sched: Prevent interactions with throttled entities
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
ec12cb7f
PT
92#ifdef CONFIG_CFS_BANDWIDTH
93/*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104#endif
105
a4c2f00f
PZ
106static const struct sched_class fair_sched_class;
107
bf0f6f24
IM
108/**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
62160e3f 112#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 113
62160e3f 114/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
62160e3f 117 return cfs_rq->rq;
bf0f6f24
IM
118}
119
62160e3f
IM
120/* An entity is a task if it doesn't "own" a runqueue */
121#define entity_is_task(se) (!se->my_q)
bf0f6f24 122
8f48894f
PZ
123static inline struct task_struct *task_of(struct sched_entity *se)
124{
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127#endif
128 return container_of(se, struct task_struct, se);
129}
130
b758149c
PZ
131/* Walk up scheduling entities hierarchy */
132#define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136{
137 return p->se.cfs_rq;
138}
139
140/* runqueue on which this entity is (to be) queued */
141static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142{
143 return se->cfs_rq;
144}
145
146/* runqueue "owned" by this group */
147static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148{
149 return grp->my_q;
150}
151
3d4b47b4
PZ
152static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153{
154 if (!cfs_rq->on_list) {
67e86250
PT
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 168 }
3d4b47b4
PZ
169
170 cfs_rq->on_list = 1;
171 }
172}
173
174static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175{
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180}
181
b758149c
PZ
182/* Iterate thr' all leaf cfs_rq's on a runqueue */
183#define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186/* Do the two (enqueued) entities belong to the same group ? */
187static inline int
188is_same_group(struct sched_entity *se, struct sched_entity *pse)
189{
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194}
195
196static inline struct sched_entity *parent_entity(struct sched_entity *se)
197{
198 return se->parent;
199}
200
464b7527
PZ
201/* return depth at which a sched entity is present in the hierarchy */
202static inline int depth_se(struct sched_entity *se)
203{
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210}
211
212static void
213find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214{
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242}
243
8f48894f
PZ
244#else /* !CONFIG_FAIR_GROUP_SCHED */
245
246static inline struct task_struct *task_of(struct sched_entity *se)
247{
248 return container_of(se, struct task_struct, se);
249}
bf0f6f24 250
62160e3f
IM
251static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252{
253 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
254}
255
256#define entity_is_task(se) 1
257
b758149c
PZ
258#define for_each_sched_entity(se) \
259 for (; se; se = NULL)
bf0f6f24 260
b758149c 261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 262{
b758149c 263 return &task_rq(p)->cfs;
bf0f6f24
IM
264}
265
b758149c
PZ
266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267{
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272}
273
274/* runqueue "owned" by this group */
275static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276{
277 return NULL;
278}
279
3d4b47b4
PZ
280static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281{
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286}
287
b758149c
PZ
288#define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291static inline int
292is_same_group(struct sched_entity *se, struct sched_entity *pse)
293{
294 return 1;
295}
296
297static inline struct sched_entity *parent_entity(struct sched_entity *se)
298{
299 return NULL;
300}
301
464b7527
PZ
302static inline void
303find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304{
305}
306
b758149c
PZ
307#endif /* CONFIG_FAIR_GROUP_SCHED */
308
ec12cb7f
PT
309static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
bf0f6f24
IM
311
312/**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
0702e3eb 316static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 317{
368059a9
PZ
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
02e0431a
PZ
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323}
324
0702e3eb 325static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
326{
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332}
333
54fdc581
FC
334static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336{
337 return (s64)(a->vruntime - b->vruntime) < 0;
338}
339
1af5f730
PZ
340static void update_min_vruntime(struct cfs_rq *cfs_rq)
341{
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
e17036da 352 if (!cfs_rq->curr)
1af5f730
PZ
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
359#ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362#endif
1af5f730
PZ
363}
364
bf0f6f24
IM
365/*
366 * Enqueue an entity into the rb-tree:
367 */
0702e3eb 368static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
369{
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
bf0f6f24
IM
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
2bd2d6f2 385 if (entity_before(se, entry)) {
bf0f6f24
IM
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
1af5f730 397 if (leftmost)
57cb499d 398 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
402}
403
0702e3eb 404static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 405{
3fe69747
PZ
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
3fe69747
PZ
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
3fe69747 411 }
e9acbff6 412
bf0f6f24 413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
414}
415
ac53db59 416static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 417{
f4b6755f
PZ
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
424}
425
ac53db59
RR
426static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427{
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434}
435
436#ifdef CONFIG_SCHED_DEBUG
f4b6755f 437static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 438{
7eee3e67 439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 440
70eee74b
BS
441 if (!last)
442 return NULL;
7eee3e67
IM
443
444 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
445}
446
bf0f6f24
IM
447/**************************************************************
448 * Scheduling class statistics methods:
449 */
450
acb4a848 451int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 452 void __user *buffer, size_t *lenp,
b2be5e96
PZ
453 loff_t *ppos)
454{
8d65af78 455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 456 int factor = get_update_sysctl_factor();
b2be5e96
PZ
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
acb4a848
CE
464#define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
469#undef WRT_SYSCTL
470
b2be5e96
PZ
471 return 0;
472}
473#endif
647e7cac 474
a7be37ac 475/*
f9c0b095 476 * delta /= w
a7be37ac
PZ
477 */
478static inline unsigned long
479calc_delta_fair(unsigned long delta, struct sched_entity *se)
480{
f9c0b095
PZ
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
483
484 return delta;
485}
486
647e7cac
IM
487/*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
4d78e7b6
PZ
495static u64 __sched_period(unsigned long nr_running)
496{
497 u64 period = sysctl_sched_latency;
b2be5e96 498 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
499
500 if (unlikely(nr_running > nr_latency)) {
4bf0b771 501 period = sysctl_sched_min_granularity;
4d78e7b6 502 period *= nr_running;
4d78e7b6
PZ
503 }
504
505 return period;
506}
507
647e7cac
IM
508/*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
f9c0b095 512 * s = p*P[w/rw]
647e7cac 513 */
6d0f0ebd 514static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 515{
0a582440 516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 517
0a582440 518 for_each_sched_entity(se) {
6272d68c 519 struct load_weight *load;
3104bf03 520 struct load_weight lw;
6272d68c
LM
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
f9c0b095 524
0a582440 525 if (unlikely(!se->on_rq)) {
3104bf03 526 lw = cfs_rq->load;
0a582440
MG
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
bf0f6f24
IM
534}
535
647e7cac 536/*
ac884dec 537 * We calculate the vruntime slice of a to be inserted task
647e7cac 538 *
f9c0b095 539 * vs = s/w
647e7cac 540 */
f9c0b095 541static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 542{
f9c0b095 543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
544}
545
d6b55918 546static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 547static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 548
bf0f6f24
IM
549/*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553static inline void
8ebc91d9
IM
554__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
bf0f6f24 556{
bbdba7c0 557 unsigned long delta_exec_weighted;
bf0f6f24 558
41acab88
LDM
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
561
562 curr->sum_exec_runtime += delta_exec;
7a62eabc 563 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 565
e9acbff6 566 curr->vruntime += delta_exec_weighted;
1af5f730 567 update_min_vruntime(cfs_rq);
3b3d190e 568
70caf8a6 569#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 570 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 571#endif
bf0f6f24
IM
572}
573
b7cc0896 574static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 575{
429d43bc 576 struct sched_entity *curr = cfs_rq->curr;
305e6835 577 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
8ebc91d9 588 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
589 if (!delta_exec)
590 return;
bf0f6f24 591
8ebc91d9
IM
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
d842de87
SV
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
f977bb49 598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 599 cpuacct_charge(curtask, delta_exec);
f06febc9 600 account_group_exec_runtime(curtask, delta_exec);
d842de87 601 }
ec12cb7f
PT
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
604}
605
606static inline void
5870db5b 607update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
41acab88 609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
610}
611
bf0f6f24
IM
612/*
613 * Task is being enqueued - update stats:
614 */
d2417e5a 615static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 616{
bf0f6f24
IM
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
429d43bc 621 if (se != cfs_rq->curr)
5870db5b 622 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
623}
624
bf0f6f24 625static void
9ef0a961 626update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
41acab88
LDM
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
633#ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
41acab88 636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
637 }
638#endif
41acab88 639 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
640}
641
642static inline void
19b6a2e3 643update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 644{
bf0f6f24
IM
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
429d43bc 649 if (se != cfs_rq->curr)
9ef0a961 650 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
651}
652
653/*
654 * We are picking a new current task - update its stats:
655 */
656static inline void
79303e9e 657update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
658{
659 /*
660 * We are starting a new run period:
661 */
305e6835 662 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
663}
664
bf0f6f24
IM
665/**************************************************
666 * Scheduling class queueing methods:
667 */
668
c09595f6
PZ
669#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670static void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673 cfs_rq->task_weight += weight;
674}
675#else
676static inline void
677add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678{
679}
680#endif
681
30cfdcfc
DA
682static void
683account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684{
685 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 688 if (entity_is_task(se)) {
c09595f6 689 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
30cfdcfc 692 cfs_rq->nr_running++;
30cfdcfc
DA
693}
694
695static void
696account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697{
698 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 701 if (entity_is_task(se)) {
c09595f6 702 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
703 list_del_init(&se->group_node);
704 }
30cfdcfc 705 cfs_rq->nr_running--;
30cfdcfc
DA
706}
707
3ff6dcac 708#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
709/* we need this in update_cfs_load and load-balance functions below */
710static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 711# ifdef CONFIG_SMP
d6b55918
PT
712static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
713 int global_update)
714{
715 struct task_group *tg = cfs_rq->tg;
716 long load_avg;
717
718 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
719 load_avg -= cfs_rq->load_contribution;
720
721 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
722 atomic_add(load_avg, &tg->load_weight);
723 cfs_rq->load_contribution += load_avg;
724 }
725}
726
727static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 728{
a7a4f8a7 729 u64 period = sysctl_sched_shares_window;
2069dd75 730 u64 now, delta;
e33078ba 731 unsigned long load = cfs_rq->load.weight;
2069dd75 732
64660c86 733 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
734 return;
735
05ca62c6 736 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
737 delta = now - cfs_rq->load_stamp;
738
e33078ba
PT
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq->load_stamp > cfs_rq->load_last &&
741 now - cfs_rq->load_last > 4 * period) {
742 cfs_rq->load_period = 0;
743 cfs_rq->load_avg = 0;
f07333bf 744 delta = period - 1;
e33078ba
PT
745 }
746
2069dd75 747 cfs_rq->load_stamp = now;
3b3d190e 748 cfs_rq->load_unacc_exec_time = 0;
2069dd75 749 cfs_rq->load_period += delta;
e33078ba
PT
750 if (load) {
751 cfs_rq->load_last = now;
752 cfs_rq->load_avg += delta * load;
753 }
2069dd75 754
d6b55918
PT
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update || cfs_rq->load_period > period
757 || !cfs_rq->load_period)
758 update_cfs_rq_load_contribution(cfs_rq, global_update);
759
2069dd75
PZ
760 while (cfs_rq->load_period > period) {
761 /*
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
765 */
766 asm("" : "+rm" (cfs_rq->load_period));
767 cfs_rq->load_period /= 2;
768 cfs_rq->load_avg /= 2;
769 }
3d4b47b4 770
e33078ba
PT
771 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
772 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
773}
774
6d5ab293 775static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
776{
777 long load_weight, load, shares;
778
6d5ab293 779 load = cfs_rq->load.weight;
3ff6dcac
YZ
780
781 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 782 load_weight += load;
6d5ab293 783 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
784
785 shares = (tg->shares * load);
786 if (load_weight)
787 shares /= load_weight;
788
789 if (shares < MIN_SHARES)
790 shares = MIN_SHARES;
791 if (shares > tg->shares)
792 shares = tg->shares;
793
794 return shares;
795}
796
797static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
798{
799 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
800 update_cfs_load(cfs_rq, 0);
6d5ab293 801 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
802 }
803}
804# else /* CONFIG_SMP */
805static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
806{
807}
808
6d5ab293 809static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
810{
811 return tg->shares;
812}
813
814static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
815{
816}
817# endif /* CONFIG_SMP */
2069dd75
PZ
818static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
819 unsigned long weight)
820{
19e5eebb
PT
821 if (se->on_rq) {
822 /* commit outstanding execution time */
823 if (cfs_rq->curr == se)
824 update_curr(cfs_rq);
2069dd75 825 account_entity_dequeue(cfs_rq, se);
19e5eebb 826 }
2069dd75
PZ
827
828 update_load_set(&se->load, weight);
829
830 if (se->on_rq)
831 account_entity_enqueue(cfs_rq, se);
832}
833
6d5ab293 834static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
835{
836 struct task_group *tg;
837 struct sched_entity *se;
3ff6dcac 838 long shares;
2069dd75 839
2069dd75
PZ
840 tg = cfs_rq->tg;
841 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 842 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 843 return;
3ff6dcac
YZ
844#ifndef CONFIG_SMP
845 if (likely(se->load.weight == tg->shares))
846 return;
847#endif
6d5ab293 848 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
849
850 reweight_entity(cfs_rq_of(se), se, shares);
851}
852#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 853static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
854{
855}
856
6d5ab293 857static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
858{
859}
43365bd7
PT
860
861static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
862{
863}
2069dd75
PZ
864#endif /* CONFIG_FAIR_GROUP_SCHED */
865
2396af69 866static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 867{
bf0f6f24 868#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
869 struct task_struct *tsk = NULL;
870
871 if (entity_is_task(se))
872 tsk = task_of(se);
873
41acab88
LDM
874 if (se->statistics.sleep_start) {
875 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
876
877 if ((s64)delta < 0)
878 delta = 0;
879
41acab88
LDM
880 if (unlikely(delta > se->statistics.sleep_max))
881 se->statistics.sleep_max = delta;
bf0f6f24 882
41acab88
LDM
883 se->statistics.sleep_start = 0;
884 se->statistics.sum_sleep_runtime += delta;
9745512c 885
768d0c27 886 if (tsk) {
e414314c 887 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
888 trace_sched_stat_sleep(tsk, delta);
889 }
bf0f6f24 890 }
41acab88
LDM
891 if (se->statistics.block_start) {
892 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
893
894 if ((s64)delta < 0)
895 delta = 0;
896
41acab88
LDM
897 if (unlikely(delta > se->statistics.block_max))
898 se->statistics.block_max = delta;
bf0f6f24 899
41acab88
LDM
900 se->statistics.block_start = 0;
901 se->statistics.sum_sleep_runtime += delta;
30084fbd 902
e414314c 903 if (tsk) {
8f0dfc34 904 if (tsk->in_iowait) {
41acab88
LDM
905 se->statistics.iowait_sum += delta;
906 se->statistics.iowait_count++;
768d0c27 907 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
908 }
909
e414314c
PZ
910 /*
911 * Blocking time is in units of nanosecs, so shift by
912 * 20 to get a milliseconds-range estimation of the
913 * amount of time that the task spent sleeping:
914 */
915 if (unlikely(prof_on == SLEEP_PROFILING)) {
916 profile_hits(SLEEP_PROFILING,
917 (void *)get_wchan(tsk),
918 delta >> 20);
919 }
920 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 921 }
bf0f6f24
IM
922 }
923#endif
924}
925
ddc97297
PZ
926static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
927{
928#ifdef CONFIG_SCHED_DEBUG
929 s64 d = se->vruntime - cfs_rq->min_vruntime;
930
931 if (d < 0)
932 d = -d;
933
934 if (d > 3*sysctl_sched_latency)
935 schedstat_inc(cfs_rq, nr_spread_over);
936#endif
937}
938
aeb73b04
PZ
939static void
940place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
941{
1af5f730 942 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 943
2cb8600e
PZ
944 /*
945 * The 'current' period is already promised to the current tasks,
946 * however the extra weight of the new task will slow them down a
947 * little, place the new task so that it fits in the slot that
948 * stays open at the end.
949 */
94dfb5e7 950 if (initial && sched_feat(START_DEBIT))
f9c0b095 951 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 952
a2e7a7eb 953 /* sleeps up to a single latency don't count. */
5ca9880c 954 if (!initial) {
a2e7a7eb 955 unsigned long thresh = sysctl_sched_latency;
a7be37ac 956
a2e7a7eb
MG
957 /*
958 * Halve their sleep time's effect, to allow
959 * for a gentler effect of sleepers:
960 */
961 if (sched_feat(GENTLE_FAIR_SLEEPERS))
962 thresh >>= 1;
51e0304c 963
a2e7a7eb 964 vruntime -= thresh;
aeb73b04
PZ
965 }
966
b5d9d734
MG
967 /* ensure we never gain time by being placed backwards. */
968 vruntime = max_vruntime(se->vruntime, vruntime);
969
67e9fb2a 970 se->vruntime = vruntime;
aeb73b04
PZ
971}
972
bf0f6f24 973static void
88ec22d3 974enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 975{
88ec22d3
PZ
976 /*
977 * Update the normalized vruntime before updating min_vruntime
978 * through callig update_curr().
