sched: Strengthen buddies and mitigate buddy induced latencies
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 536#ifdef CONFIG_NO_HZ
15934a37 537 unsigned long last_tick_seen;
46cb4b7c
SS
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
23a185ca 544 u64 nr_migrations_in;
6aa645ea
IM
545
546 struct cfs_rq cfs;
6f505b16 547 struct rt_rq rt;
6f505b16 548
6aa645ea 549#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
552#endif
553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 554 struct list_head leaf_rt_rq_list;
1da177e4 555#endif
1da177e4
LT
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
36c8b586 565 struct task_struct *curr, *idle;
c9819f45 566 unsigned long next_balance;
1da177e4 567 struct mm_struct *prev_mm;
6aa645ea 568
3e51f33f 569 u64 clock;
6aa645ea 570
1da177e4
LT
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
0eab9146 574 struct root_domain *rd;
1da177e4
LT
575 struct sched_domain *sd;
576
a0a522ce 577 unsigned char idle_at_tick;
1da177e4 578 /* For active balancing */
3f029d3c 579 int post_schedule;
1da177e4
LT
580 int active_balance;
581 int push_cpu;
d8016491
IM
582 /* cpu of this runqueue: */
583 int cpu;
1f11eb6a 584 int online;
1da177e4 585
a8a51d5e 586 unsigned long avg_load_per_task;
1da177e4 587
36c8b586 588 struct task_struct *migration_thread;
1da177e4 589 struct list_head migration_queue;
e9e9250b
PZ
590
591 u64 rt_avg;
592 u64 age_stamp;
1da177e4
LT
593#endif
594
dce48a84
TG
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
8f4d37ec 599#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
600#ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603#endif
8f4d37ec
PZ
604 struct hrtimer hrtick_timer;
605#endif
606
1da177e4
LT
607#ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
9c2c4802
KC
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
612
613 /* sys_sched_yield() stats */
480b9434 614 unsigned int yld_count;
1da177e4
LT
615
616 /* schedule() stats */
480b9434
KC
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
1da177e4
LT
620
621 /* try_to_wake_up() stats */
480b9434
KC
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
b8efb561
IM
624
625 /* BKL stats */
480b9434 626 unsigned int bkl_count;
1da177e4
LT
627#endif
628};
629
f34e3b61 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 631
7d478721
PZ
632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 634{
7d478721 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
636}
637
0a2966b4
CL
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 661#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 662
aa9c4c0f 663inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
664{
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666}
667
bf5c91ba
IM
668/*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671#ifdef CONFIG_SCHED_DEBUG
672# define const_debug __read_mostly
673#else
674# define const_debug static const
675#endif
676
017730c1
IM
677/**
678 * runqueue_is_locked
e17b38bf 679 * @cpu: the processor in question.
017730c1
IM
680 *
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
684 */
89f19f04 685int runqueue_is_locked(int cpu)
017730c1 686{
89f19f04 687 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
688}
689
bf5c91ba
IM
690/*
691 * Debugging: various feature bits
692 */
f00b45c1
PZ
693
694#define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
696
bf5c91ba 697enum {
f00b45c1 698#include "sched_features.h"
bf5c91ba
IM
699};
700
f00b45c1
PZ
701#undef SCHED_FEAT
702
703#define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
705
bf5c91ba 706const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
707#include "sched_features.h"
708 0;
709
710#undef SCHED_FEAT
711
712#ifdef CONFIG_SCHED_DEBUG
713#define SCHED_FEAT(name, enabled) \
714 #name ,
715
983ed7a6 716static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
717#include "sched_features.h"
718 NULL
719};
720
721#undef SCHED_FEAT
722
34f3a814 723static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 724{
f00b45c1
PZ
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
728 if (!(sysctl_sched_features & (1UL << i)))
729 seq_puts(m, "NO_");
730 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 731 }
34f3a814 732 seq_puts(m, "\n");
f00b45c1 733
34f3a814 734 return 0;
f00b45c1
PZ
735}
736
737static ssize_t
738sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
740{
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
745
746 if (cnt > 63)
747 cnt = 63;
748
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
751
752 buf[cnt] = 0;
753
c24b7c52 754 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
755 neg = 1;
756 cmp += 3;
757 }
758
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
761
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
768 }
769 }
770
771 if (!sched_feat_names[i])
772 return -EINVAL;
773
774 filp->f_pos += cnt;
775
776 return cnt;
777}
778
34f3a814
LZ
779static int sched_feat_open(struct inode *inode, struct file *filp)
780{
781 return single_open(filp, sched_feat_show, NULL);
782}
783
828c0950 784static const struct file_operations sched_feat_fops = {
34f3a814
LZ
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
f00b45c1
PZ
790};
791
792static __init int sched_init_debug(void)
793{
f00b45c1
PZ
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798}
799late_initcall(sched_init_debug);
800
801#endif
802
803#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 804
b82d9fdd
PZ
805/*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
2398f2c6
PZ
811/*
812 * ratelimit for updating the group shares.
55cd5340 813 * default: 0.25ms
2398f2c6 814 */
55cd5340 815unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 816
ffda12a1
PZ
817/*
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
820 * default: 4
821 */
822unsigned int sysctl_sched_shares_thresh = 4;
823
e9e9250b
PZ
824/*
825 * period over which we average the RT time consumption, measured
826 * in ms.
827 *
828 * default: 1s
829 */
830const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
831
fa85ae24 832/*
9f0c1e56 833 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
834 * default: 1s
835 */
9f0c1e56 836unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 837
6892b75e
IM
838static __read_mostly int scheduler_running;
839
9f0c1e56
PZ
840/*
841 * part of the period that we allow rt tasks to run in us.
842 * default: 0.95s
843 */
844int sysctl_sched_rt_runtime = 950000;
fa85ae24 845
d0b27fa7
PZ
846static inline u64 global_rt_period(void)
847{
848 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
849}
850
851static inline u64 global_rt_runtime(void)
852{
e26873bb 853 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
854 return RUNTIME_INF;
855
856 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
857}
fa85ae24 858
1da177e4 859#ifndef prepare_arch_switch
4866cde0
NP
860# define prepare_arch_switch(next) do { } while (0)
861#endif
862#ifndef finish_arch_switch
863# define finish_arch_switch(prev) do { } while (0)
864#endif
865
051a1d1a
DA
866static inline int task_current(struct rq *rq, struct task_struct *p)
867{
868 return rq->curr == p;
869}
870
4866cde0 871#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 872static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 873{
051a1d1a 874 return task_current(rq, p);
4866cde0
NP
875}
876
70b97a7f 877static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
878{
879}
880
70b97a7f 881static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 882{
da04c035
IM
883#ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq->lock.owner = current;
886#endif
8a25d5de
IM
887 /*
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
890 * prev into current:
891 */
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893
4866cde0
NP
894 spin_unlock_irq(&rq->lock);
895}
896
897#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 898static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
899{
900#ifdef CONFIG_SMP
901 return p->oncpu;
902#else
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
913 * here.
914 */
915 next->oncpu = 1;
916#endif
917#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock);
919#else
920 spin_unlock(&rq->lock);
921#endif
922}
923
70b97a7f 924static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
925{
926#ifdef CONFIG_SMP
927 /*
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
930 * finished.
931 */
932 smp_wmb();
933 prev->oncpu = 0;
934#endif
935#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
936 local_irq_enable();
1da177e4 937#endif
4866cde0
NP
938}
939#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 940
b29739f9
IM
941/*
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
944 */
70b97a7f 945static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
946 __acquires(rq->lock)
947{
3a5c359a
AK
948 for (;;) {
949 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
b29739f9 953 spin_unlock(&rq->lock);
b29739f9 954 }
b29739f9
IM
955}
956
1da177e4
LT
957/*
958 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 959 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
960 * explicitly disabling preemption.
961 */
70b97a7f 962static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
963 __acquires(rq->lock)
964{
70b97a7f 965 struct rq *rq;
1da177e4 966
3a5c359a
AK
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
1da177e4 973 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 974 }
1da177e4
LT
975}
976
ad474cac
ON
977void task_rq_unlock_wait(struct task_struct *p)
978{
979 struct rq *rq = task_rq(p);
980
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock);
983}
984
a9957449 985static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
986 __releases(rq->lock)
987{
988 spin_unlock(&rq->lock);
989}
990
70b97a7f 991static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
992 __releases(rq->lock)
993{
994 spin_unlock_irqrestore(&rq->lock, *flags);
995}
996
1da177e4 997/*
cc2a73b5 998 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 999 */
a9957449 1000static struct rq *this_rq_lock(void)
1da177e4
LT
1001 __acquires(rq->lock)
1002{
70b97a7f 1003 struct rq *rq;
1da177e4
LT
1004
1005 local_irq_disable();
1006 rq = this_rq();
1007 spin_lock(&rq->lock);
1008
1009 return rq;
1010}
1011
8f4d37ec
PZ
1012#ifdef CONFIG_SCHED_HRTICK
1013/*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
8f4d37ec
PZ
1023
1024/*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029static inline int hrtick_enabled(struct rq *rq)
1030{
1031 if (!sched_feat(HRTICK))
1032 return 0;
ba42059f 1033 if (!cpu_active(cpu_of(rq)))
b328ca18 1034 return 0;
8f4d37ec
PZ
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038static void hrtick_clear(struct rq *rq)
1039{
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1042}
1043
8f4d37ec
PZ
1044/*
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1047 */
1048static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049{
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053
1054 spin_lock(&rq->lock);
3e51f33f 1055 update_rq_clock(rq);
8f4d37ec
PZ
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock);
1058
1059 return HRTIMER_NORESTART;
1060}
1061
95e904c7 1062#ifdef CONFIG_SMP
31656519
PZ
1063/*
1064 * called from hardirq (IPI) context
1065 */
1066static void __hrtick_start(void *arg)
b328ca18 1067{
31656519 1068 struct rq *rq = arg;
b328ca18 1069
31656519
PZ
1070 spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock);
b328ca18
PZ
1074}
1075
31656519
PZ
1076/*
1077 * Called to set the hrtick timer state.
1078 *
1079 * called with rq->lock held and irqs disabled
1080 */
1081static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1082{
31656519
PZ
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1085
cc584b21 1086 hrtimer_set_expires(timer, time);
31656519
PZ
1087
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
6e275637 1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1092 rq->hrtick_csd_pending = 1;
1093 }
b328ca18
PZ
1094}
1095
1096static int
1097hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098{
1099 int cpu = (int)(long)hcpu;
1100
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
31656519 1108 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1109 return NOTIFY_OK;
1110 }
1111
1112 return NOTIFY_DONE;
1113}
1114
fa748203 1115static __init void init_hrtick(void)
b328ca18
PZ
1116{
1117 hotcpu_notifier(hotplug_hrtick, 0);
1118}
31656519
PZ
1119#else
1120/*
1121 * Called to set the hrtick timer state.
1122 *
1123 * called with rq->lock held and irqs disabled
1124 */
1125static void hrtick_start(struct rq *rq, u64 delay)
1126{
7f1e2ca9 1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1128 HRTIMER_MODE_REL_PINNED, 0);
31656519 1129}
b328ca18 1130
006c75f1 1131static inline void init_hrtick(void)
8f4d37ec 1132{
8f4d37ec 1133}
31656519 1134#endif /* CONFIG_SMP */
8f4d37ec 1135
31656519 1136static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1137{
31656519
PZ
1138#ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
8f4d37ec 1140
31656519
PZ
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144#endif
8f4d37ec 1145
31656519
PZ
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
8f4d37ec 1148}
006c75f1 1149#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1150static inline void hrtick_clear(struct rq *rq)
1151{
1152}
1153
8f4d37ec
PZ
1154static inline void init_rq_hrtick(struct rq *rq)
1155{
1156}
1157
b328ca18
PZ
1158static inline void init_hrtick(void)
1159{
1160}
006c75f1 1161#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1162
c24d20db
IM
1163/*
1164 * resched_task - mark a task 'to be rescheduled now'.
1165 *
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1169 */
1170#ifdef CONFIG_SMP
1171
1172#ifndef tsk_is_polling
1173#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174#endif
1175
31656519 1176static void resched_task(struct task_struct *p)
c24d20db
IM
1177{
1178 int cpu;
1179
1180 assert_spin_locked(&task_rq(p)->lock);
1181
5ed0cec0 1182 if (test_tsk_need_resched(p))
c24d20db
IM
1183 return;
1184
5ed0cec0 1185 set_tsk_need_resched(p);
c24d20db
IM
1186
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1190
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1195}
1196
1197static void resched_cpu(int cpu)
1198{
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1201
1202 if (!spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags);
1206}
06d8308c
TG
1207
1208#ifdef CONFIG_NO_HZ
1209/*
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1218 */
1219void wake_up_idle_cpu(int cpu)
1220{
1221 struct rq *rq = cpu_rq(cpu);
1222
1223 if (cpu == smp_processor_id())
1224 return;
1225
1226 /*
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1232 */
1233 if (rq->curr != rq->idle)
1234 return;
1235
1236 /*
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1240 */
5ed0cec0 1241 set_tsk_need_resched(rq->idle);
06d8308c
TG
1242
1243 /* NEED_RESCHED must be visible before we test polling */
1244 smp_mb();
1245 if (!tsk_is_polling(rq->idle))
1246 smp_send_reschedule(cpu);
1247}
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263}
1264
1265static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266{
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269}
1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
e9e9250b
PZ
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280}
6d6bc0ad 1281#endif /* CONFIG_SMP */
c24d20db 1282
45bf76df
IM
1283#if BITS_PER_LONG == 32
1284# define WMULT_CONST (~0UL)
1285#else
1286# define WMULT_CONST (1UL << 32)
1287#endif
1288
1289#define WMULT_SHIFT 32
1290
194081eb
IM
1291/*
1292 * Shift right and round:
1293 */
cf2ab469 1294#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1295
a7be37ac
PZ
1296/*
1297 * delta *= weight / lw
1298 */
cb1c4fc9 1299static unsigned long
45bf76df
IM
1300calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302{
1303 u64 tmp;
1304
7a232e03
LJ
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
45bf76df
IM
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
194081eb 1317 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1319 WMULT_SHIFT/2);
1320 else
cf2ab469 1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1322
ecf691da 1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1327{
1328 lw->weight += inc;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1333{
1334 lw->weight -= dec;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
2dd73a4f
PW
1338/*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
cce7ade8
PZ
1347#define WEIGHT_IDLEPRIO 3
1348#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1349
1350/*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
dd41f596
IM
1361 */
1362static const int prio_to_weight[40] = {
254753dc
IM
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1371};
1372
5714d2de
IM
1373/*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
dd41f596 1380static const u32 prio_to_wmult[40] = {
254753dc
IM
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1389};
2dd73a4f 1390
dd41f596
IM
1391static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393/*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402};
1403
e1d1484f
PW
1404#ifdef CONFIG_SMP
1405static unsigned long
1406balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411static int
1412iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
e1d1484f 1415#endif
dd41f596 1416
ef12fefa
BR
1417/* Time spent by the tasks of the cpu accounting group executing in ... */
1418enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423};
1424
d842de87
SV
1425#ifdef CONFIG_CGROUP_CPUACCT
1426static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1427static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1429#else
1430static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1431static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1433#endif
1434
18d95a28
PZ
1435static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_add(&rq->load, load);
1438}
1439
1440static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_sub(&rq->load, load);
1443}
1444
7940ca36 1445#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1446typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
eb755805 1452static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1453{
1454 struct task_group *parent, *child;
eb755805 1455 int ret;
c09595f6
PZ
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
eb755805
PZ
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467up:
1468 continue;
1469 }
eb755805
PZ
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
c09595f6
PZ
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
eb755805 1478out_unlock:
c09595f6 1479 rcu_read_unlock();
eb755805
PZ
1480
1481 return ret;
c09595f6
PZ
1482}
1483
eb755805
PZ
1484static int tg_nop(struct task_group *tg, void *data)
1485{
1486 return 0;
c09595f6 1487}
eb755805
PZ
1488#endif
1489
1490#ifdef CONFIG_SMP
f5f08f39
PZ
1491/* Used instead of source_load when we know the type == 0 */
1492static unsigned long weighted_cpuload(const int cpu)
1493{
1494 return cpu_rq(cpu)->load.weight;
1495}
1496
1497/*
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1500 *
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1503 */
1504static unsigned long source_load(int cpu, int type)
1505{
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return min(rq->cpu_load[type-1], total);
1513}
1514
1515/*
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1518 */
1519static unsigned long target_load(int cpu, int type)
1520{
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1523
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1526
1527 return max(rq->cpu_load[type-1], total);
1528}
1529
ae154be1
PZ
1530static struct sched_group *group_of(int cpu)
1531{
1532 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1533
1534 if (!sd)
1535 return NULL;
1536
1537 return sd->groups;
1538}
1539
1540static unsigned long power_of(int cpu)
1541{
1542 struct sched_group *group = group_of(cpu);
1543
1544 if (!group)
1545 return SCHED_LOAD_SCALE;
1546
1547 return group->cpu_power;
1548}
1549
eb755805
PZ
1550static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1551
1552static unsigned long cpu_avg_load_per_task(int cpu)
1553{
1554 struct rq *rq = cpu_rq(cpu);
af6d596f 1555 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1556
4cd42620
SR
1557 if (nr_running)
1558 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1559 else
1560 rq->avg_load_per_task = 0;
eb755805
PZ
1561
1562 return rq->avg_load_per_task;
1563}
1564
1565#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1566
34d76c41
PZ
1567struct update_shares_data {
1568 unsigned long rq_weight[NR_CPUS];
1569};
1570
1571static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 struct update_shares_data *usd)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
34d76c41 1586 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
ffda12a1 1605 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
34d76c41
PZ
1620 unsigned long weight, rq_weight = 0, shares = 0;
1621 struct update_shares_data *usd;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd = &__get_cpu_var(update_shares_data);
1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd->rq_weight[i] = weight;
1635
ec4e0e2f
KC
1636 /*
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1640 */
ec4e0e2f
KC
1641 if (!weight)
1642 weight = NICE_0_LOAD;
1643
ec4e0e2f 1644 rq_weight += weight;
c8cba857 1645 shares += tg->cfs_rq[i]->shares;
c09595f6 1646 }
c09595f6 1647
c8cba857
PZ
1648 if ((!shares && rq_weight) || shares > tg->shares)
1649 shares = tg->shares;
1650
1651 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652 shares = tg->shares;
c09595f6 1653
758b2cdc 1654 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1655 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1656
1657 local_irq_restore(flags);
eb755805
PZ
1658
1659 return 0;
c09595f6
PZ
1660}
1661
1662/*
c8cba857
PZ
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
c09595f6 1666 */
eb755805 1667static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1668{
c8cba857 1669 unsigned long load;
eb755805 1670 long cpu = (long)data;
c09595f6 1671
c8cba857
PZ
1672 if (!tg->parent) {
1673 load = cpu_rq(cpu)->load.weight;
1674 } else {
1675 load = tg->parent->cfs_rq[cpu]->h_load;
1676 load *= tg->cfs_rq[cpu]->shares;
1677 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1678 }
c09595f6 1679
c8cba857 1680 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1681
eb755805 1682 return 0;
c09595f6
PZ
1683}
1684
c8cba857 1685static void update_shares(struct sched_domain *sd)
4d8d595d 1686{
e7097159
PZ
1687 s64 elapsed;
1688 u64 now;
1689
1690 if (root_task_group_empty())
1691 return;
1692
1693 now = cpu_clock(raw_smp_processor_id());
1694 elapsed = now - sd->last_update;
2398f2c6
PZ
1695
1696 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697 sd->last_update = now;
eb755805 1698 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1699 }
4d8d595d
PZ
1700}
1701
3e5459b4
PZ
1702static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703{
e7097159
PZ
1704 if (root_task_group_empty())
1705 return;
1706
3e5459b4
PZ
1707 spin_unlock(&rq->lock);
1708 update_shares(sd);
1709 spin_lock(&rq->lock);
1710}
1711
eb755805 1712static void update_h_load(long cpu)
c09595f6 1713{
e7097159
PZ
1714 if (root_task_group_empty())
1715 return;
1716
eb755805 1717 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1718}
1719
c09595f6
PZ
1720#else
1721
c8cba857 1722static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1723{
1724}
1725
3e5459b4
PZ
1726static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1727{
1728}
1729
18d95a28
PZ
1730#endif
1731
8f45e2b5
GH
1732#ifdef CONFIG_PREEMPT
1733
b78bb868
PZ
1734static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1735
70574a99 1736/*
8f45e2b5
GH
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
70574a99 1743 */
8f45e2b5
GH
1744static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(this_rq->lock)
1746 __acquires(busiest->lock)
1747 __acquires(this_rq->lock)
1748{
1749 spin_unlock(&this_rq->lock);
1750 double_rq_lock(this_rq, busiest);
1751
1752 return 1;
1753}
1754
1755#else
1756/*
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1762 */
1763static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1767{
1768 int ret = 0;
1769
70574a99
AD
1770 if (unlikely(!spin_trylock(&busiest->lock))) {
1771 if (busiest < this_rq) {
1772 spin_unlock(&this_rq->lock);
1773 spin_lock(&busiest->lock);
1774 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775 ret = 1;
1776 } else
1777 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1778 }
1779 return ret;
1780}
1781
8f45e2b5
GH
1782#endif /* CONFIG_PREEMPT */
1783
1784/*
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 */
1787static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1788{
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq->lock);
1792 BUG_ON(1);
1793 }
1794
1795 return _double_lock_balance(this_rq, busiest);
1796}
1797
70574a99
AD
1798static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799 __releases(busiest->lock)
1800{
1801 spin_unlock(&busiest->lock);
1802 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1803}
18d95a28
PZ
1804#endif
1805
30432094 1806#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1807static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808{
30432094 1809#ifdef CONFIG_SMP
34e83e85
IM
1810 cfs_rq->shares = shares;
1811#endif
1812}
30432094 1813#endif
e7693a36 1814
dce48a84
TG
1815static void calc_load_account_active(struct rq *this_rq);
1816
dd41f596 1817#include "sched_stats.h"
dd41f596 1818#include "sched_idletask.c"
5522d5d5
IM
1819#include "sched_fair.c"
1820#include "sched_rt.c"
dd41f596
IM
1821#ifdef CONFIG_SCHED_DEBUG
1822# include "sched_debug.c"
1823#endif
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
c09595f6 1829static void inc_nr_running(struct rq *rq)
9c217245
IM
1830{
1831 rq->nr_running++;
9c217245
IM
1832}
1833
c09595f6 1834static void dec_nr_running(struct rq *rq)
9c217245
IM
1835{
1836 rq->nr_running--;
9c217245
IM
1837}
1838
45bf76df
IM
1839static void set_load_weight(struct task_struct *p)
1840{
1841 if (task_has_rt_policy(p)) {
dd41f596
IM
1842 p->se.load.weight = prio_to_weight[0] * 2;
1843 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1844 return;
1845 }
45bf76df 1846
dd41f596
IM
1847 /*
1848 * SCHED_IDLE tasks get minimal weight:
1849 */
1850 if (p->policy == SCHED_IDLE) {
1851 p->se.load.weight = WEIGHT_IDLEPRIO;
1852 p->se.load.inv_weight = WMULT_IDLEPRIO;
1853 return;
1854 }
71f8bd46 1855
dd41f596
IM
1856 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1857 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1858}
1859
2087a1ad
GH
1860static void update_avg(u64 *avg, u64 sample)
1861{
1862 s64 diff = sample - *avg;
1863 *avg += diff >> 3;
1864}
1865
8159f87e 1866static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1867{
831451ac
PZ
1868 if (wakeup)
1869 p->se.start_runtime = p->se.sum_exec_runtime;
1870
dd41f596 1871 sched_info_queued(p);
fd390f6a 1872 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1873 p->se.on_rq = 1;
71f8bd46
IM
1874}
1875
69be72c1 1876static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1877{
831451ac
PZ
1878 if (sleep) {
1879 if (p->se.last_wakeup) {
1880 update_avg(&p->se.avg_overlap,
1881 p->se.sum_exec_runtime - p->se.last_wakeup);
1882 p->se.last_wakeup = 0;
1883 } else {
1884 update_avg(&p->se.avg_wakeup,
1885 sysctl_sched_wakeup_granularity);
1886 }
2087a1ad
GH
1887 }
1888
46ac22ba 1889 sched_info_dequeued(p);
f02231e5 1890 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1891 p->se.on_rq = 0;
71f8bd46
IM
1892}
1893
14531189 1894/*
dd41f596 1895 * __normal_prio - return the priority that is based on the static prio
14531189 1896 */
14531189
IM
1897static inline int __normal_prio(struct task_struct *p)
1898{
dd41f596 1899 return p->static_prio;
14531189
IM
1900}
1901
b29739f9
IM
1902/*
1903 * Calculate the expected normal priority: i.e. priority
1904 * without taking RT-inheritance into account. Might be
1905 * boosted by interactivity modifiers. Changes upon fork,
1906 * setprio syscalls, and whenever the interactivity
1907 * estimator recalculates.
1908 */
36c8b586 1909static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1910{
1911 int prio;
1912
e05606d3 1913 if (task_has_rt_policy(p))
b29739f9
IM
1914 prio = MAX_RT_PRIO-1 - p->rt_priority;
1915 else
1916 prio = __normal_prio(p);
1917 return prio;
1918}
1919
1920/*
1921 * Calculate the current priority, i.e. the priority
1922 * taken into account by the scheduler. This value might
1923 * be boosted by RT tasks, or might be boosted by
1924 * interactivity modifiers. Will be RT if the task got
1925 * RT-boosted. If not then it returns p->normal_prio.
1926 */
36c8b586 1927static int effective_prio(struct task_struct *p)
b29739f9
IM
1928{
1929 p->normal_prio = normal_prio(p);
1930 /*
1931 * If we are RT tasks or we were boosted to RT priority,
1932 * keep the priority unchanged. Otherwise, update priority
1933 * to the normal priority:
1934 */
1935 if (!rt_prio(p->prio))
1936 return p->normal_prio;
1937 return p->prio;
1938}
1939
1da177e4 1940/*
dd41f596 1941 * activate_task - move a task to the runqueue.
1da177e4 1942 */
dd41f596 1943static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1944{
d9514f6c 1945 if (task_contributes_to_load(p))
dd41f596 1946 rq->nr_uninterruptible--;
1da177e4 1947
8159f87e 1948 enqueue_task(rq, p, wakeup);
c09595f6 1949 inc_nr_running(rq);
1da177e4
LT
1950}
1951
1da177e4
LT
1952/*
1953 * deactivate_task - remove a task from the runqueue.
1954 */
2e1cb74a 1955static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1956{
d9514f6c 1957 if (task_contributes_to_load(p))
dd41f596
IM
1958 rq->nr_uninterruptible++;
1959
69be72c1 1960 dequeue_task(rq, p, sleep);
c09595f6 1961 dec_nr_running(rq);
1da177e4
LT
1962}
1963
1da177e4
LT
1964/**
1965 * task_curr - is this task currently executing on a CPU?
1966 * @p: the task in question.
1967 */
36c8b586 1968inline int task_curr(const struct task_struct *p)
1da177e4
LT
1969{
1970 return cpu_curr(task_cpu(p)) == p;
1971}
1972
dd41f596
IM
1973static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1974{
6f505b16 1975 set_task_rq(p, cpu);
dd41f596 1976#ifdef CONFIG_SMP
ce96b5ac
DA
1977 /*
1978 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1979 * successfuly executed on another CPU. We must ensure that updates of
1980 * per-task data have been completed by this moment.
1981 */
1982 smp_wmb();
dd41f596 1983 task_thread_info(p)->cpu = cpu;
dd41f596 1984#endif
2dd73a4f
PW
1985}
1986
cb469845
SR
1987static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1988 const struct sched_class *prev_class,
1989 int oldprio, int running)
1990{
1991 if (prev_class != p->sched_class) {
1992 if (prev_class->switched_from)
1993 prev_class->switched_from(rq, p, running);
1994 p->sched_class->switched_to(rq, p, running);
1995 } else
1996 p->sched_class->prio_changed(rq, p, oldprio, running);
1997}
1998
1da177e4 1999#ifdef CONFIG_SMP
cc367732
IM
2000/*
2001 * Is this task likely cache-hot:
2002 */
e7693a36 2003static int
cc367732
IM
2004task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2005{
2006 s64 delta;
2007
f540a608
IM
2008 /*
2009 * Buddy candidates are cache hot:
2010 */
f685ceac 2011 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2012 (&p->se == cfs_rq_of(&p->se)->next ||
2013 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2014 return 1;
2015
cc367732
IM
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
6bc1665b
IM
2019 if (sysctl_sched_migration_cost == -1)
2020 return 1;
2021 if (sysctl_sched_migration_cost == 0)
2022 return 0;
2023
cc367732
IM
2024 delta = now - p->se.exec_start;
2025
2026 return delta < (s64)sysctl_sched_migration_cost;
2027}
2028
2029
dd41f596 2030void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2031{
dd41f596
IM
2032 int old_cpu = task_cpu(p);
2033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2036 u64 clock_offset;
dd41f596
IM
2037
2038 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2039
de1d7286 2040 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2041
6cfb0d5d
IM
2042#ifdef CONFIG_SCHEDSTATS
2043 if (p->se.wait_start)
2044 p->se.wait_start -= clock_offset;
dd41f596
IM
2045 if (p->se.sleep_start)
2046 p->se.sleep_start -= clock_offset;
2047 if (p->se.block_start)
2048 p->se.block_start -= clock_offset;
6c594c21 2049#endif
cc367732 2050 if (old_cpu != new_cpu) {
6c594c21 2051 p->se.nr_migrations++;
23a185ca 2052 new_rq->nr_migrations_in++;
6c594c21 2053#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2054 if (task_hot(p, old_rq->clock, NULL))
2055 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2056#endif
cdd6c482 2057 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2058 1, 1, NULL, 0);
6c594c21 2059 }
2830cf8c
SV
2060 p->se.vruntime -= old_cfsrq->min_vruntime -
2061 new_cfsrq->min_vruntime;
dd41f596
IM
2062
2063 __set_task_cpu(p, new_cpu);
c65cc870
IM
2064}
2065
70b97a7f 2066struct migration_req {
1da177e4 2067 struct list_head list;
1da177e4 2068
36c8b586 2069 struct task_struct *task;
1da177e4
LT
2070 int dest_cpu;
2071
1da177e4 2072 struct completion done;
70b97a7f 2073};
1da177e4
LT
2074
2075/*
2076 * The task's runqueue lock must be held.
2077 * Returns true if you have to wait for migration thread.
2078 */
36c8b586 2079static int
70b97a7f 2080migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2081{
70b97a7f 2082 struct rq *rq = task_rq(p);
1da177e4
LT
2083
2084 /*
2085 * If the task is not on a runqueue (and not running), then
2086 * it is sufficient to simply update the task's cpu field.
2087 */
dd41f596 2088 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2089 set_task_cpu(p, dest_cpu);
2090 return 0;
2091 }
2092
2093 init_completion(&req->done);
1da177e4
LT
2094 req->task = p;
2095 req->dest_cpu = dest_cpu;
2096 list_add(&req->list, &rq->migration_queue);
48f24c4d 2097
1da177e4
LT
2098 return 1;
2099}
2100
a26b89f0
MM
2101/*
2102 * wait_task_context_switch - wait for a thread to complete at least one
2103 * context switch.
2104 *
2105 * @p must not be current.
2106 */
2107void wait_task_context_switch(struct task_struct *p)
2108{
2109 unsigned long nvcsw, nivcsw, flags;
2110 int running;
2111 struct rq *rq;
2112
2113 nvcsw = p->nvcsw;
2114 nivcsw = p->nivcsw;
2115 for (;;) {
2116 /*
2117 * The runqueue is assigned before the actual context
2118 * switch. We need to take the runqueue lock.
2119 *
2120 * We could check initially without the lock but it is
2121 * very likely that we need to take the lock in every
2122 * iteration.
2123 */
2124 rq = task_rq_lock(p, &flags);
2125 running = task_running(rq, p);
2126 task_rq_unlock(rq, &flags);
2127
2128 if (likely(!running))
2129 break;
2130 /*
2131 * The switch count is incremented before the actual
2132 * context switch. We thus wait for two switches to be
2133 * sure at least one completed.
2134 */
2135 if ((p->nvcsw - nvcsw) > 1)
2136 break;
2137 if ((p->nivcsw - nivcsw) > 1)
2138 break;
2139
2140 cpu_relax();
2141 }
2142}
2143
1da177e4
LT
2144/*
2145 * wait_task_inactive - wait for a thread to unschedule.
2146 *
85ba2d86
RM
2147 * If @match_state is nonzero, it's the @p->state value just checked and
2148 * not expected to change. If it changes, i.e. @p might have woken up,
2149 * then return zero. When we succeed in waiting for @p to be off its CPU,
2150 * we return a positive number (its total switch count). If a second call
2151 * a short while later returns the same number, the caller can be sure that
2152 * @p has remained unscheduled the whole time.
2153 *
1da177e4
LT
2154 * The caller must ensure that the task *will* unschedule sometime soon,
2155 * else this function might spin for a *long* time. This function can't
2156 * be called with interrupts off, or it may introduce deadlock with
2157 * smp_call_function() if an IPI is sent by the same process we are
2158 * waiting to become inactive.
2159 */
85ba2d86 2160unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2161{
2162 unsigned long flags;
dd41f596 2163 int running, on_rq;
85ba2d86 2164 unsigned long ncsw;
70b97a7f 2165 struct rq *rq;
1da177e4 2166
3a5c359a
AK
2167 for (;;) {
2168 /*
2169 * We do the initial early heuristics without holding
2170 * any task-queue locks at all. We'll only try to get
2171 * the runqueue lock when things look like they will
2172 * work out!
2173 */
2174 rq = task_rq(p);
fa490cfd 2175
3a5c359a
AK
2176 /*
2177 * If the task is actively running on another CPU
2178 * still, just relax and busy-wait without holding
2179 * any locks.
2180 *
2181 * NOTE! Since we don't hold any locks, it's not
2182 * even sure that "rq" stays as the right runqueue!
2183 * But we don't care, since "task_running()" will
2184 * return false if the runqueue has changed and p
2185 * is actually now running somewhere else!
2186 */
85ba2d86
RM
2187 while (task_running(rq, p)) {
2188 if (match_state && unlikely(p->state != match_state))
2189 return 0;
3a5c359a 2190 cpu_relax();
85ba2d86 2191 }
fa490cfd 2192
3a5c359a
AK
2193 /*
2194 * Ok, time to look more closely! We need the rq
2195 * lock now, to be *sure*. If we're wrong, we'll
2196 * just go back and repeat.
2197 */
2198 rq = task_rq_lock(p, &flags);
0a16b607 2199 trace_sched_wait_task(rq, p);
3a5c359a
AK
2200 running = task_running(rq, p);
2201 on_rq = p->se.on_rq;
85ba2d86 2202 ncsw = 0;
f31e11d8 2203 if (!match_state || p->state == match_state)
93dcf55f 2204 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2205 task_rq_unlock(rq, &flags);
fa490cfd 2206
85ba2d86
RM
2207 /*
2208 * If it changed from the expected state, bail out now.
2209 */
2210 if (unlikely(!ncsw))
2211 break;
2212
3a5c359a
AK
2213 /*
2214 * Was it really running after all now that we
2215 * checked with the proper locks actually held?
2216 *
2217 * Oops. Go back and try again..
2218 */
2219 if (unlikely(running)) {
2220 cpu_relax();
2221 continue;
2222 }
fa490cfd 2223
3a5c359a
AK
2224 /*
2225 * It's not enough that it's not actively running,
2226 * it must be off the runqueue _entirely_, and not
2227 * preempted!
2228 *
80dd99b3 2229 * So if it was still runnable (but just not actively
3a5c359a
AK
2230 * running right now), it's preempted, and we should
2231 * yield - it could be a while.
2232 */
2233 if (unlikely(on_rq)) {
2234 schedule_timeout_uninterruptible(1);
2235 continue;
2236 }
fa490cfd 2237
3a5c359a
AK
2238 /*
2239 * Ahh, all good. It wasn't running, and it wasn't
2240 * runnable, which means that it will never become
2241 * running in the future either. We're all done!
2242 */
2243 break;
2244 }
85ba2d86
RM
2245
2246 return ncsw;
1da177e4
LT
2247}
2248
2249/***
2250 * kick_process - kick a running thread to enter/exit the kernel
2251 * @p: the to-be-kicked thread
2252 *
2253 * Cause a process which is running on another CPU to enter
2254 * kernel-mode, without any delay. (to get signals handled.)
2255 *
2256 * NOTE: this function doesnt have to take the runqueue lock,
2257 * because all it wants to ensure is that the remote task enters
2258 * the kernel. If the IPI races and the task has been migrated
2259 * to another CPU then no harm is done and the purpose has been
2260 * achieved as well.
2261 */
36c8b586 2262void kick_process(struct task_struct *p)
1da177e4
LT
2263{
2264 int cpu;
2265
2266 preempt_disable();
2267 cpu = task_cpu(p);
2268 if ((cpu != smp_processor_id()) && task_curr(p))
2269 smp_send_reschedule(cpu);
2270 preempt_enable();
2271}
b43e3521 2272EXPORT_SYMBOL_GPL(kick_process);
476d139c 2273#endif /* CONFIG_SMP */
1da177e4 2274
0793a61d
TG
2275/**
2276 * task_oncpu_function_call - call a function on the cpu on which a task runs
2277 * @p: the task to evaluate
2278 * @func: the function to be called
2279 * @info: the function call argument
2280 *
2281 * Calls the function @func when the task is currently running. This might
2282 * be on the current CPU, which just calls the function directly
2283 */
2284void task_oncpu_function_call(struct task_struct *p,
2285 void (*func) (void *info), void *info)
2286{
2287 int cpu;
2288
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if (task_curr(p))
2292 smp_call_function_single(cpu, func, info, 1);
2293 preempt_enable();
2294}
2295
1da177e4
LT
2296/***
2297 * try_to_wake_up - wake up a thread
2298 * @p: the to-be-woken-up thread
2299 * @state: the mask of task states that can be woken
2300 * @sync: do a synchronous wakeup?
2301 *
2302 * Put it on the run-queue if it's not already there. The "current"
2303 * thread is always on the run-queue (except when the actual
2304 * re-schedule is in progress), and as such you're allowed to do
2305 * the simpler "current->state = TASK_RUNNING" to mark yourself
2306 * runnable without the overhead of this.
2307 *
2308 * returns failure only if the task is already active.
