sched: Throttle entities exceeding their allowed bandwidth
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
ec12cb7f
PT
92#ifdef CONFIG_CFS_BANDWIDTH
93/*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104#endif
105
a4c2f00f
PZ
106static const struct sched_class fair_sched_class;
107
bf0f6f24
IM
108/**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
62160e3f 112#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 113
62160e3f 114/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
62160e3f 117 return cfs_rq->rq;
bf0f6f24
IM
118}
119
62160e3f
IM
120/* An entity is a task if it doesn't "own" a runqueue */
121#define entity_is_task(se) (!se->my_q)
bf0f6f24 122
8f48894f
PZ
123static inline struct task_struct *task_of(struct sched_entity *se)
124{
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127#endif
128 return container_of(se, struct task_struct, se);
129}
130
b758149c
PZ
131/* Walk up scheduling entities hierarchy */
132#define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136{
137 return p->se.cfs_rq;
138}
139
140/* runqueue on which this entity is (to be) queued */
141static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142{
143 return se->cfs_rq;
144}
145
146/* runqueue "owned" by this group */
147static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148{
149 return grp->my_q;
150}
151
3d4b47b4
PZ
152static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153{
154 if (!cfs_rq->on_list) {
67e86250
PT
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 168 }
3d4b47b4
PZ
169
170 cfs_rq->on_list = 1;
171 }
172}
173
174static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175{
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180}
181
b758149c
PZ
182/* Iterate thr' all leaf cfs_rq's on a runqueue */
183#define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186/* Do the two (enqueued) entities belong to the same group ? */
187static inline int
188is_same_group(struct sched_entity *se, struct sched_entity *pse)
189{
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194}
195
196static inline struct sched_entity *parent_entity(struct sched_entity *se)
197{
198 return se->parent;
199}
200
464b7527
PZ
201/* return depth at which a sched entity is present in the hierarchy */
202static inline int depth_se(struct sched_entity *se)
203{
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210}
211
212static void
213find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214{
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242}
243
8f48894f
PZ
244#else /* !CONFIG_FAIR_GROUP_SCHED */
245
246static inline struct task_struct *task_of(struct sched_entity *se)
247{
248 return container_of(se, struct task_struct, se);
249}
bf0f6f24 250
62160e3f
IM
251static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252{
253 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
254}
255
256#define entity_is_task(se) 1
257
b758149c
PZ
258#define for_each_sched_entity(se) \
259 for (; se; se = NULL)
bf0f6f24 260
b758149c 261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 262{
b758149c 263 return &task_rq(p)->cfs;
bf0f6f24
IM
264}
265
b758149c
PZ
266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267{
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272}
273
274/* runqueue "owned" by this group */
275static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276{
277 return NULL;
278}
279
3d4b47b4
PZ
280static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281{
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286}
287
b758149c
PZ
288#define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291static inline int
292is_same_group(struct sched_entity *se, struct sched_entity *pse)
293{
294 return 1;
295}
296
297static inline struct sched_entity *parent_entity(struct sched_entity *se)
298{
299 return NULL;
300}
301
464b7527
PZ
302static inline void
303find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304{
305}
306
b758149c
PZ
307#endif /* CONFIG_FAIR_GROUP_SCHED */
308
ec12cb7f
PT
309static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
bf0f6f24
IM
311
312/**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
0702e3eb 316static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 317{
368059a9
PZ
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
02e0431a
PZ
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323}
324
0702e3eb 325static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
326{
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332}
333
54fdc581
FC
334static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336{
337 return (s64)(a->vruntime - b->vruntime) < 0;
338}
339
1af5f730
PZ
340static void update_min_vruntime(struct cfs_rq *cfs_rq)
341{
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
e17036da 352 if (!cfs_rq->curr)
1af5f730
PZ
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
359#ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362#endif
1af5f730
PZ
363}
364
bf0f6f24
IM
365/*