979 */
371fd7e7 980 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
981 se->vruntime += cfs_rq->min_vruntime;
982
bf0f6f24 983 /*
a2a2d680 984 * Update run-time statistics of the 'current'.
bf0f6f24 985 */
b7cc0896 986 update_curr(cfs_rq);
d6b55918 987 update_cfs_load(cfs_rq, 0);
a992241d 988 account_entity_enqueue(cfs_rq, se);
6d5ab293 989 update_cfs_shares(cfs_rq);
bf0f6f24 990
88ec22d3 991 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 992 place_entity(cfs_rq, se, 0);
2396af69 993 enqueue_sleeper(cfs_rq, se);
e9acbff6 994 }
bf0f6f24 995
d2417e5a 996 update_stats_enqueue(cfs_rq, se);
ddc97297 997 check_spread(cfs_rq, se);
83b699ed
SV
998 if (se != cfs_rq->curr)
999 __enqueue_entity(cfs_rq, se);
2069dd75 1000 se->on_rq = 1;
3d4b47b4
PZ
1001
1002 if (cfs_rq->nr_running == 1)
1003 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
1004}
1005
2c13c919 1006static void __clear_buddies_last(struct sched_entity *se)
2002c695 1007{
2c13c919
RR
1008 for_each_sched_entity(se) {
1009 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1010 if (cfs_rq->last == se)
1011 cfs_rq->last = NULL;
1012 else
1013 break;
1014 }
1015}
2002c695 1016
2c13c919
RR
1017static void __clear_buddies_next(struct sched_entity *se)
1018{
1019 for_each_sched_entity(se) {
1020 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1021 if (cfs_rq->next == se)
1022 cfs_rq->next = NULL;
1023 else
1024 break;
1025 }
2002c695
PZ
1026}
1027
ac53db59
RR
1028static void __clear_buddies_skip(struct sched_entity *se)
1029{
1030 for_each_sched_entity(se) {
1031 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1032 if (cfs_rq->skip == se)
1033 cfs_rq->skip = NULL;
1034 else
1035 break;
1036 }
1037}
1038
a571bbea
PZ
1039static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1040{
2c13c919
RR
1041 if (cfs_rq->last == se)
1042 __clear_buddies_last(se);
1043
1044 if (cfs_rq->next == se)
1045 __clear_buddies_next(se);
ac53db59
RR
1046
1047 if (cfs_rq->skip == se)
1048 __clear_buddies_skip(se);
a571bbea
PZ
1049}
1050
bf0f6f24 1051static void
371fd7e7 1052dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1053{
a2a2d680
DA
1054 /*
1055 * Update run-time statistics of the 'current'.
1056 */
1057 update_curr(cfs_rq);
1058
19b6a2e3 1059 update_stats_dequeue(cfs_rq, se);
371fd7e7 1060 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1061#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1062 if (entity_is_task(se)) {
1063 struct task_struct *tsk = task_of(se);
1064
1065 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1066 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1067 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1068 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1069 }
db36cc7d 1070#endif
67e9fb2a
PZ
1071 }
1072
2002c695 1073 clear_buddies(cfs_rq, se);
4793241b 1074
83b699ed 1075 if (se != cfs_rq->curr)
30cfdcfc 1076 __dequeue_entity(cfs_rq, se);
2069dd75 1077 se->on_rq = 0;
d6b55918 1078 update_cfs_load(cfs_rq, 0);
30cfdcfc 1079 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1080
1081 /*
1082 * Normalize the entity after updating the min_vruntime because the
1083 * update can refer to the ->curr item and we need to reflect this
1084 * movement in our normalized position.
1085 */
371fd7e7 1086 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1087 se->vruntime -= cfs_rq->min_vruntime;
1e876231
PZ
1088
1089 update_min_vruntime(cfs_rq);
1090 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1091}
1092
1093/*
1094 * Preempt the current task with a newly woken task if needed:
1095 */
7c92e54f 1096static void
2e09bf55 1097check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1098{
11697830
PZ
1099 unsigned long ideal_runtime, delta_exec;
1100
6d0f0ebd 1101 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1102 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1103 if (delta_exec > ideal_runtime) {
bf0f6f24 1104 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1105 /*
1106 * The current task ran long enough, ensure it doesn't get
1107 * re-elected due to buddy favours.
1108 */
1109 clear_buddies(cfs_rq, curr);
f685ceac
MG
1110 return;
1111 }
1112
1113 /*
1114 * Ensure that a task that missed wakeup preemption by a
1115 * narrow margin doesn't have to wait for a full slice.
1116 * This also mitigates buddy induced latencies under load.
1117 */
f685ceac
MG
1118 if (delta_exec < sysctl_sched_min_granularity)
1119 return;
1120
1121 if (cfs_rq->nr_running > 1) {
ac53db59 1122 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1123 s64 delta = curr->vruntime - se->vruntime;
1124
d7d82944
MG
1125 if (delta < 0)
1126 return;
1127
f685ceac
MG
1128 if (delta > ideal_runtime)
1129 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1130 }
bf0f6f24
IM
1131}
1132
83b699ed 1133static void
8494f412 1134set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1135{
83b699ed
SV
1136 /* 'current' is not kept within the tree. */
1137 if (se->on_rq) {
1138 /*
1139 * Any task has to be enqueued before it get to execute on
1140 * a CPU. So account for the time it spent waiting on the
1141 * runqueue.
1142 */
1143 update_stats_wait_end(cfs_rq, se);
1144 __dequeue_entity(cfs_rq, se);
1145 }
1146
79303e9e 1147 update_stats_curr_start(cfs_rq, se);
429d43bc 1148 cfs_rq->curr = se;
eba1ed4b
IM
1149#ifdef CONFIG_SCHEDSTATS
1150 /*
1151 * Track our maximum slice length, if the CPU's load is at
1152 * least twice that of our own weight (i.e. dont track it
1153 * when there are only lesser-weight tasks around):
1154 */
495eca49 1155 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1156 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1157 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1158 }
1159#endif
4a55b450 1160 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1161}
1162
3f3a4904
PZ
1163static int
1164wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1165
ac53db59
RR
1166/*
1167 * Pick the next process, keeping these things in mind, in this order:
1168 * 1) keep things fair between processes/task groups
1169 * 2) pick the "next" process, since someone really wants that to run
1170 * 3) pick the "last" process, for cache locality
1171 * 4) do not run the "skip" process, if something else is available
1172 */
f4b6755f 1173static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1174{
ac53db59 1175 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1176 struct sched_entity *left = se;
f4b6755f 1177
ac53db59
RR
1178 /*
1179 * Avoid running the skip buddy, if running something else can
1180 * be done without getting too unfair.
1181 */
1182 if (cfs_rq->skip == se) {
1183 struct sched_entity *second = __pick_next_entity(se);
1184 if (second && wakeup_preempt_entity(second, left) < 1)
1185 se = second;
1186 }
aa2ac252 1187
f685ceac
MG
1188 /*
1189 * Prefer last buddy, try to return the CPU to a preempted task.
1190 */
1191 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1192 se = cfs_rq->last;
1193
ac53db59
RR
1194 /*
1195 * Someone really wants this to run. If it's not unfair, run it.
1196 */
1197 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1198 se = cfs_rq->next;
1199
f685ceac 1200 clear_buddies(cfs_rq, se);
4793241b
PZ
1201
1202 return se;
aa2ac252
PZ
1203}
1204
ab6cde26 1205static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1206{
1207 /*
1208 * If still on the runqueue then deactivate_task()
1209 * was not called and update_curr() has to be done:
1210 */
1211 if (prev->on_rq)
b7cc0896 1212 update_curr(cfs_rq);
bf0f6f24 1213
ddc97297 1214 check_spread(cfs_rq, prev);
30cfdcfc 1215 if (prev->on_rq) {
5870db5b 1216 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1217 /* Put 'current' back into the tree. */
1218 __enqueue_entity(cfs_rq, prev);
1219 }
429d43bc 1220 cfs_rq->curr = NULL;
bf0f6f24
IM
1221}
1222
8f4d37ec
PZ
1223static void
1224entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1225{
bf0f6f24 1226 /*
30cfdcfc 1227 * Update run-time statistics of the 'current'.
bf0f6f24 1228 */
30cfdcfc 1229 update_curr(cfs_rq);
bf0f6f24 1230
43365bd7
PT
1231 /*
1232 * Update share accounting for long-running entities.
1233 */
1234 update_entity_shares_tick(cfs_rq);
1235
8f4d37ec
PZ
1236#ifdef CONFIG_SCHED_HRTICK
1237 /*
1238 * queued ticks are scheduled to match the slice, so don't bother
1239 * validating it and just reschedule.
1240 */
983ed7a6
HH
1241 if (queued) {
1242 resched_task(rq_of(cfs_rq)->curr);
1243 return;
1244 }
8f4d37ec
PZ
1245 /*
1246 * don't let the period tick interfere with the hrtick preemption
1247 */
1248 if (!sched_feat(DOUBLE_TICK) &&
1249 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1250 return;
1251#endif
1252
2c2efaed 1253 if (cfs_rq->nr_running > 1)
2e09bf55 1254 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1255}
1256
ab84d31e
PT
1257
1258/**************************************************
1259 * CFS bandwidth control machinery
1260 */
1261
1262#ifdef CONFIG_CFS_BANDWIDTH
1263/*
1264 * default period for cfs group bandwidth.
1265 * default: 0.1s, units: nanoseconds
1266 */
1267static inline u64 default_cfs_period(void)
1268{
1269 return 100000000ULL;
1270}
ec12cb7f
PT
1271
1272static inline u64 sched_cfs_bandwidth_slice(void)
1273{
1274 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1275}
1276
a9cf55b2
PT
1277/*
1278 * Replenish runtime according to assigned quota and update expiration time.
1279 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1280 * additional synchronization around rq->lock.
1281 *
1282 * requires cfs_b->lock
1283 */
1284static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1285{
1286 u64 now;
1287
1288 if (cfs_b->quota == RUNTIME_INF)
1289 return;
1290
1291 now = sched_clock_cpu(smp_processor_id());
1292 cfs_b->runtime = cfs_b->quota;
1293 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1294}
1295
85dac906
PT
1296/* returns 0 on failure to allocate runtime */
1297static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1298{
1299 struct task_group *tg = cfs_rq->tg;
1300 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1301 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1302
1303 /* note: this is a positive sum as runtime_remaining <= 0 */
1304 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1305
1306 raw_spin_lock(&cfs_b->lock);
1307 if (cfs_b->quota == RUNTIME_INF)
1308 amount = min_amount;
58088ad0 1309 else {
a9cf55b2
PT
1310 /*
1311 * If the bandwidth pool has become inactive, then at least one
1312 * period must have elapsed since the last consumption.
1313 * Refresh the global state and ensure bandwidth timer becomes
1314 * active.
1315 */
1316 if (!cfs_b->timer_active) {
1317 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1318 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1319 }
58088ad0
PT
1320
1321 if (cfs_b->runtime > 0) {
1322 amount = min(cfs_b->runtime, min_amount);
1323 cfs_b->runtime -= amount;
1324 cfs_b->idle = 0;
1325 }
ec12cb7f 1326 }
a9cf55b2 1327 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1328 raw_spin_unlock(&cfs_b->lock);
1329
1330 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1331 /*
1332 * we may have advanced our local expiration to account for allowed
1333 * spread between our sched_clock and the one on which runtime was
1334 * issued.
1335 */
1336 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1337 cfs_rq->runtime_expires = expires;
85dac906
PT
1338
1339 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1340}
1341
a9cf55b2
PT
1342/*
1343 * Note: This depends on the synchronization provided by sched_clock and the
1344 * fact that rq->clock snapshots this value.
1345 */
1346static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1347{
a9cf55b2
PT
1348 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1349 struct rq *rq = rq_of(cfs_rq);
1350
1351 /* if the deadline is ahead of our clock, nothing to do */
1352 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1353 return;
1354
a9cf55b2
PT
1355 if (cfs_rq->runtime_remaining < 0)
1356 return;
1357
1358 /*
1359 * If the local deadline has passed we have to consider the
1360 * possibility that our sched_clock is 'fast' and the global deadline
1361 * has not truly expired.
1362 *
1363 * Fortunately we can check determine whether this the case by checking
1364 * whether the global deadline has advanced.
1365 */
1366
1367 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1368 /* extend local deadline, drift is bounded above by 2 ticks */
1369 cfs_rq->runtime_expires += TICK_NSEC;
1370 } else {
1371 /* global deadline is ahead, expiration has passed */
1372 cfs_rq->runtime_remaining = 0;
1373 }
1374}
1375
1376static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1377 unsigned long delta_exec)
1378{
1379 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1380 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1381 expire_cfs_rq_runtime(cfs_rq);
1382
1383 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1384 return;
1385
85dac906
PT
1386 /*
1387 * if we're unable to extend our runtime we resched so that the active
1388 * hierarchy can be throttled
1389 */
1390 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1391 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1392}
1393
1394static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1395 unsigned long delta_exec)
1396{
1397 if (!cfs_rq->runtime_enabled)
1398 return;
1399
1400 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1401}
1402
85dac906
PT
1403static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1404{
1405 return cfs_rq->throttled;
1406}
1407
64660c86
PT
1408/* check whether cfs_rq, or any parent, is throttled */
1409static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1410{
1411 return cfs_rq->throttle_count;
1412}
1413
1414/*
1415 * Ensure that neither of the group entities corresponding to src_cpu or
1416 * dest_cpu are members of a throttled hierarchy when performing group
1417 * load-balance operations.
1418 */
1419static inline int throttled_lb_pair(struct task_group *tg,
1420 int src_cpu, int dest_cpu)
1421{
1422 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1423
1424 src_cfs_rq = tg->cfs_rq[src_cpu];
1425 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1426
1427 return throttled_hierarchy(src_cfs_rq) ||
1428 throttled_hierarchy(dest_cfs_rq);
1429}
1430
1431/* updated child weight may affect parent so we have to do this bottom up */
1432static int tg_unthrottle_up(struct task_group *tg, void *data)
1433{
1434 struct rq *rq = data;
1435 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1436
1437 cfs_rq->throttle_count--;
1438#ifdef CONFIG_SMP
1439 if (!cfs_rq->throttle_count) {
1440 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1441
1442 /* leaving throttled state, advance shares averaging windows */
1443 cfs_rq->load_stamp += delta;
1444 cfs_rq->load_last += delta;
1445
1446 /* update entity weight now that we are on_rq again */
1447 update_cfs_shares(cfs_rq);
1448 }
1449#endif
1450
1451 return 0;
1452}
1453
1454static int tg_throttle_down(struct task_group *tg, void *data)
1455{
1456 struct rq *rq = data;
1457 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1458
1459 /* group is entering throttled state, record last load */
1460 if (!cfs_rq->throttle_count)
1461 update_cfs_load(cfs_rq, 0);
1462 cfs_rq->throttle_count++;
1463
1464 return 0;
1465}
1466
85dac906
PT
1467static __used void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1468{
1469 struct rq *rq = rq_of(cfs_rq);
1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1471 struct sched_entity *se;
1472 long task_delta, dequeue = 1;
1473
1474 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1475
1476 /* account load preceding throttle */
64660c86
PT
1477 rcu_read_lock();
1478 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1479 rcu_read_unlock();
85dac906
PT
1480
1481 task_delta = cfs_rq->h_nr_running;
1482 for_each_sched_entity(se) {
1483 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1484 /* throttled entity or throttle-on-deactivate */
1485 if (!se->on_rq)
1486 break;
1487
1488 if (dequeue)
1489 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1490 qcfs_rq->h_nr_running -= task_delta;
1491
1492 if (qcfs_rq->load.weight)
1493 dequeue = 0;
1494 }
1495
1496 if (!se)
1497 rq->nr_running -= task_delta;
1498
1499 cfs_rq->throttled = 1;
1500 raw_spin_lock(&cfs_b->lock);
1501 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1502 raw_spin_unlock(&cfs_b->lock);
1503}
1504
671fd9da
PT
1505static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1506{
1507 struct rq *rq = rq_of(cfs_rq);
1508 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1509 struct sched_entity *se;
1510 int enqueue = 1;
1511 long task_delta;
1512
1513 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1514
1515 cfs_rq->throttled = 0;
1516 raw_spin_lock(&cfs_b->lock);
1517 list_del_rcu(&cfs_rq->throttled_list);
1518 raw_spin_unlock(&cfs_b->lock);
1519
64660c86
PT
1520 update_rq_clock(rq);
1521 /* update hierarchical throttle state */
1522 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1523
671fd9da
PT
1524 if (!cfs_rq->load.weight)
1525 return;
1526
1527 task_delta = cfs_rq->h_nr_running;
1528 for_each_sched_entity(se) {
1529 if (se->on_rq)
1530 enqueue = 0;
1531
1532 cfs_rq = cfs_rq_of(se);
1533 if (enqueue)
1534 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1535 cfs_rq->h_nr_running += task_delta;
1536
1537 if (cfs_rq_throttled(cfs_rq))
1538 break;
1539 }
1540
1541 if (!se)
1542 rq->nr_running += task_delta;
1543
1544 /* determine whether we need to wake up potentially idle cpu */
1545 if (rq->curr == rq->idle && rq->cfs.nr_running)
1546 resched_task(rq->curr);
1547}
1548
1549static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1550 u64 remaining, u64 expires)
1551{
1552 struct cfs_rq *cfs_rq;
1553 u64 runtime = remaining;
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1557 throttled_list) {
1558 struct rq *rq = rq_of(cfs_rq);
1559
1560 raw_spin_lock(&rq->lock);
1561 if (!cfs_rq_throttled(cfs_rq))
1562 goto next;
1563
1564 runtime = -cfs_rq->runtime_remaining + 1;
1565 if (runtime > remaining)
1566 runtime = remaining;
1567 remaining -= runtime;
1568
1569 cfs_rq->runtime_remaining += runtime;
1570 cfs_rq->runtime_expires = expires;
1571
1572 /* we check whether we're throttled above */
1573 if (cfs_rq->runtime_remaining > 0)
1574 unthrottle_cfs_rq(cfs_rq);
1575
1576next:
1577 raw_spin_unlock(&rq->lock);
1578
1579 if (!remaining)
1580 break;
1581 }
1582 rcu_read_unlock();
1583
1584 return remaining;
1585}
1586
58088ad0
PT
1587/*
1588 * Responsible for refilling a task_group's bandwidth and unthrottling its
1589 * cfs_rqs as appropriate. If there has been no activity within the last
1590 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1591 * used to track this state.
