd41f596 1925#ifdef CONFIG_SMP
ce96b5ac
DA
1926 /*
1927 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1928 * successfuly executed on another CPU. We must ensure that updates of
1929 * per-task data have been completed by this moment.
1930 */
1931 smp_wmb();
dd41f596 1932 task_thread_info(p)->cpu = cpu;
dd41f596 1933#endif
2dd73a4f
PW
1934}
1935
cb469845
SR
1936static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1937 const struct sched_class *prev_class,
1938 int oldprio, int running)
1939{
1940 if (prev_class != p->sched_class) {
1941 if (prev_class->switched_from)
1942 prev_class->switched_from(rq, p, running);
1943 p->sched_class->switched_to(rq, p, running);
1944 } else
1945 p->sched_class->prio_changed(rq, p, oldprio, running);
1946}
1947
1da177e4 1948#ifdef CONFIG_SMP
c65cc870 1949
e958b360
TG
1950/* Used instead of source_load when we know the type == 0 */
1951static unsigned long weighted_cpuload(const int cpu)
1952{
1953 return cpu_rq(cpu)->load.weight;
1954}
1955
cc367732
IM
1956/*
1957 * Is this task likely cache-hot:
1958 */
e7693a36 1959static int
cc367732
IM
1960task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1961{
1962 s64 delta;
1963
f540a608
IM
1964 /*
1965 * Buddy candidates are cache hot:
1966 */
4793241b
PZ
1967 if (sched_feat(CACHE_HOT_BUDDY) &&
1968 (&p->se == cfs_rq_of(&p->se)->next ||
1969 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1970 return 1;
1971
cc367732
IM
1972 if (p->sched_class != &fair_sched_class)
1973 return 0;
1974
6bc1665b
IM
1975 if (sysctl_sched_migration_cost == -1)
1976 return 1;
1977 if (sysctl_sched_migration_cost == 0)
1978 return 0;
1979
cc367732
IM
1980 delta = now - p->se.exec_start;
1981
1982 return delta < (s64)sysctl_sched_migration_cost;
1983}
1984
1985
dd41f596 1986void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1987{
dd41f596
IM
1988 int old_cpu = task_cpu(p);
1989 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1990 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1991 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1992 u64 clock_offset;
dd41f596
IM
1993
1994 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1995
de1d7286 1996 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1997
6cfb0d5d
IM
1998#ifdef CONFIG_SCHEDSTATS
1999 if (p->se.wait_start)
2000 p->se.wait_start -= clock_offset;
dd41f596
IM
2001 if (p->se.sleep_start)
2002 p->se.sleep_start -= clock_offset;
2003 if (p->se.block_start)
2004 p->se.block_start -= clock_offset;
6c594c21 2005#endif
cc367732 2006 if (old_cpu != new_cpu) {
6c594c21 2007 p->se.nr_migrations++;
23a185ca 2008 new_rq->nr_migrations_in++;
6c594c21 2009#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2010 if (task_hot(p, old_rq->clock, NULL))
2011 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2012#endif
e5289d4a
PZ
2013 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2014 1, 1, NULL, 0);
6c594c21 2015 }
2830cf8c
SV
2016 p->se.vruntime -= old_cfsrq->min_vruntime -
2017 new_cfsrq->min_vruntime;
dd41f596
IM
2018
2019 __set_task_cpu(p, new_cpu);
c65cc870
IM
2020}
2021
70b97a7f 2022struct migration_req {
1da177e4 2023 struct list_head list;
1da177e4 2024
36c8b586 2025 struct task_struct *task;
1da177e4
LT
2026 int dest_cpu;
2027
1da177e4 2028 struct completion done;
70b97a7f 2029};
1da177e4
LT
2030
2031/*
2032 * The task's runqueue lock must be held.
2033 * Returns true if you have to wait for migration thread.
2034 */
36c8b586 2035static int
70b97a7f 2036migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2037{
70b97a7f 2038 struct rq *rq = task_rq(p);
1da177e4
LT
2039
2040 /*
2041 * If the task is not on a runqueue (and not running), then
2042 * it is sufficient to simply update the task's cpu field.
2043 */
dd41f596 2044 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2045 set_task_cpu(p, dest_cpu);
2046 return 0;
2047 }
2048
2049 init_completion(&req->done);
1da177e4
LT
2050 req->task = p;
2051 req->dest_cpu = dest_cpu;
2052 list_add(&req->list, &rq->migration_queue);
48f24c4d 2053
1da177e4
LT
2054 return 1;
2055}
2056
a26b89f0
MM
2057/*
2058 * wait_task_context_switch - wait for a thread to complete at least one
2059 * context switch.
2060 *
2061 * @p must not be current.
2062 */
2063void wait_task_context_switch(struct task_struct *p)
2064{
2065 unsigned long nvcsw, nivcsw, flags;
2066 int running;
2067 struct rq *rq;
2068
2069 nvcsw = p->nvcsw;
2070 nivcsw = p->nivcsw;
2071 for (;;) {
2072 /*
2073 * The runqueue is assigned before the actual context
2074 * switch. We need to take the runqueue lock.
2075 *
2076 * We could check initially without the lock but it is
2077 * very likely that we need to take the lock in every
2078 * iteration.
2079 */
2080 rq = task_rq_lock(p, &flags);
2081 running = task_running(rq, p);
2082 task_rq_unlock(rq, &flags);
2083
2084 if (likely(!running))
2085 break;
2086 /*
2087 * The switch count is incremented before the actual
2088 * context switch. We thus wait for two switches to be
2089 * sure at least one completed.
2090 */
2091 if ((p->nvcsw - nvcsw) > 1)
2092 break;
2093 if ((p->nivcsw - nivcsw) > 1)
2094 break;
2095
2096 cpu_relax();
2097 }
2098}
2099
1da177e4
LT
2100/*
2101 * wait_task_inactive - wait for a thread to unschedule.
2102 *
85ba2d86
RM
2103 * If @match_state is nonzero, it's the @p->state value just checked and
2104 * not expected to change. If it changes, i.e. @p might have woken up,
2105 * then return zero. When we succeed in waiting for @p to be off its CPU,
2106 * we return a positive number (its total switch count). If a second call
2107 * a short while later returns the same number, the caller can be sure that
2108 * @p has remained unscheduled the whole time.
2109 *
1da177e4
LT
2110 * The caller must ensure that the task *will* unschedule sometime soon,
2111 * else this function might spin for a *long* time. This function can't
2112 * be called with interrupts off, or it may introduce deadlock with
2113 * smp_call_function() if an IPI is sent by the same process we are
2114 * waiting to become inactive.
2115 */
85ba2d86 2116unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2117{
2118 unsigned long flags;
dd41f596 2119 int running, on_rq;
85ba2d86 2120 unsigned long ncsw;
70b97a7f 2121 struct rq *rq;
1da177e4 2122
3a5c359a
AK
2123 for (;;) {
2124 /*
2125 * We do the initial early heuristics without holding
2126 * any task-queue locks at all. We'll only try to get
2127 * the runqueue lock when things look like they will
2128 * work out!
2129 */
2130 rq = task_rq(p);
fa490cfd 2131
3a5c359a
AK
2132 /*
2133 * If the task is actively running on another CPU
2134 * still, just relax and busy-wait without holding
2135 * any locks.
2136 *
2137 * NOTE! Since we don't hold any locks, it's not
2138 * even sure that "rq" stays as the right runqueue!
2139 * But we don't care, since "task_running()" will
2140 * return false if the runqueue has changed and p
2141 * is actually now running somewhere else!
2142 */
85ba2d86
RM
2143 while (task_running(rq, p)) {
2144 if (match_state && unlikely(p->state != match_state))
2145 return 0;
3a5c359a 2146 cpu_relax();
85ba2d86 2147 }
fa490cfd 2148
3a5c359a
AK
2149 /*
2150 * Ok, time to look more closely! We need the rq
2151 * lock now, to be *sure*. If we're wrong, we'll
2152 * just go back and repeat.
2153 */
2154 rq = task_rq_lock(p, &flags);
0a16b607 2155 trace_sched_wait_task(rq, p);
3a5c359a
AK
2156 running = task_running(rq, p);
2157 on_rq = p->se.on_rq;
85ba2d86 2158 ncsw = 0;
f31e11d8 2159 if (!match_state || p->state == match_state)
93dcf55f 2160 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2161 task_rq_unlock(rq, &flags);
fa490cfd 2162
85ba2d86
RM
2163 /*
2164 * If it changed from the expected state, bail out now.
2165 */
2166 if (unlikely(!ncsw))
2167 break;
2168
3a5c359a
AK
2169 /*
2170 * Was it really running after all now that we
2171 * checked with the proper locks actually held?
2172 *
2173 * Oops. Go back and try again..
2174 */
2175 if (unlikely(running)) {
2176 cpu_relax();
2177 continue;
2178 }
fa490cfd 2179
3a5c359a
AK
2180 /*
2181 * It's not enough that it's not actively running,
2182 * it must be off the runqueue _entirely_, and not
2183 * preempted!
2184 *
80dd99b3 2185 * So if it was still runnable (but just not actively
3a5c359a
AK
2186 * running right now), it's preempted, and we should
2187 * yield - it could be a while.
2188 */
2189 if (unlikely(on_rq)) {
2190 schedule_timeout_uninterruptible(1);
2191 continue;
2192 }
fa490cfd 2193
3a5c359a
AK
2194 /*
2195 * Ahh, all good. It wasn't running, and it wasn't
2196 * runnable, which means that it will never become
2197 * running in the future either. We're all done!
2198 */
2199 break;
2200 }
85ba2d86
RM
2201
2202 return ncsw;
1da177e4
LT
2203}
2204
2205/***
2206 * kick_process - kick a running thread to enter/exit the kernel
2207 * @p: the to-be-kicked thread
2208 *
2209 * Cause a process which is running on another CPU to enter
2210 * kernel-mode, without any delay. (to get signals handled.)
2211 *
2212 * NOTE: this function doesnt have to take the runqueue lock,
2213 * because all it wants to ensure is that the remote task enters
2214 * the kernel. If the IPI races and the task has been migrated
2215 * to another CPU then no harm is done and the purpose has been
2216 * achieved as well.
2217 */
36c8b586 2218void kick_process(struct task_struct *p)
1da177e4
LT
2219{
2220 int cpu;
2221
2222 preempt_disable();
2223 cpu = task_cpu(p);
2224 if ((cpu != smp_processor_id()) && task_curr(p))
2225 smp_send_reschedule(cpu);
2226 preempt_enable();
2227}
b43e3521 2228EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2229
2230/*
2dd73a4f
PW
2231 * Return a low guess at the load of a migration-source cpu weighted
2232 * according to the scheduling class and "nice" value.
1da177e4
LT
2233 *
2234 * We want to under-estimate the load of migration sources, to
2235 * balance conservatively.
2236 */
a9957449 2237static unsigned long source_load(int cpu, int type)
1da177e4 2238{
70b97a7f 2239 struct rq *rq = cpu_rq(cpu);
dd41f596 2240 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2241
93b75217 2242 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2243 return total;
b910472d 2244
dd41f596 2245 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2246}
2247
2248/*
2dd73a4f
PW
2249 * Return a high guess at the load of a migration-target cpu weighted
2250 * according to the scheduling class and "nice" value.
1da177e4 2251 */
a9957449 2252static unsigned long target_load(int cpu, int type)
1da177e4 2253{
70b97a7f 2254 struct rq *rq = cpu_rq(cpu);
dd41f596 2255 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2256
93b75217 2257 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2258 return total;
3b0bd9bc 2259
dd41f596 2260 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2261}
2262
147cbb4b
NP
2263/*
2264 * find_idlest_group finds and returns the least busy CPU group within the
2265 * domain.
2266 */
2267static struct sched_group *
2268find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2269{
2270 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2271 unsigned long min_load = ULONG_MAX, this_load = 0;
2272 int load_idx = sd->forkexec_idx;
2273 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2274
2275 do {
2276 unsigned long load, avg_load;
2277 int local_group;
2278 int i;
2279
da5a5522 2280 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2281 if (!cpumask_intersects(sched_group_cpus(group),
2282 &p->cpus_allowed))
3a5c359a 2283 continue;
da5a5522 2284
758b2cdc
RR
2285 local_group = cpumask_test_cpu(this_cpu,
2286 sched_group_cpus(group));
147cbb4b
NP
2287
2288 /* Tally up the load of all CPUs in the group */
2289 avg_load = 0;
2290
758b2cdc 2291 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2292 /* Bias balancing toward cpus of our domain */
2293 if (local_group)
2294 load = source_load(i, load_idx);
2295 else
2296 load = target_load(i, load_idx);
2297
2298 avg_load += load;
2299 }
2300
2301 /* Adjust by relative CPU power of the group */
5517d86b
ED
2302 avg_load = sg_div_cpu_power(group,
2303 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2304
2305 if (local_group) {
2306 this_load = avg_load;
2307 this = group;
2308 } else if (avg_load < min_load) {
2309 min_load = avg_load;
2310 idlest = group;
2311 }
3a5c359a 2312 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2313
2314 if (!idlest || 100*this_load < imbalance*min_load)
2315 return NULL;
2316 return idlest;
2317}
2318
2319/*
0feaece9 2320 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2321 */
95cdf3b7 2322static int
758b2cdc 2323find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2324{
2325 unsigned long load, min_load = ULONG_MAX;
2326 int idlest = -1;
2327 int i;
2328
da5a5522 2329 /* Traverse only the allowed CPUs */
758b2cdc 2330 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2331 load = weighted_cpuload(i);
147cbb4b
NP
2332
2333 if (load < min_load || (load == min_load && i == this_cpu)) {
2334 min_load = load;
2335 idlest = i;
2336 }
2337 }
2338
2339 return idlest;
2340}
2341
476d139c
NP
2342/*
2343 * sched_balance_self: balance the current task (running on cpu) in domains
2344 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2345 * SD_BALANCE_EXEC.
2346 *
2347 * Balance, ie. select the least loaded group.
2348 *
2349 * Returns the target CPU number, or the same CPU if no balancing is needed.
2350 *
2351 * preempt must be disabled.
2352 */
2353static int sched_balance_self(int cpu, int flag)
2354{
2355 struct task_struct *t = current;
2356 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2357
c96d145e 2358 for_each_domain(cpu, tmp) {
9761eea8
IM
2359 /*
2360 * If power savings logic is enabled for a domain, stop there.
2361 */
5c45bf27
SS
2362 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2363 break;
476d139c
NP
2364 if (tmp->flags & flag)
2365 sd = tmp;
c96d145e 2366 }
476d139c 2367
039a1c41
PZ
2368 if (sd)
2369 update_shares(sd);
2370
476d139c 2371 while (sd) {
476d139c 2372 struct sched_group *group;
1a848870
SS
2373 int new_cpu, weight;
2374
2375 if (!(sd->flags & flag)) {
2376 sd = sd->child;
2377 continue;
2378 }
476d139c 2379
476d139c 2380 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2381 if (!group) {
2382 sd = sd->child;
2383 continue;
2384 }
476d139c 2385
758b2cdc 2386 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2387 if (new_cpu == -1 || new_cpu == cpu) {
2388 /* Now try balancing at a lower domain level of cpu */
2389 sd = sd->child;
2390 continue;
2391 }
476d139c 2392
1a848870 2393 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2394 cpu = new_cpu;
758b2cdc 2395 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2396 sd = NULL;
476d139c 2397 for_each_domain(cpu, tmp) {
758b2cdc 2398 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2399 break;
2400 if (tmp->flags & flag)
2401 sd = tmp;
2402 }
2403 /* while loop will break here if sd == NULL */
2404 }
2405
2406 return cpu;
2407}
2408
2409#endif /* CONFIG_SMP */
1da177e4 2410
0793a61d
TG
2411/**
2412 * task_oncpu_function_call - call a function on the cpu on which a task runs
2413 * @p: the task to evaluate
2414 * @func: the function to be called
2415 * @info: the function call argument
2416 *
2417 * Calls the function @func when the task is currently running. This might
2418 * be on the current CPU, which just calls the function directly
2419 */
2420void task_oncpu_function_call(struct task_struct *p,
2421 void (*func) (void *info), void *info)
2422{
2423 int cpu;
2424
2425 preempt_disable();
2426 cpu = task_cpu(p);
2427 if (task_curr(p))
2428 smp_call_function_single(cpu, func, info, 1);
2429 preempt_enable();
2430}
2431
1da177e4
LT
2432/***
2433 * try_to_wake_up - wake up a thread
2434 * @p: the to-be-woken-up thread
2435 * @state: the mask of task states that can be woken
2436 * @sync: do a synchronous wakeup?
2437 *
2438 * Put it on the run-queue if it's not already there. The "current"
2439 * thread is always on the run-queue (except when the actual
2440 * re-schedule is in progress), and as such you're allowed to do
2441 * the simpler "current->state = TASK_RUNNING" to mark yourself
2442 * runnable without the overhead of this.
2443 *
2444 * returns failure only if the task is already active.
2445 */
36c8b586 2446static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2447{
cc367732 2448 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2449 unsigned long flags;
2450 long old_state;
70b97a7f 2451 struct rq *rq;
1da177e4 2452
b85d0667
IM
2453 if (!sched_feat(SYNC_WAKEUPS))
2454 sync = 0;
2455
2398f2c6 2456#ifdef CONFIG_SMP
57310a98 2457 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2458 struct sched_domain *sd;
2459
2460 this_cpu = raw_smp_processor_id();
2461 cpu = task_cpu(p);
2462
2463 for_each_domain(this_cpu, sd) {
758b2cdc 2464 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2465 update_shares(sd);
2466 break;
2467 }
2468 }
2469 }
2470#endif
2471
04e2f174 2472 smp_wmb();
1da177e4 2473 rq = task_rq_lock(p, &flags);
03e89e45 2474 update_rq_clock(rq);
1da177e4
LT
2475 old_state = p->state;
2476 if (!(old_state & state))
2477 goto out;
2478
dd41f596 2479 if (p->se.on_rq)
1da177e4
LT
2480 goto out_running;
2481
2482 cpu = task_cpu(p);
cc367732 2483 orig_cpu = cpu;
1da177e4
LT
2484 this_cpu = smp_processor_id();
2485
2486#ifdef CONFIG_SMP
2487 if (unlikely(task_running(rq, p)))
2488 goto out_activate;
2489
5d2f5a61
DA
2490 cpu = p->sched_class->select_task_rq(p, sync);
2491 if (cpu != orig_cpu) {
2492 set_task_cpu(p, cpu);
1da177e4
LT
2493 task_rq_unlock(rq, &flags);
2494 /* might preempt at this point */
2495 rq = task_rq_lock(p, &flags);
2496 old_state = p->state;
2497 if (!(old_state & state))
2498 goto out;
dd41f596 2499 if (p->se.on_rq)
1da177e4
LT
2500 goto out_running;
2501
2502 this_cpu = smp_processor_id();
2503 cpu = task_cpu(p);
2504 }
2505
e7693a36
GH
2506#ifdef CONFIG_SCHEDSTATS
2507 schedstat_inc(rq, ttwu_count);
2508 if (cpu == this_cpu)
2509 schedstat_inc(rq, ttwu_local);
2510 else {
2511 struct sched_domain *sd;
2512 for_each_domain(this_cpu, sd) {
758b2cdc 2513 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2514 schedstat_inc(sd, ttwu_wake_remote);
2515 break;
2516 }
2517 }
2518 }
6d6bc0ad 2519#endif /* CONFIG_SCHEDSTATS */
e7693a36 2520
1da177e4
LT
2521out_activate:
2522#endif /* CONFIG_SMP */
cc367732
IM
2523 schedstat_inc(p, se.nr_wakeups);
2524 if (sync)
2525 schedstat_inc(p, se.nr_wakeups_sync);
2526 if (orig_cpu != cpu)
2527 schedstat_inc(p, se.nr_wakeups_migrate);
2528 if (cpu == this_cpu)
2529 schedstat_inc(p, se.nr_wakeups_local);
2530 else
2531 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2532 activate_task(rq, p, 1);
1da177e4
LT
2533 success = 1;
2534
831451ac
PZ
2535 /*
2536 * Only attribute actual wakeups done by this task.
2537 */
2538 if (!in_interrupt()) {
2539 struct sched_entity *se = &current->se;
2540 u64 sample = se->sum_exec_runtime;
2541
2542 if (se->last_wakeup)
2543 sample -= se->last_wakeup;
2544 else
2545 sample -= se->start_runtime;
2546 update_avg(&se->avg_wakeup, sample);
2547
2548 se->last_wakeup = se->sum_exec_runtime;
2549 }
2550
1da177e4 2551out_running:
468a15bb 2552 trace_sched_wakeup(rq, p, success);
15afe09b 2553 check_preempt_curr(rq, p, sync);
4ae7d5ce 2554
1da177e4 2555 p->state = TASK_RUNNING;
9a897c5a
SR
2556#ifdef CONFIG_SMP
2557 if (p->sched_class->task_wake_up)
2558 p->sched_class->task_wake_up(rq, p);
2559#endif
1da177e4
LT
2560out:
2561 task_rq_unlock(rq, &flags);
2562
2563 return success;
2564}
2565
50fa610a
DH
2566/**
2567 * wake_up_process - Wake up a specific process
2568 * @p: The process to be woken up.
2569 *
2570 * Attempt to wake up the nominated process and move it to the set of runnable
2571 * processes. Returns 1 if the process was woken up, 0 if it was already
2572 * running.
2573 *
2574 * It may be assumed that this function implies a write memory barrier before
2575 * changing the task state if and only if any tasks are woken up.
2576 */
7ad5b3a5 2577int wake_up_process(struct task_struct *p)
1da177e4 2578{
d9514f6c 2579 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2580}
1da177e4
LT
2581EXPORT_SYMBOL(wake_up_process);
2582
7ad5b3a5 2583int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2584{
2585 return try_to_wake_up(p, state, 0);
2586}
2587
1da177e4
LT
2588/*
2589 * Perform scheduler related setup for a newly forked process p.
2590 * p is forked by current.
dd41f596
IM
2591 *
2592 * __sched_fork() is basic setup used by init_idle() too:
2593 */
2594static void __sched_fork(struct task_struct *p)
2595{
dd41f596
IM
2596 p->se.exec_start = 0;
2597 p->se.sum_exec_runtime = 0;
f6cf891c 2598 p->se.prev_sum_exec_runtime = 0;
6c594c21 2599 p->se.nr_migrations = 0;
4ae7d5ce
IM
2600 p->se.last_wakeup = 0;
2601 p->se.avg_overlap = 0;
831451ac
PZ
2602 p->se.start_runtime = 0;
2603 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2604
2605#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2606 p->se.wait_start = 0;
2607 p->se.wait_max = 0;
2608 p->se.wait_count = 0;
2609 p->se.wait_sum = 0;
2610
2611 p->se.sleep_start = 0;
2612 p->se.sleep_max = 0;
2613 p->se.sum_sleep_runtime = 0;
2614
2615 p->se.block_start = 0;
2616 p->se.block_max = 0;
2617 p->se.exec_max = 0;
2618 p->se.slice_max = 0;
2619
2620 p->se.nr_migrations_cold = 0;
2621 p->se.nr_failed_migrations_affine = 0;
2622 p->se.nr_failed_migrations_running = 0;
2623 p->se.nr_failed_migrations_hot = 0;
2624 p->se.nr_forced_migrations = 0;
2625 p->se.nr_forced2_migrations = 0;
2626
2627 p->se.nr_wakeups = 0;
2628 p->se.nr_wakeups_sync = 0;
2629 p->se.nr_wakeups_migrate = 0;
2630 p->se.nr_wakeups_local = 0;
2631 p->se.nr_wakeups_remote = 0;
2632 p->se.nr_wakeups_affine = 0;
2633 p->se.nr_wakeups_affine_attempts = 0;
2634 p->se.nr_wakeups_passive = 0;
2635 p->se.nr_wakeups_idle = 0;
2636
6cfb0d5d 2637#endif
476d139c 2638
fa717060 2639 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2640 p->se.on_rq = 0;
4a55bd5e 2641 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2642
e107be36
AK
2643#ifdef CONFIG_PREEMPT_NOTIFIERS
2644 INIT_HLIST_HEAD(&p->preempt_notifiers);
2645#endif
2646
1da177e4
LT
2647 /*
2648 * We mark the process as running here, but have not actually
2649 * inserted it onto the runqueue yet. This guarantees that
2650 * nobody will actually run it, and a signal or other external
2651 * event cannot wake it up and insert it on the runqueue either.
2652 */
2653 p->state = TASK_RUNNING;
dd41f596
IM
2654}
2655
2656/*
2657 * fork()/clone()-time setup:
2658 */
2659void sched_fork(struct task_struct *p, int clone_flags)
2660{
2661 int cpu = get_cpu();
2662
2663 __sched_fork(p);
2664
2665#ifdef CONFIG_SMP
2666 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2667#endif
02e4bac2 2668 set_task_cpu(p, cpu);
b29739f9
IM
2669
2670 /*
b9dc29e7 2671 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2672 */
b9dc29e7 2673 p->prio = current->normal_prio;
ca94c442 2674
b9dc29e7
MG
2675 /*
2676 * Revert to default priority/policy on fork if requested.
2677 */
2678 if (unlikely(p->sched_reset_on_fork)) {
2679 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2680 p->policy = SCHED_NORMAL;
2681
2682 if (p->normal_prio < DEFAULT_PRIO)
2683 p->prio = DEFAULT_PRIO;
2684
6c697bdf
MG
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
2687 set_load_weight(p);
2688 }
2689
b9dc29e7
MG
2690 /*
2691 * We don't need the reset flag anymore after the fork. It has
2692 * fulfilled its duty:
2693 */
2694 p->sched_reset_on_fork = 0;
2695 }
ca94c442 2696
2ddbf952
HS
2697 if (!rt_prio(p->prio))
2698 p->sched_class = &fair_sched_class;
b29739f9 2699
52f17b6c 2700#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2701 if (likely(sched_info_on()))
52f17b6c 2702 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2703#endif
d6077cb8 2704#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2705 p->oncpu = 0;
2706#endif
1da177e4 2707#ifdef CONFIG_PREEMPT
4866cde0 2708 /* Want to start with kernel preemption disabled. */
a1261f54 2709 task_thread_info(p)->preempt_count = 1;
1da177e4 2710#endif
917b627d
GH
2711 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2712
476d139c 2713 put_cpu();
1da177e4
LT
2714}
2715
2716/*
2717 * wake_up_new_task - wake up a newly created task for the first time.
2718 *
2719 * This function will do some initial scheduler statistics housekeeping
2720 * that must be done for every newly created context, then puts the task
2721 * on the runqueue and wakes it.
2722 */
7ad5b3a5 2723void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2724{
2725 unsigned long flags;
dd41f596 2726 struct rq *rq;
1da177e4
LT
2727
2728 rq = task_rq_lock(p, &flags);
147cbb4b 2729 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2730 update_rq_clock(rq);
1da177e4
LT
2731
2732 p->prio = effective_prio(p);
2733
b9dca1e0 2734 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2735 activate_task(rq, p, 0);
1da177e4 2736 } else {
1da177e4 2737 /*
dd41f596
IM
2738 * Let the scheduling class do new task startup
2739 * management (if any):
1da177e4 2740 */
ee0827d8 2741 p->sched_class->task_new(rq, p);
c09595f6 2742 inc_nr_running(rq);
1da177e4 2743 }
c71dd42d 2744 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2745 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2746#ifdef CONFIG_SMP
2747 if (p->sched_class->task_wake_up)
2748 p->sched_class->task_wake_up(rq, p);
2749#endif
dd41f596 2750 task_rq_unlock(rq, &flags);
1da177e4
LT
2751}
2752
e107be36
AK
2753#ifdef CONFIG_PREEMPT_NOTIFIERS
2754
2755/**
80dd99b3 2756 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2757 * @notifier: notifier struct to register
e107be36
AK
2758 */
2759void preempt_notifier_register(struct preempt_notifier *notifier)
2760{
2761 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2762}
2763EXPORT_SYMBOL_GPL(preempt_notifier_register);
2764
2765/**
2766 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2767 * @notifier: notifier struct to unregister
e107be36
AK
2768 *
2769 * This is safe to call from within a preemption notifier.
2770 */
2771void preempt_notifier_unregister(struct preempt_notifier *notifier)
2772{
2773 hlist_del(&notifier->link);
2774}
2775EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2776
2777static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2778{
2779 struct preempt_notifier *notifier;
2780 struct hlist_node *node;
2781
2782 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2783 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2784}
2785
2786static void
2787fire_sched_out_preempt_notifiers(struct task_struct *curr,
2788 struct task_struct *next)
2789{
2790 struct preempt_notifier *notifier;
2791 struct hlist_node *node;
2792
2793 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2794 notifier->ops->sched_out(notifier, next);
2795}
2796
6d6bc0ad 2797#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2798
2799static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2800{
2801}
2802
2803static void
2804fire_sched_out_preempt_notifiers(struct task_struct *curr,
2805 struct task_struct *next)
2806{
2807}
2808
6d6bc0ad 2809#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2810
4866cde0
NP
2811/**
2812 * prepare_task_switch - prepare to switch tasks
2813 * @rq: the runqueue preparing to switch
421cee29 2814 * @prev: the current task that is being switched out
4866cde0
NP
2815 * @next: the task we are going to switch to.
2816 *
2817 * This is called with the rq lock held and interrupts off. It must
2818 * be paired with a subsequent finish_task_switch after the context
2819 * switch.
2820 *
2821 * prepare_task_switch sets up locking and calls architecture specific
2822 * hooks.
2823 */
e107be36
AK
2824static inline void
2825prepare_task_switch(struct rq *rq, struct task_struct *prev,
2826 struct task_struct *next)
4866cde0 2827{
e107be36 2828 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2829 prepare_lock_switch(rq, next);
2830 prepare_arch_switch(next);
2831}
2832
1da177e4
LT
2833/**
2834 * finish_task_switch - clean up after a task-switch
344babaa 2835 * @rq: runqueue associated with task-switch
1da177e4
LT
2836 * @prev: the thread we just switched away from.
2837 *
4866cde0
NP
2838 * finish_task_switch must be called after the context switch, paired
2839 * with a prepare_task_switch call before the context switch.
2840 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2841 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2842 *
2843 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2844 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2845 * with the lock held can cause deadlocks; see schedule() for
2846 * details.)
2847 */
3f029d3c 2848static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2849 __releases(rq->lock)
2850{
1da177e4 2851 struct mm_struct *mm = rq->prev_mm;
55a101f8 2852 long prev_state;
1da177e4
LT
2853
2854 rq->prev_mm = NULL;
2855
2856 /*
2857 * A task struct has one reference for the use as "current".
c394cc9f 2858 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2859 * schedule one last time. The schedule call will never return, and
2860 * the scheduled task must drop that reference.
c394cc9f 2861 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2862 * still held, otherwise prev could be scheduled on another cpu, die
2863 * there before we look at prev->state, and then the reference would
2864 * be dropped twice.
2865 * Manfred Spraul <manfred@colorfullife.com>
2866 */
55a101f8 2867 prev_state = prev->state;
4866cde0 2868 finish_arch_switch(prev);
0793a61d 2869 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2870 finish_lock_switch(rq, prev);
e8fa1362 2871
e107be36 2872 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2873 if (mm)
2874 mmdrop(mm);
c394cc9f 2875 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2876 /*
2877 * Remove function-return probe instances associated with this
2878 * task and put them back on the free list.
9761eea8 2879 */
c6fd91f0 2880 kprobe_flush_task(prev);
1da177e4 2881 put_task_struct(prev);
c6fd91f0 2882 }
3f029d3c
GH
2883}
2884
2885#ifdef CONFIG_SMP
2886
2887/* assumes rq->lock is held */
2888static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2889{
2890 if (prev->sched_class->pre_schedule)
2891 prev->sched_class->pre_schedule(rq, prev);
2892}
2893
2894/* rq->lock is NOT held, but preemption is disabled */
2895static inline void post_schedule(struct rq *rq)
2896{
2897 if (rq->post_schedule) {
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&rq->lock, flags);
2901 if (rq->curr->sched_class->post_schedule)
2902 rq->curr->sched_class->post_schedule(rq);
2903 spin_unlock_irqrestore(&rq->lock, flags);
2904
2905 rq->post_schedule = 0;
2906 }
2907}
2908
2909#else
da19ab51 2910
3f029d3c
GH
2911static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2912{
2913}
2914
2915static inline void post_schedule(struct rq *rq)
2916{
1da177e4
LT
2917}
2918
3f029d3c
GH
2919#endif
2920
1da177e4
LT
2921/**
2922 * schedule_tail - first thing a freshly forked thread must call.
2923 * @prev: the thread we just switched away from.
2924 */
36c8b586 2925asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2926 __releases(rq->lock)
2927{
70b97a7f 2928 struct rq *rq = this_rq();
da19ab51 2929
3f029d3c 2930 finish_task_switch(rq, prev);
da19ab51 2931
3f029d3c
GH
2932 /*
2933 * FIXME: do we need to worry about rq being invalidated by the
2934 * task_switch?
2935 */
2936 post_schedule(rq);
70b97a7f 2937
4866cde0
NP
2938#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2939 /* In this case, finish_task_switch does not reenable preemption */
2940 preempt_enable();
2941#endif
1da177e4 2942 if (current->set_child_tid)
b488893a 2943 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2944}
2945
2946/*
2947 * context_switch - switch to the new MM and the new
2948 * thread's register state.
2949 */
3f029d3c 2950static inline void
70b97a7f 2951context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2952 struct task_struct *next)
1da177e4 2953{
dd41f596 2954 struct mm_struct *mm, *oldmm;
1da177e4 2955
e107be36 2956 prepare_task_switch(rq, prev, next);
0a16b607 2957 trace_sched_switch(rq, prev, next);
dd41f596
IM
2958 mm = next->mm;
2959 oldmm = prev->active_mm;
9226d125
ZA
2960 /*
2961 * For paravirt, this is coupled with an exit in switch_to to
2962 * combine the page table reload and the switch backend into
2963 * one hypercall.
