sched: use constants if !CONFIG_SCHED_DEBUG
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
2bd8e6d4
IM
23/*
24 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
25 */
26#ifdef CONFIG_SCHED_DEBUG
27# define const_debug __read_mostly
28#else
29# define const_debug static const
30#endif
31
bf0f6f24 32/*
21805085
PZ
33 * Targeted preemption latency for CPU-bound tasks:
34 * (default: 20ms, units: nanoseconds)
bf0f6f24 35 *
21805085
PZ
36 * NOTE: this latency value is not the same as the concept of
37 * 'timeslice length' - timeslices in CFS are of variable length.
38 * (to see the precise effective timeslice length of your workload,
39 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
40 *
41 * On SMP systems the value of this is multiplied by the log2 of the
42 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
43 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 44 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 45 */
2bd8e6d4
IM
46const_debug unsigned int sysctl_sched_latency = 20000000ULL;
47
48/*
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
51 */
52const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
53
54/*
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 2 msec, units: nanoseconds)
57 */
172ac3db 58unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 59
1799e35d
IM
60/*
61 * sys_sched_yield() compat mode
62 *
63 * This option switches the agressive yield implementation of the
64 * old scheduler back on.
65 */
66unsigned int __read_mostly sysctl_sched_compat_yield;
67
bf0f6f24
IM
68/*
69 * SCHED_BATCH wake-up granularity.
71fd3714 70 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
71 *
72 * This option delays the preemption effects of decoupled workloads
73 * and reduces their over-scheduling. Synchronous workloads will still
74 * have immediate wakeup/sleep latencies.
75 */
2bd8e6d4 76const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
77
78/*
79 * SCHED_OTHER wake-up granularity.
80 * (default: 1 msec, units: nanoseconds)
81 *
82 * This option delays the preemption effects of decoupled workloads
83 * and reduces their over-scheduling. Synchronous workloads will still
84 * have immediate wakeup/sleep latencies.
85 */
2bd8e6d4 86const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 87
2bd8e6d4 88const_debug unsigned int sysctl_sched_stat_granularity;
bf0f6f24 89
bf0f6f24
IM
90unsigned int sysctl_sched_runtime_limit __read_mostly;
91
92/*
93 * Debugging: various feature bits
94 */
95enum {
96 SCHED_FEAT_FAIR_SLEEPERS = 1,
97 SCHED_FEAT_SLEEPER_AVG = 2,
98 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
99 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
100 SCHED_FEAT_START_DEBIT = 16,
101 SCHED_FEAT_SKIP_INITIAL = 32,
102};
103
2bd8e6d4 104const_debug unsigned int sysctl_sched_features =
bf0f6f24 105 SCHED_FEAT_FAIR_SLEEPERS *1 |
5d2b3d36 106 SCHED_FEAT_SLEEPER_AVG *0 |
bf0f6f24
IM
107 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
108 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
109 SCHED_FEAT_START_DEBIT *1 |
110 SCHED_FEAT_SKIP_INITIAL *0;
111
112extern struct sched_class fair_sched_class;
113
114/**************************************************************
115 * CFS operations on generic schedulable entities:
116 */
117
118#ifdef CONFIG_FAIR_GROUP_SCHED
119
120/* cpu runqueue to which this cfs_rq is attached */
121static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
122{
123 return cfs_rq->rq;
124}
125
126/* currently running entity (if any) on this cfs_rq */
127static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
128{
129 return cfs_rq->curr;
130}
131
132/* An entity is a task if it doesn't "own" a runqueue */
133#define entity_is_task(se) (!se->my_q)
134
135static inline void
136set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
137{
138 cfs_rq->curr = se;
139}
140
141#else /* CONFIG_FAIR_GROUP_SCHED */
142
143static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
144{
145 return container_of(cfs_rq, struct rq, cfs);
146}
147
148static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
149{
150 struct rq *rq = rq_of(cfs_rq);
151
152 if (unlikely(rq->curr->sched_class != &fair_sched_class))
153 return NULL;
154
155 return &rq->curr->se;
156}
157
158#define entity_is_task(se) 1
159
160static inline void
161set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
162
163#endif /* CONFIG_FAIR_GROUP_SCHED */
164
165static inline struct task_struct *task_of(struct sched_entity *se)
166{
167 return container_of(se, struct task_struct, se);
168}
169
170
171/**************************************************************
172 * Scheduling class tree data structure manipulation methods:
173 */
174
175/*
176 * Enqueue an entity into the rb-tree:
177 */
178static inline void
179__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
180{
181 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
182 struct rb_node *parent = NULL;
183 struct sched_entity *entry;
184 s64 key = se->fair_key;
185 int leftmost = 1;
186
187 /*
188 * Find the right place in the rbtree:
189 */
190 while (*link) {
191 parent = *link;
192 entry = rb_entry(parent, struct sched_entity, run_node);
193 /*
194 * We dont care about collisions. Nodes with
195 * the same key stay together.