2309 */
7d478721
PZ
2310static int try_to_wake_up(struct task_struct *p, unsigned int state,
2311 int wake_flags)
1da177e4 2312{
cc367732 2313 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2314 unsigned long flags;
f5dc3753 2315 struct rq *rq, *orig_rq;
1da177e4 2316
b85d0667 2317 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2318 wake_flags &= ~WF_SYNC;
2398f2c6 2319
e9c84311 2320 this_cpu = get_cpu();
2398f2c6 2321
04e2f174 2322 smp_wmb();
f5dc3753 2323 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2324 update_rq_clock(rq);
e9c84311 2325 if (!(p->state & state))
1da177e4
LT
2326 goto out;
2327
dd41f596 2328 if (p->se.on_rq)
1da177e4
LT
2329 goto out_running;
2330
2331 cpu = task_cpu(p);
cc367732 2332 orig_cpu = cpu;
1da177e4
LT
2333
2334#ifdef CONFIG_SMP
2335 if (unlikely(task_running(rq, p)))
2336 goto out_activate;
2337
e9c84311
PZ
2338 /*
2339 * In order to handle concurrent wakeups and release the rq->lock
2340 * we put the task in TASK_WAKING state.
eb24073b
IM
2341 *
2342 * First fix up the nr_uninterruptible count:
e9c84311 2343 */
eb24073b
IM
2344 if (task_contributes_to_load(p))
2345 rq->nr_uninterruptible--;
e9c84311
PZ
2346 p->state = TASK_WAKING;
2347 task_rq_unlock(rq, &flags);
2348
7d478721 2349 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2350 if (cpu != orig_cpu)
5d2f5a61 2351 set_task_cpu(p, cpu);
1da177e4 2352
e9c84311 2353 rq = task_rq_lock(p, &flags);
f5dc3753
MG
2354
2355 if (rq != orig_rq)
2356 update_rq_clock(rq);
2357
e9c84311
PZ
2358 WARN_ON(p->state != TASK_WAKING);
2359 cpu = task_cpu(p);
1da177e4 2360
e7693a36
GH
2361#ifdef CONFIG_SCHEDSTATS
2362 schedstat_inc(rq, ttwu_count);
2363 if (cpu == this_cpu)
2364 schedstat_inc(rq, ttwu_local);
2365 else {
2366 struct sched_domain *sd;
2367 for_each_domain(this_cpu, sd) {
758b2cdc 2368 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2369 schedstat_inc(sd, ttwu_wake_remote);
2370 break;
2371 }
2372 }
2373 }
6d6bc0ad 2374#endif /* CONFIG_SCHEDSTATS */
e7693a36 2375
1da177e4
LT
2376out_activate:
2377#endif /* CONFIG_SMP */
cc367732 2378 schedstat_inc(p, se.nr_wakeups);
7d478721 2379 if (wake_flags & WF_SYNC)
cc367732
IM
2380 schedstat_inc(p, se.nr_wakeups_sync);
2381 if (orig_cpu != cpu)
2382 schedstat_inc(p, se.nr_wakeups_migrate);
2383 if (cpu == this_cpu)
2384 schedstat_inc(p, se.nr_wakeups_local);
2385 else
2386 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2387 activate_task(rq, p, 1);
1da177e4
LT
2388 success = 1;
2389
831451ac
PZ
2390 /*
2391 * Only attribute actual wakeups done by this task.
2392 */
2393 if (!in_interrupt()) {
2394 struct sched_entity *se = &current->se;
2395 u64 sample = se->sum_exec_runtime;
2396
2397 if (se->last_wakeup)
2398 sample -= se->last_wakeup;
2399 else
2400 sample -= se->start_runtime;
2401 update_avg(&se->avg_wakeup, sample);
2402
2403 se->last_wakeup = se->sum_exec_runtime;
2404 }
2405
1da177e4 2406out_running:
468a15bb 2407 trace_sched_wakeup(rq, p, success);
7d478721 2408 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2409
1da177e4 2410 p->state = TASK_RUNNING;
9a897c5a
SR
2411#ifdef CONFIG_SMP
2412 if (p->sched_class->task_wake_up)
2413 p->sched_class->task_wake_up(rq, p);
2414#endif
1da177e4
LT
2415out:
2416 task_rq_unlock(rq, &flags);
e9c84311 2417 put_cpu();
1da177e4
LT
2418
2419 return success;
2420}
2421
50fa610a
DH
2422/**
2423 * wake_up_process - Wake up a specific process
2424 * @p: The process to be woken up.
2425 *
2426 * Attempt to wake up the nominated process and move it to the set of runnable
2427 * processes. Returns 1 if the process was woken up, 0 if it was already
2428 * running.
2429 *
2430 * It may be assumed that this function implies a write memory barrier before
2431 * changing the task state if and only if any tasks are woken up.
2432 */
7ad5b3a5 2433int wake_up_process(struct task_struct *p)
1da177e4 2434{
d9514f6c 2435 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2436}
1da177e4
LT
2437EXPORT_SYMBOL(wake_up_process);
2438
7ad5b3a5 2439int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2440{
2441 return try_to_wake_up(p, state, 0);
2442}
2443
1da177e4
LT
2444/*
2445 * Perform scheduler related setup for a newly forked process p.
2446 * p is forked by current.
dd41f596
IM
2447 *
2448 * __sched_fork() is basic setup used by init_idle() too:
2449 */
2450static void __sched_fork(struct task_struct *p)
2451{
dd41f596
IM
2452 p->se.exec_start = 0;
2453 p->se.sum_exec_runtime = 0;
f6cf891c 2454 p->se.prev_sum_exec_runtime = 0;
6c594c21 2455 p->se.nr_migrations = 0;
4ae7d5ce
IM
2456 p->se.last_wakeup = 0;
2457 p->se.avg_overlap = 0;
831451ac
PZ
2458 p->se.start_runtime = 0;
2459 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2460 p->se.avg_running = 0;
6cfb0d5d
IM
2461
2462#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2463 p->se.wait_start = 0;
2464 p->se.wait_max = 0;
2465 p->se.wait_count = 0;
2466 p->se.wait_sum = 0;
2467
2468 p->se.sleep_start = 0;
2469 p->se.sleep_max = 0;
2470 p->se.sum_sleep_runtime = 0;
2471
2472 p->se.block_start = 0;
2473 p->se.block_max = 0;
2474 p->se.exec_max = 0;
2475 p->se.slice_max = 0;
2476
2477 p->se.nr_migrations_cold = 0;
2478 p->se.nr_failed_migrations_affine = 0;
2479 p->se.nr_failed_migrations_running = 0;
2480 p->se.nr_failed_migrations_hot = 0;
2481 p->se.nr_forced_migrations = 0;
2482 p->se.nr_forced2_migrations = 0;
2483
2484 p->se.nr_wakeups = 0;
2485 p->se.nr_wakeups_sync = 0;
2486 p->se.nr_wakeups_migrate = 0;
2487 p->se.nr_wakeups_local = 0;
2488 p->se.nr_wakeups_remote = 0;
2489 p->se.nr_wakeups_affine = 0;
2490 p->se.nr_wakeups_affine_attempts = 0;
2491 p->se.nr_wakeups_passive = 0;
2492 p->se.nr_wakeups_idle = 0;
2493
6cfb0d5d 2494#endif
476d139c 2495
fa717060 2496 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2497 p->se.on_rq = 0;
4a55bd5e 2498 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2499
e107be36
AK
2500#ifdef CONFIG_PREEMPT_NOTIFIERS
2501 INIT_HLIST_HEAD(&p->preempt_notifiers);
2502#endif
2503
1da177e4
LT
2504 /*
2505 * We mark the process as running here, but have not actually
2506 * inserted it onto the runqueue yet. This guarantees that
2507 * nobody will actually run it, and a signal or other external
2508 * event cannot wake it up and insert it on the runqueue either.
2509 */
2510 p->state = TASK_RUNNING;
dd41f596
IM
2511}
2512
2513/*
2514 * fork()/clone()-time setup:
2515 */
2516void sched_fork(struct task_struct *p, int clone_flags)
2517{
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
2521
b9dc29e7
MG
2522 /*
2523 * Revert to default priority/policy on fork if requested.
2524 */
2525 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2526 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2527 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2528 p->normal_prio = p->static_prio;
2529 }
b9dc29e7 2530
6c697bdf
MG
2531 if (PRIO_TO_NICE(p->static_prio) < 0) {
2532 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2533 p->normal_prio = p->static_prio;
6c697bdf
MG
2534 set_load_weight(p);
2535 }
2536
b9dc29e7
MG
2537 /*
2538 * We don't need the reset flag anymore after the fork. It has
2539 * fulfilled its duty:
2540 */
2541 p->sched_reset_on_fork = 0;
2542 }
ca94c442 2543
f83f9ac2
PW
2544 /*
2545 * Make sure we do not leak PI boosting priority to the child.
2546 */
2547 p->prio = current->normal_prio;
2548
2ddbf952
HS
2549 if (!rt_prio(p->prio))
2550 p->sched_class = &fair_sched_class;
b29739f9 2551
5f3edc1b
PZ
2552#ifdef CONFIG_SMP
2553 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2554#endif
2555 set_task_cpu(p, cpu);
2556
52f17b6c 2557#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2558 if (likely(sched_info_on()))
52f17b6c 2559 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2560#endif
d6077cb8 2561#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2562 p->oncpu = 0;
2563#endif
1da177e4 2564#ifdef CONFIG_PREEMPT
4866cde0 2565 /* Want to start with kernel preemption disabled. */
a1261f54 2566 task_thread_info(p)->preempt_count = 1;
1da177e4 2567#endif
917b627d
GH
2568 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2569
476d139c 2570 put_cpu();
1da177e4
LT
2571}
2572
2573/*
2574 * wake_up_new_task - wake up a newly created task for the first time.
2575 *
2576 * This function will do some initial scheduler statistics housekeeping
2577 * that must be done for every newly created context, then puts the task
2578 * on the runqueue and wakes it.
2579 */
7ad5b3a5 2580void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2581{
2582 unsigned long flags;
dd41f596 2583 struct rq *rq;
1da177e4
LT
2584
2585 rq = task_rq_lock(p, &flags);
147cbb4b 2586 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2587 update_rq_clock(rq);
1da177e4 2588
b9dca1e0 2589 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2590 activate_task(rq, p, 0);
1da177e4 2591 } else {
1da177e4 2592 /*
dd41f596
IM
2593 * Let the scheduling class do new task startup
2594 * management (if any):
1da177e4 2595 */
ee0827d8 2596 p->sched_class->task_new(rq, p);
c09595f6 2597 inc_nr_running(rq);
1da177e4 2598 }
c71dd42d 2599 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2600 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2601#ifdef CONFIG_SMP
2602 if (p->sched_class->task_wake_up)
2603 p->sched_class->task_wake_up(rq, p);
2604#endif
dd41f596 2605 task_rq_unlock(rq, &flags);
1da177e4
LT
2606}
2607
e107be36
AK
2608#ifdef CONFIG_PREEMPT_NOTIFIERS
2609
2610/**
80dd99b3 2611 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2612 * @notifier: notifier struct to register
e107be36
AK
2613 */
2614void preempt_notifier_register(struct preempt_notifier *notifier)
2615{
2616 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2617}
2618EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619
2620/**
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2622 * @notifier: notifier struct to unregister
e107be36
AK
2623 *
2624 * This is safe to call from within a preemption notifier.
2625 */
2626void preempt_notifier_unregister(struct preempt_notifier *notifier)
2627{
2628 hlist_del(&notifier->link);
2629}
2630EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2631
2632static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633{
2634 struct preempt_notifier *notifier;
2635 struct hlist_node *node;
2636
2637 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2638 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2639}
2640
2641static void
2642fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644{
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2647
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_out(notifier, next);
2650}
2651
6d6bc0ad 2652#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2653
2654static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2655{
2656}
2657
2658static void
2659fire_sched_out_preempt_notifiers(struct task_struct *curr,
2660 struct task_struct *next)
2661{
2662}
2663
6d6bc0ad 2664#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2665
4866cde0
NP
2666/**
2667 * prepare_task_switch - prepare to switch tasks
2668 * @rq: the runqueue preparing to switch
421cee29 2669 * @prev: the current task that is being switched out
4866cde0
NP
2670 * @next: the task we are going to switch to.
2671 *
2672 * This is called with the rq lock held and interrupts off. It must
2673 * be paired with a subsequent finish_task_switch after the context
2674 * switch.
2675 *
2676 * prepare_task_switch sets up locking and calls architecture specific
2677 * hooks.
2678 */
e107be36
AK
2679static inline void
2680prepare_task_switch(struct rq *rq, struct task_struct *prev,
2681 struct task_struct *next)
4866cde0 2682{
e107be36 2683 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2684 prepare_lock_switch(rq, next);
2685 prepare_arch_switch(next);
2686}
2687
1da177e4
LT
2688/**
2689 * finish_task_switch - clean up after a task-switch
344babaa 2690 * @rq: runqueue associated with task-switch
1da177e4
LT
2691 * @prev: the thread we just switched away from.
2692 *
4866cde0
NP
2693 * finish_task_switch must be called after the context switch, paired
2694 * with a prepare_task_switch call before the context switch.
2695 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2696 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2697 *
2698 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2699 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2700 * with the lock held can cause deadlocks; see schedule() for
2701 * details.)
2702 */
a9957449 2703static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2704 __releases(rq->lock)
2705{
1da177e4 2706 struct mm_struct *mm = rq->prev_mm;
55a101f8 2707 long prev_state;
1da177e4
LT
2708
2709 rq->prev_mm = NULL;
2710
2711 /*
2712 * A task struct has one reference for the use as "current".
c394cc9f 2713 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2714 * schedule one last time. The schedule call will never return, and
2715 * the scheduled task must drop that reference.
c394cc9f 2716 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2717 * still held, otherwise prev could be scheduled on another cpu, die
2718 * there before we look at prev->state, and then the reference would
2719 * be dropped twice.
2720 * Manfred Spraul <manfred@colorfullife.com>
2721 */
55a101f8 2722 prev_state = prev->state;
4866cde0 2723 finish_arch_switch(prev);
cdd6c482 2724 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2725 finish_lock_switch(rq, prev);
e8fa1362 2726
e107be36 2727 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2728 if (mm)
2729 mmdrop(mm);
c394cc9f 2730 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2731 /*
2732 * Remove function-return probe instances associated with this
2733 * task and put them back on the free list.
9761eea8 2734 */
c6fd91f0 2735 kprobe_flush_task(prev);
1da177e4 2736 put_task_struct(prev);
c6fd91f0 2737 }
1da177e4
LT
2738}
2739
3f029d3c
GH
2740#ifdef CONFIG_SMP
2741
2742/* assumes rq->lock is held */
2743static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2744{
2745 if (prev->sched_class->pre_schedule)
2746 prev->sched_class->pre_schedule(rq, prev);
2747}
2748
2749/* rq->lock is NOT held, but preemption is disabled */
2750static inline void post_schedule(struct rq *rq)
2751{
2752 if (rq->post_schedule) {
2753 unsigned long flags;
2754
2755 spin_lock_irqsave(&rq->lock, flags);
2756 if (rq->curr->sched_class->post_schedule)
2757 rq->curr->sched_class->post_schedule(rq);
2758 spin_unlock_irqrestore(&rq->lock, flags);
2759
2760 rq->post_schedule = 0;
2761 }
2762}
2763
2764#else
da19ab51 2765
3f029d3c
GH
2766static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2767{
2768}
2769
2770static inline void post_schedule(struct rq *rq)
2771{
1da177e4
LT
2772}
2773
3f029d3c
GH
2774#endif
2775
1da177e4
LT
2776/**
2777 * schedule_tail - first thing a freshly forked thread must call.
2778 * @prev: the thread we just switched away from.
2779 */
36c8b586 2780asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2781 __releases(rq->lock)
2782{
70b97a7f
IM
2783 struct rq *rq = this_rq();
2784
4866cde0 2785 finish_task_switch(rq, prev);
da19ab51 2786
3f029d3c
GH
2787 /*
2788 * FIXME: do we need to worry about rq being invalidated by the
2789 * task_switch?
2790 */
2791 post_schedule(rq);
70b97a7f 2792
4866cde0
NP
2793#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2794 /* In this case, finish_task_switch does not reenable preemption */
2795 preempt_enable();
2796#endif
1da177e4 2797 if (current->set_child_tid)
b488893a 2798 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2799}
2800
2801/*
2802 * context_switch - switch to the new MM and the new
2803 * thread's register state.
2804 */
dd41f596 2805static inline void
70b97a7f 2806context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2807 struct task_struct *next)
1da177e4 2808{
dd41f596 2809 struct mm_struct *mm, *oldmm;
1da177e4 2810
e107be36 2811 prepare_task_switch(rq, prev, next);
0a16b607 2812 trace_sched_switch(rq, prev, next);
dd41f596
IM
2813 mm = next->mm;
2814 oldmm = prev->active_mm;
9226d125
ZA
2815 /*
2816 * For paravirt, this is coupled with an exit in switch_to to
2817 * combine the page table reload and the switch backend into
2818 * one hypercall.
2819 */
224101ed 2820 arch_start_context_switch(prev);
9226d125 2821
dd41f596 2822 if (unlikely(!mm)) {
1da177e4
LT
2823 next->active_mm = oldmm;
2824 atomic_inc(&oldmm->mm_count);
2825 enter_lazy_tlb(oldmm, next);
2826 } else
2827 switch_mm(oldmm, mm, next);
2828
dd41f596 2829 if (unlikely(!prev->mm)) {
1da177e4 2830 prev->active_mm = NULL;
1da177e4
LT
2831 rq->prev_mm = oldmm;
2832 }
3a5f5e48
IM
2833 /*
2834 * Since the runqueue lock will be released by the next
2835 * task (which is an invalid locking op but in the case
2836 * of the scheduler it's an obvious special-case), so we
2837 * do an early lockdep release here:
2838 */
2839#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2840 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2841#endif
1da177e4
LT
2842
2843 /* Here we just switch the register state and the stack. */
2844 switch_to(prev, next, prev);
2845
dd41f596
IM
2846 barrier();
2847 /*
2848 * this_rq must be evaluated again because prev may have moved
2849 * CPUs since it called schedule(), thus the 'rq' on its stack
2850 * frame will be invalid.
2851 */
2852 finish_task_switch(this_rq(), prev);
1da177e4
LT
2853}
2854
2855/*
2856 * nr_running, nr_uninterruptible and nr_context_switches:
2857 *
2858 * externally visible scheduler statistics: current number of runnable
2859 * threads, current number of uninterruptible-sleeping threads, total
2860 * number of context switches performed since bootup.
2861 */
2862unsigned long nr_running(void)
2863{
2864 unsigned long i, sum = 0;
2865
2866 for_each_online_cpu(i)
2867 sum += cpu_rq(i)->nr_running;
2868
2869 return sum;
2870}
2871
2872unsigned long nr_uninterruptible(void)
2873{
2874 unsigned long i, sum = 0;
2875
0a945022 2876 for_each_possible_cpu(i)
1da177e4
LT
2877 sum += cpu_rq(i)->nr_uninterruptible;
2878
2879 /*
2880 * Since we read the counters lockless, it might be slightly
2881 * inaccurate. Do not allow it to go below zero though:
2882 */
2883 if (unlikely((long)sum < 0))
2884 sum = 0;
2885
2886 return sum;
2887}
2888
2889unsigned long long nr_context_switches(void)
2890{
cc94abfc
SR
2891 int i;
2892 unsigned long long sum = 0;
1da177e4 2893
0a945022 2894 for_each_possible_cpu(i)
1da177e4
LT
2895 sum += cpu_rq(i)->nr_switches;
2896
2897 return sum;
2898}
2899
2900unsigned long nr_iowait(void)
2901{
2902 unsigned long i, sum = 0;
2903
0a945022 2904 for_each_possible_cpu(i)
1da177e4
LT
2905 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2906
2907 return sum;
2908}
2909
69d25870
AV
2910unsigned long nr_iowait_cpu(void)
2911{
2912 struct rq *this = this_rq();
2913 return atomic_read(&this->nr_iowait);
2914}
2915
2916unsigned long this_cpu_load(void)
2917{
2918 struct rq *this = this_rq();
2919 return this->cpu_load[0];
2920}
2921
2922
dce48a84
TG
2923/* Variables and functions for calc_load */
2924static atomic_long_t calc_load_tasks;
2925static unsigned long calc_load_update;
2926unsigned long avenrun[3];
2927EXPORT_SYMBOL(avenrun);
2928
2d02494f
TG
2929/**
2930 * get_avenrun - get the load average array
2931 * @loads: pointer to dest load array
2932 * @offset: offset to add
2933 * @shift: shift count to shift the result left
2934 *
2935 * These values are estimates at best, so no need for locking.
2936 */
2937void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2938{
2939 loads[0] = (avenrun[0] + offset) << shift;
2940 loads[1] = (avenrun[1] + offset) << shift;
2941 loads[2] = (avenrun[2] + offset) << shift;
2942}
2943
dce48a84
TG
2944static unsigned long
2945calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2946{
dce48a84
TG
2947 load *= exp;
2948 load += active * (FIXED_1 - exp);
2949 return load >> FSHIFT;
2950}
db1b1fef 2951
dce48a84
TG
2952/*
2953 * calc_load - update the avenrun load estimates 10 ticks after the
2954 * CPUs have updated calc_load_tasks.
2955 */
2956void calc_global_load(void)
2957{
2958 unsigned long upd = calc_load_update + 10;
2959 long active;
2960
2961 if (time_before(jiffies, upd))
2962 return;
db1b1fef 2963
dce48a84
TG
2964 active = atomic_long_read(&calc_load_tasks);
2965 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2966
dce48a84
TG
2967 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2968 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2969 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2970
2971 calc_load_update += LOAD_FREQ;
2972}
2973
2974/*
2975 * Either called from update_cpu_load() or from a cpu going idle
2976 */
2977static void calc_load_account_active(struct rq *this_rq)
2978{
2979 long nr_active, delta;
2980
2981 nr_active = this_rq->nr_running;
2982 nr_active += (long) this_rq->nr_uninterruptible;
2983
2984 if (nr_active != this_rq->calc_load_active) {
2985 delta = nr_active - this_rq->calc_load_active;
2986 this_rq->calc_load_active = nr_active;
2987 atomic_long_add(delta, &calc_load_tasks);
2988 }
db1b1fef
JS
2989}
2990
23a185ca
PM
2991/*
2992 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2993 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2994 */
23a185ca
PM
2995u64 cpu_nr_migrations(int cpu)
2996{
2997 return cpu_rq(cpu)->nr_migrations_in;
2998}
2999
48f24c4d 3000/*
dd41f596
IM
3001 * Update rq->cpu_load[] statistics. This function is usually called every
3002 * scheduler tick (TICK_NSEC).
48f24c4d 3003 */
dd41f596 3004static void update_cpu_load(struct rq *this_rq)
48f24c4d 3005{
495eca49 3006 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3007 int i, scale;
3008
3009 this_rq->nr_load_updates++;
dd41f596
IM
3010
3011 /* Update our load: */
3012 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3013 unsigned long old_load, new_load;
3014
3015 /* scale is effectively 1 << i now, and >> i divides by scale */
3016
3017 old_load = this_rq->cpu_load[i];
3018 new_load = this_load;
a25707f3
IM
3019 /*
3020 * Round up the averaging division if load is increasing. This
3021 * prevents us from getting stuck on 9 if the load is 10, for
3022 * example.
3023 */
3024 if (new_load > old_load)
3025 new_load += scale-1;
dd41f596
IM
3026 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3027 }
dce48a84
TG
3028
3029 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3030 this_rq->calc_load_update += LOAD_FREQ;
3031 calc_load_account_active(this_rq);
3032 }
48f24c4d
IM
3033}
3034
dd41f596
IM
3035#ifdef CONFIG_SMP
3036
1da177e4
LT
3037/*
3038 * double_rq_lock - safely lock two runqueues
3039 *
3040 * Note this does not disable interrupts like task_rq_lock,
3041 * you need to do so manually before calling.
3042 */
70b97a7f 3043static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3044 __acquires(rq1->lock)
3045 __acquires(rq2->lock)
3046{
054b9108 3047 BUG_ON(!irqs_disabled());
1da177e4
LT
3048 if (rq1 == rq2) {
3049 spin_lock(&rq1->lock);
3050 __acquire(rq2->lock); /* Fake it out ;) */
3051 } else {
c96d145e 3052 if (rq1 < rq2) {
1da177e4 3053 spin_lock(&rq1->lock);
5e710e37 3054 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3055 } else {
3056 spin_lock(&rq2->lock);
5e710e37 3057 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3058 }
3059 }
6e82a3be
IM
3060 update_rq_clock(rq1);
3061 update_rq_clock(rq2);
1da177e4
LT
3062}
3063
3064/*
3065 * double_rq_unlock - safely unlock two runqueues
3066 *
3067 * Note this does not restore interrupts like task_rq_unlock,
3068 * you need to do so manually after calling.
3069 */
70b97a7f 3070static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3071 __releases(rq1->lock)
3072 __releases(rq2->lock)
3073{
3074 spin_unlock(&rq1->lock);
3075 if (rq1 != rq2)
3076 spin_unlock(&rq2->lock);
3077 else
3078 __release(rq2->lock);
3079}
3080
1da177e4
LT
3081/*
3082 * If dest_cpu is allowed for this process, migrate the task to it.
3083 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3084 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3085 * the cpu_allowed mask is restored.
3086 */
36c8b586 3087static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3088{
70b97a7f 3089 struct migration_req req;
1da177e4 3090 unsigned long flags;
70b97a7f 3091 struct rq *rq;
1da177e4
LT
3092
3093 rq = task_rq_lock(p, &flags);
96f874e2 3094 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3095 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3096 goto out;
3097
3098 /* force the process onto the specified CPU */
3099 if (migrate_task(p, dest_cpu, &req)) {
3100 /* Need to wait for migration thread (might exit: take ref). */
3101 struct task_struct *mt = rq->migration_thread;
36c8b586 3102
1da177e4
LT
3103 get_task_struct(mt);
3104 task_rq_unlock(rq, &flags);
3105 wake_up_process(mt);
3106 put_task_struct(mt);
3107 wait_for_completion(&req.done);
36c8b586 3108
1da177e4
LT
3109 return;
3110 }
3111out:
3112 task_rq_unlock(rq, &flags);
3113}
3114
3115/*
476d139c
NP
3116 * sched_exec - execve() is a valuable balancing opportunity, because at
3117 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3118 */
3119void sched_exec(void)
3120{
1da177e4 3121 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3122 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3123 put_cpu();
476d139c
NP
3124 if (new_cpu != this_cpu)
3125 sched_migrate_task(current, new_cpu);
1da177e4
LT
3126}
3127
3128/*
3129 * pull_task - move a task from a remote runqueue to the local runqueue.
3130 * Both runqueues must be locked.
3131 */
dd41f596
IM
3132static void pull_task(struct rq *src_rq, struct task_struct *p,
3133 struct rq *this_rq, int this_cpu)
1da177e4 3134{
2e1cb74a 3135 deactivate_task(src_rq, p, 0);
1da177e4 3136 set_task_cpu(p, this_cpu);
dd41f596 3137 activate_task(this_rq, p, 0);
1da177e4
LT
3138 /*
3139 * Note that idle threads have a prio of MAX_PRIO, for this test
3140 * to be always true for them.
3141 */
15afe09b 3142 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3143}
3144
3145/*
3146 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3147 */
858119e1 3148static
70b97a7f 3149int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3150 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3151 int *all_pinned)
1da177e4 3152{
708dc512 3153 int tsk_cache_hot = 0;
1da177e4
LT
3154 /*
3155 * We do not migrate tasks that are:
3156 * 1) running (obviously), or
3157 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3158 * 3) are cache-hot on their current CPU.
3159 */
96f874e2 3160 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3161 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3162 return 0;
cc367732 3163 }
81026794
NP
3164 *all_pinned = 0;
3165
cc367732
IM
3166 if (task_running(rq, p)) {
3167 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3168 return 0;
cc367732 3169 }
1da177e4 3170
da84d961
IM
3171 /*
3172 * Aggressive migration if:
3173 * 1) task is cache cold, or
3174 * 2) too many balance attempts have failed.
3175 */
3176
708dc512
LH
3177 tsk_cache_hot = task_hot(p, rq->clock, sd);
3178 if (!tsk_cache_hot ||
3179 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3180#ifdef CONFIG_SCHEDSTATS
708dc512 3181 if (tsk_cache_hot) {
da84d961 3182 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3183 schedstat_inc(p, se.nr_forced_migrations);
3184 }
da84d961
IM
3185#endif
3186 return 1;
3187 }
3188
708dc512 3189 if (tsk_cache_hot) {
cc367732 3190 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3191 return 0;
cc367732 3192 }
1da177e4
LT
3193 return 1;
3194}
3195
e1d1484f
PW
3196static unsigned long
3197balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3198 unsigned long max_load_move, struct sched_domain *sd,
3199 enum cpu_idle_type idle, int *all_pinned,
3200 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3201{
051c6764 3202 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3203 struct task_struct *p;
3204 long rem_load_move = max_load_move;
1da177e4 3205
e1d1484f 3206 if (max_load_move == 0)
1da177e4
LT
3207 goto out;
3208
81026794
NP
3209 pinned = 1;
3210
1da177e4 3211 /*
dd41f596 3212 * Start the load-balancing iterator:
1da177e4 3213 */
dd41f596
IM
3214 p = iterator->start(iterator->arg);
3215next:
b82d9fdd 3216 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3217 goto out;
051c6764
PZ
3218
3219 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3220 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3221 p = iterator->next(iterator->arg);
3222 goto next;
1da177e4
LT
3223 }
3224
dd41f596 3225 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3226 pulled++;
dd41f596 3227 rem_load_move -= p->se.load.weight;
1da177e4 3228
7e96fa58
GH
3229#ifdef CONFIG_PREEMPT
3230 /*
3231 * NEWIDLE balancing is a source of latency, so preemptible kernels
3232 * will stop after the first task is pulled to minimize the critical
3233 * section.
3234 */
3235 if (idle == CPU_NEWLY_IDLE)
3236 goto out;
3237#endif
3238
2dd73a4f 3239 /*
b82d9fdd 3240 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3241 */
e1d1484f 3242 if (rem_load_move > 0) {
a4ac01c3
PW
3243 if (p->prio < *this_best_prio)
3244 *this_best_prio = p->prio;
dd41f596
IM
3245 p = iterator->next(iterator->arg);
3246 goto next;
1da177e4
LT
3247 }
3248out:
3249 /*
e1d1484f 3250 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3251 * so we can safely collect pull_task() stats here rather than
3252 * inside pull_task().
3253 */
3254 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3255
3256 if (all_pinned)
3257 *all_pinned = pinned;
e1d1484f
PW
3258
3259 return max_load_move - rem_load_move;
1da177e4
LT
3260}
3261
dd41f596 3262/*
43010659
PW
3263 * move_tasks tries to move up to max_load_move weighted load from busiest to
3264 * this_rq, as part of a balancing operation within domain "sd".
3265 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3266 *
3267 * Called with both runqueues locked.
3268 */
3269static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3270 unsigned long max_load_move,
dd41f596
IM
3271 struct sched_domain *sd, enum cpu_idle_type idle,
3272 int *all_pinned)
3273{
5522d5d5 3274 const struct sched_class *class = sched_class_highest;
43010659 3275 unsigned long total_load_moved = 0;
a4ac01c3 3276 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3277
3278 do {
43010659
PW
3279 total_load_moved +=
3280 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3281 max_load_move - total_load_moved,
a4ac01c3 3282 sd, idle, all_pinned, &this_best_prio);
dd41f596 3283 class = class->next;
c4acb2c0 3284
7e96fa58
GH
3285#ifdef CONFIG_PREEMPT
3286 /*
3287 * NEWIDLE balancing is a source of latency, so preemptible
3288 * kernels will stop after the first task is pulled to minimize
3289 * the critical section.
3290 */
c4acb2c0
GH
3291 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3292 break;
7e96fa58 3293#endif
43010659 3294 } while (class && max_load_move > total_load_moved);
dd41f596 3295
43010659
PW
3296 return total_load_moved > 0;
3297}
3298
e1d1484f
PW
3299static int
3300iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3301 struct sched_domain *sd, enum cpu_idle_type idle,
3302 struct rq_iterator *iterator)
3303{
3304 struct task_struct *p = iterator->start(iterator->arg);
3305 int pinned = 0;
3306
3307 while (p) {
3308 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3309 pull_task(busiest, p, this_rq, this_cpu);
3310 /*
3311 * Right now, this is only the second place pull_task()
3312 * is called, so we can safely collect pull_task()
3313 * stats here rather than inside pull_task().
3314 */
3315 schedstat_inc(sd, lb_gained[idle]);
3316
3317 return 1;
3318 }
3319 p = iterator->next(iterator->arg);
3320 }
3321
3322 return 0;
3323}
3324
43010659
PW
3325/*
3326 * move_one_task tries to move exactly one task from busiest to this_rq, as
3327 * part of active balancing operations within "domain".
3328 * Returns 1 if successful and 0 otherwise.
3329 *
3330 * Called with both runqueues locked.
3331 */
3332static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3333 struct sched_domain *sd, enum cpu_idle_type idle)
3334{
5522d5d5 3335 const struct sched_class *class;
43010659 3336
cde7e5ca 3337 for_each_class(class) {
e1d1484f 3338 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3339 return 1;
cde7e5ca 3340 }
43010659
PW
3341
3342 return 0;
dd41f596 3343}
67bb6c03 3344/********** Helpers for find_busiest_group ************************/
1da177e4 3345/*
222d656d
GS
3346 * sd_lb_stats - Structure to store the statistics of a sched_domain
3347 * during load balancing.
1da177e4 3348 */
222d656d
GS
3349struct sd_lb_stats {
3350 struct sched_group *busiest; /* Busiest group in this sd */
3351 struct sched_group *this; /* Local group in this sd */
3352 unsigned long total_load; /* Total load of all groups in sd */
3353 unsigned long total_pwr; /* Total power of all groups in sd */
3354 unsigned long avg_load; /* Average load across all groups in sd */
3355
3356 /** Statistics of this group */
3357 unsigned long this_load;
3358 unsigned long this_load_per_task;
3359 unsigned long this_nr_running;
3360
3361 /* Statistics of the busiest group */
3362 unsigned long max_load;
3363 unsigned long busiest_load_per_task;
3364 unsigned long busiest_nr_running;
3365
3366 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3367#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3368 int power_savings_balance; /* Is powersave balance needed for this sd */
3369 struct sched_group *group_min; /* Least loaded group in sd */
3370 struct sched_group *group_leader; /* Group which relieves group_min */
3371 unsigned long min_load_per_task; /* load_per_task in group_min */
3372 unsigned long leader_nr_running; /* Nr running of group_leader */
3373 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3374#endif
222d656d 3375};
1da177e4 3376
d5ac537e 3377/*
381be78f
GS
3378 * sg_lb_stats - stats of a sched_group required for load_balancing
3379 */
3380struct sg_lb_stats {
3381 unsigned long avg_load; /*Avg load across the CPUs of the group */
3382 unsigned long group_load; /* Total load over the CPUs of the group */
3383 unsigned long sum_nr_running; /* Nr tasks running in the group */
3384 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3385 unsigned long group_capacity;
3386 int group_imb; /* Is there an imbalance in the group ? */
3387};
408ed066 3388
67bb6c03
GS
3389/**
3390 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3391 * @group: The group whose first cpu is to be returned.
3392 */
3393static inline unsigned int group_first_cpu(struct sched_group *group)
3394{
3395 return cpumask_first(sched_group_cpus(group));
3396}
3397
3398/**
3399 * get_sd_load_idx - Obtain the load index for a given sched domain.
3400 * @sd: The sched_domain whose load_idx is to be obtained.
3401 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3402 */
3403static inline int get_sd_load_idx(struct sched_domain *sd,
3404 enum cpu_idle_type idle)
3405{
3406 int load_idx;
3407
3408 switch (idle) {
3409 case CPU_NOT_IDLE:
7897986b 3410 load_idx = sd->busy_idx;
67bb6c03
GS
3411 break;
3412
3413 case CPU_NEWLY_IDLE:
7897986b 3414 load_idx = sd->newidle_idx;
67bb6c03
GS
3415 break;
3416 default:
7897986b 3417 load_idx = sd->idle_idx;
67bb6c03
GS
3418 break;
3419 }
1da177e4 3420
67bb6c03
GS
3421 return load_idx;
3422}
1da177e4 3423
1da177e4 3424
c071df18
GS
3425#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3426/**
3427 * init_sd_power_savings_stats - Initialize power savings statistics for
3428 * the given sched_domain, during load balancing.
3429 *
3430 * @sd: Sched domain whose power-savings statistics are to be initialized.
3431 * @sds: Variable containing the statistics for sd.
3432 * @idle: Idle status of the CPU at which we're performing load-balancing.
3433 */
3434static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3435 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3436{
3437 /*
3438 * Busy processors will not participate in power savings
3439 * balance.
3440 */
3441 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3442 sds->power_savings_balance = 0;
3443 else {
3444 sds->power_savings_balance = 1;
3445 sds->min_nr_running = ULONG_MAX;
3446 sds->leader_nr_running = 0;
3447 }
3448}
783609c6 3449
c071df18
GS
3450/**
3451 * update_sd_power_savings_stats - Update the power saving stats for a
3452 * sched_domain while performing load balancing.
3453 *
3454 * @group: sched_group belonging to the sched_domain under consideration.
3455 * @sds: Variable containing the statistics of the sched_domain
3456 * @local_group: Does group contain the CPU for which we're performing
3457 * load balancing ?
3458 * @sgs: Variable containing the statistics of the group.
3459 */
3460static inline void update_sd_power_savings_stats(struct sched_group *group,
3461 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3462{
408ed066 3463
c071df18
GS
3464 if (!sds->power_savings_balance)
3465 return;
1da177e4 3466
c071df18
GS
3467 /*
3468 * If the local group is idle or completely loaded
3469 * no need to do power savings balance at this domain
3470 */
3471 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3472 !sds->this_nr_running))
3473 sds->power_savings_balance = 0;
2dd73a4f 3474
c071df18
GS
3475 /*
3476 * If a group is already running at full capacity or idle,
3477 * don't include that group in power savings calculations
3478 */
3479 if (!sds->power_savings_balance ||
3480 sgs->sum_nr_running >= sgs->group_capacity ||
3481 !sgs->sum_nr_running)
3482 return;
5969fe06 3483
c071df18
GS
3484 /*
3485 * Calculate the group which has the least non-idle load.