1592 */
1593static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1594{
671fd9da
PT
1595 u64 runtime, runtime_expires;
1596 int idle = 1, throttled;
58088ad0
PT
1597
1598 raw_spin_lock(&cfs_b->lock);
1599 /* no need to continue the timer with no bandwidth constraint */
1600 if (cfs_b->quota == RUNTIME_INF)
1601 goto out_unlock;
1602
671fd9da
PT
1603 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1604 /* idle depends on !throttled (for the case of a large deficit) */
1605 idle = cfs_b->idle && !throttled;
1606
a9cf55b2
PT
1607 /* if we're going inactive then everything else can be deferred */
1608 if (idle)
1609 goto out_unlock;
1610
1611 __refill_cfs_bandwidth_runtime(cfs_b);
1612
671fd9da
PT
1613 if (!throttled) {
1614 /* mark as potentially idle for the upcoming period */
1615 cfs_b->idle = 1;
1616 goto out_unlock;
1617 }
1618
1619 /*
1620 * There are throttled entities so we must first use the new bandwidth
1621 * to unthrottle them before making it generally available. This
1622 * ensures that all existing debts will be paid before a new cfs_rq is
1623 * allowed to run.
1624 */
1625 runtime = cfs_b->runtime;
1626 runtime_expires = cfs_b->runtime_expires;
1627 cfs_b->runtime = 0;
1628
1629 /*
1630 * This check is repeated as we are holding onto the new bandwidth
1631 * while we unthrottle. This can potentially race with an unthrottled
1632 * group trying to acquire new bandwidth from the global pool.
1633 */
1634 while (throttled && runtime > 0) {
1635 raw_spin_unlock(&cfs_b->lock);
1636 /* we can't nest cfs_b->lock while distributing bandwidth */
1637 runtime = distribute_cfs_runtime(cfs_b, runtime,
1638 runtime_expires);
1639 raw_spin_lock(&cfs_b->lock);
1640
1641 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1642 }
58088ad0 1643
671fd9da
PT
1644 /* return (any) remaining runtime */
1645 cfs_b->runtime = runtime;
1646 /*
1647 * While we are ensured activity in the period following an
1648 * unthrottle, this also covers the case in which the new bandwidth is
1649 * insufficient to cover the existing bandwidth deficit. (Forcing the
1650 * timer to remain active while there are any throttled entities.)
1651 */
1652 cfs_b->idle = 0;
58088ad0
PT
1653out_unlock:
1654 if (idle)
1655 cfs_b->timer_active = 0;
1656 raw_spin_unlock(&cfs_b->lock);
1657
1658 return idle;
1659}
ec12cb7f
PT
1660#else
1661static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1662 unsigned long delta_exec) {}
85dac906
PT
1663
1664static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1665{
1666 return 0;
1667}
64660c86
PT
1668
1669static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1670{
1671 return 0;
1672}
1673
1674static inline int throttled_lb_pair(struct task_group *tg,
1675 int src_cpu, int dest_cpu)
1676{
1677 return 0;
1678}
ab84d31e
PT
1679#endif
1680
bf0f6f24
IM
1681/**************************************************
1682 * CFS operations on tasks:
1683 */
1684
8f4d37ec
PZ
1685#ifdef CONFIG_SCHED_HRTICK
1686static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1687{
8f4d37ec
PZ
1688 struct sched_entity *se = &p->se;
1689 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1690
1691 WARN_ON(task_rq(p) != rq);
1692
1693 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1694 u64 slice = sched_slice(cfs_rq, se);
1695 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1696 s64 delta = slice - ran;
1697
1698 if (delta < 0) {
1699 if (rq->curr == p)
1700 resched_task(p);
1701 return;
1702 }
1703
1704 /*
1705 * Don't schedule slices shorter than 10000ns, that just
1706 * doesn't make sense. Rely on vruntime for fairness.
1707 */
31656519 1708 if (rq->curr != p)
157124c1 1709 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1710
31656519 1711 hrtick_start(rq, delta);
8f4d37ec
PZ
1712 }
1713}
a4c2f00f
PZ
1714
1715/*
1716 * called from enqueue/dequeue and updates the hrtick when the
1717 * current task is from our class and nr_running is low enough
1718 * to matter.
1719 */
1720static void hrtick_update(struct rq *rq)
1721{
1722 struct task_struct *curr = rq->curr;
1723
1724 if (curr->sched_class != &fair_sched_class)
1725 return;
1726
1727 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1728 hrtick_start_fair(rq, curr);
1729}
55e12e5e 1730#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1731static inline void
1732hrtick_start_fair(struct rq *rq, struct task_struct *p)
1733{
1734}
a4c2f00f
PZ
1735
1736static inline void hrtick_update(struct rq *rq)
1737{
1738}
8f4d37ec
PZ
1739#endif
1740
bf0f6f24
IM
1741/*
1742 * The enqueue_task method is called before nr_running is
1743 * increased. Here we update the fair scheduling stats and
1744 * then put the task into the rbtree:
1745 */
ea87bb78 1746static void
371fd7e7 1747enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1748{
1749 struct cfs_rq *cfs_rq;
62fb1851 1750 struct sched_entity *se = &p->se;
bf0f6f24
IM
1751
1752 for_each_sched_entity(se) {
62fb1851 1753 if (se->on_rq)
bf0f6f24
IM
1754 break;
1755 cfs_rq = cfs_rq_of(se);
88ec22d3 1756 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
1757
1758 /*
1759 * end evaluation on encountering a throttled cfs_rq
1760 *
1761 * note: in the case of encountering a throttled cfs_rq we will
1762 * post the final h_nr_running increment below.
1763 */
1764 if (cfs_rq_throttled(cfs_rq))
1765 break;
953bfcd1 1766 cfs_rq->h_nr_running++;
85dac906 1767
88ec22d3 1768 flags = ENQUEUE_WAKEUP;
bf0f6f24 1769 }
8f4d37ec 1770
2069dd75 1771 for_each_sched_entity(se) {
0f317143 1772 cfs_rq = cfs_rq_of(se);
953bfcd1 1773 cfs_rq->h_nr_running++;
2069dd75 1774
85dac906
PT
1775 if (cfs_rq_throttled(cfs_rq))
1776 break;
1777
d6b55918 1778 update_cfs_load(cfs_rq, 0);
6d5ab293 1779 update_cfs_shares(cfs_rq);
2069dd75
PZ
1780 }
1781
85dac906
PT
1782 if (!se)
1783 inc_nr_running(rq);
a4c2f00f 1784 hrtick_update(rq);
bf0f6f24
IM
1785}
1786
2f36825b
VP
1787static void set_next_buddy(struct sched_entity *se);
1788
bf0f6f24
IM
1789/*
1790 * The dequeue_task method is called before nr_running is
1791 * decreased. We remove the task from the rbtree and
1792 * update the fair scheduling stats:
1793 */
371fd7e7 1794static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1795{
1796 struct cfs_rq *cfs_rq;
62fb1851 1797 struct sched_entity *se = &p->se;
2f36825b 1798 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1799
1800 for_each_sched_entity(se) {
1801 cfs_rq = cfs_rq_of(se);
371fd7e7 1802 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
1803
1804 /*
1805 * end evaluation on encountering a throttled cfs_rq
1806 *
1807 * note: in the case of encountering a throttled cfs_rq we will
1808 * post the final h_nr_running decrement below.
1809 */
1810 if (cfs_rq_throttled(cfs_rq))
1811 break;
953bfcd1 1812 cfs_rq->h_nr_running--;
2069dd75 1813
bf0f6f24 1814 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1815 if (cfs_rq->load.weight) {
1816 /*
1817 * Bias pick_next to pick a task from this cfs_rq, as
1818 * p is sleeping when it is within its sched_slice.
1819 */
1820 if (task_sleep && parent_entity(se))
1821 set_next_buddy(parent_entity(se));
9598c82d
PT
1822
1823 /* avoid re-evaluating load for this entity */
1824 se = parent_entity(se);
bf0f6f24 1825 break;
2f36825b 1826 }
371fd7e7 1827 flags |= DEQUEUE_SLEEP;
bf0f6f24 1828 }
8f4d37ec 1829
2069dd75 1830 for_each_sched_entity(se) {
0f317143 1831 cfs_rq = cfs_rq_of(se);
953bfcd1 1832 cfs_rq->h_nr_running--;
2069dd75 1833
85dac906
PT
1834 if (cfs_rq_throttled(cfs_rq))
1835 break;
1836
d6b55918 1837 update_cfs_load(cfs_rq, 0);
6d5ab293 1838 update_cfs_shares(cfs_rq);
2069dd75
PZ
1839 }
1840
85dac906
PT
1841 if (!se)
1842 dec_nr_running(rq);
a4c2f00f 1843 hrtick_update(rq);
bf0f6f24
IM
1844}
1845
e7693a36 1846#ifdef CONFIG_SMP
098fb9db 1847
74f8e4b2 1848static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1849{
1850 struct sched_entity *se = &p->se;
1851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1852 u64 min_vruntime;
1853
1854#ifndef CONFIG_64BIT
1855 u64 min_vruntime_copy;
88ec22d3 1856
3fe1698b
PZ
1857 do {
1858 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1859 smp_rmb();
1860 min_vruntime = cfs_rq->min_vruntime;
1861 } while (min_vruntime != min_vruntime_copy);
1862#else
1863 min_vruntime = cfs_rq->min_vruntime;
1864#endif
88ec22d3 1865
3fe1698b 1866 se->vruntime -= min_vruntime;
88ec22d3
PZ
1867}
1868
bb3469ac 1869#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1870/*
1871 * effective_load() calculates the load change as seen from the root_task_group
1872 *
1873 * Adding load to a group doesn't make a group heavier, but can cause movement
1874 * of group shares between cpus. Assuming the shares were perfectly aligned one
1875 * can calculate the shift in shares.
f5bfb7d9 1876 */
2069dd75 1877static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1878{
4be9daaa 1879 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1880
1881 if (!tg->parent)
1882 return wl;
1883
4be9daaa 1884 for_each_sched_entity(se) {
977dda7c 1885 long lw, w;
4be9daaa 1886
977dda7c
PT
1887 tg = se->my_q->tg;
1888 w = se->my_q->load.weight;
bb3469ac 1889
977dda7c
PT
1890 /* use this cpu's instantaneous contribution */
1891 lw = atomic_read(&tg->load_weight);
1892 lw -= se->my_q->load_contribution;
1893 lw += w + wg;
4be9daaa 1894
977dda7c 1895 wl += w;
940959e9 1896
977dda7c
PT
1897 if (lw > 0 && wl < lw)
1898 wl = (wl * tg->shares) / lw;
1899 else
1900 wl = tg->shares;
940959e9 1901
977dda7c
PT
1902 /* zero point is MIN_SHARES */
1903 if (wl < MIN_SHARES)
1904 wl = MIN_SHARES;
1905 wl -= se->load.weight;
4be9daaa 1906 wg = 0;
4be9daaa 1907 }
bb3469ac 1908
4be9daaa 1909 return wl;
bb3469ac
PZ
1910}
1911#else
4be9daaa 1912
83378269
PZ
1913static inline unsigned long effective_load(struct task_group *tg, int cpu,
1914 unsigned long wl, unsigned long wg)
4be9daaa 1915{
83378269 1916 return wl;
bb3469ac 1917}
4be9daaa 1918
bb3469ac
PZ
1919#endif
1920
c88d5910 1921static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1922{
e37b6a7b 1923 s64 this_load, load;
c88d5910 1924 int idx, this_cpu, prev_cpu;
098fb9db 1925 unsigned long tl_per_task;
c88d5910 1926 struct task_group *tg;
83378269 1927 unsigned long weight;
b3137bc8 1928 int balanced;
098fb9db 1929
c88d5910
PZ
1930 idx = sd->wake_idx;
1931 this_cpu = smp_processor_id();
1932 prev_cpu = task_cpu(p);
1933 load = source_load(prev_cpu, idx);
1934 this_load = target_load(this_cpu, idx);
098fb9db 1935
b3137bc8
MG
1936 /*
1937 * If sync wakeup then subtract the (maximum possible)
1938 * effect of the currently running task from the load
1939 * of the current CPU:
1940 */
83378269
PZ
1941 if (sync) {
1942 tg = task_group(current);
1943 weight = current->se.load.weight;
1944
c88d5910 1945 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1946 load += effective_load(tg, prev_cpu, 0, -weight);
1947 }
b3137bc8 1948
83378269
PZ
1949 tg = task_group(p);
1950 weight = p->se.load.weight;
b3137bc8 1951
71a29aa7
PZ
1952 /*
1953 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1954 * due to the sync cause above having dropped this_load to 0, we'll
1955 * always have an imbalance, but there's really nothing you can do
1956 * about that, so that's good too.
71a29aa7
PZ
1957 *
1958 * Otherwise check if either cpus are near enough in load to allow this
1959 * task to be woken on this_cpu.
1960 */
e37b6a7b
PT
1961 if (this_load > 0) {
1962 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1963
1964 this_eff_load = 100;
1965 this_eff_load *= power_of(prev_cpu);
1966 this_eff_load *= this_load +
1967 effective_load(tg, this_cpu, weight, weight);
1968
1969 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1970 prev_eff_load *= power_of(this_cpu);
1971 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1972
1973 balanced = this_eff_load <= prev_eff_load;
1974 } else
1975 balanced = true;
b3137bc8 1976
098fb9db 1977 /*
4ae7d5ce
IM
1978 * If the currently running task will sleep within
1979 * a reasonable amount of time then attract this newly
1980 * woken task:
098fb9db 1981 */
2fb7635c
PZ
1982 if (sync && balanced)
1983 return 1;
098fb9db 1984
41acab88 1985 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1986 tl_per_task = cpu_avg_load_per_task(this_cpu);
1987
c88d5910
PZ
1988 if (balanced ||
1989 (this_load <= load &&
1990 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1991 /*
1992 * This domain has SD_WAKE_AFFINE and
1993 * p is cache cold in this domain, and
1994 * there is no bad imbalance.
1995 */
c88d5910 1996 schedstat_inc(sd, ttwu_move_affine);
41acab88 1997 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1998
1999 return 1;
2000 }
2001 return 0;
2002}
2003
aaee1203
PZ
2004/*
2005 * find_idlest_group finds and returns the least busy CPU group within the
2006 * domain.
2007 */
2008static struct sched_group *
78e7ed53 2009find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2010 int this_cpu, int load_idx)
e7693a36 2011{
b3bd3de6 2012 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2013 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2014 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2015
aaee1203
PZ
2016 do {
2017 unsigned long load, avg_load;
2018 int local_group;
2019 int i;
e7693a36 2020
aaee1203
PZ
2021 /* Skip over this group if it has no CPUs allowed */
2022 if (!cpumask_intersects(sched_group_cpus(group),
2023 &p->cpus_allowed))
2024 continue;
2025
2026 local_group = cpumask_test_cpu(this_cpu,
2027 sched_group_cpus(group));
2028
2029 /* Tally up the load of all CPUs in the group */
2030 avg_load = 0;
2031
2032 for_each_cpu(i, sched_group_cpus(group)) {
2033 /* Bias balancing toward cpus of our domain */
2034 if (local_group)
2035 load = source_load(i, load_idx);
2036 else
2037 load = target_load(i, load_idx);
2038
2039 avg_load += load;
2040 }
2041
2042 /* Adjust by relative CPU power of the group */
9c3f75cb 2043 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2044
2045 if (local_group) {
2046 this_load = avg_load;
aaee1203
PZ
2047 } else if (avg_load < min_load) {
2048 min_load = avg_load;
2049 idlest = group;
2050 }
2051 } while (group = group->next, group != sd->groups);
2052
2053 if (!idlest || 100*this_load < imbalance*min_load)
2054 return NULL;
2055 return idlest;
2056}
2057
2058/*
2059 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2060 */
2061static int
2062find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2063{
2064 unsigned long load, min_load = ULONG_MAX;
2065 int idlest = -1;
2066 int i;
2067
2068 /* Traverse only the allowed CPUs */
2069 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2070 load = weighted_cpuload(i);
2071
2072 if (load < min_load || (load == min_load && i == this_cpu)) {
2073 min_load = load;
2074 idlest = i;
e7693a36
GH
2075 }
2076 }
2077
aaee1203
PZ
2078 return idlest;
2079}
e7693a36 2080
a50bde51
PZ
2081/*
2082 * Try and locate an idle CPU in the sched_domain.
2083 */
99bd5e2f 2084static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2085{
2086 int cpu = smp_processor_id();
2087 int prev_cpu = task_cpu(p);
99bd5e2f 2088 struct sched_domain *sd;
a50bde51
PZ
2089 int i;
2090
2091 /*
99bd5e2f
SS
2092 * If the task is going to be woken-up on this cpu and if it is
2093 * already idle, then it is the right target.
a50bde51 2094 */
99bd5e2f
SS
2095 if (target == cpu && idle_cpu(cpu))
2096 return cpu;
2097
2098 /*
2099 * If the task is going to be woken-up on the cpu where it previously
2100 * ran and if it is currently idle, then it the right target.