196 */
197 if (key - entry->fair_key < 0) {
198 link = &parent->rb_left;
199 } else {
200 link = &parent->rb_right;
201 leftmost = 0;
202 }
203 }
204
205 /*
206 * Maintain a cache of leftmost tree entries (it is frequently
207 * used):
208 */
209 if (leftmost)
210 cfs_rq->rb_leftmost = &se->run_node;
211
212 rb_link_node(&se->run_node, parent, link);
213 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
214 update_load_add(&cfs_rq->load, se->load.weight);
215 cfs_rq->nr_running++;
216 se->on_rq = 1;
a206c072
IM
217
218 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
bf0f6f24
IM
219}
220
221static inline void
222__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
223{
224 if (cfs_rq->rb_leftmost == &se->run_node)
225 cfs_rq->rb_leftmost = rb_next(&se->run_node);
226 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
227 update_load_sub(&cfs_rq->load, se->load.weight);
228 cfs_rq->nr_running--;
229 se->on_rq = 0;
a206c072
IM
230
231 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
bf0f6f24
IM
232}
233
234static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
235{
236 return cfs_rq->rb_leftmost;
237}
238
239static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
240{
241 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
242}
243
244/**************************************************************
245 * Scheduling class statistics methods:
246 */
247
21805085
PZ
248/*
249 * Calculate the preemption granularity needed to schedule every
250 * runnable task once per sysctl_sched_latency amount of time.
251 * (down to a sensible low limit on granularity)
252 *
253 * For example, if there are 2 tasks running and latency is 10 msecs,
254 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
255 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
256 * for each task. We do finer and finer scheduling up to until we
257 * reach the minimum granularity value.
258 *
259 * To achieve this we use the following dynamic-granularity rule:
260 *
261 * gran = lat/nr - lat/nr/nr
262 *
263 * This comes out of the following equations:
264 *
265 * kA1 + gran = kB1
266 * kB2 + gran = kA2
267 * kA2 = kA1
268 * kB2 = kB1 - d + d/nr
269 * lat = d * nr
270 *
271 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
272 * '1' is start of time, '2' is end of time, 'd' is delay between
273 * 1 and 2 (during which task B was running), 'nr' is number of tasks
274 * running, 'lat' is the the period of each task. ('lat' is the
275 * sched_latency that we aim for.)
276 */
277static long
278sched_granularity(struct cfs_rq *cfs_rq)
279{
280 unsigned int gran = sysctl_sched_latency;
281 unsigned int nr = cfs_rq->nr_running;
282
283 if (nr > 1) {
284 gran = gran/nr - gran/nr/nr;
172ac3db 285 gran = max(gran, sysctl_sched_min_granularity);
21805085
PZ
286 }
287
288 return gran;
289}
290
bf0f6f24
IM
291/*
292 * We rescale the rescheduling granularity of tasks according to their
293 * nice level, but only linearly, not exponentially:
294 */
295static long
296niced_granularity(struct sched_entity *curr, unsigned long granularity)
297{
298 u64 tmp;
299
7cff8cf6
IM
300 if (likely(curr->load.weight == NICE_0_LOAD))
301 return granularity;
bf0f6f24 302 /*
7cff8cf6 303 * Positive nice levels get the same granularity as nice-0:
bf0f6f24 304 */
7cff8cf6
IM
305 if (likely(curr->load.weight < NICE_0_LOAD)) {
306 tmp = curr->load.weight * (u64)granularity;
307 return (long) (tmp >> NICE_0_SHIFT);
308 }
bf0f6f24 309 /*
7cff8cf6 310 * Negative nice level tasks get linearly finer
bf0f6f24
IM
311 * granularity:
312 */
7cff8cf6 313 tmp = curr->load.inv_weight * (u64)granularity;
bf0f6f24
IM
314
315 /*
316 * It will always fit into 'long':
317 */
a0dc7260 318 return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
bf0f6f24
IM
319}
320
321static inline void
322limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
323{
324 long limit = sysctl_sched_runtime_limit;
325
326 /*
327 * Niced tasks have the same history dynamic range as
328 * non-niced tasks:
329 */
330 if (unlikely(se->wait_runtime > limit)) {
331 se->wait_runtime = limit;
332 schedstat_inc(se, wait_runtime_overruns);
333 schedstat_inc(cfs_rq, wait_runtime_overruns);
334 }
335 if (unlikely(se->wait_runtime < -limit)) {
336 se->wait_runtime = -limit;
337 schedstat_inc(se, wait_runtime_underruns);
338 schedstat_inc(cfs_rq, wait_runtime_underruns);
339 }
340}
341
342static inline void
343__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
344{
345 se->wait_runtime += delta;
346 schedstat_add(se, sum_wait_runtime, delta);
347 limit_wait_runtime(cfs_rq, se);
348}
349
350static void
351add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
352{
353 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
354 __add_wait_runtime(cfs_rq, se, delta);
355 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
356}
357
358/*
359 * Update the current task's runtime statistics. Skip current tasks that
360 * are not in our scheduling class.