3486 * This is the group from where we need to pick up the load
3487 * for saving power
3488 */
3489 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3490 (sgs->sum_nr_running == sds->min_nr_running &&
3491 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3492 sds->group_min = group;
3493 sds->min_nr_running = sgs->sum_nr_running;
3494 sds->min_load_per_task = sgs->sum_weighted_load /
3495 sgs->sum_nr_running;
3496 }
783609c6 3497
c071df18
GS
3498 /*
3499 * Calculate the group which is almost near its
3500 * capacity but still has some space to pick up some load
3501 * from other group and save more power
3502 */
d899a789 3503 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3504 return;
1da177e4 3505
c071df18
GS
3506 if (sgs->sum_nr_running > sds->leader_nr_running ||
3507 (sgs->sum_nr_running == sds->leader_nr_running &&
3508 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3509 sds->group_leader = group;
3510 sds->leader_nr_running = sgs->sum_nr_running;
3511 }
3512}
408ed066 3513
c071df18 3514/**
d5ac537e 3515 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3516 * @sds: Variable containing the statistics of the sched_domain
3517 * under consideration.
3518 * @this_cpu: Cpu at which we're currently performing load-balancing.
3519 * @imbalance: Variable to store the imbalance.
3520 *
d5ac537e
RD
3521 * Description:
3522 * Check if we have potential to perform some power-savings balance.
3523 * If yes, set the busiest group to be the least loaded group in the
3524 * sched_domain, so that it's CPUs can be put to idle.
3525 *
c071df18
GS
3526 * Returns 1 if there is potential to perform power-savings balance.
3527 * Else returns 0.
3528 */
3529static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3530 int this_cpu, unsigned long *imbalance)
3531{
3532 if (!sds->power_savings_balance)
3533 return 0;
1da177e4 3534
c071df18
GS
3535 if (sds->this != sds->group_leader ||
3536 sds->group_leader == sds->group_min)
3537 return 0;
783609c6 3538
c071df18
GS
3539 *imbalance = sds->min_load_per_task;
3540 sds->busiest = sds->group_min;
1da177e4 3541
c071df18 3542 return 1;
1da177e4 3543
c071df18
GS
3544}
3545#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3546static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3547 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3548{
3549 return;
3550}
408ed066 3551
c071df18
GS
3552static inline void update_sd_power_savings_stats(struct sched_group *group,
3553 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3554{
3555 return;
3556}
3557
3558static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3559 int this_cpu, unsigned long *imbalance)
3560{
3561 return 0;
3562}
3563#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3564
d6a59aa3
PZ
3565
3566unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3567{
3568 return SCHED_LOAD_SCALE;
3569}
3570
3571unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3572{
3573 return default_scale_freq_power(sd, cpu);
3574}
3575
3576unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3577{
3578 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3579 unsigned long smt_gain = sd->smt_gain;
3580
3581 smt_gain /= weight;
3582
3583 return smt_gain;
3584}
3585
d6a59aa3
PZ
3586unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3587{
3588 return default_scale_smt_power(sd, cpu);
3589}
3590
e9e9250b
PZ
3591unsigned long scale_rt_power(int cpu)
3592{
3593 struct rq *rq = cpu_rq(cpu);
3594 u64 total, available;
3595
3596 sched_avg_update(rq);
3597
3598 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3599 available = total - rq->rt_avg;
3600
3601 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3602 total = SCHED_LOAD_SCALE;
3603
3604 total >>= SCHED_LOAD_SHIFT;
3605
3606 return div_u64(available, total);
3607}
3608
ab29230e
PZ
3609static void update_cpu_power(struct sched_domain *sd, int cpu)
3610{
3611 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3612 unsigned long power = SCHED_LOAD_SCALE;
3613 struct sched_group *sdg = sd->groups;
ab29230e 3614
8e6598af
PZ
3615 if (sched_feat(ARCH_POWER))
3616 power *= arch_scale_freq_power(sd, cpu);
3617 else
3618 power *= default_scale_freq_power(sd, cpu);
3619
d6a59aa3 3620 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3621
3622 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3623 if (sched_feat(ARCH_POWER))
3624 power *= arch_scale_smt_power(sd, cpu);
3625 else
3626 power *= default_scale_smt_power(sd, cpu);
3627
ab29230e
PZ
3628 power >>= SCHED_LOAD_SHIFT;
3629 }
3630
e9e9250b
PZ
3631 power *= scale_rt_power(cpu);
3632 power >>= SCHED_LOAD_SHIFT;
3633
3634 if (!power)
3635 power = 1;
ab29230e 3636
18a3885f 3637 sdg->cpu_power = power;
ab29230e
PZ
3638}
3639
3640static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3641{
3642 struct sched_domain *child = sd->child;
3643 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3644 unsigned long power;
cc9fba7d
PZ
3645
3646 if (!child) {
ab29230e 3647 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3648 return;
3649 }
3650
d7ea17a7 3651 power = 0;
cc9fba7d
PZ
3652
3653 group = child->groups;
3654 do {
d7ea17a7 3655 power += group->cpu_power;
cc9fba7d
PZ
3656 group = group->next;
3657 } while (group != child->groups);
d7ea17a7
IM
3658
3659 sdg->cpu_power = power;
cc9fba7d 3660}
c071df18 3661
1f8c553d
GS
3662/**
3663 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3664 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3665 * @group: sched_group whose statistics are to be updated.
3666 * @this_cpu: Cpu for which load balance is currently performed.
3667 * @idle: Idle status of this_cpu
3668 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3669 * @sd_idle: Idle status of the sched_domain containing group.
3670 * @local_group: Does group contain this_cpu.
3671 * @cpus: Set of cpus considered for load balancing.
3672 * @balance: Should we balance.
3673 * @sgs: variable to hold the statistics for this group.
3674 */
cc9fba7d
PZ
3675static inline void update_sg_lb_stats(struct sched_domain *sd,
3676 struct sched_group *group, int this_cpu,
1f8c553d
GS
3677 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3678 int local_group, const struct cpumask *cpus,
3679 int *balance, struct sg_lb_stats *sgs)
3680{
3681 unsigned long load, max_cpu_load, min_cpu_load;
3682 int i;
3683 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3684 unsigned long sum_avg_load_per_task;
3685 unsigned long avg_load_per_task;
3686
cc9fba7d 3687 if (local_group) {
1f8c553d 3688 balance_cpu = group_first_cpu(group);
cc9fba7d 3689 if (balance_cpu == this_cpu)
ab29230e 3690 update_group_power(sd, this_cpu);
cc9fba7d 3691 }
1f8c553d
GS
3692
3693 /* Tally up the load of all CPUs in the group */
3694 sum_avg_load_per_task = avg_load_per_task = 0;
3695 max_cpu_load = 0;
3696 min_cpu_load = ~0UL;
408ed066 3697
1f8c553d
GS
3698 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3699 struct rq *rq = cpu_rq(i);
908a7c1b 3700
1f8c553d
GS
3701 if (*sd_idle && rq->nr_running)
3702 *sd_idle = 0;
5c45bf27 3703
1f8c553d 3704 /* Bias balancing toward cpus of our domain */
1da177e4 3705 if (local_group) {
1f8c553d
GS
3706 if (idle_cpu(i) && !first_idle_cpu) {
3707 first_idle_cpu = 1;
3708 balance_cpu = i;
3709 }
3710
3711 load = target_load(i, load_idx);
3712 } else {
3713 load = source_load(i, load_idx);
3714 if (load > max_cpu_load)
3715 max_cpu_load = load;
3716 if (min_cpu_load > load)
3717 min_cpu_load = load;
1da177e4 3718 }
5c45bf27 3719
1f8c553d
GS
3720 sgs->group_load += load;
3721 sgs->sum_nr_running += rq->nr_running;
3722 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3723
1f8c553d
GS
3724 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3725 }
5c45bf27 3726
1f8c553d
GS
3727 /*
3728 * First idle cpu or the first cpu(busiest) in this sched group
3729 * is eligible for doing load balancing at this and above
3730 * domains. In the newly idle case, we will allow all the cpu's
3731 * to do the newly idle load balance.
3732 */
3733 if (idle != CPU_NEWLY_IDLE && local_group &&
3734 balance_cpu != this_cpu && balance) {
3735 *balance = 0;
3736 return;
3737 }
5c45bf27 3738
1f8c553d 3739 /* Adjust by relative CPU power of the group */
18a3885f 3740 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3741
1f8c553d
GS
3742
3743 /*
3744 * Consider the group unbalanced when the imbalance is larger
3745 * than the average weight of two tasks.
3746 *
3747 * APZ: with cgroup the avg task weight can vary wildly and
3748 * might not be a suitable number - should we keep a
3749 * normalized nr_running number somewhere that negates
3750 * the hierarchy?
3751 */
18a3885f
PZ
3752 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3753 group->cpu_power;
1f8c553d
GS
3754
3755 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3756 sgs->group_imb = 1;
3757
bdb94aa5 3758 sgs->group_capacity =
18a3885f 3759 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3760}
dd41f596 3761
37abe198
GS
3762/**
3763 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3764 * @sd: sched_domain whose statistics are to be updated.
3765 * @this_cpu: Cpu for which load balance is currently performed.
3766 * @idle: Idle status of this_cpu
3767 * @sd_idle: Idle status of the sched_domain containing group.
3768 * @cpus: Set of cpus considered for load balancing.
3769 * @balance: Should we balance.
3770 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3771 */
37abe198
GS
3772static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3773 enum cpu_idle_type idle, int *sd_idle,
3774 const struct cpumask *cpus, int *balance,
3775 struct sd_lb_stats *sds)
1da177e4 3776{
b5d978e0 3777 struct sched_domain *child = sd->child;
222d656d 3778 struct sched_group *group = sd->groups;
37abe198 3779 struct sg_lb_stats sgs;
b5d978e0
PZ
3780 int load_idx, prefer_sibling = 0;
3781
3782 if (child && child->flags & SD_PREFER_SIBLING)
3783 prefer_sibling = 1;
222d656d 3784
c071df18 3785 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3786 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3787
3788 do {
1da177e4 3789 int local_group;
1da177e4 3790
758b2cdc
RR
3791 local_group = cpumask_test_cpu(this_cpu,
3792 sched_group_cpus(group));
381be78f 3793 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3794 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3795 local_group, cpus, balance, &sgs);
1da177e4 3796
37abe198
GS
3797 if (local_group && balance && !(*balance))
3798 return;
783609c6 3799
37abe198 3800 sds->total_load += sgs.group_load;
18a3885f 3801 sds->total_pwr += group->cpu_power;
1da177e4 3802
b5d978e0
PZ
3803 /*
3804 * In case the child domain prefers tasks go to siblings
3805 * first, lower the group capacity to one so that we'll try
3806 * and move all the excess tasks away.
3807 */
3808 if (prefer_sibling)
bdb94aa5 3809 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3810
1da177e4 3811 if (local_group) {
37abe198
GS
3812 sds->this_load = sgs.avg_load;
3813 sds->this = group;
3814 sds->this_nr_running = sgs.sum_nr_running;
3815 sds->this_load_per_task = sgs.sum_weighted_load;
3816 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3817 (sgs.sum_nr_running > sgs.group_capacity ||
3818 sgs.group_imb)) {
37abe198
GS
3819 sds->max_load = sgs.avg_load;
3820 sds->busiest = group;
3821 sds->busiest_nr_running = sgs.sum_nr_running;
3822 sds->busiest_load_per_task = sgs.sum_weighted_load;
3823 sds->group_imb = sgs.group_imb;
48f24c4d 3824 }
5c45bf27 3825
c071df18 3826 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3827 group = group->next;
3828 } while (group != sd->groups);
37abe198 3829}
1da177e4 3830
2e6f44ae
GS
3831/**
3832 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3833 * amongst the groups of a sched_domain, during
3834 * load balancing.
2e6f44ae
GS
3835 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3836 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3837 * @imbalance: Variable to store the imbalance.
3838 */
3839static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3840 int this_cpu, unsigned long *imbalance)
3841{
3842 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3843 unsigned int imbn = 2;
3844
3845 if (sds->this_nr_running) {
3846 sds->this_load_per_task /= sds->this_nr_running;
3847 if (sds->busiest_load_per_task >
3848 sds->this_load_per_task)
3849 imbn = 1;
3850 } else
3851 sds->this_load_per_task =
3852 cpu_avg_load_per_task(this_cpu);
1da177e4 3853
2e6f44ae
GS
3854 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3855 sds->busiest_load_per_task * imbn) {
3856 *imbalance = sds->busiest_load_per_task;
3857 return;
3858 }
908a7c1b 3859
1da177e4 3860 /*
2e6f44ae
GS
3861 * OK, we don't have enough imbalance to justify moving tasks,
3862 * however we may be able to increase total CPU power used by
3863 * moving them.
1da177e4 3864 */
2dd73a4f 3865
18a3885f 3866 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3867 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3868 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3869 min(sds->this_load_per_task, sds->this_load);
3870 pwr_now /= SCHED_LOAD_SCALE;
3871
3872 /* Amount of load we'd subtract */
18a3885f
PZ
3873 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3874 sds->busiest->cpu_power;
2e6f44ae 3875 if (sds->max_load > tmp)
18a3885f 3876 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3877 min(sds->busiest_load_per_task, sds->max_load - tmp);
3878
3879 /* Amount of load we'd add */
18a3885f 3880 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3881 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3882 tmp = (sds->max_load * sds->busiest->cpu_power) /
3883 sds->this->cpu_power;
2e6f44ae 3884 else
18a3885f
PZ
3885 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3886 sds->this->cpu_power;
3887 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3888 min(sds->this_load_per_task, sds->this_load + tmp);
3889 pwr_move /= SCHED_LOAD_SCALE;
3890
3891 /* Move if we gain throughput */
3892 if (pwr_move > pwr_now)
3893 *imbalance = sds->busiest_load_per_task;
3894}
dbc523a3
GS
3895
3896/**
3897 * calculate_imbalance - Calculate the amount of imbalance present within the
3898 * groups of a given sched_domain during load balance.
3899 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3900 * @this_cpu: Cpu for which currently load balance is being performed.
3901 * @imbalance: The variable to store the imbalance.
3902 */
3903static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3904 unsigned long *imbalance)
3905{
3906 unsigned long max_pull;
2dd73a4f
PW
3907 /*
3908 * In the presence of smp nice balancing, certain scenarios can have
3909 * max load less than avg load(as we skip the groups at or below
3910 * its cpu_power, while calculating max_load..)
3911 */
dbc523a3 3912 if (sds->max_load < sds->avg_load) {
2dd73a4f 3913 *imbalance = 0;
dbc523a3 3914 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3915 }
0c117f1b
SS
3916
3917 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3918 max_pull = min(sds->max_load - sds->avg_load,
3919 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3920
1da177e4 3921 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3922 *imbalance = min(max_pull * sds->busiest->cpu_power,
3923 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3924 / SCHED_LOAD_SCALE;
3925
2dd73a4f
PW
3926 /*
3927 * if *imbalance is less than the average load per runnable task
3928 * there is no gaurantee that any tasks will be moved so we'll have
3929 * a think about bumping its value to force at least one task to be
3930 * moved
3931 */
dbc523a3
GS
3932 if (*imbalance < sds->busiest_load_per_task)
3933 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3934
dbc523a3 3935}
37abe198 3936/******* find_busiest_group() helpers end here *********************/
1da177e4 3937
b7bb4c9b
GS
3938/**
3939 * find_busiest_group - Returns the busiest group within the sched_domain
3940 * if there is an imbalance. If there isn't an imbalance, and
3941 * the user has opted for power-savings, it returns a group whose
3942 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3943 * such a group exists.
3944 *
3945 * Also calculates the amount of weighted load which should be moved
3946 * to restore balance.
3947 *
3948 * @sd: The sched_domain whose busiest group is to be returned.
3949 * @this_cpu: The cpu for which load balancing is currently being performed.
3950 * @imbalance: Variable which stores amount of weighted load which should
3951 * be moved to restore balance/put a group to idle.
3952 * @idle: The idle status of this_cpu.
3953 * @sd_idle: The idleness of sd
3954 * @cpus: The set of CPUs under consideration for load-balancing.
3955 * @balance: Pointer to a variable indicating if this_cpu
3956 * is the appropriate cpu to perform load balancing at this_level.
3957 *
3958 * Returns: - the busiest group if imbalance exists.
3959 * - If no imbalance and user has opted for power-savings balance,
3960 * return the least loaded group whose CPUs can be
3961 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3962 */
3963static struct sched_group *
3964find_busiest_group(struct sched_domain *sd, int this_cpu,
3965 unsigned long *imbalance, enum cpu_idle_type idle,
3966 int *sd_idle, const struct cpumask *cpus, int *balance)
3967{
3968 struct sd_lb_stats sds;
1da177e4 3969
37abe198 3970 memset(&sds, 0, sizeof(sds));
1da177e4 3971
37abe198
GS
3972 /*
3973 * Compute the various statistics relavent for load balancing at
3974 * this level.
3975 */
3976 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3977 balance, &sds);
3978
b7bb4c9b
GS
3979 /* Cases where imbalance does not exist from POV of this_cpu */
3980 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3981 * at this level.
3982 * 2) There is no busy sibling group to pull from.
3983 * 3) This group is the busiest group.
3984 * 4) This group is more busy than the avg busieness at this
3985 * sched_domain.
3986 * 5) The imbalance is within the specified limit.
3987 * 6) Any rebalance would lead to ping-pong
3988 */
37abe198
GS
3989 if (balance && !(*balance))
3990 goto ret;
1da177e4 3991
b7bb4c9b
GS
3992 if (!sds.busiest || sds.busiest_nr_running == 0)
3993 goto out_balanced;
1da177e4 3994
b7bb4c9b 3995 if (sds.this_load >= sds.max_load)
1da177e4 3996 goto out_balanced;
1da177e4 3997
222d656d 3998 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3999
b7bb4c9b
GS
4000 if (sds.this_load >= sds.avg_load)
4001 goto out_balanced;
4002
4003 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4004 goto out_balanced;
4005
222d656d
GS
4006 sds.busiest_load_per_task /= sds.busiest_nr_running;
4007 if (sds.group_imb)
4008 sds.busiest_load_per_task =
4009 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4010
1da177e4
LT
4011 /*
4012 * We're trying to get all the cpus to the average_load, so we don't
4013 * want to push ourselves above the average load, nor do we wish to
4014 * reduce the max loaded cpu below the average load, as either of these
4015 * actions would just result in more rebalancing later, and ping-pong
4016 * tasks around. Thus we look for the minimum possible imbalance.
4017 * Negative imbalances (*we* are more loaded than anyone else) will
4018 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4019 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4020 * appear as very large values with unsigned longs.
4021 */
222d656d 4022 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4023 goto out_balanced;
4024
dbc523a3
GS
4025 /* Looks like there is an imbalance. Compute it */
4026 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4027 return sds.busiest;
1da177e4
LT
4028
4029out_balanced:
c071df18
GS
4030 /*
4031 * There is no obvious imbalance. But check if we can do some balancing
4032 * to save power.
4033 */
4034 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4035 return sds.busiest;
783609c6 4036ret:
1da177e4
LT
4037 *imbalance = 0;
4038 return NULL;
4039}
4040
4041/*
4042 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4043 */
70b97a7f 4044static struct rq *
d15bcfdb 4045find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4046 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4047{
70b97a7f 4048 struct rq *busiest = NULL, *rq;
2dd73a4f 4049 unsigned long max_load = 0;
1da177e4
LT
4050 int i;
4051
758b2cdc 4052 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4053 unsigned long power = power_of(i);
4054 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4055 unsigned long wl;
0a2966b4 4056
96f874e2 4057 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4058 continue;
4059
48f24c4d 4060 rq = cpu_rq(i);
bdb94aa5
PZ
4061 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4062 wl /= power;
2dd73a4f 4063
bdb94aa5 4064 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4065 continue;
1da177e4 4066
dd41f596
IM
4067 if (wl > max_load) {
4068 max_load = wl;
48f24c4d 4069 busiest = rq;
1da177e4
LT
4070 }
4071 }
4072
4073 return busiest;
4074}
4075
77391d71
NP
4076/*
4077 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4078 * so long as it is large enough.
4079 */
4080#define MAX_PINNED_INTERVAL 512
4081
df7c8e84
RR
4082/* Working cpumask for load_balance and load_balance_newidle. */
4083static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4084
1da177e4
LT
4085/*
4086 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4087 * tasks if there is an imbalance.
1da177e4 4088 */
70b97a7f 4089static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4090 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4091 int *balance)
1da177e4 4092{
43010659 4093 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4094 struct sched_group *group;
1da177e4 4095 unsigned long imbalance;
70b97a7f 4096 struct rq *busiest;
fe2eea3f 4097 unsigned long flags;
df7c8e84 4098 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4099
96f874e2 4100 cpumask_setall(cpus);
7c16ec58 4101
89c4710e
SS
4102 /*
4103 * When power savings policy is enabled for the parent domain, idle
4104 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4105 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4106 * portraying it as CPU_NOT_IDLE.
89c4710e 4107 */
d15bcfdb 4108 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4109 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4110 sd_idle = 1;
1da177e4 4111
2d72376b 4112 schedstat_inc(sd, lb_count[idle]);
1da177e4 4113
0a2966b4 4114redo:
c8cba857 4115 update_shares(sd);
0a2966b4 4116 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4117 cpus, balance);
783609c6 4118
06066714 4119 if (*balance == 0)
783609c6 4120 goto out_balanced;
783609c6 4121
1da177e4
LT
4122 if (!group) {
4123 schedstat_inc(sd, lb_nobusyg[idle]);
4124 goto out_balanced;
4125 }
4126
7c16ec58 4127 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4128 if (!busiest) {
4129 schedstat_inc(sd, lb_nobusyq[idle]);
4130 goto out_balanced;
4131 }
4132
db935dbd 4133 BUG_ON(busiest == this_rq);
1da177e4
LT
4134
4135 schedstat_add(sd, lb_imbalance[idle], imbalance);
4136
43010659 4137 ld_moved = 0;
1da177e4
LT
4138 if (busiest->nr_running > 1) {
4139 /*
4140 * Attempt to move tasks. If find_busiest_group has found
4141 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4142 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4143 * correctly treated as an imbalance.
4144 */
fe2eea3f 4145 local_irq_save(flags);
e17224bf 4146 double_rq_lock(this_rq, busiest);
43010659 4147 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4148 imbalance, sd, idle, &all_pinned);
e17224bf 4149 double_rq_unlock(this_rq, busiest);
fe2eea3f 4150 local_irq_restore(flags);
81026794 4151
46cb4b7c
SS
4152 /*
4153 * some other cpu did the load balance for us.
4154 */
43010659 4155 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4156 resched_cpu(this_cpu);
4157
81026794 4158 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4159 if (unlikely(all_pinned)) {
96f874e2
RR
4160 cpumask_clear_cpu(cpu_of(busiest), cpus);
4161 if (!cpumask_empty(cpus))
0a2966b4 4162 goto redo;
81026794 4163 goto out_balanced;
0a2966b4 4164 }
1da177e4 4165 }
81026794 4166
43010659 4167 if (!ld_moved) {
1da177e4
LT
4168 schedstat_inc(sd, lb_failed[idle]);
4169 sd->nr_balance_failed++;
4170
4171 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4172
fe2eea3f 4173 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4174
4175 /* don't kick the migration_thread, if the curr
4176 * task on busiest cpu can't be moved to this_cpu
4177 */
96f874e2
RR
4178 if (!cpumask_test_cpu(this_cpu,
4179 &busiest->curr->cpus_allowed)) {
fe2eea3f 4180 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4181 all_pinned = 1;
4182 goto out_one_pinned;
4183 }
4184
1da177e4
LT
4185 if (!busiest->active_balance) {
4186 busiest->active_balance = 1;
4187 busiest->push_cpu = this_cpu;
81026794 4188 active_balance = 1;
1da177e4 4189 }
fe2eea3f 4190 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4191 if (active_balance)
1da177e4
LT
4192 wake_up_process(busiest->migration_thread);
4193
4194 /*
4195 * We've kicked active balancing, reset the failure
4196 * counter.
4197 */
39507451 4198 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4199 }
81026794 4200 } else
1da177e4
LT
4201 sd->nr_balance_failed = 0;
4202
81026794 4203 if (likely(!active_balance)) {
1da177e4
LT
4204 /* We were unbalanced, so reset the balancing interval */
4205 sd->balance_interval = sd->min_interval;
81026794
NP
4206 } else {
4207 /*
4208 * If we've begun active balancing, start to back off. This
4209 * case may not be covered by the all_pinned logic if there
4210 * is only 1 task on the busy runqueue (because we don't call
4211 * move_tasks).
4212 */
4213 if (sd->balance_interval < sd->max_interval)
4214 sd->balance_interval *= 2;
1da177e4
LT
4215 }
4216
43010659 4217 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4219 ld_moved = -1;
4220
4221 goto out;
1da177e4
LT
4222
4223out_balanced:
1da177e4
LT
4224 schedstat_inc(sd, lb_balanced[idle]);
4225
16cfb1c0 4226 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4227
4228out_one_pinned:
1da177e4 4229 /* tune up the balancing interval */
77391d71
NP
4230 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4231 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4232 sd->balance_interval *= 2;
4233
48f24c4d 4234 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4235 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4236 ld_moved = -1;
4237 else
4238 ld_moved = 0;
4239out:
c8cba857
PZ
4240 if (ld_moved)
4241 update_shares(sd);
c09595f6 4242 return ld_moved;
1da177e4
LT
4243}
4244
4245/*
4246 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4247 * tasks if there is an imbalance.
4248 *
d15bcfdb 4249 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4250 * this_rq is locked.
4251 */
48f24c4d 4252static int
df7c8e84 4253load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4254{
4255 struct sched_group *group;
70b97a7f 4256 struct rq *busiest = NULL;
1da177e4 4257 unsigned long imbalance;
43010659 4258 int ld_moved = 0;
5969fe06 4259 int sd_idle = 0;
969bb4e4 4260 int all_pinned = 0;
df7c8e84 4261 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4262
96f874e2 4263 cpumask_setall(cpus);
5969fe06 4264
89c4710e
SS
4265 /*
4266 * When power savings policy is enabled for the parent domain, idle
4267 * sibling can pick up load irrespective of busy siblings. In this case,
4268 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4269 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4270 */
4271 if (sd->flags & SD_SHARE_CPUPOWER &&
4272 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4273 sd_idle = 1;
1da177e4 4274
2d72376b 4275 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4276redo:
3e5459b4 4277 update_shares_locked(this_rq, sd);
d15bcfdb 4278 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4279 &sd_idle, cpus, NULL);
1da177e4 4280 if (!group) {
d15bcfdb 4281 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4282 goto out_balanced;
1da177e4
LT
4283 }
4284
7c16ec58 4285 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4286 if (!busiest) {
d15bcfdb 4287 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4288 goto out_balanced;
1da177e4
LT
4289 }
4290
db935dbd
NP
4291 BUG_ON(busiest == this_rq);
4292
d15bcfdb 4293 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4294
43010659 4295 ld_moved = 0;
d6d5cfaf
NP
4296 if (busiest->nr_running > 1) {
4297 /* Attempt to move tasks */
4298 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4299 /* this_rq->clock is already updated */
4300 update_rq_clock(busiest);
43010659 4301 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4302 imbalance, sd, CPU_NEWLY_IDLE,
4303 &all_pinned);
1b12bbc7 4304 double_unlock_balance(this_rq, busiest);
0a2966b4 4305
969bb4e4 4306 if (unlikely(all_pinned)) {
96f874e2
RR
4307 cpumask_clear_cpu(cpu_of(busiest), cpus);
4308 if (!cpumask_empty(cpus))
0a2966b4
CL
4309 goto redo;
4310 }
d6d5cfaf
NP
4311 }
4312
43010659 4313 if (!ld_moved) {
36dffab6 4314 int active_balance = 0;
ad273b32 4315
d15bcfdb 4316 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4317 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4318 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4319 return -1;
ad273b32
VS
4320
4321 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4322 return -1;
4323
4324 if (sd->nr_balance_failed++ < 2)
4325 return -1;
4326
4327 /*
4328 * The only task running in a non-idle cpu can be moved to this
4329 * cpu in an attempt to completely freeup the other CPU
4330 * package. The same method used to move task in load_balance()
4331 * have been extended for load_balance_newidle() to speedup
4332 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4333 *
4334 * The package power saving logic comes from
4335 * find_busiest_group(). If there are no imbalance, then
4336 * f_b_g() will return NULL. However when sched_mc={1,2} then
4337 * f_b_g() will select a group from which a running task may be
4338 * pulled to this cpu in order to make the other package idle.
4339 * If there is no opportunity to make a package idle and if
4340 * there are no imbalance, then f_b_g() will return NULL and no
4341 * action will be taken in load_balance_newidle().
4342 *
4343 * Under normal task pull operation due to imbalance, there
4344 * will be more than one task in the source run queue and
4345 * move_tasks() will succeed. ld_moved will be true and this
4346 * active balance code will not be triggered.
4347 */
4348
4349 /* Lock busiest in correct order while this_rq is held */
4350 double_lock_balance(this_rq, busiest);
4351
4352 /*
4353 * don't kick the migration_thread, if the curr
4354 * task on busiest cpu can't be moved to this_cpu
4355 */
6ca09dfc 4356 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4357 double_unlock_balance(this_rq, busiest);
4358 all_pinned = 1;
4359 return ld_moved;
4360 }
4361
4362 if (!busiest->active_balance) {
4363 busiest->active_balance = 1;
4364 busiest->push_cpu = this_cpu;
4365 active_balance = 1;
4366 }
4367
4368 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4369 /*
4370 * Should not call ttwu while holding a rq->lock
4371 */
4372 spin_unlock(&this_rq->lock);
ad273b32
VS
4373 if (active_balance)
4374 wake_up_process(busiest->migration_thread);
da8d5089 4375 spin_lock(&this_rq->lock);
ad273b32 4376
5969fe06 4377 } else
16cfb1c0 4378 sd->nr_balance_failed = 0;
1da177e4 4379
3e5459b4 4380 update_shares_locked(this_rq, sd);
43010659 4381 return ld_moved;
16cfb1c0
NP
4382
4383out_balanced:
d15bcfdb 4384 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4385 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4386 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4387 return -1;
16cfb1c0 4388 sd->nr_balance_failed = 0;
48f24c4d 4389
16cfb1c0 4390 return 0;
1da177e4
LT
4391}
4392
4393/*
4394 * idle_balance is called by schedule() if this_cpu is about to become
4395 * idle. Attempts to pull tasks from other CPUs.
4396 */
70b97a7f 4397static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4398{
4399 struct sched_domain *sd;
efbe027e 4400 int pulled_task = 0;
dd41f596 4401 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4402
4403 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4404 unsigned long interval;
4405
4406 if (!(sd->flags & SD_LOAD_BALANCE))
4407 continue;
4408
4409 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4410 /* If we've pulled tasks over stop searching: */
7c16ec58 4411 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4412 sd);
92c4ca5c
CL
4413
4414 interval = msecs_to_jiffies(sd->balance_interval);
4415 if (time_after(next_balance, sd->last_balance + interval))
4416 next_balance = sd->last_balance + interval;
4417 if (pulled_task)
4418 break;
1da177e4 4419 }
dd41f596 4420 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4421 /*
4422 * We are going idle. next_balance may be set based on
4423 * a busy processor. So reset next_balance.
4424 */
4425 this_rq->next_balance = next_balance;
dd41f596 4426 }
1da177e4
LT
4427}
4428
4429/*
4430 * active_load_balance is run by migration threads. It pushes running tasks
4431 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4432 * running on each physical CPU where possible, and avoids physical /
4433 * logical imbalances.
4434 *
4435 * Called with busiest_rq locked.
4436 */
70b97a7f 4437static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4438{
39507451 4439 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4440 struct sched_domain *sd;
4441 struct rq *target_rq;
39507451 4442
48f24c4d 4443 /* Is there any task to move? */
39507451 4444 if (busiest_rq->nr_running <= 1)
39507451
NP
4445 return;
4446
4447 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4448
4449 /*
39507451 4450 * This condition is "impossible", if it occurs
41a2d6cf 4451 * we need to fix it. Originally reported by
39507451 4452 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4453 */
39507451 4454 BUG_ON(busiest_rq == target_rq);
1da177e4 4455
39507451
NP
4456 /* move a task from busiest_rq to target_rq */
4457 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4458 update_rq_clock(busiest_rq);
4459 update_rq_clock(target_rq);
39507451
NP
4460
4461 /* Search for an sd spanning us and the target CPU. */
c96d145e 4462 for_each_domain(target_cpu, sd) {
39507451 4463 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4464 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4465 break;
c96d145e 4466 }
39507451 4467
48f24c4d 4468 if (likely(sd)) {
2d72376b 4469 schedstat_inc(sd, alb_count);
39507451 4470
43010659
PW
4471 if (move_one_task(target_rq, target_cpu, busiest_rq,
4472 sd, CPU_IDLE))
48f24c4d
IM
4473 schedstat_inc(sd, alb_pushed);
4474 else
4475 schedstat_inc(sd, alb_failed);
4476 }
1b12bbc7 4477 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4478}
4479
46cb4b7c
SS
4480#ifdef CONFIG_NO_HZ
4481static struct {
4482 atomic_t load_balancer;
7d1e6a9b 4483 cpumask_var_t cpu_mask;
f711f609 4484 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4485} nohz ____cacheline_aligned = {
4486 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4487};
4488
eea08f32
AB
4489int get_nohz_load_balancer(void)
4490{
4491 return atomic_read(&nohz.load_balancer);
4492}
4493
f711f609
GS
4494#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4495/**
4496 * lowest_flag_domain - Return lowest sched_domain containing flag.
4497 * @cpu: The cpu whose lowest level of sched domain is to
4498 * be returned.
4499 * @flag: The flag to check for the lowest sched_domain
4500 * for the given cpu.
4501 *
4502 * Returns the lowest sched_domain of a cpu which contains the given flag.
4503 */
4504static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4505{
4506 struct sched_domain *sd;
4507
4508 for_each_domain(cpu, sd)
4509 if (sd && (sd->flags & flag))
4510 break;
4511
4512 return sd;
4513}
4514
4515/**
4516 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4517 * @cpu: The cpu whose domains we're iterating over.
4518 * @sd: variable holding the value of the power_savings_sd
4519 * for cpu.
4520 * @flag: The flag to filter the sched_domains to be iterated.
4521 *
4522 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4523 * set, starting from the lowest sched_domain to the highest.
4524 */
4525#define for_each_flag_domain(cpu, sd, flag) \
4526 for (sd = lowest_flag_domain(cpu, flag); \
4527 (sd && (sd->flags & flag)); sd = sd->parent)
4528
4529/**
4530 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4531 * @ilb_group: group to be checked for semi-idleness
4532 *
4533 * Returns: 1 if the group is semi-idle. 0 otherwise.
4534 *
4535 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4536 * and atleast one non-idle CPU. This helper function checks if the given
4537 * sched_group is semi-idle or not.
4538 */
4539static inline int is_semi_idle_group(struct sched_group *ilb_group)
4540{
4541 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4542 sched_group_cpus(ilb_group));
4543
4544 /*
4545 * A sched_group is semi-idle when it has atleast one busy cpu
4546 * and atleast one idle cpu.
4547 */
4548 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4549 return 0;
4550
4551 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4552 return 0;
4553
4554 return 1;
4555}
4556/**
4557 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4558 * @cpu: The cpu which is nominating a new idle_load_balancer.
4559 *
4560 * Returns: Returns the id of the idle load balancer if it exists,
4561 * Else, returns >= nr_cpu_ids.
4562 *
4563 * This algorithm picks the idle load balancer such that it belongs to a
4564 * semi-idle powersavings sched_domain. The idea is to try and avoid
4565 * completely idle packages/cores just for the purpose of idle load balancing
4566 * when there are other idle cpu's which are better suited for that job.
4567 */
4568static int find_new_ilb(int cpu)
4569{
4570 struct sched_domain *sd;
4571 struct sched_group *ilb_group;
4572
4573 /*
4574 * Have idle load balancer selection from semi-idle packages only
4575 * when power-aware load balancing is enabled
4576 */
4577 if (!(sched_smt_power_savings || sched_mc_power_savings))
4578 goto out_done;
4579
4580 /*
4581 * Optimize for the case when we have no idle CPUs or only one
4582 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4583 */
4584 if (cpumask_weight(nohz.cpu_mask) < 2)
4585 goto out_done;
4586
4587 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4588 ilb_group = sd->groups;
4589
4590 do {
4591 if (is_semi_idle_group(ilb_group))
4592 return cpumask_first(nohz.ilb_grp_nohz_mask);
4593
4594 ilb_group = ilb_group->next;
4595
4596 } while (ilb_group != sd->groups);
4597 }
4598
4599out_done:
4600 return cpumask_first(nohz.cpu_mask);
4601}
4602#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4603static inline int find_new_ilb(int call_cpu)
4604{
6e29ec57 4605 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4606}
4607#endif
4608
7835b98b 4609/*
46cb4b7c
SS
4610 * This routine will try to nominate the ilb (idle load balancing)
4611 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4612 * load balancing on behalf of all those cpus. If all the cpus in the system
4613 * go into this tickless mode, then there will be no ilb owner (as there is
4614 * no need for one) and all the cpus will sleep till the next wakeup event
4615 * arrives...
4616 *
4617 * For the ilb owner, tick is not stopped. And this tick will be used
4618 * for idle load balancing. ilb owner will still be part of
4619 * nohz.cpu_mask..
7835b98b 4620 *
46cb4b7c
SS
4621 * While stopping the tick, this cpu will become the ilb owner if there
4622 * is no other owner. And will be the owner till that cpu becomes busy
4623 * or if all cpus in the system stop their ticks at which point
4624 * there is no need for ilb owner.
4625 *
4626 * When the ilb owner becomes busy, it nominates another owner, during the
4627 * next busy scheduler_tick()
4628 */
4629int select_nohz_load_balancer(int stop_tick)
4630{
4631 int cpu = smp_processor_id();
4632
4633 if (stop_tick) {
46cb4b7c
SS
4634 cpu_rq(cpu)->in_nohz_recently = 1;
4635
483b4ee6
SS
4636 if (!cpu_active(cpu)) {
4637 if (atomic_read(&nohz.load_balancer) != cpu)
4638 return 0;
4639
4640 /*
4641 * If we are going offline and still the leader,
4642 * give up!