2101 */
2102 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2103 return prev_cpu;
a50bde51
PZ
2104
2105 /*
99bd5e2f 2106 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2107 */
dce840a0 2108 rcu_read_lock();
99bd5e2f
SS
2109 for_each_domain(target, sd) {
2110 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 2111 break;
99bd5e2f
SS
2112
2113 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
2114 if (idle_cpu(i)) {
2115 target = i;
2116 break;
2117 }
a50bde51 2118 }
99bd5e2f
SS
2119
2120 /*
2121 * Lets stop looking for an idle sibling when we reached
2122 * the domain that spans the current cpu and prev_cpu.
2123 */
2124 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
2125 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
2126 break;
a50bde51 2127 }
dce840a0 2128 rcu_read_unlock();
a50bde51
PZ
2129
2130 return target;
2131}
2132
aaee1203
PZ
2133/*
2134 * sched_balance_self: balance the current task (running on cpu) in domains
2135 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2136 * SD_BALANCE_EXEC.
2137 *
2138 * Balance, ie. select the least loaded group.
2139 *
2140 * Returns the target CPU number, or the same CPU if no balancing is needed.
2141 *
2142 * preempt must be disabled.
2143 */
0017d735 2144static int
7608dec2 2145select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2146{
29cd8bae 2147 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2148 int cpu = smp_processor_id();
2149 int prev_cpu = task_cpu(p);
2150 int new_cpu = cpu;
99bd5e2f 2151 int want_affine = 0;
29cd8bae 2152 int want_sd = 1;
5158f4e4 2153 int sync = wake_flags & WF_SYNC;
c88d5910 2154
0763a660 2155 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 2156 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
2157 want_affine = 1;
2158 new_cpu = prev_cpu;
2159 }
aaee1203 2160
dce840a0 2161 rcu_read_lock();
aaee1203 2162 for_each_domain(cpu, tmp) {
e4f42888
PZ
2163 if (!(tmp->flags & SD_LOAD_BALANCE))
2164 continue;
2165
aaee1203 2166 /*
ae154be1
PZ
2167 * If power savings logic is enabled for a domain, see if we
2168 * are not overloaded, if so, don't balance wider.
aaee1203 2169 */
59abf026 2170 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2171 unsigned long power = 0;
2172 unsigned long nr_running = 0;
2173 unsigned long capacity;
2174 int i;
2175
2176 for_each_cpu(i, sched_domain_span(tmp)) {
2177 power += power_of(i);
2178 nr_running += cpu_rq(i)->cfs.nr_running;
2179 }
2180
1399fa78 2181 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2182
59abf026
PZ
2183 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2184 nr_running /= 2;
2185
2186 if (nr_running < capacity)
29cd8bae 2187 want_sd = 0;
ae154be1 2188 }
aaee1203 2189
fe3bcfe1 2190 /*
99bd5e2f
SS
2191 * If both cpu and prev_cpu are part of this domain,
2192 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2193 */
99bd5e2f
SS
2194 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2195 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2196 affine_sd = tmp;
2197 want_affine = 0;
c88d5910
PZ
2198 }
2199
29cd8bae
PZ
2200 if (!want_sd && !want_affine)
2201 break;
2202
0763a660 2203 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2204 continue;
2205
29cd8bae
PZ
2206 if (want_sd)
2207 sd = tmp;
2208 }
2209
8b911acd 2210 if (affine_sd) {
99bd5e2f 2211 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2212 prev_cpu = cpu;
2213
2214 new_cpu = select_idle_sibling(p, prev_cpu);
2215 goto unlock;
8b911acd 2216 }
e7693a36 2217
aaee1203 2218 while (sd) {
5158f4e4 2219 int load_idx = sd->forkexec_idx;
aaee1203 2220 struct sched_group *group;
c88d5910 2221 int weight;
098fb9db 2222
0763a660 2223 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2224 sd = sd->child;
2225 continue;
2226 }
098fb9db 2227
5158f4e4
PZ
2228 if (sd_flag & SD_BALANCE_WAKE)
2229 load_idx = sd->wake_idx;
098fb9db 2230
5158f4e4 2231 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2232 if (!group) {
2233 sd = sd->child;
2234 continue;
2235 }
4ae7d5ce 2236
d7c33c49 2237 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2238 if (new_cpu == -1 || new_cpu == cpu) {
2239 /* Now try balancing at a lower domain level of cpu */
2240 sd = sd->child;
2241 continue;
e7693a36 2242 }
aaee1203
PZ
2243
2244 /* Now try balancing at a lower domain level of new_cpu */
2245 cpu = new_cpu;
669c55e9 2246 weight = sd->span_weight;
aaee1203
PZ
2247 sd = NULL;
2248 for_each_domain(cpu, tmp) {
669c55e9 2249 if (weight <= tmp->span_weight)
aaee1203 2250 break;
0763a660 2251 if (tmp->flags & sd_flag)
aaee1203
PZ
2252 sd = tmp;
2253 }
2254 /* while loop will break here if sd == NULL */
e7693a36 2255 }
dce840a0
PZ
2256unlock:
2257 rcu_read_unlock();
e7693a36 2258
c88d5910 2259 return new_cpu;
e7693a36
GH
2260}
2261#endif /* CONFIG_SMP */
2262
e52fb7c0
PZ
2263static unsigned long
2264wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2265{
2266 unsigned long gran = sysctl_sched_wakeup_granularity;
2267
2268 /*
e52fb7c0
PZ
2269 * Since its curr running now, convert the gran from real-time
2270 * to virtual-time in his units.
13814d42
MG
2271 *
2272 * By using 'se' instead of 'curr' we penalize light tasks, so
2273 * they get preempted easier. That is, if 'se' < 'curr' then
2274 * the resulting gran will be larger, therefore penalizing the
2275 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2276 * be smaller, again penalizing the lighter task.
2277 *
2278 * This is especially important for buddies when the leftmost
2279 * task is higher priority than the buddy.
0bbd3336 2280 */
f4ad9bd2 2281 return calc_delta_fair(gran, se);
0bbd3336
PZ
2282}
2283
464b7527
PZ
2284/*
2285 * Should 'se' preempt 'curr'.
2286 *
2287 * |s1
2288 * |s2
2289 * |s3
2290 * g
2291 * |<--->|c
2292 *
2293 * w(c, s1) = -1
2294 * w(c, s2) = 0
2295 * w(c, s3) = 1
2296 *
2297 */
2298static int
2299wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2300{
2301 s64 gran, vdiff = curr->vruntime - se->vruntime;
2302
2303 if (vdiff <= 0)
2304 return -1;
2305
e52fb7c0 2306 gran = wakeup_gran(curr, se);
464b7527
PZ
2307 if (vdiff > gran)
2308 return 1;
2309
2310 return 0;
2311}
2312
02479099
PZ
2313static void set_last_buddy(struct sched_entity *se)
2314{
69c80f3e
VP
2315 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2316 return;
2317
2318 for_each_sched_entity(se)
2319 cfs_rq_of(se)->last = se;
02479099
PZ
2320}
2321
2322static void set_next_buddy(struct sched_entity *se)
2323{
69c80f3e
VP
2324 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2325 return;
2326
2327 for_each_sched_entity(se)
2328 cfs_rq_of(se)->next = se;
02479099
PZ
2329}
2330
ac53db59
RR
2331static void set_skip_buddy(struct sched_entity *se)
2332{
69c80f3e
VP
2333 for_each_sched_entity(se)
2334 cfs_rq_of(se)->skip = se;
ac53db59
RR
2335}
2336
bf0f6f24
IM
2337/*
2338 * Preempt the current task with a newly woken task if needed:
2339 */
5a9b86f6 2340static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2341{
2342 struct task_struct *curr = rq->curr;
8651a86c 2343 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2344 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2345 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2346 int next_buddy_marked = 0;
bf0f6f24 2347
4ae7d5ce
IM
2348 if (unlikely(se == pse))
2349 return;
2350
2f36825b 2351 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2352 set_next_buddy(pse);
2f36825b
VP
2353 next_buddy_marked = 1;
2354 }
57fdc26d 2355
aec0a514
BR
2356 /*
2357 * We can come here with TIF_NEED_RESCHED already set from new task
2358 * wake up path.
2359 */
2360 if (test_tsk_need_resched(curr))
2361 return;
2362
a2f5c9ab
DH
2363 /* Idle tasks are by definition preempted by non-idle tasks. */
2364 if (unlikely(curr->policy == SCHED_IDLE) &&
2365 likely(p->policy != SCHED_IDLE))
2366 goto preempt;
2367
91c234b4 2368 /*
a2f5c9ab
DH
2369 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2370 * is driven by the tick):
91c234b4 2371 */
6bc912b7 2372 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2373 return;
bf0f6f24 2374
464b7527 2375 find_matching_se(&se, &pse);
9bbd7374 2376 update_curr(cfs_rq_of(se));
002f128b 2377 BUG_ON(!pse);
2f36825b
VP
2378 if (wakeup_preempt_entity(se, pse) == 1) {
2379 /*
2380 * Bias pick_next to pick the sched entity that is
2381 * triggering this preemption.
2382 */
2383 if (!next_buddy_marked)
2384 set_next_buddy(pse);
3a7e73a2 2385 goto preempt;
2f36825b 2386 }
464b7527 2387
3a7e73a2 2388 return;
a65ac745 2389
3a7e73a2
PZ
2390preempt:
2391 resched_task(curr);
2392 /*
2393 * Only set the backward buddy when the current task is still
2394 * on the rq. This can happen when a wakeup gets interleaved
2395 * with schedule on the ->pre_schedule() or idle_balance()
2396 * point, either of which can * drop the rq lock.
2397 *
2398 * Also, during early boot the idle thread is in the fair class,
2399 * for obvious reasons its a bad idea to schedule back to it.
2400 */
2401 if (unlikely(!se->on_rq || curr == rq->idle))
2402 return;
2403
2404 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2405 set_last_buddy(se);
bf0f6f24
IM
2406}
2407
fb8d4724 2408static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2409{
8f4d37ec 2410 struct task_struct *p;
bf0f6f24
IM
2411 struct cfs_rq *cfs_rq = &rq->cfs;
2412 struct sched_entity *se;
2413
36ace27e 2414 if (!cfs_rq->nr_running)
bf0f6f24
IM
2415 return NULL;
2416
2417 do {
9948f4b2 2418 se = pick_next_entity(cfs_rq);
f4b6755f 2419 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2420 cfs_rq = group_cfs_rq(se);
2421 } while (cfs_rq);
2422
8f4d37ec
PZ
2423 p = task_of(se);
2424 hrtick_start_fair(rq, p);
2425
2426 return p;
bf0f6f24
IM
2427}
2428
2429/*
2430 * Account for a descheduled task:
2431 */
31ee529c 2432static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
2433{
2434 struct sched_entity *se = &prev->se;
2435 struct cfs_rq *cfs_rq;
2436
2437 for_each_sched_entity(se) {
2438 cfs_rq = cfs_rq_of(se);
ab6cde26 2439 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
2440 }
2441}
2442
ac53db59
RR
2443/*
2444 * sched_yield() is very simple
2445 *
2446 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2447 */
2448static void yield_task_fair(struct rq *rq)
2449{
2450 struct task_struct *curr = rq->curr;
2451 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2452 struct sched_entity *se = &curr->se;
2453
2454 /*
2455 * Are we the only task in the tree?
2456 */
2457 if (unlikely(rq->nr_running == 1))
2458 return;
2459
2460 clear_buddies(cfs_rq, se);
2461
2462 if (curr->policy != SCHED_BATCH) {
2463 update_rq_clock(rq);
2464 /*
2465 * Update run-time statistics of the 'current'.
2466 */
2467 update_curr(cfs_rq);
2468 }
2469
2470 set_skip_buddy(se);
2471}
2472
d95f4122
MG
2473static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2474{
2475 struct sched_entity *se = &p->se;
2476
2477 if (!se->on_rq)
2478 return false;
2479
2480 /* Tell the scheduler that we'd really like pse to run next. */
2481 set_next_buddy(se);
2482
d95f4122
MG
2483 yield_task_fair(rq);
2484
2485 return true;
2486}
2487
681f3e68 2488#ifdef CONFIG_SMP
bf0f6f24
IM
2489/**************************************************
2490 * Fair scheduling class load-balancing methods:
2491 */
2492
1e3c88bd
PZ
2493/*
2494 * pull_task - move a task from a remote runqueue to the local runqueue.
2495 * Both runqueues must be locked.
2496 */
2497static void pull_task(struct rq *src_rq, struct task_struct *p,
2498 struct rq *this_rq, int this_cpu)
2499{
2500 deactivate_task(src_rq, p, 0);
2501 set_task_cpu(p, this_cpu);
2502 activate_task(this_rq, p, 0);
2503 check_preempt_curr(this_rq, p, 0);
2504}
2505
2506/*
2507 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2508 */
2509static
2510int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2511 struct sched_domain *sd, enum cpu_idle_type idle,
2512 int *all_pinned)
2513{
2514 int tsk_cache_hot = 0;
2515 /*
2516 * We do not migrate tasks that are:
2517 * 1) running (obviously), or
2518 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2519 * 3) are cache-hot on their current CPU.
2520 */
2521 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2522 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2523 return 0;
2524 }
2525 *all_pinned = 0;
2526
2527 if (task_running(rq, p)) {
41acab88 2528 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2529 return 0;
2530 }
2531
2532 /*
2533 * Aggressive migration if:
2534 * 1) task is cache cold, or
2535 * 2) too many balance attempts have failed.
2536 */
2537
305e6835 2538 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2539 if (!tsk_cache_hot ||
2540 sd->nr_balance_failed > sd->cache_nice_tries) {
2541#ifdef CONFIG_SCHEDSTATS
2542 if (tsk_cache_hot) {
2543 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2544 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2545 }
2546#endif
2547 return 1;
2548 }
2549
2550 if (tsk_cache_hot) {
41acab88 2551 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2552 return 0;
2553 }
2554 return 1;
2555}
2556
897c395f
PZ
2557/*
2558 * move_one_task tries to move exactly one task from busiest to this_rq, as
2559 * part of active balancing operations within "domain".
2560 * Returns 1 if successful and 0 otherwise.
2561 *
2562 * Called with both runqueues locked.
2563 */
2564static int
2565move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2566 struct sched_domain *sd, enum cpu_idle_type idle)
2567{
2568 struct task_struct *p, *n;
2569 struct cfs_rq *cfs_rq;
2570 int pinned = 0;
2571
2572 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2573 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
2574 if (throttled_lb_pair(task_group(p),
2575 busiest->cpu, this_cpu))
2576 break;
897c395f
PZ
2577
2578 if (!can_migrate_task(p, busiest, this_cpu,
2579 sd, idle, &pinned))
2580 continue;
2581
2582 pull_task(busiest, p, this_rq, this_cpu);
2583 /*
2584 * Right now, this is only the second place pull_task()
2585 * is called, so we can safely collect pull_task()
2586 * stats here rather than inside pull_task().
2587 */
2588 schedstat_inc(sd, lb_gained[idle]);
2589 return 1;
2590 }
2591 }
2592
2593 return 0;
2594}
2595
1e3c88bd
PZ
2596static unsigned long
2597balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2598 unsigned long max_load_move, struct sched_domain *sd,
2599 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2600 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2601{
b30aef17 2602 int loops = 0, pulled = 0;
1e3c88bd 2603 long rem_load_move = max_load_move;
ee00e66f 2604 struct task_struct *p, *n;
1e3c88bd
PZ
2605
2606 if (max_load_move == 0)
2607 goto out;
2608
ee00e66f
PZ
2609 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2610 if (loops++ > sysctl_sched_nr_migrate)
2611 break;
1e3c88bd 2612
ee00e66f 2613 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2614 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2615 all_pinned))
ee00e66f 2616 continue;
1e3c88bd 2617
ee00e66f
PZ
2618 pull_task(busiest, p, this_rq, this_cpu);
2619 pulled++;
2620 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2621
2622#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2623 /*
2624 * NEWIDLE balancing is a source of latency, so preemptible
2625 * kernels will stop after the first task is pulled to minimize
2626 * the critical section.
2627 */
2628 if (idle == CPU_NEWLY_IDLE)
2629 break;
1e3c88bd
PZ
2630#endif
2631
ee00e66f
PZ
2632 /*
2633 * We only want to steal up to the prescribed amount of
2634 * weighted load.
2635 */
2636 if (rem_load_move <= 0)
2637 break;
1e3c88bd
PZ
2638 }
2639out:
2640 /*
2641 * Right now, this is one of only two places pull_task() is called,
2642 * so we can safely collect pull_task() stats here rather than
2643 * inside pull_task().
2644 */
2645 schedstat_add(sd, lb_gained[idle], pulled);
2646
1e3c88bd
PZ
2647 return max_load_move - rem_load_move;
2648}
2649
230059de 2650#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2651/*
2652 * update tg->load_weight by folding this cpu's load_avg
2653 */
67e86250 2654static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2655{
2656 struct cfs_rq *cfs_rq;
2657 unsigned long flags;
2658 struct rq *rq;
9e3081ca
PZ
2659
2660 if (!tg->se[cpu])
2661 return 0;
2662
2663 rq = cpu_rq(cpu);
2664 cfs_rq = tg->cfs_rq[cpu];
2665
2666 raw_spin_lock_irqsave(&rq->lock, flags);
2667
2668 update_rq_clock(rq);
d6b55918 2669 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2670
2671 /*
2672 * We need to update shares after updating tg->load_weight in
2673 * order to adjust the weight of groups with long running tasks.