361 */
362static inline void
b7cc0896 363__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 364{
c5dcfe72 365 unsigned long delta, delta_exec, delta_fair, delta_mine;
bf0f6f24
IM
366 struct load_weight *lw = &cfs_rq->load;
367 unsigned long load = lw->weight;
368
bf0f6f24 369 delta_exec = curr->delta_exec;
8179ca23 370 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
371
372 curr->sum_exec_runtime += delta_exec;
373 cfs_rq->exec_clock += delta_exec;
374
fd8bb43e
IM
375 if (unlikely(!load))
376 return;
377
bf0f6f24
IM
378 delta_fair = calc_delta_fair(delta_exec, lw);
379 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
380
5f01d519 381 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
ea0aa3b2 382 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
b2133c8b
IM
383 delta = min(delta, (unsigned long)(
384 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
bf0f6f24
IM
385 cfs_rq->sleeper_bonus -= delta;
386 delta_mine -= delta;
387 }
388
389 cfs_rq->fair_clock += delta_fair;
390 /*
391 * We executed delta_exec amount of time on the CPU,
392 * but we were only entitled to delta_mine amount of
393 * time during that period (if nr_running == 1 then
394 * the two values are equal)
395 * [Note: delta_mine - delta_exec is negative]:
396 */
397 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
398}
399
b7cc0896 400static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24
IM
401{
402 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
403 unsigned long delta_exec;
404
405 if (unlikely(!curr))
406 return;
407
408 /*
409 * Get the amount of time the current task was running
410 * since the last time we changed load (this cannot
411 * overflow on 32 bits):
412 */
d281918d 413 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
bf0f6f24
IM
414
415 curr->delta_exec += delta_exec;
416
417 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
b7cc0896 418 __update_curr(cfs_rq, curr);
bf0f6f24
IM
419 curr->delta_exec = 0;
420 }
d281918d 421 curr->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
422}
423
424static inline void
5870db5b 425update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
426{
427 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 428 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
429}
430
431/*
432 * We calculate fair deltas here, so protect against the random effects
433 * of a multiplication overflow by capping it to the runtime limit:
434 */
435#if BITS_PER_LONG == 32
436static inline unsigned long
437calc_weighted(unsigned long delta, unsigned long weight, int shift)
438{
439 u64 tmp = (u64)delta * weight >> shift;
440
441 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
442 return sysctl_sched_runtime_limit*2;
443 return tmp;
444}
445#else
446static inline unsigned long
447calc_weighted(unsigned long delta, unsigned long weight, int shift)
448{
449 return delta * weight >> shift;
450}
451#endif
452
453/*
454 * Task is being enqueued - update stats:
455 */
d2417e5a 456static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
457{
458 s64 key;
459
460 /*
461 * Are we enqueueing a waiting task? (for current tasks
462 * a dequeue/enqueue event is a NOP)
463 */
464 if (se != cfs_rq_curr(cfs_rq))
5870db5b 465 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
466 /*
467 * Update the key:
468 */
469 key = cfs_rq->fair_clock;
470
471 /*
472 * Optimize the common nice 0 case:
473 */
474 if (likely(se->load.weight == NICE_0_LOAD)) {
475 key -= se->wait_runtime;
476 } else {
477 u64 tmp;
478
479 if (se->wait_runtime < 0) {
480 tmp = -se->wait_runtime;
481 key += (tmp * se->load.inv_weight) >>
482 (WMULT_SHIFT - NICE_0_SHIFT);
483 } else {
484 tmp = se->wait_runtime;
a69edb55
IM
485 key -= (tmp * se->load.inv_weight) >>
486 (WMULT_SHIFT - NICE_0_SHIFT);
bf0f6f24
IM
487 }
488 }
489
490 se->fair_key = key;
491}
492
493/*
494 * Note: must be called with a freshly updated rq->fair_clock.