2964 */
224101ed 2965 arch_start_context_switch(prev);
9226d125 2966
dd41f596 2967 if (unlikely(!mm)) {
1da177e4
LT
2968 next->active_mm = oldmm;
2969 atomic_inc(&oldmm->mm_count);
2970 enter_lazy_tlb(oldmm, next);
2971 } else
2972 switch_mm(oldmm, mm, next);
2973
dd41f596 2974 if (unlikely(!prev->mm)) {
1da177e4 2975 prev->active_mm = NULL;
1da177e4
LT
2976 rq->prev_mm = oldmm;
2977 }
3a5f5e48
IM
2978 /*
2979 * Since the runqueue lock will be released by the next
2980 * task (which is an invalid locking op but in the case
2981 * of the scheduler it's an obvious special-case), so we
2982 * do an early lockdep release here:
2983 */
2984#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2985 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2986#endif
1da177e4
LT
2987
2988 /* Here we just switch the register state and the stack. */
2989 switch_to(prev, next, prev);
2990
dd41f596
IM
2991 barrier();
2992 /*
2993 * this_rq must be evaluated again because prev may have moved
2994 * CPUs since it called schedule(), thus the 'rq' on its stack
2995 * frame will be invalid.
2996 */
3f029d3c 2997 finish_task_switch(this_rq(), prev);
1da177e4
LT
2998}
2999
3000/*
3001 * nr_running, nr_uninterruptible and nr_context_switches:
3002 *
3003 * externally visible scheduler statistics: current number of runnable
3004 * threads, current number of uninterruptible-sleeping threads, total
3005 * number of context switches performed since bootup.
3006 */
3007unsigned long nr_running(void)
3008{
3009 unsigned long i, sum = 0;
3010
3011 for_each_online_cpu(i)
3012 sum += cpu_rq(i)->nr_running;
3013
3014 return sum;
3015}
3016
3017unsigned long nr_uninterruptible(void)
3018{
3019 unsigned long i, sum = 0;
3020
0a945022 3021 for_each_possible_cpu(i)
1da177e4
LT
3022 sum += cpu_rq(i)->nr_uninterruptible;
3023
3024 /*
3025 * Since we read the counters lockless, it might be slightly
3026 * inaccurate. Do not allow it to go below zero though:
3027 */
3028 if (unlikely((long)sum < 0))
3029 sum = 0;
3030
3031 return sum;
3032}
3033
3034unsigned long long nr_context_switches(void)
3035{
cc94abfc
SR
3036 int i;
3037 unsigned long long sum = 0;
1da177e4 3038
0a945022 3039 for_each_possible_cpu(i)
1da177e4
LT
3040 sum += cpu_rq(i)->nr_switches;
3041
3042 return sum;
3043}
3044
3045unsigned long nr_iowait(void)
3046{
3047 unsigned long i, sum = 0;
3048
0a945022 3049 for_each_possible_cpu(i)
1da177e4
LT
3050 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3051
3052 return sum;
3053}
3054
dce48a84
TG
3055/* Variables and functions for calc_load */
3056static atomic_long_t calc_load_tasks;
3057static unsigned long calc_load_update;
3058unsigned long avenrun[3];
3059EXPORT_SYMBOL(avenrun);
3060
2d02494f
TG
3061/**
3062 * get_avenrun - get the load average array
3063 * @loads: pointer to dest load array
3064 * @offset: offset to add
3065 * @shift: shift count to shift the result left
3066 *
3067 * These values are estimates at best, so no need for locking.
3068 */
3069void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3070{
3071 loads[0] = (avenrun[0] + offset) << shift;
3072 loads[1] = (avenrun[1] + offset) << shift;
3073 loads[2] = (avenrun[2] + offset) << shift;
3074}
3075
dce48a84
TG
3076static unsigned long
3077calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3078{
dce48a84
TG
3079 load *= exp;
3080 load += active * (FIXED_1 - exp);
3081 return load >> FSHIFT;
3082}
db1b1fef 3083
dce48a84
TG
3084/*
3085 * calc_load - update the avenrun load estimates 10 ticks after the
3086 * CPUs have updated calc_load_tasks.
3087 */
3088void calc_global_load(void)
3089{
3090 unsigned long upd = calc_load_update + 10;
3091 long active;
3092
3093 if (time_before(jiffies, upd))
3094 return;
db1b1fef 3095
dce48a84
TG
3096 active = atomic_long_read(&calc_load_tasks);
3097 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3098
dce48a84
TG
3099 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3100 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3101 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3102
3103 calc_load_update += LOAD_FREQ;
3104}
3105
3106/*
3107 * Either called from update_cpu_load() or from a cpu going idle
3108 */
3109static void calc_load_account_active(struct rq *this_rq)
3110{
3111 long nr_active, delta;
3112
3113 nr_active = this_rq->nr_running;
3114 nr_active += (long) this_rq->nr_uninterruptible;
3115
3116 if (nr_active != this_rq->calc_load_active) {
3117 delta = nr_active - this_rq->calc_load_active;
3118 this_rq->calc_load_active = nr_active;
3119 atomic_long_add(delta, &calc_load_tasks);
3120 }
db1b1fef
JS
3121}
3122
23a185ca
PM
3123/*
3124 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3125 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3126 */
23a185ca
PM
3127u64 cpu_nr_migrations(int cpu)
3128{
3129 return cpu_rq(cpu)->nr_migrations_in;
3130}
3131
48f24c4d 3132/*
dd41f596
IM
3133 * Update rq->cpu_load[] statistics. This function is usually called every
3134 * scheduler tick (TICK_NSEC).
48f24c4d 3135 */
dd41f596 3136static void update_cpu_load(struct rq *this_rq)
48f24c4d 3137{
495eca49 3138 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3139 int i, scale;
3140
3141 this_rq->nr_load_updates++;
dd41f596
IM
3142
3143 /* Update our load: */
3144 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3145 unsigned long old_load, new_load;
3146
3147 /* scale is effectively 1 << i now, and >> i divides by scale */
3148
3149 old_load = this_rq->cpu_load[i];
3150 new_load = this_load;
a25707f3
IM
3151 /*
3152 * Round up the averaging division if load is increasing. This
3153 * prevents us from getting stuck on 9 if the load is 10, for
3154 * example.
3155 */
3156 if (new_load > old_load)
3157 new_load += scale-1;
dd41f596
IM
3158 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3159 }
dce48a84
TG
3160
3161 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3162 this_rq->calc_load_update += LOAD_FREQ;
3163 calc_load_account_active(this_rq);
3164 }
48f24c4d
IM
3165}
3166
dd41f596
IM
3167#ifdef CONFIG_SMP
3168
1da177e4
LT
3169/*
3170 * double_rq_lock - safely lock two runqueues
3171 *
3172 * Note this does not disable interrupts like task_rq_lock,
3173 * you need to do so manually before calling.
3174 */
70b97a7f 3175static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3176 __acquires(rq1->lock)
3177 __acquires(rq2->lock)
3178{
054b9108 3179 BUG_ON(!irqs_disabled());
1da177e4
LT
3180 if (rq1 == rq2) {
3181 spin_lock(&rq1->lock);
3182 __acquire(rq2->lock); /* Fake it out ;) */
3183 } else {
c96d145e 3184 if (rq1 < rq2) {
1da177e4 3185 spin_lock(&rq1->lock);
5e710e37 3186 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3187 } else {
3188 spin_lock(&rq2->lock);
5e710e37 3189 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3190 }
3191 }
6e82a3be
IM
3192 update_rq_clock(rq1);
3193 update_rq_clock(rq2);
1da177e4
LT
3194}
3195
3196/*
3197 * double_rq_unlock - safely unlock two runqueues
3198 *
3199 * Note this does not restore interrupts like task_rq_unlock,
3200 * you need to do so manually after calling.
3201 */
70b97a7f 3202static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3203 __releases(rq1->lock)
3204 __releases(rq2->lock)
3205{
3206 spin_unlock(&rq1->lock);
3207 if (rq1 != rq2)
3208 spin_unlock(&rq2->lock);
3209 else
3210 __release(rq2->lock);
3211}
3212
1da177e4
LT
3213/*
3214 * If dest_cpu is allowed for this process, migrate the task to it.
3215 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3216 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3217 * the cpu_allowed mask is restored.
3218 */
36c8b586 3219static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3220{
70b97a7f 3221 struct migration_req req;
1da177e4 3222 unsigned long flags;
70b97a7f 3223 struct rq *rq;
1da177e4
LT
3224
3225 rq = task_rq_lock(p, &flags);
96f874e2 3226 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3227 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3228 goto out;
3229
3230 /* force the process onto the specified CPU */
3231 if (migrate_task(p, dest_cpu, &req)) {
3232 /* Need to wait for migration thread (might exit: take ref). */
3233 struct task_struct *mt = rq->migration_thread;
36c8b586 3234
1da177e4
LT
3235 get_task_struct(mt);
3236 task_rq_unlock(rq, &flags);
3237 wake_up_process(mt);
3238 put_task_struct(mt);
3239 wait_for_completion(&req.done);
36c8b586 3240
1da177e4
LT
3241 return;
3242 }
3243out:
3244 task_rq_unlock(rq, &flags);
3245}
3246
3247/*
476d139c
NP
3248 * sched_exec - execve() is a valuable balancing opportunity, because at
3249 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3250 */
3251void sched_exec(void)
3252{
1da177e4 3253 int new_cpu, this_cpu = get_cpu();
476d139c 3254 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3255 put_cpu();
476d139c
NP
3256 if (new_cpu != this_cpu)
3257 sched_migrate_task(current, new_cpu);
1da177e4
LT
3258}
3259
3260/*
3261 * pull_task - move a task from a remote runqueue to the local runqueue.
3262 * Both runqueues must be locked.
3263 */
dd41f596
IM
3264static void pull_task(struct rq *src_rq, struct task_struct *p,
3265 struct rq *this_rq, int this_cpu)
1da177e4 3266{
2e1cb74a 3267 deactivate_task(src_rq, p, 0);
1da177e4 3268 set_task_cpu(p, this_cpu);
dd41f596 3269 activate_task(this_rq, p, 0);
1da177e4
LT
3270 /*
3271 * Note that idle threads have a prio of MAX_PRIO, for this test
3272 * to be always true for them.
3273 */
15afe09b 3274 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3275}
3276
3277/*
3278 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3279 */
858119e1 3280static
70b97a7f 3281int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3282 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3283 int *all_pinned)
1da177e4 3284{
708dc512 3285 int tsk_cache_hot = 0;
1da177e4
LT
3286 /*
3287 * We do not migrate tasks that are:
3288 * 1) running (obviously), or
3289 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3290 * 3) are cache-hot on their current CPU.
3291 */
96f874e2 3292 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3293 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3294 return 0;
cc367732 3295 }
81026794
NP
3296 *all_pinned = 0;
3297
cc367732
IM
3298 if (task_running(rq, p)) {
3299 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3300 return 0;
cc367732 3301 }
1da177e4 3302
da84d961
IM
3303 /*
3304 * Aggressive migration if:
3305 * 1) task is cache cold, or
3306 * 2) too many balance attempts have failed.
3307 */
3308
708dc512
LH
3309 tsk_cache_hot = task_hot(p, rq->clock, sd);
3310 if (!tsk_cache_hot ||
3311 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3312#ifdef CONFIG_SCHEDSTATS
708dc512 3313 if (tsk_cache_hot) {
da84d961 3314 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3315 schedstat_inc(p, se.nr_forced_migrations);
3316 }
da84d961
IM
3317#endif
3318 return 1;
3319 }
3320
708dc512 3321 if (tsk_cache_hot) {
cc367732 3322 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3323 return 0;
cc367732 3324 }
1da177e4
LT
3325 return 1;
3326}
3327
e1d1484f
PW
3328static unsigned long
3329balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3330 unsigned long max_load_move, struct sched_domain *sd,
3331 enum cpu_idle_type idle, int *all_pinned,
3332 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3333{
051c6764 3334 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3335 struct task_struct *p;
3336 long rem_load_move = max_load_move;
1da177e4 3337
e1d1484f 3338 if (max_load_move == 0)
1da177e4
LT
3339 goto out;
3340
81026794
NP
3341 pinned = 1;
3342
1da177e4 3343 /*
dd41f596 3344 * Start the load-balancing iterator:
1da177e4 3345 */
dd41f596
IM
3346 p = iterator->start(iterator->arg);
3347next:
b82d9fdd 3348 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3349 goto out;
051c6764
PZ
3350
3351 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3352 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3353 p = iterator->next(iterator->arg);
3354 goto next;
1da177e4
LT
3355 }
3356
dd41f596 3357 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3358 pulled++;
dd41f596 3359 rem_load_move -= p->se.load.weight;
1da177e4 3360
7e96fa58
GH
3361#ifdef CONFIG_PREEMPT
3362 /*
3363 * NEWIDLE balancing is a source of latency, so preemptible kernels
3364 * will stop after the first task is pulled to minimize the critical
3365 * section.
3366 */
3367 if (idle == CPU_NEWLY_IDLE)
3368 goto out;
3369#endif
3370
2dd73a4f 3371 /*
b82d9fdd 3372 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3373 */
e1d1484f 3374 if (rem_load_move > 0) {
a4ac01c3
PW
3375 if (p->prio < *this_best_prio)
3376 *this_best_prio = p->prio;
dd41f596
IM
3377 p = iterator->next(iterator->arg);
3378 goto next;
1da177e4
LT
3379 }
3380out:
3381 /*
e1d1484f 3382 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3383 * so we can safely collect pull_task() stats here rather than
3384 * inside pull_task().
3385 */
3386 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3387
3388 if (all_pinned)
3389 *all_pinned = pinned;
e1d1484f
PW
3390
3391 return max_load_move - rem_load_move;
1da177e4
LT
3392}
3393
dd41f596 3394/*
43010659
PW
3395 * move_tasks tries to move up to max_load_move weighted load from busiest to
3396 * this_rq, as part of a balancing operation within domain "sd".
3397 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3398 *
3399 * Called with both runqueues locked.
3400 */
3401static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3402 unsigned long max_load_move,
dd41f596
IM
3403 struct sched_domain *sd, enum cpu_idle_type idle,
3404 int *all_pinned)
3405{
5522d5d5 3406 const struct sched_class *class = sched_class_highest;
43010659 3407 unsigned long total_load_moved = 0;
a4ac01c3 3408 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3409
3410 do {
43010659
PW
3411 total_load_moved +=
3412 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3413 max_load_move - total_load_moved,
a4ac01c3 3414 sd, idle, all_pinned, &this_best_prio);
dd41f596 3415 class = class->next;
c4acb2c0 3416
7e96fa58
GH
3417#ifdef CONFIG_PREEMPT
3418 /*
3419 * NEWIDLE balancing is a source of latency, so preemptible
3420 * kernels will stop after the first task is pulled to minimize
3421 * the critical section.
3422 */
c4acb2c0
GH
3423 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3424 break;
7e96fa58 3425#endif
43010659 3426 } while (class && max_load_move > total_load_moved);
dd41f596 3427
43010659
PW
3428 return total_load_moved > 0;
3429}
3430
e1d1484f
PW
3431static int
3432iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3433 struct sched_domain *sd, enum cpu_idle_type idle,
3434 struct rq_iterator *iterator)
3435{
3436 struct task_struct *p = iterator->start(iterator->arg);
3437 int pinned = 0;
3438
3439 while (p) {
3440 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3441 pull_task(busiest, p, this_rq, this_cpu);
3442 /*
3443 * Right now, this is only the second place pull_task()
3444 * is called, so we can safely collect pull_task()
3445 * stats here rather than inside pull_task().
3446 */
3447 schedstat_inc(sd, lb_gained[idle]);
3448
3449 return 1;
3450 }
3451 p = iterator->next(iterator->arg);
3452 }
3453
3454 return 0;
3455}
3456
43010659
PW
3457/*
3458 * move_one_task tries to move exactly one task from busiest to this_rq, as
3459 * part of active balancing operations within "domain".
3460 * Returns 1 if successful and 0 otherwise.
3461 *
3462 * Called with both runqueues locked.
3463 */
3464static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3465 struct sched_domain *sd, enum cpu_idle_type idle)
3466{
5522d5d5 3467 const struct sched_class *class;
43010659 3468
cde7e5ca 3469 for_each_class(class) {
e1d1484f 3470 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3471 return 1;
cde7e5ca 3472 }
43010659
PW
3473
3474 return 0;
dd41f596 3475}
67bb6c03 3476/********** Helpers for find_busiest_group ************************/
1da177e4 3477/*
222d656d
GS
3478 * sd_lb_stats - Structure to store the statistics of a sched_domain
3479 * during load balancing.
1da177e4 3480 */
222d656d
GS
3481struct sd_lb_stats {
3482 struct sched_group *busiest; /* Busiest group in this sd */
3483 struct sched_group *this; /* Local group in this sd */
3484 unsigned long total_load; /* Total load of all groups in sd */
3485 unsigned long total_pwr; /* Total power of all groups in sd */
3486 unsigned long avg_load; /* Average load across all groups in sd */
3487
3488 /** Statistics of this group */
3489 unsigned long this_load;
3490 unsigned long this_load_per_task;
3491 unsigned long this_nr_running;
3492
3493 /* Statistics of the busiest group */
3494 unsigned long max_load;
3495 unsigned long busiest_load_per_task;
3496 unsigned long busiest_nr_running;
3497
3498 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3499#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3500 int power_savings_balance; /* Is powersave balance needed for this sd */
3501 struct sched_group *group_min; /* Least loaded group in sd */
3502 struct sched_group *group_leader; /* Group which relieves group_min */
3503 unsigned long min_load_per_task; /* load_per_task in group_min */
3504 unsigned long leader_nr_running; /* Nr running of group_leader */
3505 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3506#endif
222d656d 3507};
1da177e4 3508
d5ac537e 3509/*
381be78f
GS
3510 * sg_lb_stats - stats of a sched_group required for load_balancing
3511 */
3512struct sg_lb_stats {
3513 unsigned long avg_load; /*Avg load across the CPUs of the group */
3514 unsigned long group_load; /* Total load over the CPUs of the group */
3515 unsigned long sum_nr_running; /* Nr tasks running in the group */
3516 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3517 unsigned long group_capacity;
3518 int group_imb; /* Is there an imbalance in the group ? */
3519};
408ed066 3520
67bb6c03
GS
3521/**
3522 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3523 * @group: The group whose first cpu is to be returned.
3524 */
3525static inline unsigned int group_first_cpu(struct sched_group *group)
3526{
3527 return cpumask_first(sched_group_cpus(group));
3528}
3529
3530/**
3531 * get_sd_load_idx - Obtain the load index for a given sched domain.
3532 * @sd: The sched_domain whose load_idx is to be obtained.
3533 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3534 */
3535static inline int get_sd_load_idx(struct sched_domain *sd,
3536 enum cpu_idle_type idle)
3537{
3538 int load_idx;
3539
3540 switch (idle) {
3541 case CPU_NOT_IDLE:
7897986b 3542 load_idx = sd->busy_idx;
67bb6c03
GS
3543 break;
3544
3545 case CPU_NEWLY_IDLE:
7897986b 3546 load_idx = sd->newidle_idx;
67bb6c03
GS
3547 break;
3548 default:
7897986b 3549 load_idx = sd->idle_idx;
67bb6c03
GS
3550 break;
3551 }
1da177e4 3552
67bb6c03
GS
3553 return load_idx;
3554}
1da177e4 3555
1da177e4 3556
c071df18
GS
3557#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3558/**
3559 * init_sd_power_savings_stats - Initialize power savings statistics for
3560 * the given sched_domain, during load balancing.
3561 *
3562 * @sd: Sched domain whose power-savings statistics are to be initialized.
3563 * @sds: Variable containing the statistics for sd.
3564 * @idle: Idle status of the CPU at which we're performing load-balancing.
3565 */
3566static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3567 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3568{
3569 /*
3570 * Busy processors will not participate in power savings
3571 * balance.
3572 */
3573 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3574 sds->power_savings_balance = 0;
3575 else {
3576 sds->power_savings_balance = 1;
3577 sds->min_nr_running = ULONG_MAX;
3578 sds->leader_nr_running = 0;
3579 }
3580}
783609c6 3581
c071df18
GS
3582/**
3583 * update_sd_power_savings_stats - Update the power saving stats for a
3584 * sched_domain while performing load balancing.
3585 *
3586 * @group: sched_group belonging to the sched_domain under consideration.
3587 * @sds: Variable containing the statistics of the sched_domain
3588 * @local_group: Does group contain the CPU for which we're performing
3589 * load balancing ?
3590 * @sgs: Variable containing the statistics of the group.
3591 */
3592static inline void update_sd_power_savings_stats(struct sched_group *group,
3593 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3594{
408ed066 3595
c071df18
GS
3596 if (!sds->power_savings_balance)
3597 return;
1da177e4 3598
c071df18
GS
3599 /*
3600 * If the local group is idle or completely loaded
3601 * no need to do power savings balance at this domain
3602 */
3603 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3604 !sds->this_nr_running))
3605 sds->power_savings_balance = 0;
2dd73a4f 3606
c071df18
GS
3607 /*
3608 * If a group is already running at full capacity or idle,
3609 * don't include that group in power savings calculations
3610 */
3611 if (!sds->power_savings_balance ||
3612 sgs->sum_nr_running >= sgs->group_capacity ||
3613 !sgs->sum_nr_running)
3614 return;
5969fe06 3615
c071df18
GS
3616 /*
3617 * Calculate the group which has the least non-idle load.
3618 * This is the group from where we need to pick up the load
3619 * for saving power
3620 */
3621 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3622 (sgs->sum_nr_running == sds->min_nr_running &&
3623 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3624 sds->group_min = group;
3625 sds->min_nr_running = sgs->sum_nr_running;
3626 sds->min_load_per_task = sgs->sum_weighted_load /
3627 sgs->sum_nr_running;
3628 }
783609c6 3629
c071df18
GS
3630 /*
3631 * Calculate the group which is almost near its
3632 * capacity but still has some space to pick up some load
3633 * from other group and save more power
3634 */
3635 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3636 return;
1da177e4 3637
c071df18
GS
3638 if (sgs->sum_nr_running > sds->leader_nr_running ||
3639 (sgs->sum_nr_running == sds->leader_nr_running &&
3640 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3641 sds->group_leader = group;
3642 sds->leader_nr_running = sgs->sum_nr_running;
3643 }
3644}
408ed066 3645
c071df18 3646/**
d5ac537e 3647 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3648 * @sds: Variable containing the statistics of the sched_domain
3649 * under consideration.
3650 * @this_cpu: Cpu at which we're currently performing load-balancing.
3651 * @imbalance: Variable to store the imbalance.
3652 *
d5ac537e
RD
3653 * Description:
3654 * Check if we have potential to perform some power-savings balance.
3655 * If yes, set the busiest group to be the least loaded group in the
3656 * sched_domain, so that it's CPUs can be put to idle.
3657 *
c071df18
GS
3658 * Returns 1 if there is potential to perform power-savings balance.
3659 * Else returns 0.
3660 */
3661static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3662 int this_cpu, unsigned long *imbalance)
3663{
3664 if (!sds->power_savings_balance)
3665 return 0;
1da177e4 3666
c071df18
GS
3667 if (sds->this != sds->group_leader ||
3668 sds->group_leader == sds->group_min)
3669 return 0;
783609c6 3670
c071df18
GS
3671 *imbalance = sds->min_load_per_task;
3672 sds->busiest = sds->group_min;
1da177e4 3673
c071df18
GS
3674 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3675 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3676 group_first_cpu(sds->group_leader);
3677 }
3678
3679 return 1;
1da177e4 3680
c071df18
GS
3681}
3682#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3683static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3684 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3685{
3686 return;
3687}
408ed066 3688
c071df18
GS
3689static inline void update_sd_power_savings_stats(struct sched_group *group,
3690 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3691{
3692 return;
3693}
3694
3695static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3696 int this_cpu, unsigned long *imbalance)
3697{
3698 return 0;
3699}
3700#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3701
3702
1f8c553d
GS
3703/**
3704 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3705 * @group: sched_group whose statistics are to be updated.
3706 * @this_cpu: Cpu for which load balance is currently performed.
3707 * @idle: Idle status of this_cpu
3708 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3709 * @sd_idle: Idle status of the sched_domain containing group.
3710 * @local_group: Does group contain this_cpu.
3711 * @cpus: Set of cpus considered for load balancing.
3712 * @balance: Should we balance.
3713 * @sgs: variable to hold the statistics for this group.
3714 */
3715static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3716 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3717 int local_group, const struct cpumask *cpus,
3718 int *balance, struct sg_lb_stats *sgs)
3719{
3720 unsigned long load, max_cpu_load, min_cpu_load;
3721 int i;
3722 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3723 unsigned long sum_avg_load_per_task;
3724 unsigned long avg_load_per_task;
3725
3726 if (local_group)
3727 balance_cpu = group_first_cpu(group);
3728
3729 /* Tally up the load of all CPUs in the group */
3730 sum_avg_load_per_task = avg_load_per_task = 0;
3731 max_cpu_load = 0;
3732 min_cpu_load = ~0UL;
408ed066 3733
1f8c553d
GS
3734 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3735 struct rq *rq = cpu_rq(i);
908a7c1b 3736
1f8c553d
GS
3737 if (*sd_idle && rq->nr_running)
3738 *sd_idle = 0;
5c45bf27 3739
1f8c553d 3740 /* Bias balancing toward cpus of our domain */
1da177e4 3741 if (local_group) {
1f8c553d
GS
3742 if (idle_cpu(i) && !first_idle_cpu) {
3743 first_idle_cpu = 1;
3744 balance_cpu = i;
3745 }
3746
3747 load = target_load(i, load_idx);
3748 } else {
3749 load = source_load(i, load_idx);
3750 if (load > max_cpu_load)
3751 max_cpu_load = load;
3752 if (min_cpu_load > load)
3753 min_cpu_load = load;
1da177e4 3754 }
5c45bf27 3755
1f8c553d
GS
3756 sgs->group_load += load;
3757 sgs->sum_nr_running += rq->nr_running;
3758 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3759
1f8c553d
GS
3760 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3761 }
5c45bf27 3762
1f8c553d
GS
3763 /*
3764 * First idle cpu or the first cpu(busiest) in this sched group
3765 * is eligible for doing load balancing at this and above
3766 * domains. In the newly idle case, we will allow all the cpu's
3767 * to do the newly idle load balance.
3768 */
3769 if (idle != CPU_NEWLY_IDLE && local_group &&
3770 balance_cpu != this_cpu && balance) {
3771 *balance = 0;
3772 return;
3773 }
5c45bf27 3774
1f8c553d
GS
3775 /* Adjust by relative CPU power of the group */
3776 sgs->avg_load = sg_div_cpu_power(group,
3777 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3778
1f8c553d
GS
3779
3780 /*
3781 * Consider the group unbalanced when the imbalance is larger
3782 * than the average weight of two tasks.
3783 *
3784 * APZ: with cgroup the avg task weight can vary wildly and
3785 * might not be a suitable number - should we keep a
3786 * normalized nr_running number somewhere that negates
3787 * the hierarchy?
3788 */
3789 avg_load_per_task = sg_div_cpu_power(group,
3790 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3791
3792 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3793 sgs->group_imb = 1;
3794
3795 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3796
3797}
dd41f596 3798
37abe198
GS
3799/**
3800 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3801 * @sd: sched_domain whose statistics are to be updated.
3802 * @this_cpu: Cpu for which load balance is currently performed.
3803 * @idle: Idle status of this_cpu
3804 * @sd_idle: Idle status of the sched_domain containing group.
3805 * @cpus: Set of cpus considered for load balancing.
3806 * @balance: Should we balance.
3807 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3808 */
37abe198
GS
3809static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3810 enum cpu_idle_type idle, int *sd_idle,
3811 const struct cpumask *cpus, int *balance,
3812 struct sd_lb_stats *sds)
1da177e4 3813{
222d656d 3814 struct sched_group *group = sd->groups;
37abe198 3815 struct sg_lb_stats sgs;
222d656d
GS
3816 int load_idx;
3817
c071df18 3818 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3819 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3820
3821 do {
1da177e4 3822 int local_group;
1da177e4 3823
758b2cdc
RR
3824 local_group = cpumask_test_cpu(this_cpu,
3825 sched_group_cpus(group));
381be78f 3826 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3827 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3828 local_group, cpus, balance, &sgs);
1da177e4 3829
37abe198
GS
3830 if (local_group && balance && !(*balance))
3831 return;
783609c6 3832
37abe198
GS
3833 sds->total_load += sgs.group_load;
3834 sds->total_pwr += group->__cpu_power;
1da177e4 3835
1da177e4 3836 if (local_group) {
37abe198
GS
3837 sds->this_load = sgs.avg_load;
3838 sds->this = group;
3839 sds->this_nr_running = sgs.sum_nr_running;
3840 sds->this_load_per_task = sgs.sum_weighted_load;
3841 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3842 (sgs.sum_nr_running > sgs.group_capacity ||
3843 sgs.group_imb)) {
37abe198
GS
3844 sds->max_load = sgs.avg_load;
3845 sds->busiest = group;
3846 sds->busiest_nr_running = sgs.sum_nr_running;
3847 sds->busiest_load_per_task = sgs.sum_weighted_load;
3848 sds->group_imb = sgs.group_imb;
48f24c4d 3849 }
5c45bf27 3850
c071df18 3851 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3852 group = group->next;
3853 } while (group != sd->groups);
3854
37abe198 3855}
1da177e4 3856
2e6f44ae
GS
3857/**
3858 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3859 * amongst the groups of a sched_domain, during
3860 * load balancing.
2e6f44ae
GS
3861 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3862 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3863 * @imbalance: Variable to store the imbalance.
3864 */
3865static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3866 int this_cpu, unsigned long *imbalance)
3867{
3868 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3869 unsigned int imbn = 2;
3870
3871 if (sds->this_nr_running) {
3872 sds->this_load_per_task /= sds->this_nr_running;
3873 if (sds->busiest_load_per_task >
3874 sds->this_load_per_task)
3875 imbn = 1;
3876 } else
3877 sds->this_load_per_task =
3878 cpu_avg_load_per_task(this_cpu);
1da177e4 3879
2e6f44ae
GS
3880 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3881 sds->busiest_load_per_task * imbn) {
3882 *imbalance = sds->busiest_load_per_task;
3883 return;
3884 }
908a7c1b 3885
1da177e4 3886 /*
2e6f44ae
GS
3887 * OK, we don't have enough imbalance to justify moving tasks,
3888 * however we may be able to increase total CPU power used by
3889 * moving them.
1da177e4 3890 */
2dd73a4f 3891
2e6f44ae
GS
3892 pwr_now += sds->busiest->__cpu_power *
3893 min(sds->busiest_load_per_task, sds->max_load);
3894 pwr_now += sds->this->__cpu_power *
3895 min(sds->this_load_per_task, sds->this_load);
3896 pwr_now /= SCHED_LOAD_SCALE;
3897
3898 /* Amount of load we'd subtract */
3899 tmp = sg_div_cpu_power(sds->busiest,
3900 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3901 if (sds->max_load > tmp)
3902 pwr_move += sds->busiest->__cpu_power *
3903 min(sds->busiest_load_per_task, sds->max_load - tmp);
3904
3905 /* Amount of load we'd add */
3906 if (sds->max_load * sds->busiest->__cpu_power <
3907 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3908 tmp = sg_div_cpu_power(sds->this,
3909 sds->max_load * sds->busiest->__cpu_power);
3910 else
3911 tmp = sg_div_cpu_power(sds->this,
3912 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3913 pwr_move += sds->this->__cpu_power *
3914 min(sds->this_load_per_task, sds->this_load + tmp);
3915 pwr_move /= SCHED_LOAD_SCALE;
3916
3917 /* Move if we gain throughput */
3918 if (pwr_move > pwr_now)
3919 *imbalance = sds->busiest_load_per_task;
3920}
dbc523a3
GS
3921
3922/**
3923 * calculate_imbalance - Calculate the amount of imbalance present within the
3924 * groups of a given sched_domain during load balance.
3925 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3926 * @this_cpu: Cpu for which currently load balance is being performed.
3927 * @imbalance: The variable to store the imbalance.
3928 */
3929static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3930 unsigned long *imbalance)
3931{
3932 unsigned long max_pull;
2dd73a4f
PW
3933 /*
3934 * In the presence of smp nice balancing, certain scenarios can have
3935 * max load less than avg load(as we skip the groups at or below
3936 * its cpu_power, while calculating max_load..)
3937 */
dbc523a3 3938 if (sds->max_load < sds->avg_load) {
2dd73a4f 3939 *imbalance = 0;
dbc523a3 3940 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3941 }
0c117f1b
SS
3942
3943 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3944 max_pull = min(sds->max_load - sds->avg_load,
3945 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3946
1da177e4 3947 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3948 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3949 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3950 / SCHED_LOAD_SCALE;
3951
2dd73a4f
PW
3952 /*
3953 * if *imbalance is less than the average load per runnable task
3954 * there is no gaurantee that any tasks will be moved so we'll have
3955 * a think about bumping its value to force at least one task to be
3956 * moved
3957 */
dbc523a3
GS
3958 if (*imbalance < sds->busiest_load_per_task)
3959 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3960
dbc523a3 3961}
37abe198 3962/******* find_busiest_group() helpers end here *********************/
1da177e4 3963
b7bb4c9b
GS
3964/**
3965 * find_busiest_group - Returns the busiest group within the sched_domain
3966 * if there is an imbalance. If there isn't an imbalance, and
3967 * the user has opted for power-savings, it returns a group whose
3968 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3969 * such a group exists.
3970 *
3971 * Also calculates the amount of weighted load which should be moved
3972 * to restore balance.
3973 *
3974 * @sd: The sched_domain whose busiest group is to be returned.
3975 * @this_cpu: The cpu for which load balancing is currently being performed.
3976 * @imbalance: Variable which stores amount of weighted load which should
3977 * be moved to restore balance/put a group to idle.
3978 * @idle: The idle status of this_cpu.
3979 * @sd_idle: The idleness of sd
3980 * @cpus: The set of CPUs under consideration for load-balancing.
3981 * @balance: Pointer to a variable indicating if this_cpu
3982 * is the appropriate cpu to perform load balancing at this_level.
3983 *
3984 * Returns: - the busiest group if imbalance exists.
3985 * - If no imbalance and user has opted for power-savings balance,
3986 * return the least loaded group whose CPUs can be
3987 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3988 */
3989static struct sched_group *
3990find_busiest_group(struct sched_domain *sd, int this_cpu,
3991 unsigned long *imbalance, enum cpu_idle_type idle,
3992 int *sd_idle, const struct cpumask *cpus, int *balance)
3993{
3994 struct sd_lb_stats sds;
1da177e4 3995
37abe198 3996 memset(&sds, 0, sizeof(sds));
1da177e4 3997
37abe198
GS
3998 /*
3999 * Compute the various statistics relavent for load balancing at
4000 * this level.
4001 */
4002 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4003 balance, &sds);
4004
b7bb4c9b
GS
4005 /* Cases where imbalance does not exist from POV of this_cpu */
4006 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4007 * at this level.
