sched: delta_exec accounting fix
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
1da177e4
LT
267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
0a2966b4 275 int cpu; /* cpu of this runqueue */
1da177e4 276
36c8b586 277 struct task_struct *migration_thread;
1da177e4
LT
278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
fcb99371 300 struct lock_class_key rq_lock_key;
1da177e4
LT
301};
302
f34e3b61 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 304static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 305
dd41f596
IM
306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
0a2966b4
CL
311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
20d315d4
IM
320/*
321 * Per-runqueue clock, as finegrained as the platform can give us:
322 */
323static unsigned long long __rq_clock(struct rq *rq)
324{
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
329
330 /*
331 * Protect against sched_clock() occasionally going backwards:
332 */
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
337 /*
338 * Catch too large forward jumps too:
339 */
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
347 }
348 }
349
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
352
353 return clock;
354}
355
7bfd0485 356static unsigned long long rq_clock(struct rq *rq)
20d315d4
IM
357{
358 int this_cpu = smp_processor_id();
359
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
362
363 return rq->clock;
364}
365
674311d5
NP
366/*
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 368 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
369 *
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
372 */
48f24c4d
IM
373#define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
375
376#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377#define this_rq() (&__get_cpu_var(runqueues))
378#define task_rq(p) cpu_rq(task_cpu(p))
379#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380
e436d800
IM
381/*
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
384 */
385unsigned long long cpu_clock(int cpu)
386{
e436d800
IM
387 unsigned long long now;
388 unsigned long flags;
389
2cd4d0ea
IM
390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
e436d800
IM
393
394 return now;
395}
396
138a8aeb
IM
397#ifdef CONFIG_FAIR_GROUP_SCHED
398/* Change a task's ->cfs_rq if it moves across CPUs */
399static inline void set_task_cfs_rq(struct task_struct *p)
400{
401 p->se.cfs_rq = &task_rq(p)->cfs;
402}
403#else
404static inline void set_task_cfs_rq(struct task_struct *p)
405{
406}
407#endif
408
1da177e4 409#ifndef prepare_arch_switch
4866cde0
NP
410# define prepare_arch_switch(next) do { } while (0)
411#endif
412#ifndef finish_arch_switch
413# define finish_arch_switch(prev) do { } while (0)
414#endif
415
416#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 417static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
418{
419 return rq->curr == p;
420}
421
70b97a7f 422static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
423{
424}
425
70b97a7f 426static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 427{
da04c035
IM
428#ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431#endif
8a25d5de
IM
432 /*
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
436 */
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
438
4866cde0
NP
439 spin_unlock_irq(&rq->lock);
440}
441
442#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 443static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
444{
445#ifdef CONFIG_SMP
446 return p->oncpu;
447#else
448 return rq->curr == p;
449#endif
450}
451
70b97a7f 452static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
453{
454#ifdef CONFIG_SMP
455 /*
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
459 */
460 next->oncpu = 1;
461#endif
462#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464#else
465 spin_unlock(&rq->lock);
466#endif
467}
468
70b97a7f 469static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
470{
471#ifdef CONFIG_SMP
472 /*
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
476 */
477 smp_wmb();
478 prev->oncpu = 0;
479#endif
480#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
1da177e4 482#endif
4866cde0
NP
483}
484#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 485
b29739f9
IM
486/*
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
489 */
70b97a7f 490static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
491 __acquires(rq->lock)
492{
70b97a7f 493 struct rq *rq;
b29739f9
IM
494
495repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
501 }
502 return rq;
503}
504
1da177e4
LT
505/*
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
509 */
70b97a7f 510static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
511 __acquires(rq->lock)
512{
70b97a7f 513 struct rq *rq;
1da177e4
LT
514
515repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
522 }
523 return rq;
524}
525
70b97a7f 526static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
527 __releases(rq->lock)
528{
529 spin_unlock(&rq->lock);
530}
531
70b97a7f 532static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
533 __releases(rq->lock)
534{
535 spin_unlock_irqrestore(&rq->lock, *flags);
536}
537
1da177e4 538/*
cc2a73b5 539 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 540 */
70b97a7f 541static inline struct rq *this_rq_lock(void)
1da177e4
LT
542 __acquires(rq->lock)
543{
70b97a7f 544 struct rq *rq;
1da177e4
LT
545
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
549
550 return rq;
551}
552
1b9f19c2
IM
553/*
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
555 */
556void sched_clock_unstable_event(void)
557{
558 unsigned long flags;
559 struct rq *rq;
560
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
565}
566
c24d20db
IM
567/*
568 * resched_task - mark a task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574#ifdef CONFIG_SMP
575
576#ifndef tsk_is_polling
577#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578#endif
579
580static void resched_task(struct task_struct *p)
581{
582 int cpu;
583
584 assert_spin_locked(&task_rq(p)->lock);
585
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
588
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
590
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
594
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
599}
600
601static void resched_cpu(int cpu)
602{
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
605
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
610}
611#else
612static inline void resched_task(struct task_struct *p)
613{
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
616}
617#endif
618
45bf76df
IM
619static u64 div64_likely32(u64 divident, unsigned long divisor)
620{
621#if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
625
626 return divident;
627#else
628 return divident / divisor;
629#endif
630}
631
632#if BITS_PER_LONG == 32
633# define WMULT_CONST (~0UL)
634#else
635# define WMULT_CONST (1UL << 32)
636#endif
637
638#define WMULT_SHIFT 32
639
cb1c4fc9 640static unsigned long
45bf76df
IM
641calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
643{
644 u64 tmp;
645
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
648
649 tmp = (u64)delta_exec * weight;
650 /*
651 * Check whether we'd overflow the 64-bit multiplication:
652 */
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
658 }
659
ecf691da 660 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
661}
662
663static inline unsigned long
664calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
665{
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
667}
668
669static void update_load_add(struct load_weight *lw, unsigned long inc)
670{
671 lw->weight += inc;
672 lw->inv_weight = 0;
673}
674
675static void update_load_sub(struct load_weight *lw, unsigned long dec)
676{
677 lw->weight -= dec;
678 lw->inv_weight = 0;
679}
680
2dd73a4f
PW
681/*
682 * To aid in avoiding the subversion of "niceness" due to uneven distribution
683 * of tasks with abnormal "nice" values across CPUs the contribution that
684 * each task makes to its run queue's load is weighted according to its
685 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
686 * scaled version of the new time slice allocation that they receive on time
687 * slice expiry etc.
688 */
689
dd41f596
IM
690#define WEIGHT_IDLEPRIO 2
691#define WMULT_IDLEPRIO (1 << 31)
692
693/*
694 * Nice levels are multiplicative, with a gentle 10% change for every
695 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
696 * nice 1, it will get ~10% less CPU time than another CPU-bound task
697 * that remained on nice 0.
698 *
699 * The "10% effect" is relative and cumulative: from _any_ nice level,
700 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
701 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
702 * If a task goes up by ~10% and another task goes down by ~10% then
703 * the relative distance between them is ~25%.)
dd41f596
IM
704 */
705static const int prio_to_weight[40] = {
706/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
707/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
708/* 0 */ NICE_0_LOAD /* 1024 */,
709/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
710/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
711};
712
5714d2de
IM
713/*
714 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
715 *
716 * In cases where the weight does not change often, we can use the
717 * precalculated inverse to speed up arithmetics by turning divisions
718 * into multiplications:
719 */
dd41f596 720static const u32 prio_to_wmult[40] = {
e4af30be
IM
721/* -20 */ 48356, 60446, 75558, 94446, 118058,
722/* -15 */ 147573, 184467, 230589, 288233, 360285,
723/* -10 */ 450347, 562979, 703746, 879575, 1099582,
724/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
725/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
726/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
727/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
728/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 729};
2dd73a4f 730
dd41f596
IM
731static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
732
733/*
734 * runqueue iterator, to support SMP load-balancing between different
735 * scheduling classes, without having to expose their internal data
736 * structures to the load-balancing proper:
737 */
738struct rq_iterator {
739 void *arg;
740 struct task_struct *(*start)(void *);
741 struct task_struct *(*next)(void *);
742};
743
744static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
745 unsigned long max_nr_move, unsigned long max_load_move,
746 struct sched_domain *sd, enum cpu_idle_type idle,
747 int *all_pinned, unsigned long *load_moved,
748 int this_best_prio, int best_prio, int best_prio_seen,
749 struct rq_iterator *iterator);
750
751#include "sched_stats.h"
752#include "sched_rt.c"
753#include "sched_fair.c"
754#include "sched_idletask.c"
755#ifdef CONFIG_SCHED_DEBUG
756# include "sched_debug.c"
757#endif
758
759#define sched_class_highest (&rt_sched_class)
760
9c217245
IM
761static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762{
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768}
769
770/*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
785static void update_curr_load(struct rq *rq, u64 now)
786{
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
791 ls->load_update_start = now;
792 ls->delta_stat += now - start;
793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799}
800
801static inline void
802inc_load(struct rq *rq, const struct task_struct *p, u64 now)
803{
804 update_curr_load(rq, now);
805 update_load_add(&rq->ls.load, p->se.load.weight);
806}
807
808static inline void
809dec_load(struct rq *rq, const struct task_struct *p, u64 now)
810{
811 update_curr_load(rq, now);
812 update_load_sub(&rq->ls.load, p->se.load.weight);
813}
814
815static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
816{
817 rq->nr_running++;
818 inc_load(rq, p, now);
819}
820
821static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
822{
823 rq->nr_running--;
824 dec_load(rq, p, now);
825}
826
45bf76df
IM
827static void set_load_weight(struct task_struct *p)
828{
dd41f596
IM
829 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
830 p->se.wait_runtime = 0;
831
45bf76df 832 if (task_has_rt_policy(p)) {
dd41f596
IM
833 p->se.load.weight = prio_to_weight[0] * 2;
834 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
835 return;
836 }
45bf76df 837
dd41f596
IM
838 /*
839 * SCHED_IDLE tasks get minimal weight:
840 */
841 if (p->policy == SCHED_IDLE) {
842 p->se.load.weight = WEIGHT_IDLEPRIO;
843 p->se.load.inv_weight = WMULT_IDLEPRIO;
844 return;
845 }
71f8bd46 846
dd41f596
IM
847 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
848 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
849}
850
dd41f596
IM
851static void
852enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 853{
dd41f596
IM
854 sched_info_queued(p);
855 p->sched_class->enqueue_task(rq, p, wakeup, now);
856 p->se.on_rq = 1;
71f8bd46
IM
857}
858
dd41f596
IM
859static void
860dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 861{
dd41f596
IM
862 p->sched_class->dequeue_task(rq, p, sleep, now);
863 p->se.on_rq = 0;
71f8bd46
IM
864}
865
14531189 866/*
dd41f596 867 * __normal_prio - return the priority that is based on the static prio
14531189 868 */
14531189
IM
869static inline int __normal_prio(struct task_struct *p)
870{
dd41f596 871 return p->static_prio;
14531189
IM
872}
873
b29739f9
IM
874/*
875 * Calculate the expected normal priority: i.e. priority
876 * without taking RT-inheritance into account. Might be
877 * boosted by interactivity modifiers. Changes upon fork,
878 * setprio syscalls, and whenever the interactivity
879 * estimator recalculates.
880 */
36c8b586 881static inline int normal_prio(struct task_struct *p)
b29739f9
IM
882{
883 int prio;
884
e05606d3 885 if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4 912/*
dd41f596 913 * activate_task - move a task to the runqueue.
1da177e4 914 */
dd41f596 915static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 916{
dd41f596 917 u64 now = rq_clock(rq);
d425b274 918
dd41f596
IM
919 if (p->state == TASK_UNINTERRUPTIBLE)
920 rq->nr_uninterruptible--;
1da177e4 921
dd41f596
IM
922 enqueue_task(rq, p, wakeup, now);
923 inc_nr_running(p, rq, now);
1da177e4
LT
924}
925
926/*
dd41f596 927 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 928 */
dd41f596 929static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 930{
dd41f596 931 u64 now = rq_clock(rq);
1da177e4 932
dd41f596
IM
933 if (p->state == TASK_UNINTERRUPTIBLE)
934 rq->nr_uninterruptible--;
ece8a684 935
dd41f596
IM
936 enqueue_task(rq, p, 0, now);
937 inc_nr_running(p, rq, now);
1da177e4
LT
938}
939
940/*
941 * deactivate_task - remove a task from the runqueue.
942 */
8e717b19
IM
943static void
944deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
1da177e4 945{
dd41f596
IM
946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible++;
948
949 dequeue_task(rq, p, sleep, now);
950 dec_nr_running(p, rq, now);
1da177e4
LT
951}
952
1da177e4
LT
953/**
954 * task_curr - is this task currently executing on a CPU?
955 * @p: the task in question.
956 */
36c8b586 957inline int task_curr(const struct task_struct *p)
1da177e4
LT
958{
959 return cpu_curr(task_cpu(p)) == p;
960}
961
2dd73a4f
PW
962/* Used instead of source_load when we know the type == 0 */
963unsigned long weighted_cpuload(const int cpu)
964{
dd41f596
IM
965 return cpu_rq(cpu)->ls.load.weight;
966}
967
968static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
969{
970#ifdef CONFIG_SMP
971 task_thread_info(p)->cpu = cpu;
972 set_task_cfs_rq(p);
973#endif
2dd73a4f
PW
974}
975
1da177e4 976#ifdef CONFIG_SMP
c65cc870 977
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
dd41f596
IM
980 int old_cpu = task_cpu(p);
981 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
982 u64 clock_offset, fair_clock_offset;
983
984 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
985 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
986
dd41f596
IM
987 if (p->se.wait_start_fair)
988 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
989 if (p->se.sleep_start_fair)
990 p->se.sleep_start_fair -= fair_clock_offset;
991
992#ifdef CONFIG_SCHEDSTATS
993 if (p->se.wait_start)
994 p->se.wait_start -= clock_offset;
dd41f596
IM
995 if (p->se.sleep_start)
996 p->se.sleep_start -= clock_offset;
997 if (p->se.block_start)
998 p->se.block_start -= clock_offset;
6cfb0d5d 999#endif
dd41f596
IM
1000
1001 __set_task_cpu(p, new_cpu);
c65cc870
IM
1002}
1003
70b97a7f 1004struct migration_req {
1da177e4 1005 struct list_head list;
1da177e4 1006
36c8b586 1007 struct task_struct *task;
1da177e4
LT
1008 int dest_cpu;
1009
1da177e4 1010 struct completion done;
70b97a7f 1011};
1da177e4
LT
1012
1013/*
1014 * The task's runqueue lock must be held.
1015 * Returns true if you have to wait for migration thread.
1016 */
36c8b586 1017static int
70b97a7f 1018migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1019{
70b97a7f 1020 struct rq *rq = task_rq(p);
1da177e4
LT
1021
1022 /*
1023 * If the task is not on a runqueue (and not running), then
1024 * it is sufficient to simply update the task's cpu field.
1025 */
dd41f596 1026 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1027 set_task_cpu(p, dest_cpu);
1028 return 0;
1029 }
1030
1031 init_completion(&req->done);
1da177e4
LT
1032 req->task = p;
1033 req->dest_cpu = dest_cpu;
1034 list_add(&req->list, &rq->migration_queue);
48f24c4d 1035
1da177e4
LT
1036 return 1;
1037}
1038
1039/*
1040 * wait_task_inactive - wait for a thread to unschedule.
1041 *
1042 * The caller must ensure that the task *will* unschedule sometime soon,
1043 * else this function might spin for a *long* time. This function can't
1044 * be called with interrupts off, or it may introduce deadlock with
1045 * smp_call_function() if an IPI is sent by the same process we are
1046 * waiting to become inactive.
1047 */
36c8b586 1048void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1049{
1050 unsigned long flags;
dd41f596 1051 int running, on_rq;
70b97a7f 1052 struct rq *rq;
1da177e4
LT
1053
1054repeat:
fa490cfd
LT
1055 /*
1056 * We do the initial early heuristics without holding
1057 * any task-queue locks at all. We'll only try to get
1058 * the runqueue lock when things look like they will
1059 * work out!
1060 */
1061 rq = task_rq(p);
1062
1063 /*
1064 * If the task is actively running on another CPU
1065 * still, just relax and busy-wait without holding
1066 * any locks.
1067 *
1068 * NOTE! Since we don't hold any locks, it's not
1069 * even sure that "rq" stays as the right runqueue!
1070 * But we don't care, since "task_running()" will
1071 * return false if the runqueue has changed and p
1072 * is actually now running somewhere else!
1073 */
1074 while (task_running(rq, p))
1075 cpu_relax();
1076
1077 /*
1078 * Ok, time to look more closely! We need the rq
1079 * lock now, to be *sure*. If we're wrong, we'll
1080 * just go back and repeat.
1081 */
1da177e4 1082 rq = task_rq_lock(p, &flags);
fa490cfd 1083 running = task_running(rq, p);
dd41f596 1084 on_rq = p->se.on_rq;
fa490cfd
LT
1085 task_rq_unlock(rq, &flags);
1086
1087 /*
1088 * Was it really running after all now that we
1089 * checked with the proper locks actually held?
1090 *
1091 * Oops. Go back and try again..
1092 */
1093 if (unlikely(running)) {
1da177e4 1094 cpu_relax();
1da177e4
LT
1095 goto repeat;
1096 }
fa490cfd
LT
1097
1098 /*
1099 * It's not enough that it's not actively running,
1100 * it must be off the runqueue _entirely_, and not
1101 * preempted!
1102 *
1103 * So if it wa still runnable (but just not actively
1104 * running right now), it's preempted, and we should
1105 * yield - it could be a while.
1106 */
dd41f596 1107 if (unlikely(on_rq)) {
fa490cfd
LT
1108 yield();
1109 goto repeat;
1110 }
1111
1112 /*
1113 * Ahh, all good. It wasn't running, and it wasn't
1114 * runnable, which means that it will never become
1115 * running in the future either. We're all done!
1116 */
1da177e4
LT
1117}
1118
1119/***
1120 * kick_process - kick a running thread to enter/exit the kernel
1121 * @p: the to-be-kicked thread
1122 *
1123 * Cause a process which is running on another CPU to enter
1124 * kernel-mode, without any delay. (to get signals handled.)
1125 *
1126 * NOTE: this function doesnt have to take the runqueue lock,
1127 * because all it wants to ensure is that the remote task enters
1128 * the kernel. If the IPI races and the task has been migrated
1129 * to another CPU then no harm is done and the purpose has been
1130 * achieved as well.
1131 */
36c8b586 1132void kick_process(struct task_struct *p)
1da177e4
LT
1133{
1134 int cpu;
1135
1136 preempt_disable();
1137 cpu = task_cpu(p);
1138 if ((cpu != smp_processor_id()) && task_curr(p))
1139 smp_send_reschedule(cpu);
1140 preempt_enable();
1141}
1142
1143/*
2dd73a4f
PW
1144 * Return a low guess at the load of a migration-source cpu weighted
1145 * according to the scheduling class and "nice" value.
1da177e4
LT
1146 *
1147 * We want to under-estimate the load of migration sources, to
1148 * balance conservatively.
1149 */
a2000572 1150static inline unsigned long source_load(int cpu, int type)
1da177e4 1151{
70b97a7f 1152 struct rq *rq = cpu_rq(cpu);
dd41f596 1153 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1154
3b0bd9bc 1155 if (type == 0)
dd41f596 1156 return total;
b910472d 1157
dd41f596 1158 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1159}
1160
1161/*
2dd73a4f
PW
1162 * Return a high guess at the load of a migration-target cpu weighted
1163 * according to the scheduling class and "nice" value.
1da177e4 1164 */
a2000572 1165static inline unsigned long target_load(int cpu, int type)
1da177e4 1166{
70b97a7f 1167 struct rq *rq = cpu_rq(cpu);
dd41f596 1168 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1169
7897986b 1170 if (type == 0)
dd41f596 1171 return total;
3b0bd9bc 1172
dd41f596 1173 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1174}
1175
1176/*
1177 * Return the average load per task on the cpu's run queue
1178 */
1179static inline unsigned long cpu_avg_load_per_task(int cpu)
1180{
70b97a7f 1181 struct rq *rq = cpu_rq(cpu);
dd41f596 1182 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1183 unsigned long n = rq->nr_running;
1184
dd41f596 1185 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1186}
1187
147cbb4b
NP
1188/*
1189 * find_idlest_group finds and returns the least busy CPU group within the
1190 * domain.
1191 */
1192static struct sched_group *
1193find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1194{
1195 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1196 unsigned long min_load = ULONG_MAX, this_load = 0;
1197 int load_idx = sd->forkexec_idx;
1198 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1199
1200 do {
1201 unsigned long load, avg_load;
1202 int local_group;
1203 int i;
1204
da5a5522
BD
1205 /* Skip over this group if it has no CPUs allowed */
1206 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1207 goto nextgroup;
1208
147cbb4b 1209 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1210
1211 /* Tally up the load of all CPUs in the group */
1212 avg_load = 0;
1213
1214 for_each_cpu_mask(i, group->cpumask) {
1215 /* Bias balancing toward cpus of our domain */
1216 if (local_group)
1217 load = source_load(i, load_idx);
1218 else
1219 load = target_load(i, load_idx);
1220
1221 avg_load += load;
1222 }
1223
1224 /* Adjust by relative CPU power of the group */
5517d86b
ED
1225 avg_load = sg_div_cpu_power(group,
1226 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1227
1228 if (local_group) {
1229 this_load = avg_load;
1230 this = group;
1231 } else if (avg_load < min_load) {
1232 min_load = avg_load;
1233 idlest = group;
1234 }
da5a5522 1235nextgroup:
147cbb4b
NP
1236 group = group->next;
1237 } while (group != sd->groups);
1238
1239 if (!idlest || 100*this_load < imbalance*min_load)
1240 return NULL;
1241 return idlest;
1242}
1243
1244/*
0feaece9 1245 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1246 */
95cdf3b7
IM
1247static int
1248find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1249{
da5a5522 1250 cpumask_t tmp;
147cbb4b
NP
1251 unsigned long load, min_load = ULONG_MAX;
1252 int idlest = -1;
1253 int i;
1254
da5a5522
BD
1255 /* Traverse only the allowed CPUs */
1256 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1257
1258 for_each_cpu_mask(i, tmp) {
2dd73a4f 1259 load = weighted_cpuload(i);
147cbb4b
NP
1260
1261 if (load < min_load || (load == min_load && i == this_cpu)) {
1262 min_load = load;
1263 idlest = i;
1264 }
1265 }
1266
1267 return idlest;
1268}
1269
476d139c
NP
1270/*
1271 * sched_balance_self: balance the current task (running on cpu) in domains
1272 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1273 * SD_BALANCE_EXEC.
1274 *
1275 * Balance, ie. select the least loaded group.
1276 *
1277 * Returns the target CPU number, or the same CPU if no balancing is needed.
1278 *
1279 * preempt must be disabled.
1280 */
1281static int sched_balance_self(int cpu, int flag)
1282{
1283 struct task_struct *t = current;
1284 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1285
c96d145e 1286 for_each_domain(cpu, tmp) {
9761eea8
IM
1287 /*
1288 * If power savings logic is enabled for a domain, stop there.
1289 */
5c45bf27
SS
1290 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1291 break;
476d139c
NP
1292 if (tmp->flags & flag)
1293 sd = tmp;
c96d145e 1294 }
476d139c
NP
1295
1296 while (sd) {
1297 cpumask_t span;
1298 struct sched_group *group;
1a848870
SS
1299 int new_cpu, weight;
1300
1301 if (!(sd->flags & flag)) {
1302 sd = sd->child;
1303 continue;
1304 }
476d139c
NP
1305
1306 span = sd->span;
1307 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1308 if (!group) {
1309 sd = sd->child;
1310 continue;
1311 }
476d139c 1312
da5a5522 1313 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1314 if (new_cpu == -1 || new_cpu == cpu) {
1315 /* Now try balancing at a lower domain level of cpu */
1316 sd = sd->child;
1317 continue;
1318 }
476d139c 1319
1a848870 1320 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1321 cpu = new_cpu;
476d139c
NP
1322 sd = NULL;
1323 weight = cpus_weight(span);
1324 for_each_domain(cpu, tmp) {
1325 if (weight <= cpus_weight(tmp->span))
1326 break;
1327 if (tmp->flags & flag)
1328 sd = tmp;
1329 }
1330 /* while loop will break here if sd == NULL */
1331 }
1332
1333 return cpu;
1334}
1335
1336#endif /* CONFIG_SMP */
1da177e4
LT
1337
1338/*
1339 * wake_idle() will wake a task on an idle cpu if task->cpu is
1340 * not idle and an idle cpu is available. The span of cpus to
1341 * search starts with cpus closest then further out as needed,
1342 * so we always favor a closer, idle cpu.
1343 *
1344 * Returns the CPU we should wake onto.
1345 */
1346#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1347static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1348{
1349 cpumask_t tmp;
1350 struct sched_domain *sd;
1351 int i;
1352
4953198b
SS
1353 /*
1354 * If it is idle, then it is the best cpu to run this task.