495 */
496static inline void
eac55ea3 497__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
498{
499 unsigned long delta_fair = se->delta_fair_run;
500
d281918d
IM
501 schedstat_set(se->wait_max, max(se->wait_max,
502 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24
IM
503
504 if (unlikely(se->load.weight != NICE_0_LOAD))
505 delta_fair = calc_weighted(delta_fair, se->load.weight,
506 NICE_0_SHIFT);
507
508 add_wait_runtime(cfs_rq, se, delta_fair);
509}
510
511static void
9ef0a961 512update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
513{
514 unsigned long delta_fair;
515
b77d69db
IM
516 if (unlikely(!se->wait_start_fair))
517 return;
518
bf0f6f24
IM
519 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
520 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
521
522 se->delta_fair_run += delta_fair;
523 if (unlikely(abs(se->delta_fair_run) >=
524 sysctl_sched_stat_granularity)) {
eac55ea3 525 __update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
526 se->delta_fair_run = 0;
527 }
528
529 se->wait_start_fair = 0;
6cfb0d5d 530 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
531}
532
533static inline void
19b6a2e3 534update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 535{
b7cc0896 536 update_curr(cfs_rq);
bf0f6f24
IM
537 /*
538 * Mark the end of the wait period if dequeueing a
539 * waiting task:
540 */
541 if (se != cfs_rq_curr(cfs_rq))
9ef0a961 542 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
543}
544
545/*
546 * We are picking a new current task - update its stats:
547 */
548static inline void
79303e9e 549update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
550{
551 /*
552 * We are starting a new run period:
553 */
d281918d 554 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
555}
556
557/*
558 * We are descheduling a task - update its stats:
559 */
560static inline void
c7e9b5b2 561update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
562{
563 se->exec_start = 0;
564}
565
566/**************************************************
567 * Scheduling class queueing methods:
568 */
569
dfdc119e 570static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
571{
572 unsigned long load = cfs_rq->load.weight, delta_fair;
573 long prev_runtime;
574
b2133c8b
IM
575 /*
576 * Do not boost sleepers if there's too much bonus 'in flight'
577 * already:
578 */
579 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
580 return;
581
bf0f6f24
IM
582 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
583 load = rq_of(cfs_rq)->cpu_load[2];
584
585 delta_fair = se->delta_fair_sleep;
586
587 /*
588 * Fix up delta_fair with the effect of us running
589 * during the whole sleep period:
590 */
591 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
592 delta_fair = div64_likely32((u64)delta_fair * load,
593 load + se->load.weight);
594
595 if (unlikely(se->load.weight != NICE_0_LOAD))
596 delta_fair = calc_weighted(delta_fair, se->load.weight,
597 NICE_0_SHIFT);
598
599 prev_runtime = se->wait_runtime;
600 __add_wait_runtime(cfs_rq, se, delta_fair);
601 delta_fair = se->wait_runtime - prev_runtime;
602
603 /*
604 * Track the amount of bonus we've given to sleepers:
605 */
606 cfs_rq->sleeper_bonus += delta_fair;
bf0f6f24
IM
607}
608
2396af69 609static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
610{
611 struct task_struct *tsk = task_of(se);
612 unsigned long delta_fair;
613
614 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
615 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
616 return;
617
618 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
619 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
620
621 se->delta_fair_sleep += delta_fair;
622 if (unlikely(abs(se->delta_fair_sleep) >=
623 sysctl_sched_stat_granularity)) {
dfdc119e 624 __enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
625 se->delta_fair_sleep = 0;
626 }
627
628 se->sleep_start_fair = 0;
629
630#ifdef CONFIG_SCHEDSTATS
631 if (se->sleep_start) {
d281918d 632 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
633
634 if ((s64)delta < 0)
635 delta = 0;
636
637 if (unlikely(delta > se->sleep_max))
638 se->sleep_max = delta;
639
640 se->sleep_start = 0;
641 se->sum_sleep_runtime += delta;
642 }
643 if (se->block_start) {
d281918d 644 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
645
646 if ((s64)delta < 0)
647 delta = 0;
648
649 if (unlikely(delta > se->block_max))
650 se->block_max = delta;
651
652 se->block_start = 0;
653 se->sum_sleep_runtime += delta;
30084fbd
IM
654
655 /*
656 * Blocking time is in units of nanosecs, so shift by 20 to
657 * get a milliseconds-range estimation of the amount of
658 * time that the task spent sleeping:
659 */
660 if (unlikely(prof_on == SLEEP_PROFILING)) {
661 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
662 delta >> 20);
663 }
bf0f6f24
IM
664 }
665#endif
666}
667
668static void
668031ca 669enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
670{
671 /*
672 * Update the fair clock.