4008 * 2) There is no busy sibling group to pull from.
4009 * 3) This group is the busiest group.
4010 * 4) This group is more busy than the avg busieness at this
4011 * sched_domain.
4012 * 5) The imbalance is within the specified limit.
4013 * 6) Any rebalance would lead to ping-pong
4014 */
37abe198
GS
4015 if (balance && !(*balance))
4016 goto ret;
1da177e4 4017
b7bb4c9b
GS
4018 if (!sds.busiest || sds.busiest_nr_running == 0)
4019 goto out_balanced;
1da177e4 4020
b7bb4c9b 4021 if (sds.this_load >= sds.max_load)
1da177e4 4022 goto out_balanced;
1da177e4 4023
222d656d 4024 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4025
b7bb4c9b
GS
4026 if (sds.this_load >= sds.avg_load)
4027 goto out_balanced;
4028
4029 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4030 goto out_balanced;
4031
222d656d
GS
4032 sds.busiest_load_per_task /= sds.busiest_nr_running;
4033 if (sds.group_imb)
4034 sds.busiest_load_per_task =
4035 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4036
1da177e4
LT
4037 /*
4038 * We're trying to get all the cpus to the average_load, so we don't
4039 * want to push ourselves above the average load, nor do we wish to
4040 * reduce the max loaded cpu below the average load, as either of these
4041 * actions would just result in more rebalancing later, and ping-pong
4042 * tasks around. Thus we look for the minimum possible imbalance.
4043 * Negative imbalances (*we* are more loaded than anyone else) will
4044 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4045 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4046 * appear as very large values with unsigned longs.
4047 */
222d656d 4048 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4049 goto out_balanced;
4050
dbc523a3
GS
4051 /* Looks like there is an imbalance. Compute it */
4052 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4053 return sds.busiest;
1da177e4
LT
4054
4055out_balanced:
c071df18
GS
4056 /*
4057 * There is no obvious imbalance. But check if we can do some balancing
4058 * to save power.
4059 */
4060 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4061 return sds.busiest;
783609c6 4062ret:
1da177e4
LT
4063 *imbalance = 0;
4064 return NULL;
4065}
4066
4067/*
4068 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4069 */
70b97a7f 4070static struct rq *
d15bcfdb 4071find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4072 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4073{
70b97a7f 4074 struct rq *busiest = NULL, *rq;
2dd73a4f 4075 unsigned long max_load = 0;
1da177e4
LT
4076 int i;
4077
758b2cdc 4078 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4079 unsigned long wl;
0a2966b4 4080
96f874e2 4081 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4082 continue;
4083
48f24c4d 4084 rq = cpu_rq(i);
dd41f596 4085 wl = weighted_cpuload(i);
2dd73a4f 4086
dd41f596 4087 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4088 continue;
1da177e4 4089
dd41f596
IM
4090 if (wl > max_load) {
4091 max_load = wl;
48f24c4d 4092 busiest = rq;
1da177e4
LT
4093 }
4094 }
4095
4096 return busiest;
4097}
4098
77391d71
NP
4099/*
4100 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4101 * so long as it is large enough.
4102 */
4103#define MAX_PINNED_INTERVAL 512
4104
df7c8e84
RR
4105/* Working cpumask for load_balance and load_balance_newidle. */
4106static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4107
1da177e4
LT
4108/*
4109 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4110 * tasks if there is an imbalance.
1da177e4 4111 */
70b97a7f 4112static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4113 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4114 int *balance)
1da177e4 4115{
43010659 4116 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4117 struct sched_group *group;
1da177e4 4118 unsigned long imbalance;
70b97a7f 4119 struct rq *busiest;
fe2eea3f 4120 unsigned long flags;
df7c8e84 4121 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4122
96f874e2 4123 cpumask_setall(cpus);
7c16ec58 4124
89c4710e
SS
4125 /*
4126 * When power savings policy is enabled for the parent domain, idle
4127 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4128 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4129 * portraying it as CPU_NOT_IDLE.
89c4710e 4130 */
d15bcfdb 4131 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4132 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4133 sd_idle = 1;
1da177e4 4134
2d72376b 4135 schedstat_inc(sd, lb_count[idle]);
1da177e4 4136
0a2966b4 4137redo:
c8cba857 4138 update_shares(sd);
0a2966b4 4139 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4140 cpus, balance);
783609c6 4141
06066714 4142 if (*balance == 0)
783609c6 4143 goto out_balanced;
783609c6 4144
1da177e4
LT
4145 if (!group) {
4146 schedstat_inc(sd, lb_nobusyg[idle]);
4147 goto out_balanced;
4148 }
4149
7c16ec58 4150 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4151 if (!busiest) {
4152 schedstat_inc(sd, lb_nobusyq[idle]);
4153 goto out_balanced;
4154 }
4155
db935dbd 4156 BUG_ON(busiest == this_rq);
1da177e4
LT
4157
4158 schedstat_add(sd, lb_imbalance[idle], imbalance);
4159
43010659 4160 ld_moved = 0;
1da177e4
LT
4161 if (busiest->nr_running > 1) {
4162 /*
4163 * Attempt to move tasks. If find_busiest_group has found
4164 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4165 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4166 * correctly treated as an imbalance.
4167 */
fe2eea3f 4168 local_irq_save(flags);
e17224bf 4169 double_rq_lock(this_rq, busiest);
43010659 4170 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4171 imbalance, sd, idle, &all_pinned);
e17224bf 4172 double_rq_unlock(this_rq, busiest);
fe2eea3f 4173 local_irq_restore(flags);
81026794 4174
46cb4b7c
SS
4175 /*
4176 * some other cpu did the load balance for us.
4177 */
43010659 4178 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4179 resched_cpu(this_cpu);
4180
81026794 4181 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4182 if (unlikely(all_pinned)) {
96f874e2
RR
4183 cpumask_clear_cpu(cpu_of(busiest), cpus);
4184 if (!cpumask_empty(cpus))
0a2966b4 4185 goto redo;
81026794 4186 goto out_balanced;
0a2966b4 4187 }
1da177e4 4188 }
81026794 4189
43010659 4190 if (!ld_moved) {
1da177e4
LT
4191 schedstat_inc(sd, lb_failed[idle]);
4192 sd->nr_balance_failed++;
4193
4194 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4195
fe2eea3f 4196 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4197
4198 /* don't kick the migration_thread, if the curr
4199 * task on busiest cpu can't be moved to this_cpu
4200 */
96f874e2
RR
4201 if (!cpumask_test_cpu(this_cpu,
4202 &busiest->curr->cpus_allowed)) {
fe2eea3f 4203 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4204 all_pinned = 1;
4205 goto out_one_pinned;
4206 }
4207
1da177e4
LT
4208 if (!busiest->active_balance) {
4209 busiest->active_balance = 1;
4210 busiest->push_cpu = this_cpu;
81026794 4211 active_balance = 1;
1da177e4 4212 }
fe2eea3f 4213 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4214 if (active_balance)
1da177e4
LT
4215 wake_up_process(busiest->migration_thread);
4216
4217 /*
4218 * We've kicked active balancing, reset the failure
4219 * counter.
4220 */
39507451 4221 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4222 }
81026794 4223 } else
1da177e4
LT
4224 sd->nr_balance_failed = 0;
4225
81026794 4226 if (likely(!active_balance)) {
1da177e4
LT
4227 /* We were unbalanced, so reset the balancing interval */
4228 sd->balance_interval = sd->min_interval;
81026794
NP
4229 } else {
4230 /*
4231 * If we've begun active balancing, start to back off. This
4232 * case may not be covered by the all_pinned logic if there
4233 * is only 1 task on the busy runqueue (because we don't call
4234 * move_tasks).
4235 */
4236 if (sd->balance_interval < sd->max_interval)
4237 sd->balance_interval *= 2;
1da177e4
LT
4238 }
4239
43010659 4240 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4241 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4242 ld_moved = -1;
4243
4244 goto out;
1da177e4
LT
4245
4246out_balanced:
1da177e4
LT
4247 schedstat_inc(sd, lb_balanced[idle]);
4248
16cfb1c0 4249 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4250
4251out_one_pinned:
1da177e4 4252 /* tune up the balancing interval */
77391d71
NP
4253 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4254 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4255 sd->balance_interval *= 2;
4256
48f24c4d 4257 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4258 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4259 ld_moved = -1;
4260 else
4261 ld_moved = 0;
4262out:
c8cba857
PZ
4263 if (ld_moved)
4264 update_shares(sd);
c09595f6 4265 return ld_moved;
1da177e4
LT
4266}
4267
4268/*
4269 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4270 * tasks if there is an imbalance.
4271 *
d15bcfdb 4272 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4273 * this_rq is locked.
4274 */
48f24c4d 4275static int
df7c8e84 4276load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4277{
4278 struct sched_group *group;
70b97a7f 4279 struct rq *busiest = NULL;
1da177e4 4280 unsigned long imbalance;
43010659 4281 int ld_moved = 0;
5969fe06 4282 int sd_idle = 0;
969bb4e4 4283 int all_pinned = 0;
df7c8e84 4284 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4285
96f874e2 4286 cpumask_setall(cpus);
5969fe06 4287
89c4710e
SS
4288 /*
4289 * When power savings policy is enabled for the parent domain, idle
4290 * sibling can pick up load irrespective of busy siblings. In this case,
4291 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4292 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4293 */
4294 if (sd->flags & SD_SHARE_CPUPOWER &&
4295 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4296 sd_idle = 1;
1da177e4 4297
2d72376b 4298 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4299redo:
3e5459b4 4300 update_shares_locked(this_rq, sd);
d15bcfdb 4301 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4302 &sd_idle, cpus, NULL);
1da177e4 4303 if (!group) {
d15bcfdb 4304 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4305 goto out_balanced;
1da177e4
LT
4306 }
4307
7c16ec58 4308 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4309 if (!busiest) {
d15bcfdb 4310 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4311 goto out_balanced;
1da177e4
LT
4312 }
4313
db935dbd
NP
4314 BUG_ON(busiest == this_rq);
4315
d15bcfdb 4316 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4317
43010659 4318 ld_moved = 0;
d6d5cfaf
NP
4319 if (busiest->nr_running > 1) {
4320 /* Attempt to move tasks */
4321 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4322 /* this_rq->clock is already updated */
4323 update_rq_clock(busiest);
43010659 4324 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4325 imbalance, sd, CPU_NEWLY_IDLE,
4326 &all_pinned);
1b12bbc7 4327 double_unlock_balance(this_rq, busiest);
0a2966b4 4328
969bb4e4 4329 if (unlikely(all_pinned)) {
96f874e2
RR
4330 cpumask_clear_cpu(cpu_of(busiest), cpus);
4331 if (!cpumask_empty(cpus))
0a2966b4
CL
4332 goto redo;
4333 }
d6d5cfaf
NP
4334 }
4335
43010659 4336 if (!ld_moved) {
36dffab6 4337 int active_balance = 0;
ad273b32 4338
d15bcfdb 4339 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4340 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4341 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4342 return -1;
ad273b32
VS
4343
4344 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4345 return -1;
4346
4347 if (sd->nr_balance_failed++ < 2)
4348 return -1;
4349
4350 /*
4351 * The only task running in a non-idle cpu can be moved to this
4352 * cpu in an attempt to completely freeup the other CPU
4353 * package. The same method used to move task in load_balance()
4354 * have been extended for load_balance_newidle() to speedup
4355 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4356 *
4357 * The package power saving logic comes from
4358 * find_busiest_group(). If there are no imbalance, then
4359 * f_b_g() will return NULL. However when sched_mc={1,2} then
4360 * f_b_g() will select a group from which a running task may be
4361 * pulled to this cpu in order to make the other package idle.
4362 * If there is no opportunity to make a package idle and if
4363 * there are no imbalance, then f_b_g() will return NULL and no
4364 * action will be taken in load_balance_newidle().
4365 *
4366 * Under normal task pull operation due to imbalance, there
4367 * will be more than one task in the source run queue and
4368 * move_tasks() will succeed. ld_moved will be true and this
4369 * active balance code will not be triggered.
4370 */
4371
4372 /* Lock busiest in correct order while this_rq is held */
4373 double_lock_balance(this_rq, busiest);
4374
4375 /*
4376 * don't kick the migration_thread, if the curr
4377 * task on busiest cpu can't be moved to this_cpu
4378 */
6ca09dfc 4379 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4380 double_unlock_balance(this_rq, busiest);
4381 all_pinned = 1;
4382 return ld_moved;
4383 }
4384
4385 if (!busiest->active_balance) {
4386 busiest->active_balance = 1;
4387 busiest->push_cpu = this_cpu;
4388 active_balance = 1;
4389 }
4390
4391 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4392 /*
4393 * Should not call ttwu while holding a rq->lock
4394 */
4395 spin_unlock(&this_rq->lock);
ad273b32
VS
4396 if (active_balance)
4397 wake_up_process(busiest->migration_thread);
da8d5089 4398 spin_lock(&this_rq->lock);
ad273b32 4399
5969fe06 4400 } else
16cfb1c0 4401 sd->nr_balance_failed = 0;
1da177e4 4402
3e5459b4 4403 update_shares_locked(this_rq, sd);
43010659 4404 return ld_moved;
16cfb1c0
NP
4405
4406out_balanced:
d15bcfdb 4407 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4408 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4409 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4410 return -1;
16cfb1c0 4411 sd->nr_balance_failed = 0;
48f24c4d 4412
16cfb1c0 4413 return 0;
1da177e4
LT
4414}
4415
4416/*
4417 * idle_balance is called by schedule() if this_cpu is about to become
4418 * idle. Attempts to pull tasks from other CPUs.
4419 */
70b97a7f 4420static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4421{
4422 struct sched_domain *sd;
efbe027e 4423 int pulled_task = 0;
dd41f596 4424 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4425
4426 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4427 unsigned long interval;
4428
4429 if (!(sd->flags & SD_LOAD_BALANCE))
4430 continue;
4431
4432 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4433 /* If we've pulled tasks over stop searching: */
7c16ec58 4434 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4435 sd);
92c4ca5c
CL
4436
4437 interval = msecs_to_jiffies(sd->balance_interval);
4438 if (time_after(next_balance, sd->last_balance + interval))
4439 next_balance = sd->last_balance + interval;
4440 if (pulled_task)
4441 break;
1da177e4 4442 }
dd41f596 4443 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4444 /*
4445 * We are going idle. next_balance may be set based on
4446 * a busy processor. So reset next_balance.
4447 */
4448 this_rq->next_balance = next_balance;
dd41f596 4449 }
1da177e4
LT
4450}
4451
4452/*
4453 * active_load_balance is run by migration threads. It pushes running tasks
4454 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4455 * running on each physical CPU where possible, and avoids physical /
4456 * logical imbalances.
4457 *
4458 * Called with busiest_rq locked.
4459 */
70b97a7f 4460static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4461{
39507451 4462 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4463 struct sched_domain *sd;
4464 struct rq *target_rq;
39507451 4465
48f24c4d 4466 /* Is there any task to move? */
39507451 4467 if (busiest_rq->nr_running <= 1)
39507451
NP
4468 return;
4469
4470 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4471
4472 /*
39507451 4473 * This condition is "impossible", if it occurs
41a2d6cf 4474 * we need to fix it. Originally reported by
39507451 4475 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4476 */
39507451 4477 BUG_ON(busiest_rq == target_rq);
1da177e4 4478
39507451
NP
4479 /* move a task from busiest_rq to target_rq */
4480 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4481 update_rq_clock(busiest_rq);
4482 update_rq_clock(target_rq);
39507451
NP
4483
4484 /* Search for an sd spanning us and the target CPU. */
c96d145e 4485 for_each_domain(target_cpu, sd) {
39507451 4486 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4487 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4488 break;
c96d145e 4489 }
39507451 4490
48f24c4d 4491 if (likely(sd)) {
2d72376b 4492 schedstat_inc(sd, alb_count);
39507451 4493
43010659
PW
4494 if (move_one_task(target_rq, target_cpu, busiest_rq,
4495 sd, CPU_IDLE))
48f24c4d
IM
4496 schedstat_inc(sd, alb_pushed);
4497 else
4498 schedstat_inc(sd, alb_failed);
4499 }
1b12bbc7 4500 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4501}
4502
46cb4b7c
SS
4503#ifdef CONFIG_NO_HZ
4504static struct {
4505 atomic_t load_balancer;
7d1e6a9b 4506 cpumask_var_t cpu_mask;
f711f609 4507 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4508} nohz ____cacheline_aligned = {
4509 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4510};
4511
eea08f32
AB
4512int get_nohz_load_balancer(void)
4513{
4514 return atomic_read(&nohz.load_balancer);
4515}
4516
f711f609
GS
4517#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4518/**
4519 * lowest_flag_domain - Return lowest sched_domain containing flag.
4520 * @cpu: The cpu whose lowest level of sched domain is to
4521 * be returned.
4522 * @flag: The flag to check for the lowest sched_domain
4523 * for the given cpu.
4524 *
4525 * Returns the lowest sched_domain of a cpu which contains the given flag.
4526 */
4527static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4528{
4529 struct sched_domain *sd;
4530
4531 for_each_domain(cpu, sd)
4532 if (sd && (sd->flags & flag))
4533 break;
4534
4535 return sd;
4536}
4537
4538/**
4539 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4540 * @cpu: The cpu whose domains we're iterating over.
4541 * @sd: variable holding the value of the power_savings_sd
4542 * for cpu.
4543 * @flag: The flag to filter the sched_domains to be iterated.
4544 *
4545 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4546 * set, starting from the lowest sched_domain to the highest.
4547 */
4548#define for_each_flag_domain(cpu, sd, flag) \
4549 for (sd = lowest_flag_domain(cpu, flag); \
4550 (sd && (sd->flags & flag)); sd = sd->parent)
4551
4552/**
4553 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4554 * @ilb_group: group to be checked for semi-idleness
4555 *
4556 * Returns: 1 if the group is semi-idle. 0 otherwise.
4557 *
4558 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4559 * and atleast one non-idle CPU. This helper function checks if the given
4560 * sched_group is semi-idle or not.
4561 */
4562static inline int is_semi_idle_group(struct sched_group *ilb_group)
4563{
4564 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4565 sched_group_cpus(ilb_group));
4566
4567 /*
4568 * A sched_group is semi-idle when it has atleast one busy cpu
4569 * and atleast one idle cpu.
4570 */
4571 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4572 return 0;
4573
4574 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4575 return 0;
4576
4577 return 1;
4578}
4579/**
4580 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4581 * @cpu: The cpu which is nominating a new idle_load_balancer.
4582 *
4583 * Returns: Returns the id of the idle load balancer if it exists,
4584 * Else, returns >= nr_cpu_ids.
4585 *
4586 * This algorithm picks the idle load balancer such that it belongs to a
4587 * semi-idle powersavings sched_domain. The idea is to try and avoid
4588 * completely idle packages/cores just for the purpose of idle load balancing
4589 * when there are other idle cpu's which are better suited for that job.
4590 */
4591static int find_new_ilb(int cpu)
4592{
4593 struct sched_domain *sd;
4594 struct sched_group *ilb_group;
4595
4596 /*
4597 * Have idle load balancer selection from semi-idle packages only
4598 * when power-aware load balancing is enabled
4599 */
4600 if (!(sched_smt_power_savings || sched_mc_power_savings))
4601 goto out_done;
4602
4603 /*
4604 * Optimize for the case when we have no idle CPUs or only one
4605 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4606 */
4607 if (cpumask_weight(nohz.cpu_mask) < 2)
4608 goto out_done;
4609
4610 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4611 ilb_group = sd->groups;
4612
4613 do {
4614 if (is_semi_idle_group(ilb_group))
4615 return cpumask_first(nohz.ilb_grp_nohz_mask);
4616
4617 ilb_group = ilb_group->next;
4618
4619 } while (ilb_group != sd->groups);
4620 }
4621
4622out_done:
4623 return cpumask_first(nohz.cpu_mask);
4624}
4625#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4626static inline int find_new_ilb(int call_cpu)
4627{
6e29ec57 4628 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4629}
4630#endif
4631
7835b98b 4632/*
46cb4b7c
SS
4633 * This routine will try to nominate the ilb (idle load balancing)
4634 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4635 * load balancing on behalf of all those cpus. If all the cpus in the system
4636 * go into this tickless mode, then there will be no ilb owner (as there is
4637 * no need for one) and all the cpus will sleep till the next wakeup event
4638 * arrives...
4639 *
4640 * For the ilb owner, tick is not stopped. And this tick will be used
4641 * for idle load balancing. ilb owner will still be part of
4642 * nohz.cpu_mask..
7835b98b 4643 *
46cb4b7c
SS
4644 * While stopping the tick, this cpu will become the ilb owner if there
4645 * is no other owner. And will be the owner till that cpu becomes busy
4646 * or if all cpus in the system stop their ticks at which point
4647 * there is no need for ilb owner.
4648 *
4649 * When the ilb owner becomes busy, it nominates another owner, during the
4650 * next busy scheduler_tick()
4651 */
4652int select_nohz_load_balancer(int stop_tick)
4653{
4654 int cpu = smp_processor_id();
4655
4656 if (stop_tick) {
46cb4b7c
SS
4657 cpu_rq(cpu)->in_nohz_recently = 1;
4658
483b4ee6
SS
4659 if (!cpu_active(cpu)) {
4660 if (atomic_read(&nohz.load_balancer) != cpu)
4661 return 0;
4662
4663 /*
4664 * If we are going offline and still the leader,
4665 * give up!
4666 */
46cb4b7c
SS
4667 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4668 BUG();
483b4ee6 4669
46cb4b7c
SS
4670 return 0;
4671 }
4672
483b4ee6
SS
4673 cpumask_set_cpu(cpu, nohz.cpu_mask);
4674
46cb4b7c 4675 /* time for ilb owner also to sleep */
7d1e6a9b 4676 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4677 if (atomic_read(&nohz.load_balancer) == cpu)
4678 atomic_set(&nohz.load_balancer, -1);
4679 return 0;
4680 }
4681
4682 if (atomic_read(&nohz.load_balancer) == -1) {
4683 /* make me the ilb owner */
4684 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4685 return 1;
e790fb0b
GS
4686 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4687 int new_ilb;
4688
4689 if (!(sched_smt_power_savings ||
4690 sched_mc_power_savings))
4691 return 1;
4692 /*
4693 * Check to see if there is a more power-efficient
4694 * ilb.
4695 */
4696 new_ilb = find_new_ilb(cpu);
4697 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4698 atomic_set(&nohz.load_balancer, -1);
4699 resched_cpu(new_ilb);
4700 return 0;
4701 }
46cb4b7c 4702 return 1;
e790fb0b 4703 }
46cb4b7c 4704 } else {
7d1e6a9b 4705 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4706 return 0;
4707
7d1e6a9b 4708 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4709
4710 if (atomic_read(&nohz.load_balancer) == cpu)
4711 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4712 BUG();
4713 }
4714 return 0;
4715}
4716#endif
4717
4718static DEFINE_SPINLOCK(balancing);
4719
4720/*
7835b98b
CL
4721 * It checks each scheduling domain to see if it is due to be balanced,
4722 * and initiates a balancing operation if so.
4723 *
4724 * Balancing parameters are set up in arch_init_sched_domains.
4725 */
a9957449 4726static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4727{
46cb4b7c
SS
4728 int balance = 1;
4729 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4730 unsigned long interval;
4731 struct sched_domain *sd;
46cb4b7c 4732 /* Earliest time when we have to do rebalance again */
c9819f45 4733 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4734 int update_next_balance = 0;
d07355f5 4735 int need_serialize;
1da177e4 4736
46cb4b7c 4737 for_each_domain(cpu, sd) {
1da177e4
LT
4738 if (!(sd->flags & SD_LOAD_BALANCE))
4739 continue;
4740
4741 interval = sd->balance_interval;
d15bcfdb 4742 if (idle != CPU_IDLE)
1da177e4
LT
4743 interval *= sd->busy_factor;
4744
4745 /* scale ms to jiffies */
4746 interval = msecs_to_jiffies(interval);
4747 if (unlikely(!interval))
4748 interval = 1;
dd41f596
IM
4749 if (interval > HZ*NR_CPUS/10)
4750 interval = HZ*NR_CPUS/10;
4751
d07355f5 4752 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4753
d07355f5 4754 if (need_serialize) {
08c183f3
CL
4755 if (!spin_trylock(&balancing))
4756 goto out;
4757 }
4758
c9819f45 4759 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4760 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4761 /*
4762 * We've pulled tasks over so either we're no
5969fe06
NP
4763 * longer idle, or one of our SMT siblings is
4764 * not idle.
4765 */
d15bcfdb 4766 idle = CPU_NOT_IDLE;
1da177e4 4767 }
1bd77f2d 4768 sd->last_balance = jiffies;
1da177e4 4769 }
d07355f5 4770 if (need_serialize)
08c183f3
CL
4771 spin_unlock(&balancing);
4772out:
f549da84 4773 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4774 next_balance = sd->last_balance + interval;
f549da84
SS
4775 update_next_balance = 1;
4776 }
783609c6
SS
4777
4778 /*
4779 * Stop the load balance at this level. There is another
4780 * CPU in our sched group which is doing load balancing more
4781 * actively.
4782 */
4783 if (!balance)
4784 break;
1da177e4 4785 }
f549da84
SS
4786
4787 /*
4788 * next_balance will be updated only when there is a need.
4789 * When the cpu is attached to null domain for ex, it will not be
4790 * updated.
4791 */
4792 if (likely(update_next_balance))
4793 rq->next_balance = next_balance;
46cb4b7c
SS
4794}
4795
4796/*
4797 * run_rebalance_domains is triggered when needed from the scheduler tick.
4798 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4799 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4800 */
4801static void run_rebalance_domains(struct softirq_action *h)
4802{
dd41f596
IM
4803 int this_cpu = smp_processor_id();
4804 struct rq *this_rq = cpu_rq(this_cpu);
4805 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4806 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4807
dd41f596 4808 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4809
4810#ifdef CONFIG_NO_HZ
4811 /*
4812 * If this cpu is the owner for idle load balancing, then do the
4813 * balancing on behalf of the other idle cpus whose ticks are
4814 * stopped.
4815 */
dd41f596
IM
4816 if (this_rq->idle_at_tick &&
4817 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4818 struct rq *rq;
4819 int balance_cpu;
4820
7d1e6a9b
RR
4821 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4822 if (balance_cpu == this_cpu)
4823 continue;
4824
46cb4b7c
SS
4825 /*
4826 * If this cpu gets work to do, stop the load balancing
4827 * work being done for other cpus. Next load
4828 * balancing owner will pick it up.
4829 */
4830 if (need_resched())
4831 break;
4832
de0cf899 4833 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4834
4835 rq = cpu_rq(balance_cpu);
dd41f596
IM
4836 if (time_after(this_rq->next_balance, rq->next_balance))
4837 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4838 }
4839 }
4840#endif
4841}
4842
8a0be9ef
FW
4843static inline int on_null_domain(int cpu)
4844{
4845 return !rcu_dereference(cpu_rq(cpu)->sd);
4846}
4847
46cb4b7c
SS
4848/*
4849 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4850 *
4851 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4852 * idle load balancing owner or decide to stop the periodic load balancing,
4853 * if the whole system is idle.
4854 */
dd41f596 4855static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4856{
46cb4b7c
SS
4857#ifdef CONFIG_NO_HZ
4858 /*
4859 * If we were in the nohz mode recently and busy at the current
4860 * scheduler tick, then check if we need to nominate new idle
4861 * load balancer.
4862 */
4863 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4864 rq->in_nohz_recently = 0;
4865
4866 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4867 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4868 atomic_set(&nohz.load_balancer, -1);
4869 }
4870
4871 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4872 int ilb = find_new_ilb(cpu);
46cb4b7c 4873
434d53b0 4874 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4875 resched_cpu(ilb);
4876 }
4877 }
4878
4879 /*
4880 * If this cpu is idle and doing idle load balancing for all the
4881 * cpus with ticks stopped, is it time for that to stop?
4882 */
4883 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4884 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4885 resched_cpu(cpu);
4886 return;
4887 }
4888
4889 /*
4890 * If this cpu is idle and the idle load balancing is done by
4891 * someone else, then no need raise the SCHED_SOFTIRQ
4892 */
4893 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4894 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4895 return;
4896#endif
8a0be9ef
FW
4897 /* Don't need to rebalance while attached to NULL domain */
4898 if (time_after_eq(jiffies, rq->next_balance) &&
4899 likely(!on_null_domain(cpu)))
46cb4b7c 4900 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4901}
dd41f596
IM
4902
4903#else /* CONFIG_SMP */
4904
1da177e4
LT
4905/*
4906 * on UP we do not need to balance between CPUs:
4907 */
70b97a7f 4908static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4909{
4910}
dd41f596 4911
1da177e4
LT
4912#endif
4913
1da177e4
LT
4914DEFINE_PER_CPU(struct kernel_stat, kstat);
4915
4916EXPORT_PER_CPU_SYMBOL(kstat);
4917
4918/*
c5f8d995 4919 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4920 * @p in case that task is currently running.
c5f8d995
HS
4921 *
4922 * Called with task_rq_lock() held on @rq.
1da177e4 4923 */
c5f8d995
HS
4924static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4925{
4926 u64 ns = 0;
4927
4928 if (task_current(rq, p)) {
4929 update_rq_clock(rq);
4930 ns = rq->clock - p->se.exec_start;
4931 if ((s64)ns < 0)
4932 ns = 0;
4933 }
4934
4935 return ns;
4936}
4937
bb34d92f 4938unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4939{
1da177e4 4940 unsigned long flags;
41b86e9c 4941 struct rq *rq;
bb34d92f 4942 u64 ns = 0;
48f24c4d 4943
41b86e9c 4944 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4945 ns = do_task_delta_exec(p, rq);
4946 task_rq_unlock(rq, &flags);
1508487e 4947
c5f8d995
HS
4948 return ns;
4949}
f06febc9 4950
c5f8d995
HS
4951/*
4952 * Return accounted runtime for the task.
4953 * In case the task is currently running, return the runtime plus current's
4954 * pending runtime that have not been accounted yet.
4955 */
4956unsigned long long task_sched_runtime(struct task_struct *p)
4957{
4958 unsigned long flags;
4959 struct rq *rq;
4960 u64 ns = 0;
4961
4962 rq = task_rq_lock(p, &flags);
4963 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4964 task_rq_unlock(rq, &flags);
4965
4966 return ns;
4967}
48f24c4d 4968
c5f8d995
HS
4969/*
4970 * Return sum_exec_runtime for the thread group.
4971 * In case the task is currently running, return the sum plus current's
4972 * pending runtime that have not been accounted yet.
4973 *
4974 * Note that the thread group might have other running tasks as well,
4975 * so the return value not includes other pending runtime that other
4976 * running tasks might have.
4977 */
4978unsigned long long thread_group_sched_runtime(struct task_struct *p)
4979{
4980 struct task_cputime totals;
4981 unsigned long flags;
4982 struct rq *rq;
4983 u64 ns;
4984
4985 rq = task_rq_lock(p, &flags);
4986 thread_group_cputime(p, &totals);
4987 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4988 task_rq_unlock(rq, &flags);
48f24c4d 4989
1da177e4
LT
4990 return ns;
4991}
4992
1da177e4
LT
4993/*
4994 * Account user cpu time to a process.
4995 * @p: the process that the cpu time gets accounted to
1da177e4 4996 * @cputime: the cpu time spent in user space since the last update
457533a7 4997 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4998 */
457533a7
MS
4999void account_user_time(struct task_struct *p, cputime_t cputime,
5000 cputime_t cputime_scaled)
1da177e4
LT
5001{
5002 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5003 cputime64_t tmp;
5004
457533a7 5005 /* Add user time to process. */
1da177e4 5006 p->utime = cputime_add(p->utime, cputime);
457533a7 5007 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5008 account_group_user_time(p, cputime);
1da177e4
LT
5009
5010 /* Add user time to cpustat. */
5011 tmp = cputime_to_cputime64(cputime);
5012 if (TASK_NICE(p) > 0)
5013 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5014 else
5015 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5016
5017 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5018 /* Account for user time used */
5019 acct_update_integrals(p);
1da177e4
LT
5020}
5021
94886b84
LV
5022/*
5023 * Account guest cpu time to a process.
5024 * @p: the process that the cpu time gets accounted to
5025 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5026 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5027 */
457533a7
MS
5028static void account_guest_time(struct task_struct *p, cputime_t cputime,
5029 cputime_t cputime_scaled)
94886b84
LV
5030{
5031 cputime64_t tmp;
5032 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5033
5034 tmp = cputime_to_cputime64(cputime);
5035
457533a7 5036 /* Add guest time to process. */
94886b84 5037 p->utime = cputime_add(p->utime, cputime);
457533a7 5038 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5039 account_group_user_time(p, cputime);
94886b84
LV
5040 p->gtime = cputime_add(p->gtime, cputime);
5041
457533a7 5042 /* Add guest time to cpustat. */
94886b84
LV
5043 cpustat->user = cputime64_add(cpustat->user, tmp);
5044 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5045}
5046
1da177e4
LT
5047/*
5048 * Account system cpu time to a process.
5049 * @p: the process that the cpu time gets accounted to
5050 * @hardirq_offset: the offset to subtract from hardirq_count()
5051 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5052 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5053 */
5054void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5055 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5056{
5057 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5058 cputime64_t tmp;
5059
983ed7a6 5060 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5061 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5062 return;
5063 }
94886b84 5064
457533a7 5065 /* Add system time to process. */
1da177e4 5066 p->stime = cputime_add(p->stime, cputime);
457533a7 5067 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5068 account_group_system_time(p, cputime);
1da177e4
LT
5069
5070 /* Add system time to cpustat. */
5071 tmp = cputime_to_cputime64(cputime);
5072 if (hardirq_count() - hardirq_offset)
5073 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5074 else if (softirq_count())
5075 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5076 else
79741dd3
MS
5077 cpustat->system = cputime64_add(cpustat->system, tmp);
5078
ef12fefa
BR
5079 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5080
1da177e4
LT
5081 /* Account for system time used */
5082 acct_update_integrals(p);
1da177e4
LT
5083}
5084
c66f08be 5085/*
1da177e4 5086 * Account for involuntary wait time.
1da177e4 5087 * @steal: the cpu time spent in involuntary wait
c66f08be 5088 */
79741dd3 5089void account_steal_time(cputime_t cputime)
c66f08be 5090{
79741dd3
MS
5091 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5092 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5093
5094 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5095}
5096
1da177e4 5097/*
79741dd3
MS
5098 * Account for idle time.