4643 */
46cb4b7c
SS
4644 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4645 BUG();
483b4ee6 4646
46cb4b7c
SS
4647 return 0;
4648 }
4649
483b4ee6
SS
4650 cpumask_set_cpu(cpu, nohz.cpu_mask);
4651
46cb4b7c 4652 /* time for ilb owner also to sleep */
7d1e6a9b 4653 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4654 if (atomic_read(&nohz.load_balancer) == cpu)
4655 atomic_set(&nohz.load_balancer, -1);
4656 return 0;
4657 }
4658
4659 if (atomic_read(&nohz.load_balancer) == -1) {
4660 /* make me the ilb owner */
4661 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4662 return 1;
e790fb0b
GS
4663 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4664 int new_ilb;
4665
4666 if (!(sched_smt_power_savings ||
4667 sched_mc_power_savings))
4668 return 1;
4669 /*
4670 * Check to see if there is a more power-efficient
4671 * ilb.
4672 */
4673 new_ilb = find_new_ilb(cpu);
4674 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4675 atomic_set(&nohz.load_balancer, -1);
4676 resched_cpu(new_ilb);
4677 return 0;
4678 }
46cb4b7c 4679 return 1;
e790fb0b 4680 }
46cb4b7c 4681 } else {
7d1e6a9b 4682 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4683 return 0;
4684
7d1e6a9b 4685 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4686
4687 if (atomic_read(&nohz.load_balancer) == cpu)
4688 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4689 BUG();
4690 }
4691 return 0;
4692}
4693#endif
4694
4695static DEFINE_SPINLOCK(balancing);
4696
4697/*
7835b98b
CL
4698 * It checks each scheduling domain to see if it is due to be balanced,
4699 * and initiates a balancing operation if so.
4700 *
4701 * Balancing parameters are set up in arch_init_sched_domains.
4702 */
a9957449 4703static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4704{
46cb4b7c
SS
4705 int balance = 1;
4706 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4707 unsigned long interval;
4708 struct sched_domain *sd;
46cb4b7c 4709 /* Earliest time when we have to do rebalance again */
c9819f45 4710 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4711 int update_next_balance = 0;
d07355f5 4712 int need_serialize;
1da177e4 4713
46cb4b7c 4714 for_each_domain(cpu, sd) {
1da177e4
LT
4715 if (!(sd->flags & SD_LOAD_BALANCE))
4716 continue;
4717
4718 interval = sd->balance_interval;
d15bcfdb 4719 if (idle != CPU_IDLE)
1da177e4
LT
4720 interval *= sd->busy_factor;
4721
4722 /* scale ms to jiffies */
4723 interval = msecs_to_jiffies(interval);
4724 if (unlikely(!interval))
4725 interval = 1;
dd41f596
IM
4726 if (interval > HZ*NR_CPUS/10)
4727 interval = HZ*NR_CPUS/10;
4728
d07355f5 4729 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4730
d07355f5 4731 if (need_serialize) {
08c183f3
CL
4732 if (!spin_trylock(&balancing))
4733 goto out;
4734 }
4735
c9819f45 4736 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4737 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4738 /*
4739 * We've pulled tasks over so either we're no
5969fe06
NP
4740 * longer idle, or one of our SMT siblings is
4741 * not idle.
4742 */
d15bcfdb 4743 idle = CPU_NOT_IDLE;
1da177e4 4744 }
1bd77f2d 4745 sd->last_balance = jiffies;
1da177e4 4746 }
d07355f5 4747 if (need_serialize)
08c183f3
CL
4748 spin_unlock(&balancing);
4749out:
f549da84 4750 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4751 next_balance = sd->last_balance + interval;
f549da84
SS
4752 update_next_balance = 1;
4753 }
783609c6
SS
4754
4755 /*
4756 * Stop the load balance at this level. There is another
4757 * CPU in our sched group which is doing load balancing more
4758 * actively.
4759 */
4760 if (!balance)
4761 break;
1da177e4 4762 }
f549da84
SS
4763
4764 /*
4765 * next_balance will be updated only when there is a need.
4766 * When the cpu is attached to null domain for ex, it will not be
4767 * updated.
4768 */
4769 if (likely(update_next_balance))
4770 rq->next_balance = next_balance;
46cb4b7c
SS
4771}
4772
4773/*
4774 * run_rebalance_domains is triggered when needed from the scheduler tick.
4775 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4776 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4777 */
4778static void run_rebalance_domains(struct softirq_action *h)
4779{
dd41f596
IM
4780 int this_cpu = smp_processor_id();
4781 struct rq *this_rq = cpu_rq(this_cpu);
4782 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4783 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4784
dd41f596 4785 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4786
4787#ifdef CONFIG_NO_HZ
4788 /*
4789 * If this cpu is the owner for idle load balancing, then do the
4790 * balancing on behalf of the other idle cpus whose ticks are
4791 * stopped.
4792 */
dd41f596
IM
4793 if (this_rq->idle_at_tick &&
4794 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4795 struct rq *rq;
4796 int balance_cpu;
4797
7d1e6a9b
RR
4798 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4799 if (balance_cpu == this_cpu)
4800 continue;
4801
46cb4b7c
SS
4802 /*
4803 * If this cpu gets work to do, stop the load balancing
4804 * work being done for other cpus. Next load
4805 * balancing owner will pick it up.
4806 */
4807 if (need_resched())
4808 break;
4809
de0cf899 4810 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4811
4812 rq = cpu_rq(balance_cpu);
dd41f596
IM
4813 if (time_after(this_rq->next_balance, rq->next_balance))
4814 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4815 }
4816 }
4817#endif
4818}
4819
8a0be9ef
FW
4820static inline int on_null_domain(int cpu)
4821{
4822 return !rcu_dereference(cpu_rq(cpu)->sd);
4823}
4824
46cb4b7c
SS
4825/*
4826 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4827 *
4828 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4829 * idle load balancing owner or decide to stop the periodic load balancing,
4830 * if the whole system is idle.
4831 */
dd41f596 4832static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4833{
46cb4b7c
SS
4834#ifdef CONFIG_NO_HZ
4835 /*
4836 * If we were in the nohz mode recently and busy at the current
4837 * scheduler tick, then check if we need to nominate new idle
4838 * load balancer.
4839 */
4840 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4841 rq->in_nohz_recently = 0;
4842
4843 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4844 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4845 atomic_set(&nohz.load_balancer, -1);
4846 }
4847
4848 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4849 int ilb = find_new_ilb(cpu);
46cb4b7c 4850
434d53b0 4851 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4852 resched_cpu(ilb);
4853 }
4854 }
4855
4856 /*
4857 * If this cpu is idle and doing idle load balancing for all the
4858 * cpus with ticks stopped, is it time for that to stop?
4859 */
4860 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4861 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4862 resched_cpu(cpu);
4863 return;
4864 }
4865
4866 /*
4867 * If this cpu is idle and the idle load balancing is done by
4868 * someone else, then no need raise the SCHED_SOFTIRQ
4869 */
4870 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4871 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4872 return;
4873#endif
8a0be9ef
FW
4874 /* Don't need to rebalance while attached to NULL domain */
4875 if (time_after_eq(jiffies, rq->next_balance) &&
4876 likely(!on_null_domain(cpu)))
46cb4b7c 4877 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4878}
dd41f596
IM
4879
4880#else /* CONFIG_SMP */
4881
1da177e4
LT
4882/*
4883 * on UP we do not need to balance between CPUs:
4884 */
70b97a7f 4885static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4886{
4887}
dd41f596 4888
1da177e4
LT
4889#endif
4890
1da177e4
LT
4891DEFINE_PER_CPU(struct kernel_stat, kstat);
4892
4893EXPORT_PER_CPU_SYMBOL(kstat);
4894
4895/*
c5f8d995 4896 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4897 * @p in case that task is currently running.
c5f8d995
HS
4898 *
4899 * Called with task_rq_lock() held on @rq.
1da177e4 4900 */
c5f8d995
HS
4901static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4902{
4903 u64 ns = 0;
4904
4905 if (task_current(rq, p)) {
4906 update_rq_clock(rq);
4907 ns = rq->clock - p->se.exec_start;
4908 if ((s64)ns < 0)
4909 ns = 0;
4910 }
4911
4912 return ns;
4913}
4914
bb34d92f 4915unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4916{
1da177e4 4917 unsigned long flags;
41b86e9c 4918 struct rq *rq;
bb34d92f 4919 u64 ns = 0;
48f24c4d 4920
41b86e9c 4921 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4922 ns = do_task_delta_exec(p, rq);
4923 task_rq_unlock(rq, &flags);
1508487e 4924
c5f8d995
HS
4925 return ns;
4926}
f06febc9 4927
c5f8d995
HS
4928/*
4929 * Return accounted runtime for the task.
4930 * In case the task is currently running, return the runtime plus current's
4931 * pending runtime that have not been accounted yet.
4932 */
4933unsigned long long task_sched_runtime(struct task_struct *p)
4934{
4935 unsigned long flags;
4936 struct rq *rq;
4937 u64 ns = 0;
4938
4939 rq = task_rq_lock(p, &flags);
4940 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4941 task_rq_unlock(rq, &flags);
4942
4943 return ns;
4944}
48f24c4d 4945
c5f8d995
HS
4946/*
4947 * Return sum_exec_runtime for the thread group.
4948 * In case the task is currently running, return the sum plus current's
4949 * pending runtime that have not been accounted yet.
4950 *
4951 * Note that the thread group might have other running tasks as well,
4952 * so the return value not includes other pending runtime that other
4953 * running tasks might have.
4954 */
4955unsigned long long thread_group_sched_runtime(struct task_struct *p)
4956{
4957 struct task_cputime totals;
4958 unsigned long flags;
4959 struct rq *rq;
4960 u64 ns;
4961
4962 rq = task_rq_lock(p, &flags);
4963 thread_group_cputime(p, &totals);
4964 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4965 task_rq_unlock(rq, &flags);
48f24c4d 4966
1da177e4
LT
4967 return ns;
4968}
4969
1da177e4
LT
4970/*
4971 * Account user cpu time to a process.
4972 * @p: the process that the cpu time gets accounted to
1da177e4 4973 * @cputime: the cpu time spent in user space since the last update
457533a7 4974 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4975 */
457533a7
MS
4976void account_user_time(struct task_struct *p, cputime_t cputime,
4977 cputime_t cputime_scaled)
1da177e4
LT
4978{
4979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4980 cputime64_t tmp;
4981
457533a7 4982 /* Add user time to process. */
1da177e4 4983 p->utime = cputime_add(p->utime, cputime);
457533a7 4984 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4985 account_group_user_time(p, cputime);
1da177e4
LT
4986
4987 /* Add user time to cpustat. */
4988 tmp = cputime_to_cputime64(cputime);
4989 if (TASK_NICE(p) > 0)
4990 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4991 else
4992 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4993
4994 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4995 /* Account for user time used */
4996 acct_update_integrals(p);
1da177e4
LT
4997}
4998
94886b84
LV
4999/*
5000 * Account guest cpu time to a process.
5001 * @p: the process that the cpu time gets accounted to
5002 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5003 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5004 */
457533a7
MS
5005static void account_guest_time(struct task_struct *p, cputime_t cputime,
5006 cputime_t cputime_scaled)
94886b84
LV
5007{
5008 cputime64_t tmp;
5009 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5010
5011 tmp = cputime_to_cputime64(cputime);
5012
457533a7 5013 /* Add guest time to process. */
94886b84 5014 p->utime = cputime_add(p->utime, cputime);
457533a7 5015 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5016 account_group_user_time(p, cputime);
94886b84
LV
5017 p->gtime = cputime_add(p->gtime, cputime);
5018
457533a7 5019 /* Add guest time to cpustat. */
94886b84
LV
5020 cpustat->user = cputime64_add(cpustat->user, tmp);
5021 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5022}
5023
1da177e4
LT
5024/*
5025 * Account system cpu time to a process.
5026 * @p: the process that the cpu time gets accounted to
5027 * @hardirq_offset: the offset to subtract from hardirq_count()
5028 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5029 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5030 */
5031void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5032 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5033{
5034 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5035 cputime64_t tmp;
5036
983ed7a6 5037 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5038 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5039 return;
5040 }
94886b84 5041
457533a7 5042 /* Add system time to process. */
1da177e4 5043 p->stime = cputime_add(p->stime, cputime);
457533a7 5044 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5045 account_group_system_time(p, cputime);
1da177e4
LT
5046
5047 /* Add system time to cpustat. */
5048 tmp = cputime_to_cputime64(cputime);
5049 if (hardirq_count() - hardirq_offset)
5050 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5051 else if (softirq_count())
5052 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5053 else
79741dd3
MS
5054 cpustat->system = cputime64_add(cpustat->system, tmp);
5055
ef12fefa
BR
5056 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5057
1da177e4
LT
5058 /* Account for system time used */
5059 acct_update_integrals(p);
1da177e4
LT
5060}
5061
c66f08be 5062/*
1da177e4 5063 * Account for involuntary wait time.
1da177e4 5064 * @steal: the cpu time spent in involuntary wait
c66f08be 5065 */
79741dd3 5066void account_steal_time(cputime_t cputime)
c66f08be 5067{
79741dd3
MS
5068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5069 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5070
5071 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5072}
5073
1da177e4 5074/*
79741dd3
MS
5075 * Account for idle time.
5076 * @cputime: the cpu time spent in idle wait
1da177e4 5077 */
79741dd3 5078void account_idle_time(cputime_t cputime)
1da177e4
LT
5079{
5080 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5081 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5082 struct rq *rq = this_rq();
1da177e4 5083
79741dd3
MS
5084 if (atomic_read(&rq->nr_iowait) > 0)
5085 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5086 else
5087 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5088}
5089
79741dd3
MS
5090#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5091
5092/*
5093 * Account a single tick of cpu time.
5094 * @p: the process that the cpu time gets accounted to
5095 * @user_tick: indicates if the tick is a user or a system tick
5096 */
5097void account_process_tick(struct task_struct *p, int user_tick)
5098{
a42548a1 5099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5100 struct rq *rq = this_rq();
5101
5102 if (user_tick)
a42548a1 5103 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5104 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5105 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5106 one_jiffy_scaled);
5107 else
a42548a1 5108 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5109}
5110
5111/*
5112 * Account multiple ticks of steal time.
5113 * @p: the process from which the cpu time has been stolen
5114 * @ticks: number of stolen ticks
5115 */
5116void account_steal_ticks(unsigned long ticks)
5117{
5118 account_steal_time(jiffies_to_cputime(ticks));
5119}
5120
5121/*
5122 * Account multiple ticks of idle time.
5123 * @ticks: number of stolen ticks
5124 */
5125void account_idle_ticks(unsigned long ticks)
5126{
5127 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5128}
5129
79741dd3
MS
5130#endif
5131
49048622
BS
5132/*
5133 * Use precise platform statistics if available:
5134 */
5135#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5136cputime_t task_utime(struct task_struct *p)
5137{
5138 return p->utime;
5139}
5140
5141cputime_t task_stime(struct task_struct *p)
5142{
5143 return p->stime;
5144}
5145#else
5146cputime_t task_utime(struct task_struct *p)
5147{
5148 clock_t utime = cputime_to_clock_t(p->utime),
5149 total = utime + cputime_to_clock_t(p->stime);
5150 u64 temp;
5151
5152 /*
5153 * Use CFS's precise accounting:
5154 */
5155 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5156
5157 if (total) {
5158 temp *= utime;
5159 do_div(temp, total);
5160 }
5161 utime = (clock_t)temp;
5162
5163 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5164 return p->prev_utime;
5165}
5166
5167cputime_t task_stime(struct task_struct *p)
5168{
5169 clock_t stime;
5170
5171 /*
5172 * Use CFS's precise accounting. (we subtract utime from
5173 * the total, to make sure the total observed by userspace
5174 * grows monotonically - apps rely on that):
5175 */
5176 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5177 cputime_to_clock_t(task_utime(p));
5178
5179 if (stime >= 0)
5180 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5181
5182 return p->prev_stime;
5183}
5184#endif
5185
5186inline cputime_t task_gtime(struct task_struct *p)
5187{
5188 return p->gtime;
5189}
5190
7835b98b
CL
5191/*
5192 * This function gets called by the timer code, with HZ frequency.
5193 * We call it with interrupts disabled.
5194 *
5195 * It also gets called by the fork code, when changing the parent's
5196 * timeslices.
5197 */
5198void scheduler_tick(void)
5199{
7835b98b
CL
5200 int cpu = smp_processor_id();
5201 struct rq *rq = cpu_rq(cpu);
dd41f596 5202 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5203
5204 sched_clock_tick();
dd41f596
IM
5205
5206 spin_lock(&rq->lock);
3e51f33f 5207 update_rq_clock(rq);
f1a438d8 5208 update_cpu_load(rq);
fa85ae24 5209 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5210 spin_unlock(&rq->lock);
7835b98b 5211
cdd6c482 5212 perf_event_task_tick(curr, cpu);
e220d2dc 5213
e418e1c2 5214#ifdef CONFIG_SMP
dd41f596
IM
5215 rq->idle_at_tick = idle_cpu(cpu);
5216 trigger_load_balance(rq, cpu);
e418e1c2 5217#endif
1da177e4
LT
5218}
5219
132380a0 5220notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5221{
5222 if (in_lock_functions(addr)) {
5223 addr = CALLER_ADDR2;
5224 if (in_lock_functions(addr))
5225 addr = CALLER_ADDR3;
5226 }
5227 return addr;
5228}
1da177e4 5229
7e49fcce
SR
5230#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5231 defined(CONFIG_PREEMPT_TRACER))
5232
43627582 5233void __kprobes add_preempt_count(int val)
1da177e4 5234{
6cd8a4bb 5235#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5236 /*
5237 * Underflow?
5238 */
9a11b49a
IM
5239 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5240 return;
6cd8a4bb 5241#endif
1da177e4 5242 preempt_count() += val;
6cd8a4bb 5243#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5244 /*
5245 * Spinlock count overflowing soon?
5246 */
33859f7f
MOS
5247 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5248 PREEMPT_MASK - 10);
6cd8a4bb
SR
5249#endif
5250 if (preempt_count() == val)
5251 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5252}
5253EXPORT_SYMBOL(add_preempt_count);
5254
43627582 5255void __kprobes sub_preempt_count(int val)
1da177e4 5256{
6cd8a4bb 5257#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5258 /*
5259 * Underflow?
5260 */
01e3eb82 5261 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5262 return;
1da177e4
LT
5263 /*
5264 * Is the spinlock portion underflowing?
5265 */
9a11b49a
IM
5266 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5267 !(preempt_count() & PREEMPT_MASK)))
5268 return;
6cd8a4bb 5269#endif
9a11b49a 5270
6cd8a4bb
SR
5271 if (preempt_count() == val)
5272 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5273 preempt_count() -= val;
5274}
5275EXPORT_SYMBOL(sub_preempt_count);
5276
5277#endif
5278
5279/*
dd41f596 5280 * Print scheduling while atomic bug:
1da177e4 5281 */
dd41f596 5282static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5283{
838225b4
SS
5284 struct pt_regs *regs = get_irq_regs();
5285
5286 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5287 prev->comm, prev->pid, preempt_count());
5288
dd41f596 5289 debug_show_held_locks(prev);
e21f5b15 5290 print_modules();
dd41f596
IM
5291 if (irqs_disabled())
5292 print_irqtrace_events(prev);
838225b4
SS
5293
5294 if (regs)
5295 show_regs(regs);
5296 else
5297 dump_stack();
dd41f596 5298}
1da177e4 5299
dd41f596
IM
5300/*
5301 * Various schedule()-time debugging checks and statistics:
5302 */
5303static inline void schedule_debug(struct task_struct *prev)
5304{
1da177e4 5305 /*
41a2d6cf 5306 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5307 * schedule() atomically, we ignore that path for now.
5308 * Otherwise, whine if we are scheduling when we should not be.
5309 */
3f33a7ce 5310 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5311 __schedule_bug(prev);
5312
1da177e4
LT
5313 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5314
2d72376b 5315 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5316#ifdef CONFIG_SCHEDSTATS
5317 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5318 schedstat_inc(this_rq(), bkl_count);
5319 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5320 }
5321#endif
dd41f596
IM
5322}
5323
ad4b78bb 5324static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5325{
ad4b78bb 5326 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5327
ad4b78bb 5328 update_avg(&p->se.avg_running, runtime);
df1c99d4 5329
ad4b78bb 5330 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5331 /*
5332 * In order to avoid avg_overlap growing stale when we are
5333 * indeed overlapping and hence not getting put to sleep, grow
5334 * the avg_overlap on preemption.
5335 *
5336 * We use the average preemption runtime because that
5337 * correlates to the amount of cache footprint a task can
5338 * build up.
5339 */
ad4b78bb
PZ
5340 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5341 update_avg(&p->se.avg_overlap, runtime);
5342 } else {
5343 update_avg(&p->se.avg_running, 0);
df1c99d4 5344 }
ad4b78bb 5345 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5346}
5347
dd41f596
IM
5348/*
5349 * Pick up the highest-prio task:
5350 */
5351static inline struct task_struct *
b67802ea 5352pick_next_task(struct rq *rq)
dd41f596 5353{
5522d5d5 5354 const struct sched_class *class;
dd41f596 5355 struct task_struct *p;
1da177e4
LT
5356
5357 /*
dd41f596
IM
5358 * Optimization: we know that if all tasks are in
5359 * the fair class we can call that function directly:
1da177e4 5360 */
dd41f596 5361 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5362 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5363 if (likely(p))
5364 return p;
1da177e4
LT
5365 }
5366
dd41f596
IM
5367 class = sched_class_highest;
5368 for ( ; ; ) {
fb8d4724 5369 p = class->pick_next_task(rq);
dd41f596
IM
5370 if (p)
5371 return p;
5372 /*
5373 * Will never be NULL as the idle class always
5374 * returns a non-NULL p:
5375 */
5376 class = class->next;
5377 }
5378}
1da177e4 5379
dd41f596
IM
5380/*
5381 * schedule() is the main scheduler function.
5382 */
ff743345 5383asmlinkage void __sched schedule(void)
dd41f596
IM
5384{
5385 struct task_struct *prev, *next;
67ca7bde 5386 unsigned long *switch_count;
dd41f596 5387 struct rq *rq;
31656519 5388 int cpu;
dd41f596 5389
ff743345
PZ
5390need_resched:
5391 preempt_disable();
dd41f596
IM
5392 cpu = smp_processor_id();
5393 rq = cpu_rq(cpu);
d6714c22 5394 rcu_sched_qs(cpu);
dd41f596
IM
5395 prev = rq->curr;
5396 switch_count = &prev->nivcsw;
5397
5398 release_kernel_lock(prev);
5399need_resched_nonpreemptible:
5400
5401 schedule_debug(prev);
1da177e4 5402
31656519 5403 if (sched_feat(HRTICK))
f333fdc9 5404 hrtick_clear(rq);
8f4d37ec 5405
8cd162ce 5406 spin_lock_irq(&rq->lock);
3e51f33f 5407 update_rq_clock(rq);
1e819950 5408 clear_tsk_need_resched(prev);
1da177e4 5409
1da177e4 5410 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5411 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5412 prev->state = TASK_RUNNING;
16882c1e 5413 else
2e1cb74a 5414 deactivate_task(rq, prev, 1);
dd41f596 5415 switch_count = &prev->nvcsw;
1da177e4
LT
5416 }
5417
3f029d3c 5418 pre_schedule(rq, prev);
f65eda4f 5419
dd41f596 5420 if (unlikely(!rq->nr_running))
1da177e4 5421 idle_balance(cpu, rq);
1da177e4 5422
df1c99d4 5423 put_prev_task(rq, prev);
b67802ea 5424 next = pick_next_task(rq);
1da177e4 5425
1da177e4 5426 if (likely(prev != next)) {
673a90a1 5427 sched_info_switch(prev, next);
cdd6c482 5428 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5429
1da177e4
LT
5430 rq->nr_switches++;
5431 rq->curr = next;
5432 ++*switch_count;
5433
dd41f596 5434 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5435 /*
5436 * the context switch might have flipped the stack from under
5437 * us, hence refresh the local variables.
5438 */
5439 cpu = smp_processor_id();
5440 rq = cpu_rq(cpu);
1da177e4
LT
5441 } else
5442 spin_unlock_irq(&rq->lock);
5443
3f029d3c 5444 post_schedule(rq);
1da177e4 5445
8f4d37ec 5446 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5447 goto need_resched_nonpreemptible;
8f4d37ec 5448
1da177e4 5449 preempt_enable_no_resched();
ff743345 5450 if (need_resched())
1da177e4
LT
5451 goto need_resched;
5452}
1da177e4
LT
5453EXPORT_SYMBOL(schedule);
5454
0d66bf6d
PZ
5455#ifdef CONFIG_SMP
5456/*
5457 * Look out! "owner" is an entirely speculative pointer
5458 * access and not reliable.
5459 */
5460int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5461{
5462 unsigned int cpu;
5463 struct rq *rq;
5464
5465 if (!sched_feat(OWNER_SPIN))
5466 return 0;
5467
5468#ifdef CONFIG_DEBUG_PAGEALLOC
5469 /*
5470 * Need to access the cpu field knowing that
5471 * DEBUG_PAGEALLOC could have unmapped it if
5472 * the mutex owner just released it and exited.
5473 */
5474 if (probe_kernel_address(&owner->cpu, cpu))
5475 goto out;
5476#else
5477 cpu = owner->cpu;
5478#endif
5479
5480 /*
5481 * Even if the access succeeded (likely case),
5482 * the cpu field may no longer be valid.
5483 */
5484 if (cpu >= nr_cpumask_bits)
5485 goto out;
5486
5487 /*
5488 * We need to validate that we can do a
5489 * get_cpu() and that we have the percpu area.
5490 */
5491 if (!cpu_online(cpu))
5492 goto out;
5493
5494 rq = cpu_rq(cpu);
5495
5496 for (;;) {
5497 /*
5498 * Owner changed, break to re-assess state.
5499 */
5500 if (lock->owner != owner)
5501 break;
5502
5503 /*
5504 * Is that owner really running on that cpu?
5505 */
5506 if (task_thread_info(rq->curr) != owner || need_resched())
5507 return 0;
5508
5509 cpu_relax();
5510 }
5511out:
5512 return 1;
5513}
5514#endif
5515
1da177e4
LT
5516#ifdef CONFIG_PREEMPT
5517/*
2ed6e34f 5518 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5519 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5520 * occur there and call schedule directly.
5521 */
5522asmlinkage void __sched preempt_schedule(void)
5523{
5524 struct thread_info *ti = current_thread_info();
6478d880 5525
1da177e4
LT
5526 /*
5527 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5528 * we do not want to preempt the current task. Just return..
1da177e4 5529 */
beed33a8 5530 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5531 return;
5532
3a5c359a
AK
5533 do {
5534 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5535 schedule();
3a5c359a 5536 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5537
3a5c359a
AK
5538 /*
5539 * Check again in case we missed a preemption opportunity
5540 * between schedule and now.
5541 */
5542 barrier();
5ed0cec0 5543 } while (need_resched());
1da177e4 5544}
1da177e4
LT
5545EXPORT_SYMBOL(preempt_schedule);
5546
5547/*
2ed6e34f 5548 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5549 * off of irq context.
5550 * Note, that this is called and return with irqs disabled. This will
5551 * protect us against recursive calling from irq.
5552 */
5553asmlinkage void __sched preempt_schedule_irq(void)
5554{
5555 struct thread_info *ti = current_thread_info();
6478d880 5556
2ed6e34f 5557 /* Catch callers which need to be fixed */
1da177e4
LT
5558 BUG_ON(ti->preempt_count || !irqs_disabled());
5559
3a5c359a
AK
5560 do {
5561 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5562 local_irq_enable();
5563 schedule();
5564 local_irq_disable();
3a5c359a 5565 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5566
3a5c359a
AK
5567 /*
5568 * Check again in case we missed a preemption opportunity
5569 * between schedule and now.
5570 */
5571 barrier();
5ed0cec0 5572 } while (need_resched());
1da177e4
LT
5573}
5574
5575#endif /* CONFIG_PREEMPT */
5576
63859d4f 5577int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5578 void *key)
1da177e4 5579{
63859d4f 5580 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5581}
1da177e4
LT
5582EXPORT_SYMBOL(default_wake_function);
5583
5584/*
41a2d6cf
IM
5585 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5586 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5587 * number) then we wake all the non-exclusive tasks and one exclusive task.
5588 *
5589 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5590 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5591 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5592 */
78ddb08f 5593static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5594 int nr_exclusive, int wake_flags, void *key)
1da177e4 5595{
2e45874c 5596 wait_queue_t *curr, *next;
1da177e4 5597
2e45874c 5598 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5599 unsigned flags = curr->flags;
5600
63859d4f 5601 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5602 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5603 break;
5604 }
5605}
5606
5607/**
5608 * __wake_up - wake up threads blocked on a waitqueue.
5609 * @q: the waitqueue
5610 * @mode: which threads
5611 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5612 * @key: is directly passed to the wakeup function
50fa610a
DH
5613 *
5614 * It may be assumed that this function implies a write memory barrier before
5615 * changing the task state if and only if any tasks are woken up.
1da177e4 5616 */
7ad5b3a5 5617void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5618 int nr_exclusive, void *key)
1da177e4
LT
5619{
5620 unsigned long flags;
5621
5622 spin_lock_irqsave(&q->lock, flags);
5623 __wake_up_common(q, mode, nr_exclusive, 0, key);
5624 spin_unlock_irqrestore(&q->lock, flags);
5625}
1da177e4
LT
5626EXPORT_SYMBOL(__wake_up);
5627
5628/*
5629 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5630 */
7ad5b3a5 5631void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5632{
5633 __wake_up_common(q, mode, 1, 0, NULL);
5634}
5635
4ede816a
DL
5636void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5637{
5638 __wake_up_common(q, mode, 1, 0, key);
5639}
5640
1da177e4 5641/**
4ede816a 5642 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5643 * @q: the waitqueue
5644 * @mode: which threads
5645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5646 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5647 *
5648 * The sync wakeup differs that the waker knows that it will schedule
5649 * away soon, so while the target thread will be woken up, it will not
5650 * be migrated to another CPU - ie. the two threads are 'synchronized'
5651 * with each other. This can prevent needless bouncing between CPUs.
5652 *
5653 * On UP it can prevent extra preemption.
50fa610a
DH
5654 *
5655 * It may be assumed that this function implies a write memory barrier before
5656 * changing the task state if and only if any tasks are woken up.
1da177e4 5657 */
4ede816a
DL
5658void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5659 int nr_exclusive, void *key)
1da177e4
LT
5660{
5661 unsigned long flags;
7d478721 5662 int wake_flags = WF_SYNC;
1da177e4
LT
5663
5664 if (unlikely(!q))
5665 return;
5666
5667 if (unlikely(!nr_exclusive))
7d478721 5668 wake_flags = 0;
1da177e4
LT
5669
5670 spin_lock_irqsave(&q->lock, flags);
7d478721 5671 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5672 spin_unlock_irqrestore(&q->lock, flags);
5673}
4ede816a
DL
5674EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5675
5676/*
5677 * __wake_up_sync - see __wake_up_sync_key()
5678 */
5679void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5680{
5681 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5682}
1da177e4
LT
5683EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5684
65eb3dc6
KD
5685/**
5686 * complete: - signals a single thread waiting on this completion
5687 * @x: holds the state of this particular completion
5688 *
5689 * This will wake up a single thread waiting on this completion. Threads will be
5690 * awakened in the same order in which they were queued.
5691 *
5692 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5693 *
5694 * It may be assumed that this function implies a write memory barrier before
5695 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5696 */
b15136e9 5697void complete(struct completion *x)
1da177e4
LT
5698{
5699 unsigned long flags;
5700
5701 spin_lock_irqsave(&x->wait.lock, flags);
5702 x->done++;
d9514f6c 5703 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5704 spin_unlock_irqrestore(&x->wait.lock, flags);
5705}
5706EXPORT_SYMBOL(complete);
5707
65eb3dc6
KD
5708/**
5709 * complete_all: - signals all threads waiting on this completion
5710 * @x: holds the state of this particular completion
5711 *
5712 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5713 *
5714 * It may be assumed that this function implies a write memory barrier before
5715 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5716 */
b15136e9 5717void complete_all(struct completion *x)
1da177e4
LT
5718{
5719 unsigned long flags;
5720
5721 spin_lock_irqsave(&x->wait.lock, flags);
5722 x->done += UINT_MAX/2;
d9514f6c 5723 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5724 spin_unlock_irqrestore(&x->wait.lock, flags);
5725}
5726EXPORT_SYMBOL(complete_all);
5727
8cbbe86d
AK
5728static inline long __sched
5729do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5730{
1da177e4
LT
5731 if (!x->done) {
5732 DECLARE_WAITQUEUE(wait, current);
5733
5734 wait.flags |= WQ_FLAG_EXCLUSIVE;
5735 __add_wait_queue_tail(&x->wait, &wait);
5736 do {
94d3d824 5737 if (signal_pending_state(state, current)) {
ea71a546
ON
5738 timeout = -ERESTARTSYS;
5739 break;
8cbbe86d
AK
5740 }
5741 __set_current_state(state);
1da177e4
LT
5742 spin_unlock_irq(&x->wait.lock);
5743 timeout = schedule_timeout(timeout);
5744 spin_lock_irq(&x->wait.lock);
ea71a546 5745 } while (!x->done && timeout);
1da177e4 5746 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5747 if (!x->done)
5748 return timeout;
1da177e4
LT
5749 }
5750 x->done--;
ea71a546 5751 return timeout ?: 1;
1da177e4 5752}
1da177e4 5753
8cbbe86d
AK
5754static long __sched
5755wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5756{
1da177e4
LT
5757 might_sleep();
5758
5759 spin_lock_irq(&x->wait.lock);
8cbbe86d 5760 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5761 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5762 return timeout;
5763}
1da177e4 5764
65eb3dc6
KD
5765/**
5766 * wait_for_completion: - waits for completion of a task
5767 * @x: holds the state of this particular completion
5768 *
5769 * This waits to be signaled for completion of a specific task. It is NOT
5770 * interruptible and there is no timeout.
5771 *
5772 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5773 * and interrupt capability. Also see complete().
5774 */
b15136e9 5775void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5776{
5777 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5778}
8cbbe86d 5779EXPORT_SYMBOL(wait_for_completion);
1da177e4 5780
65eb3dc6
KD
5781/**
5782 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5783 * @x: holds the state of this particular completion
5784 * @timeout: timeout value in jiffies
5785 *
5786 * This waits for either a completion of a specific task to be signaled or for a
5787 * specified timeout to expire. The timeout is in jiffies. It is not
5788 * interruptible.
5789 */
b15136e9 5790unsigned long __sched
8cbbe86d 5791wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5792{
8cbbe86d 5793 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5794}
8cbbe86d 5795EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5796
65eb3dc6
KD
5797/**
5798 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5799 * @x: holds the state of this particular completion
5800 *
5801 * This waits for completion of a specific task to be signaled. It is
5802 * interruptible.
5803 */
8cbbe86d 5804int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5805{
51e97990
AK
5806 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5807 if (t == -ERESTARTSYS)
5808 return t;
5809 return 0;
0fec171c 5810}
8cbbe86d 5811EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5812
65eb3dc6
KD
5813/**
5814 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5815 * @x: holds the state of this particular completion
5816 * @timeout: timeout value in jiffies
5817 *
5818 * This waits for either a completion of a specific task to be signaled or for a
5819 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5820 */
b15136e9 5821unsigned long __sched
8cbbe86d
AK
5822wait_for_completion_interruptible_timeout(struct completion *x,
5823 unsigned long timeout)
0fec171c 5824{
8cbbe86d 5825 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5826}
8cbbe86d 5827EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5828
65eb3dc6
KD
5829/**
5830 * wait_for_completion_killable: - waits for completion of a task (killable)
5831 * @x: holds the state of this particular completion
5832 *
5833 * This waits to be signaled for completion of a specific task. It can be
5834 * interrupted by a kill signal.
5835 */
009e577e
MW
5836int __sched wait_for_completion_killable(struct completion *x)
5837{
5838 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5839 if (t == -ERESTARTSYS)
5840 return t;
5841 return 0;
5842}
5843EXPORT_SYMBOL(wait_for_completion_killable);
5844
be4de352
DC
5845/**
5846 * try_wait_for_completion - try to decrement a completion without blocking
5847 * @x: completion structure
5848 *
5849 * Returns: 0 if a decrement cannot be done without blocking
5850 * 1 if a decrement succeeded.
5851 *
5852 * If a completion is being used as a counting completion,
5853 * attempt to decrement the counter without blocking. This
5854 * enables us to avoid waiting if the resource the completion
5855 * is protecting is not available.
5856 */
5857bool try_wait_for_completion(struct completion *x)
5858{
5859 int ret = 1;
5860
5861 spin_lock_irq(&x->wait.lock);
5862 if (!x->done)
5863 ret = 0;
5864 else
5865 x->done--;
5866 spin_unlock_irq(&x->wait.lock);
5867 return ret;
5868}
5869EXPORT_SYMBOL(try_wait_for_completion);
5870
5871/**
5872 * completion_done - Test to see if a completion has any waiters
5873 * @x: completion structure
5874 *
5875 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5876 * 1 if there are no waiters.
5877 *
5878 */
5879bool completion_done(struct completion *x)
5880{
5881 int ret = 1;
5882
5883 spin_lock_irq(&x->wait.lock);
5884 if (!x->done)
5885 ret = 0;
5886 spin_unlock_irq(&x->wait.lock);
5887 return ret;
5888}
5889EXPORT_SYMBOL(completion_done);
5890
8cbbe86d
AK
5891static long __sched
5892sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5893{
0fec171c
IM
5894 unsigned long flags;
5895 wait_queue_t wait;
5896
5897 init_waitqueue_entry(&wait, current);
1da177e4 5898
8cbbe86d 5899 __set_current_state(state);
1da177e4 5900
8cbbe86d
AK
5901 spin_lock_irqsave(&q->lock, flags);
5902 __add_wait_queue(q, &wait);
5903 spin_unlock(&q->lock);
5904 timeout = schedule_timeout(timeout);
5905 spin_lock_irq(&q->lock);
5906 __remove_wait_queue(q, &wait);
5907 spin_unlock_irqrestore(&q->lock, flags);
5908
5909 return timeout;
5910}
5911
5912void __sched interruptible_sleep_on(wait_queue_head_t *q)
5913{
5914 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5915}
1da177e4
LT
5916EXPORT_SYMBOL(interruptible_sleep_on);
5917
0fec171c 5918long __sched
95cdf3b7 5919interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5920{
8cbbe86d 5921 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5922}
1da177e4
LT
5923EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5924
0fec171c 5925void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5926{
8cbbe86d 5927 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5928}
1da177e4
LT
5929EXPORT_SYMBOL(sleep_on);
5930
0fec171c 5931long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5932{
8cbbe86d 5933 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5934}
1da177e4
LT
5935EXPORT_SYMBOL(sleep_on_timeout);
5936
b29739f9
IM
5937#ifdef CONFIG_RT_MUTEXES
5938
5939/*
5940 * rt_mutex_setprio - set the current priority of a task
5941 * @p: task
5942 * @prio: prio value (kernel-internal form)
5943 *
5944 * This function changes the 'effective' priority of a task. It does
5945 * not touch ->normal_prio like __setscheduler().