2674 */
6d5ab293 2675 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2676
2677 raw_spin_unlock_irqrestore(&rq->lock, flags);
2678
2679 return 0;
2680}
2681
2682static void update_shares(int cpu)
2683{
2684 struct cfs_rq *cfs_rq;
2685 struct rq *rq = cpu_rq(cpu);
2686
2687 rcu_read_lock();
9763b67f
PZ
2688 /*
2689 * Iterates the task_group tree in a bottom up fashion, see
2690 * list_add_leaf_cfs_rq() for details.
2691 */
64660c86
PT
2692 for_each_leaf_cfs_rq(rq, cfs_rq) {
2693 /* throttled entities do not contribute to load */
2694 if (throttled_hierarchy(cfs_rq))
2695 continue;
2696
67e86250 2697 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 2698 }
9e3081ca
PZ
2699 rcu_read_unlock();
2700}
2701
9763b67f
PZ
2702/*
2703 * Compute the cpu's hierarchical load factor for each task group.
2704 * This needs to be done in a top-down fashion because the load of a child
2705 * group is a fraction of its parents load.
2706 */
2707static int tg_load_down(struct task_group *tg, void *data)
2708{
2709 unsigned long load;
2710 long cpu = (long)data;
2711
2712 if (!tg->parent) {
2713 load = cpu_rq(cpu)->load.weight;
2714 } else {
2715 load = tg->parent->cfs_rq[cpu]->h_load;
2716 load *= tg->se[cpu]->load.weight;
2717 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2718 }
2719
2720 tg->cfs_rq[cpu]->h_load = load;
2721
2722 return 0;
2723}
2724
2725static void update_h_load(long cpu)
2726{
2727 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2728}
2729
230059de
PZ
2730static unsigned long
2731load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2732 unsigned long max_load_move,
2733 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2734 int *all_pinned)
230059de
PZ
2735{
2736 long rem_load_move = max_load_move;
9763b67f 2737 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
2738
2739 rcu_read_lock();
9763b67f 2740 update_h_load(cpu_of(busiest));
230059de 2741
9763b67f 2742 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
2743 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2744 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2745 u64 rem_load, moved_load;
2746
2747 /*
64660c86 2748 * empty group or part of a throttled hierarchy
230059de 2749 */
64660c86
PT
2750 if (!busiest_cfs_rq->task_weight ||
2751 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
2752 continue;
2753
2754 rem_load = (u64)rem_load_move * busiest_weight;
2755 rem_load = div_u64(rem_load, busiest_h_load + 1);
2756
2757 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2758 rem_load, sd, idle, all_pinned,
230059de
PZ
2759 busiest_cfs_rq);
2760
2761 if (!moved_load)
2762 continue;
2763
2764 moved_load *= busiest_h_load;
2765 moved_load = div_u64(moved_load, busiest_weight + 1);
2766
2767 rem_load_move -= moved_load;
2768 if (rem_load_move < 0)
2769 break;
2770 }
2771 rcu_read_unlock();
2772
2773 return max_load_move - rem_load_move;
2774}
2775#else
9e3081ca
PZ
2776static inline void update_shares(int cpu)
2777{
2778}
2779
230059de
PZ
2780static unsigned long
2781load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2782 unsigned long max_load_move,
2783 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2784 int *all_pinned)
230059de
PZ
2785{
2786 return balance_tasks(this_rq, this_cpu, busiest,
2787 max_load_move, sd, idle, all_pinned,
931aeeda 2788 &busiest->cfs);
230059de
PZ
2789}
2790#endif
2791
1e3c88bd
PZ
2792/*
2793 * move_tasks tries to move up to max_load_move weighted load from busiest to
2794 * this_rq, as part of a balancing operation within domain "sd".
2795 * Returns 1 if successful and 0 otherwise.
2796 *
2797 * Called with both runqueues locked.
2798 */
2799static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2800 unsigned long max_load_move,
2801 struct sched_domain *sd, enum cpu_idle_type idle,
2802 int *all_pinned)
2803{
3d45fd80 2804 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2805
2806 do {
3d45fd80 2807 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2808 max_load_move - total_load_moved,
931aeeda 2809 sd, idle, all_pinned);
3d45fd80
PZ
2810
2811 total_load_moved += load_moved;
1e3c88bd
PZ
2812
2813#ifdef CONFIG_PREEMPT
2814 /*
2815 * NEWIDLE balancing is a source of latency, so preemptible
2816 * kernels will stop after the first task is pulled to minimize
2817 * the critical section.
2818 */
2819 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2820 break;
baa8c110
PZ
2821
2822 if (raw_spin_is_contended(&this_rq->lock) ||
2823 raw_spin_is_contended(&busiest->lock))
2824 break;
1e3c88bd 2825#endif
3d45fd80 2826 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2827
2828 return total_load_moved > 0;
2829}
2830
1e3c88bd
PZ
2831/********** Helpers for find_busiest_group ************************/
2832/*
2833 * sd_lb_stats - Structure to store the statistics of a sched_domain
2834 * during load balancing.
2835 */
2836struct sd_lb_stats {
2837 struct sched_group *busiest; /* Busiest group in this sd */
2838 struct sched_group *this; /* Local group in this sd */
2839 unsigned long total_load; /* Total load of all groups in sd */
2840 unsigned long total_pwr; /* Total power of all groups in sd */
2841 unsigned long avg_load; /* Average load across all groups in sd */
2842
2843 /** Statistics of this group */
2844 unsigned long this_load;
2845 unsigned long this_load_per_task;
2846 unsigned long this_nr_running;
fab47622 2847 unsigned long this_has_capacity;
aae6d3dd 2848 unsigned int this_idle_cpus;
1e3c88bd
PZ
2849
2850 /* Statistics of the busiest group */
aae6d3dd 2851 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2852 unsigned long max_load;
2853 unsigned long busiest_load_per_task;
2854 unsigned long busiest_nr_running;
dd5feea1 2855 unsigned long busiest_group_capacity;
fab47622 2856 unsigned long busiest_has_capacity;
aae6d3dd 2857 unsigned int busiest_group_weight;
1e3c88bd
PZ
2858
2859 int group_imb; /* Is there imbalance in this sd */
2860#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2861 int power_savings_balance; /* Is powersave balance needed for this sd */
2862 struct sched_group *group_min; /* Least loaded group in sd */
2863 struct sched_group *group_leader; /* Group which relieves group_min */
2864 unsigned long min_load_per_task; /* load_per_task in group_min */
2865 unsigned long leader_nr_running; /* Nr running of group_leader */
2866 unsigned long min_nr_running; /* Nr running of group_min */
2867#endif
2868};
2869
2870/*
2871 * sg_lb_stats - stats of a sched_group required for load_balancing
2872 */
2873struct sg_lb_stats {
2874 unsigned long avg_load; /*Avg load across the CPUs of the group */
2875 unsigned long group_load; /* Total load over the CPUs of the group */
2876 unsigned long sum_nr_running; /* Nr tasks running in the group */
2877 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2878 unsigned long group_capacity;
aae6d3dd
SS
2879 unsigned long idle_cpus;
2880 unsigned long group_weight;
1e3c88bd 2881 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2882 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2883};
2884
2885/**
2886 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2887 * @group: The group whose first cpu is to be returned.
2888 */
2889static inline unsigned int group_first_cpu(struct sched_group *group)
2890{
2891 return cpumask_first(sched_group_cpus(group));
2892}
2893
2894/**
2895 * get_sd_load_idx - Obtain the load index for a given sched domain.
2896 * @sd: The sched_domain whose load_idx is to be obtained.
2897 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2898 */
2899static inline int get_sd_load_idx(struct sched_domain *sd,
2900 enum cpu_idle_type idle)
2901{
2902 int load_idx;
2903
2904 switch (idle) {
2905 case CPU_NOT_IDLE:
2906 load_idx = sd->busy_idx;
2907 break;
2908
2909 case CPU_NEWLY_IDLE:
2910 load_idx = sd->newidle_idx;
2911 break;
2912 default:
2913 load_idx = sd->idle_idx;
2914 break;
2915 }
2916
2917 return load_idx;
2918}
2919
2920
2921#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2922/**
2923 * init_sd_power_savings_stats - Initialize power savings statistics for
2924 * the given sched_domain, during load balancing.
2925 *
2926 * @sd: Sched domain whose power-savings statistics are to be initialized.
2927 * @sds: Variable containing the statistics for sd.
2928 * @idle: Idle status of the CPU at which we're performing load-balancing.
2929 */
2930static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2931 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2932{
2933 /*
2934 * Busy processors will not participate in power savings
2935 * balance.
2936 */
2937 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2938 sds->power_savings_balance = 0;
2939 else {
2940 sds->power_savings_balance = 1;
2941 sds->min_nr_running = ULONG_MAX;
2942 sds->leader_nr_running = 0;
2943 }
2944}
2945
2946/**
2947 * update_sd_power_savings_stats - Update the power saving stats for a
2948 * sched_domain while performing load balancing.
2949 *
2950 * @group: sched_group belonging to the sched_domain under consideration.
2951 * @sds: Variable containing the statistics of the sched_domain
2952 * @local_group: Does group contain the CPU for which we're performing
2953 * load balancing ?
2954 * @sgs: Variable containing the statistics of the group.
2955 */
2956static inline void update_sd_power_savings_stats(struct sched_group *group,
2957 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2958{
2959
2960 if (!sds->power_savings_balance)
2961 return;
2962
2963 /*
2964 * If the local group is idle or completely loaded
2965 * no need to do power savings balance at this domain
2966 */
2967 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2968 !sds->this_nr_running))
2969 sds->power_savings_balance = 0;
2970
2971 /*
2972 * If a group is already running at full capacity or idle,
2973 * don't include that group in power savings calculations
2974 */
2975 if (!sds->power_savings_balance ||
2976 sgs->sum_nr_running >= sgs->group_capacity ||
2977 !sgs->sum_nr_running)
2978 return;
2979
2980 /*
2981 * Calculate the group which has the least non-idle load.
2982 * This is the group from where we need to pick up the load
2983 * for saving power
2984 */
2985 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2986 (sgs->sum_nr_running == sds->min_nr_running &&
2987 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2988 sds->group_min = group;
2989 sds->min_nr_running = sgs->sum_nr_running;
2990 sds->min_load_per_task = sgs->sum_weighted_load /
2991 sgs->sum_nr_running;
2992 }
2993
2994 /*
2995 * Calculate the group which is almost near its
2996 * capacity but still has some space to pick up some load
2997 * from other group and save more power
2998 */
2999 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3000 return;
3001
3002 if (sgs->sum_nr_running > sds->leader_nr_running ||
3003 (sgs->sum_nr_running == sds->leader_nr_running &&
3004 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3005 sds->group_leader = group;
3006 sds->leader_nr_running = sgs->sum_nr_running;
3007 }
3008}
3009
3010/**
3011 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3012 * @sds: Variable containing the statistics of the sched_domain
3013 * under consideration.
3014 * @this_cpu: Cpu at which we're currently performing load-balancing.
3015 * @imbalance: Variable to store the imbalance.
3016 *
3017 * Description:
3018 * Check if we have potential to perform some power-savings balance.
3019 * If yes, set the busiest group to be the least loaded group in the
3020 * sched_domain, so that it's CPUs can be put to idle.
3021 *
3022 * Returns 1 if there is potential to perform power-savings balance.
3023 * Else returns 0.
3024 */
3025static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3026 int this_cpu, unsigned long *imbalance)
3027{
3028 if (!sds->power_savings_balance)
3029 return 0;
3030
3031 if (sds->this != sds->group_leader ||
3032 sds->group_leader == sds->group_min)
3033 return 0;
3034
3035 *imbalance = sds->min_load_per_task;
3036 sds->busiest = sds->group_min;
3037
3038 return 1;
3039
3040}
3041#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3042static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3043 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3044{
3045 return;
3046}
3047
3048static inline void update_sd_power_savings_stats(struct sched_group *group,
3049 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3050{
3051 return;
3052}
3053
3054static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3055 int this_cpu, unsigned long *imbalance)
3056{
3057 return 0;
3058}
3059#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3060
3061
3062unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3063{
1399fa78 3064 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3065}
3066
3067unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3068{
3069 return default_scale_freq_power(sd, cpu);
3070}
3071
3072unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3073{
669c55e9 3074 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3075 unsigned long smt_gain = sd->smt_gain;
3076
3077 smt_gain /= weight;
3078
3079 return smt_gain;
3080}
3081
3082unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3083{
3084 return default_scale_smt_power(sd, cpu);
3085}
3086
3087unsigned long scale_rt_power(int cpu)
3088{
3089 struct rq *rq = cpu_rq(cpu);
3090 u64 total, available;
3091
1e3c88bd 3092 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3093
3094 if (unlikely(total < rq->rt_avg)) {
3095 /* Ensures that power won't end up being negative */
3096 available = 0;
3097 } else {
3098 available = total - rq->rt_avg;
3099 }
1e3c88bd 3100
1399fa78
NR
3101 if (unlikely((s64)total < SCHED_POWER_SCALE))
3102 total = SCHED_POWER_SCALE;
1e3c88bd 3103
1399fa78 3104 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3105
3106 return div_u64(available, total);
3107}
3108
3109static void update_cpu_power(struct sched_domain *sd, int cpu)
3110{
669c55e9 3111 unsigned long weight = sd->span_weight;
1399fa78 3112 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3113 struct sched_group *sdg = sd->groups;
3114
1e3c88bd
PZ
3115 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3116 if (sched_feat(ARCH_POWER))
3117 power *= arch_scale_smt_power(sd, cpu);
3118 else
3119 power *= default_scale_smt_power(sd, cpu);
3120
1399fa78 3121 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3122 }
3123
9c3f75cb 3124 sdg->sgp->power_orig = power;
9d5efe05
SV
3125
3126 if (sched_feat(ARCH_POWER))
3127 power *= arch_scale_freq_power(sd, cpu);
3128 else
3129 power *= default_scale_freq_power(sd, cpu);
3130
1399fa78 3131 power >>= SCHED_POWER_SHIFT;
9d5efe05 3132
1e3c88bd 3133 power *= scale_rt_power(cpu);
1399fa78 3134 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3135
3136 if (!power)
3137 power = 1;
3138
e51fd5e2 3139 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3140 sdg->sgp->power = power;
1e3c88bd
PZ
3141}
3142
3143static void update_group_power(struct sched_domain *sd, int cpu)
3144{
3145 struct sched_domain *child = sd->child;
3146 struct sched_group *group, *sdg = sd->groups;
3147 unsigned long power;
3148
3149 if (!child) {
3150 update_cpu_power(sd, cpu);
3151 return;
3152 }
3153
3154 power = 0;
3155
3156 group = child->groups;
3157 do {
9c3f75cb 3158 power += group->sgp->power;
1e3c88bd
PZ
3159 group = group->next;
3160 } while (group != child->groups);
3161
9c3f75cb 3162 sdg->sgp->power = power;
1e3c88bd
PZ
3163}
3164
9d5efe05
SV
3165/*
3166 * Try and fix up capacity for tiny siblings, this is needed when
3167 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3168 * which on its own isn't powerful enough.
3169 *
3170 * See update_sd_pick_busiest() and check_asym_packing().
3171 */
3172static inline int
3173fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3174{
3175 /*
1399fa78 3176 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3177 */
a6c75f2f 3178 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3179 return 0;
3180
3181 /*
3182 * If ~90% of the cpu_power is still there, we're good.
3183 */
9c3f75cb 3184 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3185 return 1;
3186
3187 return 0;
3188}
3189
1e3c88bd
PZ
3190/**
3191 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3192 * @sd: The sched_domain whose statistics are to be updated.
3193 * @group: sched_group whose statistics are to be updated.
3194 * @this_cpu: Cpu for which load balance is currently performed.
3195 * @idle: Idle status of this_cpu
3196 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3197 * @local_group: Does group contain this_cpu.
3198 * @cpus: Set of cpus considered for load balancing.
3199 * @balance: Should we balance.
3200 * @sgs: variable to hold the statistics for this group.
3201 */
3202static inline void update_sg_lb_stats(struct sched_domain *sd,
3203 struct sched_group *group, int this_cpu,
46e49b38 3204 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3205 int local_group, const struct cpumask *cpus,
3206 int *balance, struct sg_lb_stats *sgs)
3207{
2582f0eb 3208 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3209 int i;
3210 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3211 unsigned long avg_load_per_task = 0;
1e3c88bd 3212
871e35bc 3213 if (local_group)
1e3c88bd 3214 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3215
3216 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3217 max_cpu_load = 0;
3218 min_cpu_load = ~0UL;
2582f0eb 3219 max_nr_running = 0;
1e3c88bd
PZ
3220
3221 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3222 struct rq *rq = cpu_rq(i);
3223
1e3c88bd
PZ
3224 /* Bias balancing toward cpus of our domain */
3225 if (local_group) {
3226 if (idle_cpu(i) && !first_idle_cpu) {
3227 first_idle_cpu = 1;
3228 balance_cpu = i;
3229 }
3230
3231 load = target_load(i, load_idx);
3232 } else {
3233 load = source_load(i, load_idx);
2582f0eb 3234 if (load > max_cpu_load) {
1e3c88bd 3235 max_cpu_load = load;
2582f0eb
NR
3236 max_nr_running = rq->nr_running;
3237 }
1e3c88bd
PZ
3238 if (min_cpu_load > load)
3239 min_cpu_load = load;
3240 }
3241
3242 sgs->group_load += load;
3243 sgs->sum_nr_running += rq->nr_running;
3244 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3245 if (idle_cpu(i))
3246 sgs->idle_cpus++;
1e3c88bd
PZ
3247 }
3248
3249 /*
3250 * First idle cpu or the first cpu(busiest) in this sched group
3251 * is eligible for doing load balancing at this and above
3252 * domains. In the newly idle case, we will allow all the cpu's
3253 * to do the newly idle load balance.