5099 * @cputime: the cpu time spent in idle wait
1da177e4 5100 */
79741dd3 5101void account_idle_time(cputime_t cputime)
1da177e4
LT
5102{
5103 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5104 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5105 struct rq *rq = this_rq();
1da177e4 5106
79741dd3
MS
5107 if (atomic_read(&rq->nr_iowait) > 0)
5108 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5109 else
5110 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5111}
5112
79741dd3
MS
5113#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5114
5115/*
5116 * Account a single tick of cpu time.
5117 * @p: the process that the cpu time gets accounted to
5118 * @user_tick: indicates if the tick is a user or a system tick
5119 */
5120void account_process_tick(struct task_struct *p, int user_tick)
5121{
5122 cputime_t one_jiffy = jiffies_to_cputime(1);
5123 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5124 struct rq *rq = this_rq();
5125
5126 if (user_tick)
5127 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5128 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5129 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5130 one_jiffy_scaled);
5131 else
5132 account_idle_time(one_jiffy);
5133}
5134
5135/*
5136 * Account multiple ticks of steal time.
5137 * @p: the process from which the cpu time has been stolen
5138 * @ticks: number of stolen ticks
5139 */
5140void account_steal_ticks(unsigned long ticks)
5141{
5142 account_steal_time(jiffies_to_cputime(ticks));
5143}
5144
5145/*
5146 * Account multiple ticks of idle time.
5147 * @ticks: number of stolen ticks
5148 */
5149void account_idle_ticks(unsigned long ticks)
5150{
5151 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5152}
5153
79741dd3
MS
5154#endif
5155
49048622
BS
5156/*
5157 * Use precise platform statistics if available:
5158 */
5159#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5160cputime_t task_utime(struct task_struct *p)
5161{
5162 return p->utime;
5163}
5164
5165cputime_t task_stime(struct task_struct *p)
5166{
5167 return p->stime;
5168}
5169#else
5170cputime_t task_utime(struct task_struct *p)
5171{
5172 clock_t utime = cputime_to_clock_t(p->utime),
5173 total = utime + cputime_to_clock_t(p->stime);
5174 u64 temp;
5175
5176 /*
5177 * Use CFS's precise accounting:
5178 */
5179 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5180
5181 if (total) {
5182 temp *= utime;
5183 do_div(temp, total);
5184 }
5185 utime = (clock_t)temp;
5186
5187 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5188 return p->prev_utime;
5189}
5190
5191cputime_t task_stime(struct task_struct *p)
5192{
5193 clock_t stime;
5194
5195 /*
5196 * Use CFS's precise accounting. (we subtract utime from
5197 * the total, to make sure the total observed by userspace
5198 * grows monotonically - apps rely on that):
5199 */
5200 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5201 cputime_to_clock_t(task_utime(p));
5202
5203 if (stime >= 0)
5204 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5205
5206 return p->prev_stime;
5207}
5208#endif
5209
5210inline cputime_t task_gtime(struct task_struct *p)
5211{
5212 return p->gtime;
5213}
5214
7835b98b
CL
5215/*
5216 * This function gets called by the timer code, with HZ frequency.
5217 * We call it with interrupts disabled.
5218 *
5219 * It also gets called by the fork code, when changing the parent's
5220 * timeslices.
5221 */
5222void scheduler_tick(void)
5223{
7835b98b
CL
5224 int cpu = smp_processor_id();
5225 struct rq *rq = cpu_rq(cpu);
dd41f596 5226 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5227
5228 sched_clock_tick();
dd41f596
IM
5229
5230 spin_lock(&rq->lock);
3e51f33f 5231 update_rq_clock(rq);
f1a438d8 5232 update_cpu_load(rq);
fa85ae24 5233 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5234 spin_unlock(&rq->lock);
7835b98b 5235
e220d2dc
PZ
5236 perf_counter_task_tick(curr, cpu);
5237
e418e1c2 5238#ifdef CONFIG_SMP
dd41f596
IM
5239 rq->idle_at_tick = idle_cpu(cpu);
5240 trigger_load_balance(rq, cpu);
e418e1c2 5241#endif
1da177e4
LT
5242}
5243
132380a0 5244notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5245{
5246 if (in_lock_functions(addr)) {
5247 addr = CALLER_ADDR2;
5248 if (in_lock_functions(addr))
5249 addr = CALLER_ADDR3;
5250 }
5251 return addr;
5252}
1da177e4 5253
7e49fcce
SR
5254#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5255 defined(CONFIG_PREEMPT_TRACER))
5256
43627582 5257void __kprobes add_preempt_count(int val)
1da177e4 5258{
6cd8a4bb 5259#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5260 /*
5261 * Underflow?
5262 */
9a11b49a
IM
5263 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5264 return;
6cd8a4bb 5265#endif
1da177e4 5266 preempt_count() += val;
6cd8a4bb 5267#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5268 /*
5269 * Spinlock count overflowing soon?
5270 */
33859f7f
MOS
5271 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5272 PREEMPT_MASK - 10);
6cd8a4bb
SR
5273#endif
5274 if (preempt_count() == val)
5275 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5276}
5277EXPORT_SYMBOL(add_preempt_count);
5278
43627582 5279void __kprobes sub_preempt_count(int val)
1da177e4 5280{
6cd8a4bb 5281#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5282 /*
5283 * Underflow?
5284 */
01e3eb82 5285 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5286 return;
1da177e4
LT
5287 /*
5288 * Is the spinlock portion underflowing?
5289 */
9a11b49a
IM
5290 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5291 !(preempt_count() & PREEMPT_MASK)))
5292 return;
6cd8a4bb 5293#endif
9a11b49a 5294
6cd8a4bb
SR
5295 if (preempt_count() == val)
5296 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5297 preempt_count() -= val;
5298}
5299EXPORT_SYMBOL(sub_preempt_count);
5300
5301#endif
5302
5303/*
dd41f596 5304 * Print scheduling while atomic bug:
1da177e4 5305 */
dd41f596 5306static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5307{
838225b4
SS
5308 struct pt_regs *regs = get_irq_regs();
5309
5310 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5311 prev->comm, prev->pid, preempt_count());
5312
dd41f596 5313 debug_show_held_locks(prev);
e21f5b15 5314 print_modules();
dd41f596
IM
5315 if (irqs_disabled())
5316 print_irqtrace_events(prev);
838225b4
SS
5317
5318 if (regs)
5319 show_regs(regs);
5320 else
5321 dump_stack();
dd41f596 5322}
1da177e4 5323
dd41f596
IM
5324/*
5325 * Various schedule()-time debugging checks and statistics:
5326 */
5327static inline void schedule_debug(struct task_struct *prev)
5328{
1da177e4 5329 /*
41a2d6cf 5330 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5331 * schedule() atomically, we ignore that path for now.
5332 * Otherwise, whine if we are scheduling when we should not be.
5333 */
3f33a7ce 5334 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5335 __schedule_bug(prev);
5336
1da177e4
LT
5337 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5338
2d72376b 5339 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5340#ifdef CONFIG_SCHEDSTATS
5341 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5342 schedstat_inc(this_rq(), bkl_count);
5343 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5344 }
5345#endif
dd41f596
IM
5346}
5347
df1c99d4
MG
5348static void put_prev_task(struct rq *rq, struct task_struct *prev)
5349{
5350 if (prev->state == TASK_RUNNING) {
5351 u64 runtime = prev->se.sum_exec_runtime;
5352
5353 runtime -= prev->se.prev_sum_exec_runtime;
5354 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5355
5356 /*
5357 * In order to avoid avg_overlap growing stale when we are
5358 * indeed overlapping and hence not getting put to sleep, grow
5359 * the avg_overlap on preemption.
5360 *
5361 * We use the average preemption runtime because that
5362 * correlates to the amount of cache footprint a task can
5363 * build up.
5364 */
5365 update_avg(&prev->se.avg_overlap, runtime);
5366 }
5367 prev->sched_class->put_prev_task(rq, prev);
5368}
5369
dd41f596
IM
5370/*
5371 * Pick up the highest-prio task:
5372 */
5373static inline struct task_struct *
b67802ea 5374pick_next_task(struct rq *rq)
dd41f596 5375{
5522d5d5 5376 const struct sched_class *class;
dd41f596 5377 struct task_struct *p;
1da177e4
LT
5378
5379 /*
dd41f596
IM
5380 * Optimization: we know that if all tasks are in
5381 * the fair class we can call that function directly:
1da177e4 5382 */
dd41f596 5383 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5384 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5385 if (likely(p))
5386 return p;
1da177e4
LT
5387 }
5388
dd41f596
IM
5389 class = sched_class_highest;
5390 for ( ; ; ) {
fb8d4724 5391 p = class->pick_next_task(rq);
dd41f596
IM
5392 if (p)
5393 return p;
5394 /*
5395 * Will never be NULL as the idle class always
5396 * returns a non-NULL p:
5397 */
5398 class = class->next;
5399 }
5400}
1da177e4 5401
dd41f596
IM
5402/*
5403 * schedule() is the main scheduler function.
5404 */
ff743345 5405asmlinkage void __sched schedule(void)
dd41f596
IM
5406{
5407 struct task_struct *prev, *next;
67ca7bde 5408 unsigned long *switch_count;
dd41f596 5409 struct rq *rq;
31656519 5410 int cpu;
dd41f596 5411
ff743345
PZ
5412need_resched:
5413 preempt_disable();
dd41f596
IM
5414 cpu = smp_processor_id();
5415 rq = cpu_rq(cpu);
5416 rcu_qsctr_inc(cpu);
5417 prev = rq->curr;
5418 switch_count = &prev->nivcsw;
5419
5420 release_kernel_lock(prev);
5421need_resched_nonpreemptible:
5422
5423 schedule_debug(prev);
1da177e4 5424
31656519 5425 if (sched_feat(HRTICK))
f333fdc9 5426 hrtick_clear(rq);
8f4d37ec 5427
8cd162ce 5428 spin_lock_irq(&rq->lock);
3e51f33f 5429 update_rq_clock(rq);
1e819950 5430 clear_tsk_need_resched(prev);
1da177e4 5431
1da177e4 5432 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5433 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5434 prev->state = TASK_RUNNING;
16882c1e 5435 else
2e1cb74a 5436 deactivate_task(rq, prev, 1);
dd41f596 5437 switch_count = &prev->nvcsw;
1da177e4
LT
5438 }
5439
3f029d3c 5440 pre_schedule(rq, prev);
f65eda4f 5441
dd41f596 5442 if (unlikely(!rq->nr_running))
1da177e4 5443 idle_balance(cpu, rq);
1da177e4 5444
df1c99d4 5445 put_prev_task(rq, prev);
b67802ea 5446 next = pick_next_task(rq);
1da177e4 5447
1da177e4 5448 if (likely(prev != next)) {
673a90a1 5449 sched_info_switch(prev, next);
564c2b21 5450 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5451
1da177e4
LT
5452 rq->nr_switches++;
5453 rq->curr = next;
5454 ++*switch_count;
5455
3f029d3c 5456 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5457 /*
5458 * the context switch might have flipped the stack from under
5459 * us, hence refresh the local variables.
5460 */
5461 cpu = smp_processor_id();
5462 rq = cpu_rq(cpu);
3f029d3c 5463 } else
1da177e4 5464 spin_unlock_irq(&rq->lock);
da19ab51 5465
3f029d3c 5466 post_schedule(rq);
1da177e4 5467
8f4d37ec 5468 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5469 goto need_resched_nonpreemptible;
8f4d37ec 5470
1da177e4 5471 preempt_enable_no_resched();
ff743345 5472 if (need_resched())
1da177e4
LT
5473 goto need_resched;
5474}
1da177e4
LT
5475EXPORT_SYMBOL(schedule);
5476
0d66bf6d
PZ
5477#ifdef CONFIG_SMP
5478/*
5479 * Look out! "owner" is an entirely speculative pointer
5480 * access and not reliable.
5481 */
5482int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5483{
5484 unsigned int cpu;
5485 struct rq *rq;
5486
5487 if (!sched_feat(OWNER_SPIN))
5488 return 0;
5489
5490#ifdef CONFIG_DEBUG_PAGEALLOC
5491 /*
5492 * Need to access the cpu field knowing that
5493 * DEBUG_PAGEALLOC could have unmapped it if
5494 * the mutex owner just released it and exited.
5495 */
5496 if (probe_kernel_address(&owner->cpu, cpu))
5497 goto out;
5498#else
5499 cpu = owner->cpu;
5500#endif
5501
5502 /*
5503 * Even if the access succeeded (likely case),
5504 * the cpu field may no longer be valid.
5505 */
5506 if (cpu >= nr_cpumask_bits)
5507 goto out;
5508
5509 /*
5510 * We need to validate that we can do a
5511 * get_cpu() and that we have the percpu area.
5512 */
5513 if (!cpu_online(cpu))
5514 goto out;
5515
5516 rq = cpu_rq(cpu);
5517
5518 for (;;) {
5519 /*
5520 * Owner changed, break to re-assess state.
5521 */
5522 if (lock->owner != owner)
5523 break;
5524
5525 /*
5526 * Is that owner really running on that cpu?
5527 */
5528 if (task_thread_info(rq->curr) != owner || need_resched())
5529 return 0;
5530
5531 cpu_relax();
5532 }
5533out:
5534 return 1;
5535}
5536#endif
5537
1da177e4
LT
5538#ifdef CONFIG_PREEMPT
5539/*
2ed6e34f 5540 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5541 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5542 * occur there and call schedule directly.
5543 */
5544asmlinkage void __sched preempt_schedule(void)
5545{
5546 struct thread_info *ti = current_thread_info();
6478d880 5547
1da177e4
LT
5548 /*
5549 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5550 * we do not want to preempt the current task. Just return..
1da177e4 5551 */
beed33a8 5552 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5553 return;
5554
3a5c359a
AK
5555 do {
5556 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5557 schedule();
3a5c359a 5558 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5559
3a5c359a
AK
5560 /*
5561 * Check again in case we missed a preemption opportunity
5562 * between schedule and now.
5563 */
5564 barrier();
5ed0cec0 5565 } while (need_resched());
1da177e4 5566}
1da177e4
LT
5567EXPORT_SYMBOL(preempt_schedule);
5568
5569/*
2ed6e34f 5570 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5571 * off of irq context.
5572 * Note, that this is called and return with irqs disabled. This will
5573 * protect us against recursive calling from irq.
5574 */
5575asmlinkage void __sched preempt_schedule_irq(void)
5576{
5577 struct thread_info *ti = current_thread_info();
6478d880 5578
2ed6e34f 5579 /* Catch callers which need to be fixed */
1da177e4
LT
5580 BUG_ON(ti->preempt_count || !irqs_disabled());
5581
3a5c359a
AK
5582 do {
5583 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5584 local_irq_enable();
5585 schedule();
5586 local_irq_disable();
3a5c359a 5587 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5588
3a5c359a
AK
5589 /*
5590 * Check again in case we missed a preemption opportunity
5591 * between schedule and now.
5592 */
5593 barrier();
5ed0cec0 5594 } while (need_resched());
1da177e4
LT
5595}
5596
5597#endif /* CONFIG_PREEMPT */
5598
95cdf3b7
IM
5599int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5600 void *key)
1da177e4 5601{
48f24c4d 5602 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5603}
1da177e4
LT
5604EXPORT_SYMBOL(default_wake_function);
5605
5606/*
41a2d6cf
IM
5607 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5608 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5609 * number) then we wake all the non-exclusive tasks and one exclusive task.
5610 *
5611 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5612 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5613 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5614 */
78ddb08f 5615static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5616 int nr_exclusive, int sync, void *key)
1da177e4 5617{
2e45874c 5618 wait_queue_t *curr, *next;
1da177e4 5619
2e45874c 5620 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5621 unsigned flags = curr->flags;
5622
1da177e4 5623 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5624 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5625 break;
5626 }
5627}
5628
5629/**
5630 * __wake_up - wake up threads blocked on a waitqueue.
5631 * @q: the waitqueue
5632 * @mode: which threads
5633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5634 * @key: is directly passed to the wakeup function
50fa610a
DH
5635 *
5636 * It may be assumed that this function implies a write memory barrier before
5637 * changing the task state if and only if any tasks are woken up.
1da177e4 5638 */
7ad5b3a5 5639void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5640 int nr_exclusive, void *key)
1da177e4
LT
5641{
5642 unsigned long flags;
5643
5644 spin_lock_irqsave(&q->lock, flags);
5645 __wake_up_common(q, mode, nr_exclusive, 0, key);
5646 spin_unlock_irqrestore(&q->lock, flags);
5647}
1da177e4
LT
5648EXPORT_SYMBOL(__wake_up);
5649
5650/*
5651 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5652 */
7ad5b3a5 5653void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5654{
5655 __wake_up_common(q, mode, 1, 0, NULL);
5656}
5657
4ede816a
DL
5658void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5659{
5660 __wake_up_common(q, mode, 1, 0, key);
5661}
5662
1da177e4 5663/**
4ede816a 5664 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5665 * @q: the waitqueue
5666 * @mode: which threads
5667 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5668 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5669 *
5670 * The sync wakeup differs that the waker knows that it will schedule
5671 * away soon, so while the target thread will be woken up, it will not
5672 * be migrated to another CPU - ie. the two threads are 'synchronized'
5673 * with each other. This can prevent needless bouncing between CPUs.
5674 *
5675 * On UP it can prevent extra preemption.
50fa610a
DH
5676 *
5677 * It may be assumed that this function implies a write memory barrier before
5678 * changing the task state if and only if any tasks are woken up.
1da177e4 5679 */
4ede816a
DL
5680void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5681 int nr_exclusive, void *key)
1da177e4
LT
5682{
5683 unsigned long flags;
5684 int sync = 1;
5685
5686 if (unlikely(!q))
5687 return;
5688
5689 if (unlikely(!nr_exclusive))
5690 sync = 0;
5691
5692 spin_lock_irqsave(&q->lock, flags);
4ede816a 5693 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5694 spin_unlock_irqrestore(&q->lock, flags);
5695}
4ede816a
DL
5696EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5697
5698/*
5699 * __wake_up_sync - see __wake_up_sync_key()
5700 */
5701void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5702{
5703 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5704}
1da177e4
LT
5705EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5706
65eb3dc6
KD
5707/**
5708 * complete: - signals a single thread waiting on this completion
5709 * @x: holds the state of this particular completion
5710 *
5711 * This will wake up a single thread waiting on this completion. Threads will be
5712 * awakened in the same order in which they were queued.
5713 *
5714 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5715 *
5716 * It may be assumed that this function implies a write memory barrier before
5717 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5718 */
b15136e9 5719void complete(struct completion *x)
1da177e4
LT
5720{
5721 unsigned long flags;
5722
5723 spin_lock_irqsave(&x->wait.lock, flags);
5724 x->done++;
d9514f6c 5725 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5726 spin_unlock_irqrestore(&x->wait.lock, flags);
5727}
5728EXPORT_SYMBOL(complete);
5729
65eb3dc6
KD
5730/**
5731 * complete_all: - signals all threads waiting on this completion
5732 * @x: holds the state of this particular completion
5733 *
5734 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5735 *
5736 * It may be assumed that this function implies a write memory barrier before
5737 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5738 */
b15136e9 5739void complete_all(struct completion *x)
1da177e4
LT
5740{
5741 unsigned long flags;
5742
5743 spin_lock_irqsave(&x->wait.lock, flags);
5744 x->done += UINT_MAX/2;
d9514f6c 5745 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5746 spin_unlock_irqrestore(&x->wait.lock, flags);
5747}
5748EXPORT_SYMBOL(complete_all);
5749
8cbbe86d
AK
5750static inline long __sched
5751do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5752{
1da177e4
LT
5753 if (!x->done) {
5754 DECLARE_WAITQUEUE(wait, current);
5755
5756 wait.flags |= WQ_FLAG_EXCLUSIVE;
5757 __add_wait_queue_tail(&x->wait, &wait);
5758 do {
94d3d824 5759 if (signal_pending_state(state, current)) {
ea71a546
ON
5760 timeout = -ERESTARTSYS;
5761 break;
8cbbe86d
AK
5762 }
5763 __set_current_state(state);
1da177e4
LT
5764 spin_unlock_irq(&x->wait.lock);
5765 timeout = schedule_timeout(timeout);
5766 spin_lock_irq(&x->wait.lock);
ea71a546 5767 } while (!x->done && timeout);
1da177e4 5768 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5769 if (!x->done)
5770 return timeout;
1da177e4
LT
5771 }
5772 x->done--;
ea71a546 5773 return timeout ?: 1;
1da177e4 5774}
1da177e4 5775
8cbbe86d
AK
5776static long __sched
5777wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5778{
1da177e4
LT
5779 might_sleep();
5780
5781 spin_lock_irq(&x->wait.lock);
8cbbe86d 5782 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5783 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5784 return timeout;
5785}
1da177e4 5786
65eb3dc6
KD
5787/**
5788 * wait_for_completion: - waits for completion of a task
5789 * @x: holds the state of this particular completion
5790 *
5791 * This waits to be signaled for completion of a specific task. It is NOT
5792 * interruptible and there is no timeout.
5793 *
5794 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5795 * and interrupt capability. Also see complete().
5796 */
b15136e9 5797void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5798{
5799 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5800}
8cbbe86d 5801EXPORT_SYMBOL(wait_for_completion);
1da177e4 5802
65eb3dc6
KD
5803/**
5804 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5805 * @x: holds the state of this particular completion
5806 * @timeout: timeout value in jiffies
5807 *
5808 * This waits for either a completion of a specific task to be signaled or for a
5809 * specified timeout to expire. The timeout is in jiffies. It is not
5810 * interruptible.
5811 */
b15136e9 5812unsigned long __sched
8cbbe86d 5813wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5814{
8cbbe86d 5815 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5816}
8cbbe86d 5817EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5818
65eb3dc6
KD
5819/**
5820 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5821 * @x: holds the state of this particular completion
5822 *
5823 * This waits for completion of a specific task to be signaled. It is
5824 * interruptible.
5825 */
8cbbe86d 5826int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5827{
51e97990
AK
5828 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5829 if (t == -ERESTARTSYS)
5830 return t;
5831 return 0;
0fec171c 5832}
8cbbe86d 5833EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5834
65eb3dc6
KD
5835/**
5836 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5837 * @x: holds the state of this particular completion
5838 * @timeout: timeout value in jiffies
5839 *
5840 * This waits for either a completion of a specific task to be signaled or for a
5841 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5842 */
b15136e9 5843unsigned long __sched
8cbbe86d
AK
5844wait_for_completion_interruptible_timeout(struct completion *x,
5845 unsigned long timeout)
0fec171c 5846{
8cbbe86d 5847 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5848}
8cbbe86d 5849EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5850
65eb3dc6
KD
5851/**
5852 * wait_for_completion_killable: - waits for completion of a task (killable)
5853 * @x: holds the state of this particular completion
5854 *
5855 * This waits to be signaled for completion of a specific task. It can be
5856 * interrupted by a kill signal.
5857 */
009e577e
MW
5858int __sched wait_for_completion_killable(struct completion *x)
5859{
5860 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5861 if (t == -ERESTARTSYS)
5862 return t;
5863 return 0;
5864}
5865EXPORT_SYMBOL(wait_for_completion_killable);
5866
be4de352
DC
5867/**
5868 * try_wait_for_completion - try to decrement a completion without blocking
5869 * @x: completion structure
5870 *
5871 * Returns: 0 if a decrement cannot be done without blocking
5872 * 1 if a decrement succeeded.
5873 *
5874 * If a completion is being used as a counting completion,
5875 * attempt to decrement the counter without blocking. This
5876 * enables us to avoid waiting if the resource the completion
5877 * is protecting is not available.
5878 */
5879bool try_wait_for_completion(struct completion *x)
5880{
5881 int ret = 1;
5882
5883 spin_lock_irq(&x->wait.lock);
5884 if (!x->done)
5885 ret = 0;
5886 else
5887 x->done--;
5888 spin_unlock_irq(&x->wait.lock);
5889 return ret;
5890}
5891EXPORT_SYMBOL(try_wait_for_completion);
5892
5893/**
5894 * completion_done - Test to see if a completion has any waiters
5895 * @x: completion structure
5896 *
5897 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5898 * 1 if there are no waiters.
5899 *
5900 */
5901bool completion_done(struct completion *x)
5902{
5903 int ret = 1;
5904
5905 spin_lock_irq(&x->wait.lock);
5906 if (!x->done)
5907 ret = 0;
5908 spin_unlock_irq(&x->wait.lock);
5909 return ret;
5910}
5911EXPORT_SYMBOL(completion_done);
5912
8cbbe86d
AK
5913static long __sched
5914sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5915{
0fec171c
IM
5916 unsigned long flags;
5917 wait_queue_t wait;
5918
5919 init_waitqueue_entry(&wait, current);
1da177e4 5920
8cbbe86d 5921 __set_current_state(state);
1da177e4 5922
8cbbe86d
AK
5923 spin_lock_irqsave(&q->lock, flags);
5924 __add_wait_queue(q, &wait);
5925 spin_unlock(&q->lock);
5926 timeout = schedule_timeout(timeout);
5927 spin_lock_irq(&q->lock);
5928 __remove_wait_queue(q, &wait);
5929 spin_unlock_irqrestore(&q->lock, flags);
5930
5931 return timeout;
5932}
5933
5934void __sched interruptible_sleep_on(wait_queue_head_t *q)
5935{
5936 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5937}
1da177e4
LT
5938EXPORT_SYMBOL(interruptible_sleep_on);
5939
0fec171c 5940long __sched
95cdf3b7 5941interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5942{
8cbbe86d 5943 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5944}
1da177e4
LT
5945EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5946
0fec171c 5947void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5948{
8cbbe86d 5949 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5950}
1da177e4
LT
5951EXPORT_SYMBOL(sleep_on);
5952
0fec171c 5953long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5954{
8cbbe86d 5955 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5956}
1da177e4
LT
5957EXPORT_SYMBOL(sleep_on_timeout);
5958
b29739f9
IM
5959#ifdef CONFIG_RT_MUTEXES
5960
5961/*
5962 * rt_mutex_setprio - set the current priority of a task
5963 * @p: task
5964 * @prio: prio value (kernel-internal form)
5965 *
5966 * This function changes the 'effective' priority of a task. It does
5967 * not touch ->normal_prio like __setscheduler().
5968 *
5969 * Used by the rt_mutex code to implement priority inheritance logic.
5970 */
36c8b586 5971void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5972{
5973 unsigned long flags;
83b699ed 5974 int oldprio, on_rq, running;
70b97a7f 5975 struct rq *rq;
cb469845 5976 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5977
5978 BUG_ON(prio < 0 || prio > MAX_PRIO);
5979
5980 rq = task_rq_lock(p, &flags);
a8e504d2 5981 update_rq_clock(rq);
b29739f9 5982
d5f9f942 5983 oldprio = p->prio;
dd41f596 5984 on_rq = p->se.on_rq;
051a1d1a 5985 running = task_current(rq, p);
0e1f3483 5986 if (on_rq)
69be72c1 5987 dequeue_task(rq, p, 0);
0e1f3483
HS
5988 if (running)
5989 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5990
5991 if (rt_prio(prio))
5992 p->sched_class = &rt_sched_class;
5993 else
5994 p->sched_class = &fair_sched_class;
5995
b29739f9
IM
5996 p->prio = prio;
5997
0e1f3483
HS
5998 if (running)
5999 p->sched_class->set_curr_task(rq);
dd41f596 6000 if (on_rq) {
8159f87e 6001 enqueue_task(rq, p, 0);
cb469845
SR
6002
6003 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6004 }
6005 task_rq_unlock(rq, &flags);
6006}
6007
6008#endif
6009
36c8b586 6010void set_user_nice(struct task_struct *p, long nice)
1da177e4 6011{
dd41f596 6012 int old_prio, delta, on_rq;
1da177e4 6013 unsigned long flags;
70b97a7f 6014 struct rq *rq;
1da177e4
LT
6015
6016 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6017 return;
6018 /*
6019 * We have to be careful, if called from sys_setpriority(),
6020 * the task might be in the middle of scheduling on another CPU.
6021 */
6022 rq = task_rq_lock(p, &flags);
a8e504d2 6023 update_rq_clock(rq);
1da177e4
LT
6024 /*
6025 * The RT priorities are set via sched_setscheduler(), but we still
6026 * allow the 'normal' nice value to be set - but as expected
6027 * it wont have any effect on scheduling until the task is
dd41f596 6028 * SCHED_FIFO/SCHED_RR:
1da177e4 6029 */
e05606d3 6030 if (task_has_rt_policy(p)) {
1da177e4
LT
6031 p->static_prio = NICE_TO_PRIO(nice);
6032 goto out_unlock;
6033 }
dd41f596 6034 on_rq = p->se.on_rq;
c09595f6 6035 if (on_rq)
69be72c1 6036 dequeue_task(rq, p, 0);
1da177e4 6037
1da177e4 6038 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6039 set_load_weight(p);
b29739f9
IM
6040 old_prio = p->prio;
6041 p->prio = effective_prio(p);
6042 delta = p->prio - old_prio;
1da177e4 6043
dd41f596 6044 if (on_rq) {
8159f87e 6045 enqueue_task(rq, p, 0);
1da177e4 6046 /*
d5f9f942
AM
6047 * If the task increased its priority or is running and
6048 * lowered its priority, then reschedule its CPU:
1da177e4 6049 */
d5f9f942 6050 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6051 resched_task(rq->curr);
6052 }
6053out_unlock:
6054 task_rq_unlock(rq, &flags);
6055}
1da177e4
LT
6056EXPORT_SYMBOL(set_user_nice);
6057
e43379f1
MM
6058/*
6059 * can_nice - check if a task can reduce its nice value
6060 * @p: task
6061 * @nice: nice value
6062 */
36c8b586 6063int can_nice(const struct task_struct *p, const int nice)
e43379f1 6064{
024f4747
MM
6065 /* convert nice value [19,-20] to rlimit style value [1,40] */
6066 int nice_rlim = 20 - nice;
48f24c4d 6067
e43379f1
MM
6068 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6069 capable(CAP_SYS_NICE));
6070}
6071
1da177e4
LT
6072#ifdef __ARCH_WANT_SYS_NICE
6073
6074/*
6075 * sys_nice - change the priority of the current process.
6076 * @increment: priority increment
6077 *
6078 * sys_setpriority is a more generic, but much slower function that
6079 * does similar things.
6080 */
5add95d4 6081SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6082{
48f24c4d 6083 long nice, retval;
1da177e4
LT
6084
6085 /*
6086 * Setpriority might change our priority at the same moment.
6087 * We don't have to worry. Conceptually one call occurs first
6088 * and we have a single winner.
6089 */
e43379f1
MM
6090 if (increment < -40)
6091 increment = -40;
1da177e4
LT
6092 if (increment > 40)
6093 increment = 40;
6094
2b8f836f 6095 nice = TASK_NICE(current) + increment;
1da177e4
LT
6096 if (nice < -20)
6097 nice = -20;
6098 if (nice > 19)
6099 nice = 19;
6100
e43379f1
MM
6101 if (increment < 0 && !can_nice(current, nice))
6102 return -EPERM;
6103
1da177e4
LT
6104 retval = security_task_setnice(current, nice);
6105 if (retval)
6106 return retval;
6107
6108 set_user_nice(current, nice);
6109 return 0;
6110}
6111
6112#endif
6113
6114/**
6115 * task_prio - return the priority value of a given task.
6116 * @p: the task in question.
6117 *
6118 * This is the priority value as seen by users in /proc.
6119 * RT tasks are offset by -200. Normal tasks are centered
6120 * around 0, value goes from -16 to +15.
6121 */
36c8b586 6122int task_prio(const struct task_struct *p)
1da177e4
LT
6123{
6124 return p->prio - MAX_RT_PRIO;
6125}
6126
6127/**
6128 * task_nice - return the nice value of a given task.
6129 * @p: the task in question.
6130 */
36c8b586 6131int task_nice(const struct task_struct *p)
1da177e4
LT
6132{
6133 return TASK_NICE(p);
6134}
150d8bed 6135EXPORT_SYMBOL(task_nice);
1da177e4
LT
6136
6137/**
6138 * idle_cpu - is a given cpu idle currently?
6139 * @cpu: the processor in question.
6140 */
6141int idle_cpu(int cpu)
6142{
6143 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6144}
6145
1da177e4
LT
6146/**
6147 * idle_task - return the idle task for a given cpu.
6148 * @cpu: the processor in question.
6149 */
36c8b586 6150struct task_struct *idle_task(int cpu)
1da177e4
LT
6151{
6152 return cpu_rq(cpu)->idle;
6153}
6154
6155/**
6156 * find_process_by_pid - find a process with a matching PID value.
6157 * @pid: the pid in question.