1355 *
1356 * This cpu is also the best, if it has more than one task already.
1357 * Siblings must be also busy(in most cases) as they didn't already
1358 * pickup the extra load from this cpu and hence we need not check
1359 * sibling runqueue info. This will avoid the checks and cache miss
1360 * penalities associated with that.
1361 */
1362 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1363 return cpu;
1364
1365 for_each_domain(cpu, sd) {
1366 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1367 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1368 for_each_cpu_mask(i, tmp) {
1369 if (idle_cpu(i))
1370 return i;
1371 }
9761eea8 1372 } else {
e0f364f4 1373 break;
9761eea8 1374 }
1da177e4
LT
1375 }
1376 return cpu;
1377}
1378#else
36c8b586 1379static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1380{
1381 return cpu;
1382}
1383#endif
1384
1385/***
1386 * try_to_wake_up - wake up a thread
1387 * @p: the to-be-woken-up thread
1388 * @state: the mask of task states that can be woken
1389 * @sync: do a synchronous wakeup?
1390 *
1391 * Put it on the run-queue if it's not already there. The "current"
1392 * thread is always on the run-queue (except when the actual
1393 * re-schedule is in progress), and as such you're allowed to do
1394 * the simpler "current->state = TASK_RUNNING" to mark yourself
1395 * runnable without the overhead of this.
1396 *
1397 * returns failure only if the task is already active.
1398 */
36c8b586 1399static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1400{
1401 int cpu, this_cpu, success = 0;
1402 unsigned long flags;
1403 long old_state;
70b97a7f 1404 struct rq *rq;
1da177e4 1405#ifdef CONFIG_SMP
7897986b 1406 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1407 unsigned long load, this_load;
1da177e4
LT
1408 int new_cpu;
1409#endif
1410
1411 rq = task_rq_lock(p, &flags);
1412 old_state = p->state;
1413 if (!(old_state & state))
1414 goto out;
1415
dd41f596 1416 if (p->se.on_rq)
1da177e4
LT
1417 goto out_running;
1418
1419 cpu = task_cpu(p);
1420 this_cpu = smp_processor_id();
1421
1422#ifdef CONFIG_SMP
1423 if (unlikely(task_running(rq, p)))
1424 goto out_activate;
1425
7897986b
NP
1426 new_cpu = cpu;
1427
1da177e4
LT
1428 schedstat_inc(rq, ttwu_cnt);
1429 if (cpu == this_cpu) {
1430 schedstat_inc(rq, ttwu_local);
7897986b
NP
1431 goto out_set_cpu;
1432 }
1433
1434 for_each_domain(this_cpu, sd) {
1435 if (cpu_isset(cpu, sd->span)) {
1436 schedstat_inc(sd, ttwu_wake_remote);
1437 this_sd = sd;
1438 break;
1da177e4
LT
1439 }
1440 }
1da177e4 1441
7897986b 1442 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1443 goto out_set_cpu;
1444
1da177e4 1445 /*
7897986b 1446 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1447 */
7897986b
NP
1448 if (this_sd) {
1449 int idx = this_sd->wake_idx;
1450 unsigned int imbalance;
1da177e4 1451
a3f21bce
NP
1452 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1453
7897986b
NP
1454 load = source_load(cpu, idx);
1455 this_load = target_load(this_cpu, idx);
1da177e4 1456
7897986b
NP
1457 new_cpu = this_cpu; /* Wake to this CPU if we can */
1458
a3f21bce
NP
1459 if (this_sd->flags & SD_WAKE_AFFINE) {
1460 unsigned long tl = this_load;
33859f7f
MOS
1461 unsigned long tl_per_task;
1462
1463 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1464
1da177e4 1465 /*
a3f21bce
NP
1466 * If sync wakeup then subtract the (maximum possible)
1467 * effect of the currently running task from the load
1468 * of the current CPU:
1da177e4 1469 */
a3f21bce 1470 if (sync)
dd41f596 1471 tl -= current->se.load.weight;
a3f21bce
NP
1472
1473 if ((tl <= load &&
2dd73a4f 1474 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1475 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1476 /*
1477 * This domain has SD_WAKE_AFFINE and
1478 * p is cache cold in this domain, and
1479 * there is no bad imbalance.
1480 */
1481 schedstat_inc(this_sd, ttwu_move_affine);
1482 goto out_set_cpu;
1483 }
1484 }
1485
1486 /*
1487 * Start passive balancing when half the imbalance_pct
1488 * limit is reached.
1489 */
1490 if (this_sd->flags & SD_WAKE_BALANCE) {
1491 if (imbalance*this_load <= 100*load) {
1492 schedstat_inc(this_sd, ttwu_move_balance);
1493 goto out_set_cpu;
1494 }
1da177e4
LT
1495 }
1496 }
1497
1498 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1499out_set_cpu:
1500 new_cpu = wake_idle(new_cpu, p);
1501 if (new_cpu != cpu) {
1502 set_task_cpu(p, new_cpu);
1503 task_rq_unlock(rq, &flags);
1504 /* might preempt at this point */
1505 rq = task_rq_lock(p, &flags);
1506 old_state = p->state;
1507 if (!(old_state & state))
1508 goto out;
dd41f596 1509 if (p->se.on_rq)
1da177e4
LT
1510 goto out_running;
1511
1512 this_cpu = smp_processor_id();
1513 cpu = task_cpu(p);
1514 }
1515
1516out_activate:
1517#endif /* CONFIG_SMP */
dd41f596 1518 activate_task(rq, p, 1);
1da177e4
LT
1519 /*
1520 * Sync wakeups (i.e. those types of wakeups where the waker
1521 * has indicated that it will leave the CPU in short order)
1522 * don't trigger a preemption, if the woken up task will run on
1523 * this cpu. (in this case the 'I will reschedule' promise of
1524 * the waker guarantees that the freshly woken up task is going
1525 * to be considered on this CPU.)
1526 */
dd41f596
IM
1527 if (!sync || cpu != this_cpu)
1528 check_preempt_curr(rq, p);
1da177e4
LT
1529 success = 1;
1530
1531out_running:
1532 p->state = TASK_RUNNING;
1533out:
1534 task_rq_unlock(rq, &flags);
1535
1536 return success;
1537}
1538
36c8b586 1539int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1540{
1541 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1542 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1543}
1da177e4
LT
1544EXPORT_SYMBOL(wake_up_process);
1545
36c8b586 1546int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1547{
1548 return try_to_wake_up(p, state, 0);
1549}
1550
1da177e4
LT
1551/*
1552 * Perform scheduler related setup for a newly forked process p.
1553 * p is forked by current.
dd41f596
IM
1554 *
1555 * __sched_fork() is basic setup used by init_idle() too:
1556 */
1557static void __sched_fork(struct task_struct *p)
1558{
1559 p->se.wait_start_fair = 0;
dd41f596
IM
1560 p->se.exec_start = 0;
1561 p->se.sum_exec_runtime = 0;
1562 p->se.delta_exec = 0;
1563 p->se.delta_fair_run = 0;
1564 p->se.delta_fair_sleep = 0;
1565 p->se.wait_runtime = 0;
6cfb0d5d
IM
1566 p->se.sleep_start_fair = 0;
1567
1568#ifdef CONFIG_SCHEDSTATS
1569 p->se.wait_start = 0;
dd41f596
IM
1570 p->se.sum_wait_runtime = 0;
1571 p->se.sum_sleep_runtime = 0;
1572 p->se.sleep_start = 0;
dd41f596
IM
1573 p->se.block_start = 0;
1574 p->se.sleep_max = 0;
1575 p->se.block_max = 0;
1576 p->se.exec_max = 0;
1577 p->se.wait_max = 0;
1578 p->se.wait_runtime_overruns = 0;
1579 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1580#endif
476d139c 1581
dd41f596
IM
1582 INIT_LIST_HEAD(&p->run_list);
1583 p->se.on_rq = 0;
476d139c 1584
e107be36
AK
1585#ifdef CONFIG_PREEMPT_NOTIFIERS
1586 INIT_HLIST_HEAD(&p->preempt_notifiers);
1587#endif
1588
1da177e4
LT
1589 /*
1590 * We mark the process as running here, but have not actually
1591 * inserted it onto the runqueue yet. This guarantees that
1592 * nobody will actually run it, and a signal or other external
1593 * event cannot wake it up and insert it on the runqueue either.
1594 */
1595 p->state = TASK_RUNNING;
dd41f596
IM
1596}
1597
1598/*
1599 * fork()/clone()-time setup:
1600 */
1601void sched_fork(struct task_struct *p, int clone_flags)
1602{
1603 int cpu = get_cpu();
1604
1605 __sched_fork(p);
1606
1607#ifdef CONFIG_SMP
1608 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1609#endif
1610 __set_task_cpu(p, cpu);
b29739f9
IM
1611
1612 /*
1613 * Make sure we do not leak PI boosting priority to the child:
1614 */
1615 p->prio = current->normal_prio;
1616
52f17b6c 1617#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1618 if (likely(sched_info_on()))
52f17b6c 1619 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1620#endif
d6077cb8 1621#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1622 p->oncpu = 0;
1623#endif
1da177e4 1624#ifdef CONFIG_PREEMPT
4866cde0 1625 /* Want to start with kernel preemption disabled. */
a1261f54 1626 task_thread_info(p)->preempt_count = 1;
1da177e4 1627#endif
476d139c 1628 put_cpu();
1da177e4
LT
1629}
1630
dd41f596
IM
1631/*
1632 * After fork, child runs first. (default) If set to 0 then
1633 * parent will (try to) run first.
1634 */
1635unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1636
1da177e4
LT
1637/*
1638 * wake_up_new_task - wake up a newly created task for the first time.
1639 *
1640 * This function will do some initial scheduler statistics housekeeping
1641 * that must be done for every newly created context, then puts the task
1642 * on the runqueue and wakes it.
1643 */
36c8b586 1644void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1645{
1646 unsigned long flags;
dd41f596
IM
1647 struct rq *rq;
1648 int this_cpu;
cad60d93 1649 u64 now;
1da177e4
LT
1650
1651 rq = task_rq_lock(p, &flags);
147cbb4b 1652 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1653 this_cpu = smp_processor_id(); /* parent's CPU */
cad60d93 1654 now = rq_clock(rq);
1da177e4
LT
1655
1656 p->prio = effective_prio(p);
1657
cad60d93
IM
1658 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1659 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1660 !current->se.on_rq) {
1661
dd41f596 1662 activate_task(rq, p, 0);
1da177e4 1663 } else {
1da177e4 1664 /*
dd41f596
IM
1665 * Let the scheduling class do new task startup
1666 * management (if any):
1da177e4 1667 */
cad60d93
IM
1668 p->sched_class->task_new(rq, p, now);
1669 inc_nr_running(p, rq, now);
1da177e4 1670 }
dd41f596
IM
1671 check_preempt_curr(rq, p);
1672 task_rq_unlock(rq, &flags);
1da177e4
LT
1673}
1674
e107be36
AK
1675#ifdef CONFIG_PREEMPT_NOTIFIERS
1676
1677/**
421cee29
RD
1678 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1679 * @notifier: notifier struct to register
e107be36
AK
1680 */
1681void preempt_notifier_register(struct preempt_notifier *notifier)
1682{
1683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1684}
1685EXPORT_SYMBOL_GPL(preempt_notifier_register);
1686
1687/**
1688 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1689 * @notifier: notifier struct to unregister
e107be36
AK
1690 *
1691 * This is safe to call from within a preemption notifier.
1692 */
1693void preempt_notifier_unregister(struct preempt_notifier *notifier)
1694{
1695 hlist_del(&notifier->link);
1696}
1697EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1698
1699static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1700{
1701 struct preempt_notifier *notifier;
1702 struct hlist_node *node;
1703
1704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1706}
1707
1708static void
1709fire_sched_out_preempt_notifiers(struct task_struct *curr,
1710 struct task_struct *next)
1711{
1712 struct preempt_notifier *notifier;
1713 struct hlist_node *node;
1714
1715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1716 notifier->ops->sched_out(notifier, next);
1717}
1718
1719#else
1720
1721static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1722{
1723}
1724
1725static void
1726fire_sched_out_preempt_notifiers(struct task_struct *curr,
1727 struct task_struct *next)
1728{
1729}
1730
1731#endif
1732
4866cde0
NP
1733/**
1734 * prepare_task_switch - prepare to switch tasks
1735 * @rq: the runqueue preparing to switch
421cee29 1736 * @prev: the current task that is being switched out
4866cde0
NP
1737 * @next: the task we are going to switch to.
1738 *
1739 * This is called with the rq lock held and interrupts off. It must
1740 * be paired with a subsequent finish_task_switch after the context
1741 * switch.
1742 *
1743 * prepare_task_switch sets up locking and calls architecture specific
1744 * hooks.
1745 */
e107be36
AK
1746static inline void
1747prepare_task_switch(struct rq *rq, struct task_struct *prev,
1748 struct task_struct *next)
4866cde0 1749{
e107be36 1750 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1751 prepare_lock_switch(rq, next);
1752 prepare_arch_switch(next);
1753}
1754
1da177e4
LT
1755/**
1756 * finish_task_switch - clean up after a task-switch
344babaa 1757 * @rq: runqueue associated with task-switch
1da177e4
LT
1758 * @prev: the thread we just switched away from.
1759 *
4866cde0
NP
1760 * finish_task_switch must be called after the context switch, paired
1761 * with a prepare_task_switch call before the context switch.
1762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1763 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1764 *
1765 * Note that we may have delayed dropping an mm in context_switch(). If
1766 * so, we finish that here outside of the runqueue lock. (Doing it
1767 * with the lock held can cause deadlocks; see schedule() for
1768 * details.)
1769 */
70b97a7f 1770static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1771 __releases(rq->lock)
1772{
1da177e4 1773 struct mm_struct *mm = rq->prev_mm;
55a101f8 1774 long prev_state;
1da177e4
LT
1775
1776 rq->prev_mm = NULL;
1777
1778 /*
1779 * A task struct has one reference for the use as "current".
c394cc9f 1780 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1781 * schedule one last time. The schedule call will never return, and
1782 * the scheduled task must drop that reference.
c394cc9f 1783 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1784 * still held, otherwise prev could be scheduled on another cpu, die
1785 * there before we look at prev->state, and then the reference would
1786 * be dropped twice.
1787 * Manfred Spraul <manfred@colorfullife.com>
1788 */
55a101f8 1789 prev_state = prev->state;
4866cde0
NP
1790 finish_arch_switch(prev);
1791 finish_lock_switch(rq, prev);
e107be36 1792 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1793 if (mm)
1794 mmdrop(mm);
c394cc9f 1795 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1796 /*
1797 * Remove function-return probe instances associated with this
1798 * task and put them back on the free list.
9761eea8 1799 */
c6fd91f0 1800 kprobe_flush_task(prev);
1da177e4 1801 put_task_struct(prev);
c6fd91f0 1802 }
1da177e4
LT
1803}
1804
1805/**
1806 * schedule_tail - first thing a freshly forked thread must call.
1807 * @prev: the thread we just switched away from.
1808 */
36c8b586 1809asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1810 __releases(rq->lock)
1811{
70b97a7f
IM
1812 struct rq *rq = this_rq();
1813
4866cde0
NP
1814 finish_task_switch(rq, prev);
1815#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1816 /* In this case, finish_task_switch does not reenable preemption */
1817 preempt_enable();
1818#endif
1da177e4
LT
1819 if (current->set_child_tid)
1820 put_user(current->pid, current->set_child_tid);
1821}
1822
1823/*
1824 * context_switch - switch to the new MM and the new
1825 * thread's register state.
1826 */
dd41f596 1827static inline void
70b97a7f 1828context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1829 struct task_struct *next)
1da177e4 1830{
dd41f596 1831 struct mm_struct *mm, *oldmm;
1da177e4 1832
e107be36 1833 prepare_task_switch(rq, prev, next);
dd41f596
IM
1834 mm = next->mm;
1835 oldmm = prev->active_mm;
9226d125
ZA
1836 /*
1837 * For paravirt, this is coupled with an exit in switch_to to
1838 * combine the page table reload and the switch backend into
1839 * one hypercall.
1840 */
1841 arch_enter_lazy_cpu_mode();
1842
dd41f596 1843 if (unlikely(!mm)) {
1da177e4
LT
1844 next->active_mm = oldmm;
1845 atomic_inc(&oldmm->mm_count);
1846 enter_lazy_tlb(oldmm, next);
1847 } else
1848 switch_mm(oldmm, mm, next);
1849
dd41f596 1850 if (unlikely(!prev->mm)) {
1da177e4 1851 prev->active_mm = NULL;
1da177e4
LT
1852 rq->prev_mm = oldmm;
1853 }
3a5f5e48
IM
1854 /*
1855 * Since the runqueue lock will be released by the next
1856 * task (which is an invalid locking op but in the case
1857 * of the scheduler it's an obvious special-case), so we
1858 * do an early lockdep release here:
1859 */
1860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1861 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1862#endif
1da177e4
LT
1863
1864 /* Here we just switch the register state and the stack. */
1865 switch_to(prev, next, prev);
1866
dd41f596
IM
1867 barrier();
1868 /*
1869 * this_rq must be evaluated again because prev may have moved
1870 * CPUs since it called schedule(), thus the 'rq' on its stack
1871 * frame will be invalid.
1872 */
1873 finish_task_switch(this_rq(), prev);
1da177e4
LT
1874}
1875
1876/*
1877 * nr_running, nr_uninterruptible and nr_context_switches:
1878 *
1879 * externally visible scheduler statistics: current number of runnable
1880 * threads, current number of uninterruptible-sleeping threads, total
1881 * number of context switches performed since bootup.
1882 */
1883unsigned long nr_running(void)
1884{
1885 unsigned long i, sum = 0;
1886
1887 for_each_online_cpu(i)
1888 sum += cpu_rq(i)->nr_running;
1889
1890 return sum;
1891}
1892
1893unsigned long nr_uninterruptible(void)
1894{
1895 unsigned long i, sum = 0;
1896
0a945022 1897 for_each_possible_cpu(i)
1da177e4
LT
1898 sum += cpu_rq(i)->nr_uninterruptible;
1899
1900 /*
1901 * Since we read the counters lockless, it might be slightly
1902 * inaccurate. Do not allow it to go below zero though:
1903 */
1904 if (unlikely((long)sum < 0))
1905 sum = 0;
1906
1907 return sum;
1908}
1909
1910unsigned long long nr_context_switches(void)
1911{
cc94abfc
SR
1912 int i;
1913 unsigned long long sum = 0;
1da177e4 1914
0a945022 1915 for_each_possible_cpu(i)
1da177e4
LT
1916 sum += cpu_rq(i)->nr_switches;
1917
1918 return sum;
1919}
1920
1921unsigned long nr_iowait(void)
1922{
1923 unsigned long i, sum = 0;
1924
0a945022 1925 for_each_possible_cpu(i)
1da177e4
LT
1926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1927
1928 return sum;
1929}
1930
db1b1fef
JS
1931unsigned long nr_active(void)
1932{
1933 unsigned long i, running = 0, uninterruptible = 0;
1934
1935 for_each_online_cpu(i) {
1936 running += cpu_rq(i)->nr_running;
1937 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1938 }
1939
1940 if (unlikely((long)uninterruptible < 0))
1941 uninterruptible = 0;
1942
1943 return running + uninterruptible;
1944}
1945
48f24c4d 1946/*
dd41f596
IM
1947 * Update rq->cpu_load[] statistics. This function is usually called every
1948 * scheduler tick (TICK_NSEC).
48f24c4d 1949 */
dd41f596 1950static void update_cpu_load(struct rq *this_rq)
48f24c4d 1951{
dd41f596
IM
1952 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1953 unsigned long total_load = this_rq->ls.load.weight;
1954 unsigned long this_load = total_load;
1955 struct load_stat *ls = &this_rq->ls;
1956 u64 now = __rq_clock(this_rq);
1957 int i, scale;
1958
1959 this_rq->nr_load_updates++;
1960 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1961 goto do_avg;
1962
1963 /* Update delta_fair/delta_exec fields first */
1964 update_curr_load(this_rq, now);
1965
1966 fair_delta64 = ls->delta_fair + 1;
1967 ls->delta_fair = 0;
1968
1969 exec_delta64 = ls->delta_exec + 1;
1970 ls->delta_exec = 0;
1971
1972 sample_interval64 = now - ls->load_update_last;
1973 ls->load_update_last = now;
1974
1975 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1976 sample_interval64 = TICK_NSEC;
1977
1978 if (exec_delta64 > sample_interval64)
1979 exec_delta64 = sample_interval64;
1980
1981 idle_delta64 = sample_interval64 - exec_delta64;
1982
1983 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1984 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1985
1986 this_load = (unsigned long)tmp64;
1987
1988do_avg:
1989
1990 /* Update our load: */
1991 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1992 unsigned long old_load, new_load;
1993
1994 /* scale is effectively 1 << i now, and >> i divides by scale */
1995
1996 old_load = this_rq->cpu_load[i];
1997 new_load = this_load;
1998
1999 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2000 }
48f24c4d
IM
2001}
2002
dd41f596
IM
2003#ifdef CONFIG_SMP
2004
1da177e4
LT
2005/*
2006 * double_rq_lock - safely lock two runqueues
2007 *
2008 * Note this does not disable interrupts like task_rq_lock,
2009 * you need to do so manually before calling.
2010 */
70b97a7f 2011static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2012 __acquires(rq1->lock)
2013 __acquires(rq2->lock)
2014{
054b9108 2015 BUG_ON(!irqs_disabled());
1da177e4
LT
2016 if (rq1 == rq2) {
2017 spin_lock(&rq1->lock);
2018 __acquire(rq2->lock); /* Fake it out ;) */
2019 } else {
c96d145e 2020 if (rq1 < rq2) {
1da177e4
LT
2021 spin_lock(&rq1->lock);
2022 spin_lock(&rq2->lock);
2023 } else {
2024 spin_lock(&rq2->lock);
2025 spin_lock(&rq1->lock);
2026 }
2027 }
2028}
2029
2030/*
2031 * double_rq_unlock - safely unlock two runqueues
2032 *
2033 * Note this does not restore interrupts like task_rq_unlock,
2034 * you need to do so manually after calling.
2035 */
70b97a7f 2036static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2037 __releases(rq1->lock)
2038 __releases(rq2->lock)
2039{
2040 spin_unlock(&rq1->lock);
2041 if (rq1 != rq2)
2042 spin_unlock(&rq2->lock);
2043 else
2044 __release(rq2->lock);
2045}
2046
2047/*
2048 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2049 */
70b97a7f 2050static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2051 __releases(this_rq->lock)
2052 __acquires(busiest->lock)
2053 __acquires(this_rq->lock)
2054{
054b9108
KK
2055 if (unlikely(!irqs_disabled())) {
2056 /* printk() doesn't work good under rq->lock */
2057 spin_unlock(&this_rq->lock);
2058 BUG_ON(1);
2059 }
1da177e4 2060 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2061 if (busiest < this_rq) {
1da177e4
LT
2062 spin_unlock(&this_rq->lock);
2063 spin_lock(&busiest->lock);
2064 spin_lock(&this_rq->lock);
2065 } else
2066 spin_lock(&busiest->lock);
2067 }
2068}
2069
1da177e4
LT
2070/*
2071 * If dest_cpu is allowed for this process, migrate the task to it.
2072 * This is accomplished by forcing the cpu_allowed mask to only
2073 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2074 * the cpu_allowed mask is restored.
2075 */
36c8b586 2076static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2077{
70b97a7f 2078 struct migration_req req;
1da177e4 2079 unsigned long flags;
70b97a7f 2080 struct rq *rq;
1da177e4
LT
2081
2082 rq = task_rq_lock(p, &flags);
2083 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2084 || unlikely(cpu_is_offline(dest_cpu)))
2085 goto out;
2086
2087 /* force the process onto the specified CPU */
2088 if (migrate_task(p, dest_cpu, &req)) {
2089 /* Need to wait for migration thread (might exit: take ref). */
2090 struct task_struct *mt = rq->migration_thread;
36c8b586 2091
1da177e4
LT
2092 get_task_struct(mt);
2093 task_rq_unlock(rq, &flags);
2094 wake_up_process(mt);
2095 put_task_struct(mt);
2096 wait_for_completion(&req.done);
36c8b586 2097
1da177e4
LT
2098 return;
2099 }
2100out:
2101 task_rq_unlock(rq, &flags);
2102}
2103
2104/*
476d139c
NP
2105 * sched_exec - execve() is a valuable balancing opportunity, because at
2106 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2107 */
2108void sched_exec(void)
2109{
1da177e4 2110 int new_cpu, this_cpu = get_cpu();
476d139c 2111 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2112 put_cpu();
476d139c
NP
2113 if (new_cpu != this_cpu)
2114 sched_migrate_task(current, new_cpu);
1da177e4
LT
2115}
2116
2117/*
2118 * pull_task - move a task from a remote runqueue to the local runqueue.
2119 * Both runqueues must be locked.