3254 */
bbc8cb5b
PZ
3255 if (idle != CPU_NEWLY_IDLE && local_group) {
3256 if (balance_cpu != this_cpu) {
3257 *balance = 0;
3258 return;
3259 }
3260 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3261 }
3262
3263 /* Adjust by relative CPU power of the group */
9c3f75cb 3264 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3265
1e3c88bd
PZ
3266 /*
3267 * Consider the group unbalanced when the imbalance is larger
866ab43e 3268 * than the average weight of a task.
1e3c88bd
PZ
3269 *
3270 * APZ: with cgroup the avg task weight can vary wildly and
3271 * might not be a suitable number - should we keep a
3272 * normalized nr_running number somewhere that negates
3273 * the hierarchy?
3274 */
dd5feea1
SS
3275 if (sgs->sum_nr_running)
3276 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3277
866ab43e 3278 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3279 sgs->group_imb = 1;
3280
9c3f75cb 3281 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3282 SCHED_POWER_SCALE);
9d5efe05
SV
3283 if (!sgs->group_capacity)
3284 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3285 sgs->group_weight = group->group_weight;
fab47622
NR
3286
3287 if (sgs->group_capacity > sgs->sum_nr_running)
3288 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3289}
3290
532cb4c4
MN
3291/**
3292 * update_sd_pick_busiest - return 1 on busiest group
3293 * @sd: sched_domain whose statistics are to be checked
3294 * @sds: sched_domain statistics
3295 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3296 * @sgs: sched_group statistics
3297 * @this_cpu: the current cpu
532cb4c4
MN
3298 *
3299 * Determine if @sg is a busier group than the previously selected
3300 * busiest group.
3301 */
3302static bool update_sd_pick_busiest(struct sched_domain *sd,
3303 struct sd_lb_stats *sds,
3304 struct sched_group *sg,
3305 struct sg_lb_stats *sgs,
3306 int this_cpu)
3307{
3308 if (sgs->avg_load <= sds->max_load)
3309 return false;
3310
3311 if (sgs->sum_nr_running > sgs->group_capacity)
3312 return true;
3313
3314 if (sgs->group_imb)
3315 return true;
3316
3317 /*
3318 * ASYM_PACKING needs to move all the work to the lowest
3319 * numbered CPUs in the group, therefore mark all groups
3320 * higher than ourself as busy.
3321 */
3322 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3323 this_cpu < group_first_cpu(sg)) {
3324 if (!sds->busiest)
3325 return true;
3326
3327 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3328 return true;
3329 }
3330
3331 return false;
3332}
3333
1e3c88bd
PZ
3334/**
3335 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3336 * @sd: sched_domain whose statistics are to be updated.
3337 * @this_cpu: Cpu for which load balance is currently performed.
3338 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3339 * @cpus: Set of cpus considered for load balancing.
3340 * @balance: Should we balance.
3341 * @sds: variable to hold the statistics for this sched_domain.
3342 */
3343static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3344 enum cpu_idle_type idle, const struct cpumask *cpus,
3345 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3346{
3347 struct sched_domain *child = sd->child;
532cb4c4 3348 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3349 struct sg_lb_stats sgs;
3350 int load_idx, prefer_sibling = 0;
3351
3352 if (child && child->flags & SD_PREFER_SIBLING)
3353 prefer_sibling = 1;
3354
3355 init_sd_power_savings_stats(sd, sds, idle);
3356 load_idx = get_sd_load_idx(sd, idle);
3357
3358 do {
3359 int local_group;
3360
532cb4c4 3361 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3362 memset(&sgs, 0, sizeof(sgs));
46e49b38 3363 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3364 local_group, cpus, balance, &sgs);
3365
8f190fb3 3366 if (local_group && !(*balance))
1e3c88bd
PZ
3367 return;
3368
3369 sds->total_load += sgs.group_load;
9c3f75cb 3370 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3371
3372 /*
3373 * In case the child domain prefers tasks go to siblings
532cb4c4 3374 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3375 * and move all the excess tasks away. We lower the capacity
3376 * of a group only if the local group has the capacity to fit
3377 * these excess tasks, i.e. nr_running < group_capacity. The
3378 * extra check prevents the case where you always pull from the
3379 * heaviest group when it is already under-utilized (possible
3380 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3381 */
75dd321d 3382 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3383 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3384
3385 if (local_group) {
3386 sds->this_load = sgs.avg_load;
532cb4c4 3387 sds->this = sg;
1e3c88bd
PZ
3388 sds->this_nr_running = sgs.sum_nr_running;
3389 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3390 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3391 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 3392 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 3393 sds->max_load = sgs.avg_load;
532cb4c4 3394 sds->busiest = sg;
1e3c88bd 3395 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3396 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3397 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3398 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3399 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3400 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3401 sds->group_imb = sgs.group_imb;
3402 }
3403
532cb4c4
MN
3404 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3405 sg = sg->next;
3406 } while (sg != sd->groups);
3407}
3408
2ec57d44 3409int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
3410{
3411 return 0*SD_ASYM_PACKING;
3412}
3413
3414/**
3415 * check_asym_packing - Check to see if the group is packed into the
3416 * sched doman.
3417 *
3418 * This is primarily intended to used at the sibling level. Some
3419 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3420 * case of POWER7, it can move to lower SMT modes only when higher
3421 * threads are idle. When in lower SMT modes, the threads will
3422 * perform better since they share less core resources. Hence when we
3423 * have idle threads, we want them to be the higher ones.
3424 *
3425 * This packing function is run on idle threads. It checks to see if
3426 * the busiest CPU in this domain (core in the P7 case) has a higher
3427 * CPU number than the packing function is being run on. Here we are
3428 * assuming lower CPU number will be equivalent to lower a SMT thread
3429 * number.
3430 *
b6b12294
MN
3431 * Returns 1 when packing is required and a task should be moved to
3432 * this CPU. The amount of the imbalance is returned in *imbalance.
3433 *
532cb4c4
MN
3434 * @sd: The sched_domain whose packing is to be checked.
3435 * @sds: Statistics of the sched_domain which is to be packed
3436 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3437 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
3438 */
3439static int check_asym_packing(struct sched_domain *sd,
3440 struct sd_lb_stats *sds,
3441 int this_cpu, unsigned long *imbalance)
3442{
3443 int busiest_cpu;
3444
3445 if (!(sd->flags & SD_ASYM_PACKING))
3446 return 0;
3447
3448 if (!sds->busiest)
3449 return 0;
3450
3451 busiest_cpu = group_first_cpu(sds->busiest);
3452 if (this_cpu > busiest_cpu)
3453 return 0;
3454
9c3f75cb 3455 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 3456 SCHED_POWER_SCALE);
532cb4c4 3457 return 1;
1e3c88bd
PZ
3458}
3459
3460/**
3461 * fix_small_imbalance - Calculate the minor imbalance that exists
3462 * amongst the groups of a sched_domain, during
3463 * load balancing.
3464 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3465 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3466 * @imbalance: Variable to store the imbalance.
3467 */
3468static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3469 int this_cpu, unsigned long *imbalance)
3470{
3471 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3472 unsigned int imbn = 2;
dd5feea1 3473 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
3474
3475 if (sds->this_nr_running) {
3476 sds->this_load_per_task /= sds->this_nr_running;
3477 if (sds->busiest_load_per_task >
3478 sds->this_load_per_task)
3479 imbn = 1;
3480 } else
3481 sds->this_load_per_task =
3482 cpu_avg_load_per_task(this_cpu);
3483
dd5feea1 3484 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3485 * SCHED_POWER_SCALE;
9c3f75cb 3486 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3487
3488 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3489 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3490 *imbalance = sds->busiest_load_per_task;
3491 return;
3492 }
3493
3494 /*
3495 * OK, we don't have enough imbalance to justify moving tasks,
3496 * however we may be able to increase total CPU power used by
3497 * moving them.
3498 */
3499
9c3f75cb 3500 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3501 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3502 pwr_now += sds->this->sgp->power *
1e3c88bd 3503 min(sds->this_load_per_task, sds->this_load);
1399fa78 3504 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3505
3506 /* Amount of load we'd subtract */
1399fa78 3507 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3508 sds->busiest->sgp->power;
1e3c88bd 3509 if (sds->max_load > tmp)
9c3f75cb 3510 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3511 min(sds->busiest_load_per_task, sds->max_load - tmp);
3512
3513 /* Amount of load we'd add */
9c3f75cb 3514 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3515 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3516 tmp = (sds->max_load * sds->busiest->sgp->power) /
3517 sds->this->sgp->power;
1e3c88bd 3518 else
1399fa78 3519 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3520 sds->this->sgp->power;
3521 pwr_move += sds->this->sgp->power *
1e3c88bd 3522 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3523 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3524
3525 /* Move if we gain throughput */
3526 if (pwr_move > pwr_now)
3527 *imbalance = sds->busiest_load_per_task;
3528}
3529
3530/**
3531 * calculate_imbalance - Calculate the amount of imbalance present within the
3532 * groups of a given sched_domain during load balance.
3533 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3534 * @this_cpu: Cpu for which currently load balance is being performed.
3535 * @imbalance: The variable to store the imbalance.
3536 */
3537static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3538 unsigned long *imbalance)
3539{
dd5feea1
SS
3540 unsigned long max_pull, load_above_capacity = ~0UL;
3541
3542 sds->busiest_load_per_task /= sds->busiest_nr_running;
3543 if (sds->group_imb) {
3544 sds->busiest_load_per_task =
3545 min(sds->busiest_load_per_task, sds->avg_load);
3546 }
3547
1e3c88bd
PZ
3548 /*
3549 * In the presence of smp nice balancing, certain scenarios can have
3550 * max load less than avg load(as we skip the groups at or below
3551 * its cpu_power, while calculating max_load..)
3552 */
3553 if (sds->max_load < sds->avg_load) {
3554 *imbalance = 0;
3555 return fix_small_imbalance(sds, this_cpu, imbalance);
3556 }
3557
dd5feea1
SS
3558 if (!sds->group_imb) {
3559 /*
3560 * Don't want to pull so many tasks that a group would go idle.
3561 */
3562 load_above_capacity = (sds->busiest_nr_running -
3563 sds->busiest_group_capacity);
3564
1399fa78 3565 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3566
9c3f75cb 3567 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3568 }
3569
3570 /*
3571 * We're trying to get all the cpus to the average_load, so we don't
3572 * want to push ourselves above the average load, nor do we wish to
3573 * reduce the max loaded cpu below the average load. At the same time,
3574 * we also don't want to reduce the group load below the group capacity
3575 * (so that we can implement power-savings policies etc). Thus we look
3576 * for the minimum possible imbalance.
3577 * Be careful of negative numbers as they'll appear as very large values
3578 * with unsigned longs.
3579 */
3580 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3581
3582 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3583 *imbalance = min(max_pull * sds->busiest->sgp->power,
3584 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3585 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3586
3587 /*
3588 * if *imbalance is less than the average load per runnable task
25985edc 3589 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3590 * a think about bumping its value to force at least one task to be
3591 * moved
3592 */
3593 if (*imbalance < sds->busiest_load_per_task)
3594 return fix_small_imbalance(sds, this_cpu, imbalance);
3595
3596}
fab47622 3597
1e3c88bd
PZ
3598/******* find_busiest_group() helpers end here *********************/
3599
3600/**
3601 * find_busiest_group - Returns the busiest group within the sched_domain
3602 * if there is an imbalance. If there isn't an imbalance, and
3603 * the user has opted for power-savings, it returns a group whose
3604 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3605 * such a group exists.
3606 *
3607 * Also calculates the amount of weighted load which should be moved
3608 * to restore balance.
3609 *
3610 * @sd: The sched_domain whose busiest group is to be returned.
3611 * @this_cpu: The cpu for which load balancing is currently being performed.
3612 * @imbalance: Variable which stores amount of weighted load which should
3613 * be moved to restore balance/put a group to idle.
3614 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3615 * @cpus: The set of CPUs under consideration for load-balancing.
3616 * @balance: Pointer to a variable indicating if this_cpu
3617 * is the appropriate cpu to perform load balancing at this_level.
3618 *
3619 * Returns: - the busiest group if imbalance exists.
3620 * - If no imbalance and user has opted for power-savings balance,
3621 * return the least loaded group whose CPUs can be
3622 * put to idle by rebalancing its tasks onto our group.
3623 */
3624static struct sched_group *
3625find_busiest_group(struct sched_domain *sd, int this_cpu,
3626 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3627 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3628{
3629 struct sd_lb_stats sds;
3630
3631 memset(&sds, 0, sizeof(sds));
3632
3633 /*
3634 * Compute the various statistics relavent for load balancing at
3635 * this level.
3636 */
46e49b38 3637 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3638
cc57aa8f
PZ
3639 /*
3640 * this_cpu is not the appropriate cpu to perform load balancing at
3641 * this level.
1e3c88bd 3642 */
8f190fb3 3643 if (!(*balance))
1e3c88bd
PZ
3644 goto ret;
3645
532cb4c4
MN
3646 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3647 check_asym_packing(sd, &sds, this_cpu, imbalance))
3648 return sds.busiest;
3649
cc57aa8f 3650 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3651 if (!sds.busiest || sds.busiest_nr_running == 0)
3652 goto out_balanced;
3653
1399fa78 3654 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3655
866ab43e
PZ
3656 /*
3657 * If the busiest group is imbalanced the below checks don't
3658 * work because they assumes all things are equal, which typically
3659 * isn't true due to cpus_allowed constraints and the like.
3660 */
3661 if (sds.group_imb)
3662 goto force_balance;
3663
cc57aa8f 3664 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3665 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3666 !sds.busiest_has_capacity)
3667 goto force_balance;
3668
cc57aa8f
PZ
3669 /*
3670 * If the local group is more busy than the selected busiest group
3671 * don't try and pull any tasks.
3672 */
1e3c88bd
PZ
3673 if (sds.this_load >= sds.max_load)
3674 goto out_balanced;
3675
cc57aa8f
PZ
3676 /*
3677 * Don't pull any tasks if this group is already above the domain
3678 * average load.
3679 */
1e3c88bd
PZ
3680 if (sds.this_load >= sds.avg_load)
3681 goto out_balanced;
3682
c186fafe 3683 if (idle == CPU_IDLE) {
aae6d3dd
SS
3684 /*
3685 * This cpu is idle. If the busiest group load doesn't
3686 * have more tasks than the number of available cpu's and
3687 * there is no imbalance between this and busiest group
3688 * wrt to idle cpu's, it is balanced.
3689 */
c186fafe 3690 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3691 sds.busiest_nr_running <= sds.busiest_group_weight)
3692 goto out_balanced;
c186fafe
PZ
3693 } else {
3694 /*
3695 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3696 * imbalance_pct to be conservative.
3697 */
3698 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3699 goto out_balanced;
aae6d3dd 3700 }
1e3c88bd 3701
fab47622 3702force_balance:
1e3c88bd
PZ
3703 /* Looks like there is an imbalance. Compute it */
3704 calculate_imbalance(&sds, this_cpu, imbalance);
3705 return sds.busiest;
3706
3707out_balanced:
3708 /*
3709 * There is no obvious imbalance. But check if we can do some balancing
3710 * to save power.
3711 */
3712 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3713 return sds.busiest;
3714ret:
3715 *imbalance = 0;
3716 return NULL;
3717}
3718
3719/*
3720 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3721 */
3722static struct rq *
9d5efe05
SV
3723find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3724 enum cpu_idle_type idle, unsigned long imbalance,
3725 const struct cpumask *cpus)
1e3c88bd
PZ
3726{
3727 struct rq *busiest = NULL, *rq;
3728 unsigned long max_load = 0;
3729 int i;
3730
3731 for_each_cpu(i, sched_group_cpus(group)) {
3732 unsigned long power = power_of(i);
1399fa78
NR
3733 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3734 SCHED_POWER_SCALE);
1e3c88bd
PZ
3735 unsigned long wl;
3736
9d5efe05
SV
3737 if (!capacity)
3738 capacity = fix_small_capacity(sd, group);
3739
1e3c88bd
PZ
3740 if (!cpumask_test_cpu(i, cpus))
3741 continue;
3742
3743 rq = cpu_rq(i);
6e40f5bb 3744 wl = weighted_cpuload(i);
1e3c88bd 3745
6e40f5bb
TG
3746 /*
3747 * When comparing with imbalance, use weighted_cpuload()
3748 * which is not scaled with the cpu power.
3749 */
1e3c88bd
PZ
3750 if (capacity && rq->nr_running == 1 && wl > imbalance)
3751 continue;
3752
6e40f5bb
TG
3753 /*
3754 * For the load comparisons with the other cpu's, consider
3755 * the weighted_cpuload() scaled with the cpu power, so that
3756 * the load can be moved away from the cpu that is potentially
3757 * running at a lower capacity.