673 */
b7cc0896 674 update_curr(cfs_rq);
bf0f6f24
IM
675
676 if (wakeup)
2396af69 677 enqueue_sleeper(cfs_rq, se);
bf0f6f24 678
d2417e5a 679 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
680 __enqueue_entity(cfs_rq, se);
681}
682
683static void
525c2716 684dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 685{
19b6a2e3 686 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
687 if (sleep) {
688 se->sleep_start_fair = cfs_rq->fair_clock;
689#ifdef CONFIG_SCHEDSTATS
690 if (entity_is_task(se)) {
691 struct task_struct *tsk = task_of(se);
692
693 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 694 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 695 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 696 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 697 }
bf0f6f24
IM
698#endif
699 }
700 __dequeue_entity(cfs_rq, se);
701}
702
703/*
704 * Preempt the current task with a newly woken task if needed:
705 */
7c92e54f 706static void
bf0f6f24
IM
707__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
708 struct sched_entity *curr, unsigned long granularity)
709{
710 s64 __delta = curr->fair_key - se->fair_key;
11697830
PZ
711 unsigned long ideal_runtime, delta_exec;
712
713 /*
714 * ideal_runtime is compared against sum_exec_runtime, which is
715 * walltime, hence do not scale.
716 */
717 ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
718 (unsigned long)sysctl_sched_min_granularity);
719
720 /*
721 * If we executed more than what the latency constraint suggests,
722 * reduce the rescheduling granularity. This way the total latency
723 * of how much a task is not scheduled converges to
724 * sysctl_sched_latency:
725 */
726 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
727 if (delta_exec > ideal_runtime)
728 granularity = 0;
bf0f6f24
IM
729
730 /*
731 * Take scheduling granularity into account - do not
732 * preempt the current task unless the best task has
733 * a larger than sched_granularity fairness advantage:
11697830
PZ
734 *
735 * scale granularity as key space is in fair_clock.
bf0f6f24 736 */
4a55b450 737 if (__delta > niced_granularity(curr, granularity))
bf0f6f24
IM
738 resched_task(rq_of(cfs_rq)->curr);
739}
740
741static inline void
8494f412 742set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
743{
744 /*
745 * Any task has to be enqueued before it get to execute on
746 * a CPU. So account for the time it spent waiting on the
747 * runqueue. (note, here we rely on pick_next_task() having
748 * done a put_prev_task_fair() shortly before this, which
749 * updated rq->fair_clock - used by update_stats_wait_end())
750 */
9ef0a961 751 update_stats_wait_end(cfs_rq, se);
79303e9e 752 update_stats_curr_start(cfs_rq, se);
bf0f6f24 753 set_cfs_rq_curr(cfs_rq, se);
eba1ed4b
IM
754#ifdef CONFIG_SCHEDSTATS
755 /*
756 * Track our maximum slice length, if the CPU's load is at
757 * least twice that of our own weight (i.e. dont track it
758 * when there are only lesser-weight tasks around):
759 */
760 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
761 se->slice_max = max(se->slice_max,
762 se->sum_exec_runtime - se->prev_sum_exec_runtime);
763 }
764#endif
4a55b450 765 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
766}
767
9948f4b2 768static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
769{
770 struct sched_entity *se = __pick_next_entity(cfs_rq);
771
8494f412 772 set_next_entity(cfs_rq, se);
bf0f6f24
IM
773
774 return se;
775}
776
ab6cde26 777static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
778{
779 /*
780 * If still on the runqueue then deactivate_task()
781 * was not called and update_curr() has to be done:
782 */
783 if (prev->on_rq)
b7cc0896 784 update_curr(cfs_rq);
bf0f6f24 785
c7e9b5b2 786 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
787
788 if (prev->on_rq)
5870db5b 789 update_stats_wait_start(cfs_rq, prev);
bf0f6f24
IM
790 set_cfs_rq_curr(cfs_rq, NULL);
791}
792
793static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
794{
bf0f6f24 795 struct sched_entity *next;
c1b3da3e 796
bf0f6f24
IM
797 /*
798 * Dequeue and enqueue the task to update its
799 * position within the tree:
800 */
525c2716 801 dequeue_entity(cfs_rq, curr, 0);
668031ca 802 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24
IM
803
804 /*
805 * Reschedule if another task tops the current one.