5946 *
5947 * Used by the rt_mutex code to implement priority inheritance logic.
5948 */
36c8b586 5949void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5950{
5951 unsigned long flags;
83b699ed 5952 int oldprio, on_rq, running;
70b97a7f 5953 struct rq *rq;
cb469845 5954 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5955
5956 BUG_ON(prio < 0 || prio > MAX_PRIO);
5957
5958 rq = task_rq_lock(p, &flags);
a8e504d2 5959 update_rq_clock(rq);
b29739f9 5960
d5f9f942 5961 oldprio = p->prio;
dd41f596 5962 on_rq = p->se.on_rq;
051a1d1a 5963 running = task_current(rq, p);
0e1f3483 5964 if (on_rq)
69be72c1 5965 dequeue_task(rq, p, 0);
0e1f3483
HS
5966 if (running)
5967 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5968
5969 if (rt_prio(prio))
5970 p->sched_class = &rt_sched_class;
5971 else
5972 p->sched_class = &fair_sched_class;
5973
b29739f9
IM
5974 p->prio = prio;
5975
0e1f3483
HS
5976 if (running)
5977 p->sched_class->set_curr_task(rq);
dd41f596 5978 if (on_rq) {
8159f87e 5979 enqueue_task(rq, p, 0);
cb469845
SR
5980
5981 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5982 }
5983 task_rq_unlock(rq, &flags);
5984}
5985
5986#endif
5987
36c8b586 5988void set_user_nice(struct task_struct *p, long nice)
1da177e4 5989{
dd41f596 5990 int old_prio, delta, on_rq;
1da177e4 5991 unsigned long flags;
70b97a7f 5992 struct rq *rq;
1da177e4
LT
5993
5994 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5995 return;
5996 /*
5997 * We have to be careful, if called from sys_setpriority(),
5998 * the task might be in the middle of scheduling on another CPU.
5999 */
6000 rq = task_rq_lock(p, &flags);
a8e504d2 6001 update_rq_clock(rq);
1da177e4
LT
6002 /*
6003 * The RT priorities are set via sched_setscheduler(), but we still
6004 * allow the 'normal' nice value to be set - but as expected
6005 * it wont have any effect on scheduling until the task is
dd41f596 6006 * SCHED_FIFO/SCHED_RR:
1da177e4 6007 */
e05606d3 6008 if (task_has_rt_policy(p)) {
1da177e4
LT
6009 p->static_prio = NICE_TO_PRIO(nice);
6010 goto out_unlock;
6011 }
dd41f596 6012 on_rq = p->se.on_rq;
c09595f6 6013 if (on_rq)
69be72c1 6014 dequeue_task(rq, p, 0);
1da177e4 6015
1da177e4 6016 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6017 set_load_weight(p);
b29739f9
IM
6018 old_prio = p->prio;
6019 p->prio = effective_prio(p);
6020 delta = p->prio - old_prio;
1da177e4 6021
dd41f596 6022 if (on_rq) {
8159f87e 6023 enqueue_task(rq, p, 0);
1da177e4 6024 /*
d5f9f942
AM
6025 * If the task increased its priority or is running and
6026 * lowered its priority, then reschedule its CPU:
1da177e4 6027 */
d5f9f942 6028 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6029 resched_task(rq->curr);
6030 }
6031out_unlock:
6032 task_rq_unlock(rq, &flags);
6033}
1da177e4
LT
6034EXPORT_SYMBOL(set_user_nice);
6035
e43379f1
MM
6036/*
6037 * can_nice - check if a task can reduce its nice value
6038 * @p: task
6039 * @nice: nice value
6040 */
36c8b586 6041int can_nice(const struct task_struct *p, const int nice)
e43379f1 6042{
024f4747
MM
6043 /* convert nice value [19,-20] to rlimit style value [1,40] */
6044 int nice_rlim = 20 - nice;
48f24c4d 6045
e43379f1
MM
6046 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6047 capable(CAP_SYS_NICE));
6048}
6049
1da177e4
LT
6050#ifdef __ARCH_WANT_SYS_NICE
6051
6052/*
6053 * sys_nice - change the priority of the current process.
6054 * @increment: priority increment
6055 *
6056 * sys_setpriority is a more generic, but much slower function that
6057 * does similar things.
6058 */
5add95d4 6059SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6060{
48f24c4d 6061 long nice, retval;
1da177e4
LT
6062
6063 /*
6064 * Setpriority might change our priority at the same moment.
6065 * We don't have to worry. Conceptually one call occurs first
6066 * and we have a single winner.
6067 */
e43379f1
MM
6068 if (increment < -40)
6069 increment = -40;
1da177e4
LT
6070 if (increment > 40)
6071 increment = 40;
6072
2b8f836f 6073 nice = TASK_NICE(current) + increment;
1da177e4
LT
6074 if (nice < -20)
6075 nice = -20;
6076 if (nice > 19)
6077 nice = 19;
6078
e43379f1
MM
6079 if (increment < 0 && !can_nice(current, nice))
6080 return -EPERM;
6081
1da177e4
LT
6082 retval = security_task_setnice(current, nice);
6083 if (retval)
6084 return retval;
6085
6086 set_user_nice(current, nice);
6087 return 0;
6088}
6089
6090#endif
6091
6092/**
6093 * task_prio - return the priority value of a given task.
6094 * @p: the task in question.
6095 *
6096 * This is the priority value as seen by users in /proc.
6097 * RT tasks are offset by -200. Normal tasks are centered
6098 * around 0, value goes from -16 to +15.
6099 */
36c8b586 6100int task_prio(const struct task_struct *p)
1da177e4
LT
6101{
6102 return p->prio - MAX_RT_PRIO;
6103}
6104
6105/**
6106 * task_nice - return the nice value of a given task.
6107 * @p: the task in question.
6108 */
36c8b586 6109int task_nice(const struct task_struct *p)
1da177e4
LT
6110{
6111 return TASK_NICE(p);
6112}
150d8bed 6113EXPORT_SYMBOL(task_nice);
1da177e4
LT
6114
6115/**
6116 * idle_cpu - is a given cpu idle currently?
6117 * @cpu: the processor in question.
6118 */
6119int idle_cpu(int cpu)
6120{
6121 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6122}
6123
1da177e4
LT
6124/**
6125 * idle_task - return the idle task for a given cpu.
6126 * @cpu: the processor in question.
6127 */
36c8b586 6128struct task_struct *idle_task(int cpu)
1da177e4
LT
6129{
6130 return cpu_rq(cpu)->idle;
6131}
6132
6133/**
6134 * find_process_by_pid - find a process with a matching PID value.
6135 * @pid: the pid in question.
6136 */
a9957449 6137static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6138{
228ebcbe 6139 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6140}
6141
6142/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6143static void
6144__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6145{
dd41f596 6146 BUG_ON(p->se.on_rq);
48f24c4d 6147
1da177e4 6148 p->policy = policy;
dd41f596
IM
6149 switch (p->policy) {
6150 case SCHED_NORMAL:
6151 case SCHED_BATCH:
6152 case SCHED_IDLE:
6153 p->sched_class = &fair_sched_class;
6154 break;
6155 case SCHED_FIFO:
6156 case SCHED_RR:
6157 p->sched_class = &rt_sched_class;
6158 break;
6159 }
6160
1da177e4 6161 p->rt_priority = prio;
b29739f9
IM
6162 p->normal_prio = normal_prio(p);
6163 /* we are holding p->pi_lock already */
6164 p->prio = rt_mutex_getprio(p);
2dd73a4f 6165 set_load_weight(p);
1da177e4
LT
6166}
6167
c69e8d9c
DH
6168/*
6169 * check the target process has a UID that matches the current process's
6170 */
6171static bool check_same_owner(struct task_struct *p)
6172{
6173 const struct cred *cred = current_cred(), *pcred;
6174 bool match;
6175
6176 rcu_read_lock();
6177 pcred = __task_cred(p);
6178 match = (cred->euid == pcred->euid ||
6179 cred->euid == pcred->uid);
6180 rcu_read_unlock();
6181 return match;
6182}
6183
961ccddd
RR
6184static int __sched_setscheduler(struct task_struct *p, int policy,
6185 struct sched_param *param, bool user)
1da177e4 6186{
83b699ed 6187 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6188 unsigned long flags;
cb469845 6189 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6190 struct rq *rq;
ca94c442 6191 int reset_on_fork;
1da177e4 6192
66e5393a
SR
6193 /* may grab non-irq protected spin_locks */
6194 BUG_ON(in_interrupt());
1da177e4
LT
6195recheck:
6196 /* double check policy once rq lock held */
ca94c442
LP
6197 if (policy < 0) {
6198 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6199 policy = oldpolicy = p->policy;
ca94c442
LP
6200 } else {
6201 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6202 policy &= ~SCHED_RESET_ON_FORK;
6203
6204 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6205 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6206 policy != SCHED_IDLE)
6207 return -EINVAL;
6208 }
6209
1da177e4
LT
6210 /*
6211 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6212 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6213 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6214 */
6215 if (param->sched_priority < 0 ||
95cdf3b7 6216 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6217 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6218 return -EINVAL;
e05606d3 6219 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6220 return -EINVAL;
6221
37e4ab3f
OC
6222 /*
6223 * Allow unprivileged RT tasks to decrease priority:
6224 */
961ccddd 6225 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6226 if (rt_policy(policy)) {
8dc3e909 6227 unsigned long rlim_rtprio;
8dc3e909
ON
6228
6229 if (!lock_task_sighand(p, &flags))
6230 return -ESRCH;
6231 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6232 unlock_task_sighand(p, &flags);
6233
6234 /* can't set/change the rt policy */
6235 if (policy != p->policy && !rlim_rtprio)
6236 return -EPERM;
6237
6238 /* can't increase priority */
6239 if (param->sched_priority > p->rt_priority &&
6240 param->sched_priority > rlim_rtprio)
6241 return -EPERM;
6242 }
dd41f596
IM
6243 /*
6244 * Like positive nice levels, dont allow tasks to
6245 * move out of SCHED_IDLE either:
6246 */
6247 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6248 return -EPERM;
5fe1d75f 6249
37e4ab3f 6250 /* can't change other user's priorities */
c69e8d9c 6251 if (!check_same_owner(p))
37e4ab3f 6252 return -EPERM;
ca94c442
LP
6253
6254 /* Normal users shall not reset the sched_reset_on_fork flag */
6255 if (p->sched_reset_on_fork && !reset_on_fork)
6256 return -EPERM;
37e4ab3f 6257 }
1da177e4 6258
725aad24 6259 if (user) {
b68aa230 6260#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6261 /*
6262 * Do not allow realtime tasks into groups that have no runtime
6263 * assigned.
6264 */
9a7e0b18
PZ
6265 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6266 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6267 return -EPERM;
b68aa230
PZ
6268#endif
6269
725aad24
JF
6270 retval = security_task_setscheduler(p, policy, param);
6271 if (retval)
6272 return retval;
6273 }
6274
b29739f9
IM
6275 /*
6276 * make sure no PI-waiters arrive (or leave) while we are
6277 * changing the priority of the task:
6278 */
6279 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6280 /*
6281 * To be able to change p->policy safely, the apropriate
6282 * runqueue lock must be held.
6283 */
b29739f9 6284 rq = __task_rq_lock(p);
1da177e4
LT
6285 /* recheck policy now with rq lock held */
6286 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6287 policy = oldpolicy = -1;
b29739f9
IM
6288 __task_rq_unlock(rq);
6289 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6290 goto recheck;
6291 }
2daa3577 6292 update_rq_clock(rq);
dd41f596 6293 on_rq = p->se.on_rq;
051a1d1a 6294 running = task_current(rq, p);
0e1f3483 6295 if (on_rq)
2e1cb74a 6296 deactivate_task(rq, p, 0);
0e1f3483
HS
6297 if (running)
6298 p->sched_class->put_prev_task(rq, p);
f6b53205 6299
ca94c442
LP
6300 p->sched_reset_on_fork = reset_on_fork;
6301
1da177e4 6302 oldprio = p->prio;
dd41f596 6303 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6304
0e1f3483
HS
6305 if (running)
6306 p->sched_class->set_curr_task(rq);
dd41f596
IM
6307 if (on_rq) {
6308 activate_task(rq, p, 0);
cb469845
SR
6309
6310 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6311 }
b29739f9
IM
6312 __task_rq_unlock(rq);
6313 spin_unlock_irqrestore(&p->pi_lock, flags);
6314
95e02ca9
TG
6315 rt_mutex_adjust_pi(p);
6316
1da177e4
LT
6317 return 0;
6318}
961ccddd
RR
6319
6320/**
6321 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6322 * @p: the task in question.
6323 * @policy: new policy.
6324 * @param: structure containing the new RT priority.
6325 *
6326 * NOTE that the task may be already dead.
6327 */
6328int sched_setscheduler(struct task_struct *p, int policy,
6329 struct sched_param *param)
6330{
6331 return __sched_setscheduler(p, policy, param, true);
6332}
1da177e4
LT
6333EXPORT_SYMBOL_GPL(sched_setscheduler);
6334
961ccddd
RR
6335/**
6336 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6337 * @p: the task in question.
6338 * @policy: new policy.
6339 * @param: structure containing the new RT priority.
6340 *
6341 * Just like sched_setscheduler, only don't bother checking if the
6342 * current context has permission. For example, this is needed in
6343 * stop_machine(): we create temporary high priority worker threads,
6344 * but our caller might not have that capability.
6345 */
6346int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6347 struct sched_param *param)
6348{
6349 return __sched_setscheduler(p, policy, param, false);
6350}
6351
95cdf3b7
IM
6352static int
6353do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6354{
1da177e4
LT
6355 struct sched_param lparam;
6356 struct task_struct *p;
36c8b586 6357 int retval;
1da177e4
LT
6358
6359 if (!param || pid < 0)
6360 return -EINVAL;
6361 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6362 return -EFAULT;
5fe1d75f
ON
6363
6364 rcu_read_lock();
6365 retval = -ESRCH;
1da177e4 6366 p = find_process_by_pid(pid);
5fe1d75f
ON
6367 if (p != NULL)
6368 retval = sched_setscheduler(p, policy, &lparam);
6369 rcu_read_unlock();
36c8b586 6370
1da177e4
LT
6371 return retval;
6372}
6373
6374/**
6375 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6376 * @pid: the pid in question.
6377 * @policy: new policy.
6378 * @param: structure containing the new RT priority.
6379 */
5add95d4
HC
6380SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6381 struct sched_param __user *, param)
1da177e4 6382{
c21761f1
JB
6383 /* negative values for policy are not valid */
6384 if (policy < 0)
6385 return -EINVAL;
6386
1da177e4
LT
6387 return do_sched_setscheduler(pid, policy, param);
6388}
6389
6390/**
6391 * sys_sched_setparam - set/change the RT priority of a thread
6392 * @pid: the pid in question.
6393 * @param: structure containing the new RT priority.
6394 */
5add95d4 6395SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6396{
6397 return do_sched_setscheduler(pid, -1, param);
6398}
6399
6400/**
6401 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6402 * @pid: the pid in question.
6403 */
5add95d4 6404SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6405{
36c8b586 6406 struct task_struct *p;
3a5c359a 6407 int retval;
1da177e4
LT
6408
6409 if (pid < 0)
3a5c359a 6410 return -EINVAL;
1da177e4
LT
6411
6412 retval = -ESRCH;
6413 read_lock(&tasklist_lock);
6414 p = find_process_by_pid(pid);
6415 if (p) {
6416 retval = security_task_getscheduler(p);
6417 if (!retval)
ca94c442
LP
6418 retval = p->policy
6419 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6420 }
6421 read_unlock(&tasklist_lock);
1da177e4
LT
6422 return retval;
6423}
6424
6425/**
ca94c442 6426 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6427 * @pid: the pid in question.
6428 * @param: structure containing the RT priority.
6429 */
5add95d4 6430SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6431{
6432 struct sched_param lp;
36c8b586 6433 struct task_struct *p;
3a5c359a 6434 int retval;
1da177e4
LT
6435
6436 if (!param || pid < 0)
3a5c359a 6437 return -EINVAL;
1da177e4
LT
6438
6439 read_lock(&tasklist_lock);
6440 p = find_process_by_pid(pid);
6441 retval = -ESRCH;
6442 if (!p)
6443 goto out_unlock;
6444
6445 retval = security_task_getscheduler(p);
6446 if (retval)
6447 goto out_unlock;
6448
6449 lp.sched_priority = p->rt_priority;
6450 read_unlock(&tasklist_lock);
6451
6452 /*
6453 * This one might sleep, we cannot do it with a spinlock held ...
6454 */
6455 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6456
1da177e4
LT
6457 return retval;
6458
6459out_unlock:
6460 read_unlock(&tasklist_lock);
6461 return retval;
6462}
6463
96f874e2 6464long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6465{
5a16f3d3 6466 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6467 struct task_struct *p;
6468 int retval;
1da177e4 6469
95402b38 6470 get_online_cpus();
1da177e4
LT
6471 read_lock(&tasklist_lock);
6472
6473 p = find_process_by_pid(pid);
6474 if (!p) {
6475 read_unlock(&tasklist_lock);
95402b38 6476 put_online_cpus();
1da177e4
LT
6477 return -ESRCH;
6478 }
6479
6480 /*
6481 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6482 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6483 * usage count and then drop tasklist_lock.
6484 */
6485 get_task_struct(p);
6486 read_unlock(&tasklist_lock);
6487
5a16f3d3
RR
6488 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6489 retval = -ENOMEM;
6490 goto out_put_task;
6491 }
6492 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6493 retval = -ENOMEM;
6494 goto out_free_cpus_allowed;
6495 }
1da177e4 6496 retval = -EPERM;
c69e8d9c 6497 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6498 goto out_unlock;
6499
e7834f8f
DQ
6500 retval = security_task_setscheduler(p, 0, NULL);
6501 if (retval)
6502 goto out_unlock;
6503
5a16f3d3
RR
6504 cpuset_cpus_allowed(p, cpus_allowed);
6505 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6506 again:
5a16f3d3 6507 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6508
8707d8b8 6509 if (!retval) {
5a16f3d3
RR
6510 cpuset_cpus_allowed(p, cpus_allowed);
6511 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6512 /*
6513 * We must have raced with a concurrent cpuset
6514 * update. Just reset the cpus_allowed to the
6515 * cpuset's cpus_allowed
6516 */
5a16f3d3 6517 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6518 goto again;
6519 }
6520 }
1da177e4 6521out_unlock:
5a16f3d3
RR
6522 free_cpumask_var(new_mask);
6523out_free_cpus_allowed:
6524 free_cpumask_var(cpus_allowed);
6525out_put_task:
1da177e4 6526 put_task_struct(p);
95402b38 6527 put_online_cpus();
1da177e4
LT
6528 return retval;
6529}
6530
6531static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6532 struct cpumask *new_mask)
1da177e4 6533{
96f874e2
RR
6534 if (len < cpumask_size())
6535 cpumask_clear(new_mask);
6536 else if (len > cpumask_size())
6537 len = cpumask_size();
6538
1da177e4
LT
6539 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6540}
6541
6542/**
6543 * sys_sched_setaffinity - set the cpu affinity of a process
6544 * @pid: pid of the process
6545 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6546 * @user_mask_ptr: user-space pointer to the new cpu mask
6547 */
5add95d4
HC
6548SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6549 unsigned long __user *, user_mask_ptr)
1da177e4 6550{
5a16f3d3 6551 cpumask_var_t new_mask;
1da177e4
LT
6552 int retval;
6553
5a16f3d3
RR
6554 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6555 return -ENOMEM;
1da177e4 6556
5a16f3d3
RR
6557 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6558 if (retval == 0)
6559 retval = sched_setaffinity(pid, new_mask);
6560 free_cpumask_var(new_mask);
6561 return retval;
1da177e4
LT
6562}
6563
96f874e2 6564long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6565{
36c8b586 6566 struct task_struct *p;
1da177e4 6567 int retval;
1da177e4 6568
95402b38 6569 get_online_cpus();
1da177e4
LT
6570 read_lock(&tasklist_lock);
6571
6572 retval = -ESRCH;
6573 p = find_process_by_pid(pid);
6574 if (!p)
6575 goto out_unlock;
6576
e7834f8f
DQ
6577 retval = security_task_getscheduler(p);
6578 if (retval)
6579 goto out_unlock;
6580
96f874e2 6581 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6582
6583out_unlock:
6584 read_unlock(&tasklist_lock);
95402b38 6585 put_online_cpus();
1da177e4 6586
9531b62f 6587 return retval;
1da177e4
LT
6588}
6589
6590/**
6591 * sys_sched_getaffinity - get the cpu affinity of a process
6592 * @pid: pid of the process
6593 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6594 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6595 */
5add95d4
HC
6596SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6597 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6598{
6599 int ret;
f17c8607 6600 cpumask_var_t mask;
1da177e4 6601
f17c8607 6602 if (len < cpumask_size())
1da177e4
LT
6603 return -EINVAL;
6604
f17c8607
RR
6605 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6606 return -ENOMEM;
1da177e4 6607
f17c8607
RR
6608 ret = sched_getaffinity(pid, mask);
6609 if (ret == 0) {
6610 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6611 ret = -EFAULT;
6612 else
6613 ret = cpumask_size();
6614 }
6615 free_cpumask_var(mask);
1da177e4 6616
f17c8607 6617 return ret;
1da177e4
LT
6618}
6619
6620/**
6621 * sys_sched_yield - yield the current processor to other threads.
6622 *
dd41f596
IM
6623 * This function yields the current CPU to other tasks. If there are no
6624 * other threads running on this CPU then this function will return.
1da177e4 6625 */
5add95d4 6626SYSCALL_DEFINE0(sched_yield)
1da177e4 6627{
70b97a7f 6628 struct rq *rq = this_rq_lock();
1da177e4 6629
2d72376b 6630 schedstat_inc(rq, yld_count);
4530d7ab 6631 current->sched_class->yield_task(rq);
1da177e4
LT
6632
6633 /*
6634 * Since we are going to call schedule() anyway, there's
6635 * no need to preempt or enable interrupts:
6636 */
6637 __release(rq->lock);
8a25d5de 6638 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6639 _raw_spin_unlock(&rq->lock);
6640 preempt_enable_no_resched();
6641
6642 schedule();
6643
6644 return 0;
6645}
6646
d86ee480
PZ
6647static inline int should_resched(void)
6648{
6649 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6650}
6651
e7b38404 6652static void __cond_resched(void)
1da177e4 6653{
e7aaaa69
FW
6654 add_preempt_count(PREEMPT_ACTIVE);
6655 schedule();
6656 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6657}
6658
02b67cc3 6659int __sched _cond_resched(void)
1da177e4 6660{
d86ee480 6661 if (should_resched()) {
1da177e4
LT
6662 __cond_resched();
6663 return 1;
6664 }
6665 return 0;
6666}
02b67cc3 6667EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6668
6669/*
613afbf8 6670 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6671 * call schedule, and on return reacquire the lock.
6672 *
41a2d6cf 6673 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6674 * operations here to prevent schedule() from being called twice (once via
6675 * spin_unlock(), once by hand).
6676 */
613afbf8 6677int __cond_resched_lock(spinlock_t *lock)
1da177e4 6678{
d86ee480 6679 int resched = should_resched();
6df3cecb
JK
6680 int ret = 0;
6681
f607c668
PZ
6682 lockdep_assert_held(lock);
6683
95c354fe 6684 if (spin_needbreak(lock) || resched) {
1da177e4 6685 spin_unlock(lock);
d86ee480 6686 if (resched)
95c354fe
NP
6687 __cond_resched();
6688 else
6689 cpu_relax();
6df3cecb 6690 ret = 1;
1da177e4 6691 spin_lock(lock);
1da177e4 6692 }
6df3cecb 6693 return ret;
1da177e4 6694}
613afbf8 6695EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6696
613afbf8 6697int __sched __cond_resched_softirq(void)
1da177e4
LT
6698{
6699 BUG_ON(!in_softirq());
6700
d86ee480 6701 if (should_resched()) {
98d82567 6702 local_bh_enable();
1da177e4
LT
6703 __cond_resched();
6704 local_bh_disable();
6705 return 1;
6706 }
6707 return 0;
6708}
613afbf8 6709EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6710
1da177e4
LT
6711/**
6712 * yield - yield the current processor to other threads.
6713 *
72fd4a35 6714 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6715 * thread runnable and calls sys_sched_yield().
6716 */
6717void __sched yield(void)
6718{
6719 set_current_state(TASK_RUNNING);
6720 sys_sched_yield();
6721}
1da177e4
LT
6722EXPORT_SYMBOL(yield);
6723
6724/*
41a2d6cf 6725 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6726 * that process accounting knows that this is a task in IO wait state.
6727 *
6728 * But don't do that if it is a deliberate, throttling IO wait (this task
6729 * has set its backing_dev_info: the queue against which it should throttle)
6730 */
6731void __sched io_schedule(void)
6732{
54d35f29 6733 struct rq *rq = raw_rq();
1da177e4 6734
0ff92245 6735 delayacct_blkio_start();
1da177e4 6736 atomic_inc(&rq->nr_iowait);
8f0dfc34 6737 current->in_iowait = 1;
1da177e4 6738 schedule();
8f0dfc34 6739 current->in_iowait = 0;
1da177e4 6740 atomic_dec(&rq->nr_iowait);
0ff92245 6741 delayacct_blkio_end();
1da177e4 6742}
1da177e4
LT
6743EXPORT_SYMBOL(io_schedule);
6744
6745long __sched io_schedule_timeout(long timeout)
6746{
54d35f29 6747 struct rq *rq = raw_rq();
1da177e4
LT
6748 long ret;
6749
0ff92245 6750 delayacct_blkio_start();
1da177e4 6751 atomic_inc(&rq->nr_iowait);
8f0dfc34 6752 current->in_iowait = 1;
1da177e4 6753 ret = schedule_timeout(timeout);
8f0dfc34 6754 current->in_iowait = 0;
1da177e4 6755 atomic_dec(&rq->nr_iowait);
0ff92245 6756 delayacct_blkio_end();
1da177e4
LT
6757 return ret;
6758}
6759
6760/**
6761 * sys_sched_get_priority_max - return maximum RT priority.
6762 * @policy: scheduling class.
6763 *
6764 * this syscall returns the maximum rt_priority that can be used
6765 * by a given scheduling class.
6766 */
5add95d4 6767SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6768{
6769 int ret = -EINVAL;
6770
6771 switch (policy) {
6772 case SCHED_FIFO:
6773 case SCHED_RR:
6774 ret = MAX_USER_RT_PRIO-1;
6775 break;
6776 case SCHED_NORMAL:
b0a9499c 6777 case SCHED_BATCH:
dd41f596 6778 case SCHED_IDLE:
1da177e4
LT
6779 ret = 0;
6780 break;
6781 }
6782 return ret;
6783}
6784
6785/**
6786 * sys_sched_get_priority_min - return minimum RT priority.
6787 * @policy: scheduling class.
6788 *
6789 * this syscall returns the minimum rt_priority that can be used
6790 * by a given scheduling class.
6791 */
5add95d4 6792SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6793{
6794 int ret = -EINVAL;
6795
6796 switch (policy) {
6797 case SCHED_FIFO:
6798 case SCHED_RR:
6799 ret = 1;
6800 break;
6801 case SCHED_NORMAL:
b0a9499c 6802 case SCHED_BATCH:
dd41f596 6803 case SCHED_IDLE:
1da177e4
LT
6804 ret = 0;
6805 }
6806 return ret;
6807}
6808
6809/**
6810 * sys_sched_rr_get_interval - return the default timeslice of a process.
6811 * @pid: pid of the process.
6812 * @interval: userspace pointer to the timeslice value.
6813 *
6814 * this syscall writes the default timeslice value of a given process
6815 * into the user-space timespec buffer. A value of '0' means infinity.
6816 */
17da2bd9 6817SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6818 struct timespec __user *, interval)
1da177e4 6819{
36c8b586 6820 struct task_struct *p;
a4ec24b4 6821 unsigned int time_slice;
3a5c359a 6822 int retval;
1da177e4 6823 struct timespec t;
1da177e4
LT
6824
6825 if (pid < 0)
3a5c359a 6826 return -EINVAL;
1da177e4
LT
6827
6828 retval = -ESRCH;
6829 read_lock(&tasklist_lock);
6830 p = find_process_by_pid(pid);
6831 if (!p)
6832 goto out_unlock;
6833
6834 retval = security_task_getscheduler(p);
6835 if (retval)
6836 goto out_unlock;
6837
0d721cea 6838 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6839
1da177e4 6840 read_unlock(&tasklist_lock);
a4ec24b4 6841 jiffies_to_timespec(time_slice, &t);
1da177e4 6842 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6843 return retval;
3a5c359a 6844
1da177e4
LT
6845out_unlock:
6846 read_unlock(&tasklist_lock);
6847 return retval;
6848}
6849
7c731e0a 6850static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6851
82a1fcb9 6852void sched_show_task(struct task_struct *p)
1da177e4 6853{
1da177e4 6854 unsigned long free = 0;
36c8b586 6855 unsigned state;
1da177e4 6856
1da177e4 6857 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6858 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6859 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6860#if BITS_PER_LONG == 32
1da177e4 6861 if (state == TASK_RUNNING)
cc4ea795 6862 printk(KERN_CONT " running ");
1da177e4 6863 else
cc4ea795 6864 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6865#else
6866 if (state == TASK_RUNNING)
cc4ea795 6867 printk(KERN_CONT " running task ");
1da177e4 6868 else
cc4ea795 6869 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6870#endif
6871#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6872 free = stack_not_used(p);
1da177e4 6873#endif
aa47b7e0
DR
6874 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6875 task_pid_nr(p), task_pid_nr(p->real_parent),
6876 (unsigned long)task_thread_info(p)->flags);
1da177e4 6877
5fb5e6de 6878 show_stack(p, NULL);
1da177e4
LT
6879}
6880
e59e2ae2 6881void show_state_filter(unsigned long state_filter)
1da177e4 6882{
36c8b586 6883 struct task_struct *g, *p;
1da177e4 6884
4bd77321
IM
6885#if BITS_PER_LONG == 32
6886 printk(KERN_INFO
6887 " task PC stack pid father\n");
1da177e4 6888#else
4bd77321
IM
6889 printk(KERN_INFO
6890 " task PC stack pid father\n");
1da177e4
LT
6891#endif
6892 read_lock(&tasklist_lock);
6893 do_each_thread(g, p) {
6894 /*
6895 * reset the NMI-timeout, listing all files on a slow
6896 * console might take alot of time:
6897 */
6898 touch_nmi_watchdog();
39bc89fd 6899 if (!state_filter || (p->state & state_filter))
82a1fcb9 6900 sched_show_task(p);
1da177e4
LT
6901 } while_each_thread(g, p);
6902
04c9167f
JF
6903 touch_all_softlockup_watchdogs();
6904
dd41f596
IM
6905#ifdef CONFIG_SCHED_DEBUG
6906 sysrq_sched_debug_show();
6907#endif
1da177e4 6908 read_unlock(&tasklist_lock);
e59e2ae2
IM
6909 /*
6910 * Only show locks if all tasks are dumped:
6911 */
6912 if (state_filter == -1)
6913 debug_show_all_locks();
1da177e4
LT
6914}
6915
1df21055
IM
6916void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6917{
dd41f596 6918 idle->sched_class = &idle_sched_class;
1df21055
IM
6919}
6920
f340c0d1
IM
6921/**
6922 * init_idle - set up an idle thread for a given CPU
6923 * @idle: task in question
6924 * @cpu: cpu the idle task belongs to
6925 *
6926 * NOTE: this function does not set the idle thread's NEED_RESCHED
6927 * flag, to make booting more robust.
6928 */
5c1e1767 6929void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6930{
70b97a7f 6931 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6932 unsigned long flags;
6933
5cbd54ef
IM
6934 spin_lock_irqsave(&rq->lock, flags);
6935
dd41f596
IM
6936 __sched_fork(idle);
6937 idle->se.exec_start = sched_clock();
6938
b29739f9 6939 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6940 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6941 __set_task_cpu(idle, cpu);
1da177e4 6942
1da177e4 6943 rq->curr = rq->idle = idle;
4866cde0
NP
6944#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6945 idle->oncpu = 1;
6946#endif
1da177e4
LT
6947 spin_unlock_irqrestore(&rq->lock, flags);
6948
6949 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6950#if defined(CONFIG_PREEMPT)
6951 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6952#else
a1261f54 6953 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6954#endif
dd41f596
IM
6955 /*
6956 * The idle tasks have their own, simple scheduling class:
6957 */
6958 idle->sched_class = &idle_sched_class;
fb52607a 6959 ftrace_graph_init_task(idle);
1da177e4
LT
6960}
6961
6962/*
6963 * In a system that switches off the HZ timer nohz_cpu_mask
6964 * indicates which cpus entered this state. This is used
6965 * in the rcu update to wait only for active cpus. For system
6966 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6967 * always be CPU_BITS_NONE.
1da177e4 6968 */
6a7b3dc3 6969cpumask_var_t nohz_cpu_mask;
1da177e4 6970
19978ca6
IM
6971/*
6972 * Increase the granularity value when there are more CPUs,
6973 * because with more CPUs the 'effective latency' as visible
6974 * to users decreases. But the relationship is not linear,
6975 * so pick a second-best guess by going with the log2 of the
6976 * number of CPUs.
6977 *
6978 * This idea comes from the SD scheduler of Con Kolivas:
6979 */
6980static inline void sched_init_granularity(void)
6981{
6982 unsigned int factor = 1 + ilog2(num_online_cpus());
6983 const unsigned long limit = 200000000;
6984
6985 sysctl_sched_min_granularity *= factor;
6986 if (sysctl_sched_min_granularity > limit)
6987 sysctl_sched_min_granularity = limit;
6988
6989 sysctl_sched_latency *= factor;
6990 if (sysctl_sched_latency > limit)
6991 sysctl_sched_latency = limit;
6992
6993 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6994
6995 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6996}
6997
1da177e4
LT
6998#ifdef CONFIG_SMP
6999/*
7000 * This is how migration works:
7001 *
70b97a7f 7002 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7003 * runqueue and wake up that CPU's migration thread.
7004 * 2) we down() the locked semaphore => thread blocks.
7005 * 3) migration thread wakes up (implicitly it forces the migrated
7006 * thread off the CPU)
7007 * 4) it gets the migration request and checks whether the migrated
7008 * task is still in the wrong runqueue.
7009 * 5) if it's in the wrong runqueue then the migration thread removes
7010 * it and puts it into the right queue.
7011 * 6) migration thread up()s the semaphore.
7012 * 7) we wake up and the migration is done.
7013 */
7014
7015/*
7016 * Change a given task's CPU affinity. Migrate the thread to a
7017 * proper CPU and schedule it away if the CPU it's executing on
7018 * is removed from the allowed bitmask.
7019 *
7020 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7021 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7022 * call is not atomic; no spinlocks may be held.
7023 */
96f874e2 7024int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7025{
70b97a7f 7026 struct migration_req req;
1da177e4 7027 unsigned long flags;
70b97a7f 7028 struct rq *rq;
48f24c4d 7029 int ret = 0;
1da177e4
LT
7030
7031 rq = task_rq_lock(p, &flags);
96f874e2 7032 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7033 ret = -EINVAL;
7034 goto out;
7035 }
7036
9985b0ba 7037 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7038 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7039 ret = -EINVAL;
7040 goto out;
7041 }
7042
73fe6aae 7043 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7044 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7045 else {
96f874e2
RR
7046 cpumask_copy(&p->cpus_allowed, new_mask);
7047 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7048 }
7049
1da177e4 7050 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7051 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7052 goto out;
7053
1e5ce4f4 7054 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7055 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7056 struct task_struct *mt = rq->migration_thread;
7057
7058 get_task_struct(mt);
1da177e4
LT
7059 task_rq_unlock(rq, &flags);
7060 wake_up_process(rq->migration_thread);
693525e3 7061 put_task_struct(mt);
1da177e4
LT
7062 wait_for_completion(&req.done);
7063 tlb_migrate_finish(p->mm);
7064 return 0;
7065 }
7066out:
7067 task_rq_unlock(rq, &flags);
48f24c4d 7068
1da177e4
LT
7069 return ret;
7070}
cd8ba7cd 7071EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7072
7073/*
41a2d6cf 7074 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7075 * this because either it can't run here any more (set_cpus_allowed()
7076 * away from this CPU, or CPU going down), or because we're
7077 * attempting to rebalance this task on exec (sched_exec).
7078 *
7079 * So we race with normal scheduler movements, but that's OK, as long
7080 * as the task is no longer on this CPU.
efc30814
KK
7081 *
7082 * Returns non-zero if task was successfully migrated.
1da177e4 7083 */
efc30814 7084static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7085{
70b97a7f 7086 struct rq *rq_dest, *rq_src;
dd41f596 7087 int ret = 0, on_rq;
1da177e4 7088
e761b772 7089 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7090 return ret;
1da177e4
LT
7091
7092 rq_src = cpu_rq(src_cpu);
7093 rq_dest = cpu_rq(dest_cpu);
7094
7095 double_rq_lock(rq_src, rq_dest);
7096 /* Already moved. */
7097 if (task_cpu(p) != src_cpu)
b1e38734 7098 goto done;
1da177e4 7099 /* Affinity changed (again). */
96f874e2 7100 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7101 goto fail;
1da177e4 7102
dd41f596 7103 on_rq = p->se.on_rq;
6e82a3be 7104 if (on_rq)
2e1cb74a 7105 deactivate_task(rq_src, p, 0);
6e82a3be 7106
1da177e4 7107 set_task_cpu(p, dest_cpu);
dd41f596
IM
7108 if (on_rq) {
7109 activate_task(rq_dest, p, 0);
15afe09b 7110 check_preempt_curr(rq_dest, p, 0);
1da177e4 7111 }
b1e38734 7112done:
efc30814 7113 ret = 1;
b1e38734 7114fail:
1da177e4 7115 double_rq_unlock(rq_src, rq_dest);
efc30814 7116 return ret;
1da177e4
LT
7117}
7118
03b042bf
PM
7119#define RCU_MIGRATION_IDLE 0
7120#define RCU_MIGRATION_NEED_QS 1
7121#define RCU_MIGRATION_GOT_QS 2
7122#define RCU_MIGRATION_MUST_SYNC 3
7123
1da177e4
LT
7124/*
7125 * migration_thread - this is a highprio system thread that performs
7126 * thread migration by bumping thread off CPU then 'pushing' onto
7127 * another runqueue.