6158 */
a9957449 6159static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6160{
228ebcbe 6161 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6162}
6163
6164/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6165static void
6166__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6167{
dd41f596 6168 BUG_ON(p->se.on_rq);
48f24c4d 6169
1da177e4 6170 p->policy = policy;
dd41f596
IM
6171 switch (p->policy) {
6172 case SCHED_NORMAL:
6173 case SCHED_BATCH:
6174 case SCHED_IDLE:
6175 p->sched_class = &fair_sched_class;
6176 break;
6177 case SCHED_FIFO:
6178 case SCHED_RR:
6179 p->sched_class = &rt_sched_class;
6180 break;
6181 }
6182
1da177e4 6183 p->rt_priority = prio;
b29739f9
IM
6184 p->normal_prio = normal_prio(p);
6185 /* we are holding p->pi_lock already */
6186 p->prio = rt_mutex_getprio(p);
2dd73a4f 6187 set_load_weight(p);
1da177e4
LT
6188}
6189
c69e8d9c
DH
6190/*
6191 * check the target process has a UID that matches the current process's
6192 */
6193static bool check_same_owner(struct task_struct *p)
6194{
6195 const struct cred *cred = current_cred(), *pcred;
6196 bool match;
6197
6198 rcu_read_lock();
6199 pcred = __task_cred(p);
6200 match = (cred->euid == pcred->euid ||
6201 cred->euid == pcred->uid);
6202 rcu_read_unlock();
6203 return match;
6204}
6205
961ccddd
RR
6206static int __sched_setscheduler(struct task_struct *p, int policy,
6207 struct sched_param *param, bool user)
1da177e4 6208{
83b699ed 6209 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6210 unsigned long flags;
cb469845 6211 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6212 struct rq *rq;
ca94c442 6213 int reset_on_fork;
1da177e4 6214
66e5393a
SR
6215 /* may grab non-irq protected spin_locks */
6216 BUG_ON(in_interrupt());
1da177e4
LT
6217recheck:
6218 /* double check policy once rq lock held */
ca94c442
LP
6219 if (policy < 0) {
6220 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6221 policy = oldpolicy = p->policy;
ca94c442
LP
6222 } else {
6223 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6224 policy &= ~SCHED_RESET_ON_FORK;
6225
6226 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6227 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6228 policy != SCHED_IDLE)
6229 return -EINVAL;
6230 }
6231
1da177e4
LT
6232 /*
6233 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6234 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6235 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6236 */
6237 if (param->sched_priority < 0 ||
95cdf3b7 6238 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6239 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6240 return -EINVAL;
e05606d3 6241 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6242 return -EINVAL;
6243
37e4ab3f
OC
6244 /*
6245 * Allow unprivileged RT tasks to decrease priority:
6246 */
961ccddd 6247 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6248 if (rt_policy(policy)) {
8dc3e909 6249 unsigned long rlim_rtprio;
8dc3e909
ON
6250
6251 if (!lock_task_sighand(p, &flags))
6252 return -ESRCH;
6253 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6254 unlock_task_sighand(p, &flags);
6255
6256 /* can't set/change the rt policy */
6257 if (policy != p->policy && !rlim_rtprio)
6258 return -EPERM;
6259
6260 /* can't increase priority */
6261 if (param->sched_priority > p->rt_priority &&
6262 param->sched_priority > rlim_rtprio)
6263 return -EPERM;
6264 }
dd41f596
IM
6265 /*
6266 * Like positive nice levels, dont allow tasks to
6267 * move out of SCHED_IDLE either:
6268 */
6269 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6270 return -EPERM;
5fe1d75f 6271
37e4ab3f 6272 /* can't change other user's priorities */
c69e8d9c 6273 if (!check_same_owner(p))
37e4ab3f 6274 return -EPERM;
ca94c442
LP
6275
6276 /* Normal users shall not reset the sched_reset_on_fork flag */
6277 if (p->sched_reset_on_fork && !reset_on_fork)
6278 return -EPERM;
37e4ab3f 6279 }
1da177e4 6280
725aad24 6281 if (user) {
b68aa230 6282#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6283 /*
6284 * Do not allow realtime tasks into groups that have no runtime
6285 * assigned.
6286 */
9a7e0b18
PZ
6287 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6288 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6289 return -EPERM;
b68aa230
PZ
6290#endif
6291
725aad24
JF
6292 retval = security_task_setscheduler(p, policy, param);
6293 if (retval)
6294 return retval;
6295 }
6296
b29739f9
IM
6297 /*
6298 * make sure no PI-waiters arrive (or leave) while we are
6299 * changing the priority of the task:
6300 */
6301 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6302 /*
6303 * To be able to change p->policy safely, the apropriate
6304 * runqueue lock must be held.
6305 */
b29739f9 6306 rq = __task_rq_lock(p);
1da177e4
LT
6307 /* recheck policy now with rq lock held */
6308 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6309 policy = oldpolicy = -1;
b29739f9
IM
6310 __task_rq_unlock(rq);
6311 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6312 goto recheck;
6313 }
2daa3577 6314 update_rq_clock(rq);
dd41f596 6315 on_rq = p->se.on_rq;
051a1d1a 6316 running = task_current(rq, p);
0e1f3483 6317 if (on_rq)
2e1cb74a 6318 deactivate_task(rq, p, 0);
0e1f3483
HS
6319 if (running)
6320 p->sched_class->put_prev_task(rq, p);
f6b53205 6321
ca94c442
LP
6322 p->sched_reset_on_fork = reset_on_fork;
6323
1da177e4 6324 oldprio = p->prio;
dd41f596 6325 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6326
0e1f3483
HS
6327 if (running)
6328 p->sched_class->set_curr_task(rq);
dd41f596
IM
6329 if (on_rq) {
6330 activate_task(rq, p, 0);
cb469845
SR
6331
6332 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6333 }
b29739f9
IM
6334 __task_rq_unlock(rq);
6335 spin_unlock_irqrestore(&p->pi_lock, flags);
6336
95e02ca9
TG
6337 rt_mutex_adjust_pi(p);
6338
1da177e4
LT
6339 return 0;
6340}
961ccddd
RR
6341
6342/**
6343 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6344 * @p: the task in question.
6345 * @policy: new policy.
6346 * @param: structure containing the new RT priority.
6347 *
6348 * NOTE that the task may be already dead.
6349 */
6350int sched_setscheduler(struct task_struct *p, int policy,
6351 struct sched_param *param)
6352{
6353 return __sched_setscheduler(p, policy, param, true);
6354}
1da177e4
LT
6355EXPORT_SYMBOL_GPL(sched_setscheduler);
6356
961ccddd
RR
6357/**
6358 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6359 * @p: the task in question.
6360 * @policy: new policy.
6361 * @param: structure containing the new RT priority.
6362 *
6363 * Just like sched_setscheduler, only don't bother checking if the
6364 * current context has permission. For example, this is needed in
6365 * stop_machine(): we create temporary high priority worker threads,
6366 * but our caller might not have that capability.
6367 */
6368int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6369 struct sched_param *param)
6370{
6371 return __sched_setscheduler(p, policy, param, false);
6372}
6373
95cdf3b7
IM
6374static int
6375do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6376{
1da177e4
LT
6377 struct sched_param lparam;
6378 struct task_struct *p;
36c8b586 6379 int retval;
1da177e4
LT
6380
6381 if (!param || pid < 0)
6382 return -EINVAL;
6383 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6384 return -EFAULT;
5fe1d75f
ON
6385
6386 rcu_read_lock();
6387 retval = -ESRCH;
1da177e4 6388 p = find_process_by_pid(pid);
5fe1d75f
ON
6389 if (p != NULL)
6390 retval = sched_setscheduler(p, policy, &lparam);
6391 rcu_read_unlock();
36c8b586 6392
1da177e4
LT
6393 return retval;
6394}
6395
6396/**
6397 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6398 * @pid: the pid in question.
6399 * @policy: new policy.
6400 * @param: structure containing the new RT priority.
6401 */
5add95d4
HC
6402SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6403 struct sched_param __user *, param)
1da177e4 6404{
c21761f1
JB
6405 /* negative values for policy are not valid */
6406 if (policy < 0)
6407 return -EINVAL;
6408
1da177e4
LT
6409 return do_sched_setscheduler(pid, policy, param);
6410}
6411
6412/**
6413 * sys_sched_setparam - set/change the RT priority of a thread
6414 * @pid: the pid in question.
6415 * @param: structure containing the new RT priority.
6416 */
5add95d4 6417SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6418{
6419 return do_sched_setscheduler(pid, -1, param);
6420}
6421
6422/**
6423 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6424 * @pid: the pid in question.
6425 */
5add95d4 6426SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6427{
36c8b586 6428 struct task_struct *p;
3a5c359a 6429 int retval;
1da177e4
LT
6430
6431 if (pid < 0)
3a5c359a 6432 return -EINVAL;
1da177e4
LT
6433
6434 retval = -ESRCH;
6435 read_lock(&tasklist_lock);
6436 p = find_process_by_pid(pid);
6437 if (p) {
6438 retval = security_task_getscheduler(p);
6439 if (!retval)
ca94c442
LP
6440 retval = p->policy
6441 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6442 }
6443 read_unlock(&tasklist_lock);
1da177e4
LT
6444 return retval;
6445}
6446
6447/**
ca94c442 6448 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6449 * @pid: the pid in question.
6450 * @param: structure containing the RT priority.
6451 */
5add95d4 6452SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6453{
6454 struct sched_param lp;
36c8b586 6455 struct task_struct *p;
3a5c359a 6456 int retval;
1da177e4
LT
6457
6458 if (!param || pid < 0)
3a5c359a 6459 return -EINVAL;
1da177e4
LT
6460
6461 read_lock(&tasklist_lock);
6462 p = find_process_by_pid(pid);
6463 retval = -ESRCH;
6464 if (!p)
6465 goto out_unlock;
6466
6467 retval = security_task_getscheduler(p);
6468 if (retval)
6469 goto out_unlock;
6470
6471 lp.sched_priority = p->rt_priority;
6472 read_unlock(&tasklist_lock);
6473
6474 /*
6475 * This one might sleep, we cannot do it with a spinlock held ...
6476 */
6477 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6478
1da177e4
LT
6479 return retval;
6480
6481out_unlock:
6482 read_unlock(&tasklist_lock);
6483 return retval;
6484}
6485
96f874e2 6486long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6487{
5a16f3d3 6488 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6489 struct task_struct *p;
6490 int retval;
1da177e4 6491
95402b38 6492 get_online_cpus();
1da177e4
LT
6493 read_lock(&tasklist_lock);
6494
6495 p = find_process_by_pid(pid);
6496 if (!p) {
6497 read_unlock(&tasklist_lock);
95402b38 6498 put_online_cpus();
1da177e4
LT
6499 return -ESRCH;
6500 }
6501
6502 /*
6503 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6504 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6505 * usage count and then drop tasklist_lock.
6506 */
6507 get_task_struct(p);
6508 read_unlock(&tasklist_lock);
6509
5a16f3d3
RR
6510 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6511 retval = -ENOMEM;
6512 goto out_put_task;
6513 }
6514 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6515 retval = -ENOMEM;
6516 goto out_free_cpus_allowed;
6517 }
1da177e4 6518 retval = -EPERM;
c69e8d9c 6519 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6520 goto out_unlock;
6521
e7834f8f
DQ
6522 retval = security_task_setscheduler(p, 0, NULL);
6523 if (retval)
6524 goto out_unlock;
6525
5a16f3d3
RR
6526 cpuset_cpus_allowed(p, cpus_allowed);
6527 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6528 again:
5a16f3d3 6529 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6530
8707d8b8 6531 if (!retval) {
5a16f3d3
RR
6532 cpuset_cpus_allowed(p, cpus_allowed);
6533 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6534 /*
6535 * We must have raced with a concurrent cpuset
6536 * update. Just reset the cpus_allowed to the
6537 * cpuset's cpus_allowed
6538 */
5a16f3d3 6539 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6540 goto again;
6541 }
6542 }
1da177e4 6543out_unlock:
5a16f3d3
RR
6544 free_cpumask_var(new_mask);
6545out_free_cpus_allowed:
6546 free_cpumask_var(cpus_allowed);
6547out_put_task:
1da177e4 6548 put_task_struct(p);
95402b38 6549 put_online_cpus();
1da177e4
LT
6550 return retval;
6551}
6552
6553static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6554 struct cpumask *new_mask)
1da177e4 6555{
96f874e2
RR
6556 if (len < cpumask_size())
6557 cpumask_clear(new_mask);
6558 else if (len > cpumask_size())
6559 len = cpumask_size();
6560
1da177e4
LT
6561 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6562}
6563
6564/**
6565 * sys_sched_setaffinity - set the cpu affinity of a process
6566 * @pid: pid of the process
6567 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6568 * @user_mask_ptr: user-space pointer to the new cpu mask
6569 */
5add95d4
HC
6570SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6571 unsigned long __user *, user_mask_ptr)
1da177e4 6572{
5a16f3d3 6573 cpumask_var_t new_mask;
1da177e4
LT
6574 int retval;
6575
5a16f3d3
RR
6576 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6577 return -ENOMEM;
1da177e4 6578
5a16f3d3
RR
6579 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6580 if (retval == 0)
6581 retval = sched_setaffinity(pid, new_mask);
6582 free_cpumask_var(new_mask);
6583 return retval;
1da177e4
LT
6584}
6585
96f874e2 6586long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6587{
36c8b586 6588 struct task_struct *p;
1da177e4 6589 int retval;
1da177e4 6590
95402b38 6591 get_online_cpus();
1da177e4
LT
6592 read_lock(&tasklist_lock);
6593
6594 retval = -ESRCH;
6595 p = find_process_by_pid(pid);
6596 if (!p)
6597 goto out_unlock;
6598
e7834f8f
DQ
6599 retval = security_task_getscheduler(p);
6600 if (retval)
6601 goto out_unlock;
6602
96f874e2 6603 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6604
6605out_unlock:
6606 read_unlock(&tasklist_lock);
95402b38 6607 put_online_cpus();
1da177e4 6608
9531b62f 6609 return retval;
1da177e4
LT
6610}
6611
6612/**
6613 * sys_sched_getaffinity - get the cpu affinity of a process
6614 * @pid: pid of the process
6615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6616 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6617 */
5add95d4
HC
6618SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6619 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6620{
6621 int ret;
f17c8607 6622 cpumask_var_t mask;
1da177e4 6623
f17c8607 6624 if (len < cpumask_size())
1da177e4
LT
6625 return -EINVAL;
6626
f17c8607
RR
6627 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6628 return -ENOMEM;
1da177e4 6629
f17c8607
RR
6630 ret = sched_getaffinity(pid, mask);
6631 if (ret == 0) {
6632 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6633 ret = -EFAULT;
6634 else
6635 ret = cpumask_size();
6636 }
6637 free_cpumask_var(mask);
1da177e4 6638
f17c8607 6639 return ret;
1da177e4
LT
6640}
6641
6642/**
6643 * sys_sched_yield - yield the current processor to other threads.
6644 *
dd41f596
IM
6645 * This function yields the current CPU to other tasks. If there are no
6646 * other threads running on this CPU then this function will return.
1da177e4 6647 */
5add95d4 6648SYSCALL_DEFINE0(sched_yield)
1da177e4 6649{
70b97a7f 6650 struct rq *rq = this_rq_lock();
1da177e4 6651
2d72376b 6652 schedstat_inc(rq, yld_count);
4530d7ab 6653 current->sched_class->yield_task(rq);
1da177e4
LT
6654
6655 /*
6656 * Since we are going to call schedule() anyway, there's
6657 * no need to preempt or enable interrupts:
6658 */
6659 __release(rq->lock);
8a25d5de 6660 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6661 _raw_spin_unlock(&rq->lock);
6662 preempt_enable_no_resched();
6663
6664 schedule();
6665
6666 return 0;
6667}
6668
d86ee480
PZ
6669static inline int should_resched(void)
6670{
6671 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6672}
6673
e7b38404 6674static void __cond_resched(void)
1da177e4 6675{
e7aaaa69
FW
6676 add_preempt_count(PREEMPT_ACTIVE);
6677 schedule();
6678 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6679}
6680
02b67cc3 6681int __sched _cond_resched(void)
1da177e4 6682{
d86ee480 6683 if (should_resched()) {
1da177e4
LT
6684 __cond_resched();
6685 return 1;
6686 }
6687 return 0;
6688}
02b67cc3 6689EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6690
6691/*
613afbf8 6692 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6693 * call schedule, and on return reacquire the lock.
6694 *
41a2d6cf 6695 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6696 * operations here to prevent schedule() from being called twice (once via
6697 * spin_unlock(), once by hand).
6698 */
613afbf8 6699int __cond_resched_lock(spinlock_t *lock)
1da177e4 6700{
d86ee480 6701 int resched = should_resched();
6df3cecb
JK
6702 int ret = 0;
6703
95c354fe 6704 if (spin_needbreak(lock) || resched) {
1da177e4 6705 spin_unlock(lock);
d86ee480 6706 if (resched)
95c354fe
NP
6707 __cond_resched();
6708 else
6709 cpu_relax();
6df3cecb 6710 ret = 1;
1da177e4 6711 spin_lock(lock);
1da177e4 6712 }
6df3cecb 6713 return ret;
1da177e4 6714}
613afbf8 6715EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6716
613afbf8 6717int __sched __cond_resched_softirq(void)
1da177e4
LT
6718{
6719 BUG_ON(!in_softirq());
6720
d86ee480 6721 if (should_resched()) {
98d82567 6722 local_bh_enable();
1da177e4
LT
6723 __cond_resched();
6724 local_bh_disable();
6725 return 1;
6726 }
6727 return 0;
6728}
613afbf8 6729EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6730
1da177e4
LT
6731/**
6732 * yield - yield the current processor to other threads.
6733 *
72fd4a35 6734 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6735 * thread runnable and calls sys_sched_yield().
6736 */
6737void __sched yield(void)
6738{
6739 set_current_state(TASK_RUNNING);
6740 sys_sched_yield();
6741}
1da177e4
LT
6742EXPORT_SYMBOL(yield);
6743
6744/*
41a2d6cf 6745 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6746 * that process accounting knows that this is a task in IO wait state.
6747 *
6748 * But don't do that if it is a deliberate, throttling IO wait (this task
6749 * has set its backing_dev_info: the queue against which it should throttle)
6750 */
6751void __sched io_schedule(void)
6752{
54d35f29 6753 struct rq *rq = raw_rq();
1da177e4 6754
0ff92245 6755 delayacct_blkio_start();
1da177e4
LT
6756 atomic_inc(&rq->nr_iowait);
6757 schedule();
6758 atomic_dec(&rq->nr_iowait);
0ff92245 6759 delayacct_blkio_end();
1da177e4 6760}
1da177e4
LT
6761EXPORT_SYMBOL(io_schedule);
6762
6763long __sched io_schedule_timeout(long timeout)
6764{
54d35f29 6765 struct rq *rq = raw_rq();
1da177e4
LT
6766 long ret;
6767
0ff92245 6768 delayacct_blkio_start();
1da177e4
LT
6769 atomic_inc(&rq->nr_iowait);
6770 ret = schedule_timeout(timeout);
6771 atomic_dec(&rq->nr_iowait);
0ff92245 6772 delayacct_blkio_end();
1da177e4
LT
6773 return ret;
6774}
6775
6776/**
6777 * sys_sched_get_priority_max - return maximum RT priority.
6778 * @policy: scheduling class.
6779 *
6780 * this syscall returns the maximum rt_priority that can be used
6781 * by a given scheduling class.
6782 */
5add95d4 6783SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6784{
6785 int ret = -EINVAL;
6786
6787 switch (policy) {
6788 case SCHED_FIFO:
6789 case SCHED_RR:
6790 ret = MAX_USER_RT_PRIO-1;
6791 break;
6792 case SCHED_NORMAL:
b0a9499c 6793 case SCHED_BATCH:
dd41f596 6794 case SCHED_IDLE:
1da177e4
LT
6795 ret = 0;
6796 break;
6797 }
6798 return ret;
6799}
6800
6801/**
6802 * sys_sched_get_priority_min - return minimum RT priority.
6803 * @policy: scheduling class.
6804 *
6805 * this syscall returns the minimum rt_priority that can be used
6806 * by a given scheduling class.
6807 */
5add95d4 6808SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6809{
6810 int ret = -EINVAL;
6811
6812 switch (policy) {
6813 case SCHED_FIFO:
6814 case SCHED_RR:
6815 ret = 1;
6816 break;
6817 case SCHED_NORMAL:
b0a9499c 6818 case SCHED_BATCH:
dd41f596 6819 case SCHED_IDLE:
1da177e4
LT
6820 ret = 0;
6821 }
6822 return ret;
6823}
6824
6825/**
6826 * sys_sched_rr_get_interval - return the default timeslice of a process.
6827 * @pid: pid of the process.
6828 * @interval: userspace pointer to the timeslice value.
6829 *
6830 * this syscall writes the default timeslice value of a given process
6831 * into the user-space timespec buffer. A value of '0' means infinity.
6832 */
17da2bd9 6833SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6834 struct timespec __user *, interval)
1da177e4 6835{
36c8b586 6836 struct task_struct *p;
a4ec24b4 6837 unsigned int time_slice;
3a5c359a 6838 int retval;
1da177e4 6839 struct timespec t;
1da177e4
LT
6840
6841 if (pid < 0)
3a5c359a 6842 return -EINVAL;
1da177e4
LT
6843
6844 retval = -ESRCH;
6845 read_lock(&tasklist_lock);
6846 p = find_process_by_pid(pid);
6847 if (!p)
6848 goto out_unlock;
6849
6850 retval = security_task_getscheduler(p);
6851 if (retval)
6852 goto out_unlock;
6853
77034937
IM
6854 /*
6855 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6856 * tasks that are on an otherwise idle runqueue:
6857 */
6858 time_slice = 0;
6859 if (p->policy == SCHED_RR) {
a4ec24b4 6860 time_slice = DEF_TIMESLICE;
1868f958 6861 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6862 struct sched_entity *se = &p->se;
6863 unsigned long flags;
6864 struct rq *rq;
6865
6866 rq = task_rq_lock(p, &flags);
77034937
IM
6867 if (rq->cfs.load.weight)
6868 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6869 task_rq_unlock(rq, &flags);
6870 }
1da177e4 6871 read_unlock(&tasklist_lock);
a4ec24b4 6872 jiffies_to_timespec(time_slice, &t);
1da177e4 6873 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6874 return retval;
3a5c359a 6875
1da177e4
LT
6876out_unlock:
6877 read_unlock(&tasklist_lock);
6878 return retval;
6879}
6880
7c731e0a 6881static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6882
82a1fcb9 6883void sched_show_task(struct task_struct *p)
1da177e4 6884{
1da177e4 6885 unsigned long free = 0;
36c8b586 6886 unsigned state;
1da177e4 6887
1da177e4 6888 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6889 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6890 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6891#if BITS_PER_LONG == 32
1da177e4 6892 if (state == TASK_RUNNING)
cc4ea795 6893 printk(KERN_CONT " running ");
1da177e4 6894 else
cc4ea795 6895 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6896#else
6897 if (state == TASK_RUNNING)
cc4ea795 6898 printk(KERN_CONT " running task ");
1da177e4 6899 else
cc4ea795 6900 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6901#endif
6902#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6903 free = stack_not_used(p);
1da177e4 6904#endif
aa47b7e0
DR
6905 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6906 task_pid_nr(p), task_pid_nr(p->real_parent),
6907 (unsigned long)task_thread_info(p)->flags);
1da177e4 6908
5fb5e6de 6909 show_stack(p, NULL);
1da177e4
LT
6910}
6911
e59e2ae2 6912void show_state_filter(unsigned long state_filter)
1da177e4 6913{
36c8b586 6914 struct task_struct *g, *p;
1da177e4 6915
4bd77321
IM
6916#if BITS_PER_LONG == 32
6917 printk(KERN_INFO
6918 " task PC stack pid father\n");
1da177e4 6919#else
4bd77321
IM
6920 printk(KERN_INFO
6921 " task PC stack pid father\n");
1da177e4
LT
6922#endif
6923 read_lock(&tasklist_lock);
6924 do_each_thread(g, p) {
6925 /*
6926 * reset the NMI-timeout, listing all files on a slow
6927 * console might take alot of time:
6928 */
6929 touch_nmi_watchdog();
39bc89fd 6930 if (!state_filter || (p->state & state_filter))
82a1fcb9 6931 sched_show_task(p);
1da177e4
LT
6932 } while_each_thread(g, p);
6933
04c9167f
JF
6934 touch_all_softlockup_watchdogs();
6935
dd41f596
IM
6936#ifdef CONFIG_SCHED_DEBUG
6937 sysrq_sched_debug_show();
6938#endif
1da177e4 6939 read_unlock(&tasklist_lock);
e59e2ae2
IM
6940 /*
6941 * Only show locks if all tasks are dumped:
6942 */
6943 if (state_filter == -1)
6944 debug_show_all_locks();
1da177e4
LT
6945}
6946
1df21055
IM
6947void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6948{
dd41f596 6949 idle->sched_class = &idle_sched_class;
1df21055
IM
6950}
6951
f340c0d1
IM
6952/**
6953 * init_idle - set up an idle thread for a given CPU
6954 * @idle: task in question
6955 * @cpu: cpu the idle task belongs to
6956 *
6957 * NOTE: this function does not set the idle thread's NEED_RESCHED
6958 * flag, to make booting more robust.
6959 */
5c1e1767 6960void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6961{
70b97a7f 6962 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6963 unsigned long flags;
6964
5cbd54ef
IM
6965 spin_lock_irqsave(&rq->lock, flags);
6966
dd41f596
IM
6967 __sched_fork(idle);
6968 idle->se.exec_start = sched_clock();
6969
b29739f9 6970 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6971 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6972 __set_task_cpu(idle, cpu);
1da177e4 6973
1da177e4 6974 rq->curr = rq->idle = idle;
4866cde0
NP
6975#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6976 idle->oncpu = 1;
6977#endif
1da177e4
LT
6978 spin_unlock_irqrestore(&rq->lock, flags);
6979
6980 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6981#if defined(CONFIG_PREEMPT)
6982 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6983#else
a1261f54 6984 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6985#endif
dd41f596
IM
6986 /*
6987 * The idle tasks have their own, simple scheduling class:
6988 */
6989 idle->sched_class = &idle_sched_class;
fb52607a 6990 ftrace_graph_init_task(idle);
1da177e4
LT
6991}
6992
6993/*
6994 * In a system that switches off the HZ timer nohz_cpu_mask
6995 * indicates which cpus entered this state. This is used
6996 * in the rcu update to wait only for active cpus. For system
6997 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6998 * always be CPU_BITS_NONE.
1da177e4 6999 */
6a7b3dc3 7000cpumask_var_t nohz_cpu_mask;
1da177e4 7001
19978ca6
IM
7002/*
7003 * Increase the granularity value when there are more CPUs,
7004 * because with more CPUs the 'effective latency' as visible
7005 * to users decreases. But the relationship is not linear,
7006 * so pick a second-best guess by going with the log2 of the
7007 * number of CPUs.
7008 *
7009 * This idea comes from the SD scheduler of Con Kolivas:
7010 */
7011static inline void sched_init_granularity(void)
7012{
7013 unsigned int factor = 1 + ilog2(num_online_cpus());
7014 const unsigned long limit = 200000000;
7015
7016 sysctl_sched_min_granularity *= factor;
7017 if (sysctl_sched_min_granularity > limit)
7018 sysctl_sched_min_granularity = limit;
7019
7020 sysctl_sched_latency *= factor;
7021 if (sysctl_sched_latency > limit)
7022 sysctl_sched_latency = limit;
7023
7024 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7025
7026 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7027}
7028
1da177e4
LT
7029#ifdef CONFIG_SMP
7030/*
7031 * This is how migration works:
7032 *
70b97a7f 7033 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7034 * runqueue and wake up that CPU's migration thread.
7035 * 2) we down() the locked semaphore => thread blocks.
7036 * 3) migration thread wakes up (implicitly it forces the migrated
7037 * thread off the CPU)
7038 * 4) it gets the migration request and checks whether the migrated
7039 * task is still in the wrong runqueue.
7040 * 5) if it's in the wrong runqueue then the migration thread removes
7041 * it and puts it into the right queue.
7042 * 6) migration thread up()s the semaphore.
7043 * 7) we wake up and the migration is done.
7044 */
7045
7046/*
7047 * Change a given task's CPU affinity. Migrate the thread to a
7048 * proper CPU and schedule it away if the CPU it's executing on
7049 * is removed from the allowed bitmask.
7050 *
7051 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7052 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7053 * call is not atomic; no spinlocks may be held.
7054 */
96f874e2 7055int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7056{
70b97a7f 7057 struct migration_req req;
1da177e4 7058 unsigned long flags;
70b97a7f 7059 struct rq *rq;
48f24c4d 7060 int ret = 0;
1da177e4
LT
7061
7062 rq = task_rq_lock(p, &flags);
96f874e2 7063 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7064 ret = -EINVAL;
7065 goto out;
7066 }
7067
9985b0ba 7068 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7069 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7070 ret = -EINVAL;
7071 goto out;
7072 }
7073
73fe6aae 7074 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7075 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7076 else {
96f874e2
RR
7077 cpumask_copy(&p->cpus_allowed, new_mask);
7078 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7079 }
7080
1da177e4 7081 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7082 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7083 goto out;
7084
1e5ce4f4 7085 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7086 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7087 struct task_struct *mt = rq->migration_thread;
7088
7089 get_task_struct(mt);
1da177e4
LT
7090 task_rq_unlock(rq, &flags);
7091 wake_up_process(rq->migration_thread);
693525e3 7092 put_task_struct(mt);
1da177e4
LT
7093 wait_for_completion(&req.done);
7094 tlb_migrate_finish(p->mm);
7095 return 0;
7096 }
7097out:
7098 task_rq_unlock(rq, &flags);
48f24c4d 7099
1da177e4
LT
7100 return ret;
7101}
cd8ba7cd 7102EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7103
7104/*
41a2d6cf 7105 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7106 * this because either it can't run here any more (set_cpus_allowed()
7107 * away from this CPU, or CPU going down), or because we're
7108 * attempting to rebalance this task on exec (sched_exec).
7109 *
7110 * So we race with normal scheduler movements, but that's OK, as long
7111 * as the task is no longer on this CPU.
efc30814
KK
7112 *
7113 * Returns non-zero if task was successfully migrated.
1da177e4 7114 */
efc30814 7115static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7116{
70b97a7f 7117 struct rq *rq_dest, *rq_src;
dd41f596 7118 int ret = 0, on_rq;
1da177e4 7119
e761b772 7120 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7121 return ret;
1da177e4
LT
7122
7123 rq_src = cpu_rq(src_cpu);
7124 rq_dest = cpu_rq(dest_cpu);
7125
7126 double_rq_lock(rq_src, rq_dest);
7127 /* Already moved. */
7128 if (task_cpu(p) != src_cpu)
b1e38734 7129 goto done;
1da177e4 7130 /* Affinity changed (again). */
96f874e2 7131 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7132 goto fail;
1da177e4 7133
dd41f596 7134 on_rq = p->se.on_rq;
6e82a3be 7135 if (on_rq)
2e1cb74a 7136 deactivate_task(rq_src, p, 0);
6e82a3be 7137
1da177e4 7138 set_task_cpu(p, dest_cpu);
dd41f596
IM
7139 if (on_rq) {
7140 activate_task(rq_dest, p, 0);
15afe09b 7141 check_preempt_curr(rq_dest, p, 0);
1da177e4 7142 }
b1e38734 7143done:
efc30814 7144 ret = 1;
b1e38734 7145fail:
1da177e4 7146 double_rq_unlock(rq_src, rq_dest);
efc30814 7147 return ret;
1da177e4
LT
7148}
7149
7150/*
7151 * migration_thread - this is a highprio system thread that performs
7152 * thread migration by bumping thread off CPU then 'pushing' onto
7153 * another runqueue.
7154 */
95cdf3b7 7155static int migration_thread(void *data)
1da177e4 7156{
1da177e4 7157 int cpu = (long)data;
70b97a7f 7158 struct rq *rq;
1da177e4
LT
7159
7160 rq = cpu_rq(cpu);
7161 BUG_ON(rq->migration_thread != current);
7162
7163 set_current_state(TASK_INTERRUPTIBLE);
7164 while (!kthread_should_stop()) {
70b97a7f 7165 struct migration_req *req;
1da177e4 7166 struct list_head *head;
1da177e4 7167
1da177e4
LT
7168 spin_lock_irq(&rq->lock);
7169
7170 if (cpu_is_offline(cpu)) {
7171 spin_unlock_irq(&rq->lock);
371cbb38 7172 break;
1da177e4
LT
7173 }
7174
7175 if (rq->active_balance) {
7176 active_load_balance(rq, cpu);
7177 rq->active_balance = 0;
7178 }
7179
7180 head = &rq->migration_queue;
7181
7182 if (list_empty(head)) {
7183 spin_unlock_irq(&rq->lock);
7184 schedule();
7185 set_current_state(TASK_INTERRUPTIBLE);
7186 continue;
7187 }
70b97a7f 7188 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7189 list_del_init(head->next);
7190
674311d5
NP
7191 spin_unlock(&rq->lock);
7192 __migrate_task(req->task, cpu, req->dest_cpu);
7193 local_irq_enable();
1da177e4
LT
7194
7195 complete(&req->done);
7196 }
7197 __set_current_state(TASK_RUNNING);
1da177e4 7198
1da177e4
LT
7199 return 0;
7200}
7201
7202#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7203
7204static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7205{
7206 int ret;
7207
7208 local_irq_disable();
7209 ret = __migrate_task(p, src_cpu, dest_cpu);
7210 local_irq_enable();
7211 return ret;
7212}
7213
054b9108 7214/*
3a4fa0a2 7215 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7216 */
48f24c4d 7217static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7218{
70b97a7f 7219 int dest_cpu;
6ca09dfc 7220 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7221
7222again:
7223 /* Look for allowed, online CPU in same node. */
7224 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7225 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7226 goto move;
7227
7228 /* Any allowed, online CPU? */
7229 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7230 if (dest_cpu < nr_cpu_ids)
7231 goto move;
7232
7233 /* No more Mr. Nice Guy. */
7234 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7235 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7236 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7237
e76bd8d9
RR
7238 /*
7239 * Don't tell them about moving exiting tasks or
7240 * kernel threads (both mm NULL), since they never
7241 * leave kernel.
7242 */
7243 if (p->mm && printk_ratelimit()) {
7244 printk(KERN_INFO "process %d (%s) no "
7245 "longer affine to cpu%d\n",
7246 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7247 }
e76bd8d9
RR
7248 }
7249
7250move:
7251 /* It can have affinity changed while we were choosing. */
7252 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7253 goto again;
1da177e4
LT
7254}
7255
7256/*
7257 * While a dead CPU has no uninterruptible tasks queued at this point,
7258 * it might still have a nonzero ->nr_uninterruptible counter, because
7259 * for performance reasons the counter is not stricly tracking tasks to
7260 * their home CPUs. So we just add the counter to another CPU's counter,
7261 * to keep the global sum constant after CPU-down:
7262 */
70b97a7f 7263static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7264{
1e5ce4f4 7265 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7266 unsigned long flags;
7267
7268 local_irq_save(flags);
7269 double_rq_lock(rq_src, rq_dest);
7270 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7271 rq_src->nr_uninterruptible = 0;
7272 double_rq_unlock(rq_src, rq_dest);
7273 local_irq_restore(flags);
7274}
7275
7276/* Run through task list and migrate tasks from the dead cpu. */
7277static void migrate_live_tasks(int src_cpu)
7278{
48f24c4d 7279 struct task_struct *p, *t;
1da177e4 7280
f7b4cddc 7281 read_lock(&tasklist_lock);
1da177e4 7282
48f24c4d
IM
7283 do_each_thread(t, p) {
7284 if (p == current)
1da177e4
LT
7285 continue;
7286
48f24c4d
IM
7287 if (task_cpu(p) == src_cpu)
7288 move_task_off_dead_cpu(src_cpu, p);
7289 } while_each_thread(t, p);
1da177e4 7290
f7b4cddc 7291 read_unlock(&tasklist_lock);
1da177e4
LT
7292}
7293
dd41f596
IM
7294/*
7295 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7296 * It does so by boosting its priority to highest possible.
7297 * Used by CPU offline code.