3758 */
1399fa78 3759 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3760
1e3c88bd
PZ
3761 if (wl > max_load) {
3762 max_load = wl;
3763 busiest = rq;
3764 }
3765 }
3766
3767 return busiest;
3768}
3769
3770/*
3771 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3772 * so long as it is large enough.
3773 */
3774#define MAX_PINNED_INTERVAL 512
3775
3776/* Working cpumask for load_balance and load_balance_newidle. */
3777static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3778
46e49b38 3779static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3780 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3781{
3782 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3783
3784 /*
3785 * ASYM_PACKING needs to force migrate tasks from busy but
3786 * higher numbered CPUs in order to pack all tasks in the
3787 * lowest numbered CPUs.
3788 */
3789 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3790 return 1;
3791
1af3ed3d
PZ
3792 /*
3793 * The only task running in a non-idle cpu can be moved to this
3794 * cpu in an attempt to completely freeup the other CPU
3795 * package.
3796 *
3797 * The package power saving logic comes from
3798 * find_busiest_group(). If there are no imbalance, then
3799 * f_b_g() will return NULL. However when sched_mc={1,2} then
3800 * f_b_g() will select a group from which a running task may be
3801 * pulled to this cpu in order to make the other package idle.
3802 * If there is no opportunity to make a package idle and if
3803 * there are no imbalance, then f_b_g() will return NULL and no
3804 * action will be taken in load_balance_newidle().
3805 *
3806 * Under normal task pull operation due to imbalance, there
3807 * will be more than one task in the source run queue and
3808 * move_tasks() will succeed. ld_moved will be true and this
3809 * active balance code will not be triggered.
3810 */
1af3ed3d
PZ
3811 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3812 return 0;
3813 }
3814
3815 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3816}
3817
969c7921
TH
3818static int active_load_balance_cpu_stop(void *data);
3819
1e3c88bd
PZ
3820/*
3821 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3822 * tasks if there is an imbalance.
3823 */
3824static int load_balance(int this_cpu, struct rq *this_rq,
3825 struct sched_domain *sd, enum cpu_idle_type idle,
3826 int *balance)
3827{
46e49b38 3828 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3829 struct sched_group *group;
3830 unsigned long imbalance;
3831 struct rq *busiest;
3832 unsigned long flags;
3833 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3834
3835 cpumask_copy(cpus, cpu_active_mask);
3836
1e3c88bd
PZ
3837 schedstat_inc(sd, lb_count[idle]);
3838
3839redo:
46e49b38 3840 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3841 cpus, balance);
3842
3843 if (*balance == 0)
3844 goto out_balanced;
3845
3846 if (!group) {
3847 schedstat_inc(sd, lb_nobusyg[idle]);
3848 goto out_balanced;
3849 }
3850
9d5efe05 3851 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3852 if (!busiest) {
3853 schedstat_inc(sd, lb_nobusyq[idle]);
3854 goto out_balanced;
3855 }
3856
3857 BUG_ON(busiest == this_rq);
3858
3859 schedstat_add(sd, lb_imbalance[idle], imbalance);
3860
3861 ld_moved = 0;
3862 if (busiest->nr_running > 1) {
3863 /*
3864 * Attempt to move tasks. If find_busiest_group has found
3865 * an imbalance but busiest->nr_running <= 1, the group is
3866 * still unbalanced. ld_moved simply stays zero, so it is
3867 * correctly treated as an imbalance.
3868 */
b30aef17 3869 all_pinned = 1;
1e3c88bd
PZ
3870 local_irq_save(flags);
3871 double_rq_lock(this_rq, busiest);
3872 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3873 imbalance, sd, idle, &all_pinned);
3874 double_rq_unlock(this_rq, busiest);
3875 local_irq_restore(flags);
3876
3877 /*
3878 * some other cpu did the load balance for us.
3879 */
3880 if (ld_moved && this_cpu != smp_processor_id())
3881 resched_cpu(this_cpu);
3882
3883 /* All tasks on this runqueue were pinned by CPU affinity */
3884 if (unlikely(all_pinned)) {
3885 cpumask_clear_cpu(cpu_of(busiest), cpus);
3886 if (!cpumask_empty(cpus))
3887 goto redo;
3888 goto out_balanced;
3889 }
3890 }
3891
3892 if (!ld_moved) {
3893 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3894 /*
3895 * Increment the failure counter only on periodic balance.
3896 * We do not want newidle balance, which can be very
3897 * frequent, pollute the failure counter causing
3898 * excessive cache_hot migrations and active balances.
3899 */
3900 if (idle != CPU_NEWLY_IDLE)
3901 sd->nr_balance_failed++;
1e3c88bd 3902
46e49b38 3903 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3904 raw_spin_lock_irqsave(&busiest->lock, flags);
3905
969c7921
TH
3906 /* don't kick the active_load_balance_cpu_stop,
3907 * if the curr task on busiest cpu can't be
3908 * moved to this_cpu
1e3c88bd
PZ
3909 */
3910 if (!cpumask_test_cpu(this_cpu,
3911 &busiest->curr->cpus_allowed)) {
3912 raw_spin_unlock_irqrestore(&busiest->lock,
3913 flags);
3914 all_pinned = 1;
3915 goto out_one_pinned;
3916 }
3917
969c7921
TH
3918 /*
3919 * ->active_balance synchronizes accesses to
3920 * ->active_balance_work. Once set, it's cleared
3921 * only after active load balance is finished.
3922 */
1e3c88bd
PZ
3923 if (!busiest->active_balance) {
3924 busiest->active_balance = 1;
3925 busiest->push_cpu = this_cpu;
3926 active_balance = 1;
3927 }
3928 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3929
1e3c88bd 3930 if (active_balance)
969c7921
TH
3931 stop_one_cpu_nowait(cpu_of(busiest),
3932 active_load_balance_cpu_stop, busiest,
3933 &busiest->active_balance_work);
1e3c88bd
PZ
3934
3935 /*
3936 * We've kicked active balancing, reset the failure
3937 * counter.
3938 */
3939 sd->nr_balance_failed = sd->cache_nice_tries+1;
3940 }
3941 } else
3942 sd->nr_balance_failed = 0;
3943
3944 if (likely(!active_balance)) {
3945 /* We were unbalanced, so reset the balancing interval */
3946 sd->balance_interval = sd->min_interval;
3947 } else {
3948 /*
3949 * If we've begun active balancing, start to back off. This
3950 * case may not be covered by the all_pinned logic if there
3951 * is only 1 task on the busy runqueue (because we don't call
3952 * move_tasks).
3953 */
3954 if (sd->balance_interval < sd->max_interval)
3955 sd->balance_interval *= 2;
3956 }
3957
1e3c88bd
PZ
3958 goto out;
3959
3960out_balanced:
3961 schedstat_inc(sd, lb_balanced[idle]);
3962
3963 sd->nr_balance_failed = 0;
3964
3965out_one_pinned:
3966 /* tune up the balancing interval */
3967 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3968 (sd->balance_interval < sd->max_interval))
3969 sd->balance_interval *= 2;
3970
46e49b38 3971 ld_moved = 0;
1e3c88bd 3972out:
1e3c88bd
PZ
3973 return ld_moved;
3974}
3975
1e3c88bd
PZ
3976/*
3977 * idle_balance is called by schedule() if this_cpu is about to become
3978 * idle. Attempts to pull tasks from other CPUs.
3979 */
3980static void idle_balance(int this_cpu, struct rq *this_rq)
3981{
3982 struct sched_domain *sd;
3983 int pulled_task = 0;
3984 unsigned long next_balance = jiffies + HZ;
3985
3986 this_rq->idle_stamp = this_rq->clock;
3987
3988 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3989 return;
3990
f492e12e
PZ
3991 /*
3992 * Drop the rq->lock, but keep IRQ/preempt disabled.
3993 */
3994 raw_spin_unlock(&this_rq->lock);
3995
c66eaf61 3996 update_shares(this_cpu);
dce840a0 3997 rcu_read_lock();
1e3c88bd
PZ
3998 for_each_domain(this_cpu, sd) {
3999 unsigned long interval;
f492e12e 4000 int balance = 1;
1e3c88bd
PZ
4001
4002 if (!(sd->flags & SD_LOAD_BALANCE))
4003 continue;
4004
f492e12e 4005 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4006 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4007 pulled_task = load_balance(this_cpu, this_rq,
4008 sd, CPU_NEWLY_IDLE, &balance);
4009 }
1e3c88bd
PZ
4010
4011 interval = msecs_to_jiffies(sd->balance_interval);
4012 if (time_after(next_balance, sd->last_balance + interval))
4013 next_balance = sd->last_balance + interval;
d5ad140b
NR
4014 if (pulled_task) {
4015 this_rq->idle_stamp = 0;
1e3c88bd 4016 break;
d5ad140b 4017 }
1e3c88bd 4018 }
dce840a0 4019 rcu_read_unlock();
f492e12e
PZ
4020
4021 raw_spin_lock(&this_rq->lock);
4022
1e3c88bd
PZ
4023 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4024 /*
4025 * We are going idle. next_balance may be set based on
4026 * a busy processor. So reset next_balance.
4027 */
4028 this_rq->next_balance = next_balance;
4029 }
4030}
4031
4032/*
969c7921
TH
4033 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4034 * running tasks off the busiest CPU onto idle CPUs. It requires at
4035 * least 1 task to be running on each physical CPU where possible, and
4036 * avoids physical / logical imbalances.
1e3c88bd 4037 */
969c7921 4038static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4039{
969c7921
TH
4040 struct rq *busiest_rq = data;
4041 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4042 int target_cpu = busiest_rq->push_cpu;
969c7921 4043 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4044 struct sched_domain *sd;
969c7921
TH
4045
4046 raw_spin_lock_irq(&busiest_rq->lock);
4047
4048 /* make sure the requested cpu hasn't gone down in the meantime */
4049 if (unlikely(busiest_cpu != smp_processor_id() ||
4050 !busiest_rq->active_balance))
4051 goto out_unlock;
1e3c88bd
PZ
4052
4053 /* Is there any task to move? */
4054 if (busiest_rq->nr_running <= 1)
969c7921 4055 goto out_unlock;
1e3c88bd
PZ
4056
4057 /*
4058 * This condition is "impossible", if it occurs
4059 * we need to fix it. Originally reported by
4060 * Bjorn Helgaas on a 128-cpu setup.
4061 */
4062 BUG_ON(busiest_rq == target_rq);
4063
4064 /* move a task from busiest_rq to target_rq */
4065 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4066
4067 /* Search for an sd spanning us and the target CPU. */
dce840a0 4068 rcu_read_lock();
1e3c88bd
PZ
4069 for_each_domain(target_cpu, sd) {
4070 if ((sd->flags & SD_LOAD_BALANCE) &&
4071 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4072 break;
4073 }
4074
4075 if (likely(sd)) {
4076 schedstat_inc(sd, alb_count);
4077
4078 if (move_one_task(target_rq, target_cpu, busiest_rq,
4079 sd, CPU_IDLE))
4080 schedstat_inc(sd, alb_pushed);
4081 else
4082 schedstat_inc(sd, alb_failed);
4083 }
dce840a0 4084 rcu_read_unlock();
1e3c88bd 4085 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4086out_unlock:
4087 busiest_rq->active_balance = 0;
4088 raw_spin_unlock_irq(&busiest_rq->lock);
4089 return 0;
1e3c88bd
PZ
4090}
4091
4092#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4093
4094static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
4095
4096static void trigger_sched_softirq(void *data)
4097{
4098 raise_softirq_irqoff(SCHED_SOFTIRQ);
4099}
4100
4101static inline void init_sched_softirq_csd(struct call_single_data *csd)
4102{
4103 csd->func = trigger_sched_softirq;
4104 csd->info = NULL;
4105 csd->flags = 0;
4106 csd->priv = 0;
4107}
4108
4109/*
4110 * idle load balancing details
4111 * - One of the idle CPUs nominates itself as idle load_balancer, while
4112 * entering idle.
4113 * - This idle load balancer CPU will also go into tickless mode when
4114 * it is idle, just like all other idle CPUs
4115 * - When one of the busy CPUs notice that there may be an idle rebalancing
4116 * needed, they will kick the idle load balancer, which then does idle
4117 * load balancing for all the idle CPUs.
4118 */
1e3c88bd
PZ
4119static struct {
4120 atomic_t load_balancer;
83cd4fe2
VP
4121 atomic_t first_pick_cpu;
4122 atomic_t second_pick_cpu;
4123 cpumask_var_t idle_cpus_mask;
4124 cpumask_var_t grp_idle_mask;
4125 unsigned long next_balance; /* in jiffy units */
4126} nohz ____cacheline_aligned;
1e3c88bd
PZ
4127
4128int get_nohz_load_balancer(void)
4129{
4130 return atomic_read(&nohz.load_balancer);
4131}
4132
4133#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4134/**
4135 * lowest_flag_domain - Return lowest sched_domain containing flag.
4136 * @cpu: The cpu whose lowest level of sched domain is to
4137 * be returned.
4138 * @flag: The flag to check for the lowest sched_domain
4139 * for the given cpu.
4140 *
4141 * Returns the lowest sched_domain of a cpu which contains the given flag.
4142 */
4143static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4144{
4145 struct sched_domain *sd;
4146
4147 for_each_domain(cpu, sd)
08354716 4148 if (sd->flags & flag)
1e3c88bd
PZ
4149 break;
4150
4151 return sd;
4152}
4153
4154/**
4155 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4156 * @cpu: The cpu whose domains we're iterating over.
4157 * @sd: variable holding the value of the power_savings_sd
4158 * for cpu.
4159 * @flag: The flag to filter the sched_domains to be iterated.
4160 *
4161 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4162 * set, starting from the lowest sched_domain to the highest.
4163 */
4164#define for_each_flag_domain(cpu, sd, flag) \
4165 for (sd = lowest_flag_domain(cpu, flag); \
4166 (sd && (sd->flags & flag)); sd = sd->parent)
4167
4168/**
4169 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4170 * @ilb_group: group to be checked for semi-idleness
4171 *
4172 * Returns: 1 if the group is semi-idle. 0 otherwise.
4173 *
4174 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4175 * and atleast one non-idle CPU. This helper function checks if the given
4176 * sched_group is semi-idle or not.
4177 */
4178static inline int is_semi_idle_group(struct sched_group *ilb_group)
4179{
83cd4fe2 4180 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
4181 sched_group_cpus(ilb_group));
4182
4183 /*
4184 * A sched_group is semi-idle when it has atleast one busy cpu
4185 * and atleast one idle cpu.
4186 */
83cd4fe2 4187 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
4188 return 0;
4189
83cd4fe2 4190 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
4191 return 0;
4192
4193 return 1;
4194}
4195/**
4196 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4197 * @cpu: The cpu which is nominating a new idle_load_balancer.
4198 *
4199 * Returns: Returns the id of the idle load balancer if it exists,
4200 * Else, returns >= nr_cpu_ids.
4201 *
4202 * This algorithm picks the idle load balancer such that it belongs to a
4203 * semi-idle powersavings sched_domain. The idea is to try and avoid
4204 * completely idle packages/cores just for the purpose of idle load balancing
4205 * when there are other idle cpu's which are better suited for that job.
4206 */
4207static int find_new_ilb(int cpu)
4208{
4209 struct sched_domain *sd;
4210 struct sched_group *ilb_group;
dce840a0 4211 int ilb = nr_cpu_ids;
1e3c88bd
PZ
4212
4213 /*
4214 * Have idle load balancer selection from semi-idle packages only
4215 * when power-aware load balancing is enabled
4216 */
4217 if (!(sched_smt_power_savings || sched_mc_power_savings))
4218 goto out_done;
4219
4220 /*
4221 * Optimize for the case when we have no idle CPUs or only one
4222 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4223 */
83cd4fe2 4224 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4225 goto out_done;
4226
dce840a0 4227 rcu_read_lock();
1e3c88bd
PZ
4228 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4229 ilb_group = sd->groups;
4230
4231 do {
dce840a0
PZ
4232 if (is_semi_idle_group(ilb_group)) {
4233 ilb = cpumask_first(nohz.grp_idle_mask);
4234 goto unlock;
4235 }
1e3c88bd
PZ
4236
4237 ilb_group = ilb_group->next;
4238
4239 } while (ilb_group != sd->groups);
4240 }
dce840a0
PZ
4241unlock:
4242 rcu_read_unlock();
1e3c88bd
PZ
4243
4244out_done:
dce840a0 4245 return ilb;
1e3c88bd
PZ
4246}
4247#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4248static inline int find_new_ilb(int call_cpu)
4249{
83cd4fe2 4250 return nr_cpu_ids;
1e3c88bd
PZ
4251}
4252#endif
4253
83cd4fe2
VP
4254/*
4255 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4256 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4257 * CPU (if there is one).
4258 */
4259static void nohz_balancer_kick(int cpu)
4260{
4261 int ilb_cpu;
4262
4263 nohz.next_balance++;
4264
4265 ilb_cpu = get_nohz_load_balancer();
4266
4267 if (ilb_cpu >= nr_cpu_ids) {
4268 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4269 if (ilb_cpu >= nr_cpu_ids)
4270 return;
4271 }
4272
4273 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
4274 struct call_single_data *cp;
4275
4276 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4277 cp = &per_cpu(remote_sched_softirq_cb, cpu);
4278 __smp_call_function_single(ilb_cpu, cp, 0);
4279 }
4280 return;
4281}
4282
1e3c88bd
PZ
4283/*
4284 * This routine will try to nominate the ilb (idle load balancing)
4285 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 4286 * load balancing on behalf of all those cpus.