7128 */
95cdf3b7 7129static int migration_thread(void *data)
1da177e4 7130{
03b042bf 7131 int badcpu;
1da177e4 7132 int cpu = (long)data;
70b97a7f 7133 struct rq *rq;
1da177e4
LT
7134
7135 rq = cpu_rq(cpu);
7136 BUG_ON(rq->migration_thread != current);
7137
7138 set_current_state(TASK_INTERRUPTIBLE);
7139 while (!kthread_should_stop()) {
70b97a7f 7140 struct migration_req *req;
1da177e4 7141 struct list_head *head;
1da177e4 7142
1da177e4
LT
7143 spin_lock_irq(&rq->lock);
7144
7145 if (cpu_is_offline(cpu)) {
7146 spin_unlock_irq(&rq->lock);
371cbb38 7147 break;
1da177e4
LT
7148 }
7149
7150 if (rq->active_balance) {
7151 active_load_balance(rq, cpu);
7152 rq->active_balance = 0;
7153 }
7154
7155 head = &rq->migration_queue;
7156
7157 if (list_empty(head)) {
7158 spin_unlock_irq(&rq->lock);
7159 schedule();
7160 set_current_state(TASK_INTERRUPTIBLE);
7161 continue;
7162 }
70b97a7f 7163 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7164 list_del_init(head->next);
7165
03b042bf
PM
7166 if (req->task != NULL) {
7167 spin_unlock(&rq->lock);
7168 __migrate_task(req->task, cpu, req->dest_cpu);
7169 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7170 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7171 spin_unlock(&rq->lock);
7172 } else {
7173 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7174 spin_unlock(&rq->lock);
7175 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7176 }
674311d5 7177 local_irq_enable();
1da177e4
LT
7178
7179 complete(&req->done);
7180 }
7181 __set_current_state(TASK_RUNNING);
1da177e4 7182
1da177e4
LT
7183 return 0;
7184}
7185
7186#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7187
7188static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7189{
7190 int ret;
7191
7192 local_irq_disable();
7193 ret = __migrate_task(p, src_cpu, dest_cpu);
7194 local_irq_enable();
7195 return ret;
7196}
7197
054b9108 7198/*
3a4fa0a2 7199 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7200 */
48f24c4d 7201static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7202{
70b97a7f 7203 int dest_cpu;
6ca09dfc 7204 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7205
7206again:
7207 /* Look for allowed, online CPU in same node. */
7208 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7209 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7210 goto move;
7211
7212 /* Any allowed, online CPU? */
7213 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7214 if (dest_cpu < nr_cpu_ids)
7215 goto move;
7216
7217 /* No more Mr. Nice Guy. */
7218 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7219 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7220 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7221
e76bd8d9
RR
7222 /*
7223 * Don't tell them about moving exiting tasks or
7224 * kernel threads (both mm NULL), since they never
7225 * leave kernel.
7226 */
7227 if (p->mm && printk_ratelimit()) {
7228 printk(KERN_INFO "process %d (%s) no "
7229 "longer affine to cpu%d\n",
7230 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7231 }
e76bd8d9
RR
7232 }
7233
7234move:
7235 /* It can have affinity changed while we were choosing. */
7236 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7237 goto again;
1da177e4
LT
7238}
7239
7240/*
7241 * While a dead CPU has no uninterruptible tasks queued at this point,
7242 * it might still have a nonzero ->nr_uninterruptible counter, because
7243 * for performance reasons the counter is not stricly tracking tasks to
7244 * their home CPUs. So we just add the counter to another CPU's counter,
7245 * to keep the global sum constant after CPU-down:
7246 */
70b97a7f 7247static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7248{
1e5ce4f4 7249 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7250 unsigned long flags;
7251
7252 local_irq_save(flags);
7253 double_rq_lock(rq_src, rq_dest);
7254 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7255 rq_src->nr_uninterruptible = 0;
7256 double_rq_unlock(rq_src, rq_dest);
7257 local_irq_restore(flags);
7258}
7259
7260/* Run through task list and migrate tasks from the dead cpu. */
7261static void migrate_live_tasks(int src_cpu)
7262{
48f24c4d 7263 struct task_struct *p, *t;
1da177e4 7264
f7b4cddc 7265 read_lock(&tasklist_lock);
1da177e4 7266
48f24c4d
IM
7267 do_each_thread(t, p) {
7268 if (p == current)
1da177e4
LT
7269 continue;
7270
48f24c4d
IM
7271 if (task_cpu(p) == src_cpu)
7272 move_task_off_dead_cpu(src_cpu, p);
7273 } while_each_thread(t, p);
1da177e4 7274
f7b4cddc 7275 read_unlock(&tasklist_lock);
1da177e4
LT
7276}
7277
dd41f596
IM
7278/*
7279 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7280 * It does so by boosting its priority to highest possible.
7281 * Used by CPU offline code.
1da177e4
LT
7282 */
7283void sched_idle_next(void)
7284{
48f24c4d 7285 int this_cpu = smp_processor_id();
70b97a7f 7286 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7287 struct task_struct *p = rq->idle;
7288 unsigned long flags;
7289
7290 /* cpu has to be offline */
48f24c4d 7291 BUG_ON(cpu_online(this_cpu));
1da177e4 7292
48f24c4d
IM
7293 /*
7294 * Strictly not necessary since rest of the CPUs are stopped by now
7295 * and interrupts disabled on the current cpu.
1da177e4
LT
7296 */
7297 spin_lock_irqsave(&rq->lock, flags);
7298
dd41f596 7299 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7300
94bc9a7b
DA
7301 update_rq_clock(rq);
7302 activate_task(rq, p, 0);
1da177e4
LT
7303
7304 spin_unlock_irqrestore(&rq->lock, flags);
7305}
7306
48f24c4d
IM
7307/*
7308 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7309 * offline.
7310 */
7311void idle_task_exit(void)
7312{
7313 struct mm_struct *mm = current->active_mm;
7314
7315 BUG_ON(cpu_online(smp_processor_id()));
7316
7317 if (mm != &init_mm)
7318 switch_mm(mm, &init_mm, current);
7319 mmdrop(mm);
7320}
7321
054b9108 7322/* called under rq->lock with disabled interrupts */
36c8b586 7323static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7324{
70b97a7f 7325 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7326
7327 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7328 BUG_ON(!p->exit_state);
1da177e4
LT
7329
7330 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7331 BUG_ON(p->state == TASK_DEAD);
1da177e4 7332
48f24c4d 7333 get_task_struct(p);
1da177e4
LT
7334
7335 /*
7336 * Drop lock around migration; if someone else moves it,
41a2d6cf 7337 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7338 * fine.
7339 */
f7b4cddc 7340 spin_unlock_irq(&rq->lock);
48f24c4d 7341 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7342 spin_lock_irq(&rq->lock);
1da177e4 7343
48f24c4d 7344 put_task_struct(p);
1da177e4
LT
7345}
7346
7347/* release_task() removes task from tasklist, so we won't find dead tasks. */
7348static void migrate_dead_tasks(unsigned int dead_cpu)
7349{
70b97a7f 7350 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7351 struct task_struct *next;
48f24c4d 7352
dd41f596
IM
7353 for ( ; ; ) {
7354 if (!rq->nr_running)
7355 break;
a8e504d2 7356 update_rq_clock(rq);
b67802ea 7357 next = pick_next_task(rq);
dd41f596
IM
7358 if (!next)
7359 break;
79c53799 7360 next->sched_class->put_prev_task(rq, next);
dd41f596 7361 migrate_dead(dead_cpu, next);
e692ab53 7362
1da177e4
LT
7363 }
7364}
dce48a84
TG
7365
7366/*
7367 * remove the tasks which were accounted by rq from calc_load_tasks.
7368 */
7369static void calc_global_load_remove(struct rq *rq)
7370{
7371 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7372 rq->calc_load_active = 0;
dce48a84 7373}
1da177e4
LT
7374#endif /* CONFIG_HOTPLUG_CPU */
7375
e692ab53
NP
7376#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7377
7378static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7379 {
7380 .procname = "sched_domain",
c57baf1e 7381 .mode = 0555,
e0361851 7382 },
38605cae 7383 {0, },
e692ab53
NP
7384};
7385
7386static struct ctl_table sd_ctl_root[] = {
e0361851 7387 {
c57baf1e 7388 .ctl_name = CTL_KERN,
e0361851 7389 .procname = "kernel",
c57baf1e 7390 .mode = 0555,
e0361851
AD
7391 .child = sd_ctl_dir,
7392 },
38605cae 7393 {0, },
e692ab53
NP
7394};
7395
7396static struct ctl_table *sd_alloc_ctl_entry(int n)
7397{
7398 struct ctl_table *entry =
5cf9f062 7399 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7400
e692ab53
NP
7401 return entry;
7402}
7403
6382bc90
MM
7404static void sd_free_ctl_entry(struct ctl_table **tablep)
7405{
cd790076 7406 struct ctl_table *entry;
6382bc90 7407
cd790076
MM
7408 /*
7409 * In the intermediate directories, both the child directory and
7410 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7411 * will always be set. In the lowest directory the names are
cd790076
MM
7412 * static strings and all have proc handlers.
7413 */
7414 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7415 if (entry->child)
7416 sd_free_ctl_entry(&entry->child);
cd790076
MM
7417 if (entry->proc_handler == NULL)
7418 kfree(entry->procname);
7419 }
6382bc90
MM
7420
7421 kfree(*tablep);
7422 *tablep = NULL;
7423}
7424
e692ab53 7425static void
e0361851 7426set_table_entry(struct ctl_table *entry,
e692ab53
NP
7427 const char *procname, void *data, int maxlen,
7428 mode_t mode, proc_handler *proc_handler)
7429{
e692ab53
NP
7430 entry->procname = procname;
7431 entry->data = data;
7432 entry->maxlen = maxlen;
7433 entry->mode = mode;
7434 entry->proc_handler = proc_handler;
7435}
7436
7437static struct ctl_table *
7438sd_alloc_ctl_domain_table(struct sched_domain *sd)
7439{
a5d8c348 7440 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7441
ad1cdc1d
MM
7442 if (table == NULL)
7443 return NULL;
7444
e0361851 7445 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7446 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7447 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7448 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7449 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7450 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7451 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7452 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7453 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7454 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7455 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7457 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7459 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7461 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7462 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7463 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7464 &sd->cache_nice_tries,
7465 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7466 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7467 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7468 set_table_entry(&table[11], "name", sd->name,
7469 CORENAME_MAX_SIZE, 0444, proc_dostring);
7470 /* &table[12] is terminator */
e692ab53
NP
7471
7472 return table;
7473}
7474
9a4e7159 7475static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7476{
7477 struct ctl_table *entry, *table;
7478 struct sched_domain *sd;
7479 int domain_num = 0, i;
7480 char buf[32];
7481
7482 for_each_domain(cpu, sd)
7483 domain_num++;
7484 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7485 if (table == NULL)
7486 return NULL;
e692ab53
NP
7487
7488 i = 0;
7489 for_each_domain(cpu, sd) {
7490 snprintf(buf, 32, "domain%d", i);
e692ab53 7491 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7492 entry->mode = 0555;
e692ab53
NP
7493 entry->child = sd_alloc_ctl_domain_table(sd);
7494 entry++;
7495 i++;
7496 }
7497 return table;
7498}
7499
7500static struct ctl_table_header *sd_sysctl_header;
6382bc90 7501static void register_sched_domain_sysctl(void)
e692ab53
NP
7502{
7503 int i, cpu_num = num_online_cpus();
7504 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7505 char buf[32];
7506
7378547f
MM
7507 WARN_ON(sd_ctl_dir[0].child);
7508 sd_ctl_dir[0].child = entry;
7509
ad1cdc1d
MM
7510 if (entry == NULL)
7511 return;
7512
97b6ea7b 7513 for_each_online_cpu(i) {
e692ab53 7514 snprintf(buf, 32, "cpu%d", i);
e692ab53 7515 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7516 entry->mode = 0555;
e692ab53 7517 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7518 entry++;
e692ab53 7519 }
7378547f
MM
7520
7521 WARN_ON(sd_sysctl_header);
e692ab53
NP
7522 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7523}
6382bc90 7524
7378547f 7525/* may be called multiple times per register */
6382bc90
MM
7526static void unregister_sched_domain_sysctl(void)
7527{
7378547f
MM
7528 if (sd_sysctl_header)
7529 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7530 sd_sysctl_header = NULL;
7378547f
MM
7531 if (sd_ctl_dir[0].child)
7532 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7533}
e692ab53 7534#else
6382bc90
MM
7535static void register_sched_domain_sysctl(void)
7536{
7537}
7538static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7539{
7540}
7541#endif
7542
1f11eb6a
GH
7543static void set_rq_online(struct rq *rq)
7544{
7545 if (!rq->online) {
7546 const struct sched_class *class;
7547
c6c4927b 7548 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7549 rq->online = 1;
7550
7551 for_each_class(class) {
7552 if (class->rq_online)
7553 class->rq_online(rq);
7554 }
7555 }
7556}
7557
7558static void set_rq_offline(struct rq *rq)
7559{
7560 if (rq->online) {
7561 const struct sched_class *class;
7562
7563 for_each_class(class) {
7564 if (class->rq_offline)
7565 class->rq_offline(rq);
7566 }
7567
c6c4927b 7568 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7569 rq->online = 0;
7570 }
7571}
7572
1da177e4
LT
7573/*
7574 * migration_call - callback that gets triggered when a CPU is added.
7575 * Here we can start up the necessary migration thread for the new CPU.
7576 */
48f24c4d
IM
7577static int __cpuinit
7578migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7579{
1da177e4 7580 struct task_struct *p;
48f24c4d 7581 int cpu = (long)hcpu;
1da177e4 7582 unsigned long flags;
70b97a7f 7583 struct rq *rq;
1da177e4
LT
7584
7585 switch (action) {
5be9361c 7586
1da177e4 7587 case CPU_UP_PREPARE:
8bb78442 7588 case CPU_UP_PREPARE_FROZEN:
dd41f596 7589 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7590 if (IS_ERR(p))
7591 return NOTIFY_BAD;
1da177e4
LT
7592 kthread_bind(p, cpu);
7593 /* Must be high prio: stop_machine expects to yield to it. */
7594 rq = task_rq_lock(p, &flags);
dd41f596 7595 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7596 task_rq_unlock(rq, &flags);
371cbb38 7597 get_task_struct(p);
1da177e4 7598 cpu_rq(cpu)->migration_thread = p;
a468d389 7599 rq->calc_load_update = calc_load_update;
1da177e4 7600 break;
48f24c4d 7601
1da177e4 7602 case CPU_ONLINE:
8bb78442 7603 case CPU_ONLINE_FROZEN:
3a4fa0a2 7604 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7605 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7606
7607 /* Update our root-domain */
7608 rq = cpu_rq(cpu);
7609 spin_lock_irqsave(&rq->lock, flags);
7610 if (rq->rd) {
c6c4927b 7611 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7612
7613 set_rq_online(rq);
1f94ef59
GH
7614 }
7615 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7616 break;
48f24c4d 7617
1da177e4
LT
7618#ifdef CONFIG_HOTPLUG_CPU
7619 case CPU_UP_CANCELED:
8bb78442 7620 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7621 if (!cpu_rq(cpu)->migration_thread)
7622 break;
41a2d6cf 7623 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7624 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7625 cpumask_any(cpu_online_mask));
1da177e4 7626 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7627 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7628 cpu_rq(cpu)->migration_thread = NULL;
7629 break;
48f24c4d 7630
1da177e4 7631 case CPU_DEAD:
8bb78442 7632 case CPU_DEAD_FROZEN:
470fd646 7633 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7634 migrate_live_tasks(cpu);
7635 rq = cpu_rq(cpu);
7636 kthread_stop(rq->migration_thread);
371cbb38 7637 put_task_struct(rq->migration_thread);
1da177e4
LT
7638 rq->migration_thread = NULL;
7639 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7640 spin_lock_irq(&rq->lock);
a8e504d2 7641 update_rq_clock(rq);
2e1cb74a 7642 deactivate_task(rq, rq->idle, 0);
1da177e4 7643 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7644 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7645 rq->idle->sched_class = &idle_sched_class;
1da177e4 7646 migrate_dead_tasks(cpu);
d2da272a 7647 spin_unlock_irq(&rq->lock);
470fd646 7648 cpuset_unlock();
1da177e4
LT
7649 migrate_nr_uninterruptible(rq);
7650 BUG_ON(rq->nr_running != 0);
dce48a84 7651 calc_global_load_remove(rq);
41a2d6cf
IM
7652 /*
7653 * No need to migrate the tasks: it was best-effort if
7654 * they didn't take sched_hotcpu_mutex. Just wake up
7655 * the requestors.
7656 */
1da177e4
LT
7657 spin_lock_irq(&rq->lock);
7658 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7659 struct migration_req *req;
7660
1da177e4 7661 req = list_entry(rq->migration_queue.next,
70b97a7f 7662 struct migration_req, list);
1da177e4 7663 list_del_init(&req->list);
9a2bd244 7664 spin_unlock_irq(&rq->lock);
1da177e4 7665 complete(&req->done);
9a2bd244 7666 spin_lock_irq(&rq->lock);
1da177e4
LT
7667 }
7668 spin_unlock_irq(&rq->lock);
7669 break;
57d885fe 7670
08f503b0
GH
7671 case CPU_DYING:
7672 case CPU_DYING_FROZEN:
57d885fe
GH
7673 /* Update our root-domain */
7674 rq = cpu_rq(cpu);
7675 spin_lock_irqsave(&rq->lock, flags);
7676 if (rq->rd) {
c6c4927b 7677 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7678 set_rq_offline(rq);
57d885fe
GH
7679 }
7680 spin_unlock_irqrestore(&rq->lock, flags);
7681 break;
1da177e4
LT
7682#endif
7683 }
7684 return NOTIFY_OK;
7685}
7686
f38b0820
PM
7687/*
7688 * Register at high priority so that task migration (migrate_all_tasks)
7689 * happens before everything else. This has to be lower priority than
cdd6c482 7690 * the notifier in the perf_event subsystem, though.
1da177e4 7691 */
26c2143b 7692static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7693 .notifier_call = migration_call,
7694 .priority = 10
7695};
7696
7babe8db 7697static int __init migration_init(void)
1da177e4
LT
7698{
7699 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7700 int err;
48f24c4d
IM
7701
7702 /* Start one for the boot CPU: */
07dccf33
AM
7703 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7704 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7705 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7706 register_cpu_notifier(&migration_notifier);
7babe8db 7707
a004cd42 7708 return 0;
1da177e4 7709}
7babe8db 7710early_initcall(migration_init);
1da177e4
LT
7711#endif
7712
7713#ifdef CONFIG_SMP
476f3534 7714
3e9830dc 7715#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7716
7c16ec58 7717static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7718 struct cpumask *groupmask)
1da177e4 7719{
4dcf6aff 7720 struct sched_group *group = sd->groups;
434d53b0 7721 char str[256];
1da177e4 7722
968ea6d8 7723 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7724 cpumask_clear(groupmask);
4dcf6aff
IM
7725
7726 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7727
7728 if (!(sd->flags & SD_LOAD_BALANCE)) {
7729 printk("does not load-balance\n");
7730 if (sd->parent)
7731 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7732 " has parent");
7733 return -1;
41c7ce9a
NP
7734 }
7735
eefd796a 7736 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7737
758b2cdc 7738 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7739 printk(KERN_ERR "ERROR: domain->span does not contain "
7740 "CPU%d\n", cpu);
7741 }
758b2cdc 7742 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7743 printk(KERN_ERR "ERROR: domain->groups does not contain"
7744 " CPU%d\n", cpu);
7745 }
1da177e4 7746
4dcf6aff 7747 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7748 do {
4dcf6aff
IM
7749 if (!group) {
7750 printk("\n");
7751 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7752 break;
7753 }
7754
18a3885f 7755 if (!group->cpu_power) {
4dcf6aff
IM
7756 printk(KERN_CONT "\n");
7757 printk(KERN_ERR "ERROR: domain->cpu_power not "
7758 "set\n");
7759 break;
7760 }
1da177e4 7761
758b2cdc 7762 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7763 printk(KERN_CONT "\n");
7764 printk(KERN_ERR "ERROR: empty group\n");
7765 break;
7766 }
1da177e4 7767
758b2cdc 7768 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7769 printk(KERN_CONT "\n");
7770 printk(KERN_ERR "ERROR: repeated CPUs\n");
7771 break;
7772 }
1da177e4 7773
758b2cdc 7774 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7775
968ea6d8 7776 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7777
7778 printk(KERN_CONT " %s", str);
18a3885f
PZ
7779 if (group->cpu_power != SCHED_LOAD_SCALE) {
7780 printk(KERN_CONT " (cpu_power = %d)",
7781 group->cpu_power);
381512cf 7782 }
1da177e4 7783
4dcf6aff
IM
7784 group = group->next;
7785 } while (group != sd->groups);
7786 printk(KERN_CONT "\n");
1da177e4 7787
758b2cdc 7788 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7789 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7790
758b2cdc
RR
7791 if (sd->parent &&
7792 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7793 printk(KERN_ERR "ERROR: parent span is not a superset "
7794 "of domain->span\n");
7795 return 0;
7796}
1da177e4 7797
4dcf6aff
IM
7798static void sched_domain_debug(struct sched_domain *sd, int cpu)
7799{
d5dd3db1 7800 cpumask_var_t groupmask;
4dcf6aff 7801 int level = 0;
1da177e4 7802
4dcf6aff
IM
7803 if (!sd) {
7804 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7805 return;
7806 }
1da177e4 7807
4dcf6aff
IM
7808 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7809
d5dd3db1 7810 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7811 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7812 return;
7813 }
7814
4dcf6aff 7815 for (;;) {
7c16ec58 7816 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7817 break;
1da177e4
LT
7818 level++;
7819 sd = sd->parent;
33859f7f 7820 if (!sd)
4dcf6aff
IM
7821 break;
7822 }
d5dd3db1 7823 free_cpumask_var(groupmask);
1da177e4 7824}
6d6bc0ad 7825#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7826# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7827#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7828
1a20ff27 7829static int sd_degenerate(struct sched_domain *sd)
245af2c7 7830{
758b2cdc 7831 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7832 return 1;
7833
7834 /* Following flags need at least 2 groups */
7835 if (sd->flags & (SD_LOAD_BALANCE |
7836 SD_BALANCE_NEWIDLE |
7837 SD_BALANCE_FORK |
89c4710e
SS
7838 SD_BALANCE_EXEC |
7839 SD_SHARE_CPUPOWER |
7840 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7841 if (sd->groups != sd->groups->next)
7842 return 0;
7843 }
7844
7845 /* Following flags don't use groups */
c88d5910 7846 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7847 return 0;
7848
7849 return 1;
7850}
7851
48f24c4d
IM
7852static int
7853sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7854{
7855 unsigned long cflags = sd->flags, pflags = parent->flags;
7856
7857 if (sd_degenerate(parent))
7858 return 1;
7859
758b2cdc 7860 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7861 return 0;
7862
245af2c7
SS
7863 /* Flags needing groups don't count if only 1 group in parent */
7864 if (parent->groups == parent->groups->next) {
7865 pflags &= ~(SD_LOAD_BALANCE |
7866 SD_BALANCE_NEWIDLE |
7867 SD_BALANCE_FORK |
89c4710e
SS
7868 SD_BALANCE_EXEC |
7869 SD_SHARE_CPUPOWER |
7870 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7871 if (nr_node_ids == 1)
7872 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7873 }
7874 if (~cflags & pflags)
7875 return 0;
7876
7877 return 1;
7878}
7879
c6c4927b
RR
7880static void free_rootdomain(struct root_domain *rd)
7881{
68e74568
RR
7882 cpupri_cleanup(&rd->cpupri);
7883
c6c4927b
RR
7884 free_cpumask_var(rd->rto_mask);
7885 free_cpumask_var(rd->online);
7886 free_cpumask_var(rd->span);
7887 kfree(rd);
7888}
7889
57d885fe
GH
7890static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7891{
a0490fa3 7892 struct root_domain *old_rd = NULL;
57d885fe 7893 unsigned long flags;
57d885fe
GH
7894
7895 spin_lock_irqsave(&rq->lock, flags);
7896
7897 if (rq->rd) {
a0490fa3 7898 old_rd = rq->rd;
57d885fe 7899
c6c4927b 7900 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7901 set_rq_offline(rq);
57d885fe 7902
c6c4927b 7903 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7904
a0490fa3
IM
7905 /*
7906 * If we dont want to free the old_rt yet then
7907 * set old_rd to NULL to skip the freeing later
7908 * in this function:
7909 */
7910 if (!atomic_dec_and_test(&old_rd->refcount))
7911 old_rd = NULL;
57d885fe
GH
7912 }
7913
7914 atomic_inc(&rd->refcount);
7915 rq->rd = rd;
7916
c6c4927b 7917 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7918 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7919 set_rq_online(rq);
57d885fe
GH
7920
7921 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7922
7923 if (old_rd)
7924 free_rootdomain(old_rd);
57d885fe
GH
7925}
7926
fd5e1b5d 7927static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7928{
36b7b6d4
PE
7929 gfp_t gfp = GFP_KERNEL;
7930
57d885fe
GH
7931 memset(rd, 0, sizeof(*rd));
7932
36b7b6d4
PE
7933 if (bootmem)
7934 gfp = GFP_NOWAIT;
c6c4927b 7935
36b7b6d4 7936 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7937 goto out;
36b7b6d4 7938 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7939 goto free_span;
36b7b6d4 7940 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7941 goto free_online;
6e0534f2 7942
0fb53029 7943 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7944 goto free_rto_mask;
c6c4927b 7945 return 0;
6e0534f2 7946
68e74568
RR
7947free_rto_mask:
7948 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7949free_online:
7950 free_cpumask_var(rd->online);
7951free_span:
7952 free_cpumask_var(rd->span);
0c910d28 7953out:
c6c4927b 7954 return -ENOMEM;
57d885fe
GH
7955}
7956
7957static void init_defrootdomain(void)
7958{
c6c4927b
RR
7959 init_rootdomain(&def_root_domain, true);
7960
57d885fe
GH
7961 atomic_set(&def_root_domain.refcount, 1);
7962}
7963
dc938520 7964static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7965{
7966 struct root_domain *rd;
7967
7968 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7969 if (!rd)
7970 return NULL;
7971
c6c4927b
RR
7972 if (init_rootdomain(rd, false) != 0) {
7973 kfree(rd);
7974 return NULL;
7975 }
57d885fe
GH
7976
7977 return rd;
7978}
7979
1da177e4 7980/*
0eab9146 7981 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7982 * hold the hotplug lock.
7983 */
0eab9146
IM
7984static void
7985cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7986{
70b97a7f 7987 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7988 struct sched_domain *tmp;
7989
7990 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7991 for (tmp = sd; tmp; ) {
245af2c7
SS
7992 struct sched_domain *parent = tmp->parent;
7993 if (!parent)
7994 break;
f29c9b1c 7995
1a848870 7996 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7997 tmp->parent = parent->parent;
1a848870
SS
7998 if (parent->parent)
7999 parent->parent->child = tmp;
f29c9b1c
LZ
8000 } else
8001 tmp = tmp->parent;
245af2c7
SS
8002 }
8003
1a848870 8004 if (sd && sd_degenerate(sd)) {
245af2c7 8005 sd = sd->parent;
1a848870
SS
8006 if (sd)
8007 sd->child = NULL;
8008 }
1da177e4
LT
8009
8010 sched_domain_debug(sd, cpu);
8011
57d885fe 8012 rq_attach_root(rq, rd);
674311d5 8013 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8014}
8015
8016/* cpus with isolated domains */
dcc30a35 8017static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8018
8019/* Setup the mask of cpus configured for isolated domains */
8020static int __init isolated_cpu_setup(char *str)
8021{
968ea6d8 8022 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8023 return 1;
8024}
8025
8927f494 8026__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8027
8028/*
6711cab4
SS
8029 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8030 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8031 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8032 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8033 *
8034 * init_sched_build_groups will build a circular linked list of the groups
8035 * covered by the given span, and will set each group's ->cpumask correctly,
8036 * and ->cpu_power to 0.
8037 */
a616058b 8038static void
96f874e2
RR
8039init_sched_build_groups(const struct cpumask *span,
8040 const struct cpumask *cpu_map,
8041 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8042 struct sched_group **sg,
96f874e2
RR
8043 struct cpumask *tmpmask),
8044 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8045{
8046 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8047 int i;
8048
96f874e2 8049 cpumask_clear(covered);
7c16ec58 8050
abcd083a 8051 for_each_cpu(i, span) {
6711cab4 8052 struct sched_group *sg;
7c16ec58 8053 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8054 int j;
8055
758b2cdc 8056 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8057 continue;
8058
758b2cdc 8059 cpumask_clear(sched_group_cpus(sg));
18a3885f 8060 sg->cpu_power = 0;
1da177e4 8061
abcd083a 8062 for_each_cpu(j, span) {
7c16ec58 8063 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8064 continue;
8065
96f874e2 8066 cpumask_set_cpu(j, covered);
758b2cdc 8067 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8068 }
8069 if (!first)
8070 first = sg;
8071 if (last)
8072 last->next = sg;
8073 last = sg;
8074 }
8075 last->next = first;
8076}
8077
9c1cfda2 8078#define SD_NODES_PER_DOMAIN 16
1da177e4 8079
9c1cfda2 8080#ifdef CONFIG_NUMA
198e2f18 8081
9c1cfda2
JH
8082/**
8083 * find_next_best_node - find the next node to include in a sched_domain
8084 * @node: node whose sched_domain we're building
8085 * @used_nodes: nodes already in the sched_domain
8086 *
41a2d6cf 8087 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8088 * finds the closest node not already in the @used_nodes map.
8089 *
8090 * Should use nodemask_t.
8091 */
c5f59f08 8092static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8093{
8094 int i, n, val, min_val, best_node = 0;
8095
8096 min_val = INT_MAX;
8097
076ac2af 8098 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8099 /* Start at @node */
076ac2af 8100 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8101
8102 if (!nr_cpus_node(n))
8103 continue;
8104
8105 /* Skip already used nodes */
c5f59f08 8106 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8107 continue;
8108
8109 /* Simple min distance search */
8110 val = node_distance(node, n);
8111
8112 if (val < min_val) {
8113 min_val = val;
8114 best_node = n;
8115 }
8116 }
8117
c5f59f08 8118 node_set(best_node, *used_nodes);
9c1cfda2
JH
8119 return best_node;
8120}
8121
8122/**
8123 * sched_domain_node_span - get a cpumask for a node's sched_domain
8124 * @node: node whose cpumask we're constructing
73486722 8125 * @span: resulting cpumask
9c1cfda2 8126 *
41a2d6cf 8127 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8128 * should be one that prevents unnecessary balancing, but also spreads tasks
8129 * out optimally.
8130 */
96f874e2 8131static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8132{
c5f59f08 8133 nodemask_t used_nodes;
48f24c4d 8134 int i;
9c1cfda2 8135
6ca09dfc 8136 cpumask_clear(span);
c5f59f08 8137 nodes_clear(used_nodes);
9c1cfda2 8138
6ca09dfc 8139 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8140 node_set(node, used_nodes);
9c1cfda2
JH
8141
8142 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8143 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8144
6ca09dfc 8145 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8146 }
9c1cfda2 8147}
6d6bc0ad 8148#endif /* CONFIG_NUMA */
9c1cfda2 8149
5c45bf27 8150int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8151
6c99e9ad
RR
8152/*
8153 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8154 *
8155 * ( See the the comments in include/linux/sched.h:struct sched_group
8156 * and struct sched_domain. )
6c99e9ad
RR
8157 */
8158struct static_sched_group {
8159 struct sched_group sg;
8160 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8161};
8162
8163struct static_sched_domain {
8164 struct sched_domain sd;
8165 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8166};
8167
49a02c51
AH
8168struct s_data {
8169#ifdef CONFIG_NUMA
8170 int sd_allnodes;
8171 cpumask_var_t domainspan;
8172 cpumask_var_t covered;
8173 cpumask_var_t notcovered;
8174#endif
8175 cpumask_var_t nodemask;
8176 cpumask_var_t this_sibling_map;
8177 cpumask_var_t this_core_map;
8178 cpumask_var_t send_covered;
8179 cpumask_var_t tmpmask;
8180 struct sched_group **sched_group_nodes;
8181 struct root_domain *rd;
8182};
8183
2109b99e
AH
8184enum s_alloc {
8185 sa_sched_groups = 0,
8186 sa_rootdomain,
8187 sa_tmpmask,
8188 sa_send_covered,
8189 sa_this_core_map,
8190 sa_this_sibling_map,
8191 sa_nodemask,
8192 sa_sched_group_nodes,
8193#ifdef CONFIG_NUMA
8194 sa_notcovered,
8195 sa_covered,
8196 sa_domainspan,
8197#endif
8198 sa_none,
8199};
8200
9c1cfda2 8201/*
48f24c4d 8202 * SMT sched-domains:
9c1cfda2 8203 */
1da177e4 8204#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8205static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8206static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8207
41a2d6cf 8208static int
96f874e2
RR
8209cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8210 struct sched_group **sg, struct cpumask *unused)
1da177e4 8211{
6711cab4 8212 if (sg)
6c99e9ad 8213 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8214 return cpu;
8215}
6d6bc0ad 8216#endif /* CONFIG_SCHED_SMT */
1da177e4 8217
48f24c4d
IM
8218/*
8219 * multi-core sched-domains:
8220 */
1e9f28fa 8221#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8222static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8223static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8224#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8225
8226#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8227static int
96f874e2
RR
8228cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8229 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8230{
6711cab4 8231 int group;
7c16ec58 8232
c69fc56d 8233 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8234 group = cpumask_first(mask);
6711cab4 8235 if (sg)
6c99e9ad 8236 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8237 return group;
1e9f28fa
SS
8238}
8239#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8240static int
96f874e2
RR
8241cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8242 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8243{
6711cab4 8244 if (sg)
6c99e9ad 8245 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8246 return cpu;
8247}
8248#endif
8249
6c99e9ad
RR
8250static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8251static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8252
41a2d6cf 8253static int
96f874e2
RR
8254cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8255 struct sched_group **sg, struct cpumask *mask)
1da177e4 8256{
6711cab4 8257 int group;
48f24c4d 8258#ifdef CONFIG_SCHED_MC
6ca09dfc 8259 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8260 group = cpumask_first(mask);
1e9f28fa 8261#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8262 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8263 group = cpumask_first(mask);
1da177e4 8264#else
6711cab4 8265 group = cpu;
1da177e4 8266#endif
6711cab4 8267 if (sg)
6c99e9ad 8268 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8269 return group;
1da177e4
LT
8270}
8271
8272#ifdef CONFIG_NUMA
1da177e4 8273/*
9c1cfda2
JH
8274 * The init_sched_build_groups can't handle what we want to do with node
8275 * groups, so roll our own. Now each node has its own list of groups which
8276 * gets dynamically allocated.
1da177e4 8277 */
62ea9ceb 8278static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8279static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8280
62ea9ceb 8281static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8282static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8283
96f874e2
RR
8284static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8285 struct sched_group **sg,
8286 struct cpumask *nodemask)
9c1cfda2 8287{
6711cab4
SS
8288 int group;
8289
6ca09dfc 8290 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8291 group = cpumask_first(nodemask);
6711cab4
SS
8292
8293 if (sg)
6c99e9ad 8294 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8295 return group;
1da177e4 8296}
6711cab4 8297
08069033
SS
8298static void init_numa_sched_groups_power(struct sched_group *group_head)
8299{
8300 struct sched_group *sg = group_head;
8301 int j;
8302
8303 if (!sg)
8304 return;
3a5c359a 8305 do {
758b2cdc 8306 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8307 struct sched_domain *sd;
08069033 8308
6c99e9ad 8309 sd = &per_cpu(phys_domains, j).sd;
13318a71 8310 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8311 /*
8312 * Only add "power" once for each
8313 * physical package.