1da177e4
LT
7298 */
7299void sched_idle_next(void)
7300{
48f24c4d 7301 int this_cpu = smp_processor_id();
70b97a7f 7302 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7303 struct task_struct *p = rq->idle;
7304 unsigned long flags;
7305
7306 /* cpu has to be offline */
48f24c4d 7307 BUG_ON(cpu_online(this_cpu));
1da177e4 7308
48f24c4d
IM
7309 /*
7310 * Strictly not necessary since rest of the CPUs are stopped by now
7311 * and interrupts disabled on the current cpu.
1da177e4
LT
7312 */
7313 spin_lock_irqsave(&rq->lock, flags);
7314
dd41f596 7315 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7316
94bc9a7b
DA
7317 update_rq_clock(rq);
7318 activate_task(rq, p, 0);
1da177e4
LT
7319
7320 spin_unlock_irqrestore(&rq->lock, flags);
7321}
7322
48f24c4d
IM
7323/*
7324 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7325 * offline.
7326 */
7327void idle_task_exit(void)
7328{
7329 struct mm_struct *mm = current->active_mm;
7330
7331 BUG_ON(cpu_online(smp_processor_id()));
7332
7333 if (mm != &init_mm)
7334 switch_mm(mm, &init_mm, current);
7335 mmdrop(mm);
7336}
7337
054b9108 7338/* called under rq->lock with disabled interrupts */
36c8b586 7339static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7340{
70b97a7f 7341 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7342
7343 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7344 BUG_ON(!p->exit_state);
1da177e4
LT
7345
7346 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7347 BUG_ON(p->state == TASK_DEAD);
1da177e4 7348
48f24c4d 7349 get_task_struct(p);
1da177e4
LT
7350
7351 /*
7352 * Drop lock around migration; if someone else moves it,
41a2d6cf 7353 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7354 * fine.
7355 */
f7b4cddc 7356 spin_unlock_irq(&rq->lock);
48f24c4d 7357 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7358 spin_lock_irq(&rq->lock);
1da177e4 7359
48f24c4d 7360 put_task_struct(p);
1da177e4
LT
7361}
7362
7363/* release_task() removes task from tasklist, so we won't find dead tasks. */
7364static void migrate_dead_tasks(unsigned int dead_cpu)
7365{
70b97a7f 7366 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7367 struct task_struct *next;
48f24c4d 7368
dd41f596
IM
7369 for ( ; ; ) {
7370 if (!rq->nr_running)
7371 break;
a8e504d2 7372 update_rq_clock(rq);
b67802ea 7373 next = pick_next_task(rq);
dd41f596
IM
7374 if (!next)
7375 break;
79c53799 7376 next->sched_class->put_prev_task(rq, next);
dd41f596 7377 migrate_dead(dead_cpu, next);
e692ab53 7378
1da177e4
LT
7379 }
7380}
dce48a84
TG
7381
7382/*
7383 * remove the tasks which were accounted by rq from calc_load_tasks.
7384 */
7385static void calc_global_load_remove(struct rq *rq)
7386{
7387 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7388 rq->calc_load_active = 0;
dce48a84 7389}
1da177e4
LT
7390#endif /* CONFIG_HOTPLUG_CPU */
7391
e692ab53
NP
7392#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7393
7394static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7395 {
7396 .procname = "sched_domain",
c57baf1e 7397 .mode = 0555,
e0361851 7398 },
38605cae 7399 {0, },
e692ab53
NP
7400};
7401
7402static struct ctl_table sd_ctl_root[] = {
e0361851 7403 {
c57baf1e 7404 .ctl_name = CTL_KERN,
e0361851 7405 .procname = "kernel",
c57baf1e 7406 .mode = 0555,
e0361851
AD
7407 .child = sd_ctl_dir,
7408 },
38605cae 7409 {0, },
e692ab53
NP
7410};
7411
7412static struct ctl_table *sd_alloc_ctl_entry(int n)
7413{
7414 struct ctl_table *entry =
5cf9f062 7415 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7416
e692ab53
NP
7417 return entry;
7418}
7419
6382bc90
MM
7420static void sd_free_ctl_entry(struct ctl_table **tablep)
7421{
cd790076 7422 struct ctl_table *entry;
6382bc90 7423
cd790076
MM
7424 /*
7425 * In the intermediate directories, both the child directory and
7426 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7427 * will always be set. In the lowest directory the names are
cd790076
MM
7428 * static strings and all have proc handlers.
7429 */
7430 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7431 if (entry->child)
7432 sd_free_ctl_entry(&entry->child);
cd790076
MM
7433 if (entry->proc_handler == NULL)
7434 kfree(entry->procname);
7435 }
6382bc90
MM
7436
7437 kfree(*tablep);
7438 *tablep = NULL;
7439}
7440
e692ab53 7441static void
e0361851 7442set_table_entry(struct ctl_table *entry,
e692ab53
NP
7443 const char *procname, void *data, int maxlen,
7444 mode_t mode, proc_handler *proc_handler)
7445{
e692ab53
NP
7446 entry->procname = procname;
7447 entry->data = data;
7448 entry->maxlen = maxlen;
7449 entry->mode = mode;
7450 entry->proc_handler = proc_handler;
7451}
7452
7453static struct ctl_table *
7454sd_alloc_ctl_domain_table(struct sched_domain *sd)
7455{
a5d8c348 7456 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7457
ad1cdc1d
MM
7458 if (table == NULL)
7459 return NULL;
7460
e0361851 7461 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7462 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7463 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7464 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7465 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7467 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7468 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7469 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7470 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7471 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7472 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7473 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7474 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7475 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7476 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7477 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7478 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7479 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7480 &sd->cache_nice_tries,
7481 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7482 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7483 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7484 set_table_entry(&table[11], "name", sd->name,
7485 CORENAME_MAX_SIZE, 0444, proc_dostring);
7486 /* &table[12] is terminator */
e692ab53
NP
7487
7488 return table;
7489}
7490
9a4e7159 7491static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7492{
7493 struct ctl_table *entry, *table;
7494 struct sched_domain *sd;
7495 int domain_num = 0, i;
7496 char buf[32];
7497
7498 for_each_domain(cpu, sd)
7499 domain_num++;
7500 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7501 if (table == NULL)
7502 return NULL;
e692ab53
NP
7503
7504 i = 0;
7505 for_each_domain(cpu, sd) {
7506 snprintf(buf, 32, "domain%d", i);
e692ab53 7507 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7508 entry->mode = 0555;
e692ab53
NP
7509 entry->child = sd_alloc_ctl_domain_table(sd);
7510 entry++;
7511 i++;
7512 }
7513 return table;
7514}
7515
7516static struct ctl_table_header *sd_sysctl_header;
6382bc90 7517static void register_sched_domain_sysctl(void)
e692ab53
NP
7518{
7519 int i, cpu_num = num_online_cpus();
7520 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7521 char buf[32];
7522
7378547f
MM
7523 WARN_ON(sd_ctl_dir[0].child);
7524 sd_ctl_dir[0].child = entry;
7525
ad1cdc1d
MM
7526 if (entry == NULL)
7527 return;
7528
97b6ea7b 7529 for_each_online_cpu(i) {
e692ab53 7530 snprintf(buf, 32, "cpu%d", i);
e692ab53 7531 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7532 entry->mode = 0555;
e692ab53 7533 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7534 entry++;
e692ab53 7535 }
7378547f
MM
7536
7537 WARN_ON(sd_sysctl_header);
e692ab53
NP
7538 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7539}
6382bc90 7540
7378547f 7541/* may be called multiple times per register */
6382bc90
MM
7542static void unregister_sched_domain_sysctl(void)
7543{
7378547f
MM
7544 if (sd_sysctl_header)
7545 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7546 sd_sysctl_header = NULL;
7378547f
MM
7547 if (sd_ctl_dir[0].child)
7548 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7549}
e692ab53 7550#else
6382bc90
MM
7551static void register_sched_domain_sysctl(void)
7552{
7553}
7554static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7555{
7556}
7557#endif
7558
1f11eb6a
GH
7559static void set_rq_online(struct rq *rq)
7560{
7561 if (!rq->online) {
7562 const struct sched_class *class;
7563
c6c4927b 7564 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7565 rq->online = 1;
7566
7567 for_each_class(class) {
7568 if (class->rq_online)
7569 class->rq_online(rq);
7570 }
7571 }
7572}
7573
7574static void set_rq_offline(struct rq *rq)
7575{
7576 if (rq->online) {
7577 const struct sched_class *class;
7578
7579 for_each_class(class) {
7580 if (class->rq_offline)
7581 class->rq_offline(rq);
7582 }
7583
c6c4927b 7584 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7585 rq->online = 0;
7586 }
7587}
7588
1da177e4
LT
7589/*
7590 * migration_call - callback that gets triggered when a CPU is added.
7591 * Here we can start up the necessary migration thread for the new CPU.
7592 */
48f24c4d
IM
7593static int __cpuinit
7594migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7595{
1da177e4 7596 struct task_struct *p;
48f24c4d 7597 int cpu = (long)hcpu;
1da177e4 7598 unsigned long flags;
70b97a7f 7599 struct rq *rq;
1da177e4
LT
7600
7601 switch (action) {
5be9361c 7602
1da177e4 7603 case CPU_UP_PREPARE:
8bb78442 7604 case CPU_UP_PREPARE_FROZEN:
dd41f596 7605 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7606 if (IS_ERR(p))
7607 return NOTIFY_BAD;
1da177e4
LT
7608 kthread_bind(p, cpu);
7609 /* Must be high prio: stop_machine expects to yield to it. */
7610 rq = task_rq_lock(p, &flags);
dd41f596 7611 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7612 task_rq_unlock(rq, &flags);
371cbb38 7613 get_task_struct(p);
1da177e4 7614 cpu_rq(cpu)->migration_thread = p;
a468d389 7615 rq->calc_load_update = calc_load_update;
1da177e4 7616 break;
48f24c4d 7617
1da177e4 7618 case CPU_ONLINE:
8bb78442 7619 case CPU_ONLINE_FROZEN:
3a4fa0a2 7620 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7621 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7622
7623 /* Update our root-domain */
7624 rq = cpu_rq(cpu);
7625 spin_lock_irqsave(&rq->lock, flags);
7626 if (rq->rd) {
c6c4927b 7627 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7628
7629 set_rq_online(rq);
1f94ef59
GH
7630 }
7631 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7632 break;
48f24c4d 7633
1da177e4
LT
7634#ifdef CONFIG_HOTPLUG_CPU
7635 case CPU_UP_CANCELED:
8bb78442 7636 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7637 if (!cpu_rq(cpu)->migration_thread)
7638 break;
41a2d6cf 7639 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7640 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7641 cpumask_any(cpu_online_mask));
1da177e4 7642 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7643 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7644 cpu_rq(cpu)->migration_thread = NULL;
7645 break;
48f24c4d 7646
1da177e4 7647 case CPU_DEAD:
8bb78442 7648 case CPU_DEAD_FROZEN:
470fd646 7649 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7650 migrate_live_tasks(cpu);
7651 rq = cpu_rq(cpu);
7652 kthread_stop(rq->migration_thread);
371cbb38 7653 put_task_struct(rq->migration_thread);
1da177e4
LT
7654 rq->migration_thread = NULL;
7655 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7656 spin_lock_irq(&rq->lock);
a8e504d2 7657 update_rq_clock(rq);
2e1cb74a 7658 deactivate_task(rq, rq->idle, 0);
1da177e4 7659 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7660 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7661 rq->idle->sched_class = &idle_sched_class;
1da177e4 7662 migrate_dead_tasks(cpu);
d2da272a 7663 spin_unlock_irq(&rq->lock);
470fd646 7664 cpuset_unlock();
1da177e4
LT
7665 migrate_nr_uninterruptible(rq);
7666 BUG_ON(rq->nr_running != 0);
dce48a84 7667 calc_global_load_remove(rq);
41a2d6cf
IM
7668 /*
7669 * No need to migrate the tasks: it was best-effort if
7670 * they didn't take sched_hotcpu_mutex. Just wake up
7671 * the requestors.
7672 */
1da177e4
LT
7673 spin_lock_irq(&rq->lock);
7674 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7675 struct migration_req *req;
7676
1da177e4 7677 req = list_entry(rq->migration_queue.next,
70b97a7f 7678 struct migration_req, list);
1da177e4 7679 list_del_init(&req->list);
9a2bd244 7680 spin_unlock_irq(&rq->lock);
1da177e4 7681 complete(&req->done);
9a2bd244 7682 spin_lock_irq(&rq->lock);
1da177e4
LT
7683 }
7684 spin_unlock_irq(&rq->lock);
7685 break;
57d885fe 7686
08f503b0
GH
7687 case CPU_DYING:
7688 case CPU_DYING_FROZEN:
57d885fe
GH
7689 /* Update our root-domain */
7690 rq = cpu_rq(cpu);
7691 spin_lock_irqsave(&rq->lock, flags);
7692 if (rq->rd) {
c6c4927b 7693 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7694 set_rq_offline(rq);
57d885fe
GH
7695 }
7696 spin_unlock_irqrestore(&rq->lock, flags);
7697 break;
1da177e4
LT
7698#endif
7699 }
7700 return NOTIFY_OK;
7701}
7702
f38b0820
PM
7703/*
7704 * Register at high priority so that task migration (migrate_all_tasks)
7705 * happens before everything else. This has to be lower priority than
7706 * the notifier in the perf_counter subsystem, though.
1da177e4 7707 */
26c2143b 7708static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7709 .notifier_call = migration_call,
7710 .priority = 10
7711};
7712
7babe8db 7713static int __init migration_init(void)
1da177e4
LT
7714{
7715 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7716 int err;
48f24c4d
IM
7717
7718 /* Start one for the boot CPU: */
07dccf33
AM
7719 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7720 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7721 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7722 register_cpu_notifier(&migration_notifier);
7babe8db 7723
a004cd42 7724 return 0;
1da177e4 7725}
7babe8db 7726early_initcall(migration_init);
1da177e4
LT
7727#endif
7728
7729#ifdef CONFIG_SMP
476f3534 7730
3e9830dc 7731#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7732
7c16ec58 7733static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7734 struct cpumask *groupmask)
1da177e4 7735{
4dcf6aff 7736 struct sched_group *group = sd->groups;
434d53b0 7737 char str[256];
1da177e4 7738
968ea6d8 7739 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7740 cpumask_clear(groupmask);
4dcf6aff
IM
7741
7742 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7743
7744 if (!(sd->flags & SD_LOAD_BALANCE)) {
7745 printk("does not load-balance\n");
7746 if (sd->parent)
7747 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7748 " has parent");
7749 return -1;
41c7ce9a
NP
7750 }
7751
eefd796a 7752 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7753
758b2cdc 7754 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7755 printk(KERN_ERR "ERROR: domain->span does not contain "
7756 "CPU%d\n", cpu);
7757 }
758b2cdc 7758 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7759 printk(KERN_ERR "ERROR: domain->groups does not contain"
7760 " CPU%d\n", cpu);
7761 }
1da177e4 7762
4dcf6aff 7763 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7764 do {
4dcf6aff
IM
7765 if (!group) {
7766 printk("\n");
7767 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7768 break;
7769 }
7770
4dcf6aff
IM
7771 if (!group->__cpu_power) {
7772 printk(KERN_CONT "\n");
7773 printk(KERN_ERR "ERROR: domain->cpu_power not "
7774 "set\n");
7775 break;
7776 }
1da177e4 7777
758b2cdc 7778 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7779 printk(KERN_CONT "\n");
7780 printk(KERN_ERR "ERROR: empty group\n");
7781 break;
7782 }
1da177e4 7783
758b2cdc 7784 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7785 printk(KERN_CONT "\n");
7786 printk(KERN_ERR "ERROR: repeated CPUs\n");
7787 break;
7788 }
1da177e4 7789
758b2cdc 7790 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7791
968ea6d8 7792 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7793
7794 printk(KERN_CONT " %s", str);
7795 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7796 printk(KERN_CONT " (__cpu_power = %d)",
7797 group->__cpu_power);
7798 }
1da177e4 7799
4dcf6aff
IM
7800 group = group->next;
7801 } while (group != sd->groups);
7802 printk(KERN_CONT "\n");
1da177e4 7803
758b2cdc 7804 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7805 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7806
758b2cdc
RR
7807 if (sd->parent &&
7808 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7809 printk(KERN_ERR "ERROR: parent span is not a superset "
7810 "of domain->span\n");
7811 return 0;
7812}
1da177e4 7813
4dcf6aff
IM
7814static void sched_domain_debug(struct sched_domain *sd, int cpu)
7815{
d5dd3db1 7816 cpumask_var_t groupmask;
4dcf6aff 7817 int level = 0;
1da177e4 7818
4dcf6aff
IM
7819 if (!sd) {
7820 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7821 return;
7822 }
1da177e4 7823
4dcf6aff
IM
7824 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7825
d5dd3db1 7826 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7827 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7828 return;
7829 }
7830
4dcf6aff 7831 for (;;) {
7c16ec58 7832 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7833 break;
1da177e4
LT
7834 level++;
7835 sd = sd->parent;
33859f7f 7836 if (!sd)
4dcf6aff
IM
7837 break;
7838 }
d5dd3db1 7839 free_cpumask_var(groupmask);
1da177e4 7840}
6d6bc0ad 7841#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7842# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7843#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7844
1a20ff27 7845static int sd_degenerate(struct sched_domain *sd)
245af2c7 7846{
758b2cdc 7847 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7848 return 1;
7849
7850 /* Following flags need at least 2 groups */
7851 if (sd->flags & (SD_LOAD_BALANCE |
7852 SD_BALANCE_NEWIDLE |
7853 SD_BALANCE_FORK |
89c4710e
SS
7854 SD_BALANCE_EXEC |
7855 SD_SHARE_CPUPOWER |
7856 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7857 if (sd->groups != sd->groups->next)
7858 return 0;
7859 }
7860
7861 /* Following flags don't use groups */
7862 if (sd->flags & (SD_WAKE_IDLE |
7863 SD_WAKE_AFFINE |
7864 SD_WAKE_BALANCE))
7865 return 0;
7866
7867 return 1;
7868}
7869
48f24c4d
IM
7870static int
7871sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7872{
7873 unsigned long cflags = sd->flags, pflags = parent->flags;
7874
7875 if (sd_degenerate(parent))
7876 return 1;
7877
758b2cdc 7878 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7879 return 0;
7880
7881 /* Does parent contain flags not in child? */
7882 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7883 if (cflags & SD_WAKE_AFFINE)
7884 pflags &= ~SD_WAKE_BALANCE;
7885 /* Flags needing groups don't count if only 1 group in parent */
7886 if (parent->groups == parent->groups->next) {
7887 pflags &= ~(SD_LOAD_BALANCE |
7888 SD_BALANCE_NEWIDLE |
7889 SD_BALANCE_FORK |
89c4710e
SS
7890 SD_BALANCE_EXEC |
7891 SD_SHARE_CPUPOWER |
7892 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7893 if (nr_node_ids == 1)
7894 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7895 }
7896 if (~cflags & pflags)
7897 return 0;
7898
7899 return 1;
7900}
7901
c6c4927b
RR
7902static void free_rootdomain(struct root_domain *rd)
7903{
68e74568
RR
7904 cpupri_cleanup(&rd->cpupri);
7905
c6c4927b
RR
7906 free_cpumask_var(rd->rto_mask);
7907 free_cpumask_var(rd->online);
7908 free_cpumask_var(rd->span);
7909 kfree(rd);
7910}
7911
57d885fe
GH
7912static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7913{
a0490fa3 7914 struct root_domain *old_rd = NULL;
57d885fe 7915 unsigned long flags;
57d885fe
GH
7916
7917 spin_lock_irqsave(&rq->lock, flags);
7918
7919 if (rq->rd) {
a0490fa3 7920 old_rd = rq->rd;
57d885fe 7921
c6c4927b 7922 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7923 set_rq_offline(rq);
57d885fe 7924
c6c4927b 7925 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7926
a0490fa3
IM
7927 /*
7928 * If we dont want to free the old_rt yet then
7929 * set old_rd to NULL to skip the freeing later
7930 * in this function:
7931 */
7932 if (!atomic_dec_and_test(&old_rd->refcount))
7933 old_rd = NULL;
57d885fe
GH
7934 }
7935
7936 atomic_inc(&rd->refcount);
7937 rq->rd = rd;
7938
c6c4927b 7939 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7940 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7941 set_rq_online(rq);
57d885fe
GH
7942
7943 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7944
7945 if (old_rd)
7946 free_rootdomain(old_rd);
57d885fe
GH
7947}
7948
fd5e1b5d 7949static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7950{
36b7b6d4
PE
7951 gfp_t gfp = GFP_KERNEL;
7952
57d885fe
GH
7953 memset(rd, 0, sizeof(*rd));
7954
36b7b6d4
PE
7955 if (bootmem)
7956 gfp = GFP_NOWAIT;
c6c4927b 7957
36b7b6d4 7958 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7959 goto out;
36b7b6d4 7960 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7961 goto free_span;
36b7b6d4 7962 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7963 goto free_online;
6e0534f2 7964
0fb53029 7965 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7966 goto free_rto_mask;
c6c4927b 7967 return 0;
6e0534f2 7968
68e74568
RR
7969free_rto_mask:
7970 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7971free_online:
7972 free_cpumask_var(rd->online);
7973free_span:
7974 free_cpumask_var(rd->span);
0c910d28 7975out:
c6c4927b 7976 return -ENOMEM;
57d885fe
GH
7977}
7978
7979static void init_defrootdomain(void)
7980{
c6c4927b
RR
7981 init_rootdomain(&def_root_domain, true);
7982
57d885fe
GH
7983 atomic_set(&def_root_domain.refcount, 1);
7984}
7985
dc938520 7986static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7987{
7988 struct root_domain *rd;
7989
7990 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7991 if (!rd)
7992 return NULL;
7993
c6c4927b
RR
7994 if (init_rootdomain(rd, false) != 0) {
7995 kfree(rd);
7996 return NULL;
7997 }
57d885fe
GH
7998
7999 return rd;
8000}
8001
1da177e4 8002/*
0eab9146 8003 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8004 * hold the hotplug lock.
8005 */
0eab9146
IM
8006static void
8007cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8008{
70b97a7f 8009 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8010 struct sched_domain *tmp;
8011
8012 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8013 for (tmp = sd; tmp; ) {
245af2c7
SS
8014 struct sched_domain *parent = tmp->parent;
8015 if (!parent)
8016 break;
f29c9b1c 8017
1a848870 8018 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8019 tmp->parent = parent->parent;
1a848870
SS
8020 if (parent->parent)
8021 parent->parent->child = tmp;
f29c9b1c
LZ
8022 } else
8023 tmp = tmp->parent;
245af2c7
SS
8024 }
8025
1a848870 8026 if (sd && sd_degenerate(sd)) {
245af2c7 8027 sd = sd->parent;
1a848870
SS
8028 if (sd)
8029 sd->child = NULL;
8030 }
1da177e4
LT
8031
8032 sched_domain_debug(sd, cpu);
8033
57d885fe 8034 rq_attach_root(rq, rd);
674311d5 8035 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8036}
8037
8038/* cpus with isolated domains */
dcc30a35 8039static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8040
8041/* Setup the mask of cpus configured for isolated domains */
8042static int __init isolated_cpu_setup(char *str)
8043{
968ea6d8 8044 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8045 return 1;
8046}
8047
8927f494 8048__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8049
8050/*
6711cab4
SS
8051 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8052 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8053 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8054 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8055 *
8056 * init_sched_build_groups will build a circular linked list of the groups
8057 * covered by the given span, and will set each group's ->cpumask correctly,
8058 * and ->cpu_power to 0.
8059 */
a616058b 8060static void
96f874e2
RR
8061init_sched_build_groups(const struct cpumask *span,
8062 const struct cpumask *cpu_map,
8063 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8064 struct sched_group **sg,
96f874e2
RR
8065 struct cpumask *tmpmask),
8066 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8067{
8068 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8069 int i;
8070
96f874e2 8071 cpumask_clear(covered);
7c16ec58 8072
abcd083a 8073 for_each_cpu(i, span) {
6711cab4 8074 struct sched_group *sg;
7c16ec58 8075 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8076 int j;
8077
758b2cdc 8078 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8079 continue;
8080
758b2cdc 8081 cpumask_clear(sched_group_cpus(sg));
5517d86b 8082 sg->__cpu_power = 0;
1da177e4 8083
abcd083a 8084 for_each_cpu(j, span) {
7c16ec58 8085 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8086 continue;
8087
96f874e2 8088 cpumask_set_cpu(j, covered);
758b2cdc 8089 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8090 }
8091 if (!first)
8092 first = sg;
8093 if (last)
8094 last->next = sg;
8095 last = sg;
8096 }
8097 last->next = first;
8098}
8099
9c1cfda2 8100#define SD_NODES_PER_DOMAIN 16
1da177e4 8101
9c1cfda2 8102#ifdef CONFIG_NUMA
198e2f18 8103
9c1cfda2
JH
8104/**
8105 * find_next_best_node - find the next node to include in a sched_domain
8106 * @node: node whose sched_domain we're building
8107 * @used_nodes: nodes already in the sched_domain
8108 *
41a2d6cf 8109 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8110 * finds the closest node not already in the @used_nodes map.
8111 *
8112 * Should use nodemask_t.
8113 */
c5f59f08 8114static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8115{
8116 int i, n, val, min_val, best_node = 0;
8117
8118 min_val = INT_MAX;
8119
076ac2af 8120 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8121 /* Start at @node */
076ac2af 8122 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8123
8124 if (!nr_cpus_node(n))
8125 continue;
8126
8127 /* Skip already used nodes */
c5f59f08 8128 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8129 continue;
8130
8131 /* Simple min distance search */
8132 val = node_distance(node, n);
8133
8134 if (val < min_val) {
8135 min_val = val;
8136 best_node = n;
8137 }
8138 }
8139
c5f59f08 8140 node_set(best_node, *used_nodes);
9c1cfda2
JH
8141 return best_node;
8142}
8143
8144/**
8145 * sched_domain_node_span - get a cpumask for a node's sched_domain
8146 * @node: node whose cpumask we're constructing
73486722 8147 * @span: resulting cpumask
9c1cfda2 8148 *
41a2d6cf 8149 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8150 * should be one that prevents unnecessary balancing, but also spreads tasks
8151 * out optimally.
8152 */
96f874e2 8153static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8154{
c5f59f08 8155 nodemask_t used_nodes;
48f24c4d 8156 int i;
9c1cfda2 8157
6ca09dfc 8158 cpumask_clear(span);
c5f59f08 8159 nodes_clear(used_nodes);
9c1cfda2 8160
6ca09dfc 8161 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8162 node_set(node, used_nodes);
9c1cfda2
JH
8163
8164 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8165 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8166
6ca09dfc 8167 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8168 }
9c1cfda2 8169}
6d6bc0ad 8170#endif /* CONFIG_NUMA */
9c1cfda2 8171
5c45bf27 8172int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8173
6c99e9ad
RR
8174/*
8175 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8176 *
8177 * ( See the the comments in include/linux/sched.h:struct sched_group
8178 * and struct sched_domain. )
6c99e9ad
RR
8179 */
8180struct static_sched_group {
8181 struct sched_group sg;
8182 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8183};
8184
8185struct static_sched_domain {
8186 struct sched_domain sd;
8187 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8188};
8189
9c1cfda2 8190/*
48f24c4d 8191 * SMT sched-domains:
9c1cfda2 8192 */
1da177e4 8193#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8194static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8195static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8196
41a2d6cf 8197static int
96f874e2
RR
8198cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8199 struct sched_group **sg, struct cpumask *unused)
1da177e4 8200{
6711cab4 8201 if (sg)
6c99e9ad 8202 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8203 return cpu;
8204}
6d6bc0ad 8205#endif /* CONFIG_SCHED_SMT */
1da177e4 8206
48f24c4d
IM
8207/*
8208 * multi-core sched-domains:
8209 */
1e9f28fa 8210#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8211static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8212static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8213#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8214
8215#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8216static int
96f874e2
RR
8217cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8218 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8219{
6711cab4 8220 int group;
7c16ec58 8221
c69fc56d 8222 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8223 group = cpumask_first(mask);
6711cab4 8224 if (sg)
6c99e9ad 8225 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8226 return group;
1e9f28fa
SS
8227}
8228#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8229static int
96f874e2
RR
8230cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8231 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8232{
6711cab4 8233 if (sg)
6c99e9ad 8234 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8235 return cpu;
8236}
8237#endif
8238
6c99e9ad
RR
8239static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8240static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8241
41a2d6cf 8242static int
96f874e2
RR
8243cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8244 struct sched_group **sg, struct cpumask *mask)
1da177e4 8245{
6711cab4 8246 int group;
48f24c4d 8247#ifdef CONFIG_SCHED_MC
6ca09dfc 8248 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8249 group = cpumask_first(mask);
1e9f28fa 8250#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8251 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8252 group = cpumask_first(mask);
1da177e4 8253#else
6711cab4 8254 group = cpu;
1da177e4 8255#endif
6711cab4 8256 if (sg)
6c99e9ad 8257 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8258 return group;
1da177e4
LT
8259}
8260
8261#ifdef CONFIG_NUMA
1da177e4 8262/*
9c1cfda2
JH
8263 * The init_sched_build_groups can't handle what we want to do with node
8264 * groups, so roll our own. Now each node has its own list of groups which
8265 * gets dynamically allocated.
1da177e4 8266 */
62ea9ceb 8267static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8268static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8269
62ea9ceb 8270static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8271static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8272
96f874e2
RR
8273static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8274 struct sched_group **sg,
8275 struct cpumask *nodemask)
9c1cfda2 8276{
6711cab4
SS
8277 int group;
8278
6ca09dfc 8279 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8280 group = cpumask_first(nodemask);
6711cab4
SS
8281
8282 if (sg)
6c99e9ad 8283 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8284 return group;
1da177e4 8285}
6711cab4 8286
08069033
SS
8287static void init_numa_sched_groups_power(struct sched_group *group_head)
8288{
8289 struct sched_group *sg = group_head;
8290 int j;
8291
8292 if (!sg)
8293 return;
3a5c359a 8294 do {
758b2cdc 8295 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8296 struct sched_domain *sd;
08069033 8297
6c99e9ad 8298 sd = &per_cpu(phys_domains, j).sd;
13318a71 8299 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8300 /*
8301 * Only add "power" once for each
8302 * physical package.
8303 */
8304 continue;
8305 }
08069033 8306
3a5c359a
AK
8307 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8308 }
8309 sg = sg->next;
8310 } while (sg != group_head);
08069033 8311}
6d6bc0ad 8312#endif /* CONFIG_NUMA */
1da177e4 8313
a616058b 8314#ifdef CONFIG_NUMA
51888ca2 8315/* Free memory allocated for various sched_group structures */
96f874e2
RR
8316static void free_sched_groups(const struct cpumask *cpu_map,
8317 struct cpumask *nodemask)
51888ca2 8318{
a616058b 8319 int cpu, i;
51888ca2 8320
abcd083a 8321 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8322 struct sched_group **sched_group_nodes
8323 = sched_group_nodes_bycpu[cpu];
8324
51888ca2
SV
8325 if (!sched_group_nodes)
8326 continue;
8327
076ac2af 8328 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8329 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8330
6ca09dfc 8331 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8332 if (cpumask_empty(nodemask))
51888ca2
SV
8333 continue;
8334
8335 if (sg == NULL)
8336 continue;
8337 sg = sg->next;
8338next_sg:
8339 oldsg = sg;
8340 sg = sg->next;
8341 kfree(oldsg);
8342 if (oldsg != sched_group_nodes[i])
8343 goto next_sg;
8344 }
8345 kfree(sched_group_nodes);
8346 sched_group_nodes_bycpu[cpu] = NULL;
8347 }
51888ca2 8348}
6d6bc0ad 8349#else /* !CONFIG_NUMA */
96f874e2
RR
8350static void free_sched_groups(const struct cpumask *cpu_map,
8351 struct cpumask *nodemask)
a616058b
SS
8352{
8353}
6d6bc0ad 8354#endif /* CONFIG_NUMA */
51888ca2 8355
89c4710e
SS
8356/*
8357 * Initialize sched groups cpu_power.
8358 *
8359 * cpu_power indicates the capacity of sched group, which is used while
8360 * distributing the load between different sched groups in a sched domain.
8361 * Typically cpu_power for all the groups in a sched domain will be same unless
8362 * there are asymmetries in the topology. If there are asymmetries, group
8363 * having more cpu_power will pickup more load compared to the group having
8364 * less cpu_power.
8365 *
8366 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8367 * the maximum number of tasks a group can handle in the presence of other idle
8368 * or lightly loaded groups in the same sched domain.
8369 */
8370static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8371{
8372 struct sched_domain *child;
8373 struct sched_group *group;
8374
8375 WARN_ON(!sd || !sd->groups);
8376
13318a71 8377 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8378 return;
8379
8380 child = sd->child;
8381
5517d86b
ED
8382 sd->groups->__cpu_power = 0;
8383
89c4710e
SS
8384 /*
8385 * For perf policy, if the groups in child domain share resources
8386 * (for example cores sharing some portions of the cache hierarchy
8387 * or SMT), then set this domain groups cpu_power such that each group
8388 * can handle only one task, when there are other idle groups in the
8389 * same sched domain.