2120 */
dd41f596
IM
2121static void pull_task(struct rq *src_rq, struct task_struct *p,
2122 struct rq *this_rq, int this_cpu)
1da177e4 2123{
8e717b19 2124 deactivate_task(src_rq, p, 0, rq_clock(src_rq));
1da177e4 2125 set_task_cpu(p, this_cpu);
dd41f596 2126 activate_task(this_rq, p, 0);
1da177e4
LT
2127 /*
2128 * Note that idle threads have a prio of MAX_PRIO, for this test
2129 * to be always true for them.
2130 */
dd41f596 2131 check_preempt_curr(this_rq, p);
1da177e4
LT
2132}
2133
2134/*
2135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2136 */
858119e1 2137static
70b97a7f 2138int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2139 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2140 int *all_pinned)
1da177e4
LT
2141{
2142 /*
2143 * We do not migrate tasks that are:
2144 * 1) running (obviously), or
2145 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2146 * 3) are cache-hot on their current CPU.
2147 */
1da177e4
LT
2148 if (!cpu_isset(this_cpu, p->cpus_allowed))
2149 return 0;
81026794
NP
2150 *all_pinned = 0;
2151
2152 if (task_running(rq, p))
2153 return 0;
1da177e4
LT
2154
2155 /*
dd41f596 2156 * Aggressive migration if too many balance attempts have failed:
1da177e4 2157 */
dd41f596 2158 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2159 return 1;
2160
1da177e4
LT
2161 return 1;
2162}
2163
dd41f596 2164static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2165 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2166 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596
IM
2167 int *all_pinned, unsigned long *load_moved,
2168 int this_best_prio, int best_prio, int best_prio_seen,
2169 struct rq_iterator *iterator)
1da177e4 2170{
dd41f596
IM
2171 int pulled = 0, pinned = 0, skip_for_load;
2172 struct task_struct *p;
2173 long rem_load_move = max_load_move;
1da177e4 2174
2dd73a4f 2175 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2176 goto out;
2177
81026794
NP
2178 pinned = 1;
2179
1da177e4 2180 /*
dd41f596 2181 * Start the load-balancing iterator:
1da177e4 2182 */
dd41f596
IM
2183 p = iterator->start(iterator->arg);
2184next:
2185 if (!p)
1da177e4 2186 goto out;
50ddd969
PW
2187 /*
2188 * To help distribute high priority tasks accross CPUs we don't
2189 * skip a task if it will be the highest priority task (i.e. smallest
2190 * prio value) on its new queue regardless of its load weight
2191 */
dd41f596
IM
2192 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2193 SCHED_LOAD_SCALE_FUZZ;
2194 if (skip_for_load && p->prio < this_best_prio)
2195 skip_for_load = !best_prio_seen && p->prio == best_prio;
615052dc 2196 if (skip_for_load ||
dd41f596 2197 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d 2198
dd41f596
IM
2199 best_prio_seen |= p->prio == best_prio;
2200 p = iterator->next(iterator->arg);
2201 goto next;
1da177e4
LT
2202 }
2203
dd41f596 2204 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2205 pulled++;
dd41f596 2206 rem_load_move -= p->se.load.weight;
1da177e4 2207
2dd73a4f
PW
2208 /*
2209 * We only want to steal up to the prescribed number of tasks
2210 * and the prescribed amount of weighted load.
2211 */
2212 if (pulled < max_nr_move && rem_load_move > 0) {
dd41f596
IM
2213 if (p->prio < this_best_prio)
2214 this_best_prio = p->prio;
2215 p = iterator->next(iterator->arg);
2216 goto next;
1da177e4
LT
2217 }
2218out:
2219 /*
2220 * Right now, this is the only place pull_task() is called,
2221 * so we can safely collect pull_task() stats here rather than
2222 * inside pull_task().
2223 */
2224 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2225
2226 if (all_pinned)
2227 *all_pinned = pinned;
dd41f596 2228 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2229 return pulled;
2230}
2231
dd41f596 2232/*
43010659
PW
2233 * move_tasks tries to move up to max_load_move weighted load from busiest to
2234 * this_rq, as part of a balancing operation within domain "sd".
2235 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2236 *
2237 * Called with both runqueues locked.
2238 */
2239static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2240 unsigned long max_load_move,
dd41f596
IM
2241 struct sched_domain *sd, enum cpu_idle_type idle,
2242 int *all_pinned)
2243{
2244 struct sched_class *class = sched_class_highest;
43010659 2245 unsigned long total_load_moved = 0;
dd41f596
IM
2246
2247 do {
43010659
PW
2248 total_load_moved +=
2249 class->load_balance(this_rq, this_cpu, busiest,
2250 ULONG_MAX, max_load_move - total_load_moved,
2251 sd, idle, all_pinned);
dd41f596 2252 class = class->next;
43010659 2253 } while (class && max_load_move > total_load_moved);
dd41f596 2254
43010659
PW
2255 return total_load_moved > 0;
2256}
2257
2258/*
2259 * move_one_task tries to move exactly one task from busiest to this_rq, as
2260 * part of active balancing operations within "domain".
2261 * Returns 1 if successful and 0 otherwise.
2262 *
2263 * Called with both runqueues locked.
2264 */
2265static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2266 struct sched_domain *sd, enum cpu_idle_type idle)
2267{
2268 struct sched_class *class;
2269
2270 for (class = sched_class_highest; class; class = class->next)
2271 if (class->load_balance(this_rq, this_cpu, busiest,
2272 1, ULONG_MAX, sd, idle, NULL))
2273 return 1;
2274
2275 return 0;
dd41f596
IM
2276}
2277
1da177e4
LT
2278/*
2279 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2280 * domain. It calculates and returns the amount of weighted load which
2281 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2282 */
2283static struct sched_group *
2284find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2285 unsigned long *imbalance, enum cpu_idle_type idle,
2286 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2287{
2288 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2289 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2290 unsigned long max_pull;
2dd73a4f
PW
2291 unsigned long busiest_load_per_task, busiest_nr_running;
2292 unsigned long this_load_per_task, this_nr_running;
7897986b 2293 int load_idx;
5c45bf27
SS
2294#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2295 int power_savings_balance = 1;
2296 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2297 unsigned long min_nr_running = ULONG_MAX;
2298 struct sched_group *group_min = NULL, *group_leader = NULL;
2299#endif
1da177e4
LT
2300
2301 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2302 busiest_load_per_task = busiest_nr_running = 0;
2303 this_load_per_task = this_nr_running = 0;
d15bcfdb 2304 if (idle == CPU_NOT_IDLE)
7897986b 2305 load_idx = sd->busy_idx;
d15bcfdb 2306 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2307 load_idx = sd->newidle_idx;
2308 else
2309 load_idx = sd->idle_idx;
1da177e4
LT
2310
2311 do {
5c45bf27 2312 unsigned long load, group_capacity;
1da177e4
LT
2313 int local_group;
2314 int i;
783609c6 2315 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2316 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2317
2318 local_group = cpu_isset(this_cpu, group->cpumask);
2319
783609c6
SS
2320 if (local_group)
2321 balance_cpu = first_cpu(group->cpumask);
2322
1da177e4 2323 /* Tally up the load of all CPUs in the group */
2dd73a4f 2324 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2325
2326 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2327 struct rq *rq;
2328
2329 if (!cpu_isset(i, *cpus))
2330 continue;
2331
2332 rq = cpu_rq(i);
2dd73a4f 2333
9439aab8 2334 if (*sd_idle && rq->nr_running)
5969fe06
NP
2335 *sd_idle = 0;
2336
1da177e4 2337 /* Bias balancing toward cpus of our domain */
783609c6
SS
2338 if (local_group) {
2339 if (idle_cpu(i) && !first_idle_cpu) {
2340 first_idle_cpu = 1;
2341 balance_cpu = i;
2342 }
2343
a2000572 2344 load = target_load(i, load_idx);
783609c6 2345 } else
a2000572 2346 load = source_load(i, load_idx);
1da177e4
LT
2347
2348 avg_load += load;
2dd73a4f 2349 sum_nr_running += rq->nr_running;
dd41f596 2350 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2351 }
2352
783609c6
SS
2353 /*
2354 * First idle cpu or the first cpu(busiest) in this sched group
2355 * is eligible for doing load balancing at this and above
9439aab8
SS
2356 * domains. In the newly idle case, we will allow all the cpu's
2357 * to do the newly idle load balance.
783609c6 2358 */
9439aab8
SS
2359 if (idle != CPU_NEWLY_IDLE && local_group &&
2360 balance_cpu != this_cpu && balance) {
783609c6
SS
2361 *balance = 0;
2362 goto ret;
2363 }
2364
1da177e4 2365 total_load += avg_load;
5517d86b 2366 total_pwr += group->__cpu_power;
1da177e4
LT
2367
2368 /* Adjust by relative CPU power of the group */
5517d86b
ED
2369 avg_load = sg_div_cpu_power(group,
2370 avg_load * SCHED_LOAD_SCALE);
1da177e4 2371
5517d86b 2372 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2373
1da177e4
LT
2374 if (local_group) {
2375 this_load = avg_load;
2376 this = group;
2dd73a4f
PW
2377 this_nr_running = sum_nr_running;
2378 this_load_per_task = sum_weighted_load;
2379 } else if (avg_load > max_load &&
5c45bf27 2380 sum_nr_running > group_capacity) {
1da177e4
LT
2381 max_load = avg_load;
2382 busiest = group;
2dd73a4f
PW
2383 busiest_nr_running = sum_nr_running;
2384 busiest_load_per_task = sum_weighted_load;
1da177e4 2385 }
5c45bf27
SS
2386
2387#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2388 /*
2389 * Busy processors will not participate in power savings
2390 * balance.
2391 */
dd41f596
IM
2392 if (idle == CPU_NOT_IDLE ||
2393 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2394 goto group_next;
5c45bf27
SS
2395
2396 /*
2397 * If the local group is idle or completely loaded
2398 * no need to do power savings balance at this domain
2399 */
2400 if (local_group && (this_nr_running >= group_capacity ||
2401 !this_nr_running))
2402 power_savings_balance = 0;
2403
dd41f596 2404 /*
5c45bf27
SS
2405 * If a group is already running at full capacity or idle,
2406 * don't include that group in power savings calculations
dd41f596
IM
2407 */
2408 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2409 || !sum_nr_running)
dd41f596 2410 goto group_next;
5c45bf27 2411
dd41f596 2412 /*
5c45bf27 2413 * Calculate the group which has the least non-idle load.
dd41f596
IM
2414 * This is the group from where we need to pick up the load
2415 * for saving power
2416 */
2417 if ((sum_nr_running < min_nr_running) ||
2418 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2419 first_cpu(group->cpumask) <
2420 first_cpu(group_min->cpumask))) {
dd41f596
IM
2421 group_min = group;
2422 min_nr_running = sum_nr_running;
5c45bf27
SS
2423 min_load_per_task = sum_weighted_load /
2424 sum_nr_running;
dd41f596 2425 }
5c45bf27 2426
dd41f596 2427 /*
5c45bf27 2428 * Calculate the group which is almost near its
dd41f596
IM
2429 * capacity but still has some space to pick up some load
2430 * from other group and save more power
2431 */
2432 if (sum_nr_running <= group_capacity - 1) {
2433 if (sum_nr_running > leader_nr_running ||
2434 (sum_nr_running == leader_nr_running &&
2435 first_cpu(group->cpumask) >
2436 first_cpu(group_leader->cpumask))) {
2437 group_leader = group;
2438 leader_nr_running = sum_nr_running;
2439 }
48f24c4d 2440 }
5c45bf27
SS
2441group_next:
2442#endif
1da177e4
LT
2443 group = group->next;
2444 } while (group != sd->groups);
2445
2dd73a4f 2446 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2447 goto out_balanced;
2448
2449 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2450
2451 if (this_load >= avg_load ||
2452 100*max_load <= sd->imbalance_pct*this_load)
2453 goto out_balanced;
2454
2dd73a4f 2455 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2456 /*
2457 * We're trying to get all the cpus to the average_load, so we don't
2458 * want to push ourselves above the average load, nor do we wish to
2459 * reduce the max loaded cpu below the average load, as either of these
2460 * actions would just result in more rebalancing later, and ping-pong
2461 * tasks around. Thus we look for the minimum possible imbalance.
2462 * Negative imbalances (*we* are more loaded than anyone else) will
2463 * be counted as no imbalance for these purposes -- we can't fix that
2464 * by pulling tasks to us. Be careful of negative numbers as they'll
2465 * appear as very large values with unsigned longs.
2466 */
2dd73a4f
PW
2467 if (max_load <= busiest_load_per_task)
2468 goto out_balanced;
2469
2470 /*
2471 * In the presence of smp nice balancing, certain scenarios can have
2472 * max load less than avg load(as we skip the groups at or below
2473 * its cpu_power, while calculating max_load..)
2474 */
2475 if (max_load < avg_load) {
2476 *imbalance = 0;
2477 goto small_imbalance;
2478 }
0c117f1b
SS
2479
2480 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2481 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2482
1da177e4 2483 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2484 *imbalance = min(max_pull * busiest->__cpu_power,
2485 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2486 / SCHED_LOAD_SCALE;
2487
2dd73a4f
PW
2488 /*
2489 * if *imbalance is less than the average load per runnable task
2490 * there is no gaurantee that any tasks will be moved so we'll have
2491 * a think about bumping its value to force at least one task to be
2492 * moved
2493 */
dd41f596 2494 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2495 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2496 unsigned int imbn;
2497
2498small_imbalance:
2499 pwr_move = pwr_now = 0;
2500 imbn = 2;
2501 if (this_nr_running) {
2502 this_load_per_task /= this_nr_running;
2503 if (busiest_load_per_task > this_load_per_task)
2504 imbn = 1;
2505 } else
2506 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2507
dd41f596
IM
2508 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2509 busiest_load_per_task * imbn) {
2dd73a4f 2510 *imbalance = busiest_load_per_task;
1da177e4
LT
2511 return busiest;
2512 }
2513
2514 /*
2515 * OK, we don't have enough imbalance to justify moving tasks,
2516 * however we may be able to increase total CPU power used by
2517 * moving them.
2518 */
2519
5517d86b
ED
2520 pwr_now += busiest->__cpu_power *
2521 min(busiest_load_per_task, max_load);
2522 pwr_now += this->__cpu_power *
2523 min(this_load_per_task, this_load);
1da177e4
LT
2524 pwr_now /= SCHED_LOAD_SCALE;
2525
2526 /* Amount of load we'd subtract */
5517d86b
ED
2527 tmp = sg_div_cpu_power(busiest,
2528 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2529 if (max_load > tmp)
5517d86b 2530 pwr_move += busiest->__cpu_power *
2dd73a4f 2531 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2532
2533 /* Amount of load we'd add */
5517d86b 2534 if (max_load * busiest->__cpu_power <
33859f7f 2535 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2536 tmp = sg_div_cpu_power(this,
2537 max_load * busiest->__cpu_power);
1da177e4 2538 else
5517d86b
ED
2539 tmp = sg_div_cpu_power(this,
2540 busiest_load_per_task * SCHED_LOAD_SCALE);
2541 pwr_move += this->__cpu_power *
2542 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2543 pwr_move /= SCHED_LOAD_SCALE;
2544
2545 /* Move if we gain throughput */
2546 if (pwr_move <= pwr_now)
2547 goto out_balanced;
2548
2dd73a4f 2549 *imbalance = busiest_load_per_task;
1da177e4
LT
2550 }
2551
1da177e4
LT
2552 return busiest;
2553
2554out_balanced:
5c45bf27 2555#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2556 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2557 goto ret;
1da177e4 2558
5c45bf27
SS
2559 if (this == group_leader && group_leader != group_min) {
2560 *imbalance = min_load_per_task;
2561 return group_min;
2562 }
5c45bf27 2563#endif
783609c6 2564ret:
1da177e4
LT
2565 *imbalance = 0;
2566 return NULL;
2567}
2568
2569/*
2570 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2571 */
70b97a7f 2572static struct rq *
d15bcfdb 2573find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2574 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2575{
70b97a7f 2576 struct rq *busiest = NULL, *rq;
2dd73a4f 2577 unsigned long max_load = 0;
1da177e4
LT
2578 int i;
2579
2580 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2581 unsigned long wl;
0a2966b4
CL
2582
2583 if (!cpu_isset(i, *cpus))
2584 continue;
2585
48f24c4d 2586 rq = cpu_rq(i);
dd41f596 2587 wl = weighted_cpuload(i);
2dd73a4f 2588
dd41f596 2589 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2590 continue;
1da177e4 2591
dd41f596
IM
2592 if (wl > max_load) {
2593 max_load = wl;
48f24c4d 2594 busiest = rq;
1da177e4
LT
2595 }
2596 }
2597
2598 return busiest;
2599}
2600
77391d71
NP
2601/*
2602 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2603 * so long as it is large enough.
2604 */
2605#define MAX_PINNED_INTERVAL 512
2606
1da177e4
LT
2607/*
2608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2609 * tasks if there is an imbalance.
1da177e4 2610 */
70b97a7f 2611static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2612 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2613 int *balance)
1da177e4 2614{
43010659 2615 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2616 struct sched_group *group;
1da177e4 2617 unsigned long imbalance;
70b97a7f 2618 struct rq *busiest;
0a2966b4 2619 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2620 unsigned long flags;
5969fe06 2621
89c4710e
SS
2622 /*
2623 * When power savings policy is enabled for the parent domain, idle
2624 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2625 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2626 * portraying it as CPU_NOT_IDLE.
89c4710e 2627 */
d15bcfdb 2628 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2629 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2630 sd_idle = 1;
1da177e4 2631
1da177e4
LT
2632 schedstat_inc(sd, lb_cnt[idle]);
2633
0a2966b4
CL
2634redo:
2635 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2636 &cpus, balance);
2637
06066714 2638 if (*balance == 0)
783609c6 2639 goto out_balanced;
783609c6 2640
1da177e4
LT
2641 if (!group) {
2642 schedstat_inc(sd, lb_nobusyg[idle]);
2643 goto out_balanced;
2644 }
2645
0a2966b4 2646 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2647 if (!busiest) {
2648 schedstat_inc(sd, lb_nobusyq[idle]);
2649 goto out_balanced;
2650 }
2651
db935dbd 2652 BUG_ON(busiest == this_rq);
1da177e4
LT
2653
2654 schedstat_add(sd, lb_imbalance[idle], imbalance);
2655
43010659 2656 ld_moved = 0;
1da177e4
LT
2657 if (busiest->nr_running > 1) {
2658 /*
2659 * Attempt to move tasks. If find_busiest_group has found
2660 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2661 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2662 * correctly treated as an imbalance.
2663 */
fe2eea3f 2664 local_irq_save(flags);
e17224bf 2665 double_rq_lock(this_rq, busiest);
43010659 2666 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2667 imbalance, sd, idle, &all_pinned);
e17224bf 2668 double_rq_unlock(this_rq, busiest);
fe2eea3f 2669 local_irq_restore(flags);
81026794 2670
46cb4b7c
SS
2671 /*
2672 * some other cpu did the load balance for us.
2673 */
43010659 2674 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2675 resched_cpu(this_cpu);
2676
81026794 2677 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2678 if (unlikely(all_pinned)) {
2679 cpu_clear(cpu_of(busiest), cpus);
2680 if (!cpus_empty(cpus))
2681 goto redo;
81026794 2682 goto out_balanced;
0a2966b4 2683 }
1da177e4 2684 }
81026794 2685
43010659 2686 if (!ld_moved) {
1da177e4
LT
2687 schedstat_inc(sd, lb_failed[idle]);
2688 sd->nr_balance_failed++;
2689
2690 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2691
fe2eea3f 2692 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2693
2694 /* don't kick the migration_thread, if the curr
2695 * task on busiest cpu can't be moved to this_cpu
2696 */
2697 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2698 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2699 all_pinned = 1;
2700 goto out_one_pinned;
2701 }
2702
1da177e4
LT
2703 if (!busiest->active_balance) {
2704 busiest->active_balance = 1;
2705 busiest->push_cpu = this_cpu;
81026794 2706 active_balance = 1;
1da177e4 2707 }
fe2eea3f 2708 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2709 if (active_balance)
1da177e4
LT
2710 wake_up_process(busiest->migration_thread);
2711
2712 /*
2713 * We've kicked active balancing, reset the failure
2714 * counter.
2715 */
39507451 2716 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2717 }
81026794 2718 } else
1da177e4
LT
2719 sd->nr_balance_failed = 0;
2720
81026794 2721 if (likely(!active_balance)) {
1da177e4
LT
2722 /* We were unbalanced, so reset the balancing interval */
2723 sd->balance_interval = sd->min_interval;
81026794
NP
2724 } else {
2725 /*
2726 * If we've begun active balancing, start to back off. This
2727 * case may not be covered by the all_pinned logic if there
2728 * is only 1 task on the busy runqueue (because we don't call
2729 * move_tasks).
2730 */
2731 if (sd->balance_interval < sd->max_interval)
2732 sd->balance_interval *= 2;
1da177e4
LT
2733 }
2734
43010659 2735 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2736 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2737 return -1;
43010659 2738 return ld_moved;
1da177e4
LT
2739
2740out_balanced:
1da177e4
LT
2741 schedstat_inc(sd, lb_balanced[idle]);
2742
16cfb1c0 2743 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2744
2745out_one_pinned:
1da177e4 2746 /* tune up the balancing interval */
77391d71
NP
2747 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2748 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2749 sd->balance_interval *= 2;
2750
48f24c4d 2751 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2752 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2753 return -1;
1da177e4
LT
2754 return 0;
2755}
2756
2757/*
2758 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2759 * tasks if there is an imbalance.
2760 *
d15bcfdb 2761 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2762 * this_rq is locked.
2763 */
48f24c4d 2764static int
70b97a7f 2765load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2766{
2767 struct sched_group *group;
70b97a7f 2768 struct rq *busiest = NULL;
1da177e4 2769 unsigned long imbalance;
43010659 2770 int ld_moved = 0;
5969fe06 2771 int sd_idle = 0;
969bb4e4 2772 int all_pinned = 0;
0a2966b4 2773 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2774
89c4710e
SS
2775 /*
2776 * When power savings policy is enabled for the parent domain, idle
2777 * sibling can pick up load irrespective of busy siblings. In this case,
2778 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2779 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2780 */
2781 if (sd->flags & SD_SHARE_CPUPOWER &&
2782 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2783 sd_idle = 1;
1da177e4 2784
d15bcfdb 2785 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2786redo:
d15bcfdb 2787 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2788 &sd_idle, &cpus, NULL);
1da177e4 2789 if (!group) {
d15bcfdb 2790 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2791 goto out_balanced;
1da177e4
LT
2792 }
2793
d15bcfdb 2794 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2795 &cpus);
db935dbd 2796 if (!busiest) {
d15bcfdb 2797 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2798 goto out_balanced;
1da177e4
LT
2799 }
2800
db935dbd
NP
2801 BUG_ON(busiest == this_rq);
2802
d15bcfdb 2803 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2804
43010659 2805 ld_moved = 0;
d6d5cfaf
NP
2806 if (busiest->nr_running > 1) {
2807 /* Attempt to move tasks */
2808 double_lock_balance(this_rq, busiest);
43010659 2809 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2810 imbalance, sd, CPU_NEWLY_IDLE,
2811 &all_pinned);
d6d5cfaf 2812 spin_unlock(&busiest->lock);
0a2966b4 2813
969bb4e4 2814 if (unlikely(all_pinned)) {
0a2966b4
CL
2815 cpu_clear(cpu_of(busiest), cpus);
2816 if (!cpus_empty(cpus))
2817 goto redo;
2818 }
d6d5cfaf
NP
2819 }
2820
43010659 2821 if (!ld_moved) {
d15bcfdb 2822 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2823 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2824 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2825 return -1;
2826 } else
16cfb1c0 2827 sd->nr_balance_failed = 0;
1da177e4 2828
43010659 2829 return ld_moved;
16cfb1c0
NP
2830
2831out_balanced:
d15bcfdb 2832 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2833 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2834 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2835 return -1;
16cfb1c0 2836 sd->nr_balance_failed = 0;
48f24c4d 2837
16cfb1c0 2838 return 0;
1da177e4
LT
2839}
2840
2841/*
2842 * idle_balance is called by schedule() if this_cpu is about to become
2843 * idle. Attempts to pull tasks from other CPUs.
2844 */
70b97a7f 2845static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2846{
2847 struct sched_domain *sd;
dd41f596
IM
2848 int pulled_task = -1;
2849 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2850
2851 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2852 unsigned long interval;
2853
2854 if (!(sd->flags & SD_LOAD_BALANCE))
2855 continue;
2856
2857 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2858 /* If we've pulled tasks over stop searching: */
1bd77f2d 2859 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2860 this_rq, sd);
2861
2862 interval = msecs_to_jiffies(sd->balance_interval);
2863 if (time_after(next_balance, sd->last_balance + interval))
2864 next_balance = sd->last_balance + interval;
2865 if (pulled_task)
2866 break;
1da177e4 2867 }
dd41f596 2868 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2869 /*
2870 * We are going idle. next_balance may be set based on
2871 * a busy processor. So reset next_balance.