8314 */
8315 continue;
8316 }
08069033 8317
18a3885f 8318 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8319 }
8320 sg = sg->next;
8321 } while (sg != group_head);
08069033 8322}
0601a88d
AH
8323
8324static int build_numa_sched_groups(struct s_data *d,
8325 const struct cpumask *cpu_map, int num)
8326{
8327 struct sched_domain *sd;
8328 struct sched_group *sg, *prev;
8329 int n, j;
8330
8331 cpumask_clear(d->covered);
8332 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8333 if (cpumask_empty(d->nodemask)) {
8334 d->sched_group_nodes[num] = NULL;
8335 goto out;
8336 }
8337
8338 sched_domain_node_span(num, d->domainspan);
8339 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8340
8341 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8342 GFP_KERNEL, num);
8343 if (!sg) {
8344 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8345 num);
8346 return -ENOMEM;
8347 }
8348 d->sched_group_nodes[num] = sg;
8349
8350 for_each_cpu(j, d->nodemask) {
8351 sd = &per_cpu(node_domains, j).sd;
8352 sd->groups = sg;
8353 }
8354
18a3885f 8355 sg->cpu_power = 0;
0601a88d
AH
8356 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8357 sg->next = sg;
8358 cpumask_or(d->covered, d->covered, d->nodemask);
8359
8360 prev = sg;
8361 for (j = 0; j < nr_node_ids; j++) {
8362 n = (num + j) % nr_node_ids;
8363 cpumask_complement(d->notcovered, d->covered);
8364 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8365 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8366 if (cpumask_empty(d->tmpmask))
8367 break;
8368 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8369 if (cpumask_empty(d->tmpmask))
8370 continue;
8371 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8372 GFP_KERNEL, num);
8373 if (!sg) {
8374 printk(KERN_WARNING
8375 "Can not alloc domain group for node %d\n", j);
8376 return -ENOMEM;
8377 }
18a3885f 8378 sg->cpu_power = 0;
0601a88d
AH
8379 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8380 sg->next = prev->next;
8381 cpumask_or(d->covered, d->covered, d->tmpmask);
8382 prev->next = sg;
8383 prev = sg;
8384 }
8385out:
8386 return 0;
8387}
6d6bc0ad 8388#endif /* CONFIG_NUMA */
1da177e4 8389
a616058b 8390#ifdef CONFIG_NUMA
51888ca2 8391/* Free memory allocated for various sched_group structures */
96f874e2
RR
8392static void free_sched_groups(const struct cpumask *cpu_map,
8393 struct cpumask *nodemask)
51888ca2 8394{
a616058b 8395 int cpu, i;
51888ca2 8396
abcd083a 8397 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8398 struct sched_group **sched_group_nodes
8399 = sched_group_nodes_bycpu[cpu];
8400
51888ca2
SV
8401 if (!sched_group_nodes)
8402 continue;
8403
076ac2af 8404 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8405 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8406
6ca09dfc 8407 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8408 if (cpumask_empty(nodemask))
51888ca2
SV
8409 continue;
8410
8411 if (sg == NULL)
8412 continue;
8413 sg = sg->next;
8414next_sg:
8415 oldsg = sg;
8416 sg = sg->next;
8417 kfree(oldsg);
8418 if (oldsg != sched_group_nodes[i])
8419 goto next_sg;
8420 }
8421 kfree(sched_group_nodes);
8422 sched_group_nodes_bycpu[cpu] = NULL;
8423 }
51888ca2 8424}
6d6bc0ad 8425#else /* !CONFIG_NUMA */
96f874e2
RR
8426static void free_sched_groups(const struct cpumask *cpu_map,
8427 struct cpumask *nodemask)
a616058b
SS
8428{
8429}
6d6bc0ad 8430#endif /* CONFIG_NUMA */
51888ca2 8431
89c4710e
SS
8432/*
8433 * Initialize sched groups cpu_power.
8434 *
8435 * cpu_power indicates the capacity of sched group, which is used while
8436 * distributing the load between different sched groups in a sched domain.
8437 * Typically cpu_power for all the groups in a sched domain will be same unless
8438 * there are asymmetries in the topology. If there are asymmetries, group
8439 * having more cpu_power will pickup more load compared to the group having
8440 * less cpu_power.
89c4710e
SS
8441 */
8442static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8443{
8444 struct sched_domain *child;
8445 struct sched_group *group;
f93e65c1
PZ
8446 long power;
8447 int weight;
89c4710e
SS
8448
8449 WARN_ON(!sd || !sd->groups);
8450
13318a71 8451 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8452 return;
8453
8454 child = sd->child;
8455
18a3885f 8456 sd->groups->cpu_power = 0;
5517d86b 8457
f93e65c1
PZ
8458 if (!child) {
8459 power = SCHED_LOAD_SCALE;
8460 weight = cpumask_weight(sched_domain_span(sd));
8461 /*
8462 * SMT siblings share the power of a single core.
a52bfd73
PZ
8463 * Usually multiple threads get a better yield out of
8464 * that one core than a single thread would have,
8465 * reflect that in sd->smt_gain.
f93e65c1 8466 */
a52bfd73
PZ
8467 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8468 power *= sd->smt_gain;
f93e65c1 8469 power /= weight;
a52bfd73
PZ
8470 power >>= SCHED_LOAD_SHIFT;
8471 }
18a3885f 8472 sd->groups->cpu_power += power;
89c4710e
SS
8473 return;
8474 }
8475
89c4710e 8476 /*
f93e65c1 8477 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8478 */
8479 group = child->groups;
8480 do {
18a3885f 8481 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8482 group = group->next;
8483 } while (group != child->groups);
8484}
8485
7c16ec58
MT
8486/*
8487 * Initializers for schedule domains
8488 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8489 */
8490
a5d8c348
IM
8491#ifdef CONFIG_SCHED_DEBUG
8492# define SD_INIT_NAME(sd, type) sd->name = #type
8493#else
8494# define SD_INIT_NAME(sd, type) do { } while (0)
8495#endif
8496
7c16ec58 8497#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8498
7c16ec58
MT
8499#define SD_INIT_FUNC(type) \
8500static noinline void sd_init_##type(struct sched_domain *sd) \
8501{ \
8502 memset(sd, 0, sizeof(*sd)); \
8503 *sd = SD_##type##_INIT; \
1d3504fc 8504 sd->level = SD_LV_##type; \
a5d8c348 8505 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8506}
8507
8508SD_INIT_FUNC(CPU)
8509#ifdef CONFIG_NUMA
8510 SD_INIT_FUNC(ALLNODES)
8511 SD_INIT_FUNC(NODE)
8512#endif
8513#ifdef CONFIG_SCHED_SMT
8514 SD_INIT_FUNC(SIBLING)
8515#endif
8516#ifdef CONFIG_SCHED_MC
8517 SD_INIT_FUNC(MC)
8518#endif
8519
1d3504fc
HS
8520static int default_relax_domain_level = -1;
8521
8522static int __init setup_relax_domain_level(char *str)
8523{
30e0e178
LZ
8524 unsigned long val;
8525
8526 val = simple_strtoul(str, NULL, 0);
8527 if (val < SD_LV_MAX)
8528 default_relax_domain_level = val;
8529
1d3504fc
HS
8530 return 1;
8531}
8532__setup("relax_domain_level=", setup_relax_domain_level);
8533
8534static void set_domain_attribute(struct sched_domain *sd,
8535 struct sched_domain_attr *attr)
8536{
8537 int request;
8538
8539 if (!attr || attr->relax_domain_level < 0) {
8540 if (default_relax_domain_level < 0)
8541 return;
8542 else
8543 request = default_relax_domain_level;
8544 } else
8545 request = attr->relax_domain_level;
8546 if (request < sd->level) {
8547 /* turn off idle balance on this domain */
c88d5910 8548 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8549 } else {
8550 /* turn on idle balance on this domain */
c88d5910 8551 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8552 }
8553}
8554
2109b99e
AH
8555static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8556 const struct cpumask *cpu_map)
8557{
8558 switch (what) {
8559 case sa_sched_groups:
8560 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8561 d->sched_group_nodes = NULL;
8562 case sa_rootdomain:
8563 free_rootdomain(d->rd); /* fall through */
8564 case sa_tmpmask:
8565 free_cpumask_var(d->tmpmask); /* fall through */
8566 case sa_send_covered:
8567 free_cpumask_var(d->send_covered); /* fall through */
8568 case sa_this_core_map:
8569 free_cpumask_var(d->this_core_map); /* fall through */
8570 case sa_this_sibling_map:
8571 free_cpumask_var(d->this_sibling_map); /* fall through */
8572 case sa_nodemask:
8573 free_cpumask_var(d->nodemask); /* fall through */
8574 case sa_sched_group_nodes:
d1b55138 8575#ifdef CONFIG_NUMA
2109b99e
AH
8576 kfree(d->sched_group_nodes); /* fall through */
8577 case sa_notcovered:
8578 free_cpumask_var(d->notcovered); /* fall through */
8579 case sa_covered:
8580 free_cpumask_var(d->covered); /* fall through */
8581 case sa_domainspan:
8582 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8583#endif
2109b99e
AH
8584 case sa_none:
8585 break;
8586 }
8587}
3404c8d9 8588
2109b99e
AH
8589static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8590 const struct cpumask *cpu_map)
8591{
3404c8d9 8592#ifdef CONFIG_NUMA
2109b99e
AH
8593 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8594 return sa_none;
8595 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8596 return sa_domainspan;
8597 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8598 return sa_covered;
8599 /* Allocate the per-node list of sched groups */
8600 d->sched_group_nodes = kcalloc(nr_node_ids,
8601 sizeof(struct sched_group *), GFP_KERNEL);
8602 if (!d->sched_group_nodes) {
d1b55138 8603 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8604 return sa_notcovered;
d1b55138 8605 }
2109b99e 8606 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8607#endif
2109b99e
AH
8608 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8609 return sa_sched_group_nodes;
8610 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8611 return sa_nodemask;
8612 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8613 return sa_this_sibling_map;
8614 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8615 return sa_this_core_map;
8616 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8617 return sa_send_covered;
8618 d->rd = alloc_rootdomain();
8619 if (!d->rd) {
57d885fe 8620 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8621 return sa_tmpmask;
57d885fe 8622 }
2109b99e
AH
8623 return sa_rootdomain;
8624}
57d885fe 8625
7f4588f3
AH
8626static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8627 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8628{
8629 struct sched_domain *sd = NULL;
7c16ec58 8630#ifdef CONFIG_NUMA
7f4588f3 8631 struct sched_domain *parent;
1da177e4 8632
7f4588f3
AH
8633 d->sd_allnodes = 0;
8634 if (cpumask_weight(cpu_map) >
8635 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8636 sd = &per_cpu(allnodes_domains, i).sd;
8637 SD_INIT(sd, ALLNODES);
1d3504fc 8638 set_domain_attribute(sd, attr);
7f4588f3
AH
8639 cpumask_copy(sched_domain_span(sd), cpu_map);
8640 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8641 d->sd_allnodes = 1;
8642 }
8643 parent = sd;
8644
8645 sd = &per_cpu(node_domains, i).sd;
8646 SD_INIT(sd, NODE);
8647 set_domain_attribute(sd, attr);
8648 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8649 sd->parent = parent;
8650 if (parent)
8651 parent->child = sd;
8652 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8653#endif
7f4588f3
AH
8654 return sd;
8655}
1da177e4 8656
87cce662
AH
8657static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8658 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8659 struct sched_domain *parent, int i)
8660{
8661 struct sched_domain *sd;
8662 sd = &per_cpu(phys_domains, i).sd;
8663 SD_INIT(sd, CPU);
8664 set_domain_attribute(sd, attr);
8665 cpumask_copy(sched_domain_span(sd), d->nodemask);
8666 sd->parent = parent;
8667 if (parent)
8668 parent->child = sd;
8669 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8670 return sd;
8671}
1da177e4 8672
410c4081
AH
8673static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8674 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8675 struct sched_domain *parent, int i)
8676{
8677 struct sched_domain *sd = parent;
1e9f28fa 8678#ifdef CONFIG_SCHED_MC
410c4081
AH
8679 sd = &per_cpu(core_domains, i).sd;
8680 SD_INIT(sd, MC);
8681 set_domain_attribute(sd, attr);
8682 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8683 sd->parent = parent;
8684 parent->child = sd;
8685 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8686#endif
410c4081
AH
8687 return sd;
8688}
1e9f28fa 8689
d8173535
AH
8690static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8691 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8692 struct sched_domain *parent, int i)
8693{
8694 struct sched_domain *sd = parent;
1da177e4 8695#ifdef CONFIG_SCHED_SMT
d8173535
AH
8696 sd = &per_cpu(cpu_domains, i).sd;
8697 SD_INIT(sd, SIBLING);
8698 set_domain_attribute(sd, attr);
8699 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8700 sd->parent = parent;
8701 parent->child = sd;
8702 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8703#endif
d8173535
AH
8704 return sd;
8705}
1da177e4 8706
0e8e85c9
AH
8707static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8708 const struct cpumask *cpu_map, int cpu)
8709{
8710 switch (l) {
1da177e4 8711#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8712 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8713 cpumask_and(d->this_sibling_map, cpu_map,
8714 topology_thread_cpumask(cpu));
8715 if (cpu == cpumask_first(d->this_sibling_map))
8716 init_sched_build_groups(d->this_sibling_map, cpu_map,
8717 &cpu_to_cpu_group,
8718 d->send_covered, d->tmpmask);
8719 break;
1da177e4 8720#endif
1e9f28fa 8721#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8722 case SD_LV_MC: /* set up multi-core groups */
8723 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8724 if (cpu == cpumask_first(d->this_core_map))
8725 init_sched_build_groups(d->this_core_map, cpu_map,
8726 &cpu_to_core_group,
8727 d->send_covered, d->tmpmask);
8728 break;
1e9f28fa 8729#endif
86548096
AH
8730 case SD_LV_CPU: /* set up physical groups */
8731 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8732 if (!cpumask_empty(d->nodemask))
8733 init_sched_build_groups(d->nodemask, cpu_map,
8734 &cpu_to_phys_group,
8735 d->send_covered, d->tmpmask);
8736 break;
1da177e4 8737#ifdef CONFIG_NUMA
de616e36
AH
8738 case SD_LV_ALLNODES:
8739 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8740 d->send_covered, d->tmpmask);
8741 break;
8742#endif
0e8e85c9
AH
8743 default:
8744 break;
7c16ec58 8745 }
0e8e85c9 8746}
9c1cfda2 8747
2109b99e
AH
8748/*
8749 * Build sched domains for a given set of cpus and attach the sched domains
8750 * to the individual cpus
8751 */
8752static int __build_sched_domains(const struct cpumask *cpu_map,
8753 struct sched_domain_attr *attr)
8754{
8755 enum s_alloc alloc_state = sa_none;
8756 struct s_data d;
294b0c96 8757 struct sched_domain *sd;
2109b99e 8758 int i;
7c16ec58 8759#ifdef CONFIG_NUMA
2109b99e 8760 d.sd_allnodes = 0;
7c16ec58 8761#endif
9c1cfda2 8762
2109b99e
AH
8763 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8764 if (alloc_state != sa_rootdomain)
8765 goto error;
8766 alloc_state = sa_sched_groups;
9c1cfda2 8767
1da177e4 8768 /*
1a20ff27 8769 * Set up domains for cpus specified by the cpu_map.
1da177e4 8770 */
abcd083a 8771 for_each_cpu(i, cpu_map) {
49a02c51
AH
8772 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8773 cpu_map);
9761eea8 8774
7f4588f3 8775 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8776 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8777 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8778 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8779 }
9c1cfda2 8780
abcd083a 8781 for_each_cpu(i, cpu_map) {
0e8e85c9 8782 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8783 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8784 }
9c1cfda2 8785
1da177e4 8786 /* Set up physical groups */
86548096
AH
8787 for (i = 0; i < nr_node_ids; i++)
8788 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8789
1da177e4
LT
8790#ifdef CONFIG_NUMA
8791 /* Set up node groups */
de616e36
AH
8792 if (d.sd_allnodes)
8793 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8794
0601a88d
AH
8795 for (i = 0; i < nr_node_ids; i++)
8796 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8797 goto error;
1da177e4
LT
8798#endif
8799
8800 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8801#ifdef CONFIG_SCHED_SMT
abcd083a 8802 for_each_cpu(i, cpu_map) {
294b0c96 8803 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8804 init_sched_groups_power(i, sd);
5c45bf27 8805 }
1da177e4 8806#endif
1e9f28fa 8807#ifdef CONFIG_SCHED_MC
abcd083a 8808 for_each_cpu(i, cpu_map) {
294b0c96 8809 sd = &per_cpu(core_domains, i).sd;
89c4710e 8810 init_sched_groups_power(i, sd);
5c45bf27
SS
8811 }
8812#endif
1e9f28fa 8813
abcd083a 8814 for_each_cpu(i, cpu_map) {
294b0c96 8815 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8816 init_sched_groups_power(i, sd);
1da177e4
LT
8817 }
8818
9c1cfda2 8819#ifdef CONFIG_NUMA
076ac2af 8820 for (i = 0; i < nr_node_ids; i++)
49a02c51 8821 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8822
49a02c51 8823 if (d.sd_allnodes) {
6711cab4 8824 struct sched_group *sg;
f712c0c7 8825
96f874e2 8826 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8827 d.tmpmask);
f712c0c7
SS
8828 init_numa_sched_groups_power(sg);
8829 }
9c1cfda2
JH
8830#endif
8831
1da177e4 8832 /* Attach the domains */
abcd083a 8833 for_each_cpu(i, cpu_map) {
1da177e4 8834#ifdef CONFIG_SCHED_SMT
6c99e9ad 8835 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8836#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8837 sd = &per_cpu(core_domains, i).sd;
1da177e4 8838#else
6c99e9ad 8839 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8840#endif
49a02c51 8841 cpu_attach_domain(sd, d.rd, i);
1da177e4 8842 }
51888ca2 8843
2109b99e
AH
8844 d.sched_group_nodes = NULL; /* don't free this we still need it */
8845 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8846 return 0;
51888ca2 8847
51888ca2 8848error:
2109b99e
AH
8849 __free_domain_allocs(&d, alloc_state, cpu_map);
8850 return -ENOMEM;
1da177e4 8851}
029190c5 8852
96f874e2 8853static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8854{
8855 return __build_sched_domains(cpu_map, NULL);
8856}
8857
96f874e2 8858static struct cpumask *doms_cur; /* current sched domains */
029190c5 8859static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8860static struct sched_domain_attr *dattr_cur;
8861 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8862
8863/*
8864 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8865 * cpumask) fails, then fallback to a single sched domain,
8866 * as determined by the single cpumask fallback_doms.
029190c5 8867 */
4212823f 8868static cpumask_var_t fallback_doms;
029190c5 8869
ee79d1bd
HC
8870/*
8871 * arch_update_cpu_topology lets virtualized architectures update the
8872 * cpu core maps. It is supposed to return 1 if the topology changed
8873 * or 0 if it stayed the same.
8874 */
8875int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8876{
ee79d1bd 8877 return 0;
22e52b07
HC
8878}
8879
1a20ff27 8880/*
41a2d6cf 8881 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8882 * For now this just excludes isolated cpus, but could be used to
8883 * exclude other special cases in the future.
1a20ff27 8884 */
96f874e2 8885static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8886{
7378547f
MM
8887 int err;
8888
22e52b07 8889 arch_update_cpu_topology();
029190c5 8890 ndoms_cur = 1;
96f874e2 8891 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8892 if (!doms_cur)
4212823f 8893 doms_cur = fallback_doms;
dcc30a35 8894 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8895 dattr_cur = NULL;
7378547f 8896 err = build_sched_domains(doms_cur);
6382bc90 8897 register_sched_domain_sysctl();
7378547f
MM
8898
8899 return err;
1a20ff27
DG
8900}
8901
96f874e2
RR
8902static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8903 struct cpumask *tmpmask)
1da177e4 8904{
7c16ec58 8905 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8906}
1da177e4 8907
1a20ff27
DG
8908/*
8909 * Detach sched domains from a group of cpus specified in cpu_map
8910 * These cpus will now be attached to the NULL domain
8911 */
96f874e2 8912static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8913{
96f874e2
RR
8914 /* Save because hotplug lock held. */
8915 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8916 int i;
8917
abcd083a 8918 for_each_cpu(i, cpu_map)
57d885fe 8919 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8920 synchronize_sched();
96f874e2 8921 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8922}
8923
1d3504fc
HS
8924/* handle null as "default" */
8925static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8926 struct sched_domain_attr *new, int idx_new)
8927{
8928 struct sched_domain_attr tmp;
8929
8930 /* fast path */
8931 if (!new && !cur)
8932 return 1;
8933
8934 tmp = SD_ATTR_INIT;
8935 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8936 new ? (new + idx_new) : &tmp,
8937 sizeof(struct sched_domain_attr));
8938}
8939
029190c5
PJ
8940/*
8941 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8942 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8943 * doms_new[] to the current sched domain partitioning, doms_cur[].
8944 * It destroys each deleted domain and builds each new domain.
8945 *
96f874e2 8946 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8947 * The masks don't intersect (don't overlap.) We should setup one
8948 * sched domain for each mask. CPUs not in any of the cpumasks will
8949 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8950 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8951 * it as it is.
8952 *
41a2d6cf
IM
8953 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8954 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8955 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8956 * ndoms_new == 1, and partition_sched_domains() will fallback to
8957 * the single partition 'fallback_doms', it also forces the domains
8958 * to be rebuilt.
029190c5 8959 *
96f874e2 8960 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8961 * ndoms_new == 0 is a special case for destroying existing domains,
8962 * and it will not create the default domain.
dfb512ec 8963 *
029190c5
PJ
8964 * Call with hotplug lock held
8965 */
96f874e2
RR
8966/* FIXME: Change to struct cpumask *doms_new[] */
8967void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8968 struct sched_domain_attr *dattr_new)
029190c5 8969{
dfb512ec 8970 int i, j, n;
d65bd5ec 8971 int new_topology;
029190c5 8972
712555ee 8973 mutex_lock(&sched_domains_mutex);
a1835615 8974
7378547f
MM
8975 /* always unregister in case we don't destroy any domains */
8976 unregister_sched_domain_sysctl();
8977
d65bd5ec
HC
8978 /* Let architecture update cpu core mappings. */
8979 new_topology = arch_update_cpu_topology();
8980
dfb512ec 8981 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8982
8983 /* Destroy deleted domains */
8984 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8985 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8986 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8987 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8988 goto match1;
8989 }
8990 /* no match - a current sched domain not in new doms_new[] */
8991 detach_destroy_domains(doms_cur + i);
8992match1:
8993 ;
8994 }
8995
e761b772
MK
8996 if (doms_new == NULL) {
8997 ndoms_cur = 0;
4212823f 8998 doms_new = fallback_doms;
dcc30a35 8999 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9000 WARN_ON_ONCE(dattr_new);
e761b772
MK
9001 }
9002
029190c5
PJ
9003 /* Build new domains */
9004 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9005 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9006 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9007 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9008 goto match2;
9009 }
9010 /* no match - add a new doms_new */
1d3504fc
HS
9011 __build_sched_domains(doms_new + i,
9012 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9013match2:
9014 ;
9015 }
9016
9017 /* Remember the new sched domains */
4212823f 9018 if (doms_cur != fallback_doms)
029190c5 9019 kfree(doms_cur);
1d3504fc 9020 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9021 doms_cur = doms_new;
1d3504fc 9022 dattr_cur = dattr_new;
029190c5 9023 ndoms_cur = ndoms_new;
7378547f
MM
9024
9025 register_sched_domain_sysctl();
a1835615 9026
712555ee 9027 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9028}
9029
5c45bf27 9030#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9031static void arch_reinit_sched_domains(void)
5c45bf27 9032{
95402b38 9033 get_online_cpus();
dfb512ec
MK
9034
9035 /* Destroy domains first to force the rebuild */
9036 partition_sched_domains(0, NULL, NULL);
9037
e761b772 9038 rebuild_sched_domains();
95402b38 9039 put_online_cpus();
5c45bf27
SS
9040}
9041
9042static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9043{
afb8a9b7 9044 unsigned int level = 0;
5c45bf27 9045
afb8a9b7
GS
9046 if (sscanf(buf, "%u", &level) != 1)
9047 return -EINVAL;
9048
9049 /*
9050 * level is always be positive so don't check for
9051 * level < POWERSAVINGS_BALANCE_NONE which is 0
9052 * What happens on 0 or 1 byte write,
9053 * need to check for count as well?
9054 */
9055
9056 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9057 return -EINVAL;
9058
9059 if (smt)
afb8a9b7 9060 sched_smt_power_savings = level;
5c45bf27 9061 else
afb8a9b7 9062 sched_mc_power_savings = level;
5c45bf27 9063
c70f22d2 9064 arch_reinit_sched_domains();
5c45bf27 9065
c70f22d2 9066 return count;
5c45bf27
SS
9067}
9068
5c45bf27 9069#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9070static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9071 char *page)
5c45bf27
SS
9072{
9073 return sprintf(page, "%u\n", sched_mc_power_savings);
9074}
f718cd4a 9075static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9076 const char *buf, size_t count)
5c45bf27
SS
9077{
9078 return sched_power_savings_store(buf, count, 0);
9079}
f718cd4a
AK
9080static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9081 sched_mc_power_savings_show,
9082 sched_mc_power_savings_store);
5c45bf27
SS
9083#endif
9084
9085#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9086static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9087 char *page)
5c45bf27
SS
9088{
9089 return sprintf(page, "%u\n", sched_smt_power_savings);
9090}
f718cd4a 9091static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9092 const char *buf, size_t count)
5c45bf27
SS
9093{
9094 return sched_power_savings_store(buf, count, 1);
9095}
f718cd4a
AK
9096static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9097 sched_smt_power_savings_show,
6707de00
AB
9098 sched_smt_power_savings_store);
9099#endif
9100
39aac648 9101int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9102{
9103 int err = 0;
9104
9105#ifdef CONFIG_SCHED_SMT
9106 if (smt_capable())
9107 err = sysfs_create_file(&cls->kset.kobj,
9108 &attr_sched_smt_power_savings.attr);
9109#endif
9110#ifdef CONFIG_SCHED_MC
9111 if (!err && mc_capable())
9112 err = sysfs_create_file(&cls->kset.kobj,
9113 &attr_sched_mc_power_savings.attr);
9114#endif
9115 return err;
9116}
6d6bc0ad 9117#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9118
e761b772 9119#ifndef CONFIG_CPUSETS
1da177e4 9120/*
e761b772
MK
9121 * Add online and remove offline CPUs from the scheduler domains.
9122 * When cpusets are enabled they take over this function.
1da177e4
LT
9123 */
9124static int update_sched_domains(struct notifier_block *nfb,
9125 unsigned long action, void *hcpu)
e761b772
MK
9126{
9127 switch (action) {
9128 case CPU_ONLINE:
9129 case CPU_ONLINE_FROZEN:
9130 case CPU_DEAD:
9131 case CPU_DEAD_FROZEN:
dfb512ec 9132 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9133 return NOTIFY_OK;
9134
9135 default:
9136 return NOTIFY_DONE;
9137 }
9138}
9139#endif
9140
9141static int update_runtime(struct notifier_block *nfb,
9142 unsigned long action, void *hcpu)
1da177e4 9143{
7def2be1
PZ
9144 int cpu = (int)(long)hcpu;
9145
1da177e4 9146 switch (action) {
1da177e4 9147 case CPU_DOWN_PREPARE:
8bb78442 9148 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9149 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9150 return NOTIFY_OK;
9151
1da177e4 9152 case CPU_DOWN_FAILED:
8bb78442 9153 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9154 case CPU_ONLINE:
8bb78442 9155 case CPU_ONLINE_FROZEN:
7def2be1 9156 enable_runtime(cpu_rq(cpu));
e761b772
MK
9157 return NOTIFY_OK;
9158
1da177e4
LT
9159 default:
9160 return NOTIFY_DONE;
9161 }
1da177e4 9162}
1da177e4
LT
9163
9164void __init sched_init_smp(void)
9165{
dcc30a35
RR
9166 cpumask_var_t non_isolated_cpus;
9167
9168 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9169 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9170
434d53b0
MT
9171#if defined(CONFIG_NUMA)
9172 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9173 GFP_KERNEL);
9174 BUG_ON(sched_group_nodes_bycpu == NULL);
9175#endif
95402b38 9176 get_online_cpus();
712555ee 9177 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9178 arch_init_sched_domains(cpu_online_mask);
9179 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9180 if (cpumask_empty(non_isolated_cpus))
9181 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9182 mutex_unlock(&sched_domains_mutex);
95402b38 9183 put_online_cpus();
e761b772
MK
9184
9185#ifndef CONFIG_CPUSETS
1da177e4
LT
9186 /* XXX: Theoretical race here - CPU may be hotplugged now */
9187 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9188#endif
9189
9190 /* RT runtime code needs to handle some hotplug events */
9191 hotcpu_notifier(update_runtime, 0);
9192
b328ca18 9193 init_hrtick();
5c1e1767
NP
9194
9195 /* Move init over to a non-isolated CPU */
dcc30a35 9196 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9197 BUG();
19978ca6 9198 sched_init_granularity();
dcc30a35 9199 free_cpumask_var(non_isolated_cpus);
4212823f 9200
0e3900e6 9201 init_sched_rt_class();
1da177e4
LT
9202}
9203#else
9204void __init sched_init_smp(void)
9205{
19978ca6 9206 sched_init_granularity();
1da177e4
LT
9207}
9208#endif /* CONFIG_SMP */
9209
cd1bb94b
AB
9210const_debug unsigned int sysctl_timer_migration = 1;
9211
1da177e4
LT
9212int in_sched_functions(unsigned long addr)
9213{
1da177e4
LT
9214 return in_lock_functions(addr) ||
9215 (addr >= (unsigned long)__sched_text_start
9216 && addr < (unsigned long)__sched_text_end);
9217}
9218
a9957449 9219static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9220{
9221 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9222 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9223#ifdef CONFIG_FAIR_GROUP_SCHED
9224 cfs_rq->rq = rq;
9225#endif
67e9fb2a 9226 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9227}
9228
fa85ae24
PZ
9229static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9230{
9231 struct rt_prio_array *array;
9232 int i;
9233
9234 array = &rt_rq->active;
9235 for (i = 0; i < MAX_RT_PRIO; i++) {
9236 INIT_LIST_HEAD(array->queue + i);
9237 __clear_bit(i, array->bitmap);
9238 }
9239 /* delimiter for bitsearch: */
9240 __set_bit(MAX_RT_PRIO, array->bitmap);
9241
052f1dc7 9242#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9243 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9244#ifdef CONFIG_SMP
e864c499 9245 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9246#endif
48d5e258 9247#endif
fa85ae24
PZ
9248#ifdef CONFIG_SMP
9249 rt_rq->rt_nr_migratory = 0;
fa85ae24 9250 rt_rq->overloaded = 0;
c20b08e3 9251 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9252#endif
9253
9254 rt_rq->rt_time = 0;
9255 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9256 rt_rq->rt_runtime = 0;
9257 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9258
052f1dc7 9259#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9260 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9261 rt_rq->rq = rq;
9262#endif
fa85ae24
PZ
9263}
9264
6f505b16 9265#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9266static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9267 struct sched_entity *se, int cpu, int add,
9268 struct sched_entity *parent)
6f505b16 9269{
ec7dc8ac 9270 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9271 tg->cfs_rq[cpu] = cfs_rq;
9272 init_cfs_rq(cfs_rq, rq);
9273 cfs_rq->tg = tg;
9274 if (add)
9275 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9276
9277 tg->se[cpu] = se;
354d60c2
DG
9278 /* se could be NULL for init_task_group */
9279 if (!se)
9280 return;
9281
ec7dc8ac
DG
9282 if (!parent)
9283 se->cfs_rq = &rq->cfs;
9284 else
9285 se->cfs_rq = parent->my_q;
9286
6f505b16
PZ
9287 se->my_q = cfs_rq;
9288 se->load.weight = tg->shares;
e05510d0 9289 se->load.inv_weight = 0;
ec7dc8ac 9290 se->parent = parent;
6f505b16 9291}
052f1dc7 9292#endif
6f505b16 9293
052f1dc7 9294#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9295static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9296 struct sched_rt_entity *rt_se, int cpu, int add,
9297 struct sched_rt_entity *parent)
6f505b16 9298{
ec7dc8ac
DG
9299 struct rq *rq = cpu_rq(cpu);
9300
6f505b16
PZ
9301 tg->rt_rq[cpu] = rt_rq;
9302 init_rt_rq(rt_rq, rq);
9303 rt_rq->tg = tg;
9304 rt_rq->rt_se = rt_se;
ac086bc2 9305 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9306 if (add)
9307 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9308
9309 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9310 if (!rt_se)
9311 return;
9312
ec7dc8ac
DG
9313 if (!parent)
9314 rt_se->rt_rq = &rq->rt;
9315 else
9316 rt_se->rt_rq = parent->my_q;
9317
6f505b16 9318 rt_se->my_q = rt_rq;
ec7dc8ac 9319 rt_se->parent = parent;
6f505b16
PZ
9320 INIT_LIST_HEAD(&rt_se->run_list);
9321}
9322#endif
9323
1da177e4
LT
9324void __init sched_init(void)
9325{
dd41f596 9326 int i, j;
434d53b0
MT
9327 unsigned long alloc_size = 0, ptr;
9328
9329#ifdef CONFIG_FAIR_GROUP_SCHED
9330 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9331#endif
9332#ifdef CONFIG_RT_GROUP_SCHED
9333 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9334#endif
9335#ifdef CONFIG_USER_SCHED
9336 alloc_size *= 2;
df7c8e84
RR
9337#endif
9338#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9339 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9340#endif
9341 /*
9342 * As sched_init() is called before page_alloc is setup,
9343 * we use alloc_bootmem().
9344 */
9345 if (alloc_size) {
36b7b6d4 9346 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9347
9348#ifdef CONFIG_FAIR_GROUP_SCHED
9349 init_task_group.se = (struct sched_entity **)ptr;
9350 ptr += nr_cpu_ids * sizeof(void **);
9351
9352 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9353 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9354
9355#ifdef CONFIG_USER_SCHED
9356 root_task_group.se = (struct sched_entity **)ptr;
9357 ptr += nr_cpu_ids * sizeof(void **);
9358
9359 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9360 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9361#endif /* CONFIG_USER_SCHED */
9362#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9363#ifdef CONFIG_RT_GROUP_SCHED
9364 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9365 ptr += nr_cpu_ids * sizeof(void **);
9366
9367 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9368 ptr += nr_cpu_ids * sizeof(void **);
9369
9370#ifdef CONFIG_USER_SCHED
9371 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9372 ptr += nr_cpu_ids * sizeof(void **);
9373
9374 root_task_group.rt_rq = (struct rt_rq **)ptr;
9375 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9376#endif /* CONFIG_USER_SCHED */
9377#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9378#ifdef CONFIG_CPUMASK_OFFSTACK
9379 for_each_possible_cpu(i) {
9380 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9381 ptr += cpumask_size();
9382 }
9383#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9384 }
dd41f596 9385
57d885fe
GH
9386#ifdef CONFIG_SMP
9387 init_defrootdomain();
9388#endif
9389
d0b27fa7
PZ
9390 init_rt_bandwidth(&def_rt_bandwidth,
9391 global_rt_period(), global_rt_runtime());
9392
9393#ifdef CONFIG_RT_GROUP_SCHED
9394 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9395 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9396#ifdef CONFIG_USER_SCHED
9397 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9398 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9399#endif /* CONFIG_USER_SCHED */
9400#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9401
052f1dc7 9402#ifdef CONFIG_GROUP_SCHED
6f505b16 9403 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9404 INIT_LIST_HEAD(&init_task_group.children);
9405
9406#ifdef CONFIG_USER_SCHED
9407 INIT_LIST_HEAD(&root_task_group.children);
9408 init_task_group.parent = &root_task_group;
9409 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9410#endif /* CONFIG_USER_SCHED */
9411#endif /* CONFIG_GROUP_SCHED */
6f505b16 9412
0a945022 9413 for_each_possible_cpu(i) {
70b97a7f 9414 struct rq *rq;
1da177e4
LT
9415
9416 rq = cpu_rq(i);
9417 spin_lock_init(&rq->lock);
7897986b 9418 rq->nr_running = 0;
dce48a84
TG
9419 rq->calc_load_active = 0;
9420 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9421 init_cfs_rq(&rq->cfs, rq);
6f505b16 9422 init_rt_rq(&rq->rt, rq);
dd41f596 9423#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9424 init_task_group.shares = init_task_group_load;
6f505b16 9425 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9426#ifdef CONFIG_CGROUP_SCHED
9427 /*
9428 * How much cpu bandwidth does init_task_group get?
9429 *
9430 * In case of task-groups formed thr' the cgroup filesystem, it
9431 * gets 100% of the cpu resources in the system. This overall
9432 * system cpu resource is divided among the tasks of
9433 * init_task_group and its child task-groups in a fair manner,
9434 * based on each entity's (task or task-group's) weight
9435 * (se->load.weight).
9436 *
9437 * In other words, if init_task_group has 10 tasks of weight
9438 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9439 * then A0's share of the cpu resource is:
9440 *
0d905bca 9441 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9442 *
9443 * We achieve this by letting init_task_group's tasks sit
9444 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9445 */
ec7dc8ac 9446 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9447#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9448 root_task_group.shares = NICE_0_LOAD;
9449 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9450 /*
9451 * In case of task-groups formed thr' the user id of tasks,
9452 * init_task_group represents tasks belonging to root user.
9453 * Hence it forms a sibling of all subsequent groups formed.
9454 * In this case, init_task_group gets only a fraction of overall
9455 * system cpu resource, based on the weight assigned to root
9456 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9457 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9458 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9459 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9460 */
ec7dc8ac 9461 init_tg_cfs_entry(&init_task_group,
84e9dabf 9462 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9463 &per_cpu(init_sched_entity, i), i, 1,
9464 root_task_group.se[i]);
6f505b16 9465
052f1dc7 9466#endif
354d60c2
DG
9467#endif /* CONFIG_FAIR_GROUP_SCHED */
9468
9469 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9470#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9471 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9472#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9473 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9474#elif defined CONFIG_USER_SCHED
eff766a6 9475 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9476 init_tg_rt_entry(&init_task_group,
6f505b16 9477 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9478 &per_cpu(init_sched_rt_entity, i), i, 1,
9479 root_task_group.rt_se[i]);
354d60c2 9480#endif
dd41f596 9481#endif
1da177e4 9482
dd41f596
IM
9483 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9484 rq->cpu_load[j] = 0;
1da177e4 9485#ifdef CONFIG_SMP
41c7ce9a 9486 rq->sd = NULL;
57d885fe 9487 rq->rd = NULL;
3f029d3c 9488 rq->post_schedule = 0;
1da177e4 9489 rq->active_balance = 0;
dd41f596 9490 rq->next_balance = jiffies;
1da177e4 9491 rq->push_cpu = 0;
0a2966b4 9492 rq->cpu = i;
1f11eb6a 9493 rq->online = 0;
1da177e4
LT
9494 rq->migration_thread = NULL;
9495 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9496 rq_attach_root(rq, &def_root_domain);
1da177e4 9497#endif
8f4d37ec 9498 init_rq_hrtick(rq);
1da177e4 9499 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9500 }
9501
2dd73a4f 9502 set_load_weight(&init_task);
b50f60ce 9503
e107be36
AK
9504#ifdef CONFIG_PREEMPT_NOTIFIERS
9505 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9506#endif
9507
c9819f45 9508#ifdef CONFIG_SMP
962cf36c 9509 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9510#endif
9511
b50f60ce
HC
9512#ifdef CONFIG_RT_MUTEXES
9513 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9514#endif
9515
1da177e4
LT
9516 /*
9517 * The boot idle thread does lazy MMU switching as well:
9518 */
9519 atomic_inc(&init_mm.mm_count);
9520 enter_lazy_tlb(&init_mm, current);
9521
9522 /*
9523 * Make us the idle thread. Technically, schedule() should not be
9524 * called from this thread, however somewhere below it might be,
9525 * but because we are the idle thread, we just pick up running again
9526 * when this runqueue becomes "idle".