806 */
807 next = __pick_next_entity(cfs_rq);
808 if (next == curr)
809 return;
810
11697830
PZ
811 __check_preempt_curr_fair(cfs_rq, next, curr,
812 sched_granularity(cfs_rq));
bf0f6f24
IM
813}
814
815/**************************************************
816 * CFS operations on tasks:
817 */
818
819#ifdef CONFIG_FAIR_GROUP_SCHED
820
821/* Walk up scheduling entities hierarchy */
822#define for_each_sched_entity(se) \
823 for (; se; se = se->parent)
824
825static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
826{
827 return p->se.cfs_rq;
828}
829
830/* runqueue on which this entity is (to be) queued */
831static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
832{
833 return se->cfs_rq;
834}
835
836/* runqueue "owned" by this group */
837static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
838{
839 return grp->my_q;
840}
841
842/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
843 * another cpu ('this_cpu')
844 */
845static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
846{
847 /* A later patch will take group into account */
848 return &cpu_rq(this_cpu)->cfs;
849}
850
851/* Iterate thr' all leaf cfs_rq's on a runqueue */
852#define for_each_leaf_cfs_rq(rq, cfs_rq) \
853 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
854
855/* Do the two (enqueued) tasks belong to the same group ? */
856static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
857{
858 if (curr->se.cfs_rq == p->se.cfs_rq)
859 return 1;
860
861 return 0;
862}
863
864#else /* CONFIG_FAIR_GROUP_SCHED */
865
866#define for_each_sched_entity(se) \
867 for (; se; se = NULL)
868
869static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
870{
871 return &task_rq(p)->cfs;
872}
873
874static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
875{
876 struct task_struct *p = task_of(se);
877 struct rq *rq = task_rq(p);
878
879 return &rq->cfs;
880}
881
882/* runqueue "owned" by this group */
883static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
884{
885 return NULL;
886}
887
888static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
889{
890 return &cpu_rq(this_cpu)->cfs;
891}
892
893#define for_each_leaf_cfs_rq(rq, cfs_rq) \
894 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
895
896static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
897{
898 return 1;
899}
900
901#endif /* CONFIG_FAIR_GROUP_SCHED */
902
903/*
904 * The enqueue_task method is called before nr_running is
905 * increased. Here we update the fair scheduling stats and
906 * then put the task into the rbtree:
907 */
fd390f6a 908static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
909{
910 struct cfs_rq *cfs_rq;
911 struct sched_entity *se = &p->se;
912
913 for_each_sched_entity(se) {
914 if (se->on_rq)
915 break;
916 cfs_rq = cfs_rq_of(se);
668031ca 917 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
918 }
919}
920
921/*
922 * The dequeue_task method is called before nr_running is
923 * decreased. We remove the task from the rbtree and
924 * update the fair scheduling stats:
925 */
f02231e5 926static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
927{
928 struct cfs_rq *cfs_rq;
929 struct sched_entity *se = &p->se;
930
931 for_each_sched_entity(se) {
932 cfs_rq = cfs_rq_of(se);
525c2716 933 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
934 /* Don't dequeue parent if it has other entities besides us */
935 if (cfs_rq->load.weight)
936 break;
937 }
938}
939
940/*
1799e35d
IM
941 * sched_yield() support is very simple - we dequeue and enqueue.
942 *
943 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
944 */
945static void yield_task_fair(struct rq *rq, struct task_struct *p)
946{
947 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
948 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
949 struct sched_entity *rightmost, *se = &p->se;
950 struct rb_node *parent;
bf0f6f24
IM
951
952 /*
1799e35d
IM
953 * Are we the only task in the tree?
954 */
955 if (unlikely(cfs_rq->nr_running == 1))
956 return;
957
958 if (likely(!sysctl_sched_compat_yield)) {
959 __update_rq_clock(rq);
960 /*
961 * Dequeue and enqueue the task to update its
962 * position within the tree:
963 */
964 dequeue_entity(cfs_rq, &p->se, 0);
965 enqueue_entity(cfs_rq, &p->se, 0);
966
967 return;
968 }
969 /*
970 * Find the rightmost entry in the rbtree:
bf0f6f24 971 */
1799e35d
IM
972 do {
973 parent = *link;
974 link = &parent->rb_right;
975 } while (*link);
976
977 rightmost = rb_entry(parent, struct sched_entity, run_node);
978 /*
979 * Already in the rightmost position?