2872 */
2873 this_rq->next_balance = next_balance;
dd41f596 2874 }
1da177e4
LT
2875}
2876
2877/*
2878 * active_load_balance is run by migration threads. It pushes running tasks
2879 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2880 * running on each physical CPU where possible, and avoids physical /
2881 * logical imbalances.
2882 *
2883 * Called with busiest_rq locked.
2884 */
70b97a7f 2885static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2886{
39507451 2887 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2888 struct sched_domain *sd;
2889 struct rq *target_rq;
39507451 2890
48f24c4d 2891 /* Is there any task to move? */
39507451 2892 if (busiest_rq->nr_running <= 1)
39507451
NP
2893 return;
2894
2895 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2896
2897 /*
39507451
NP
2898 * This condition is "impossible", if it occurs
2899 * we need to fix it. Originally reported by
2900 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2901 */
39507451 2902 BUG_ON(busiest_rq == target_rq);
1da177e4 2903
39507451
NP
2904 /* move a task from busiest_rq to target_rq */
2905 double_lock_balance(busiest_rq, target_rq);
2906
2907 /* Search for an sd spanning us and the target CPU. */
c96d145e 2908 for_each_domain(target_cpu, sd) {
39507451 2909 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2910 cpu_isset(busiest_cpu, sd->span))
39507451 2911 break;
c96d145e 2912 }
39507451 2913
48f24c4d
IM
2914 if (likely(sd)) {
2915 schedstat_inc(sd, alb_cnt);
39507451 2916
43010659
PW
2917 if (move_one_task(target_rq, target_cpu, busiest_rq,
2918 sd, CPU_IDLE))
48f24c4d
IM
2919 schedstat_inc(sd, alb_pushed);
2920 else
2921 schedstat_inc(sd, alb_failed);
2922 }
39507451 2923 spin_unlock(&target_rq->lock);
1da177e4
LT
2924}
2925
46cb4b7c
SS
2926#ifdef CONFIG_NO_HZ
2927static struct {
2928 atomic_t load_balancer;
2929 cpumask_t cpu_mask;
2930} nohz ____cacheline_aligned = {
2931 .load_balancer = ATOMIC_INIT(-1),
2932 .cpu_mask = CPU_MASK_NONE,
2933};
2934
7835b98b 2935/*
46cb4b7c
SS
2936 * This routine will try to nominate the ilb (idle load balancing)
2937 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2938 * load balancing on behalf of all those cpus. If all the cpus in the system
2939 * go into this tickless mode, then there will be no ilb owner (as there is
2940 * no need for one) and all the cpus will sleep till the next wakeup event
2941 * arrives...
2942 *
2943 * For the ilb owner, tick is not stopped. And this tick will be used
2944 * for idle load balancing. ilb owner will still be part of
2945 * nohz.cpu_mask..
7835b98b 2946 *
46cb4b7c
SS
2947 * While stopping the tick, this cpu will become the ilb owner if there
2948 * is no other owner. And will be the owner till that cpu becomes busy
2949 * or if all cpus in the system stop their ticks at which point
2950 * there is no need for ilb owner.
2951 *
2952 * When the ilb owner becomes busy, it nominates another owner, during the
2953 * next busy scheduler_tick()
2954 */
2955int select_nohz_load_balancer(int stop_tick)
2956{
2957 int cpu = smp_processor_id();
2958
2959 if (stop_tick) {
2960 cpu_set(cpu, nohz.cpu_mask);
2961 cpu_rq(cpu)->in_nohz_recently = 1;
2962
2963 /*
2964 * If we are going offline and still the leader, give up!
2965 */
2966 if (cpu_is_offline(cpu) &&
2967 atomic_read(&nohz.load_balancer) == cpu) {
2968 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2969 BUG();
2970 return 0;
2971 }
2972
2973 /* time for ilb owner also to sleep */
2974 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2975 if (atomic_read(&nohz.load_balancer) == cpu)
2976 atomic_set(&nohz.load_balancer, -1);
2977 return 0;
2978 }
2979
2980 if (atomic_read(&nohz.load_balancer) == -1) {
2981 /* make me the ilb owner */
2982 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2983 return 1;
2984 } else if (atomic_read(&nohz.load_balancer) == cpu)
2985 return 1;
2986 } else {
2987 if (!cpu_isset(cpu, nohz.cpu_mask))
2988 return 0;
2989
2990 cpu_clear(cpu, nohz.cpu_mask);
2991
2992 if (atomic_read(&nohz.load_balancer) == cpu)
2993 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2994 BUG();
2995 }
2996 return 0;
2997}
2998#endif
2999
3000static DEFINE_SPINLOCK(balancing);
3001
3002/*
7835b98b
CL
3003 * It checks each scheduling domain to see if it is due to be balanced,
3004 * and initiates a balancing operation if so.
3005 *
3006 * Balancing parameters are set up in arch_init_sched_domains.
3007 */
d15bcfdb 3008static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3009{
46cb4b7c
SS
3010 int balance = 1;
3011 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3012 unsigned long interval;
3013 struct sched_domain *sd;
46cb4b7c 3014 /* Earliest time when we have to do rebalance again */
c9819f45 3015 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3016
46cb4b7c 3017 for_each_domain(cpu, sd) {
1da177e4
LT
3018 if (!(sd->flags & SD_LOAD_BALANCE))
3019 continue;
3020
3021 interval = sd->balance_interval;
d15bcfdb 3022 if (idle != CPU_IDLE)
1da177e4
LT
3023 interval *= sd->busy_factor;
3024
3025 /* scale ms to jiffies */
3026 interval = msecs_to_jiffies(interval);
3027 if (unlikely(!interval))
3028 interval = 1;
dd41f596
IM
3029 if (interval > HZ*NR_CPUS/10)
3030 interval = HZ*NR_CPUS/10;
3031
1da177e4 3032
08c183f3
CL
3033 if (sd->flags & SD_SERIALIZE) {
3034 if (!spin_trylock(&balancing))
3035 goto out;
3036 }
3037
c9819f45 3038 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3039 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3040 /*
3041 * We've pulled tasks over so either we're no
5969fe06
NP
3042 * longer idle, or one of our SMT siblings is
3043 * not idle.
3044 */
d15bcfdb 3045 idle = CPU_NOT_IDLE;
1da177e4 3046 }
1bd77f2d 3047 sd->last_balance = jiffies;
1da177e4 3048 }
08c183f3
CL
3049 if (sd->flags & SD_SERIALIZE)
3050 spin_unlock(&balancing);
3051out:
c9819f45
CL
3052 if (time_after(next_balance, sd->last_balance + interval))
3053 next_balance = sd->last_balance + interval;
783609c6
SS
3054
3055 /*
3056 * Stop the load balance at this level. There is another
3057 * CPU in our sched group which is doing load balancing more
3058 * actively.
3059 */
3060 if (!balance)
3061 break;
1da177e4 3062 }
46cb4b7c
SS
3063 rq->next_balance = next_balance;
3064}
3065
3066/*
3067 * run_rebalance_domains is triggered when needed from the scheduler tick.
3068 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3069 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3070 */
3071static void run_rebalance_domains(struct softirq_action *h)
3072{
dd41f596
IM
3073 int this_cpu = smp_processor_id();
3074 struct rq *this_rq = cpu_rq(this_cpu);
3075 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3076 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3077
dd41f596 3078 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3079
3080#ifdef CONFIG_NO_HZ
3081 /*
3082 * If this cpu is the owner for idle load balancing, then do the
3083 * balancing on behalf of the other idle cpus whose ticks are
3084 * stopped.
3085 */
dd41f596
IM
3086 if (this_rq->idle_at_tick &&
3087 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3088 cpumask_t cpus = nohz.cpu_mask;
3089 struct rq *rq;
3090 int balance_cpu;
3091
dd41f596 3092 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3093 for_each_cpu_mask(balance_cpu, cpus) {
3094 /*
3095 * If this cpu gets work to do, stop the load balancing
3096 * work being done for other cpus. Next load
3097 * balancing owner will pick it up.
3098 */
3099 if (need_resched())
3100 break;
3101
dd41f596 3102 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3103
3104 rq = cpu_rq(balance_cpu);
dd41f596
IM
3105 if (time_after(this_rq->next_balance, rq->next_balance))
3106 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3107 }
3108 }
3109#endif
3110}
3111
3112/*
3113 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3114 *
3115 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3116 * idle load balancing owner or decide to stop the periodic load balancing,
3117 * if the whole system is idle.
3118 */
dd41f596 3119static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3120{
46cb4b7c
SS
3121#ifdef CONFIG_NO_HZ
3122 /*
3123 * If we were in the nohz mode recently and busy at the current
3124 * scheduler tick, then check if we need to nominate new idle
3125 * load balancer.
3126 */
3127 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3128 rq->in_nohz_recently = 0;
3129
3130 if (atomic_read(&nohz.load_balancer) == cpu) {
3131 cpu_clear(cpu, nohz.cpu_mask);
3132 atomic_set(&nohz.load_balancer, -1);
3133 }
3134
3135 if (atomic_read(&nohz.load_balancer) == -1) {
3136 /*
3137 * simple selection for now: Nominate the
3138 * first cpu in the nohz list to be the next
3139 * ilb owner.
3140 *
3141 * TBD: Traverse the sched domains and nominate
3142 * the nearest cpu in the nohz.cpu_mask.
3143 */
3144 int ilb = first_cpu(nohz.cpu_mask);
3145
3146 if (ilb != NR_CPUS)
3147 resched_cpu(ilb);
3148 }
3149 }
3150
3151 /*
3152 * If this cpu is idle and doing idle load balancing for all the
3153 * cpus with ticks stopped, is it time for that to stop?
3154 */
3155 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3156 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3157 resched_cpu(cpu);
3158 return;
3159 }
3160
3161 /*
3162 * If this cpu is idle and the idle load balancing is done by
3163 * someone else, then no need raise the SCHED_SOFTIRQ
3164 */
3165 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3166 cpu_isset(cpu, nohz.cpu_mask))
3167 return;
3168#endif
3169 if (time_after_eq(jiffies, rq->next_balance))
3170 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3171}
dd41f596
IM
3172
3173#else /* CONFIG_SMP */
3174
1da177e4
LT
3175/*
3176 * on UP we do not need to balance between CPUs:
3177 */
70b97a7f 3178static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3179{
3180}
dd41f596
IM
3181
3182/* Avoid "used but not defined" warning on UP */
3183static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3184 unsigned long max_nr_move, unsigned long max_load_move,
3185 struct sched_domain *sd, enum cpu_idle_type idle,
3186 int *all_pinned, unsigned long *load_moved,
3187 int this_best_prio, int best_prio, int best_prio_seen,
3188 struct rq_iterator *iterator)
3189{
3190 *load_moved = 0;
3191
3192 return 0;
3193}
3194
1da177e4
LT
3195#endif
3196
1da177e4
LT
3197DEFINE_PER_CPU(struct kernel_stat, kstat);
3198
3199EXPORT_PER_CPU_SYMBOL(kstat);
3200
3201/*
41b86e9c
IM
3202 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3203 * that have not yet been banked in case the task is currently running.
1da177e4 3204 */
41b86e9c 3205unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3206{
1da177e4 3207 unsigned long flags;
41b86e9c
IM
3208 u64 ns, delta_exec;
3209 struct rq *rq;
48f24c4d 3210
41b86e9c
IM
3211 rq = task_rq_lock(p, &flags);
3212 ns = p->se.sum_exec_runtime;
3213 if (rq->curr == p) {
3214 delta_exec = rq_clock(rq) - p->se.exec_start;
3215 if ((s64)delta_exec > 0)
3216 ns += delta_exec;
3217 }
3218 task_rq_unlock(rq, &flags);
48f24c4d 3219
1da177e4
LT
3220 return ns;
3221}
3222
1da177e4
LT
3223/*
3224 * Account user cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in user space since the last update
3228 */
3229void account_user_time(struct task_struct *p, cputime_t cputime)
3230{
3231 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3232 cputime64_t tmp;
3233
3234 p->utime = cputime_add(p->utime, cputime);
3235
3236 /* Add user time to cpustat. */
3237 tmp = cputime_to_cputime64(cputime);
3238 if (TASK_NICE(p) > 0)
3239 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3240 else
3241 cpustat->user = cputime64_add(cpustat->user, tmp);
3242}
3243
3244/*
3245 * Account system cpu time to a process.
3246 * @p: the process that the cpu time gets accounted to
3247 * @hardirq_offset: the offset to subtract from hardirq_count()
3248 * @cputime: the cpu time spent in kernel space since the last update
3249 */
3250void account_system_time(struct task_struct *p, int hardirq_offset,
3251 cputime_t cputime)
3252{
3253 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3254 struct rq *rq = this_rq();
1da177e4
LT
3255 cputime64_t tmp;
3256
3257 p->stime = cputime_add(p->stime, cputime);
3258
3259 /* Add system time to cpustat. */
3260 tmp = cputime_to_cputime64(cputime);
3261 if (hardirq_count() - hardirq_offset)
3262 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3263 else if (softirq_count())
3264 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3265 else if (p != rq->idle)
3266 cpustat->system = cputime64_add(cpustat->system, tmp);
3267 else if (atomic_read(&rq->nr_iowait) > 0)
3268 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3269 else
3270 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3271 /* Account for system time used */
3272 acct_update_integrals(p);
1da177e4
LT
3273}
3274
3275/*
3276 * Account for involuntary wait time.
3277 * @p: the process from which the cpu time has been stolen
3278 * @steal: the cpu time spent in involuntary wait
3279 */
3280void account_steal_time(struct task_struct *p, cputime_t steal)
3281{
3282 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3283 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3284 struct rq *rq = this_rq();
1da177e4
LT
3285
3286 if (p == rq->idle) {
3287 p->stime = cputime_add(p->stime, steal);
3288 if (atomic_read(&rq->nr_iowait) > 0)
3289 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3290 else
3291 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3292 } else
3293 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3294}
3295
7835b98b
CL
3296/*
3297 * This function gets called by the timer code, with HZ frequency.
3298 * We call it with interrupts disabled.
3299 *
3300 * It also gets called by the fork code, when changing the parent's
3301 * timeslices.
3302 */
3303void scheduler_tick(void)
3304{
7835b98b
CL
3305 int cpu = smp_processor_id();
3306 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3307 struct task_struct *curr = rq->curr;
3308
3309 spin_lock(&rq->lock);
f1a438d8 3310 update_cpu_load(rq);
dd41f596
IM
3311 if (curr != rq->idle) /* FIXME: needed? */
3312 curr->sched_class->task_tick(rq, curr);
dd41f596 3313 spin_unlock(&rq->lock);
7835b98b 3314
e418e1c2 3315#ifdef CONFIG_SMP
dd41f596
IM
3316 rq->idle_at_tick = idle_cpu(cpu);
3317 trigger_load_balance(rq, cpu);
e418e1c2 3318#endif
1da177e4
LT
3319}
3320
1da177e4
LT
3321#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3322
3323void fastcall add_preempt_count(int val)
3324{
3325 /*
3326 * Underflow?
3327 */
9a11b49a
IM
3328 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3329 return;
1da177e4
LT
3330 preempt_count() += val;
3331 /*
3332 * Spinlock count overflowing soon?
3333 */
33859f7f
MOS
3334 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3335 PREEMPT_MASK - 10);
1da177e4
LT
3336}
3337EXPORT_SYMBOL(add_preempt_count);
3338
3339void fastcall sub_preempt_count(int val)
3340{
3341 /*
3342 * Underflow?
3343 */
9a11b49a
IM
3344 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3345 return;
1da177e4
LT
3346 /*
3347 * Is the spinlock portion underflowing?
3348 */
9a11b49a
IM
3349 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3350 !(preempt_count() & PREEMPT_MASK)))
3351 return;
3352
1da177e4
LT
3353 preempt_count() -= val;
3354}
3355EXPORT_SYMBOL(sub_preempt_count);
3356
3357#endif
3358
3359/*
dd41f596 3360 * Print scheduling while atomic bug:
1da177e4 3361 */
dd41f596 3362static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3363{
dd41f596
IM
3364 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3365 prev->comm, preempt_count(), prev->pid);
3366 debug_show_held_locks(prev);
3367 if (irqs_disabled())
3368 print_irqtrace_events(prev);
3369 dump_stack();
3370}
1da177e4 3371
dd41f596
IM
3372/*
3373 * Various schedule()-time debugging checks and statistics:
3374 */
3375static inline void schedule_debug(struct task_struct *prev)
3376{
1da177e4
LT
3377 /*
3378 * Test if we are atomic. Since do_exit() needs to call into
3379 * schedule() atomically, we ignore that path for now.
3380 * Otherwise, whine if we are scheduling when we should not be.
3381 */
dd41f596
IM
3382 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3383 __schedule_bug(prev);
3384
1da177e4
LT
3385 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3386
dd41f596
IM
3387 schedstat_inc(this_rq(), sched_cnt);
3388}
3389
3390/*
3391 * Pick up the highest-prio task:
3392 */
3393static inline struct task_struct *
3394pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3395{
3396 struct sched_class *class;
3397 struct task_struct *p;
1da177e4
LT
3398
3399 /*
dd41f596
IM
3400 * Optimization: we know that if all tasks are in
3401 * the fair class we can call that function directly:
1da177e4 3402 */
dd41f596
IM
3403 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3404 p = fair_sched_class.pick_next_task(rq, now);
3405 if (likely(p))
3406 return p;
1da177e4
LT
3407 }
3408
dd41f596
IM
3409 class = sched_class_highest;
3410 for ( ; ; ) {
3411 p = class->pick_next_task(rq, now);
3412 if (p)
3413 return p;
3414 /*
3415 * Will never be NULL as the idle class always
3416 * returns a non-NULL p:
3417 */
3418 class = class->next;
3419 }
3420}
1da177e4 3421
dd41f596
IM
3422/*
3423 * schedule() is the main scheduler function.
3424 */
3425asmlinkage void __sched schedule(void)
3426{
3427 struct task_struct *prev, *next;
3428 long *switch_count;
3429 struct rq *rq;
3430 u64 now;
3431 int cpu;
3432
3433need_resched:
3434 preempt_disable();
3435 cpu = smp_processor_id();
3436 rq = cpu_rq(cpu);
3437 rcu_qsctr_inc(cpu);
3438 prev = rq->curr;
3439 switch_count = &prev->nivcsw;
3440
3441 release_kernel_lock(prev);
3442need_resched_nonpreemptible:
3443
3444 schedule_debug(prev);
1da177e4
LT
3445
3446 spin_lock_irq(&rq->lock);
dd41f596 3447 clear_tsk_need_resched(prev);
8e717b19 3448 now = __rq_clock(rq);
1da177e4 3449
1da177e4 3450 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3451 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3452 unlikely(signal_pending(prev)))) {
1da177e4 3453 prev->state = TASK_RUNNING;
dd41f596 3454 } else {
8e717b19 3455 deactivate_task(rq, prev, 1, now);
1da177e4 3456 }
dd41f596 3457 switch_count = &prev->nvcsw;
1da177e4
LT
3458 }
3459
dd41f596 3460 if (unlikely(!rq->nr_running))
1da177e4 3461 idle_balance(cpu, rq);
1da177e4 3462
dd41f596
IM
3463 prev->sched_class->put_prev_task(rq, prev, now);
3464 next = pick_next_task(rq, prev, now);
1da177e4
LT
3465
3466 sched_info_switch(prev, next);
dd41f596 3467
1da177e4 3468 if (likely(prev != next)) {
1da177e4
LT
3469 rq->nr_switches++;
3470 rq->curr = next;
3471 ++*switch_count;
3472
dd41f596 3473 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3474 } else
3475 spin_unlock_irq(&rq->lock);
3476
dd41f596
IM
3477 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3478 cpu = smp_processor_id();
3479 rq = cpu_rq(cpu);
1da177e4 3480 goto need_resched_nonpreemptible;
dd41f596 3481 }
1da177e4
LT
3482 preempt_enable_no_resched();
3483 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3484 goto need_resched;
3485}
1da177e4
LT
3486EXPORT_SYMBOL(schedule);
3487
3488#ifdef CONFIG_PREEMPT
3489/*
2ed6e34f 3490 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3491 * off of preempt_enable. Kernel preemptions off return from interrupt
3492 * occur there and call schedule directly.
3493 */
3494asmlinkage void __sched preempt_schedule(void)
3495{
3496 struct thread_info *ti = current_thread_info();
3497#ifdef CONFIG_PREEMPT_BKL
3498 struct task_struct *task = current;
3499 int saved_lock_depth;
3500#endif
3501 /*
3502 * If there is a non-zero preempt_count or interrupts are disabled,
3503 * we do not want to preempt the current task. Just return..
3504 */
beed33a8 3505 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3506 return;
3507
3508need_resched:
3509 add_preempt_count(PREEMPT_ACTIVE);
3510 /*
3511 * We keep the big kernel semaphore locked, but we
3512 * clear ->lock_depth so that schedule() doesnt
3513 * auto-release the semaphore:
3514 */
3515#ifdef CONFIG_PREEMPT_BKL
3516 saved_lock_depth = task->lock_depth;
3517 task->lock_depth = -1;
3518#endif
3519 schedule();
3520#ifdef CONFIG_PREEMPT_BKL
3521 task->lock_depth = saved_lock_depth;
3522#endif
3523 sub_preempt_count(PREEMPT_ACTIVE);
3524
3525 /* we could miss a preemption opportunity between schedule and now */
3526 barrier();
3527 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3528 goto need_resched;
3529}
1da177e4
LT
3530EXPORT_SYMBOL(preempt_schedule);
3531
3532/*
2ed6e34f 3533 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3534 * off of irq context.
3535 * Note, that this is called and return with irqs disabled. This will
3536 * protect us against recursive calling from irq.
3537 */
3538asmlinkage void __sched preempt_schedule_irq(void)
3539{
3540 struct thread_info *ti = current_thread_info();
3541#ifdef CONFIG_PREEMPT_BKL
3542 struct task_struct *task = current;
3543 int saved_lock_depth;
3544#endif
2ed6e34f 3545 /* Catch callers which need to be fixed */
1da177e4
LT
3546 BUG_ON(ti->preempt_count || !irqs_disabled());
3547
3548need_resched:
3549 add_preempt_count(PREEMPT_ACTIVE);
3550 /*
3551 * We keep the big kernel semaphore locked, but we
3552 * clear ->lock_depth so that schedule() doesnt
3553 * auto-release the semaphore:
3554 */
3555#ifdef CONFIG_PREEMPT_BKL
3556 saved_lock_depth = task->lock_depth;
3557 task->lock_depth = -1;
3558#endif
3559 local_irq_enable();
3560 schedule();
3561 local_irq_disable();
3562#ifdef CONFIG_PREEMPT_BKL
3563 task->lock_depth = saved_lock_depth;
3564#endif
3565 sub_preempt_count(PREEMPT_ACTIVE);
3566
3567 /* we could miss a preemption opportunity between schedule and now */
3568 barrier();
3569 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3570 goto need_resched;
3571}
3572
3573#endif /* CONFIG_PREEMPT */
3574
95cdf3b7
IM
3575int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3576 void *key)
1da177e4 3577{
48f24c4d 3578 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3579}
1da177e4
LT
3580EXPORT_SYMBOL(default_wake_function);
3581
3582/*
3583 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3584 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3585 * number) then we wake all the non-exclusive tasks and one exclusive task.
3586 *
3587 * There are circumstances in which we can try to wake a task which has already
3588 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3589 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3590 */
3591static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3592 int nr_exclusive, int sync, void *key)
3593{
3594 struct list_head *tmp, *next;
3595
3596 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3597 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3598 unsigned flags = curr->flags;
3599
1da177e4 3600 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3601 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3602 break;
3603 }
3604}
3605
3606/**
3607 * __wake_up - wake up threads blocked on a waitqueue.
3608 * @q: the waitqueue
3609 * @mode: which threads
3610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3611 * @key: is directly passed to the wakeup function
1da177e4
LT
3612 */
3613void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3614 int nr_exclusive, void *key)
1da177e4
LT
3615{
3616 unsigned long flags;
3617
3618 spin_lock_irqsave(&q->lock, flags);
3619 __wake_up_common(q, mode, nr_exclusive, 0, key);
3620 spin_unlock_irqrestore(&q->lock, flags);
3621}
1da177e4
LT
3622EXPORT_SYMBOL(__wake_up);
3623
3624/*
3625 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3626 */
3627void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3628{
3629 __wake_up_common(q, mode, 1, 0, NULL);
3630}
3631
3632/**
67be2dd1 3633 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3634 * @q: the waitqueue
3635 * @mode: which threads
3636 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3637 *
3638 * The sync wakeup differs that the waker knows that it will schedule
3639 * away soon, so while the target thread will be woken up, it will not
3640 * be migrated to another CPU - ie. the two threads are 'synchronized'
3641 * with each other. This can prevent needless bouncing between CPUs.