9527 */
9528 init_idle(current, smp_processor_id());
dce48a84
TG
9529
9530 calc_load_update = jiffies + LOAD_FREQ;
9531
dd41f596
IM
9532 /*
9533 * During early bootup we pretend to be a normal task:
9534 */
9535 current->sched_class = &fair_sched_class;
6892b75e 9536
6a7b3dc3 9537 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9538 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9539#ifdef CONFIG_SMP
7d1e6a9b 9540#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9541 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9542 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9543#endif
4bdddf8f 9544 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9545#endif /* SMP */
6a7b3dc3 9546
cdd6c482 9547 perf_event_init();
0d905bca 9548
6892b75e 9549 scheduler_running = 1;
1da177e4
LT
9550}
9551
9552#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9553static inline int preempt_count_equals(int preempt_offset)
9554{
9555 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9556
9557 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9558}
9559
9560void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9561{
48f24c4d 9562#ifdef in_atomic
1da177e4
LT
9563 static unsigned long prev_jiffy; /* ratelimiting */
9564
e4aafea2
FW
9565 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9566 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9567 return;
9568 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9569 return;
9570 prev_jiffy = jiffies;
9571
9572 printk(KERN_ERR
9573 "BUG: sleeping function called from invalid context at %s:%d\n",
9574 file, line);
9575 printk(KERN_ERR
9576 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9577 in_atomic(), irqs_disabled(),
9578 current->pid, current->comm);
9579
9580 debug_show_held_locks(current);
9581 if (irqs_disabled())
9582 print_irqtrace_events(current);
9583 dump_stack();
1da177e4
LT
9584#endif
9585}
9586EXPORT_SYMBOL(__might_sleep);
9587#endif
9588
9589#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9590static void normalize_task(struct rq *rq, struct task_struct *p)
9591{
9592 int on_rq;
3e51f33f 9593
3a5e4dc1
AK
9594 update_rq_clock(rq);
9595 on_rq = p->se.on_rq;
9596 if (on_rq)
9597 deactivate_task(rq, p, 0);
9598 __setscheduler(rq, p, SCHED_NORMAL, 0);
9599 if (on_rq) {
9600 activate_task(rq, p, 0);
9601 resched_task(rq->curr);
9602 }
9603}
9604
1da177e4
LT
9605void normalize_rt_tasks(void)
9606{
a0f98a1c 9607 struct task_struct *g, *p;
1da177e4 9608 unsigned long flags;
70b97a7f 9609 struct rq *rq;
1da177e4 9610
4cf5d77a 9611 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9612 do_each_thread(g, p) {
178be793
IM
9613 /*
9614 * Only normalize user tasks:
9615 */
9616 if (!p->mm)
9617 continue;
9618
6cfb0d5d 9619 p->se.exec_start = 0;
6cfb0d5d 9620#ifdef CONFIG_SCHEDSTATS
dd41f596 9621 p->se.wait_start = 0;
dd41f596 9622 p->se.sleep_start = 0;
dd41f596 9623 p->se.block_start = 0;
6cfb0d5d 9624#endif
dd41f596
IM
9625
9626 if (!rt_task(p)) {
9627 /*
9628 * Renice negative nice level userspace
9629 * tasks back to 0:
9630 */
9631 if (TASK_NICE(p) < 0 && p->mm)
9632 set_user_nice(p, 0);
1da177e4 9633 continue;
dd41f596 9634 }
1da177e4 9635
4cf5d77a 9636 spin_lock(&p->pi_lock);
b29739f9 9637 rq = __task_rq_lock(p);
1da177e4 9638
178be793 9639 normalize_task(rq, p);
3a5e4dc1 9640
b29739f9 9641 __task_rq_unlock(rq);
4cf5d77a 9642 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9643 } while_each_thread(g, p);
9644
4cf5d77a 9645 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9646}
9647
9648#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9649
9650#ifdef CONFIG_IA64
9651/*
9652 * These functions are only useful for the IA64 MCA handling.
9653 *
9654 * They can only be called when the whole system has been
9655 * stopped - every CPU needs to be quiescent, and no scheduling
9656 * activity can take place. Using them for anything else would
9657 * be a serious bug, and as a result, they aren't even visible
9658 * under any other configuration.
9659 */
9660
9661/**
9662 * curr_task - return the current task for a given cpu.
9663 * @cpu: the processor in question.
9664 *
9665 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9666 */
36c8b586 9667struct task_struct *curr_task(int cpu)
1df5c10a
LT
9668{
9669 return cpu_curr(cpu);
9670}
9671
9672/**
9673 * set_curr_task - set the current task for a given cpu.
9674 * @cpu: the processor in question.
9675 * @p: the task pointer to set.
9676 *
9677 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9678 * are serviced on a separate stack. It allows the architecture to switch the
9679 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9680 * must be called with all CPU's synchronized, and interrupts disabled, the
9681 * and caller must save the original value of the current task (see
9682 * curr_task() above) and restore that value before reenabling interrupts and
9683 * re-starting the system.
9684 *
9685 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9686 */
36c8b586 9687void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9688{
9689 cpu_curr(cpu) = p;
9690}
9691
9692#endif
29f59db3 9693
bccbe08a
PZ
9694#ifdef CONFIG_FAIR_GROUP_SCHED
9695static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9696{
9697 int i;
9698
9699 for_each_possible_cpu(i) {
9700 if (tg->cfs_rq)
9701 kfree(tg->cfs_rq[i]);
9702 if (tg->se)
9703 kfree(tg->se[i]);
6f505b16
PZ
9704 }
9705
9706 kfree(tg->cfs_rq);
9707 kfree(tg->se);
6f505b16
PZ
9708}
9709
ec7dc8ac
DG
9710static
9711int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9712{
29f59db3 9713 struct cfs_rq *cfs_rq;
eab17229 9714 struct sched_entity *se;
9b5b7751 9715 struct rq *rq;
29f59db3
SV
9716 int i;
9717
434d53b0 9718 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9719 if (!tg->cfs_rq)
9720 goto err;
434d53b0 9721 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9722 if (!tg->se)
9723 goto err;
052f1dc7
PZ
9724
9725 tg->shares = NICE_0_LOAD;
29f59db3
SV
9726
9727 for_each_possible_cpu(i) {
9b5b7751 9728 rq = cpu_rq(i);
29f59db3 9729
eab17229
LZ
9730 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9731 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9732 if (!cfs_rq)
9733 goto err;
9734
eab17229
LZ
9735 se = kzalloc_node(sizeof(struct sched_entity),
9736 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9737 if (!se)
9738 goto err;
9739
eab17229 9740 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9741 }
9742
9743 return 1;
9744
9745 err:
9746 return 0;
9747}
9748
9749static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9750{
9751 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9752 &cpu_rq(cpu)->leaf_cfs_rq_list);
9753}
9754
9755static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9756{
9757 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9758}
6d6bc0ad 9759#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9760static inline void free_fair_sched_group(struct task_group *tg)
9761{
9762}
9763
ec7dc8ac
DG
9764static inline
9765int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9766{
9767 return 1;
9768}
9769
9770static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9771{
9772}
9773
9774static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9775{
9776}
6d6bc0ad 9777#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9778
9779#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9780static void free_rt_sched_group(struct task_group *tg)
9781{
9782 int i;
9783
d0b27fa7
PZ
9784 destroy_rt_bandwidth(&tg->rt_bandwidth);
9785
bccbe08a
PZ
9786 for_each_possible_cpu(i) {
9787 if (tg->rt_rq)
9788 kfree(tg->rt_rq[i]);
9789 if (tg->rt_se)
9790 kfree(tg->rt_se[i]);
9791 }
9792
9793 kfree(tg->rt_rq);
9794 kfree(tg->rt_se);
9795}
9796
ec7dc8ac
DG
9797static
9798int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9799{
9800 struct rt_rq *rt_rq;
eab17229 9801 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9802 struct rq *rq;
9803 int i;
9804
434d53b0 9805 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9806 if (!tg->rt_rq)
9807 goto err;
434d53b0 9808 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9809 if (!tg->rt_se)
9810 goto err;
9811
d0b27fa7
PZ
9812 init_rt_bandwidth(&tg->rt_bandwidth,
9813 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9814
9815 for_each_possible_cpu(i) {
9816 rq = cpu_rq(i);
9817
eab17229
LZ
9818 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9819 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9820 if (!rt_rq)
9821 goto err;
29f59db3 9822
eab17229
LZ
9823 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9824 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9825 if (!rt_se)
9826 goto err;
29f59db3 9827
eab17229 9828 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9829 }
9830
bccbe08a
PZ
9831 return 1;
9832
9833 err:
9834 return 0;
9835}
9836
9837static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9838{
9839 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9840 &cpu_rq(cpu)->leaf_rt_rq_list);
9841}
9842
9843static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9844{
9845 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9846}
6d6bc0ad 9847#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9848static inline void free_rt_sched_group(struct task_group *tg)
9849{
9850}
9851
ec7dc8ac
DG
9852static inline
9853int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9854{
9855 return 1;
9856}
9857
9858static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9859{
9860}
9861
9862static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9863{
9864}
6d6bc0ad 9865#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9866
d0b27fa7 9867#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9868static void free_sched_group(struct task_group *tg)
9869{
9870 free_fair_sched_group(tg);
9871 free_rt_sched_group(tg);
9872 kfree(tg);
9873}
9874
9875/* allocate runqueue etc for a new task group */
ec7dc8ac 9876struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9877{
9878 struct task_group *tg;
9879 unsigned long flags;
9880 int i;
9881
9882 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9883 if (!tg)
9884 return ERR_PTR(-ENOMEM);
9885
ec7dc8ac 9886 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9887 goto err;
9888
ec7dc8ac 9889 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9890 goto err;
9891
8ed36996 9892 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9893 for_each_possible_cpu(i) {
bccbe08a
PZ
9894 register_fair_sched_group(tg, i);
9895 register_rt_sched_group(tg, i);
9b5b7751 9896 }
6f505b16 9897 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9898
9899 WARN_ON(!parent); /* root should already exist */
9900
9901 tg->parent = parent;
f473aa5e 9902 INIT_LIST_HEAD(&tg->children);
09f2724a 9903 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9904 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9905
9b5b7751 9906 return tg;
29f59db3
SV
9907
9908err:
6f505b16 9909 free_sched_group(tg);
29f59db3
SV
9910 return ERR_PTR(-ENOMEM);
9911}
9912
9b5b7751 9913/* rcu callback to free various structures associated with a task group */
6f505b16 9914static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9915{
29f59db3 9916 /* now it should be safe to free those cfs_rqs */
6f505b16 9917 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9918}
9919
9b5b7751 9920/* Destroy runqueue etc associated with a task group */
4cf86d77 9921void sched_destroy_group(struct task_group *tg)
29f59db3 9922{
8ed36996 9923 unsigned long flags;
9b5b7751 9924 int i;
29f59db3 9925
8ed36996 9926 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9927 for_each_possible_cpu(i) {
bccbe08a
PZ
9928 unregister_fair_sched_group(tg, i);
9929 unregister_rt_sched_group(tg, i);
9b5b7751 9930 }
6f505b16 9931 list_del_rcu(&tg->list);
f473aa5e 9932 list_del_rcu(&tg->siblings);
8ed36996 9933 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9934
9b5b7751 9935 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9936 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9937}
9938
9b5b7751 9939/* change task's runqueue when it moves between groups.
3a252015
IM
9940 * The caller of this function should have put the task in its new group
9941 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9942 * reflect its new group.
9b5b7751
SV
9943 */
9944void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9945{
9946 int on_rq, running;
9947 unsigned long flags;
9948 struct rq *rq;
9949
9950 rq = task_rq_lock(tsk, &flags);
9951
29f59db3
SV
9952 update_rq_clock(rq);
9953
051a1d1a 9954 running = task_current(rq, tsk);
29f59db3
SV
9955 on_rq = tsk->se.on_rq;
9956
0e1f3483 9957 if (on_rq)
29f59db3 9958 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9959 if (unlikely(running))
9960 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9961
6f505b16 9962 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9963
810b3817
PZ
9964#ifdef CONFIG_FAIR_GROUP_SCHED
9965 if (tsk->sched_class->moved_group)
9966 tsk->sched_class->moved_group(tsk);
9967#endif
9968
0e1f3483
HS
9969 if (unlikely(running))
9970 tsk->sched_class->set_curr_task(rq);
9971 if (on_rq)
7074badb 9972 enqueue_task(rq, tsk, 0);
29f59db3 9973
29f59db3
SV
9974 task_rq_unlock(rq, &flags);
9975}
6d6bc0ad 9976#endif /* CONFIG_GROUP_SCHED */
29f59db3 9977
052f1dc7 9978#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9979static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9980{
9981 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9982 int on_rq;
9983
29f59db3 9984 on_rq = se->on_rq;
62fb1851 9985 if (on_rq)
29f59db3
SV
9986 dequeue_entity(cfs_rq, se, 0);
9987
9988 se->load.weight = shares;
e05510d0 9989 se->load.inv_weight = 0;
29f59db3 9990
62fb1851 9991 if (on_rq)
29f59db3 9992 enqueue_entity(cfs_rq, se, 0);
c09595f6 9993}
62fb1851 9994
c09595f6
PZ
9995static void set_se_shares(struct sched_entity *se, unsigned long shares)
9996{
9997 struct cfs_rq *cfs_rq = se->cfs_rq;
9998 struct rq *rq = cfs_rq->rq;
9999 unsigned long flags;
10000
10001 spin_lock_irqsave(&rq->lock, flags);
10002 __set_se_shares(se, shares);
10003 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10004}
10005
8ed36996
PZ
10006static DEFINE_MUTEX(shares_mutex);
10007
4cf86d77 10008int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10009{
10010 int i;
8ed36996 10011 unsigned long flags;
c61935fd 10012
ec7dc8ac
DG
10013 /*
10014 * We can't change the weight of the root cgroup.
10015 */
10016 if (!tg->se[0])
10017 return -EINVAL;
10018
18d95a28
PZ
10019 if (shares < MIN_SHARES)
10020 shares = MIN_SHARES;
cb4ad1ff
MX
10021 else if (shares > MAX_SHARES)
10022 shares = MAX_SHARES;
62fb1851 10023
8ed36996 10024 mutex_lock(&shares_mutex);
9b5b7751 10025 if (tg->shares == shares)
5cb350ba 10026 goto done;
29f59db3 10027
8ed36996 10028 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10029 for_each_possible_cpu(i)
10030 unregister_fair_sched_group(tg, i);
f473aa5e 10031 list_del_rcu(&tg->siblings);
8ed36996 10032 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10033
10034 /* wait for any ongoing reference to this group to finish */
10035 synchronize_sched();
10036
10037 /*
10038 * Now we are free to modify the group's share on each cpu
10039 * w/o tripping rebalance_share or load_balance_fair.
10040 */
9b5b7751 10041 tg->shares = shares;
c09595f6
PZ
10042 for_each_possible_cpu(i) {
10043 /*
10044 * force a rebalance
10045 */
10046 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10047 set_se_shares(tg->se[i], shares);
c09595f6 10048 }
29f59db3 10049
6b2d7700
SV
10050 /*
10051 * Enable load balance activity on this group, by inserting it back on
10052 * each cpu's rq->leaf_cfs_rq_list.
10053 */
8ed36996 10054 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10055 for_each_possible_cpu(i)
10056 register_fair_sched_group(tg, i);
f473aa5e 10057 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10058 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10059done:
8ed36996 10060 mutex_unlock(&shares_mutex);
9b5b7751 10061 return 0;
29f59db3
SV
10062}
10063
5cb350ba
DG
10064unsigned long sched_group_shares(struct task_group *tg)
10065{
10066 return tg->shares;
10067}
052f1dc7 10068#endif
5cb350ba 10069
052f1dc7 10070#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10071/*
9f0c1e56 10072 * Ensure that the real time constraints are schedulable.
6f505b16 10073 */
9f0c1e56
PZ
10074static DEFINE_MUTEX(rt_constraints_mutex);
10075
10076static unsigned long to_ratio(u64 period, u64 runtime)
10077{
10078 if (runtime == RUNTIME_INF)
9a7e0b18 10079 return 1ULL << 20;
9f0c1e56 10080
9a7e0b18 10081 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10082}
10083
9a7e0b18
PZ
10084/* Must be called with tasklist_lock held */
10085static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10086{
9a7e0b18 10087 struct task_struct *g, *p;
b40b2e8e 10088
9a7e0b18
PZ
10089 do_each_thread(g, p) {
10090 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10091 return 1;
10092 } while_each_thread(g, p);
b40b2e8e 10093
9a7e0b18
PZ
10094 return 0;
10095}
b40b2e8e 10096
9a7e0b18
PZ
10097struct rt_schedulable_data {
10098 struct task_group *tg;
10099 u64 rt_period;
10100 u64 rt_runtime;
10101};
b40b2e8e 10102
9a7e0b18
PZ
10103static int tg_schedulable(struct task_group *tg, void *data)
10104{
10105 struct rt_schedulable_data *d = data;
10106 struct task_group *child;
10107 unsigned long total, sum = 0;
10108 u64 period, runtime;
b40b2e8e 10109
9a7e0b18
PZ
10110 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10111 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10112
9a7e0b18
PZ
10113 if (tg == d->tg) {
10114 period = d->rt_period;
10115 runtime = d->rt_runtime;
b40b2e8e 10116 }
b40b2e8e 10117
98a4826b
PZ
10118#ifdef CONFIG_USER_SCHED
10119 if (tg == &root_task_group) {
10120 period = global_rt_period();
10121 runtime = global_rt_runtime();
10122 }
10123#endif
10124
4653f803
PZ
10125 /*
10126 * Cannot have more runtime than the period.
10127 */
10128 if (runtime > period && runtime != RUNTIME_INF)
10129 return -EINVAL;
6f505b16 10130
4653f803
PZ
10131 /*
10132 * Ensure we don't starve existing RT tasks.
10133 */
9a7e0b18
PZ
10134 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10135 return -EBUSY;
6f505b16 10136
9a7e0b18 10137 total = to_ratio(period, runtime);
6f505b16 10138
4653f803
PZ
10139 /*
10140 * Nobody can have more than the global setting allows.
10141 */
10142 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10143 return -EINVAL;
6f505b16 10144
4653f803
PZ
10145 /*
10146 * The sum of our children's runtime should not exceed our own.
10147 */
9a7e0b18
PZ
10148 list_for_each_entry_rcu(child, &tg->children, siblings) {
10149 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10150 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10151
9a7e0b18
PZ
10152 if (child == d->tg) {
10153 period = d->rt_period;
10154 runtime = d->rt_runtime;
10155 }
6f505b16 10156
9a7e0b18 10157 sum += to_ratio(period, runtime);
9f0c1e56 10158 }
6f505b16 10159
9a7e0b18
PZ
10160 if (sum > total)
10161 return -EINVAL;
10162
10163 return 0;
6f505b16
PZ
10164}
10165
9a7e0b18 10166static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10167{
9a7e0b18
PZ
10168 struct rt_schedulable_data data = {
10169 .tg = tg,
10170 .rt_period = period,
10171 .rt_runtime = runtime,
10172 };
10173
10174 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10175}
10176
d0b27fa7
PZ
10177static int tg_set_bandwidth(struct task_group *tg,
10178 u64 rt_period, u64 rt_runtime)
6f505b16 10179{
ac086bc2 10180 int i, err = 0;
9f0c1e56 10181
9f0c1e56 10182 mutex_lock(&rt_constraints_mutex);
521f1a24 10183 read_lock(&tasklist_lock);
9a7e0b18
PZ
10184 err = __rt_schedulable(tg, rt_period, rt_runtime);
10185 if (err)
9f0c1e56 10186 goto unlock;
ac086bc2
PZ
10187
10188 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10189 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10190 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10191
10192 for_each_possible_cpu(i) {
10193 struct rt_rq *rt_rq = tg->rt_rq[i];
10194
10195 spin_lock(&rt_rq->rt_runtime_lock);
10196 rt_rq->rt_runtime = rt_runtime;
10197 spin_unlock(&rt_rq->rt_runtime_lock);
10198 }
10199 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10200 unlock:
521f1a24 10201 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10202 mutex_unlock(&rt_constraints_mutex);
10203
10204 return err;
6f505b16
PZ
10205}
10206
d0b27fa7
PZ
10207int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10208{
10209 u64 rt_runtime, rt_period;
10210
10211 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10212 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10213 if (rt_runtime_us < 0)
10214 rt_runtime = RUNTIME_INF;
10215
10216 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10217}
10218
9f0c1e56
PZ
10219long sched_group_rt_runtime(struct task_group *tg)
10220{
10221 u64 rt_runtime_us;
10222
d0b27fa7 10223 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10224 return -1;
10225
d0b27fa7 10226 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10227 do_div(rt_runtime_us, NSEC_PER_USEC);
10228 return rt_runtime_us;
10229}
d0b27fa7
PZ
10230
10231int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10232{
10233 u64 rt_runtime, rt_period;
10234
10235 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10236 rt_runtime = tg->rt_bandwidth.rt_runtime;
10237
619b0488
R
10238 if (rt_period == 0)
10239 return -EINVAL;
10240
d0b27fa7
PZ
10241 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10242}
10243
10244long sched_group_rt_period(struct task_group *tg)
10245{
10246 u64 rt_period_us;
10247
10248 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10249 do_div(rt_period_us, NSEC_PER_USEC);
10250 return rt_period_us;
10251}
10252
10253static int sched_rt_global_constraints(void)
10254{
4653f803 10255 u64 runtime, period;
d0b27fa7
PZ
10256 int ret = 0;
10257
ec5d4989
HS
10258 if (sysctl_sched_rt_period <= 0)
10259 return -EINVAL;
10260
4653f803
PZ
10261 runtime = global_rt_runtime();
10262 period = global_rt_period();
10263
10264 /*
10265 * Sanity check on the sysctl variables.
10266 */
10267 if (runtime > period && runtime != RUNTIME_INF)
10268 return -EINVAL;
10b612f4 10269
d0b27fa7 10270 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10271 read_lock(&tasklist_lock);
4653f803 10272 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10273 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10274 mutex_unlock(&rt_constraints_mutex);
10275
10276 return ret;
10277}
54e99124
DG
10278
10279int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10280{
10281 /* Don't accept realtime tasks when there is no way for them to run */
10282 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10283 return 0;
10284
10285 return 1;
10286}
10287
6d6bc0ad 10288#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10289static int sched_rt_global_constraints(void)
10290{
ac086bc2
PZ
10291 unsigned long flags;
10292 int i;
10293
ec5d4989
HS
10294 if (sysctl_sched_rt_period <= 0)
10295 return -EINVAL;
10296
60aa605d
PZ
10297 /*
10298 * There's always some RT tasks in the root group
10299 * -- migration, kstopmachine etc..
10300 */
10301 if (sysctl_sched_rt_runtime == 0)
10302 return -EBUSY;
10303
ac086bc2
PZ
10304 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10305 for_each_possible_cpu(i) {
10306 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10307
10308 spin_lock(&rt_rq->rt_runtime_lock);
10309 rt_rq->rt_runtime = global_rt_runtime();
10310 spin_unlock(&rt_rq->rt_runtime_lock);
10311 }
10312 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10313
d0b27fa7
PZ
10314 return 0;
10315}
6d6bc0ad 10316#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10317
10318int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10319 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10320 loff_t *ppos)
10321{
10322 int ret;
10323 int old_period, old_runtime;
10324 static DEFINE_MUTEX(mutex);
10325
10326 mutex_lock(&mutex);
10327 old_period = sysctl_sched_rt_period;
10328 old_runtime = sysctl_sched_rt_runtime;
10329
8d65af78 10330 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10331
10332 if (!ret && write) {
10333 ret = sched_rt_global_constraints();
10334 if (ret) {
10335 sysctl_sched_rt_period = old_period;
10336 sysctl_sched_rt_runtime = old_runtime;
10337 } else {
10338 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10339 def_rt_bandwidth.rt_period =
10340 ns_to_ktime(global_rt_period());
10341 }
10342 }
10343 mutex_unlock(&mutex);
10344
10345 return ret;
10346}
68318b8e 10347
052f1dc7 10348#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10349
10350/* return corresponding task_group object of a cgroup */
2b01dfe3 10351static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10352{
2b01dfe3
PM
10353 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10354 struct task_group, css);
68318b8e
SV
10355}
10356
10357static struct cgroup_subsys_state *
2b01dfe3 10358cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10359{
ec7dc8ac 10360 struct task_group *tg, *parent;
68318b8e 10361
2b01dfe3 10362 if (!cgrp->parent) {
68318b8e 10363 /* This is early initialization for the top cgroup */
68318b8e
SV
10364 return &init_task_group.css;
10365 }
10366
ec7dc8ac
DG
10367 parent = cgroup_tg(cgrp->parent);
10368 tg = sched_create_group(parent);
68318b8e
SV
10369 if (IS_ERR(tg))
10370 return ERR_PTR(-ENOMEM);
10371
68318b8e
SV
10372 return &tg->css;
10373}
10374
41a2d6cf
IM
10375static void
10376cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10377{
2b01dfe3 10378 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10379
10380 sched_destroy_group(tg);
10381}
10382
41a2d6cf 10383static int
be367d09 10384cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10385{
b68aa230 10386#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10387 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10388 return -EINVAL;
10389#else
68318b8e
SV
10390 /* We don't support RT-tasks being in separate groups */
10391 if (tsk->sched_class != &fair_sched_class)
10392 return -EINVAL;
b68aa230 10393#endif
be367d09
BB
10394 return 0;
10395}
68318b8e 10396
be367d09
BB
10397static int
10398cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10399 struct task_struct *tsk, bool threadgroup)
10400{
10401 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10402 if (retval)
10403 return retval;
10404 if (threadgroup) {
10405 struct task_struct *c;
10406 rcu_read_lock();
10407 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10408 retval = cpu_cgroup_can_attach_task(cgrp, c);
10409 if (retval) {
10410 rcu_read_unlock();
10411 return retval;
10412 }
10413 }
10414 rcu_read_unlock();
10415 }
68318b8e
SV
10416 return 0;
10417}
10418
10419static void
2b01dfe3 10420cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10421 struct cgroup *old_cont, struct task_struct *tsk,
10422 bool threadgroup)
68318b8e
SV
10423{
10424 sched_move_task(tsk);
be367d09
BB
10425 if (threadgroup) {
10426 struct task_struct *c;
10427 rcu_read_lock();
10428 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10429 sched_move_task(c);
10430 }
10431 rcu_read_unlock();
10432 }
68318b8e
SV
10433}
10434
052f1dc7 10435#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10436static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10437 u64 shareval)
68318b8e 10438{
2b01dfe3 10439 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10440}
10441
f4c753b7 10442static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10443{
2b01dfe3 10444 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10445
10446 return (u64) tg->shares;
10447}
6d6bc0ad 10448#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10449
052f1dc7 10450#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10451static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10452 s64 val)
6f505b16 10453{
06ecb27c 10454 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10455}
10456
06ecb27c 10457static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10458{
06ecb27c 10459 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10460}
d0b27fa7
PZ
10461
10462static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10463 u64 rt_period_us)
10464{
10465 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10466}
10467
10468static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10469{
10470 return sched_group_rt_period(cgroup_tg(cgrp));
10471}
6d6bc0ad 10472#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10473
fe5c7cc2 10474static struct cftype cpu_files[] = {
052f1dc7 10475#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10476 {
10477 .name = "shares",
f4c753b7
PM
10478 .read_u64 = cpu_shares_read_u64,
10479 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10480 },
052f1dc7
PZ
10481#endif
10482#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10483 {
9f0c1e56 10484 .name = "rt_runtime_us",
06ecb27c
PM
10485 .read_s64 = cpu_rt_runtime_read,
10486 .write_s64 = cpu_rt_runtime_write,
6f505b16 10487 },
d0b27fa7
PZ
10488 {
10489 .name = "rt_period_us",
f4c753b7
PM
10490 .read_u64 = cpu_rt_period_read_uint,
10491 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10492 },
052f1dc7 10493#endif
68318b8e
SV
10494};
10495
10496static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10497{
fe5c7cc2 10498 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10499}
10500
10501struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10502 .name = "cpu",
10503 .create = cpu_cgroup_create,
10504 .destroy = cpu_cgroup_destroy,
10505 .can_attach = cpu_cgroup_can_attach,
10506 .attach = cpu_cgroup_attach,
10507 .populate = cpu_cgroup_populate,
10508 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10509 .early_init = 1,
10510};
10511
052f1dc7 10512#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10513
10514#ifdef CONFIG_CGROUP_CPUACCT
10515
10516/*
10517 * CPU accounting code for task groups.
10518 *
10519 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10520 * (balbir@in.ibm.com).
10521 */
10522
934352f2 10523/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10524struct cpuacct {
10525 struct cgroup_subsys_state css;
10526 /* cpuusage holds pointer to a u64-type object on every cpu */
10527 u64 *cpuusage;
ef12fefa 10528 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10529 struct cpuacct *parent;
d842de87
SV
10530};
10531
10532struct cgroup_subsys cpuacct_subsys;
10533
10534/* return cpu accounting group corresponding to this container */
32cd756a 10535static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10536{
32cd756a 10537 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10538 struct cpuacct, css);
10539}
10540
10541/* return cpu accounting group to which this task belongs */
10542static inline struct cpuacct *task_ca(struct task_struct *tsk)
10543{
10544 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10545 struct cpuacct, css);
10546}
10547
10548/* create a new cpu accounting group */
10549static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10550 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10551{
10552 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10553 int i;
d842de87
SV
10554
10555 if (!ca)
ef12fefa 10556 goto out;
d842de87
SV
10557
10558 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10559 if (!ca->cpuusage)
10560 goto out_free_ca;
10561
10562 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10563 if (percpu_counter_init(&ca->cpustat[i], 0))
10564 goto out_free_counters;
d842de87 10565
934352f2
BR
10566 if (cgrp->parent)
10567 ca->parent = cgroup_ca(cgrp->parent);
10568
d842de87 10569 return &ca->css;
ef12fefa
BR
10570
10571out_free_counters:
10572 while (--i >= 0)
10573 percpu_counter_destroy(&ca->cpustat[i]);
10574 free_percpu(ca->cpuusage);
10575out_free_ca:
10576 kfree(ca);
10577out:
10578 return ERR_PTR(-ENOMEM);
d842de87
SV
10579}
10580
10581/* destroy an existing cpu accounting group */
41a2d6cf 10582static void
32cd756a 10583cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10584{
32cd756a 10585 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10586 int i;
d842de87 10587
ef12fefa
BR
10588 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10589 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10590 free_percpu(ca->cpuusage);
10591 kfree(ca);
10592}
10593
720f5498
KC
10594static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10595{
b36128c8 10596 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10597 u64 data;
10598
10599#ifndef CONFIG_64BIT
10600 /*
10601 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10602 */
10603 spin_lock_irq(&cpu_rq(cpu)->lock);
10604 data = *cpuusage;
10605 spin_unlock_irq(&cpu_rq(cpu)->lock);
10606#else
10607 data = *cpuusage;
10608#endif
10609
10610 return data;
10611}
10612
10613static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10614{
b36128c8 10615 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10616
10617#ifndef CONFIG_64BIT
10618 /*
10619 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10620 */
10621 spin_lock_irq(&cpu_rq(cpu)->lock);
10622 *cpuusage = val;
10623 spin_unlock_irq(&cpu_rq(cpu)->lock);
10624#else
10625 *cpuusage = val;
10626#endif
10627}
10628
d842de87 10629/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10630static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10631{
32cd756a 10632 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10633 u64 totalcpuusage = 0;
10634 int i;
10635
720f5498
KC
10636 for_each_present_cpu(i)
10637 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10638
10639 return totalcpuusage;
10640}
10641
0297b803
DG
10642static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10643 u64 reset)
10644{
10645 struct cpuacct *ca = cgroup_ca(cgrp);
10646 int err = 0;
10647 int i;
10648
10649 if (reset) {
10650 err = -EINVAL;
10651 goto out;
10652 }
10653
720f5498
KC
10654 for_each_present_cpu(i)
10655 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10656
0297b803
DG
10657out:
10658 return err;
10659}
10660
e9515c3c
KC
10661static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10662 struct seq_file *m)
10663{
10664 struct cpuacct *ca = cgroup_ca(cgroup);
10665 u64 percpu;
10666 int i;
10667
10668 for_each_present_cpu(i) {
10669 percpu = cpuacct_cpuusage_read(ca, i);
10670 seq_printf(m, "%llu ", (unsigned long long) percpu);
10671 }
10672 seq_printf(m, "\n");
10673 return 0;
10674}
10675
ef12fefa
BR
10676static const char *cpuacct_stat_desc[] = {
10677 [CPUACCT_STAT_USER] = "user",
10678 [CPUACCT_STAT_SYSTEM] = "system",
10679};
10680
10681static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10682 struct cgroup_map_cb *cb)
10683{
10684 struct cpuacct *ca = cgroup_ca(cgrp);
10685 int i;
10686
10687 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10688 s64 val = percpu_counter_read(&ca->cpustat[i]);
10689 val = cputime64_to_clock_t(val);
10690 cb->fill(cb, cpuacct_stat_desc[i], val);
10691 }
10692 return 0;
10693}
10694
d842de87
SV
10695static struct cftype files[] = {
10696 {
10697 .name = "usage",
f4c753b7
PM
10698 .read_u64 = cpuusage_read,
10699 .write_u64 = cpuusage_write,
d842de87 10700 },
e9515c3c
KC
10701 {
10702 .name = "usage_percpu",
10703 .read_seq_string = cpuacct_percpu_seq_read,
10704 },
ef12fefa
BR
10705 {
10706 .name = "stat",
10707 .read_map = cpuacct_stats_show,
10708 },
d842de87
SV
10709};
10710
32cd756a 10711static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10712{
32cd756a 10713 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10714}
10715
10716/*
10717 * charge this task's execution time to its accounting group.
10718 *
10719 * called with rq->lock held.
10720 */
10721static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10722{
10723 struct cpuacct *ca;
934352f2 10724 int cpu;
d842de87 10725
c40c6f85 10726 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10727 return;
10728
934352f2 10729 cpu = task_cpu(tsk);
a18b83b7
BR
10730
10731 rcu_read_lock();
10732
d842de87 10733 ca = task_ca(tsk);
d842de87 10734
934352f2 10735 for (; ca; ca = ca->parent) {
b36128c8 10736 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10737 *cpuusage += cputime;
10738 }
a18b83b7
BR
10739
10740 rcu_read_unlock();
d842de87
SV
10741}
10742
ef12fefa
BR
10743/*
10744 * Charge the system/user time to the task's accounting group.
10745 */
10746static void cpuacct_update_stats(struct task_struct *tsk,
10747 enum cpuacct_stat_index idx, cputime_t val)
10748{
10749 struct cpuacct *ca;
10750
10751 if (unlikely(!cpuacct_subsys.active))
10752 return;
10753
10754 rcu_read_lock();
10755 ca = task_ca(tsk);
10756
10757 do {
10758 percpu_counter_add(&ca->cpustat[idx], val);
10759 ca = ca->parent;
10760 } while (ca);
10761 rcu_read_unlock();
10762}
10763
d842de87
SV
10764struct cgroup_subsys cpuacct_subsys = {
10765 .name = "cpuacct",
10766 .create = cpuacct_create,
10767 .destroy = cpuacct_destroy,
10768 .populate = cpuacct_populate,
10769 .subsys_id = cpuacct_subsys_id,
10770};
10771#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10772
10773#ifndef CONFIG_SMP
10774
10775int rcu_expedited_torture_stats(char *page)
10776{
10777 return 0;
10778}
10779EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10780
10781void synchronize_sched_expedited(void)
10782{
10783}
10784EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10785
10786#else /* #ifndef CONFIG_SMP */
10787
10788static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10789static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10790
10791#define RCU_EXPEDITED_STATE_POST -2
10792#define RCU_EXPEDITED_STATE_IDLE -1
10793
10794static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10795
10796int rcu_expedited_torture_stats(char *page)
10797{
10798 int cnt = 0;
10799 int cpu;
10800
10801 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10802 for_each_online_cpu(cpu) {
10803 cnt += sprintf(&page[cnt], " %d:%d",
10804 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10805 }
10806 cnt += sprintf(&page[cnt], "\n");
10807 return cnt;
10808}
10809EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10810
10811static long synchronize_sched_expedited_count;
10812
10813/*
10814 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10815 * approach to force grace period to end quickly. This consumes
10816 * significant time on all CPUs, and is thus not recommended for
10817 * any sort of common-case code.
10818 *
10819 * Note that it is illegal to call this function while holding any
10820 * lock that is acquired by a CPU-hotplug notifier. Failing to
10821 * observe this restriction will result in deadlock.
10822 */
10823void synchronize_sched_expedited(void)
10824{
10825 int cpu;
10826 unsigned long flags;
10827 bool need_full_sync = 0;
10828 struct rq *rq;
10829 struct migration_req *req;
10830 long snap;
10831 int trycount = 0;
10832
10833 smp_mb(); /* ensure prior mod happens before capturing snap. */
10834 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10835 get_online_cpus();
10836 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10837 put_online_cpus();
10838 if (trycount++ < 10)
10839 udelay(trycount * num_online_cpus());
10840 else {
10841 synchronize_sched();
10842 return;
10843 }
10844 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10845 smp_mb(); /* ensure test happens before caller kfree */
10846 return;
10847 }
10848 get_online_cpus();
10849 }
10850 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10851 for_each_online_cpu(cpu) {
10852 rq = cpu_rq(cpu);
10853 req = &per_cpu(rcu_migration_req, cpu);
10854 init_completion(&req->done);
10855 req->task = NULL;
10856 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10857 spin_lock_irqsave(&rq->lock, flags);
10858 list_add(&req->list, &rq->migration_queue);
10859 spin_unlock_irqrestore(&rq->lock, flags);
10860 wake_up_process(rq->migration_thread);
10861 }
10862 for_each_online_cpu(cpu) {
10863 rcu_expedited_state = cpu;
10864 req = &per_cpu(rcu_migration_req, cpu);
10865 rq = cpu_rq(cpu);
10866 wait_for_completion(&req->done);
10867 spin_lock_irqsave(&rq->lock, flags);
10868 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10869 need_full_sync = 1;
10870 req->dest_cpu = RCU_MIGRATION_IDLE;
10871 spin_unlock_irqrestore(&rq->lock, flags);
10872 }
10873 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10874 mutex_unlock(&rcu_sched_expedited_mutex);
10875 put_online_cpus();
10876 if (need_full_sync)
10877 synchronize_sched();
10878}
10879EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10880
10881#endif /* #else #ifndef CONFIG_SMP */
This page took 1.849414 seconds and 5 git commands to generate.