8390 */
8391 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8392 (child->flags &
8393 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8394 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8395 return;
8396 }
8397
89c4710e
SS
8398 /*
8399 * add cpu_power of each child group to this groups cpu_power
8400 */
8401 group = child->groups;
8402 do {
5517d86b 8403 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8404 group = group->next;
8405 } while (group != child->groups);
8406}
8407
7c16ec58
MT
8408/*
8409 * Initializers for schedule domains
8410 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8411 */
8412
a5d8c348
IM
8413#ifdef CONFIG_SCHED_DEBUG
8414# define SD_INIT_NAME(sd, type) sd->name = #type
8415#else
8416# define SD_INIT_NAME(sd, type) do { } while (0)
8417#endif
8418
7c16ec58 8419#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8420
7c16ec58
MT
8421#define SD_INIT_FUNC(type) \
8422static noinline void sd_init_##type(struct sched_domain *sd) \
8423{ \
8424 memset(sd, 0, sizeof(*sd)); \
8425 *sd = SD_##type##_INIT; \
1d3504fc 8426 sd->level = SD_LV_##type; \
a5d8c348 8427 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8428}
8429
8430SD_INIT_FUNC(CPU)
8431#ifdef CONFIG_NUMA
8432 SD_INIT_FUNC(ALLNODES)
8433 SD_INIT_FUNC(NODE)
8434#endif
8435#ifdef CONFIG_SCHED_SMT
8436 SD_INIT_FUNC(SIBLING)
8437#endif
8438#ifdef CONFIG_SCHED_MC
8439 SD_INIT_FUNC(MC)
8440#endif
8441
1d3504fc
HS
8442static int default_relax_domain_level = -1;
8443
8444static int __init setup_relax_domain_level(char *str)
8445{
30e0e178
LZ
8446 unsigned long val;
8447
8448 val = simple_strtoul(str, NULL, 0);
8449 if (val < SD_LV_MAX)
8450 default_relax_domain_level = val;
8451
1d3504fc
HS
8452 return 1;
8453}
8454__setup("relax_domain_level=", setup_relax_domain_level);
8455
8456static void set_domain_attribute(struct sched_domain *sd,
8457 struct sched_domain_attr *attr)
8458{
8459 int request;
8460
8461 if (!attr || attr->relax_domain_level < 0) {
8462 if (default_relax_domain_level < 0)
8463 return;
8464 else
8465 request = default_relax_domain_level;
8466 } else
8467 request = attr->relax_domain_level;
8468 if (request < sd->level) {
8469 /* turn off idle balance on this domain */
8470 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8471 } else {
8472 /* turn on idle balance on this domain */
8473 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8474 }
8475}
8476
1da177e4 8477/*
1a20ff27
DG
8478 * Build sched domains for a given set of cpus and attach the sched domains
8479 * to the individual cpus
1da177e4 8480 */
96f874e2 8481static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8482 struct sched_domain_attr *attr)
1da177e4 8483{
3404c8d9 8484 int i, err = -ENOMEM;
57d885fe 8485 struct root_domain *rd;
3404c8d9
RR
8486 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8487 tmpmask;
d1b55138 8488#ifdef CONFIG_NUMA
3404c8d9 8489 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8490 struct sched_group **sched_group_nodes = NULL;
6711cab4 8491 int sd_allnodes = 0;
d1b55138 8492
3404c8d9
RR
8493 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8494 goto out;
8495 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8496 goto free_domainspan;
8497 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8498 goto free_covered;
8499#endif
8500
8501 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8502 goto free_notcovered;
8503 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8504 goto free_nodemask;
8505 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8506 goto free_this_sibling_map;
8507 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8508 goto free_this_core_map;
8509 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8510 goto free_send_covered;
8511
8512#ifdef CONFIG_NUMA
d1b55138
JH
8513 /*
8514 * Allocate the per-node list of sched groups
8515 */
076ac2af 8516 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8517 GFP_KERNEL);
d1b55138
JH
8518 if (!sched_group_nodes) {
8519 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8520 goto free_tmpmask;
d1b55138 8521 }
d1b55138 8522#endif
1da177e4 8523
dc938520 8524 rd = alloc_rootdomain();
57d885fe
GH
8525 if (!rd) {
8526 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8527 goto free_sched_groups;
57d885fe
GH
8528 }
8529
7c16ec58 8530#ifdef CONFIG_NUMA
96f874e2 8531 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8532#endif
8533
1da177e4 8534 /*
1a20ff27 8535 * Set up domains for cpus specified by the cpu_map.
1da177e4 8536 */
abcd083a 8537 for_each_cpu(i, cpu_map) {
1da177e4 8538 struct sched_domain *sd = NULL, *p;
1da177e4 8539
6ca09dfc 8540 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8541
8542#ifdef CONFIG_NUMA
96f874e2
RR
8543 if (cpumask_weight(cpu_map) >
8544 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8545 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8546 SD_INIT(sd, ALLNODES);
1d3504fc 8547 set_domain_attribute(sd, attr);
758b2cdc 8548 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8549 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8550 p = sd;
6711cab4 8551 sd_allnodes = 1;
9c1cfda2
JH
8552 } else
8553 p = NULL;
8554
62ea9ceb 8555 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8556 SD_INIT(sd, NODE);
1d3504fc 8557 set_domain_attribute(sd, attr);
758b2cdc 8558 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8559 sd->parent = p;
1a848870
SS
8560 if (p)
8561 p->child = sd;
758b2cdc
RR
8562 cpumask_and(sched_domain_span(sd),
8563 sched_domain_span(sd), cpu_map);
1da177e4
LT
8564#endif
8565
8566 p = sd;
6c99e9ad 8567 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8568 SD_INIT(sd, CPU);
1d3504fc 8569 set_domain_attribute(sd, attr);
758b2cdc 8570 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8571 sd->parent = p;
1a848870
SS
8572 if (p)
8573 p->child = sd;
7c16ec58 8574 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8575
1e9f28fa
SS
8576#ifdef CONFIG_SCHED_MC
8577 p = sd;
6c99e9ad 8578 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8579 SD_INIT(sd, MC);
1d3504fc 8580 set_domain_attribute(sd, attr);
6ca09dfc
MT
8581 cpumask_and(sched_domain_span(sd), cpu_map,
8582 cpu_coregroup_mask(i));
1e9f28fa 8583 sd->parent = p;
1a848870 8584 p->child = sd;
7c16ec58 8585 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8586#endif
8587
1da177e4
LT
8588#ifdef CONFIG_SCHED_SMT
8589 p = sd;
6c99e9ad 8590 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8591 SD_INIT(sd, SIBLING);
1d3504fc 8592 set_domain_attribute(sd, attr);
758b2cdc 8593 cpumask_and(sched_domain_span(sd),
c69fc56d 8594 topology_thread_cpumask(i), cpu_map);
1da177e4 8595 sd->parent = p;
1a848870 8596 p->child = sd;
7c16ec58 8597 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8598#endif
8599 }
8600
8601#ifdef CONFIG_SCHED_SMT
8602 /* Set up CPU (sibling) groups */
abcd083a 8603 for_each_cpu(i, cpu_map) {
96f874e2 8604 cpumask_and(this_sibling_map,
c69fc56d 8605 topology_thread_cpumask(i), cpu_map);
96f874e2 8606 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8607 continue;
8608
dd41f596 8609 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8610 &cpu_to_cpu_group,
8611 send_covered, tmpmask);
1da177e4
LT
8612 }
8613#endif
8614
1e9f28fa
SS
8615#ifdef CONFIG_SCHED_MC
8616 /* Set up multi-core groups */
abcd083a 8617 for_each_cpu(i, cpu_map) {
6ca09dfc 8618 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8619 if (i != cpumask_first(this_core_map))
1e9f28fa 8620 continue;
7c16ec58 8621
dd41f596 8622 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8623 &cpu_to_core_group,
8624 send_covered, tmpmask);
1e9f28fa
SS
8625 }
8626#endif
8627
1da177e4 8628 /* Set up physical groups */
076ac2af 8629 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8630 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8631 if (cpumask_empty(nodemask))
1da177e4
LT
8632 continue;
8633
7c16ec58
MT
8634 init_sched_build_groups(nodemask, cpu_map,
8635 &cpu_to_phys_group,
8636 send_covered, tmpmask);
1da177e4
LT
8637 }
8638
8639#ifdef CONFIG_NUMA
8640 /* Set up node groups */
7c16ec58 8641 if (sd_allnodes) {
7c16ec58
MT
8642 init_sched_build_groups(cpu_map, cpu_map,
8643 &cpu_to_allnodes_group,
8644 send_covered, tmpmask);
8645 }
9c1cfda2 8646
076ac2af 8647 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8648 /* Set up node groups */
8649 struct sched_group *sg, *prev;
9c1cfda2
JH
8650 int j;
8651
96f874e2 8652 cpumask_clear(covered);
6ca09dfc 8653 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8654 if (cpumask_empty(nodemask)) {
d1b55138 8655 sched_group_nodes[i] = NULL;
9c1cfda2 8656 continue;
d1b55138 8657 }
9c1cfda2 8658
4bdbaad3 8659 sched_domain_node_span(i, domainspan);
96f874e2 8660 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8661
6c99e9ad
RR
8662 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8663 GFP_KERNEL, i);
51888ca2
SV
8664 if (!sg) {
8665 printk(KERN_WARNING "Can not alloc domain group for "
8666 "node %d\n", i);
8667 goto error;
8668 }
9c1cfda2 8669 sched_group_nodes[i] = sg;
abcd083a 8670 for_each_cpu(j, nodemask) {
9c1cfda2 8671 struct sched_domain *sd;
9761eea8 8672
62ea9ceb 8673 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8674 sd->groups = sg;
9c1cfda2 8675 }
5517d86b 8676 sg->__cpu_power = 0;
758b2cdc 8677 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8678 sg->next = sg;
96f874e2 8679 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8680 prev = sg;
8681
076ac2af 8682 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8683 int n = (i + j) % nr_node_ids;
9c1cfda2 8684
96f874e2
RR
8685 cpumask_complement(notcovered, covered);
8686 cpumask_and(tmpmask, notcovered, cpu_map);
8687 cpumask_and(tmpmask, tmpmask, domainspan);
8688 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8689 break;
8690
6ca09dfc 8691 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8692 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8693 continue;
8694
6c99e9ad
RR
8695 sg = kmalloc_node(sizeof(struct sched_group) +
8696 cpumask_size(),
15f0b676 8697 GFP_KERNEL, i);
9c1cfda2
JH
8698 if (!sg) {
8699 printk(KERN_WARNING
8700 "Can not alloc domain group for node %d\n", j);
51888ca2 8701 goto error;
9c1cfda2 8702 }
5517d86b 8703 sg->__cpu_power = 0;
758b2cdc 8704 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8705 sg->next = prev->next;
96f874e2 8706 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8707 prev->next = sg;
8708 prev = sg;
8709 }
9c1cfda2 8710 }
1da177e4
LT
8711#endif
8712
8713 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8714#ifdef CONFIG_SCHED_SMT
abcd083a 8715 for_each_cpu(i, cpu_map) {
6c99e9ad 8716 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8717
89c4710e 8718 init_sched_groups_power(i, sd);
5c45bf27 8719 }
1da177e4 8720#endif
1e9f28fa 8721#ifdef CONFIG_SCHED_MC
abcd083a 8722 for_each_cpu(i, cpu_map) {
6c99e9ad 8723 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8724
89c4710e 8725 init_sched_groups_power(i, sd);
5c45bf27
SS
8726 }
8727#endif
1e9f28fa 8728
abcd083a 8729 for_each_cpu(i, cpu_map) {
6c99e9ad 8730 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8731
89c4710e 8732 init_sched_groups_power(i, sd);
1da177e4
LT
8733 }
8734
9c1cfda2 8735#ifdef CONFIG_NUMA
076ac2af 8736 for (i = 0; i < nr_node_ids; i++)
08069033 8737 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8738
6711cab4
SS
8739 if (sd_allnodes) {
8740 struct sched_group *sg;
f712c0c7 8741
96f874e2 8742 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8743 tmpmask);
f712c0c7
SS
8744 init_numa_sched_groups_power(sg);
8745 }
9c1cfda2
JH
8746#endif
8747
1da177e4 8748 /* Attach the domains */
abcd083a 8749 for_each_cpu(i, cpu_map) {
1da177e4
LT
8750 struct sched_domain *sd;
8751#ifdef CONFIG_SCHED_SMT
6c99e9ad 8752 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8753#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8754 sd = &per_cpu(core_domains, i).sd;
1da177e4 8755#else
6c99e9ad 8756 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8757#endif
57d885fe 8758 cpu_attach_domain(sd, rd, i);
1da177e4 8759 }
51888ca2 8760
3404c8d9
RR
8761 err = 0;
8762
8763free_tmpmask:
8764 free_cpumask_var(tmpmask);
8765free_send_covered:
8766 free_cpumask_var(send_covered);
8767free_this_core_map:
8768 free_cpumask_var(this_core_map);
8769free_this_sibling_map:
8770 free_cpumask_var(this_sibling_map);
8771free_nodemask:
8772 free_cpumask_var(nodemask);
8773free_notcovered:
8774#ifdef CONFIG_NUMA
8775 free_cpumask_var(notcovered);
8776free_covered:
8777 free_cpumask_var(covered);
8778free_domainspan:
8779 free_cpumask_var(domainspan);
8780out:
8781#endif
8782 return err;
8783
8784free_sched_groups:
8785#ifdef CONFIG_NUMA
8786 kfree(sched_group_nodes);
8787#endif
8788 goto free_tmpmask;
51888ca2 8789
a616058b 8790#ifdef CONFIG_NUMA
51888ca2 8791error:
7c16ec58 8792 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8793 free_rootdomain(rd);
3404c8d9 8794 goto free_tmpmask;
a616058b 8795#endif
1da177e4 8796}
029190c5 8797
96f874e2 8798static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8799{
8800 return __build_sched_domains(cpu_map, NULL);
8801}
8802
96f874e2 8803static struct cpumask *doms_cur; /* current sched domains */
029190c5 8804static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8805static struct sched_domain_attr *dattr_cur;
8806 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8807
8808/*
8809 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8810 * cpumask) fails, then fallback to a single sched domain,
8811 * as determined by the single cpumask fallback_doms.
029190c5 8812 */
4212823f 8813static cpumask_var_t fallback_doms;
029190c5 8814
ee79d1bd
HC
8815/*
8816 * arch_update_cpu_topology lets virtualized architectures update the
8817 * cpu core maps. It is supposed to return 1 if the topology changed
8818 * or 0 if it stayed the same.
8819 */
8820int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8821{
ee79d1bd 8822 return 0;
22e52b07
HC
8823}
8824
1a20ff27 8825/*
41a2d6cf 8826 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8827 * For now this just excludes isolated cpus, but could be used to
8828 * exclude other special cases in the future.
1a20ff27 8829 */
96f874e2 8830static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8831{
7378547f
MM
8832 int err;
8833
22e52b07 8834 arch_update_cpu_topology();
029190c5 8835 ndoms_cur = 1;
96f874e2 8836 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8837 if (!doms_cur)
4212823f 8838 doms_cur = fallback_doms;
dcc30a35 8839 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8840 dattr_cur = NULL;
7378547f 8841 err = build_sched_domains(doms_cur);
6382bc90 8842 register_sched_domain_sysctl();
7378547f
MM
8843
8844 return err;
1a20ff27
DG
8845}
8846
96f874e2
RR
8847static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8848 struct cpumask *tmpmask)
1da177e4 8849{
7c16ec58 8850 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8851}
1da177e4 8852
1a20ff27
DG
8853/*
8854 * Detach sched domains from a group of cpus specified in cpu_map
8855 * These cpus will now be attached to the NULL domain
8856 */
96f874e2 8857static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8858{
96f874e2
RR
8859 /* Save because hotplug lock held. */
8860 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8861 int i;
8862
abcd083a 8863 for_each_cpu(i, cpu_map)
57d885fe 8864 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8865 synchronize_sched();
96f874e2 8866 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8867}
8868
1d3504fc
HS
8869/* handle null as "default" */
8870static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8871 struct sched_domain_attr *new, int idx_new)
8872{
8873 struct sched_domain_attr tmp;
8874
8875 /* fast path */
8876 if (!new && !cur)
8877 return 1;
8878
8879 tmp = SD_ATTR_INIT;
8880 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8881 new ? (new + idx_new) : &tmp,
8882 sizeof(struct sched_domain_attr));
8883}
8884
029190c5
PJ
8885/*
8886 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8887 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8888 * doms_new[] to the current sched domain partitioning, doms_cur[].
8889 * It destroys each deleted domain and builds each new domain.
8890 *
96f874e2 8891 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8892 * The masks don't intersect (don't overlap.) We should setup one
8893 * sched domain for each mask. CPUs not in any of the cpumasks will
8894 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8895 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8896 * it as it is.
8897 *
41a2d6cf
IM
8898 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8899 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8900 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8901 * ndoms_new == 1, and partition_sched_domains() will fallback to
8902 * the single partition 'fallback_doms', it also forces the domains
8903 * to be rebuilt.
029190c5 8904 *
96f874e2 8905 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8906 * ndoms_new == 0 is a special case for destroying existing domains,
8907 * and it will not create the default domain.
dfb512ec 8908 *
029190c5
PJ
8909 * Call with hotplug lock held
8910 */
96f874e2
RR
8911/* FIXME: Change to struct cpumask *doms_new[] */
8912void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8913 struct sched_domain_attr *dattr_new)
029190c5 8914{
dfb512ec 8915 int i, j, n;
d65bd5ec 8916 int new_topology;
029190c5 8917
712555ee 8918 mutex_lock(&sched_domains_mutex);
a1835615 8919
7378547f
MM
8920 /* always unregister in case we don't destroy any domains */
8921 unregister_sched_domain_sysctl();
8922
d65bd5ec
HC
8923 /* Let architecture update cpu core mappings. */
8924 new_topology = arch_update_cpu_topology();
8925
dfb512ec 8926 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8927
8928 /* Destroy deleted domains */
8929 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8930 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8931 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8932 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8933 goto match1;
8934 }
8935 /* no match - a current sched domain not in new doms_new[] */
8936 detach_destroy_domains(doms_cur + i);
8937match1:
8938 ;
8939 }
8940
e761b772
MK
8941 if (doms_new == NULL) {
8942 ndoms_cur = 0;
4212823f 8943 doms_new = fallback_doms;
dcc30a35 8944 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8945 WARN_ON_ONCE(dattr_new);
e761b772
MK
8946 }
8947
029190c5
PJ
8948 /* Build new domains */
8949 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8950 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8951 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8952 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8953 goto match2;
8954 }
8955 /* no match - add a new doms_new */
1d3504fc
HS
8956 __build_sched_domains(doms_new + i,
8957 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8958match2:
8959 ;
8960 }
8961
8962 /* Remember the new sched domains */
4212823f 8963 if (doms_cur != fallback_doms)
029190c5 8964 kfree(doms_cur);
1d3504fc 8965 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8966 doms_cur = doms_new;
1d3504fc 8967 dattr_cur = dattr_new;
029190c5 8968 ndoms_cur = ndoms_new;
7378547f
MM
8969
8970 register_sched_domain_sysctl();
a1835615 8971
712555ee 8972 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8973}
8974
5c45bf27 8975#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8976static void arch_reinit_sched_domains(void)
5c45bf27 8977{
95402b38 8978 get_online_cpus();
dfb512ec
MK
8979
8980 /* Destroy domains first to force the rebuild */
8981 partition_sched_domains(0, NULL, NULL);
8982
e761b772 8983 rebuild_sched_domains();
95402b38 8984 put_online_cpus();
5c45bf27
SS
8985}
8986
8987static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8988{
afb8a9b7 8989 unsigned int level = 0;
5c45bf27 8990
afb8a9b7
GS
8991 if (sscanf(buf, "%u", &level) != 1)
8992 return -EINVAL;
8993
8994 /*
8995 * level is always be positive so don't check for
8996 * level < POWERSAVINGS_BALANCE_NONE which is 0
8997 * What happens on 0 or 1 byte write,
8998 * need to check for count as well?
8999 */
9000
9001 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9002 return -EINVAL;
9003
9004 if (smt)
afb8a9b7 9005 sched_smt_power_savings = level;
5c45bf27 9006 else
afb8a9b7 9007 sched_mc_power_savings = level;
5c45bf27 9008
c70f22d2 9009 arch_reinit_sched_domains();
5c45bf27 9010
c70f22d2 9011 return count;
5c45bf27
SS
9012}
9013
5c45bf27 9014#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9015static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9016 char *page)
5c45bf27
SS
9017{
9018 return sprintf(page, "%u\n", sched_mc_power_savings);
9019}
f718cd4a 9020static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9021 const char *buf, size_t count)
5c45bf27
SS
9022{
9023 return sched_power_savings_store(buf, count, 0);
9024}
f718cd4a
AK
9025static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9026 sched_mc_power_savings_show,
9027 sched_mc_power_savings_store);
5c45bf27
SS
9028#endif
9029
9030#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9031static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9032 char *page)
5c45bf27
SS
9033{
9034 return sprintf(page, "%u\n", sched_smt_power_savings);
9035}
f718cd4a 9036static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9037 const char *buf, size_t count)
5c45bf27
SS
9038{
9039 return sched_power_savings_store(buf, count, 1);
9040}
f718cd4a
AK
9041static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9042 sched_smt_power_savings_show,
6707de00
AB
9043 sched_smt_power_savings_store);
9044#endif
9045
39aac648 9046int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9047{
9048 int err = 0;
9049
9050#ifdef CONFIG_SCHED_SMT
9051 if (smt_capable())
9052 err = sysfs_create_file(&cls->kset.kobj,
9053 &attr_sched_smt_power_savings.attr);
9054#endif
9055#ifdef CONFIG_SCHED_MC
9056 if (!err && mc_capable())
9057 err = sysfs_create_file(&cls->kset.kobj,
9058 &attr_sched_mc_power_savings.attr);
9059#endif
9060 return err;
9061}
6d6bc0ad 9062#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9063
e761b772 9064#ifndef CONFIG_CPUSETS
1da177e4 9065/*
e761b772
MK
9066 * Add online and remove offline CPUs from the scheduler domains.
9067 * When cpusets are enabled they take over this function.
1da177e4
LT
9068 */
9069static int update_sched_domains(struct notifier_block *nfb,
9070 unsigned long action, void *hcpu)
e761b772
MK
9071{
9072 switch (action) {
9073 case CPU_ONLINE:
9074 case CPU_ONLINE_FROZEN:
9075 case CPU_DEAD:
9076 case CPU_DEAD_FROZEN:
dfb512ec 9077 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9078 return NOTIFY_OK;
9079
9080 default:
9081 return NOTIFY_DONE;
9082 }
9083}
9084#endif
9085
9086static int update_runtime(struct notifier_block *nfb,
9087 unsigned long action, void *hcpu)
1da177e4 9088{
7def2be1
PZ
9089 int cpu = (int)(long)hcpu;
9090
1da177e4 9091 switch (action) {
1da177e4 9092 case CPU_DOWN_PREPARE:
8bb78442 9093 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9094 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9095 return NOTIFY_OK;
9096
1da177e4 9097 case CPU_DOWN_FAILED:
8bb78442 9098 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9099 case CPU_ONLINE:
8bb78442 9100 case CPU_ONLINE_FROZEN:
7def2be1 9101 enable_runtime(cpu_rq(cpu));
e761b772
MK
9102 return NOTIFY_OK;
9103
1da177e4
LT
9104 default:
9105 return NOTIFY_DONE;
9106 }
1da177e4 9107}
1da177e4
LT
9108
9109void __init sched_init_smp(void)
9110{
dcc30a35
RR
9111 cpumask_var_t non_isolated_cpus;
9112
9113 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9114
434d53b0
MT
9115#if defined(CONFIG_NUMA)
9116 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9117 GFP_KERNEL);
9118 BUG_ON(sched_group_nodes_bycpu == NULL);
9119#endif
95402b38 9120 get_online_cpus();
712555ee 9121 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9122 arch_init_sched_domains(cpu_online_mask);
9123 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9124 if (cpumask_empty(non_isolated_cpus))
9125 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9126 mutex_unlock(&sched_domains_mutex);
95402b38 9127 put_online_cpus();
e761b772
MK
9128
9129#ifndef CONFIG_CPUSETS
1da177e4
LT
9130 /* XXX: Theoretical race here - CPU may be hotplugged now */
9131 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9132#endif
9133
9134 /* RT runtime code needs to handle some hotplug events */
9135 hotcpu_notifier(update_runtime, 0);
9136
b328ca18 9137 init_hrtick();
5c1e1767
NP
9138
9139 /* Move init over to a non-isolated CPU */
dcc30a35 9140 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9141 BUG();
19978ca6 9142 sched_init_granularity();
dcc30a35 9143 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9144
9145 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9146 init_sched_rt_class();
1da177e4
LT
9147}
9148#else
9149void __init sched_init_smp(void)
9150{
19978ca6 9151 sched_init_granularity();
1da177e4
LT
9152}
9153#endif /* CONFIG_SMP */
9154
cd1bb94b
AB
9155const_debug unsigned int sysctl_timer_migration = 1;
9156
1da177e4
LT
9157int in_sched_functions(unsigned long addr)
9158{
1da177e4
LT
9159 return in_lock_functions(addr) ||
9160 (addr >= (unsigned long)__sched_text_start
9161 && addr < (unsigned long)__sched_text_end);
9162}
9163
a9957449 9164static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9165{
9166 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9167 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9168#ifdef CONFIG_FAIR_GROUP_SCHED
9169 cfs_rq->rq = rq;
9170#endif
67e9fb2a 9171 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9172}
9173
fa85ae24
PZ
9174static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9175{
9176 struct rt_prio_array *array;
9177 int i;
9178
9179 array = &rt_rq->active;
9180 for (i = 0; i < MAX_RT_PRIO; i++) {
9181 INIT_LIST_HEAD(array->queue + i);
9182 __clear_bit(i, array->bitmap);
9183 }
9184 /* delimiter for bitsearch: */
9185 __set_bit(MAX_RT_PRIO, array->bitmap);
9186
052f1dc7 9187#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9188 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9189#ifdef CONFIG_SMP
e864c499 9190 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9191#endif
48d5e258 9192#endif
fa85ae24
PZ
9193#ifdef CONFIG_SMP
9194 rt_rq->rt_nr_migratory = 0;
fa85ae24 9195 rt_rq->overloaded = 0;
c20b08e3 9196 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9197#endif
9198
9199 rt_rq->rt_time = 0;
9200 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9201 rt_rq->rt_runtime = 0;
9202 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9203
052f1dc7 9204#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9205 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9206 rt_rq->rq = rq;
9207#endif
fa85ae24
PZ
9208}
9209
6f505b16 9210#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9211static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9212 struct sched_entity *se, int cpu, int add,
9213 struct sched_entity *parent)
6f505b16 9214{
ec7dc8ac 9215 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9216 tg->cfs_rq[cpu] = cfs_rq;
9217 init_cfs_rq(cfs_rq, rq);
9218 cfs_rq->tg = tg;
9219 if (add)
9220 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9221
9222 tg->se[cpu] = se;
354d60c2
DG
9223 /* se could be NULL for init_task_group */
9224 if (!se)
9225 return;
9226
ec7dc8ac
DG
9227 if (!parent)
9228 se->cfs_rq = &rq->cfs;
9229 else
9230 se->cfs_rq = parent->my_q;
9231
6f505b16
PZ
9232 se->my_q = cfs_rq;
9233 se->load.weight = tg->shares;
e05510d0 9234 se->load.inv_weight = 0;
ec7dc8ac 9235 se->parent = parent;
6f505b16 9236}
052f1dc7 9237#endif
6f505b16 9238
052f1dc7 9239#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9240static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9241 struct sched_rt_entity *rt_se, int cpu, int add,
9242 struct sched_rt_entity *parent)
6f505b16 9243{
ec7dc8ac
DG
9244 struct rq *rq = cpu_rq(cpu);
9245
6f505b16
PZ
9246 tg->rt_rq[cpu] = rt_rq;
9247 init_rt_rq(rt_rq, rq);
9248 rt_rq->tg = tg;
9249 rt_rq->rt_se = rt_se;
ac086bc2 9250 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9251 if (add)
9252 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9253
9254 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9255 if (!rt_se)
9256 return;
9257
ec7dc8ac
DG
9258 if (!parent)
9259 rt_se->rt_rq = &rq->rt;
9260 else
9261 rt_se->rt_rq = parent->my_q;
9262
6f505b16 9263 rt_se->my_q = rt_rq;
ec7dc8ac 9264 rt_se->parent = parent;
6f505b16
PZ
9265 INIT_LIST_HEAD(&rt_se->run_list);
9266}
9267#endif
9268
1da177e4
LT
9269void __init sched_init(void)
9270{
dd41f596 9271 int i, j;
434d53b0
MT
9272 unsigned long alloc_size = 0, ptr;
9273
9274#ifdef CONFIG_FAIR_GROUP_SCHED
9275 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9276#endif
9277#ifdef CONFIG_RT_GROUP_SCHED
9278 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9279#endif
9280#ifdef CONFIG_USER_SCHED
9281 alloc_size *= 2;
df7c8e84
RR
9282#endif
9283#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9284 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9285#endif
9286 /*
9287 * As sched_init() is called before page_alloc is setup,
9288 * we use alloc_bootmem().
9289 */
9290 if (alloc_size) {
36b7b6d4 9291 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9292
9293#ifdef CONFIG_FAIR_GROUP_SCHED
9294 init_task_group.se = (struct sched_entity **)ptr;
9295 ptr += nr_cpu_ids * sizeof(void **);
9296
9297 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9298 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9299
9300#ifdef CONFIG_USER_SCHED
9301 root_task_group.se = (struct sched_entity **)ptr;
9302 ptr += nr_cpu_ids * sizeof(void **);
9303
9304 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9305 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9306#endif /* CONFIG_USER_SCHED */
9307#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9308#ifdef CONFIG_RT_GROUP_SCHED
9309 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9310 ptr += nr_cpu_ids * sizeof(void **);
9311
9312 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9313 ptr += nr_cpu_ids * sizeof(void **);
9314
9315#ifdef CONFIG_USER_SCHED
9316 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9317 ptr += nr_cpu_ids * sizeof(void **);
9318
9319 root_task_group.rt_rq = (struct rt_rq **)ptr;
9320 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9321#endif /* CONFIG_USER_SCHED */
9322#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9323#ifdef CONFIG_CPUMASK_OFFSTACK
9324 for_each_possible_cpu(i) {
9325 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9326 ptr += cpumask_size();
9327 }
9328#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9329 }
dd41f596 9330
57d885fe
GH
9331#ifdef CONFIG_SMP
9332 init_defrootdomain();
9333#endif
9334
d0b27fa7
PZ
9335 init_rt_bandwidth(&def_rt_bandwidth,
9336 global_rt_period(), global_rt_runtime());
9337
9338#ifdef CONFIG_RT_GROUP_SCHED
9339 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9340 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9341#ifdef CONFIG_USER_SCHED
9342 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9343 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9344#endif /* CONFIG_USER_SCHED */
9345#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9346
052f1dc7 9347#ifdef CONFIG_GROUP_SCHED
6f505b16 9348 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9349 INIT_LIST_HEAD(&init_task_group.children);
9350
9351#ifdef CONFIG_USER_SCHED
9352 INIT_LIST_HEAD(&root_task_group.children);
9353 init_task_group.parent = &root_task_group;
9354 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9355#endif /* CONFIG_USER_SCHED */
9356#endif /* CONFIG_GROUP_SCHED */
6f505b16 9357
0a945022 9358 for_each_possible_cpu(i) {
70b97a7f 9359 struct rq *rq;
1da177e4
LT
9360
9361 rq = cpu_rq(i);
9362 spin_lock_init(&rq->lock);
7897986b 9363 rq->nr_running = 0;
dce48a84
TG
9364 rq->calc_load_active = 0;
9365 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9366 init_cfs_rq(&rq->cfs, rq);
6f505b16 9367 init_rt_rq(&rq->rt, rq);
dd41f596 9368#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9369 init_task_group.shares = init_task_group_load;
6f505b16 9370 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9371#ifdef CONFIG_CGROUP_SCHED
9372 /*
9373 * How much cpu bandwidth does init_task_group get?
9374 *
9375 * In case of task-groups formed thr' the cgroup filesystem, it
9376 * gets 100% of the cpu resources in the system. This overall
9377 * system cpu resource is divided among the tasks of
9378 * init_task_group and its child task-groups in a fair manner,
9379 * based on each entity's (task or task-group's) weight
9380 * (se->load.weight).
9381 *
9382 * In other words, if init_task_group has 10 tasks of weight
9383 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9384 * then A0's share of the cpu resource is:
9385 *
0d905bca 9386 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9387 *
9388 * We achieve this by letting init_task_group's tasks sit
9389 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9390 */
ec7dc8ac 9391 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9392#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9393 root_task_group.shares = NICE_0_LOAD;
9394 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9395 /*
9396 * In case of task-groups formed thr' the user id of tasks,
9397 * init_task_group represents tasks belonging to root user.
9398 * Hence it forms a sibling of all subsequent groups formed.
9399 * In this case, init_task_group gets only a fraction of overall
9400 * system cpu resource, based on the weight assigned to root
9401 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9402 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9403 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9404 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9405 */
ec7dc8ac 9406 init_tg_cfs_entry(&init_task_group,
84e9dabf 9407 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9408 &per_cpu(init_sched_entity, i), i, 1,
9409 root_task_group.se[i]);
6f505b16 9410
052f1dc7 9411#endif
354d60c2
DG
9412#endif /* CONFIG_FAIR_GROUP_SCHED */
9413
9414 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9415#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9416 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9417#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9418 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9419#elif defined CONFIG_USER_SCHED
eff766a6 9420 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9421 init_tg_rt_entry(&init_task_group,
6f505b16 9422 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9423 &per_cpu(init_sched_rt_entity, i), i, 1,
9424 root_task_group.rt_se[i]);
354d60c2 9425#endif
dd41f596 9426#endif
1da177e4 9427
dd41f596
IM
9428 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9429 rq->cpu_load[j] = 0;
1da177e4 9430#ifdef CONFIG_SMP
41c7ce9a 9431 rq->sd = NULL;
57d885fe 9432 rq->rd = NULL;
3f029d3c 9433 rq->post_schedule = 0;
1da177e4 9434 rq->active_balance = 0;
dd41f596 9435 rq->next_balance = jiffies;
1da177e4 9436 rq->push_cpu = 0;
0a2966b4 9437 rq->cpu = i;
1f11eb6a 9438 rq->online = 0;
1da177e4
LT
9439 rq->migration_thread = NULL;
9440 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9441 rq_attach_root(rq, &def_root_domain);
1da177e4 9442#endif
8f4d37ec 9443 init_rq_hrtick(rq);
1da177e4 9444 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9445 }
9446
2dd73a4f 9447 set_load_weight(&init_task);
b50f60ce 9448
e107be36
AK
9449#ifdef CONFIG_PREEMPT_NOTIFIERS
9450 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9451#endif
9452
c9819f45 9453#ifdef CONFIG_SMP
962cf36c 9454 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9455#endif
9456
b50f60ce
HC
9457#ifdef CONFIG_RT_MUTEXES
9458 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9459#endif
9460
1da177e4
LT
9461 /*
9462 * The boot idle thread does lazy MMU switching as well:
9463 */
9464 atomic_inc(&init_mm.mm_count);
9465 enter_lazy_tlb(&init_mm, current);
9466
9467 /*
9468 * Make us the idle thread. Technically, schedule() should not be
9469 * called from this thread, however somewhere below it might be,
9470 * but because we are the idle thread, we just pick up running again
9471 * when this runqueue becomes "idle".