3642 *
3643 * On UP it can prevent extra preemption.
3644 */
95cdf3b7
IM
3645void fastcall
3646__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3647{
3648 unsigned long flags;
3649 int sync = 1;
3650
3651 if (unlikely(!q))
3652 return;
3653
3654 if (unlikely(!nr_exclusive))
3655 sync = 0;
3656
3657 spin_lock_irqsave(&q->lock, flags);
3658 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3659 spin_unlock_irqrestore(&q->lock, flags);
3660}
3661EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3662
3663void fastcall complete(struct completion *x)
3664{
3665 unsigned long flags;
3666
3667 spin_lock_irqsave(&x->wait.lock, flags);
3668 x->done++;
3669 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3670 1, 0, NULL);
3671 spin_unlock_irqrestore(&x->wait.lock, flags);
3672}
3673EXPORT_SYMBOL(complete);
3674
3675void fastcall complete_all(struct completion *x)
3676{
3677 unsigned long flags;
3678
3679 spin_lock_irqsave(&x->wait.lock, flags);
3680 x->done += UINT_MAX/2;
3681 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3682 0, 0, NULL);
3683 spin_unlock_irqrestore(&x->wait.lock, flags);
3684}
3685EXPORT_SYMBOL(complete_all);
3686
3687void fastcall __sched wait_for_completion(struct completion *x)
3688{
3689 might_sleep();
48f24c4d 3690
1da177e4
LT
3691 spin_lock_irq(&x->wait.lock);
3692 if (!x->done) {
3693 DECLARE_WAITQUEUE(wait, current);
3694
3695 wait.flags |= WQ_FLAG_EXCLUSIVE;
3696 __add_wait_queue_tail(&x->wait, &wait);
3697 do {
3698 __set_current_state(TASK_UNINTERRUPTIBLE);
3699 spin_unlock_irq(&x->wait.lock);
3700 schedule();
3701 spin_lock_irq(&x->wait.lock);
3702 } while (!x->done);
3703 __remove_wait_queue(&x->wait, &wait);
3704 }
3705 x->done--;
3706 spin_unlock_irq(&x->wait.lock);
3707}
3708EXPORT_SYMBOL(wait_for_completion);
3709
3710unsigned long fastcall __sched
3711wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3712{
3713 might_sleep();
3714
3715 spin_lock_irq(&x->wait.lock);
3716 if (!x->done) {
3717 DECLARE_WAITQUEUE(wait, current);
3718
3719 wait.flags |= WQ_FLAG_EXCLUSIVE;
3720 __add_wait_queue_tail(&x->wait, &wait);
3721 do {
3722 __set_current_state(TASK_UNINTERRUPTIBLE);
3723 spin_unlock_irq(&x->wait.lock);
3724 timeout = schedule_timeout(timeout);
3725 spin_lock_irq(&x->wait.lock);
3726 if (!timeout) {
3727 __remove_wait_queue(&x->wait, &wait);
3728 goto out;
3729 }
3730 } while (!x->done);
3731 __remove_wait_queue(&x->wait, &wait);
3732 }
3733 x->done--;
3734out:
3735 spin_unlock_irq(&x->wait.lock);
3736 return timeout;
3737}
3738EXPORT_SYMBOL(wait_for_completion_timeout);
3739
3740int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3741{
3742 int ret = 0;
3743
3744 might_sleep();
3745
3746 spin_lock_irq(&x->wait.lock);
3747 if (!x->done) {
3748 DECLARE_WAITQUEUE(wait, current);
3749
3750 wait.flags |= WQ_FLAG_EXCLUSIVE;
3751 __add_wait_queue_tail(&x->wait, &wait);
3752 do {
3753 if (signal_pending(current)) {
3754 ret = -ERESTARTSYS;
3755 __remove_wait_queue(&x->wait, &wait);
3756 goto out;
3757 }
3758 __set_current_state(TASK_INTERRUPTIBLE);
3759 spin_unlock_irq(&x->wait.lock);
3760 schedule();
3761 spin_lock_irq(&x->wait.lock);
3762 } while (!x->done);
3763 __remove_wait_queue(&x->wait, &wait);
3764 }
3765 x->done--;
3766out:
3767 spin_unlock_irq(&x->wait.lock);
3768
3769 return ret;
3770}
3771EXPORT_SYMBOL(wait_for_completion_interruptible);
3772
3773unsigned long fastcall __sched
3774wait_for_completion_interruptible_timeout(struct completion *x,
3775 unsigned long timeout)
3776{
3777 might_sleep();
3778
3779 spin_lock_irq(&x->wait.lock);
3780 if (!x->done) {
3781 DECLARE_WAITQUEUE(wait, current);
3782
3783 wait.flags |= WQ_FLAG_EXCLUSIVE;
3784 __add_wait_queue_tail(&x->wait, &wait);
3785 do {
3786 if (signal_pending(current)) {
3787 timeout = -ERESTARTSYS;
3788 __remove_wait_queue(&x->wait, &wait);
3789 goto out;
3790 }
3791 __set_current_state(TASK_INTERRUPTIBLE);
3792 spin_unlock_irq(&x->wait.lock);
3793 timeout = schedule_timeout(timeout);
3794 spin_lock_irq(&x->wait.lock);
3795 if (!timeout) {
3796 __remove_wait_queue(&x->wait, &wait);
3797 goto out;
3798 }
3799 } while (!x->done);
3800 __remove_wait_queue(&x->wait, &wait);
3801 }
3802 x->done--;
3803out:
3804 spin_unlock_irq(&x->wait.lock);
3805 return timeout;
3806}
3807EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3808
0fec171c
IM
3809static inline void
3810sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3811{
3812 spin_lock_irqsave(&q->lock, *flags);
3813 __add_wait_queue(q, wait);
1da177e4 3814 spin_unlock(&q->lock);
0fec171c 3815}
1da177e4 3816
0fec171c
IM
3817static inline void
3818sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3819{
3820 spin_lock_irq(&q->lock);
3821 __remove_wait_queue(q, wait);
3822 spin_unlock_irqrestore(&q->lock, *flags);
3823}
1da177e4 3824
0fec171c 3825void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3826{
0fec171c
IM
3827 unsigned long flags;
3828 wait_queue_t wait;
3829
3830 init_waitqueue_entry(&wait, current);
1da177e4
LT
3831
3832 current->state = TASK_INTERRUPTIBLE;
3833
0fec171c 3834 sleep_on_head(q, &wait, &flags);
1da177e4 3835 schedule();
0fec171c 3836 sleep_on_tail(q, &wait, &flags);
1da177e4 3837}
1da177e4
LT
3838EXPORT_SYMBOL(interruptible_sleep_on);
3839
0fec171c 3840long __sched
95cdf3b7 3841interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3842{
0fec171c
IM
3843 unsigned long flags;
3844 wait_queue_t wait;
3845
3846 init_waitqueue_entry(&wait, current);
1da177e4
LT
3847
3848 current->state = TASK_INTERRUPTIBLE;
3849
0fec171c 3850 sleep_on_head(q, &wait, &flags);
1da177e4 3851 timeout = schedule_timeout(timeout);
0fec171c 3852 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3853
3854 return timeout;
3855}
1da177e4
LT
3856EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3857
0fec171c 3858void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3859{
0fec171c
IM
3860 unsigned long flags;
3861 wait_queue_t wait;
3862
3863 init_waitqueue_entry(&wait, current);
1da177e4
LT
3864
3865 current->state = TASK_UNINTERRUPTIBLE;
3866
0fec171c 3867 sleep_on_head(q, &wait, &flags);
1da177e4 3868 schedule();
0fec171c 3869 sleep_on_tail(q, &wait, &flags);
1da177e4 3870}
1da177e4
LT
3871EXPORT_SYMBOL(sleep_on);
3872
0fec171c 3873long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3874{
0fec171c
IM
3875 unsigned long flags;
3876 wait_queue_t wait;
3877
3878 init_waitqueue_entry(&wait, current);
1da177e4
LT
3879
3880 current->state = TASK_UNINTERRUPTIBLE;
3881
0fec171c 3882 sleep_on_head(q, &wait, &flags);
1da177e4 3883 timeout = schedule_timeout(timeout);
0fec171c 3884 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3885
3886 return timeout;
3887}
1da177e4
LT
3888EXPORT_SYMBOL(sleep_on_timeout);
3889
b29739f9
IM
3890#ifdef CONFIG_RT_MUTEXES
3891
3892/*
3893 * rt_mutex_setprio - set the current priority of a task
3894 * @p: task
3895 * @prio: prio value (kernel-internal form)
3896 *
3897 * This function changes the 'effective' priority of a task. It does
3898 * not touch ->normal_prio like __setscheduler().
3899 *
3900 * Used by the rt_mutex code to implement priority inheritance logic.
3901 */
36c8b586 3902void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3903{
3904 unsigned long flags;
dd41f596 3905 int oldprio, on_rq;
70b97a7f 3906 struct rq *rq;
dd41f596 3907 u64 now;
b29739f9
IM
3908
3909 BUG_ON(prio < 0 || prio > MAX_PRIO);
3910
3911 rq = task_rq_lock(p, &flags);
dd41f596 3912 now = rq_clock(rq);
b29739f9 3913
d5f9f942 3914 oldprio = p->prio;
dd41f596
IM
3915 on_rq = p->se.on_rq;
3916 if (on_rq)
3917 dequeue_task(rq, p, 0, now);
3918
3919 if (rt_prio(prio))
3920 p->sched_class = &rt_sched_class;
3921 else
3922 p->sched_class = &fair_sched_class;
3923
b29739f9
IM
3924 p->prio = prio;
3925
dd41f596
IM
3926 if (on_rq) {
3927 enqueue_task(rq, p, 0, now);
b29739f9
IM
3928 /*
3929 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3930 * our priority decreased, or if we are not currently running on
3931 * this runqueue and our priority is higher than the current's
b29739f9 3932 */
d5f9f942
AM
3933 if (task_running(rq, p)) {
3934 if (p->prio > oldprio)
3935 resched_task(rq->curr);
dd41f596
IM
3936 } else {
3937 check_preempt_curr(rq, p);
3938 }
b29739f9
IM
3939 }
3940 task_rq_unlock(rq, &flags);
3941}
3942
3943#endif
3944
36c8b586 3945void set_user_nice(struct task_struct *p, long nice)
1da177e4 3946{
dd41f596 3947 int old_prio, delta, on_rq;
1da177e4 3948 unsigned long flags;
70b97a7f 3949 struct rq *rq;
dd41f596 3950 u64 now;
1da177e4
LT
3951
3952 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3953 return;
3954 /*
3955 * We have to be careful, if called from sys_setpriority(),
3956 * the task might be in the middle of scheduling on another CPU.
3957 */
3958 rq = task_rq_lock(p, &flags);
dd41f596 3959 now = rq_clock(rq);
1da177e4
LT
3960 /*
3961 * The RT priorities are set via sched_setscheduler(), but we still
3962 * allow the 'normal' nice value to be set - but as expected
3963 * it wont have any effect on scheduling until the task is
dd41f596 3964 * SCHED_FIFO/SCHED_RR:
1da177e4 3965 */
e05606d3 3966 if (task_has_rt_policy(p)) {
1da177e4
LT
3967 p->static_prio = NICE_TO_PRIO(nice);
3968 goto out_unlock;
3969 }
dd41f596
IM
3970 on_rq = p->se.on_rq;
3971 if (on_rq) {
3972 dequeue_task(rq, p, 0, now);
3973 dec_load(rq, p, now);
2dd73a4f 3974 }
1da177e4 3975
1da177e4 3976 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3977 set_load_weight(p);
b29739f9
IM
3978 old_prio = p->prio;
3979 p->prio = effective_prio(p);
3980 delta = p->prio - old_prio;
1da177e4 3981
dd41f596
IM
3982 if (on_rq) {
3983 enqueue_task(rq, p, 0, now);
3984 inc_load(rq, p, now);
1da177e4 3985 /*
d5f9f942
AM
3986 * If the task increased its priority or is running and
3987 * lowered its priority, then reschedule its CPU:
1da177e4 3988 */
d5f9f942 3989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3990 resched_task(rq->curr);
3991 }
3992out_unlock:
3993 task_rq_unlock(rq, &flags);
3994}
1da177e4
LT
3995EXPORT_SYMBOL(set_user_nice);
3996
e43379f1
MM
3997/*
3998 * can_nice - check if a task can reduce its nice value
3999 * @p: task
4000 * @nice: nice value
4001 */
36c8b586 4002int can_nice(const struct task_struct *p, const int nice)
e43379f1 4003{
024f4747
MM
4004 /* convert nice value [19,-20] to rlimit style value [1,40] */
4005 int nice_rlim = 20 - nice;
48f24c4d 4006
e43379f1
MM
4007 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4008 capable(CAP_SYS_NICE));
4009}
4010
1da177e4
LT
4011#ifdef __ARCH_WANT_SYS_NICE
4012
4013/*
4014 * sys_nice - change the priority of the current process.
4015 * @increment: priority increment
4016 *
4017 * sys_setpriority is a more generic, but much slower function that
4018 * does similar things.
4019 */
4020asmlinkage long sys_nice(int increment)
4021{
48f24c4d 4022 long nice, retval;
1da177e4
LT
4023
4024 /*
4025 * Setpriority might change our priority at the same moment.
4026 * We don't have to worry. Conceptually one call occurs first
4027 * and we have a single winner.
4028 */
e43379f1
MM
4029 if (increment < -40)
4030 increment = -40;
1da177e4
LT
4031 if (increment > 40)
4032 increment = 40;
4033
4034 nice = PRIO_TO_NICE(current->static_prio) + increment;
4035 if (nice < -20)
4036 nice = -20;
4037 if (nice > 19)
4038 nice = 19;
4039
e43379f1
MM
4040 if (increment < 0 && !can_nice(current, nice))
4041 return -EPERM;
4042
1da177e4
LT
4043 retval = security_task_setnice(current, nice);
4044 if (retval)
4045 return retval;
4046
4047 set_user_nice(current, nice);
4048 return 0;
4049}
4050
4051#endif
4052
4053/**
4054 * task_prio - return the priority value of a given task.
4055 * @p: the task in question.
4056 *
4057 * This is the priority value as seen by users in /proc.
4058 * RT tasks are offset by -200. Normal tasks are centered
4059 * around 0, value goes from -16 to +15.
4060 */
36c8b586 4061int task_prio(const struct task_struct *p)
1da177e4
LT
4062{
4063 return p->prio - MAX_RT_PRIO;
4064}
4065
4066/**
4067 * task_nice - return the nice value of a given task.
4068 * @p: the task in question.
4069 */
36c8b586 4070int task_nice(const struct task_struct *p)
1da177e4
LT
4071{
4072 return TASK_NICE(p);
4073}
1da177e4 4074EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4075
4076/**
4077 * idle_cpu - is a given cpu idle currently?
4078 * @cpu: the processor in question.
4079 */
4080int idle_cpu(int cpu)
4081{
4082 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4083}
4084
1da177e4
LT
4085/**
4086 * idle_task - return the idle task for a given cpu.
4087 * @cpu: the processor in question.
4088 */
36c8b586 4089struct task_struct *idle_task(int cpu)
1da177e4
LT
4090{
4091 return cpu_rq(cpu)->idle;
4092}
4093
4094/**
4095 * find_process_by_pid - find a process with a matching PID value.
4096 * @pid: the pid in question.
4097 */
36c8b586 4098static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4099{
4100 return pid ? find_task_by_pid(pid) : current;
4101}
4102
4103/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4104static void
4105__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4106{
dd41f596 4107 BUG_ON(p->se.on_rq);
48f24c4d 4108
1da177e4 4109 p->policy = policy;
dd41f596
IM
4110 switch (p->policy) {
4111 case SCHED_NORMAL:
4112 case SCHED_BATCH:
4113 case SCHED_IDLE:
4114 p->sched_class = &fair_sched_class;
4115 break;
4116 case SCHED_FIFO:
4117 case SCHED_RR:
4118 p->sched_class = &rt_sched_class;
4119 break;
4120 }
4121
1da177e4 4122 p->rt_priority = prio;
b29739f9
IM
4123 p->normal_prio = normal_prio(p);
4124 /* we are holding p->pi_lock already */
4125 p->prio = rt_mutex_getprio(p);
2dd73a4f 4126 set_load_weight(p);
1da177e4
LT
4127}
4128
4129/**
72fd4a35 4130 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4131 * @p: the task in question.
4132 * @policy: new policy.
4133 * @param: structure containing the new RT priority.
5fe1d75f 4134 *
72fd4a35 4135 * NOTE that the task may be already dead.
1da177e4 4136 */
95cdf3b7
IM
4137int sched_setscheduler(struct task_struct *p, int policy,
4138 struct sched_param *param)
1da177e4 4139{
dd41f596 4140 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4141 unsigned long flags;
70b97a7f 4142 struct rq *rq;
1da177e4 4143
66e5393a
SR
4144 /* may grab non-irq protected spin_locks */
4145 BUG_ON(in_interrupt());
1da177e4
LT
4146recheck:
4147 /* double check policy once rq lock held */
4148 if (policy < 0)
4149 policy = oldpolicy = p->policy;
4150 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4151 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4152 policy != SCHED_IDLE)
b0a9499c 4153 return -EINVAL;
1da177e4
LT
4154 /*
4155 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4156 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4157 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4158 */
4159 if (param->sched_priority < 0 ||
95cdf3b7 4160 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4161 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4162 return -EINVAL;
e05606d3 4163 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4164 return -EINVAL;
4165
37e4ab3f
OC
4166 /*
4167 * Allow unprivileged RT tasks to decrease priority:
4168 */
4169 if (!capable(CAP_SYS_NICE)) {
e05606d3 4170 if (rt_policy(policy)) {
8dc3e909 4171 unsigned long rlim_rtprio;
8dc3e909
ON
4172
4173 if (!lock_task_sighand(p, &flags))
4174 return -ESRCH;
4175 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4176 unlock_task_sighand(p, &flags);
4177
4178 /* can't set/change the rt policy */
4179 if (policy != p->policy && !rlim_rtprio)
4180 return -EPERM;
4181
4182 /* can't increase priority */
4183 if (param->sched_priority > p->rt_priority &&
4184 param->sched_priority > rlim_rtprio)
4185 return -EPERM;
4186 }
dd41f596
IM
4187 /*
4188 * Like positive nice levels, dont allow tasks to
4189 * move out of SCHED_IDLE either:
4190 */
4191 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4192 return -EPERM;
5fe1d75f 4193
37e4ab3f
OC
4194 /* can't change other user's priorities */
4195 if ((current->euid != p->euid) &&
4196 (current->euid != p->uid))
4197 return -EPERM;
4198 }
1da177e4
LT
4199
4200 retval = security_task_setscheduler(p, policy, param);
4201 if (retval)
4202 return retval;
b29739f9
IM
4203 /*
4204 * make sure no PI-waiters arrive (or leave) while we are
4205 * changing the priority of the task:
4206 */
4207 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4208 /*
4209 * To be able to change p->policy safely, the apropriate
4210 * runqueue lock must be held.
4211 */
b29739f9 4212 rq = __task_rq_lock(p);
1da177e4
LT
4213 /* recheck policy now with rq lock held */
4214 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4215 policy = oldpolicy = -1;
b29739f9
IM
4216 __task_rq_unlock(rq);
4217 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4218 goto recheck;
4219 }
dd41f596
IM
4220 on_rq = p->se.on_rq;
4221 if (on_rq)
8e717b19 4222 deactivate_task(rq, p, 0, rq_clock(rq));
1da177e4 4223 oldprio = p->prio;
dd41f596
IM
4224 __setscheduler(rq, p, policy, param->sched_priority);
4225 if (on_rq) {
4226 activate_task(rq, p, 0);
1da177e4
LT
4227 /*
4228 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4229 * our priority decreased, or if we are not currently running on
4230 * this runqueue and our priority is higher than the current's
1da177e4 4231 */
d5f9f942
AM
4232 if (task_running(rq, p)) {
4233 if (p->prio > oldprio)
4234 resched_task(rq->curr);
dd41f596
IM
4235 } else {
4236 check_preempt_curr(rq, p);
4237 }
1da177e4 4238 }
b29739f9
IM
4239 __task_rq_unlock(rq);
4240 spin_unlock_irqrestore(&p->pi_lock, flags);
4241
95e02ca9
TG
4242 rt_mutex_adjust_pi(p);
4243
1da177e4
LT
4244 return 0;
4245}
4246EXPORT_SYMBOL_GPL(sched_setscheduler);
4247
95cdf3b7
IM
4248static int
4249do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4250{
1da177e4
LT
4251 struct sched_param lparam;
4252 struct task_struct *p;
36c8b586 4253 int retval;
1da177e4
LT
4254
4255 if (!param || pid < 0)
4256 return -EINVAL;
4257 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4258 return -EFAULT;
5fe1d75f
ON
4259
4260 rcu_read_lock();
4261 retval = -ESRCH;
1da177e4 4262 p = find_process_by_pid(pid);
5fe1d75f
ON
4263 if (p != NULL)
4264 retval = sched_setscheduler(p, policy, &lparam);
4265 rcu_read_unlock();
36c8b586 4266
1da177e4
LT
4267 return retval;
4268}
4269
4270/**
4271 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4272 * @pid: the pid in question.
4273 * @policy: new policy.
4274 * @param: structure containing the new RT priority.
4275 */
4276asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4277 struct sched_param __user *param)
4278{
c21761f1
JB
4279 /* negative values for policy are not valid */
4280 if (policy < 0)
4281 return -EINVAL;
4282
1da177e4
LT
4283 return do_sched_setscheduler(pid, policy, param);
4284}
4285
4286/**
4287 * sys_sched_setparam - set/change the RT priority of a thread
4288 * @pid: the pid in question.
4289 * @param: structure containing the new RT priority.
4290 */
4291asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4292{
4293 return do_sched_setscheduler(pid, -1, param);
4294}
4295
4296/**
4297 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4298 * @pid: the pid in question.
4299 */
4300asmlinkage long sys_sched_getscheduler(pid_t pid)
4301{
36c8b586 4302 struct task_struct *p;
1da177e4 4303 int retval = -EINVAL;
1da177e4
LT
4304
4305 if (pid < 0)
4306 goto out_nounlock;
4307
4308 retval = -ESRCH;
4309 read_lock(&tasklist_lock);
4310 p = find_process_by_pid(pid);
4311 if (p) {
4312 retval = security_task_getscheduler(p);
4313 if (!retval)
4314 retval = p->policy;
4315 }
4316 read_unlock(&tasklist_lock);
4317
4318out_nounlock:
4319 return retval;
4320}
4321
4322/**
4323 * sys_sched_getscheduler - get the RT priority of a thread
4324 * @pid: the pid in question.
4325 * @param: structure containing the RT priority.
4326 */
4327asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4328{
4329 struct sched_param lp;
36c8b586 4330 struct task_struct *p;
1da177e4 4331 int retval = -EINVAL;
1da177e4
LT
4332
4333 if (!param || pid < 0)
4334 goto out_nounlock;
4335
4336 read_lock(&tasklist_lock);
4337 p = find_process_by_pid(pid);
4338 retval = -ESRCH;
4339 if (!p)
4340 goto out_unlock;
4341
4342 retval = security_task_getscheduler(p);
4343 if (retval)
4344 goto out_unlock;
4345
4346 lp.sched_priority = p->rt_priority;
4347 read_unlock(&tasklist_lock);
4348
4349 /*
4350 * This one might sleep, we cannot do it with a spinlock held ...
4351 */
4352 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4353
4354out_nounlock:
4355 return retval;
4356
4357out_unlock:
4358 read_unlock(&tasklist_lock);
4359 return retval;
4360}
4361
4362long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4363{
1da177e4 4364 cpumask_t cpus_allowed;
36c8b586
IM
4365 struct task_struct *p;
4366 int retval;
1da177e4 4367
5be9361c 4368 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4369 read_lock(&tasklist_lock);
4370
4371 p = find_process_by_pid(pid);
4372 if (!p) {
4373 read_unlock(&tasklist_lock);
5be9361c 4374 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4375 return -ESRCH;
4376 }
4377
4378 /*
4379 * It is not safe to call set_cpus_allowed with the
4380 * tasklist_lock held. We will bump the task_struct's
4381 * usage count and then drop tasklist_lock.