980 */
981 if (unlikely(rightmost == se))
982 return;
983
984 /*
985 * Minimally necessary key value to be last in the tree:
986 */
987 se->fair_key = rightmost->fair_key + 1;
988
989 if (cfs_rq->rb_leftmost == &se->run_node)
990 cfs_rq->rb_leftmost = rb_next(&se->run_node);
991 /*
992 * Relink the task to the rightmost position:
993 */
994 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
995 rb_link_node(&se->run_node, parent, link);
996 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
997}
998
999/*
1000 * Preempt the current task with a newly woken task if needed:
1001 */
1002static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
1003{
1004 struct task_struct *curr = rq->curr;
1005 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1006 unsigned long gran;
1007
1008 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1009 update_rq_clock(rq);
b7cc0896 1010 update_curr(cfs_rq);
bf0f6f24
IM
1011 resched_task(curr);
1012 return;
1013 }
1014
1015 gran = sysctl_sched_wakeup_granularity;
1016 /*
1017 * Batch tasks prefer throughput over latency:
1018 */
1019 if (unlikely(p->policy == SCHED_BATCH))
1020 gran = sysctl_sched_batch_wakeup_granularity;
1021
1022 if (is_same_group(curr, p))
1023 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
1024}
1025
fb8d4724 1026static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
1027{
1028 struct cfs_rq *cfs_rq = &rq->cfs;
1029 struct sched_entity *se;
1030
1031 if (unlikely(!cfs_rq->nr_running))
1032 return NULL;
1033
1034 do {
9948f4b2 1035 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1036 cfs_rq = group_cfs_rq(se);
1037 } while (cfs_rq);
1038
1039 return task_of(se);
1040}
1041
1042/*
1043 * Account for a descheduled task:
1044 */
31ee529c 1045static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1046{
1047 struct sched_entity *se = &prev->se;
1048 struct cfs_rq *cfs_rq;
1049
1050 for_each_sched_entity(se) {
1051 cfs_rq = cfs_rq_of(se);
ab6cde26 1052 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1053 }
1054}
1055
1056/**************************************************
1057 * Fair scheduling class load-balancing methods:
1058 */
1059
1060/*
1061 * Load-balancing iterator. Note: while the runqueue stays locked
1062 * during the whole iteration, the current task might be
1063 * dequeued so the iterator has to be dequeue-safe. Here we
1064 * achieve that by always pre-iterating before returning
1065 * the current task:
1066 */
1067static inline struct task_struct *
1068__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1069{
1070 struct task_struct *p;
1071
1072 if (!curr)
1073 return NULL;
1074
1075 p = rb_entry(curr, struct task_struct, se.run_node);
1076 cfs_rq->rb_load_balance_curr = rb_next(curr);
1077
1078 return p;
1079}
1080
1081static struct task_struct *load_balance_start_fair(void *arg)
1082{
1083 struct cfs_rq *cfs_rq = arg;
1084
1085 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1086}
1087
1088static struct task_struct *load_balance_next_fair(void *arg)
1089{
1090 struct cfs_rq *cfs_rq = arg;
1091
1092 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1093}
1094
a4ac01c3 1095#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
1096static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1097{
1098 struct sched_entity *curr;
1099 struct task_struct *p;
1100
1101 if (!cfs_rq->nr_running)
1102 return MAX_PRIO;
1103
1104 curr = __pick_next_entity(cfs_rq);
1105 p = task_of(curr);
1106
1107 return p->prio;
1108}
a4ac01c3 1109#endif
bf0f6f24 1110
43010659 1111static unsigned long
bf0f6f24 1112load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
1113 unsigned long max_nr_move, unsigned long max_load_move,
1114 struct sched_domain *sd, enum cpu_idle_type idle,
1115 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1116{
1117 struct cfs_rq *busy_cfs_rq;
1118 unsigned long load_moved, total_nr_moved = 0, nr_moved;
1119 long rem_load_move = max_load_move;
1120 struct rq_iterator cfs_rq_iterator;
1121
1122 cfs_rq_iterator.start = load_balance_start_fair;
1123 cfs_rq_iterator.next = load_balance_next_fair;
1124
1125 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1126#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 1127 struct cfs_rq *this_cfs_rq;
e56f31aa 1128 long imbalance;
bf0f6f24 1129 unsigned long maxload;
bf0f6f24
IM
1130
1131 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1132