366 * Enqueue an entity into the rb-tree:
367 */
0702e3eb 368static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
369{
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
bf0f6f24
IM
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
2bd2d6f2 385 if (entity_before(se, entry)) {
bf0f6f24
IM
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
1af5f730 397 if (leftmost)
57cb499d 398 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
402}
403
0702e3eb 404static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 405{
3fe69747
PZ
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
3fe69747
PZ
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
3fe69747 411 }
e9acbff6 412
bf0f6f24 413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
414}
415
ac53db59 416static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 417{
f4b6755f
PZ
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
424}
425
ac53db59
RR
426static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427{
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434}
435
436#ifdef CONFIG_SCHED_DEBUG
f4b6755f 437static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 438{
7eee3e67 439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 440
70eee74b
BS
441 if (!last)
442 return NULL;
7eee3e67
IM
443
444 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
445}
446
bf0f6f24
IM
447/**************************************************************
448 * Scheduling class statistics methods:
449 */
450
acb4a848 451int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 452 void __user *buffer, size_t *lenp,
b2be5e96
PZ
453 loff_t *ppos)
454{
8d65af78 455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 456 int factor = get_update_sysctl_factor();
b2be5e96
PZ
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
acb4a848
CE
464#define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
469#undef WRT_SYSCTL
470
b2be5e96
PZ
471 return 0;
472}
473#endif
647e7cac 474
a7be37ac 475/*
f9c0b095 476 * delta /= w
a7be37ac
PZ
477 */
478static inline unsigned long
479calc_delta_fair(unsigned long delta, struct sched_entity *se)
480{
f9c0b095
PZ
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
483
484 return delta;
485}
486
647e7cac
IM
487/*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
4d78e7b6
PZ
495static u64 __sched_period(unsigned long nr_running)
496{
497 u64 period = sysctl_sched_latency;
b2be5e96 498 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
499
500 if (unlikely(nr_running > nr_latency)) {
4bf0b771 501 period = sysctl_sched_min_granularity;
4d78e7b6 502 period *= nr_running;
4d78e7b6
PZ
503 }
504
505 return period;
506}
507
647e7cac
IM
508/*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
f9c0b095 512 * s = p*P[w/rw]
647e7cac 513 */
6d0f0ebd 514static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 515{
0a582440 516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 517
0a582440 518 for_each_sched_entity(se) {
6272d68c 519 struct load_weight *load;
3104bf03 520 struct load_weight lw;
6272d68c
LM
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
f9c0b095 524
0a582440 525 if (unlikely(!se->on_rq)) {
3104bf03 526 lw = cfs_rq->load;
0a582440
MG
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
bf0f6f24
IM
534}
535
647e7cac 536/*
ac884dec 537 * We calculate the vruntime slice of a to be inserted task
647e7cac 538 *
f9c0b095 539 * vs = s/w
647e7cac 540 */
f9c0b095 541static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 542{
f9c0b095 543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
544}
545
d6b55918 546static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 547static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 548
bf0f6f24
IM
549/*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553static inline void
8ebc91d9
IM
554__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
bf0f6f24 556{
bbdba7c0 557 unsigned long delta_exec_weighted;
bf0f6f24 558
41acab88
LDM
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
561
562 curr->sum_exec_runtime += delta_exec;
7a62eabc 563 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 565
e9acbff6 566 curr->vruntime += delta_exec_weighted;
1af5f730 567 update_min_vruntime(cfs_rq);
3b3d190e 568
70caf8a6 569#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 570 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 571#endif
bf0f6f24
IM
572}
573
b7cc0896 574static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 575{
429d43bc 576 struct sched_entity *curr = cfs_rq->curr;
305e6835 577 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
8ebc91d9 588 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
589 if (!delta_exec)
590 return;
bf0f6f24 591
8ebc91d9
IM
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
d842de87
SV
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
f977bb49 598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 599 cpuacct_charge(curtask, delta_exec);
f06febc9 600 account_group_exec_runtime(curtask, delta_exec);