4382 */
4383 get_task_struct(p);
4384 read_unlock(&tasklist_lock);
4385
4386 retval = -EPERM;
4387 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4388 !capable(CAP_SYS_NICE))
4389 goto out_unlock;
4390
e7834f8f
DQ
4391 retval = security_task_setscheduler(p, 0, NULL);
4392 if (retval)
4393 goto out_unlock;
4394
1da177e4
LT
4395 cpus_allowed = cpuset_cpus_allowed(p);
4396 cpus_and(new_mask, new_mask, cpus_allowed);
4397 retval = set_cpus_allowed(p, new_mask);
4398
4399out_unlock:
4400 put_task_struct(p);
5be9361c 4401 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4402 return retval;
4403}
4404
4405static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4406 cpumask_t *new_mask)
4407{
4408 if (len < sizeof(cpumask_t)) {
4409 memset(new_mask, 0, sizeof(cpumask_t));
4410 } else if (len > sizeof(cpumask_t)) {
4411 len = sizeof(cpumask_t);
4412 }
4413 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4414}
4415
4416/**
4417 * sys_sched_setaffinity - set the cpu affinity of a process
4418 * @pid: pid of the process
4419 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4420 * @user_mask_ptr: user-space pointer to the new cpu mask
4421 */
4422asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4423 unsigned long __user *user_mask_ptr)
4424{
4425 cpumask_t new_mask;
4426 int retval;
4427
4428 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4429 if (retval)
4430 return retval;
4431
4432 return sched_setaffinity(pid, new_mask);
4433}
4434
4435/*
4436 * Represents all cpu's present in the system
4437 * In systems capable of hotplug, this map could dynamically grow
4438 * as new cpu's are detected in the system via any platform specific
4439 * method, such as ACPI for e.g.
4440 */
4441
4cef0c61 4442cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4443EXPORT_SYMBOL(cpu_present_map);
4444
4445#ifndef CONFIG_SMP
4cef0c61 4446cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4447EXPORT_SYMBOL(cpu_online_map);
4448
4cef0c61 4449cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4450EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4451#endif
4452
4453long sched_getaffinity(pid_t pid, cpumask_t *mask)
4454{
36c8b586 4455 struct task_struct *p;
1da177e4 4456 int retval;
1da177e4 4457
5be9361c 4458 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4459 read_lock(&tasklist_lock);
4460
4461 retval = -ESRCH;
4462 p = find_process_by_pid(pid);
4463 if (!p)
4464 goto out_unlock;
4465
e7834f8f
DQ
4466 retval = security_task_getscheduler(p);
4467 if (retval)
4468 goto out_unlock;
4469
2f7016d9 4470 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4471
4472out_unlock:
4473 read_unlock(&tasklist_lock);
5be9361c 4474 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4475
9531b62f 4476 return retval;
1da177e4
LT
4477}
4478
4479/**
4480 * sys_sched_getaffinity - get the cpu affinity of a process
4481 * @pid: pid of the process
4482 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4483 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4484 */
4485asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4486 unsigned long __user *user_mask_ptr)
4487{
4488 int ret;
4489 cpumask_t mask;
4490
4491 if (len < sizeof(cpumask_t))
4492 return -EINVAL;
4493
4494 ret = sched_getaffinity(pid, &mask);
4495 if (ret < 0)
4496 return ret;
4497
4498 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4499 return -EFAULT;
4500
4501 return sizeof(cpumask_t);
4502}
4503
4504/**
4505 * sys_sched_yield - yield the current processor to other threads.
4506 *
dd41f596
IM
4507 * This function yields the current CPU to other tasks. If there are no
4508 * other threads running on this CPU then this function will return.
1da177e4
LT
4509 */
4510asmlinkage long sys_sched_yield(void)
4511{
70b97a7f 4512 struct rq *rq = this_rq_lock();
1da177e4
LT
4513
4514 schedstat_inc(rq, yld_cnt);
dd41f596 4515 if (unlikely(rq->nr_running == 1))
1da177e4 4516 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4517 else
4518 current->sched_class->yield_task(rq, current);
1da177e4
LT
4519
4520 /*
4521 * Since we are going to call schedule() anyway, there's
4522 * no need to preempt or enable interrupts:
4523 */
4524 __release(rq->lock);
8a25d5de 4525 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4526 _raw_spin_unlock(&rq->lock);
4527 preempt_enable_no_resched();
4528
4529 schedule();
4530
4531 return 0;
4532}
4533
e7b38404 4534static void __cond_resched(void)
1da177e4 4535{
8e0a43d8
IM
4536#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4537 __might_sleep(__FILE__, __LINE__);
4538#endif
5bbcfd90
IM
4539 /*
4540 * The BKS might be reacquired before we have dropped
4541 * PREEMPT_ACTIVE, which could trigger a second
4542 * cond_resched() call.
4543 */
1da177e4
LT
4544 do {
4545 add_preempt_count(PREEMPT_ACTIVE);
4546 schedule();
4547 sub_preempt_count(PREEMPT_ACTIVE);
4548 } while (need_resched());
4549}
4550
4551int __sched cond_resched(void)
4552{
9414232f
IM
4553 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4554 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4555 __cond_resched();
4556 return 1;
4557 }
4558 return 0;
4559}
1da177e4
LT
4560EXPORT_SYMBOL(cond_resched);
4561
4562/*
4563 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4564 * call schedule, and on return reacquire the lock.
4565 *
4566 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4567 * operations here to prevent schedule() from being called twice (once via
4568 * spin_unlock(), once by hand).
4569 */
95cdf3b7 4570int cond_resched_lock(spinlock_t *lock)
1da177e4 4571{
6df3cecb
JK
4572 int ret = 0;
4573
1da177e4
LT
4574 if (need_lockbreak(lock)) {
4575 spin_unlock(lock);
4576 cpu_relax();
6df3cecb 4577 ret = 1;
1da177e4
LT
4578 spin_lock(lock);
4579 }
9414232f 4580 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4581 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4582 _raw_spin_unlock(lock);
4583 preempt_enable_no_resched();
4584 __cond_resched();
6df3cecb 4585 ret = 1;
1da177e4 4586 spin_lock(lock);
1da177e4 4587 }
6df3cecb 4588 return ret;
1da177e4 4589}
1da177e4
LT
4590EXPORT_SYMBOL(cond_resched_lock);
4591
4592int __sched cond_resched_softirq(void)
4593{
4594 BUG_ON(!in_softirq());
4595
9414232f 4596 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4597 local_bh_enable();
1da177e4
LT
4598 __cond_resched();
4599 local_bh_disable();
4600 return 1;
4601 }
4602 return 0;
4603}
1da177e4
LT
4604EXPORT_SYMBOL(cond_resched_softirq);
4605
1da177e4
LT
4606/**
4607 * yield - yield the current processor to other threads.
4608 *
72fd4a35 4609 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4610 * thread runnable and calls sys_sched_yield().
4611 */
4612void __sched yield(void)
4613{
4614 set_current_state(TASK_RUNNING);
4615 sys_sched_yield();
4616}
1da177e4
LT
4617EXPORT_SYMBOL(yield);
4618
4619/*
4620 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4621 * that process accounting knows that this is a task in IO wait state.
4622 *
4623 * But don't do that if it is a deliberate, throttling IO wait (this task
4624 * has set its backing_dev_info: the queue against which it should throttle)
4625 */
4626void __sched io_schedule(void)
4627{
70b97a7f 4628 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4629
0ff92245 4630 delayacct_blkio_start();
1da177e4
LT
4631 atomic_inc(&rq->nr_iowait);
4632 schedule();
4633 atomic_dec(&rq->nr_iowait);
0ff92245 4634 delayacct_blkio_end();
1da177e4 4635}
1da177e4
LT
4636EXPORT_SYMBOL(io_schedule);
4637
4638long __sched io_schedule_timeout(long timeout)
4639{
70b97a7f 4640 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4641 long ret;
4642
0ff92245 4643 delayacct_blkio_start();
1da177e4
LT
4644 atomic_inc(&rq->nr_iowait);
4645 ret = schedule_timeout(timeout);
4646 atomic_dec(&rq->nr_iowait);
0ff92245 4647 delayacct_blkio_end();
1da177e4
LT
4648 return ret;
4649}
4650
4651/**
4652 * sys_sched_get_priority_max - return maximum RT priority.
4653 * @policy: scheduling class.
4654 *
4655 * this syscall returns the maximum rt_priority that can be used
4656 * by a given scheduling class.
4657 */
4658asmlinkage long sys_sched_get_priority_max(int policy)
4659{
4660 int ret = -EINVAL;
4661
4662 switch (policy) {
4663 case SCHED_FIFO:
4664 case SCHED_RR:
4665 ret = MAX_USER_RT_PRIO-1;
4666 break;
4667 case SCHED_NORMAL:
b0a9499c 4668 case SCHED_BATCH:
dd41f596 4669 case SCHED_IDLE:
1da177e4
LT
4670 ret = 0;
4671 break;
4672 }
4673 return ret;
4674}
4675
4676/**
4677 * sys_sched_get_priority_min - return minimum RT priority.
4678 * @policy: scheduling class.
4679 *
4680 * this syscall returns the minimum rt_priority that can be used
4681 * by a given scheduling class.
4682 */
4683asmlinkage long sys_sched_get_priority_min(int policy)
4684{
4685 int ret = -EINVAL;
4686
4687 switch (policy) {
4688 case SCHED_FIFO:
4689 case SCHED_RR:
4690 ret = 1;
4691 break;
4692 case SCHED_NORMAL:
b0a9499c 4693 case SCHED_BATCH:
dd41f596 4694 case SCHED_IDLE:
1da177e4
LT
4695 ret = 0;
4696 }
4697 return ret;
4698}
4699
4700/**
4701 * sys_sched_rr_get_interval - return the default timeslice of a process.
4702 * @pid: pid of the process.
4703 * @interval: userspace pointer to the timeslice value.
4704 *
4705 * this syscall writes the default timeslice value of a given process
4706 * into the user-space timespec buffer. A value of '0' means infinity.
4707 */
4708asmlinkage
4709long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4710{
36c8b586 4711 struct task_struct *p;
1da177e4
LT
4712 int retval = -EINVAL;
4713 struct timespec t;
1da177e4
LT
4714
4715 if (pid < 0)
4716 goto out_nounlock;
4717
4718 retval = -ESRCH;
4719 read_lock(&tasklist_lock);
4720 p = find_process_by_pid(pid);
4721 if (!p)
4722 goto out_unlock;
4723
4724 retval = security_task_getscheduler(p);
4725 if (retval)
4726 goto out_unlock;
4727
b78709cf 4728 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4729 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4730 read_unlock(&tasklist_lock);
4731 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4732out_nounlock:
4733 return retval;
4734out_unlock:
4735 read_unlock(&tasklist_lock);
4736 return retval;
4737}
4738
2ed6e34f 4739static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4740
4741static void show_task(struct task_struct *p)
1da177e4 4742{
1da177e4 4743 unsigned long free = 0;
36c8b586 4744 unsigned state;
1da177e4 4745
1da177e4 4746 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4747 printk("%-13.13s %c", p->comm,
4748 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4749#if BITS_PER_LONG == 32
1da177e4 4750 if (state == TASK_RUNNING)
4bd77321 4751 printk(" running ");
1da177e4 4752 else
4bd77321 4753 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4754#else
4755 if (state == TASK_RUNNING)
4bd77321 4756 printk(" running task ");
1da177e4
LT
4757 else
4758 printk(" %016lx ", thread_saved_pc(p));
4759#endif
4760#ifdef CONFIG_DEBUG_STACK_USAGE
4761 {
10ebffde 4762 unsigned long *n = end_of_stack(p);
1da177e4
LT
4763 while (!*n)
4764 n++;
10ebffde 4765 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4766 }
4767#endif
4bd77321 4768 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4769
4770 if (state != TASK_RUNNING)
4771 show_stack(p, NULL);
4772}
4773
e59e2ae2 4774void show_state_filter(unsigned long state_filter)
1da177e4 4775{
36c8b586 4776 struct task_struct *g, *p;
1da177e4 4777
4bd77321
IM
4778#if BITS_PER_LONG == 32
4779 printk(KERN_INFO
4780 " task PC stack pid father\n");
1da177e4 4781#else
4bd77321
IM
4782 printk(KERN_INFO
4783 " task PC stack pid father\n");
1da177e4
LT
4784#endif
4785 read_lock(&tasklist_lock);
4786 do_each_thread(g, p) {
4787 /*
4788 * reset the NMI-timeout, listing all files on a slow
4789 * console might take alot of time:
4790 */
4791 touch_nmi_watchdog();
39bc89fd 4792 if (!state_filter || (p->state & state_filter))
e59e2ae2 4793 show_task(p);
1da177e4
LT
4794 } while_each_thread(g, p);
4795
04c9167f
JF
4796 touch_all_softlockup_watchdogs();
4797
dd41f596
IM
4798#ifdef CONFIG_SCHED_DEBUG
4799 sysrq_sched_debug_show();
4800#endif
1da177e4 4801 read_unlock(&tasklist_lock);
e59e2ae2
IM
4802 /*
4803 * Only show locks if all tasks are dumped:
4804 */
4805 if (state_filter == -1)
4806 debug_show_all_locks();
1da177e4
LT
4807}
4808
1df21055
IM
4809void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4810{
dd41f596 4811 idle->sched_class = &idle_sched_class;
1df21055
IM
4812}
4813
f340c0d1
IM
4814/**
4815 * init_idle - set up an idle thread for a given CPU
4816 * @idle: task in question
4817 * @cpu: cpu the idle task belongs to
4818 *
4819 * NOTE: this function does not set the idle thread's NEED_RESCHED
4820 * flag, to make booting more robust.
4821 */
5c1e1767 4822void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4823{
70b97a7f 4824 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4825 unsigned long flags;
4826
dd41f596
IM
4827 __sched_fork(idle);
4828 idle->se.exec_start = sched_clock();
4829
b29739f9 4830 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4831 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4832 __set_task_cpu(idle, cpu);
1da177e4
LT
4833
4834 spin_lock_irqsave(&rq->lock, flags);
4835 rq->curr = rq->idle = idle;
4866cde0
NP
4836#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4837 idle->oncpu = 1;
4838#endif
1da177e4
LT
4839 spin_unlock_irqrestore(&rq->lock, flags);
4840
4841 /* Set the preempt count _outside_ the spinlocks! */
4842#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4843 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4844#else
a1261f54 4845 task_thread_info(idle)->preempt_count = 0;
1da177e4 4846#endif
dd41f596
IM
4847 /*
4848 * The idle tasks have their own, simple scheduling class:
4849 */
4850 idle->sched_class = &idle_sched_class;
1da177e4
LT
4851}
4852
4853/*
4854 * In a system that switches off the HZ timer nohz_cpu_mask
4855 * indicates which cpus entered this state. This is used
4856 * in the rcu update to wait only for active cpus. For system
4857 * which do not switch off the HZ timer nohz_cpu_mask should
4858 * always be CPU_MASK_NONE.
4859 */
4860cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4861
dd41f596
IM
4862/*
4863 * Increase the granularity value when there are more CPUs,
4864 * because with more CPUs the 'effective latency' as visible
4865 * to users decreases. But the relationship is not linear,
4866 * so pick a second-best guess by going with the log2 of the
4867 * number of CPUs.
4868 *
4869 * This idea comes from the SD scheduler of Con Kolivas:
4870 */
4871static inline void sched_init_granularity(void)
4872{
4873 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4874 const unsigned long gran_limit = 100000000;
dd41f596
IM
4875
4876 sysctl_sched_granularity *= factor;
4877 if (sysctl_sched_granularity > gran_limit)
4878 sysctl_sched_granularity = gran_limit;
4879
4880 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4881 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4882}
4883
1da177e4
LT
4884#ifdef CONFIG_SMP
4885/*
4886 * This is how migration works:
4887 *
70b97a7f 4888 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4889 * runqueue and wake up that CPU's migration thread.
4890 * 2) we down() the locked semaphore => thread blocks.
4891 * 3) migration thread wakes up (implicitly it forces the migrated
4892 * thread off the CPU)
4893 * 4) it gets the migration request and checks whether the migrated
4894 * task is still in the wrong runqueue.
4895 * 5) if it's in the wrong runqueue then the migration thread removes
4896 * it and puts it into the right queue.
4897 * 6) migration thread up()s the semaphore.
4898 * 7) we wake up and the migration is done.
4899 */
4900
4901/*
4902 * Change a given task's CPU affinity. Migrate the thread to a
4903 * proper CPU and schedule it away if the CPU it's executing on
4904 * is removed from the allowed bitmask.
4905 *
4906 * NOTE: the caller must have a valid reference to the task, the
4907 * task must not exit() & deallocate itself prematurely. The
4908 * call is not atomic; no spinlocks may be held.
4909 */
36c8b586 4910int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4911{
70b97a7f 4912 struct migration_req req;
1da177e4 4913 unsigned long flags;
70b97a7f 4914 struct rq *rq;
48f24c4d 4915 int ret = 0;
1da177e4
LT
4916
4917 rq = task_rq_lock(p, &flags);
4918 if (!cpus_intersects(new_mask, cpu_online_map)) {
4919 ret = -EINVAL;
4920 goto out;
4921 }
4922
4923 p->cpus_allowed = new_mask;
4924 /* Can the task run on the task's current CPU? If so, we're done */
4925 if (cpu_isset(task_cpu(p), new_mask))
4926 goto out;
4927
4928 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4929 /* Need help from migration thread: drop lock and wait. */
4930 task_rq_unlock(rq, &flags);
4931 wake_up_process(rq->migration_thread);
4932 wait_for_completion(&req.done);
4933 tlb_migrate_finish(p->mm);
4934 return 0;
4935 }
4936out:
4937 task_rq_unlock(rq, &flags);
48f24c4d 4938
1da177e4
LT
4939 return ret;
4940}
1da177e4
LT
4941EXPORT_SYMBOL_GPL(set_cpus_allowed);
4942
4943/*
4944 * Move (not current) task off this cpu, onto dest cpu. We're doing
4945 * this because either it can't run here any more (set_cpus_allowed()
4946 * away from this CPU, or CPU going down), or because we're
4947 * attempting to rebalance this task on exec (sched_exec).
4948 *
4949 * So we race with normal scheduler movements, but that's OK, as long
4950 * as the task is no longer on this CPU.
efc30814
KK
4951 *
4952 * Returns non-zero if task was successfully migrated.
1da177e4 4953 */
efc30814 4954static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4955{
70b97a7f 4956 struct rq *rq_dest, *rq_src;
dd41f596 4957 int ret = 0, on_rq;
1da177e4
LT
4958
4959 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4960 return ret;
1da177e4
LT
4961
4962 rq_src = cpu_rq(src_cpu);
4963 rq_dest = cpu_rq(dest_cpu);
4964
4965 double_rq_lock(rq_src, rq_dest);
4966 /* Already moved. */
4967 if (task_cpu(p) != src_cpu)
4968 goto out;
4969 /* Affinity changed (again). */
4970 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4971 goto out;
4972
dd41f596
IM
4973 on_rq = p->se.on_rq;
4974 if (on_rq)
8e717b19 4975 deactivate_task(rq_src, p, 0, rq_clock(rq_src));
1da177e4 4976 set_task_cpu(p, dest_cpu);
dd41f596
IM
4977 if (on_rq) {
4978 activate_task(rq_dest, p, 0);
4979 check_preempt_curr(rq_dest, p);
1da177e4 4980 }
efc30814 4981 ret = 1;
1da177e4
LT
4982out:
4983 double_rq_unlock(rq_src, rq_dest);
efc30814 4984 return ret;
1da177e4
LT
4985}
4986
4987/*
4988 * migration_thread - this is a highprio system thread that performs
4989 * thread migration by bumping thread off CPU then 'pushing' onto
4990 * another runqueue.
4991 */
95cdf3b7 4992static int migration_thread(void *data)
1da177e4 4993{
1da177e4 4994 int cpu = (long)data;
70b97a7f 4995 struct rq *rq;
1da177e4
LT
4996
4997 rq = cpu_rq(cpu);
4998 BUG_ON(rq->migration_thread != current);
4999
5000 set_current_state(TASK_INTERRUPTIBLE);
5001 while (!kthread_should_stop()) {
70b97a7f 5002 struct migration_req *req;
1da177e4 5003 struct list_head *head;
1da177e4 5004
1da177e4
LT
5005 spin_lock_irq(&rq->lock);
5006
5007 if (cpu_is_offline(cpu)) {
5008 spin_unlock_irq(&rq->lock);
5009 goto wait_to_die;
5010 }
5011
5012 if (rq->active_balance) {
5013 active_load_balance(rq, cpu);
5014 rq->active_balance = 0;
5015 }
5016
5017 head = &rq->migration_queue;
5018
5019 if (list_empty(head)) {
5020 spin_unlock_irq(&rq->lock);
5021 schedule();
5022 set_current_state(TASK_INTERRUPTIBLE);
5023 continue;
5024 }
70b97a7f 5025 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5026 list_del_init(head->next);
5027
674311d5
NP
5028 spin_unlock(&rq->lock);
5029 __migrate_task(req->task, cpu, req->dest_cpu);
5030 local_irq_enable();
1da177e4
LT
5031
5032 complete(&req->done);
5033 }
5034 __set_current_state(TASK_RUNNING);
5035 return 0;
5036
5037wait_to_die:
5038 /* Wait for kthread_stop */
5039 set_current_state(TASK_INTERRUPTIBLE);
5040 while (!kthread_should_stop()) {
5041 schedule();
5042 set_current_state(TASK_INTERRUPTIBLE);
5043 }
5044 __set_current_state(TASK_RUNNING);
5045 return 0;
5046}
5047
5048#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5049/*
5050 * Figure out where task on dead CPU should go, use force if neccessary.
5051 * NOTE: interrupts should be disabled by the caller
5052 */
48f24c4d 5053static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5054{
efc30814 5055 unsigned long flags;
1da177e4 5056 cpumask_t mask;
70b97a7f
IM
5057 struct rq *rq;
5058 int dest_cpu;
1da177e4 5059
efc30814 5060restart:
1da177e4
LT
5061 /* On same node? */
5062 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5063 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5064 dest_cpu = any_online_cpu(mask);
5065
5066 /* On any allowed CPU? */
5067 if (dest_cpu == NR_CPUS)
48f24c4d 5068 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5069
5070 /* No more Mr. Nice Guy. */
5071 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5072 rq = task_rq_lock(p, &flags);
5073 cpus_setall(p->cpus_allowed);
5074 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5075 task_rq_unlock(rq, &flags);
1da177e4
LT
5076
5077 /*
5078 * Don't tell them about moving exiting tasks or
5079 * kernel threads (both mm NULL), since they never
5080 * leave kernel.
5081 */
48f24c4d 5082 if (p->mm && printk_ratelimit())
1da177e4
LT
5083 printk(KERN_INFO "process %d (%s) no "
5084 "longer affine to cpu%d\n",
48f24c4d 5085 p->pid, p->comm, dead_cpu);
1da177e4 5086 }
48f24c4d 5087 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5088 goto restart;
1da177e4
LT
5089}
5090
5091/*
5092 * While a dead CPU has no uninterruptible tasks queued at this point,
5093 * it might still have a nonzero ->nr_uninterruptible counter, because
5094 * for performance reasons the counter is not stricly tracking tasks to
5095 * their home CPUs. So we just add the counter to another CPU's counter,
5096 * to keep the global sum constant after CPU-down:
5097 */
70b97a7f 5098static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5099{
70b97a7f 5100 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5101 unsigned long flags;
5102
5103 local_irq_save(flags);
5104 double_rq_lock(rq_src, rq_dest);
5105 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5106 rq_src->nr_uninterruptible = 0;
5107 double_rq_unlock(rq_src, rq_dest);
5108 local_irq_restore(flags);
5109}
5110
5111/* Run through task list and migrate tasks from the dead cpu. */
5112static void migrate_live_tasks(int src_cpu)
5113{
48f24c4d 5114 struct task_struct *p, *t;
1da177e4
LT
5115
5116 write_lock_irq(&tasklist_lock);
5117
48f24c4d
IM
5118 do_each_thread(t, p) {
5119 if (p == current)
1da177e4
LT
5120 continue;
5121
48f24c4d
IM
5122 if (task_cpu(p) == src_cpu)
5123 move_task_off_dead_cpu(src_cpu, p);
5124 } while_each_thread(t, p);
1da177e4
LT
5125
5126 write_unlock_irq(&tasklist_lock);
5127}
5128
dd41f596
IM
5129/*
5130 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5131 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5132 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5133 */
5134void sched_idle_next(void)
5135{
48f24c4d 5136 int this_cpu = smp_processor_id();
70b97a7f 5137 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5138 struct task_struct *p = rq->idle;
5139 unsigned long flags;
5140
5141 /* cpu has to be offline */
48f24c4d 5142 BUG_ON(cpu_online(this_cpu));
1da177e4 5143
48f24c4d
IM
5144 /*
5145 * Strictly not necessary since rest of the CPUs are stopped by now
5146 * and interrupts disabled on the current cpu.
1da177e4
LT
5147 */
5148 spin_lock_irqsave(&rq->lock, flags);
5149
dd41f596 5150 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5151
5152 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5153 activate_idle_task(p, rq);
1da177e4
LT
5154
5155 spin_unlock_irqrestore(&rq->lock, flags);
5156}
5157
48f24c4d
IM
5158/*
5159 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5160 * offline.