e56f31aa 1133 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
1134 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1135 if (imbalance <= 0)
1136 continue;
1137
1138 /* Don't pull more than imbalance/2 */
1139 imbalance /= 2;
1140 maxload = min(rem_load_move, imbalance);
1141
a4ac01c3
PW
1142 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1143#else
e56f31aa 1144# define maxload rem_load_move
a4ac01c3 1145#endif
bf0f6f24
IM
1146 /* pass busy_cfs_rq argument into
1147 * load_balance_[start|next]_fair iterators
1148 */
1149 cfs_rq_iterator.arg = busy_cfs_rq;
1150 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
1151 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 1152 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
1153
1154 total_nr_moved += nr_moved;
1155 max_nr_move -= nr_moved;
1156 rem_load_move -= load_moved;
1157
1158 if (max_nr_move <= 0 || rem_load_move <= 0)
1159 break;
1160 }
1161
43010659 1162 return max_load_move - rem_load_move;
bf0f6f24
IM
1163}
1164
1165/*
1166 * scheduler tick hitting a task of our scheduling class:
1167 */
1168static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1169{
1170 struct cfs_rq *cfs_rq;
1171 struct sched_entity *se = &curr->se;
1172
1173 for_each_sched_entity(se) {
1174 cfs_rq = cfs_rq_of(se);
1175 entity_tick(cfs_rq, se);
1176 }
1177}
1178
1179/*
1180 * Share the fairness runtime between parent and child, thus the
1181 * total amount of pressure for CPU stays equal - new tasks
1182 * get a chance to run but frequent forkers are not allowed to
1183 * monopolize the CPU. Note: the parent runqueue is locked,
1184 * the child is not running yet.
1185 */
ee0827d8 1186static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1187{
1188 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7109c442 1189 struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq);
bf0f6f24
IM
1190
1191 sched_info_queued(p);
1192
7109c442 1193 update_curr(cfs_rq);
d2417e5a 1194 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1195 /*
1196 * Child runs first: we let it run before the parent
1197 * until it reschedules once. We set up the key so that
1198 * it will preempt the parent:
1199 */
9f508f82 1200 se->fair_key = curr->fair_key -
7109c442 1201 niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
bf0f6f24
IM
1202 /*
1203 * The first wait is dominated by the child-runs-first logic,
1204 * so do not credit it with that waiting time yet:
1205 */
1206 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
9f508f82 1207 se->wait_start_fair = 0;
bf0f6f24
IM
1208
1209 /*
1210 * The statistical average of wait_runtime is about
1211 * -granularity/2, so initialize the task with that:
1212 */
a206c072 1213 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
9f508f82 1214 se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
bf0f6f24
IM
1215
1216 __enqueue_entity(cfs_rq, se);
bb61c210 1217 resched_task(rq->curr);
bf0f6f24
IM
1218}
1219
1220#ifdef CONFIG_FAIR_GROUP_SCHED
1221/* Account for a task changing its policy or group.
1222 *
1223 * This routine is mostly called to set cfs_rq->curr field when a task
1224 * migrates between groups/classes.
1225 */
1226static void set_curr_task_fair(struct rq *rq)
1227{
7c6c16f3 1228 struct sched_entity *se = &rq->curr->se;
a8e504d2 1229
c3b64f1e
IM
1230 for_each_sched_entity(se)
1231 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1232}
1233#else
1234static void set_curr_task_fair(struct rq *rq)
1235{
1236}
1237#endif
1238
1239/*
1240 * All the scheduling class methods:
1241 */
1242struct sched_class fair_sched_class __read_mostly = {
1243 .enqueue_task = enqueue_task_fair,
1244 .dequeue_task = dequeue_task_fair,
1245 .yield_task = yield_task_fair,
1246
1247 .check_preempt_curr = check_preempt_curr_fair,
1248
1249 .pick_next_task = pick_next_task_fair,
1250 .put_prev_task = put_prev_task_fair,
1251
1252 .load_balance = load_balance_fair,
1253
1254 .set_curr_task = set_curr_task_fair,
1255 .task_tick = task_tick_fair,
1256 .task_new = task_new_fair,
1257};
1258
1259#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1260static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1261{
bf0f6f24
IM
1262 struct cfs_rq *cfs_rq;
1263
c3b64f1e 1264 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1265 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1266}
1267#endif
This page took 0.141263 seconds and 5 git commands to generate.