1e3c88bd 4287 *
83cd4fe2
VP
4288 * When the ilb owner becomes busy, we will not have new ilb owner until some
4289 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4290 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4291 *
83cd4fe2
VP
4292 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4293 * ilb owner CPU in future (when there is a need for idle load balancing on
4294 * behalf of all idle CPUs).
1e3c88bd 4295 */
83cd4fe2 4296void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4297{
4298 int cpu = smp_processor_id();
4299
4300 if (stop_tick) {
1e3c88bd
PZ
4301 if (!cpu_active(cpu)) {
4302 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4303 return;
1e3c88bd
PZ
4304
4305 /*
4306 * If we are going offline and still the leader,
4307 * give up!
4308 */
83cd4fe2
VP
4309 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4310 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4311 BUG();
4312
83cd4fe2 4313 return;
1e3c88bd
PZ
4314 }
4315
83cd4fe2 4316 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4317
83cd4fe2
VP
4318 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4319 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4320 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4321 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4322
83cd4fe2 4323 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4324 int new_ilb;
4325
83cd4fe2
VP
4326 /* make me the ilb owner */
4327 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4328 cpu) != nr_cpu_ids)
4329 return;
4330
1e3c88bd
PZ
4331 /*
4332 * Check to see if there is a more power-efficient
4333 * ilb.
4334 */
4335 new_ilb = find_new_ilb(cpu);
4336 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4337 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4338 resched_cpu(new_ilb);
83cd4fe2 4339 return;
1e3c88bd 4340 }
83cd4fe2 4341 return;
1e3c88bd
PZ
4342 }
4343 } else {
83cd4fe2
VP
4344 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4345 return;
1e3c88bd 4346
83cd4fe2 4347 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4348
4349 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4350 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4351 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4352 BUG();
4353 }
83cd4fe2 4354 return;
1e3c88bd
PZ
4355}
4356#endif
4357
4358static DEFINE_SPINLOCK(balancing);
4359
49c022e6
PZ
4360static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4361
4362/*
4363 * Scale the max load_balance interval with the number of CPUs in the system.
4364 * This trades load-balance latency on larger machines for less cross talk.
4365 */
4366static void update_max_interval(void)
4367{
4368 max_load_balance_interval = HZ*num_online_cpus()/10;
4369}
4370
1e3c88bd
PZ
4371/*
4372 * It checks each scheduling domain to see if it is due to be balanced,
4373 * and initiates a balancing operation if so.
4374 *
4375 * Balancing parameters are set up in arch_init_sched_domains.
4376 */
4377static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4378{
4379 int balance = 1;
4380 struct rq *rq = cpu_rq(cpu);
4381 unsigned long interval;
4382 struct sched_domain *sd;
4383 /* Earliest time when we have to do rebalance again */
4384 unsigned long next_balance = jiffies + 60*HZ;
4385 int update_next_balance = 0;
4386 int need_serialize;
4387
2069dd75
PZ
4388 update_shares(cpu);
4389
dce840a0 4390 rcu_read_lock();
1e3c88bd
PZ
4391 for_each_domain(cpu, sd) {
4392 if (!(sd->flags & SD_LOAD_BALANCE))
4393 continue;
4394
4395 interval = sd->balance_interval;
4396 if (idle != CPU_IDLE)
4397 interval *= sd->busy_factor;
4398
4399 /* scale ms to jiffies */
4400 interval = msecs_to_jiffies(interval);
49c022e6 4401 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4402
4403 need_serialize = sd->flags & SD_SERIALIZE;
4404
4405 if (need_serialize) {
4406 if (!spin_trylock(&balancing))
4407 goto out;
4408 }
4409
4410 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4411 if (load_balance(cpu, rq, sd, idle, &balance)) {
4412 /*
4413 * We've pulled tasks over so either we're no
c186fafe 4414 * longer idle.
1e3c88bd
PZ
4415 */
4416 idle = CPU_NOT_IDLE;
4417 }
4418 sd->last_balance = jiffies;
4419 }
4420 if (need_serialize)
4421 spin_unlock(&balancing);
4422out:
4423 if (time_after(next_balance, sd->last_balance + interval)) {
4424 next_balance = sd->last_balance + interval;
4425 update_next_balance = 1;
4426 }
4427
4428 /*
4429 * Stop the load balance at this level. There is another
4430 * CPU in our sched group which is doing load balancing more
4431 * actively.
4432 */
4433 if (!balance)
4434 break;
4435 }
dce840a0 4436 rcu_read_unlock();
1e3c88bd
PZ
4437
4438 /*
4439 * next_balance will be updated only when there is a need.
4440 * When the cpu is attached to null domain for ex, it will not be
4441 * updated.
4442 */
4443 if (likely(update_next_balance))
4444 rq->next_balance = next_balance;
4445}
4446
83cd4fe2 4447#ifdef CONFIG_NO_HZ
1e3c88bd 4448/*
83cd4fe2 4449 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4450 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4451 */
83cd4fe2
VP
4452static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4453{
4454 struct rq *this_rq = cpu_rq(this_cpu);
4455 struct rq *rq;
4456 int balance_cpu;
4457
4458 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4459 return;
4460
4461 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4462 if (balance_cpu == this_cpu)
4463 continue;
4464
4465 /*
4466 * If this cpu gets work to do, stop the load balancing
4467 * work being done for other cpus. Next load
4468 * balancing owner will pick it up.
4469 */
4470 if (need_resched()) {
4471 this_rq->nohz_balance_kick = 0;
4472 break;
4473 }
4474
4475 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 4476 update_rq_clock(this_rq);
83cd4fe2
VP
4477 update_cpu_load(this_rq);
4478 raw_spin_unlock_irq(&this_rq->lock);
4479
4480 rebalance_domains(balance_cpu, CPU_IDLE);
4481
4482 rq = cpu_rq(balance_cpu);
4483 if (time_after(this_rq->next_balance, rq->next_balance))
4484 this_rq->next_balance = rq->next_balance;
4485 }
4486 nohz.next_balance = this_rq->next_balance;
4487 this_rq->nohz_balance_kick = 0;
4488}
4489
4490/*
4491 * Current heuristic for kicking the idle load balancer
4492 * - first_pick_cpu is the one of the busy CPUs. It will kick
4493 * idle load balancer when it has more than one process active. This
4494 * eliminates the need for idle load balancing altogether when we have
4495 * only one running process in the system (common case).
4496 * - If there are more than one busy CPU, idle load balancer may have
4497 * to run for active_load_balance to happen (i.e., two busy CPUs are
4498 * SMT or core siblings and can run better if they move to different
4499 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4500 * which will kick idle load balancer as soon as it has any load.
4501 */
4502static inline int nohz_kick_needed(struct rq *rq, int cpu)
4503{
4504 unsigned long now = jiffies;
4505 int ret;
4506 int first_pick_cpu, second_pick_cpu;
4507
4508 if (time_before(now, nohz.next_balance))
4509 return 0;
4510
f6c3f168 4511 if (rq->idle_at_tick)
83cd4fe2
VP
4512 return 0;
4513
4514 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4515 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4516
4517 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4518 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4519 return 0;
4520
4521 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4522 if (ret == nr_cpu_ids || ret == cpu) {
4523 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4524 if (rq->nr_running > 1)
4525 return 1;
4526 } else {
4527 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4528 if (ret == nr_cpu_ids || ret == cpu) {
4529 if (rq->nr_running)
4530 return 1;
4531 }
4532 }
4533 return 0;
4534}
4535#else
4536static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4537#endif
4538
4539/*
4540 * run_rebalance_domains is triggered when needed from the scheduler tick.
4541 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4542 */
1e3c88bd
PZ
4543static void run_rebalance_domains(struct softirq_action *h)
4544{
4545 int this_cpu = smp_processor_id();
4546 struct rq *this_rq = cpu_rq(this_cpu);
4547 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4548 CPU_IDLE : CPU_NOT_IDLE;
4549
4550 rebalance_domains(this_cpu, idle);
4551
1e3c88bd 4552 /*
83cd4fe2 4553 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4554 * balancing on behalf of the other idle cpus whose ticks are
4555 * stopped.
4556 */
83cd4fe2 4557 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4558}
4559
4560static inline int on_null_domain(int cpu)
4561{
90a6501f 4562 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4563}
4564
4565/*
4566 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4567 */
4568static inline void trigger_load_balance(struct rq *rq, int cpu)
4569{
1e3c88bd
PZ
4570 /* Don't need to rebalance while attached to NULL domain */
4571 if (time_after_eq(jiffies, rq->next_balance) &&
4572 likely(!on_null_domain(cpu)))
4573 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4574#ifdef CONFIG_NO_HZ
4575 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4576 nohz_balancer_kick(cpu);
4577#endif
1e3c88bd
PZ
4578}
4579
0bcdcf28
CE
4580static void rq_online_fair(struct rq *rq)
4581{
4582 update_sysctl();
4583}
4584
4585static void rq_offline_fair(struct rq *rq)
4586{
4587 update_sysctl();
4588}
4589
1e3c88bd
PZ
4590#else /* CONFIG_SMP */
4591
4592/*
4593 * on UP we do not need to balance between CPUs:
4594 */
4595static inline void idle_balance(int cpu, struct rq *rq)
4596{
4597}
4598
55e12e5e 4599#endif /* CONFIG_SMP */
e1d1484f 4600
bf0f6f24
IM
4601/*
4602 * scheduler tick hitting a task of our scheduling class:
4603 */
8f4d37ec 4604static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4605{
4606 struct cfs_rq *cfs_rq;
4607 struct sched_entity *se = &curr->se;
4608
4609 for_each_sched_entity(se) {
4610 cfs_rq = cfs_rq_of(se);
8f4d37ec 4611 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4612 }
4613}
4614
4615/*
cd29fe6f
PZ
4616 * called on fork with the child task as argument from the parent's context
4617 * - child not yet on the tasklist
4618 * - preemption disabled
bf0f6f24 4619 */
cd29fe6f 4620static void task_fork_fair(struct task_struct *p)
bf0f6f24 4621{
cd29fe6f 4622 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4623 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4624 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4625 struct rq *rq = this_rq();
4626 unsigned long flags;
4627
05fa785c 4628 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4629
861d034e
PZ
4630 update_rq_clock(rq);
4631
b0a0f667
PM
4632 if (unlikely(task_cpu(p) != this_cpu)) {
4633 rcu_read_lock();
cd29fe6f 4634 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4635 rcu_read_unlock();
4636 }
bf0f6f24 4637
7109c442 4638 update_curr(cfs_rq);
cd29fe6f 4639
b5d9d734
MG
4640 if (curr)
4641 se->vruntime = curr->vruntime;
aeb73b04 4642 place_entity(cfs_rq, se, 1);
4d78e7b6 4643
cd29fe6f 4644 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4645 /*
edcb60a3
IM
4646 * Upon rescheduling, sched_class::put_prev_task() will place
4647 * 'current' within the tree based on its new key value.
4648 */
4d78e7b6 4649 swap(curr->vruntime, se->vruntime);
aec0a514 4650 resched_task(rq->curr);
4d78e7b6 4651 }
bf0f6f24 4652
88ec22d3
PZ
4653 se->vruntime -= cfs_rq->min_vruntime;
4654
05fa785c 4655 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4656}
4657
cb469845
SR
4658/*
4659 * Priority of the task has changed. Check to see if we preempt
4660 * the current task.
4661 */
da7a735e
PZ
4662static void
4663prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4664{
da7a735e
PZ
4665 if (!p->se.on_rq)
4666 return;
4667
cb469845
SR
4668 /*
4669 * Reschedule if we are currently running on this runqueue and
4670 * our priority decreased, or if we are not currently running on
4671 * this runqueue and our priority is higher than the current's
4672 */
da7a735e 4673 if (rq->curr == p) {
cb469845
SR
4674 if (p->prio > oldprio)
4675 resched_task(rq->curr);
4676 } else
15afe09b 4677 check_preempt_curr(rq, p, 0);
cb469845
SR
4678}
4679
da7a735e
PZ
4680static void switched_from_fair(struct rq *rq, struct task_struct *p)
4681{
4682 struct sched_entity *se = &p->se;
4683 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4684
4685 /*
4686 * Ensure the task's vruntime is normalized, so that when its
4687 * switched back to the fair class the enqueue_entity(.flags=0) will
4688 * do the right thing.
4689 *
4690 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4691 * have normalized the vruntime, if it was !on_rq, then only when
4692 * the task is sleeping will it still have non-normalized vruntime.
4693 */
4694 if (!se->on_rq && p->state != TASK_RUNNING) {
4695 /*
4696 * Fix up our vruntime so that the current sleep doesn't
4697 * cause 'unlimited' sleep bonus.
4698 */
4699 place_entity(cfs_rq, se, 0);
4700 se->vruntime -= cfs_rq->min_vruntime;
4701 }
4702}
4703
cb469845
SR
4704/*
4705 * We switched to the sched_fair class.
4706 */
da7a735e 4707static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4708{
da7a735e
PZ
4709 if (!p->se.on_rq)
4710 return;
4711
cb469845
SR
4712 /*
4713 * We were most likely switched from sched_rt, so
4714 * kick off the schedule if running, otherwise just see
4715 * if we can still preempt the current task.
4716 */
da7a735e 4717 if (rq->curr == p)
cb469845
SR
4718 resched_task(rq->curr);
4719 else
15afe09b 4720 check_preempt_curr(rq, p, 0);
cb469845
SR
4721}
4722
83b699ed
SV
4723/* Account for a task changing its policy or group.
4724 *
4725 * This routine is mostly called to set cfs_rq->curr field when a task
4726 * migrates between groups/classes.
4727 */
4728static void set_curr_task_fair(struct rq *rq)
4729{
4730 struct sched_entity *se = &rq->curr->se;
4731
ec12cb7f
PT
4732 for_each_sched_entity(se) {
4733 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4734
4735 set_next_entity(cfs_rq, se);
4736 /* ensure bandwidth has been allocated on our new cfs_rq */
4737 account_cfs_rq_runtime(cfs_rq, 0);
4738 }
83b699ed
SV
4739}
4740
810b3817 4741#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4742static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4743{
b2b5ce02
PZ
4744 /*
4745 * If the task was not on the rq at the time of this cgroup movement
4746 * it must have been asleep, sleeping tasks keep their ->vruntime
4747 * absolute on their old rq until wakeup (needed for the fair sleeper
4748 * bonus in place_entity()).
4749 *
4750 * If it was on the rq, we've just 'preempted' it, which does convert
4751 * ->vruntime to a relative base.
4752 *
4753 * Make sure both cases convert their relative position when migrating
4754 * to another cgroup's rq. This does somewhat interfere with the
4755 * fair sleeper stuff for the first placement, but who cares.
4756 */
4757 if (!on_rq)
4758 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4759 set_task_rq(p, task_cpu(p));
88ec22d3 4760 if (!on_rq)
b2b5ce02 4761 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4762}
4763#endif
4764
6d686f45 4765static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4766{
4767 struct sched_entity *se = &task->se;
0d721cea
PW
4768 unsigned int rr_interval = 0;
4769
4770 /*
4771 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4772 * idle runqueue:
4773 */
0d721cea
PW
4774 if (rq->cfs.load.weight)
4775 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4776
4777 return rr_interval;
4778}
4779
bf0f6f24
IM
4780/*
4781 * All the scheduling class methods:
4782 */
5522d5d5
IM
4783static const struct sched_class fair_sched_class = {
4784 .next = &idle_sched_class,
bf0f6f24
IM
4785 .enqueue_task = enqueue_task_fair,
4786 .dequeue_task = dequeue_task_fair,
4787 .yield_task = yield_task_fair,
d95f4122 4788 .yield_to_task = yield_to_task_fair,
bf0f6f24 4789
2e09bf55 4790 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4791
4792 .pick_next_task = pick_next_task_fair,
4793 .put_prev_task = put_prev_task_fair,
4794
681f3e68 4795#ifdef CONFIG_SMP
4ce72a2c
LZ
4796 .select_task_rq = select_task_rq_fair,
4797
0bcdcf28
CE
4798 .rq_online = rq_online_fair,
4799 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4800
4801 .task_waking = task_waking_fair,
681f3e68 4802#endif
bf0f6f24 4803
83b699ed 4804 .set_curr_task = set_curr_task_fair,
bf0f6f24 4805 .task_tick = task_tick_fair,
cd29fe6f 4806 .task_fork = task_fork_fair,
cb469845
SR
4807
4808 .prio_changed = prio_changed_fair,
da7a735e 4809 .switched_from = switched_from_fair,
cb469845 4810 .switched_to = switched_to_fair,
810b3817 4811
0d721cea
PW
4812 .get_rr_interval = get_rr_interval_fair,
4813
810b3817 4814#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4815 .task_move_group = task_move_group_fair,
810b3817 4816#endif
bf0f6f24
IM
4817};
4818
4819#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4820static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4821{
bf0f6f24
IM
4822 struct cfs_rq *cfs_rq;
4823
5973e5b9 4824 rcu_read_lock();
c3b64f1e 4825 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4826 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4827 rcu_read_unlock();
bf0f6f24
IM
4828}
4829#endif
This page took 0.633416 seconds and 5 git commands to generate.