5161 */
5162void idle_task_exit(void)
5163{
5164 struct mm_struct *mm = current->active_mm;
5165
5166 BUG_ON(cpu_online(smp_processor_id()));
5167
5168 if (mm != &init_mm)
5169 switch_mm(mm, &init_mm, current);
5170 mmdrop(mm);
5171}
5172
054b9108 5173/* called under rq->lock with disabled interrupts */
36c8b586 5174static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5175{
70b97a7f 5176 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5177
5178 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5179 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5180
5181 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5182 BUG_ON(p->state == TASK_DEAD);
1da177e4 5183
48f24c4d 5184 get_task_struct(p);
1da177e4
LT
5185
5186 /*
5187 * Drop lock around migration; if someone else moves it,
5188 * that's OK. No task can be added to this CPU, so iteration is
5189 * fine.
054b9108 5190 * NOTE: interrupts should be left disabled --dev@
1da177e4 5191 */
054b9108 5192 spin_unlock(&rq->lock);
48f24c4d 5193 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5194 spin_lock(&rq->lock);
1da177e4 5195
48f24c4d 5196 put_task_struct(p);
1da177e4
LT
5197}
5198
5199/* release_task() removes task from tasklist, so we won't find dead tasks. */
5200static void migrate_dead_tasks(unsigned int dead_cpu)
5201{
70b97a7f 5202 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5203 struct task_struct *next;
48f24c4d 5204
dd41f596
IM
5205 for ( ; ; ) {
5206 if (!rq->nr_running)
5207 break;
5208 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5209 if (!next)
5210 break;
5211 migrate_dead(dead_cpu, next);
e692ab53 5212
1da177e4
LT
5213 }
5214}
5215#endif /* CONFIG_HOTPLUG_CPU */
5216
e692ab53
NP
5217#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5218
5219static struct ctl_table sd_ctl_dir[] = {
5220 {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
5221 {0,},
5222};
5223
5224static struct ctl_table sd_ctl_root[] = {
5225 {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
5226 {0,},
5227};
5228
5229static struct ctl_table *sd_alloc_ctl_entry(int n)
5230{
5231 struct ctl_table *entry =
5232 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5233
5234 BUG_ON(!entry);
5235 memset(entry, 0, n * sizeof(struct ctl_table));
5236
5237 return entry;
5238}
5239
5240static void
5241set_table_entry(struct ctl_table *entry, int ctl_name,
5242 const char *procname, void *data, int maxlen,
5243 mode_t mode, proc_handler *proc_handler)
5244{
5245 entry->ctl_name = ctl_name;
5246 entry->procname = procname;
5247 entry->data = data;
5248 entry->maxlen = maxlen;
5249 entry->mode = mode;
5250 entry->proc_handler = proc_handler;
5251}
5252
5253static struct ctl_table *
5254sd_alloc_ctl_domain_table(struct sched_domain *sd)
5255{
5256 struct ctl_table *table = sd_alloc_ctl_entry(14);
5257
5258 set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
5259 sizeof(long), 0644, proc_doulongvec_minmax);
5260 set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
5261 sizeof(long), 0644, proc_doulongvec_minmax);
5262 set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
5263 sizeof(int), 0644, proc_dointvec_minmax);
5264 set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
5265 sizeof(int), 0644, proc_dointvec_minmax);
5266 set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
5267 sizeof(int), 0644, proc_dointvec_minmax);
5268 set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
5269 sizeof(int), 0644, proc_dointvec_minmax);
5270 set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
5271 sizeof(int), 0644, proc_dointvec_minmax);
5272 set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
5273 sizeof(int), 0644, proc_dointvec_minmax);
5274 set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
5275 sizeof(int), 0644, proc_dointvec_minmax);
e692ab53
NP
5276 set_table_entry(&table[10], 11, "cache_nice_tries",
5277 &sd->cache_nice_tries,
5278 sizeof(int), 0644, proc_dointvec_minmax);
5279 set_table_entry(&table[12], 13, "flags", &sd->flags,
5280 sizeof(int), 0644, proc_dointvec_minmax);
5281
5282 return table;
5283}
5284
5285static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5286{
5287 struct ctl_table *entry, *table;
5288 struct sched_domain *sd;
5289 int domain_num = 0, i;
5290 char buf[32];
5291
5292 for_each_domain(cpu, sd)
5293 domain_num++;
5294 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5295
5296 i = 0;
5297 for_each_domain(cpu, sd) {
5298 snprintf(buf, 32, "domain%d", i);
5299 entry->ctl_name = i + 1;
5300 entry->procname = kstrdup(buf, GFP_KERNEL);
5301 entry->mode = 0755;
5302 entry->child = sd_alloc_ctl_domain_table(sd);
5303 entry++;
5304 i++;
5305 }
5306 return table;
5307}
5308
5309static struct ctl_table_header *sd_sysctl_header;
5310static void init_sched_domain_sysctl(void)
5311{
5312 int i, cpu_num = num_online_cpus();
5313 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5314 char buf[32];
5315
5316 sd_ctl_dir[0].child = entry;
5317
5318 for (i = 0; i < cpu_num; i++, entry++) {
5319 snprintf(buf, 32, "cpu%d", i);
5320 entry->ctl_name = i + 1;
5321 entry->procname = kstrdup(buf, GFP_KERNEL);
5322 entry->mode = 0755;
5323 entry->child = sd_alloc_ctl_cpu_table(i);
5324 }
5325 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5326}
5327#else
5328static void init_sched_domain_sysctl(void)
5329{
5330}
5331#endif
5332
1da177e4
LT
5333/*
5334 * migration_call - callback that gets triggered when a CPU is added.
5335 * Here we can start up the necessary migration thread for the new CPU.
5336 */
48f24c4d
IM
5337static int __cpuinit
5338migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5339{
1da177e4 5340 struct task_struct *p;
48f24c4d 5341 int cpu = (long)hcpu;
1da177e4 5342 unsigned long flags;
70b97a7f 5343 struct rq *rq;
1da177e4
LT
5344
5345 switch (action) {
5be9361c
GS
5346 case CPU_LOCK_ACQUIRE:
5347 mutex_lock(&sched_hotcpu_mutex);
5348 break;
5349
1da177e4 5350 case CPU_UP_PREPARE:
8bb78442 5351 case CPU_UP_PREPARE_FROZEN:
dd41f596 5352 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5353 if (IS_ERR(p))
5354 return NOTIFY_BAD;
1da177e4
LT
5355 kthread_bind(p, cpu);
5356 /* Must be high prio: stop_machine expects to yield to it. */
5357 rq = task_rq_lock(p, &flags);
dd41f596 5358 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5359 task_rq_unlock(rq, &flags);
5360 cpu_rq(cpu)->migration_thread = p;
5361 break;
48f24c4d 5362
1da177e4 5363 case CPU_ONLINE:
8bb78442 5364 case CPU_ONLINE_FROZEN:
1da177e4
LT
5365 /* Strictly unneccessary, as first user will wake it. */
5366 wake_up_process(cpu_rq(cpu)->migration_thread);
5367 break;
48f24c4d 5368
1da177e4
LT
5369#ifdef CONFIG_HOTPLUG_CPU
5370 case CPU_UP_CANCELED:
8bb78442 5371 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5372 if (!cpu_rq(cpu)->migration_thread)
5373 break;
1da177e4 5374 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5375 kthread_bind(cpu_rq(cpu)->migration_thread,
5376 any_online_cpu(cpu_online_map));
1da177e4
LT
5377 kthread_stop(cpu_rq(cpu)->migration_thread);
5378 cpu_rq(cpu)->migration_thread = NULL;
5379 break;
48f24c4d 5380
1da177e4 5381 case CPU_DEAD:
8bb78442 5382 case CPU_DEAD_FROZEN:
1da177e4
LT
5383 migrate_live_tasks(cpu);
5384 rq = cpu_rq(cpu);
5385 kthread_stop(rq->migration_thread);
5386 rq->migration_thread = NULL;
5387 /* Idle task back to normal (off runqueue, low prio) */
5388 rq = task_rq_lock(rq->idle, &flags);
8e717b19 5389 deactivate_task(rq, rq->idle, 0, rq_clock(rq));
1da177e4 5390 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5391 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5392 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5393 migrate_dead_tasks(cpu);
5394 task_rq_unlock(rq, &flags);
5395 migrate_nr_uninterruptible(rq);
5396 BUG_ON(rq->nr_running != 0);
5397
5398 /* No need to migrate the tasks: it was best-effort if
5be9361c 5399 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5400 * the requestors. */
5401 spin_lock_irq(&rq->lock);
5402 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5403 struct migration_req *req;
5404
1da177e4 5405 req = list_entry(rq->migration_queue.next,
70b97a7f 5406 struct migration_req, list);
1da177e4
LT
5407 list_del_init(&req->list);
5408 complete(&req->done);
5409 }
5410 spin_unlock_irq(&rq->lock);
5411 break;
5412#endif
5be9361c
GS
5413 case CPU_LOCK_RELEASE:
5414 mutex_unlock(&sched_hotcpu_mutex);
5415 break;
1da177e4
LT
5416 }
5417 return NOTIFY_OK;
5418}
5419
5420/* Register at highest priority so that task migration (migrate_all_tasks)
5421 * happens before everything else.
5422 */
26c2143b 5423static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5424 .notifier_call = migration_call,
5425 .priority = 10
5426};
5427
5428int __init migration_init(void)
5429{
5430 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5431 int err;
48f24c4d
IM
5432
5433 /* Start one for the boot CPU: */
07dccf33
AM
5434 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5435 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5436 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5437 register_cpu_notifier(&migration_notifier);
48f24c4d 5438
1da177e4
LT
5439 return 0;
5440}
5441#endif
5442
5443#ifdef CONFIG_SMP
476f3534
CL
5444
5445/* Number of possible processor ids */
5446int nr_cpu_ids __read_mostly = NR_CPUS;
5447EXPORT_SYMBOL(nr_cpu_ids);
5448
1a20ff27 5449#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5450#ifdef SCHED_DOMAIN_DEBUG
5451static void sched_domain_debug(struct sched_domain *sd, int cpu)
5452{
5453 int level = 0;
5454
41c7ce9a
NP
5455 if (!sd) {
5456 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5457 return;
5458 }
5459
1da177e4
LT
5460 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5461
5462 do {
5463 int i;
5464 char str[NR_CPUS];
5465 struct sched_group *group = sd->groups;
5466 cpumask_t groupmask;
5467
5468 cpumask_scnprintf(str, NR_CPUS, sd->span);
5469 cpus_clear(groupmask);
5470
5471 printk(KERN_DEBUG);
5472 for (i = 0; i < level + 1; i++)
5473 printk(" ");
5474 printk("domain %d: ", level);
5475
5476 if (!(sd->flags & SD_LOAD_BALANCE)) {
5477 printk("does not load-balance\n");
5478 if (sd->parent)
33859f7f
MOS
5479 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5480 " has parent");
1da177e4
LT
5481 break;
5482 }
5483
5484 printk("span %s\n", str);
5485
5486 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5487 printk(KERN_ERR "ERROR: domain->span does not contain "
5488 "CPU%d\n", cpu);
1da177e4 5489 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5490 printk(KERN_ERR "ERROR: domain->groups does not contain"
5491 " CPU%d\n", cpu);
1da177e4
LT
5492
5493 printk(KERN_DEBUG);
5494 for (i = 0; i < level + 2; i++)
5495 printk(" ");
5496 printk("groups:");
5497 do {
5498 if (!group) {
5499 printk("\n");
5500 printk(KERN_ERR "ERROR: group is NULL\n");
5501 break;
5502 }
5503
5517d86b 5504 if (!group->__cpu_power) {
1da177e4 5505 printk("\n");
33859f7f
MOS
5506 printk(KERN_ERR "ERROR: domain->cpu_power not "
5507 "set\n");
1da177e4
LT
5508 }
5509
5510 if (!cpus_weight(group->cpumask)) {
5511 printk("\n");
5512 printk(KERN_ERR "ERROR: empty group\n");
5513 }
5514
5515 if (cpus_intersects(groupmask, group->cpumask)) {
5516 printk("\n");
5517 printk(KERN_ERR "ERROR: repeated CPUs\n");
5518 }
5519
5520 cpus_or(groupmask, groupmask, group->cpumask);
5521
5522 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5523 printk(" %s", str);
5524
5525 group = group->next;
5526 } while (group != sd->groups);
5527 printk("\n");
5528
5529 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5530 printk(KERN_ERR "ERROR: groups don't span "
5531 "domain->span\n");
1da177e4
LT
5532
5533 level++;
5534 sd = sd->parent;
33859f7f
MOS
5535 if (!sd)
5536 continue;
1da177e4 5537
33859f7f
MOS
5538 if (!cpus_subset(groupmask, sd->span))
5539 printk(KERN_ERR "ERROR: parent span is not a superset "
5540 "of domain->span\n");
1da177e4
LT
5541
5542 } while (sd);
5543}
5544#else
48f24c4d 5545# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5546#endif
5547
1a20ff27 5548static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5549{
5550 if (cpus_weight(sd->span) == 1)
5551 return 1;
5552
5553 /* Following flags need at least 2 groups */
5554 if (sd->flags & (SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
89c4710e
SS
5557 SD_BALANCE_EXEC |
5558 SD_SHARE_CPUPOWER |
5559 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5560 if (sd->groups != sd->groups->next)
5561 return 0;
5562 }
5563
5564 /* Following flags don't use groups */
5565 if (sd->flags & (SD_WAKE_IDLE |
5566 SD_WAKE_AFFINE |
5567 SD_WAKE_BALANCE))
5568 return 0;
5569
5570 return 1;
5571}
5572
48f24c4d
IM
5573static int
5574sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5575{
5576 unsigned long cflags = sd->flags, pflags = parent->flags;
5577
5578 if (sd_degenerate(parent))
5579 return 1;
5580
5581 if (!cpus_equal(sd->span, parent->span))
5582 return 0;
5583
5584 /* Does parent contain flags not in child? */
5585 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5586 if (cflags & SD_WAKE_AFFINE)
5587 pflags &= ~SD_WAKE_BALANCE;
5588 /* Flags needing groups don't count if only 1 group in parent */
5589 if (parent->groups == parent->groups->next) {
5590 pflags &= ~(SD_LOAD_BALANCE |
5591 SD_BALANCE_NEWIDLE |
5592 SD_BALANCE_FORK |
89c4710e
SS
5593 SD_BALANCE_EXEC |
5594 SD_SHARE_CPUPOWER |
5595 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5596 }
5597 if (~cflags & pflags)
5598 return 0;
5599
5600 return 1;
5601}
5602
1da177e4
LT
5603/*
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5606 */
9c1cfda2 5607static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5608{
70b97a7f 5609 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5610 struct sched_domain *tmp;
5611
5612 /* Remove the sched domains which do not contribute to scheduling. */
5613 for (tmp = sd; tmp; tmp = tmp->parent) {
5614 struct sched_domain *parent = tmp->parent;
5615 if (!parent)
5616 break;
1a848870 5617 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5618 tmp->parent = parent->parent;
1a848870
SS
5619 if (parent->parent)
5620 parent->parent->child = tmp;
5621 }
245af2c7
SS
5622 }
5623
1a848870 5624 if (sd && sd_degenerate(sd)) {
245af2c7 5625 sd = sd->parent;
1a848870
SS
5626 if (sd)
5627 sd->child = NULL;
5628 }
1da177e4
LT
5629
5630 sched_domain_debug(sd, cpu);
5631
674311d5 5632 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5633}
5634
5635/* cpus with isolated domains */
67af63a6 5636static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5637
5638/* Setup the mask of cpus configured for isolated domains */
5639static int __init isolated_cpu_setup(char *str)
5640{
5641 int ints[NR_CPUS], i;
5642
5643 str = get_options(str, ARRAY_SIZE(ints), ints);
5644 cpus_clear(cpu_isolated_map);
5645 for (i = 1; i <= ints[0]; i++)
5646 if (ints[i] < NR_CPUS)
5647 cpu_set(ints[i], cpu_isolated_map);
5648 return 1;
5649}
5650
5651__setup ("isolcpus=", isolated_cpu_setup);
5652
5653/*
6711cab4
SS
5654 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5655 * to a function which identifies what group(along with sched group) a CPU
5656 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5657 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5658 *
5659 * init_sched_build_groups will build a circular linked list of the groups
5660 * covered by the given span, and will set each group's ->cpumask correctly,
5661 * and ->cpu_power to 0.
5662 */
a616058b 5663static void
6711cab4
SS
5664init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5665 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5666 struct sched_group **sg))
1da177e4
LT
5667{
5668 struct sched_group *first = NULL, *last = NULL;
5669 cpumask_t covered = CPU_MASK_NONE;
5670 int i;
5671
5672 for_each_cpu_mask(i, span) {
6711cab4
SS
5673 struct sched_group *sg;
5674 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5675 int j;
5676
5677 if (cpu_isset(i, covered))
5678 continue;
5679
5680 sg->cpumask = CPU_MASK_NONE;
5517d86b 5681 sg->__cpu_power = 0;
1da177e4
LT
5682
5683 for_each_cpu_mask(j, span) {
6711cab4 5684 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5685 continue;
5686
5687 cpu_set(j, covered);
5688 cpu_set(j, sg->cpumask);
5689 }
5690 if (!first)
5691 first = sg;
5692 if (last)
5693 last->next = sg;
5694 last = sg;
5695 }
5696 last->next = first;
5697}
5698
9c1cfda2 5699#define SD_NODES_PER_DOMAIN 16
1da177e4 5700
9c1cfda2 5701#ifdef CONFIG_NUMA
198e2f18 5702
9c1cfda2
JH
5703/**
5704 * find_next_best_node - find the next node to include in a sched_domain
5705 * @node: node whose sched_domain we're building
5706 * @used_nodes: nodes already in the sched_domain
5707 *
5708 * Find the next node to include in a given scheduling domain. Simply
5709 * finds the closest node not already in the @used_nodes map.
5710 *
5711 * Should use nodemask_t.
5712 */
5713static int find_next_best_node(int node, unsigned long *used_nodes)
5714{
5715 int i, n, val, min_val, best_node = 0;
5716
5717 min_val = INT_MAX;
5718
5719 for (i = 0; i < MAX_NUMNODES; i++) {
5720 /* Start at @node */
5721 n = (node + i) % MAX_NUMNODES;
5722
5723 if (!nr_cpus_node(n))
5724 continue;
5725
5726 /* Skip already used nodes */
5727 if (test_bit(n, used_nodes))
5728 continue;
5729
5730 /* Simple min distance search */
5731 val = node_distance(node, n);
5732
5733 if (val < min_val) {
5734 min_val = val;
5735 best_node = n;
5736 }
5737 }
5738
5739 set_bit(best_node, used_nodes);
5740 return best_node;
5741}
5742
5743/**
5744 * sched_domain_node_span - get a cpumask for a node's sched_domain
5745 * @node: node whose cpumask we're constructing
5746 * @size: number of nodes to include in this span
5747 *
5748 * Given a node, construct a good cpumask for its sched_domain to span. It
5749 * should be one that prevents unnecessary balancing, but also spreads tasks
5750 * out optimally.
5751 */
5752static cpumask_t sched_domain_node_span(int node)
5753{
9c1cfda2 5754 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5755 cpumask_t span, nodemask;
5756 int i;
9c1cfda2
JH
5757
5758 cpus_clear(span);
5759 bitmap_zero(used_nodes, MAX_NUMNODES);
5760
5761 nodemask = node_to_cpumask(node);
5762 cpus_or(span, span, nodemask);
5763 set_bit(node, used_nodes);
5764
5765 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5766 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5767
9c1cfda2
JH
5768 nodemask = node_to_cpumask(next_node);
5769 cpus_or(span, span, nodemask);
5770 }
5771
5772 return span;
5773}
5774#endif
5775
5c45bf27 5776int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5777
9c1cfda2 5778/*
48f24c4d 5779 * SMT sched-domains:
9c1cfda2 5780 */
1da177e4
LT
5781#ifdef CONFIG_SCHED_SMT
5782static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5783static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5784
6711cab4
SS
5785static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5786 struct sched_group **sg)
1da177e4 5787{
6711cab4
SS
5788 if (sg)
5789 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5790 return cpu;
5791}
5792#endif
5793
48f24c4d
IM
5794/*
5795 * multi-core sched-domains:
5796 */
1e9f28fa
SS
5797#ifdef CONFIG_SCHED_MC
5798static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5799static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5800#endif
5801
5802#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5803static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5804 struct sched_group **sg)
1e9f28fa 5805{
6711cab4 5806 int group;
a616058b
SS
5807 cpumask_t mask = cpu_sibling_map[cpu];
5808 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5809 group = first_cpu(mask);
5810 if (sg)
5811 *sg = &per_cpu(sched_group_core, group);
5812 return group;
1e9f28fa
SS
5813}
5814#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5815static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5816 struct sched_group **sg)
1e9f28fa 5817{
6711cab4
SS
5818 if (sg)
5819 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5820 return cpu;
5821}
5822#endif
5823
1da177e4 5824static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5825static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5826
6711cab4
SS
5827static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5828 struct sched_group **sg)
1da177e4 5829{
6711cab4 5830 int group;
48f24c4d 5831#ifdef CONFIG_SCHED_MC
1e9f28fa 5832 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5833 cpus_and(mask, mask, *cpu_map);
6711cab4 5834 group = first_cpu(mask);
1e9f28fa 5835#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5836 cpumask_t mask = cpu_sibling_map[cpu];
5837 cpus_and(mask, mask, *cpu_map);
6711cab4 5838 group = first_cpu(mask);
1da177e4 5839#else
6711cab4 5840 group = cpu;
1da177e4 5841#endif
6711cab4
SS
5842 if (sg)
5843 *sg = &per_cpu(sched_group_phys, group);
5844 return group;
1da177e4
LT
5845}
5846
5847#ifdef CONFIG_NUMA
1da177e4 5848/*
9c1cfda2
JH
5849 * The init_sched_build_groups can't handle what we want to do with node
5850 * groups, so roll our own. Now each node has its own list of groups which
5851 * gets dynamically allocated.
1da177e4 5852 */
9c1cfda2 5853static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5854static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5855
9c1cfda2 5856static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5857static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5858
6711cab4
SS
5859static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
9c1cfda2 5861{
6711cab4
SS
5862 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5863 int group;
5864
5865 cpus_and(nodemask, nodemask, *cpu_map);
5866 group = first_cpu(nodemask);
5867
5868 if (sg)
5869 *sg = &per_cpu(sched_group_allnodes, group);
5870 return group;
1da177e4 5871}
6711cab4 5872
08069033
SS
5873static void init_numa_sched_groups_power(struct sched_group *group_head)
5874{
5875 struct sched_group *sg = group_head;
5876 int j;
5877
5878 if (!sg)
5879 return;
5880next_sg:
5881 for_each_cpu_mask(j, sg->cpumask) {
5882 struct sched_domain *sd;
5883
5884 sd = &per_cpu(phys_domains, j);
5885 if (j != first_cpu(sd->groups->cpumask)) {
5886 /*
5887 * Only add "power" once for each
5888 * physical package.
5889 */
5890 continue;
5891 }
5892
5517d86b 5893 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5894 }
5895 sg = sg->next;
5896 if (sg != group_head)
5897 goto next_sg;
5898}
1da177e4
LT
5899#endif
5900
a616058b 5901#ifdef CONFIG_NUMA
51888ca2
SV
5902/* Free memory allocated for various sched_group structures */
5903static void free_sched_groups(const cpumask_t *cpu_map)
5904{
a616058b 5905 int cpu, i;
51888ca2
SV
5906
5907 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5908 struct sched_group **sched_group_nodes
5909 = sched_group_nodes_bycpu[cpu];
5910
51888ca2
SV
5911 if (!sched_group_nodes)
5912 continue;
5913
5914 for (i = 0; i < MAX_NUMNODES; i++) {
5915 cpumask_t nodemask = node_to_cpumask(i);
5916 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5917
5918 cpus_and(nodemask, nodemask, *cpu_map);
5919 if (cpus_empty(nodemask))
5920 continue;
5921
5922 if (sg == NULL)
5923 continue;
5924 sg = sg->next;
5925next_sg:
5926 oldsg = sg;
5927 sg = sg->next;
5928 kfree(oldsg);
5929 if (oldsg != sched_group_nodes[i])
5930 goto next_sg;
5931 }
5932 kfree(sched_group_nodes);
5933 sched_group_nodes_bycpu[cpu] = NULL;
5934 }
51888ca2 5935}
a616058b
SS
5936#else
5937static void free_sched_groups(const cpumask_t *cpu_map)
5938{
5939}
5940#endif
51888ca2 5941
89c4710e
SS
5942/*
5943 * Initialize sched groups cpu_power.
5944 *
5945 * cpu_power indicates the capacity of sched group, which is used while
5946 * distributing the load between different sched groups in a sched domain.
5947 * Typically cpu_power for all the groups in a sched domain will be same unless
5948 * there are asymmetries in the topology. If there are asymmetries, group
5949 * having more cpu_power will pickup more load compared to the group having
5950 * less cpu_power.
5951 *
5952 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5953 * the maximum number of tasks a group can handle in the presence of other idle
5954 * or lightly loaded groups in the same sched domain.