9472 */
9473 init_idle(current, smp_processor_id());
dce48a84
TG
9474
9475 calc_load_update = jiffies + LOAD_FREQ;
9476
dd41f596
IM
9477 /*
9478 * During early bootup we pretend to be a normal task:
9479 */
9480 current->sched_class = &fair_sched_class;
6892b75e 9481
6a7b3dc3 9482 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9483 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9484#ifdef CONFIG_SMP
7d1e6a9b 9485#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9486 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9487 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9488#endif
4bdddf8f 9489 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9490#endif /* SMP */
6a7b3dc3 9491
0d905bca
IM
9492 perf_counter_init();
9493
6892b75e 9494 scheduler_running = 1;
1da177e4
LT
9495}
9496
9497#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9498static inline int preempt_count_equals(int preempt_offset)
9499{
9500 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9501
9502 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9503}
9504
9505void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9506{
48f24c4d 9507#ifdef in_atomic
1da177e4
LT
9508 static unsigned long prev_jiffy; /* ratelimiting */
9509
e4aafea2
FW
9510 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9511 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9512 return;
9513 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9514 return;
9515 prev_jiffy = jiffies;
9516
9517 printk(KERN_ERR
9518 "BUG: sleeping function called from invalid context at %s:%d\n",
9519 file, line);
9520 printk(KERN_ERR
9521 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9522 in_atomic(), irqs_disabled(),
9523 current->pid, current->comm);
9524
9525 debug_show_held_locks(current);
9526 if (irqs_disabled())
9527 print_irqtrace_events(current);
9528 dump_stack();
1da177e4
LT
9529#endif
9530}
9531EXPORT_SYMBOL(__might_sleep);
9532#endif
9533
9534#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9535static void normalize_task(struct rq *rq, struct task_struct *p)
9536{
9537 int on_rq;
3e51f33f 9538
3a5e4dc1
AK
9539 update_rq_clock(rq);
9540 on_rq = p->se.on_rq;
9541 if (on_rq)
9542 deactivate_task(rq, p, 0);
9543 __setscheduler(rq, p, SCHED_NORMAL, 0);
9544 if (on_rq) {
9545 activate_task(rq, p, 0);
9546 resched_task(rq->curr);
9547 }
9548}
9549
1da177e4
LT
9550void normalize_rt_tasks(void)
9551{
a0f98a1c 9552 struct task_struct *g, *p;
1da177e4 9553 unsigned long flags;
70b97a7f 9554 struct rq *rq;
1da177e4 9555
4cf5d77a 9556 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9557 do_each_thread(g, p) {
178be793
IM
9558 /*
9559 * Only normalize user tasks:
9560 */
9561 if (!p->mm)
9562 continue;
9563
6cfb0d5d 9564 p->se.exec_start = 0;
6cfb0d5d 9565#ifdef CONFIG_SCHEDSTATS
dd41f596 9566 p->se.wait_start = 0;
dd41f596 9567 p->se.sleep_start = 0;
dd41f596 9568 p->se.block_start = 0;
6cfb0d5d 9569#endif
dd41f596
IM
9570
9571 if (!rt_task(p)) {
9572 /*
9573 * Renice negative nice level userspace
9574 * tasks back to 0:
9575 */
9576 if (TASK_NICE(p) < 0 && p->mm)
9577 set_user_nice(p, 0);
1da177e4 9578 continue;
dd41f596 9579 }
1da177e4 9580
4cf5d77a 9581 spin_lock(&p->pi_lock);
b29739f9 9582 rq = __task_rq_lock(p);
1da177e4 9583
178be793 9584 normalize_task(rq, p);
3a5e4dc1 9585
b29739f9 9586 __task_rq_unlock(rq);
4cf5d77a 9587 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9588 } while_each_thread(g, p);
9589
4cf5d77a 9590 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9591}
9592
9593#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9594
9595#ifdef CONFIG_IA64
9596/*
9597 * These functions are only useful for the IA64 MCA handling.
9598 *
9599 * They can only be called when the whole system has been
9600 * stopped - every CPU needs to be quiescent, and no scheduling
9601 * activity can take place. Using them for anything else would
9602 * be a serious bug, and as a result, they aren't even visible
9603 * under any other configuration.
9604 */
9605
9606/**
9607 * curr_task - return the current task for a given cpu.
9608 * @cpu: the processor in question.
9609 *
9610 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9611 */
36c8b586 9612struct task_struct *curr_task(int cpu)
1df5c10a
LT
9613{
9614 return cpu_curr(cpu);
9615}
9616
9617/**
9618 * set_curr_task - set the current task for a given cpu.
9619 * @cpu: the processor in question.
9620 * @p: the task pointer to set.
9621 *
9622 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9623 * are serviced on a separate stack. It allows the architecture to switch the
9624 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9625 * must be called with all CPU's synchronized, and interrupts disabled, the
9626 * and caller must save the original value of the current task (see
9627 * curr_task() above) and restore that value before reenabling interrupts and
9628 * re-starting the system.
9629 *
9630 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9631 */
36c8b586 9632void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9633{
9634 cpu_curr(cpu) = p;
9635}
9636
9637#endif
29f59db3 9638
bccbe08a
PZ
9639#ifdef CONFIG_FAIR_GROUP_SCHED
9640static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9641{
9642 int i;
9643
9644 for_each_possible_cpu(i) {
9645 if (tg->cfs_rq)
9646 kfree(tg->cfs_rq[i]);
9647 if (tg->se)
9648 kfree(tg->se[i]);
6f505b16
PZ
9649 }
9650
9651 kfree(tg->cfs_rq);
9652 kfree(tg->se);
6f505b16
PZ
9653}
9654
ec7dc8ac
DG
9655static
9656int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9657{
29f59db3 9658 struct cfs_rq *cfs_rq;
eab17229 9659 struct sched_entity *se;
9b5b7751 9660 struct rq *rq;
29f59db3
SV
9661 int i;
9662
434d53b0 9663 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9664 if (!tg->cfs_rq)
9665 goto err;
434d53b0 9666 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9667 if (!tg->se)
9668 goto err;
052f1dc7
PZ
9669
9670 tg->shares = NICE_0_LOAD;
29f59db3
SV
9671
9672 for_each_possible_cpu(i) {
9b5b7751 9673 rq = cpu_rq(i);
29f59db3 9674
eab17229
LZ
9675 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9676 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9677 if (!cfs_rq)
9678 goto err;
9679
eab17229
LZ
9680 se = kzalloc_node(sizeof(struct sched_entity),
9681 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9682 if (!se)
9683 goto err;
9684
eab17229 9685 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9686 }
9687
9688 return 1;
9689
9690 err:
9691 return 0;
9692}
9693
9694static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9695{
9696 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9697 &cpu_rq(cpu)->leaf_cfs_rq_list);
9698}
9699
9700static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9701{
9702 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9703}
6d6bc0ad 9704#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9705static inline void free_fair_sched_group(struct task_group *tg)
9706{
9707}
9708
ec7dc8ac
DG
9709static inline
9710int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9711{
9712 return 1;
9713}
9714
9715static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9716{
9717}
9718
9719static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9720{
9721}
6d6bc0ad 9722#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9723
9724#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9725static void free_rt_sched_group(struct task_group *tg)
9726{
9727 int i;
9728
d0b27fa7
PZ
9729 destroy_rt_bandwidth(&tg->rt_bandwidth);
9730
bccbe08a
PZ
9731 for_each_possible_cpu(i) {
9732 if (tg->rt_rq)
9733 kfree(tg->rt_rq[i]);
9734 if (tg->rt_se)
9735 kfree(tg->rt_se[i]);
9736 }
9737
9738 kfree(tg->rt_rq);
9739 kfree(tg->rt_se);
9740}
9741
ec7dc8ac
DG
9742static
9743int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9744{
9745 struct rt_rq *rt_rq;
eab17229 9746 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9747 struct rq *rq;
9748 int i;
9749
434d53b0 9750 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9751 if (!tg->rt_rq)
9752 goto err;
434d53b0 9753 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9754 if (!tg->rt_se)
9755 goto err;
9756
d0b27fa7
PZ
9757 init_rt_bandwidth(&tg->rt_bandwidth,
9758 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9759
9760 for_each_possible_cpu(i) {
9761 rq = cpu_rq(i);
9762
eab17229
LZ
9763 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9764 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9765 if (!rt_rq)
9766 goto err;
29f59db3 9767
eab17229
LZ
9768 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9769 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9770 if (!rt_se)
9771 goto err;
29f59db3 9772
eab17229 9773 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9774 }
9775
bccbe08a
PZ
9776 return 1;
9777
9778 err:
9779 return 0;
9780}
9781
9782static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9783{
9784 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9785 &cpu_rq(cpu)->leaf_rt_rq_list);
9786}
9787
9788static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9789{
9790 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9791}
6d6bc0ad 9792#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9793static inline void free_rt_sched_group(struct task_group *tg)
9794{
9795}
9796
ec7dc8ac
DG
9797static inline
9798int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9799{
9800 return 1;
9801}
9802
9803static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9804{
9805}
9806
9807static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9808{
9809}
6d6bc0ad 9810#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9811
d0b27fa7 9812#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9813static void free_sched_group(struct task_group *tg)
9814{
9815 free_fair_sched_group(tg);
9816 free_rt_sched_group(tg);
9817 kfree(tg);
9818}
9819
9820/* allocate runqueue etc for a new task group */
ec7dc8ac 9821struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9822{
9823 struct task_group *tg;
9824 unsigned long flags;
9825 int i;
9826
9827 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9828 if (!tg)
9829 return ERR_PTR(-ENOMEM);
9830
ec7dc8ac 9831 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9832 goto err;
9833
ec7dc8ac 9834 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9835 goto err;
9836
8ed36996 9837 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9838 for_each_possible_cpu(i) {
bccbe08a
PZ
9839 register_fair_sched_group(tg, i);
9840 register_rt_sched_group(tg, i);
9b5b7751 9841 }
6f505b16 9842 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9843
9844 WARN_ON(!parent); /* root should already exist */
9845
9846 tg->parent = parent;
f473aa5e 9847 INIT_LIST_HEAD(&tg->children);
09f2724a 9848 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9849 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9850
9b5b7751 9851 return tg;
29f59db3
SV
9852
9853err:
6f505b16 9854 free_sched_group(tg);
29f59db3
SV
9855 return ERR_PTR(-ENOMEM);
9856}
9857
9b5b7751 9858/* rcu callback to free various structures associated with a task group */
6f505b16 9859static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9860{
29f59db3 9861 /* now it should be safe to free those cfs_rqs */
6f505b16 9862 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9863}
9864
9b5b7751 9865/* Destroy runqueue etc associated with a task group */
4cf86d77 9866void sched_destroy_group(struct task_group *tg)
29f59db3 9867{
8ed36996 9868 unsigned long flags;
9b5b7751 9869 int i;
29f59db3 9870
8ed36996 9871 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9872 for_each_possible_cpu(i) {
bccbe08a
PZ
9873 unregister_fair_sched_group(tg, i);
9874 unregister_rt_sched_group(tg, i);
9b5b7751 9875 }
6f505b16 9876 list_del_rcu(&tg->list);
f473aa5e 9877 list_del_rcu(&tg->siblings);
8ed36996 9878 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9879
9b5b7751 9880 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9881 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9882}
9883
9b5b7751 9884/* change task's runqueue when it moves between groups.
3a252015
IM
9885 * The caller of this function should have put the task in its new group
9886 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9887 * reflect its new group.
9b5b7751
SV
9888 */
9889void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9890{
9891 int on_rq, running;
9892 unsigned long flags;
9893 struct rq *rq;
9894
9895 rq = task_rq_lock(tsk, &flags);
9896
29f59db3
SV
9897 update_rq_clock(rq);
9898
051a1d1a 9899 running = task_current(rq, tsk);
29f59db3
SV
9900 on_rq = tsk->se.on_rq;
9901
0e1f3483 9902 if (on_rq)
29f59db3 9903 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9904 if (unlikely(running))
9905 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9906
6f505b16 9907 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9908
810b3817
PZ
9909#ifdef CONFIG_FAIR_GROUP_SCHED
9910 if (tsk->sched_class->moved_group)
9911 tsk->sched_class->moved_group(tsk);
9912#endif
9913
0e1f3483
HS
9914 if (unlikely(running))
9915 tsk->sched_class->set_curr_task(rq);
9916 if (on_rq)
7074badb 9917 enqueue_task(rq, tsk, 0);
29f59db3 9918
29f59db3
SV
9919 task_rq_unlock(rq, &flags);
9920}
6d6bc0ad 9921#endif /* CONFIG_GROUP_SCHED */
29f59db3 9922
052f1dc7 9923#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9924static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9925{
9926 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9927 int on_rq;
9928
29f59db3 9929 on_rq = se->on_rq;
62fb1851 9930 if (on_rq)
29f59db3
SV
9931 dequeue_entity(cfs_rq, se, 0);
9932
9933 se->load.weight = shares;
e05510d0 9934 se->load.inv_weight = 0;
29f59db3 9935
62fb1851 9936 if (on_rq)
29f59db3 9937 enqueue_entity(cfs_rq, se, 0);
c09595f6 9938}
62fb1851 9939
c09595f6
PZ
9940static void set_se_shares(struct sched_entity *se, unsigned long shares)
9941{
9942 struct cfs_rq *cfs_rq = se->cfs_rq;
9943 struct rq *rq = cfs_rq->rq;
9944 unsigned long flags;
9945
9946 spin_lock_irqsave(&rq->lock, flags);
9947 __set_se_shares(se, shares);
9948 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9949}
9950
8ed36996
PZ
9951static DEFINE_MUTEX(shares_mutex);
9952
4cf86d77 9953int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9954{
9955 int i;
8ed36996 9956 unsigned long flags;
c61935fd 9957
ec7dc8ac
DG
9958 /*
9959 * We can't change the weight of the root cgroup.
9960 */
9961 if (!tg->se[0])
9962 return -EINVAL;
9963
18d95a28
PZ
9964 if (shares < MIN_SHARES)
9965 shares = MIN_SHARES;
cb4ad1ff
MX
9966 else if (shares > MAX_SHARES)
9967 shares = MAX_SHARES;
62fb1851 9968
8ed36996 9969 mutex_lock(&shares_mutex);
9b5b7751 9970 if (tg->shares == shares)
5cb350ba 9971 goto done;
29f59db3 9972
8ed36996 9973 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9974 for_each_possible_cpu(i)
9975 unregister_fair_sched_group(tg, i);
f473aa5e 9976 list_del_rcu(&tg->siblings);
8ed36996 9977 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9978
9979 /* wait for any ongoing reference to this group to finish */
9980 synchronize_sched();
9981
9982 /*
9983 * Now we are free to modify the group's share on each cpu
9984 * w/o tripping rebalance_share or load_balance_fair.
9985 */
9b5b7751 9986 tg->shares = shares;
c09595f6
PZ
9987 for_each_possible_cpu(i) {
9988 /*
9989 * force a rebalance
9990 */
9991 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9992 set_se_shares(tg->se[i], shares);
c09595f6 9993 }
29f59db3 9994
6b2d7700
SV
9995 /*
9996 * Enable load balance activity on this group, by inserting it back on
9997 * each cpu's rq->leaf_cfs_rq_list.
9998 */
8ed36996 9999 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10000 for_each_possible_cpu(i)
10001 register_fair_sched_group(tg, i);
f473aa5e 10002 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10003 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10004done:
8ed36996 10005 mutex_unlock(&shares_mutex);
9b5b7751 10006 return 0;
29f59db3
SV
10007}
10008
5cb350ba
DG
10009unsigned long sched_group_shares(struct task_group *tg)
10010{
10011 return tg->shares;
10012}
052f1dc7 10013#endif
5cb350ba 10014
052f1dc7 10015#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10016/*
9f0c1e56 10017 * Ensure that the real time constraints are schedulable.
6f505b16 10018 */
9f0c1e56
PZ
10019static DEFINE_MUTEX(rt_constraints_mutex);
10020
10021static unsigned long to_ratio(u64 period, u64 runtime)
10022{
10023 if (runtime == RUNTIME_INF)
9a7e0b18 10024 return 1ULL << 20;
9f0c1e56 10025
9a7e0b18 10026 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10027}
10028
9a7e0b18
PZ
10029/* Must be called with tasklist_lock held */
10030static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10031{
9a7e0b18 10032 struct task_struct *g, *p;
b40b2e8e 10033
9a7e0b18
PZ
10034 do_each_thread(g, p) {
10035 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10036 return 1;
10037 } while_each_thread(g, p);
b40b2e8e 10038
9a7e0b18
PZ
10039 return 0;
10040}
b40b2e8e 10041
9a7e0b18
PZ
10042struct rt_schedulable_data {
10043 struct task_group *tg;
10044 u64 rt_period;
10045 u64 rt_runtime;
10046};
b40b2e8e 10047
9a7e0b18
PZ
10048static int tg_schedulable(struct task_group *tg, void *data)
10049{
10050 struct rt_schedulable_data *d = data;
10051 struct task_group *child;
10052 unsigned long total, sum = 0;
10053 u64 period, runtime;
b40b2e8e 10054
9a7e0b18
PZ
10055 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10056 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10057
9a7e0b18
PZ
10058 if (tg == d->tg) {
10059 period = d->rt_period;
10060 runtime = d->rt_runtime;
b40b2e8e 10061 }
b40b2e8e 10062
98a4826b
PZ
10063#ifdef CONFIG_USER_SCHED
10064 if (tg == &root_task_group) {
10065 period = global_rt_period();
10066 runtime = global_rt_runtime();
10067 }
10068#endif
10069
4653f803
PZ
10070 /*
10071 * Cannot have more runtime than the period.
10072 */
10073 if (runtime > period && runtime != RUNTIME_INF)
10074 return -EINVAL;
6f505b16 10075
4653f803
PZ
10076 /*
10077 * Ensure we don't starve existing RT tasks.
10078 */
9a7e0b18
PZ
10079 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10080 return -EBUSY;
6f505b16 10081
9a7e0b18 10082 total = to_ratio(period, runtime);
6f505b16 10083
4653f803
PZ
10084 /*
10085 * Nobody can have more than the global setting allows.
10086 */
10087 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10088 return -EINVAL;
6f505b16 10089
4653f803
PZ
10090 /*
10091 * The sum of our children's runtime should not exceed our own.
10092 */
9a7e0b18
PZ
10093 list_for_each_entry_rcu(child, &tg->children, siblings) {
10094 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10095 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10096
9a7e0b18
PZ
10097 if (child == d->tg) {
10098 period = d->rt_period;
10099 runtime = d->rt_runtime;
10100 }
6f505b16 10101
9a7e0b18 10102 sum += to_ratio(period, runtime);
9f0c1e56 10103 }
6f505b16 10104
9a7e0b18
PZ
10105 if (sum > total)
10106 return -EINVAL;
10107
10108 return 0;
6f505b16
PZ
10109}
10110
9a7e0b18 10111static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10112{
9a7e0b18
PZ
10113 struct rt_schedulable_data data = {
10114 .tg = tg,
10115 .rt_period = period,
10116 .rt_runtime = runtime,
10117 };
10118
10119 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10120}
10121
d0b27fa7
PZ
10122static int tg_set_bandwidth(struct task_group *tg,
10123 u64 rt_period, u64 rt_runtime)
6f505b16 10124{
ac086bc2 10125 int i, err = 0;
9f0c1e56 10126
9f0c1e56 10127 mutex_lock(&rt_constraints_mutex);
521f1a24 10128 read_lock(&tasklist_lock);
9a7e0b18
PZ
10129 err = __rt_schedulable(tg, rt_period, rt_runtime);
10130 if (err)
9f0c1e56 10131 goto unlock;
ac086bc2
PZ
10132
10133 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10134 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10135 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10136
10137 for_each_possible_cpu(i) {
10138 struct rt_rq *rt_rq = tg->rt_rq[i];
10139
10140 spin_lock(&rt_rq->rt_runtime_lock);
10141 rt_rq->rt_runtime = rt_runtime;
10142 spin_unlock(&rt_rq->rt_runtime_lock);
10143 }
10144 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10145 unlock:
521f1a24 10146 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10147 mutex_unlock(&rt_constraints_mutex);
10148
10149 return err;
6f505b16
PZ
10150}
10151
d0b27fa7
PZ
10152int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10153{
10154 u64 rt_runtime, rt_period;
10155
10156 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10157 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10158 if (rt_runtime_us < 0)
10159 rt_runtime = RUNTIME_INF;
10160
10161 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10162}
10163
9f0c1e56
PZ
10164long sched_group_rt_runtime(struct task_group *tg)
10165{
10166 u64 rt_runtime_us;
10167
d0b27fa7 10168 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10169 return -1;
10170
d0b27fa7 10171 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10172 do_div(rt_runtime_us, NSEC_PER_USEC);
10173 return rt_runtime_us;
10174}
d0b27fa7
PZ
10175
10176int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10177{
10178 u64 rt_runtime, rt_period;
10179
10180 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10181 rt_runtime = tg->rt_bandwidth.rt_runtime;
10182
619b0488
R
10183 if (rt_period == 0)
10184 return -EINVAL;
10185
d0b27fa7
PZ
10186 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10187}
10188
10189long sched_group_rt_period(struct task_group *tg)
10190{
10191 u64 rt_period_us;
10192
10193 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10194 do_div(rt_period_us, NSEC_PER_USEC);
10195 return rt_period_us;
10196}
10197
10198static int sched_rt_global_constraints(void)
10199{
4653f803 10200 u64 runtime, period;
d0b27fa7
PZ
10201 int ret = 0;
10202
ec5d4989
HS
10203 if (sysctl_sched_rt_period <= 0)
10204 return -EINVAL;
10205
4653f803
PZ
10206 runtime = global_rt_runtime();
10207 period = global_rt_period();
10208
10209 /*
10210 * Sanity check on the sysctl variables.
10211 */
10212 if (runtime > period && runtime != RUNTIME_INF)
10213 return -EINVAL;
10b612f4 10214
d0b27fa7 10215 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10216 read_lock(&tasklist_lock);
4653f803 10217 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10218 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10219 mutex_unlock(&rt_constraints_mutex);
10220
10221 return ret;
10222}
54e99124
DG
10223
10224int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10225{
10226 /* Don't accept realtime tasks when there is no way for them to run */
10227 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10228 return 0;
10229
10230 return 1;
10231}
10232
6d6bc0ad 10233#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10234static int sched_rt_global_constraints(void)
10235{
ac086bc2
PZ
10236 unsigned long flags;
10237 int i;
10238
ec5d4989
HS
10239 if (sysctl_sched_rt_period <= 0)
10240 return -EINVAL;
10241
60aa605d
PZ
10242 /*
10243 * There's always some RT tasks in the root group
10244 * -- migration, kstopmachine etc..
10245 */
10246 if (sysctl_sched_rt_runtime == 0)
10247 return -EBUSY;
10248
ac086bc2
PZ
10249 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10250 for_each_possible_cpu(i) {
10251 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10252
10253 spin_lock(&rt_rq->rt_runtime_lock);
10254 rt_rq->rt_runtime = global_rt_runtime();
10255 spin_unlock(&rt_rq->rt_runtime_lock);
10256 }
10257 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10258
d0b27fa7
PZ
10259 return 0;
10260}
6d6bc0ad 10261#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10262
10263int sched_rt_handler(struct ctl_table *table, int write,
10264 struct file *filp, void __user *buffer, size_t *lenp,
10265 loff_t *ppos)
10266{
10267 int ret;
10268 int old_period, old_runtime;
10269 static DEFINE_MUTEX(mutex);
10270
10271 mutex_lock(&mutex);
10272 old_period = sysctl_sched_rt_period;
10273 old_runtime = sysctl_sched_rt_runtime;
10274
10275 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10276
10277 if (!ret && write) {
10278 ret = sched_rt_global_constraints();
10279 if (ret) {
10280 sysctl_sched_rt_period = old_period;
10281 sysctl_sched_rt_runtime = old_runtime;
10282 } else {
10283 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10284 def_rt_bandwidth.rt_period =
10285 ns_to_ktime(global_rt_period());
10286 }
10287 }
10288 mutex_unlock(&mutex);
10289
10290 return ret;
10291}
68318b8e 10292
052f1dc7 10293#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10294
10295/* return corresponding task_group object of a cgroup */
2b01dfe3 10296static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10297{
2b01dfe3
PM
10298 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10299 struct task_group, css);
68318b8e
SV
10300}
10301
10302static struct cgroup_subsys_state *
2b01dfe3 10303cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10304{
ec7dc8ac 10305 struct task_group *tg, *parent;
68318b8e 10306
2b01dfe3 10307 if (!cgrp->parent) {
68318b8e 10308 /* This is early initialization for the top cgroup */
68318b8e
SV
10309 return &init_task_group.css;
10310 }
10311
ec7dc8ac
DG
10312 parent = cgroup_tg(cgrp->parent);
10313 tg = sched_create_group(parent);
68318b8e
SV
10314 if (IS_ERR(tg))
10315 return ERR_PTR(-ENOMEM);
10316
68318b8e
SV
10317 return &tg->css;
10318}
10319
41a2d6cf
IM
10320static void
10321cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10322{
2b01dfe3 10323 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10324
10325 sched_destroy_group(tg);
10326}
10327
41a2d6cf
IM
10328static int
10329cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10330 struct task_struct *tsk)
68318b8e 10331{
b68aa230 10332#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10333 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10334 return -EINVAL;
10335#else
68318b8e
SV
10336 /* We don't support RT-tasks being in separate groups */
10337 if (tsk->sched_class != &fair_sched_class)
10338 return -EINVAL;
b68aa230 10339#endif
68318b8e
SV
10340
10341 return 0;
10342}
10343
10344static void
2b01dfe3 10345cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10346 struct cgroup *old_cont, struct task_struct *tsk)
10347{
10348 sched_move_task(tsk);
10349}
10350
052f1dc7 10351#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10352static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10353 u64 shareval)
68318b8e 10354{
2b01dfe3 10355 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10356}
10357
f4c753b7 10358static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10359{
2b01dfe3 10360 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10361
10362 return (u64) tg->shares;
10363}
6d6bc0ad 10364#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10365
052f1dc7 10366#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10367static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10368 s64 val)
6f505b16 10369{
06ecb27c 10370 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10371}
10372
06ecb27c 10373static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10374{
06ecb27c 10375 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10376}
d0b27fa7
PZ
10377
10378static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10379 u64 rt_period_us)
10380{
10381 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10382}
10383
10384static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10385{
10386 return sched_group_rt_period(cgroup_tg(cgrp));
10387}
6d6bc0ad 10388#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10389
fe5c7cc2 10390static struct cftype cpu_files[] = {
052f1dc7 10391#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10392 {
10393 .name = "shares",
f4c753b7
PM
10394 .read_u64 = cpu_shares_read_u64,
10395 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10396 },
052f1dc7
PZ
10397#endif
10398#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10399 {
9f0c1e56 10400 .name = "rt_runtime_us",
06ecb27c
PM
10401 .read_s64 = cpu_rt_runtime_read,
10402 .write_s64 = cpu_rt_runtime_write,
6f505b16 10403 },
d0b27fa7
PZ
10404 {
10405 .name = "rt_period_us",
f4c753b7
PM
10406 .read_u64 = cpu_rt_period_read_uint,
10407 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10408 },
052f1dc7 10409#endif
68318b8e
SV
10410};
10411
10412static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10413{
fe5c7cc2 10414 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10415}
10416
10417struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10418 .name = "cpu",
10419 .create = cpu_cgroup_create,
10420 .destroy = cpu_cgroup_destroy,
10421 .can_attach = cpu_cgroup_can_attach,
10422 .attach = cpu_cgroup_attach,
10423 .populate = cpu_cgroup_populate,
10424 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10425 .early_init = 1,
10426};
10427
052f1dc7 10428#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10429
10430#ifdef CONFIG_CGROUP_CPUACCT
10431
10432/*
10433 * CPU accounting code for task groups.
10434 *
10435 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10436 * (balbir@in.ibm.com).
10437 */
10438
934352f2 10439/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10440struct cpuacct {
10441 struct cgroup_subsys_state css;
10442 /* cpuusage holds pointer to a u64-type object on every cpu */
10443 u64 *cpuusage;
ef12fefa 10444 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10445 struct cpuacct *parent;
d842de87
SV
10446};
10447
10448struct cgroup_subsys cpuacct_subsys;
10449
10450/* return cpu accounting group corresponding to this container */
32cd756a 10451static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10452{
32cd756a 10453 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10454 struct cpuacct, css);
10455}
10456
10457/* return cpu accounting group to which this task belongs */
10458static inline struct cpuacct *task_ca(struct task_struct *tsk)
10459{
10460 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10461 struct cpuacct, css);
10462}
10463
10464/* create a new cpu accounting group */
10465static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10466 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10467{
10468 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10469 int i;
d842de87
SV
10470
10471 if (!ca)
ef12fefa 10472 goto out;
d842de87
SV
10473
10474 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10475 if (!ca->cpuusage)
10476 goto out_free_ca;
10477
10478 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10479 if (percpu_counter_init(&ca->cpustat[i], 0))
10480 goto out_free_counters;
d842de87 10481
934352f2
BR
10482 if (cgrp->parent)
10483 ca->parent = cgroup_ca(cgrp->parent);
10484
d842de87 10485 return &ca->css;
ef12fefa
BR
10486
10487out_free_counters:
10488 while (--i >= 0)
10489 percpu_counter_destroy(&ca->cpustat[i]);
10490 free_percpu(ca->cpuusage);
10491out_free_ca:
10492 kfree(ca);
10493out:
10494 return ERR_PTR(-ENOMEM);
d842de87
SV
10495}
10496
10497/* destroy an existing cpu accounting group */
41a2d6cf 10498static void
32cd756a 10499cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10500{
32cd756a 10501 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10502 int i;
d842de87 10503
ef12fefa
BR
10504 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10505 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10506 free_percpu(ca->cpuusage);
10507 kfree(ca);
10508}
10509
720f5498
KC
10510static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10511{
b36128c8 10512 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10513 u64 data;
10514
10515#ifndef CONFIG_64BIT
10516 /*
10517 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10518 */
10519 spin_lock_irq(&cpu_rq(cpu)->lock);
10520 data = *cpuusage;
10521 spin_unlock_irq(&cpu_rq(cpu)->lock);
10522#else
10523 data = *cpuusage;
10524#endif
10525
10526 return data;
10527}
10528
10529static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10530{
b36128c8 10531 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10532
10533#ifndef CONFIG_64BIT
10534 /*
10535 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10536 */
10537 spin_lock_irq(&cpu_rq(cpu)->lock);
10538 *cpuusage = val;
10539 spin_unlock_irq(&cpu_rq(cpu)->lock);
10540#else
10541 *cpuusage = val;
10542#endif
10543}
10544
d842de87 10545/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10546static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10547{
32cd756a 10548 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10549 u64 totalcpuusage = 0;
10550 int i;
10551
720f5498
KC
10552 for_each_present_cpu(i)
10553 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10554
10555 return totalcpuusage;
10556}
10557
0297b803
DG
10558static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10559 u64 reset)
10560{
10561 struct cpuacct *ca = cgroup_ca(cgrp);
10562 int err = 0;
10563 int i;
10564
10565 if (reset) {
10566 err = -EINVAL;
10567 goto out;
10568 }
10569
720f5498
KC
10570 for_each_present_cpu(i)
10571 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10572
0297b803
DG
10573out:
10574 return err;
10575}
10576
e9515c3c
KC
10577static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10578 struct seq_file *m)
10579{
10580 struct cpuacct *ca = cgroup_ca(cgroup);
10581 u64 percpu;
10582 int i;
10583
10584 for_each_present_cpu(i) {
10585 percpu = cpuacct_cpuusage_read(ca, i);
10586 seq_printf(m, "%llu ", (unsigned long long) percpu);
10587 }
10588 seq_printf(m, "\n");
10589 return 0;
10590}
10591
ef12fefa
BR
10592static const char *cpuacct_stat_desc[] = {
10593 [CPUACCT_STAT_USER] = "user",
10594 [CPUACCT_STAT_SYSTEM] = "system",
10595};
10596
10597static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10598 struct cgroup_map_cb *cb)
10599{
10600 struct cpuacct *ca = cgroup_ca(cgrp);
10601 int i;
10602
10603 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10604 s64 val = percpu_counter_read(&ca->cpustat[i]);
10605 val = cputime64_to_clock_t(val);
10606 cb->fill(cb, cpuacct_stat_desc[i], val);
10607 }
10608 return 0;
10609}
10610
d842de87
SV
10611static struct cftype files[] = {
10612 {
10613 .name = "usage",
f4c753b7
PM
10614 .read_u64 = cpuusage_read,
10615 .write_u64 = cpuusage_write,
d842de87 10616 },
e9515c3c
KC
10617 {
10618 .name = "usage_percpu",
10619 .read_seq_string = cpuacct_percpu_seq_read,
10620 },
ef12fefa
BR
10621 {
10622 .name = "stat",
10623 .read_map = cpuacct_stats_show,
10624 },
d842de87
SV
10625};
10626
32cd756a 10627static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10628{
32cd756a 10629 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10630}
10631
10632/*
10633 * charge this task's execution time to its accounting group.
10634 *
10635 * called with rq->lock held.
10636 */
10637static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10638{
10639 struct cpuacct *ca;
934352f2 10640 int cpu;
d842de87 10641
c40c6f85 10642 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10643 return;
10644
934352f2 10645 cpu = task_cpu(tsk);
a18b83b7
BR
10646
10647 rcu_read_lock();
10648
d842de87 10649 ca = task_ca(tsk);
d842de87 10650
934352f2 10651 for (; ca; ca = ca->parent) {
b36128c8 10652 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10653 *cpuusage += cputime;
10654 }
a18b83b7
BR
10655
10656 rcu_read_unlock();
d842de87
SV
10657}
10658
ef12fefa
BR
10659/*
10660 * Charge the system/user time to the task's accounting group.
10661 */
10662static void cpuacct_update_stats(struct task_struct *tsk,
10663 enum cpuacct_stat_index idx, cputime_t val)
10664{
10665 struct cpuacct *ca;
10666
10667 if (unlikely(!cpuacct_subsys.active))
10668 return;
10669
10670 rcu_read_lock();
10671 ca = task_ca(tsk);
10672
10673 do {
10674 percpu_counter_add(&ca->cpustat[idx], val);
10675 ca = ca->parent;
10676 } while (ca);
10677 rcu_read_unlock();
10678}
10679
d842de87
SV
10680struct cgroup_subsys cpuacct_subsys = {
10681 .name = "cpuacct",
10682 .create = cpuacct_create,
10683 .destroy = cpuacct_destroy,
10684 .populate = cpuacct_populate,
10685 .subsys_id = cpuacct_subsys_id,
10686};
10687#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.759249 seconds and 5 git commands to generate.