5955 */
5956static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5957{
5958 struct sched_domain *child;
5959 struct sched_group *group;
5960
5961 WARN_ON(!sd || !sd->groups);
5962
5963 if (cpu != first_cpu(sd->groups->cpumask))
5964 return;
5965
5966 child = sd->child;
5967
5517d86b
ED
5968 sd->groups->__cpu_power = 0;
5969
89c4710e
SS
5970 /*
5971 * For perf policy, if the groups in child domain share resources
5972 * (for example cores sharing some portions of the cache hierarchy
5973 * or SMT), then set this domain groups cpu_power such that each group
5974 * can handle only one task, when there are other idle groups in the
5975 * same sched domain.
5976 */
5977 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5978 (child->flags &
5979 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5980 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5981 return;
5982 }
5983
89c4710e
SS
5984 /*
5985 * add cpu_power of each child group to this groups cpu_power
5986 */
5987 group = child->groups;
5988 do {
5517d86b 5989 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5990 group = group->next;
5991 } while (group != child->groups);
5992}
5993
1da177e4 5994/*
1a20ff27
DG
5995 * Build sched domains for a given set of cpus and attach the sched domains
5996 * to the individual cpus
1da177e4 5997 */
51888ca2 5998static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5999{
6000 int i;
d1b55138
JH
6001#ifdef CONFIG_NUMA
6002 struct sched_group **sched_group_nodes = NULL;
6711cab4 6003 int sd_allnodes = 0;
d1b55138
JH
6004
6005 /*
6006 * Allocate the per-node list of sched groups
6007 */
dd41f596 6008 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6009 GFP_KERNEL);
d1b55138
JH
6010 if (!sched_group_nodes) {
6011 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6012 return -ENOMEM;
d1b55138
JH
6013 }
6014 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6015#endif
1da177e4
LT
6016
6017 /*
1a20ff27 6018 * Set up domains for cpus specified by the cpu_map.
1da177e4 6019 */
1a20ff27 6020 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6021 struct sched_domain *sd = NULL, *p;
6022 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6023
1a20ff27 6024 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6025
6026#ifdef CONFIG_NUMA
dd41f596
IM
6027 if (cpus_weight(*cpu_map) >
6028 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6029 sd = &per_cpu(allnodes_domains, i);
6030 *sd = SD_ALLNODES_INIT;
6031 sd->span = *cpu_map;
6711cab4 6032 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6033 p = sd;
6711cab4 6034 sd_allnodes = 1;
9c1cfda2
JH
6035 } else
6036 p = NULL;
6037
1da177e4 6038 sd = &per_cpu(node_domains, i);
1da177e4 6039 *sd = SD_NODE_INIT;
9c1cfda2
JH
6040 sd->span = sched_domain_node_span(cpu_to_node(i));
6041 sd->parent = p;
1a848870
SS
6042 if (p)
6043 p->child = sd;
9c1cfda2 6044 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6045#endif
6046
6047 p = sd;
6048 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6049 *sd = SD_CPU_INIT;
6050 sd->span = nodemask;
6051 sd->parent = p;
1a848870
SS
6052 if (p)
6053 p->child = sd;
6711cab4 6054 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6055
1e9f28fa
SS
6056#ifdef CONFIG_SCHED_MC
6057 p = sd;
6058 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6059 *sd = SD_MC_INIT;
6060 sd->span = cpu_coregroup_map(i);
6061 cpus_and(sd->span, sd->span, *cpu_map);
6062 sd->parent = p;
1a848870 6063 p->child = sd;
6711cab4 6064 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6065#endif
6066
1da177e4
LT
6067#ifdef CONFIG_SCHED_SMT
6068 p = sd;
6069 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6070 *sd = SD_SIBLING_INIT;
6071 sd->span = cpu_sibling_map[i];
1a20ff27 6072 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6073 sd->parent = p;
1a848870 6074 p->child = sd;
6711cab4 6075 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6076#endif
6077 }
6078
6079#ifdef CONFIG_SCHED_SMT
6080 /* Set up CPU (sibling) groups */
9c1cfda2 6081 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6082 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6083 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6084 if (i != first_cpu(this_sibling_map))
6085 continue;
6086
dd41f596
IM
6087 init_sched_build_groups(this_sibling_map, cpu_map,
6088 &cpu_to_cpu_group);
1da177e4
LT
6089 }
6090#endif
6091
1e9f28fa
SS
6092#ifdef CONFIG_SCHED_MC
6093 /* Set up multi-core groups */
6094 for_each_cpu_mask(i, *cpu_map) {
6095 cpumask_t this_core_map = cpu_coregroup_map(i);
6096 cpus_and(this_core_map, this_core_map, *cpu_map);
6097 if (i != first_cpu(this_core_map))
6098 continue;
dd41f596
IM
6099 init_sched_build_groups(this_core_map, cpu_map,
6100 &cpu_to_core_group);
1e9f28fa
SS
6101 }
6102#endif
6103
1da177e4
LT
6104 /* Set up physical groups */
6105 for (i = 0; i < MAX_NUMNODES; i++) {
6106 cpumask_t nodemask = node_to_cpumask(i);
6107
1a20ff27 6108 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6109 if (cpus_empty(nodemask))
6110 continue;
6111
6711cab4 6112 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6113 }
6114
6115#ifdef CONFIG_NUMA
6116 /* Set up node groups */
6711cab4 6117 if (sd_allnodes)
dd41f596
IM
6118 init_sched_build_groups(*cpu_map, cpu_map,
6119 &cpu_to_allnodes_group);
9c1cfda2
JH
6120
6121 for (i = 0; i < MAX_NUMNODES; i++) {
6122 /* Set up node groups */
6123 struct sched_group *sg, *prev;
6124 cpumask_t nodemask = node_to_cpumask(i);
6125 cpumask_t domainspan;
6126 cpumask_t covered = CPU_MASK_NONE;
6127 int j;
6128
6129 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6130 if (cpus_empty(nodemask)) {
6131 sched_group_nodes[i] = NULL;
9c1cfda2 6132 continue;
d1b55138 6133 }
9c1cfda2
JH
6134
6135 domainspan = sched_domain_node_span(i);
6136 cpus_and(domainspan, domainspan, *cpu_map);
6137
15f0b676 6138 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6139 if (!sg) {
6140 printk(KERN_WARNING "Can not alloc domain group for "
6141 "node %d\n", i);
6142 goto error;
6143 }
9c1cfda2
JH
6144 sched_group_nodes[i] = sg;
6145 for_each_cpu_mask(j, nodemask) {
6146 struct sched_domain *sd;
9761eea8 6147
9c1cfda2
JH
6148 sd = &per_cpu(node_domains, j);
6149 sd->groups = sg;
9c1cfda2 6150 }
5517d86b 6151 sg->__cpu_power = 0;
9c1cfda2 6152 sg->cpumask = nodemask;
51888ca2 6153 sg->next = sg;
9c1cfda2
JH
6154 cpus_or(covered, covered, nodemask);
6155 prev = sg;
6156
6157 for (j = 0; j < MAX_NUMNODES; j++) {
6158 cpumask_t tmp, notcovered;
6159 int n = (i + j) % MAX_NUMNODES;
6160
6161 cpus_complement(notcovered, covered);
6162 cpus_and(tmp, notcovered, *cpu_map);
6163 cpus_and(tmp, tmp, domainspan);
6164 if (cpus_empty(tmp))
6165 break;
6166
6167 nodemask = node_to_cpumask(n);
6168 cpus_and(tmp, tmp, nodemask);
6169 if (cpus_empty(tmp))
6170 continue;
6171
15f0b676
SV
6172 sg = kmalloc_node(sizeof(struct sched_group),
6173 GFP_KERNEL, i);
9c1cfda2
JH
6174 if (!sg) {
6175 printk(KERN_WARNING
6176 "Can not alloc domain group for node %d\n", j);
51888ca2 6177 goto error;
9c1cfda2 6178 }
5517d86b 6179 sg->__cpu_power = 0;
9c1cfda2 6180 sg->cpumask = tmp;
51888ca2 6181 sg->next = prev->next;
9c1cfda2
JH
6182 cpus_or(covered, covered, tmp);
6183 prev->next = sg;
6184 prev = sg;
6185 }
9c1cfda2 6186 }
1da177e4
LT
6187#endif
6188
6189 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6190#ifdef CONFIG_SCHED_SMT
1a20ff27 6191 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6192 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6193
89c4710e 6194 init_sched_groups_power(i, sd);
5c45bf27 6195 }
1da177e4 6196#endif
1e9f28fa 6197#ifdef CONFIG_SCHED_MC
5c45bf27 6198 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6199 struct sched_domain *sd = &per_cpu(core_domains, i);
6200
89c4710e 6201 init_sched_groups_power(i, sd);
5c45bf27
SS
6202 }
6203#endif
1e9f28fa 6204
5c45bf27 6205 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6206 struct sched_domain *sd = &per_cpu(phys_domains, i);
6207
89c4710e 6208 init_sched_groups_power(i, sd);
1da177e4
LT
6209 }
6210
9c1cfda2 6211#ifdef CONFIG_NUMA
08069033
SS
6212 for (i = 0; i < MAX_NUMNODES; i++)
6213 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6214
6711cab4
SS
6215 if (sd_allnodes) {
6216 struct sched_group *sg;
f712c0c7 6217
6711cab4 6218 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6219 init_numa_sched_groups_power(sg);
6220 }
9c1cfda2
JH
6221#endif
6222
1da177e4 6223 /* Attach the domains */
1a20ff27 6224 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6225 struct sched_domain *sd;
6226#ifdef CONFIG_SCHED_SMT
6227 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6228#elif defined(CONFIG_SCHED_MC)
6229 sd = &per_cpu(core_domains, i);
1da177e4
LT
6230#else
6231 sd = &per_cpu(phys_domains, i);
6232#endif
6233 cpu_attach_domain(sd, i);
6234 }
51888ca2
SV
6235
6236 return 0;
6237
a616058b 6238#ifdef CONFIG_NUMA
51888ca2
SV
6239error:
6240 free_sched_groups(cpu_map);
6241 return -ENOMEM;
a616058b 6242#endif
1da177e4 6243}
1a20ff27
DG
6244/*
6245 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6246 */
51888ca2 6247static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6248{
6249 cpumask_t cpu_default_map;
51888ca2 6250 int err;
1da177e4 6251
1a20ff27
DG
6252 /*
6253 * Setup mask for cpus without special case scheduling requirements.
6254 * For now this just excludes isolated cpus, but could be used to
6255 * exclude other special cases in the future.
6256 */
6257 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6258
51888ca2
SV
6259 err = build_sched_domains(&cpu_default_map);
6260
6261 return err;
1a20ff27
DG
6262}
6263
6264static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6265{
51888ca2 6266 free_sched_groups(cpu_map);
9c1cfda2 6267}
1da177e4 6268
1a20ff27
DG
6269/*
6270 * Detach sched domains from a group of cpus specified in cpu_map
6271 * These cpus will now be attached to the NULL domain
6272 */
858119e1 6273static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6274{
6275 int i;
6276
6277 for_each_cpu_mask(i, *cpu_map)
6278 cpu_attach_domain(NULL, i);
6279 synchronize_sched();
6280 arch_destroy_sched_domains(cpu_map);
6281}
6282
6283/*
6284 * Partition sched domains as specified by the cpumasks below.
6285 * This attaches all cpus from the cpumasks to the NULL domain,
6286 * waits for a RCU quiescent period, recalculates sched
6287 * domain information and then attaches them back to the
6288 * correct sched domains
6289 * Call with hotplug lock held
6290 */
51888ca2 6291int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6292{
6293 cpumask_t change_map;
51888ca2 6294 int err = 0;
1a20ff27
DG
6295
6296 cpus_and(*partition1, *partition1, cpu_online_map);
6297 cpus_and(*partition2, *partition2, cpu_online_map);
6298 cpus_or(change_map, *partition1, *partition2);
6299
6300 /* Detach sched domains from all of the affected cpus */
6301 detach_destroy_domains(&change_map);
6302 if (!cpus_empty(*partition1))
51888ca2
SV
6303 err = build_sched_domains(partition1);
6304 if (!err && !cpus_empty(*partition2))
6305 err = build_sched_domains(partition2);
6306
6307 return err;
1a20ff27
DG
6308}
6309
5c45bf27
SS
6310#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6311int arch_reinit_sched_domains(void)
6312{
6313 int err;
6314
5be9361c 6315 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6316 detach_destroy_domains(&cpu_online_map);
6317 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6318 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6319
6320 return err;
6321}
6322
6323static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6324{
6325 int ret;
6326
6327 if (buf[0] != '0' && buf[0] != '1')
6328 return -EINVAL;
6329
6330 if (smt)
6331 sched_smt_power_savings = (buf[0] == '1');
6332 else
6333 sched_mc_power_savings = (buf[0] == '1');
6334
6335 ret = arch_reinit_sched_domains();
6336
6337 return ret ? ret : count;
6338}
6339
6340int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6341{
6342 int err = 0;
48f24c4d 6343
5c45bf27
SS
6344#ifdef CONFIG_SCHED_SMT
6345 if (smt_capable())
6346 err = sysfs_create_file(&cls->kset.kobj,
6347 &attr_sched_smt_power_savings.attr);
6348#endif
6349#ifdef CONFIG_SCHED_MC
6350 if (!err && mc_capable())
6351 err = sysfs_create_file(&cls->kset.kobj,
6352 &attr_sched_mc_power_savings.attr);
6353#endif
6354 return err;
6355}
6356#endif
6357
6358#ifdef CONFIG_SCHED_MC
6359static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6360{
6361 return sprintf(page, "%u\n", sched_mc_power_savings);
6362}
48f24c4d
IM
6363static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6364 const char *buf, size_t count)
5c45bf27
SS
6365{
6366 return sched_power_savings_store(buf, count, 0);
6367}
6368SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6369 sched_mc_power_savings_store);
6370#endif
6371
6372#ifdef CONFIG_SCHED_SMT
6373static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6374{
6375 return sprintf(page, "%u\n", sched_smt_power_savings);
6376}
48f24c4d
IM
6377static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6378 const char *buf, size_t count)
5c45bf27
SS
6379{
6380 return sched_power_savings_store(buf, count, 1);
6381}
6382SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6383 sched_smt_power_savings_store);
6384#endif
6385
1da177e4
LT
6386/*
6387 * Force a reinitialization of the sched domains hierarchy. The domains
6388 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6389 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6390 * which will prevent rebalancing while the sched domains are recalculated.
6391 */
6392static int update_sched_domains(struct notifier_block *nfb,
6393 unsigned long action, void *hcpu)
6394{
1da177e4
LT
6395 switch (action) {
6396 case CPU_UP_PREPARE:
8bb78442 6397 case CPU_UP_PREPARE_FROZEN:
1da177e4 6398 case CPU_DOWN_PREPARE:
8bb78442 6399 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6400 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6401 return NOTIFY_OK;
6402
6403 case CPU_UP_CANCELED:
8bb78442 6404 case CPU_UP_CANCELED_FROZEN:
1da177e4 6405 case CPU_DOWN_FAILED:
8bb78442 6406 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6407 case CPU_ONLINE:
8bb78442 6408 case CPU_ONLINE_FROZEN:
1da177e4 6409 case CPU_DEAD:
8bb78442 6410 case CPU_DEAD_FROZEN:
1da177e4
LT
6411 /*
6412 * Fall through and re-initialise the domains.
6413 */
6414 break;
6415 default:
6416 return NOTIFY_DONE;
6417 }
6418
6419 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6420 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6421
6422 return NOTIFY_OK;
6423}
1da177e4
LT
6424
6425void __init sched_init_smp(void)
6426{
5c1e1767
NP
6427 cpumask_t non_isolated_cpus;
6428
5be9361c 6429 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6430 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6431 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6432 if (cpus_empty(non_isolated_cpus))
6433 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6434 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6435 /* XXX: Theoretical race here - CPU may be hotplugged now */
6436 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6437
e692ab53
NP
6438 init_sched_domain_sysctl();
6439
5c1e1767
NP
6440 /* Move init over to a non-isolated CPU */
6441 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6442 BUG();
dd41f596 6443 sched_init_granularity();
1da177e4
LT
6444}
6445#else
6446void __init sched_init_smp(void)
6447{
dd41f596 6448 sched_init_granularity();
1da177e4
LT
6449}
6450#endif /* CONFIG_SMP */
6451
6452int in_sched_functions(unsigned long addr)
6453{
6454 /* Linker adds these: start and end of __sched functions */
6455 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6456
1da177e4
LT
6457 return in_lock_functions(addr) ||
6458 (addr >= (unsigned long)__sched_text_start
6459 && addr < (unsigned long)__sched_text_end);
6460}
6461
dd41f596
IM
6462static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6463{
6464 cfs_rq->tasks_timeline = RB_ROOT;
6465 cfs_rq->fair_clock = 1;
6466#ifdef CONFIG_FAIR_GROUP_SCHED
6467 cfs_rq->rq = rq;
6468#endif
6469}
6470
1da177e4
LT
6471void __init sched_init(void)
6472{
dd41f596 6473 u64 now = sched_clock();
476f3534 6474 int highest_cpu = 0;
dd41f596
IM
6475 int i, j;
6476
6477 /*
6478 * Link up the scheduling class hierarchy:
6479 */
6480 rt_sched_class.next = &fair_sched_class;
6481 fair_sched_class.next = &idle_sched_class;
6482 idle_sched_class.next = NULL;
1da177e4 6483
0a945022 6484 for_each_possible_cpu(i) {
dd41f596 6485 struct rt_prio_array *array;
70b97a7f 6486 struct rq *rq;
1da177e4
LT
6487
6488 rq = cpu_rq(i);
6489 spin_lock_init(&rq->lock);
fcb99371 6490 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6491 rq->nr_running = 0;
dd41f596
IM
6492 rq->clock = 1;
6493 init_cfs_rq(&rq->cfs, rq);
6494#ifdef CONFIG_FAIR_GROUP_SCHED
6495 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6496 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6497#endif
6498 rq->ls.load_update_last = now;
6499 rq->ls.load_update_start = now;
1da177e4 6500
dd41f596
IM
6501 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6502 rq->cpu_load[j] = 0;
1da177e4 6503#ifdef CONFIG_SMP
41c7ce9a 6504 rq->sd = NULL;
1da177e4 6505 rq->active_balance = 0;
dd41f596 6506 rq->next_balance = jiffies;
1da177e4 6507 rq->push_cpu = 0;
0a2966b4 6508 rq->cpu = i;
1da177e4
LT
6509 rq->migration_thread = NULL;
6510 INIT_LIST_HEAD(&rq->migration_queue);
6511#endif
6512 atomic_set(&rq->nr_iowait, 0);
6513
dd41f596
IM
6514 array = &rq->rt.active;
6515 for (j = 0; j < MAX_RT_PRIO; j++) {
6516 INIT_LIST_HEAD(array->queue + j);
6517 __clear_bit(j, array->bitmap);
1da177e4 6518 }
476f3534 6519 highest_cpu = i;
dd41f596
IM
6520 /* delimiter for bitsearch: */
6521 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6522 }
6523
2dd73a4f 6524 set_load_weight(&init_task);
b50f60ce 6525
e107be36
AK
6526#ifdef CONFIG_PREEMPT_NOTIFIERS
6527 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6528#endif
6529
c9819f45 6530#ifdef CONFIG_SMP
476f3534 6531 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6532 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6533#endif
6534
b50f60ce
HC
6535#ifdef CONFIG_RT_MUTEXES
6536 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6537#endif
6538
1da177e4
LT
6539 /*
6540 * The boot idle thread does lazy MMU switching as well:
6541 */
6542 atomic_inc(&init_mm.mm_count);
6543 enter_lazy_tlb(&init_mm, current);
6544
6545 /*
6546 * Make us the idle thread. Technically, schedule() should not be
6547 * called from this thread, however somewhere below it might be,
6548 * but because we are the idle thread, we just pick up running again
6549 * when this runqueue becomes "idle".
6550 */
6551 init_idle(current, smp_processor_id());
dd41f596
IM
6552 /*
6553 * During early bootup we pretend to be a normal task:
6554 */
6555 current->sched_class = &fair_sched_class;
1da177e4
LT
6556}
6557
6558#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6559void __might_sleep(char *file, int line)
6560{
48f24c4d 6561#ifdef in_atomic
1da177e4
LT
6562 static unsigned long prev_jiffy; /* ratelimiting */
6563
6564 if ((in_atomic() || irqs_disabled()) &&
6565 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6566 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6567 return;
6568 prev_jiffy = jiffies;
91368d73 6569 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6570 " context at %s:%d\n", file, line);
6571 printk("in_atomic():%d, irqs_disabled():%d\n",
6572 in_atomic(), irqs_disabled());
a4c410f0 6573 debug_show_held_locks(current);
3117df04
IM
6574 if (irqs_disabled())
6575 print_irqtrace_events(current);
1da177e4
LT
6576 dump_stack();
6577 }
6578#endif
6579}
6580EXPORT_SYMBOL(__might_sleep);
6581#endif
6582
6583#ifdef CONFIG_MAGIC_SYSRQ
6584void normalize_rt_tasks(void)
6585{
a0f98a1c 6586 struct task_struct *g, *p;
1da177e4 6587 unsigned long flags;
70b97a7f 6588 struct rq *rq;
dd41f596 6589 int on_rq;
1da177e4
LT
6590
6591 read_lock_irq(&tasklist_lock);
a0f98a1c 6592 do_each_thread(g, p) {
dd41f596
IM
6593 p->se.fair_key = 0;
6594 p->se.wait_runtime = 0;
6cfb0d5d 6595 p->se.exec_start = 0;
dd41f596 6596 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6597 p->se.sleep_start_fair = 0;
6598#ifdef CONFIG_SCHEDSTATS
dd41f596 6599 p->se.wait_start = 0;
dd41f596 6600 p->se.sleep_start = 0;
dd41f596 6601 p->se.block_start = 0;
6cfb0d5d 6602#endif
dd41f596
IM
6603 task_rq(p)->cfs.fair_clock = 0;
6604 task_rq(p)->clock = 0;
6605
6606 if (!rt_task(p)) {
6607 /*
6608 * Renice negative nice level userspace
6609 * tasks back to 0:
6610 */
6611 if (TASK_NICE(p) < 0 && p->mm)
6612 set_user_nice(p, 0);
1da177e4 6613 continue;
dd41f596 6614 }
1da177e4 6615
b29739f9
IM
6616 spin_lock_irqsave(&p->pi_lock, flags);
6617 rq = __task_rq_lock(p);
dd41f596
IM
6618#ifdef CONFIG_SMP
6619 /*
6620 * Do not touch the migration thread:
6621 */
6622 if (p == rq->migration_thread)
6623 goto out_unlock;
6624#endif
1da177e4 6625
dd41f596
IM
6626 on_rq = p->se.on_rq;
6627 if (on_rq)
8e717b19 6628 deactivate_task(task_rq(p), p, 0, rq_clock(task_rq(p)));
dd41f596
IM
6629 __setscheduler(rq, p, SCHED_NORMAL, 0);
6630 if (on_rq) {
6631 activate_task(task_rq(p), p, 0);
1da177e4
LT
6632 resched_task(rq->curr);
6633 }
dd41f596
IM
6634#ifdef CONFIG_SMP
6635 out_unlock:
6636#endif
b29739f9
IM
6637 __task_rq_unlock(rq);
6638 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6639 } while_each_thread(g, p);
6640
1da177e4
LT
6641 read_unlock_irq(&tasklist_lock);
6642}
6643
6644#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6645
6646#ifdef CONFIG_IA64
6647/*
6648 * These functions are only useful for the IA64 MCA handling.
6649 *
6650 * They can only be called when the whole system has been
6651 * stopped - every CPU needs to be quiescent, and no scheduling
6652 * activity can take place. Using them for anything else would
6653 * be a serious bug, and as a result, they aren't even visible
6654 * under any other configuration.
6655 */
6656
6657/**
6658 * curr_task - return the current task for a given cpu.
6659 * @cpu: the processor in question.
6660 *
6661 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6662 */
36c8b586 6663struct task_struct *curr_task(int cpu)
1df5c10a
LT
6664{
6665 return cpu_curr(cpu);
6666}
6667
6668/**
6669 * set_curr_task - set the current task for a given cpu.
6670 * @cpu: the processor in question.
6671 * @p: the task pointer to set.
6672 *
6673 * Description: This function must only be used when non-maskable interrupts
6674 * are serviced on a separate stack. It allows the architecture to switch the
6675 * notion of the current task on a cpu in a non-blocking manner. This function
6676 * must be called with all CPU's synchronized, and interrupts disabled, the
6677 * and caller must save the original value of the current task (see
6678 * curr_task() above) and restore that value before reenabling interrupts and
6679 * re-starting the system.
6680 *
6681 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6682 */
36c8b586 6683void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6684{
6685 cpu_curr(cpu) = p;
6686}
6687
6688#endif
This page took 0.736901 seconds and 5 git commands to generate.