d842de87 601 }
ec12cb7f
PT
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
604}
605
606static inline void
5870db5b 607update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
41acab88 609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
610}
611
bf0f6f24
IM
612/*
613 * Task is being enqueued - update stats:
614 */
d2417e5a 615static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 616{
bf0f6f24
IM
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
429d43bc 621 if (se != cfs_rq->curr)
5870db5b 622 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
623}
624
bf0f6f24 625static void
9ef0a961 626update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
41acab88
LDM
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
633#ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
41acab88 636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
637 }
638#endif
41acab88 639 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
640}
641
642static inline void
19b6a2e3 643update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 644{
bf0f6f24
IM
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
429d43bc 649 if (se != cfs_rq->curr)
9ef0a961 650 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
651}
652
653/*
654 * We are picking a new current task - update its stats:
655 */
656static inline void
79303e9e 657update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
658{
659 /*
660 * We are starting a new run period:
661 */
305e6835 662 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
663}
664
bf0f6f24
IM
665/**************************************************
666 * Scheduling class queueing methods:
667 */
668
c09595f6
PZ
669#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670static void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673 cfs_rq->task_weight += weight;
674}
675#else
676static inline void
677add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678{
679}
680#endif
681
30cfdcfc
DA
682static void
683account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684{
685 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 688 if (entity_is_task(se)) {
c09595f6 689 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
30cfdcfc 692 cfs_rq->nr_running++;
30cfdcfc
DA
693}
694
695static void
696account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697{
698 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 701 if (entity_is_task(se)) {
c09595f6 702 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
703 list_del_init(&se->group_node);
704 }
30cfdcfc 705 cfs_rq->nr_running--;
30cfdcfc
DA
706}
707
3ff6dcac 708#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
709/* we need this in update_cfs_load and load-balance functions below */
710static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 711# ifdef CONFIG_SMP
d6b55918
PT
712static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
713 int global_update)
714{
715 struct task_group *tg = cfs_rq->tg;
716 long load_avg;
717
718 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
719 load_avg -= cfs_rq->load_contribution;
720
721 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
722 atomic_add(load_avg, &tg->load_weight);
723 cfs_rq->load_contribution += load_avg;
724 }
725}
726
727static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 728{
a7a4f8a7 729 u64 period = sysctl_sched_shares_window;
2069dd75 730 u64 now, delta;
e33078ba 731 unsigned long load = cfs_rq->load.weight;
2069dd75 732
64660c86 733 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
734 return;
735
05ca62c6 736 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
737 delta = now - cfs_rq->load_stamp;
738
e33078ba
PT
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq->load_stamp > cfs_rq->load_last &&
741 now - cfs_rq->load_last > 4 * period) {
742 cfs_rq->load_period = 0;
743 cfs_rq->load_avg = 0;
f07333bf 744 delta = period - 1;
e33078ba
PT
745 }
746
2069dd75 747 cfs_rq->load_stamp = now;
3b3d190e 748 cfs_rq->load_unacc_exec_time = 0;
2069dd75 749 cfs_rq->load_period += delta;
e33078ba
PT
750 if (load) {
751 cfs_rq->load_last = now;
752 cfs_rq->load_avg += delta * load;
753 }
2069dd75 754
d6b55918
PT
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update || cfs_rq->load_period > period
757 || !cfs_rq->load_period)
758 update_cfs_rq_load_contribution(cfs_rq, global_update);
759
2069dd75
PZ
760 while (cfs_rq->load_period > period) {
761 /*
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
765 */
766 asm("" : "+rm" (cfs_rq->load_period));
767 cfs_rq->load_period /= 2;
768 cfs_rq->load_avg /= 2;
769 }
3d4b47b4 770
e33078ba
PT
771 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
772 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
773}
774
6d5ab293 775static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
776{
777 long load_weight, load, shares;
778
6d5ab293 779 load = cfs_rq->load.weight;
3ff6dcac
YZ
780
781 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 782 load_weight += load;
6d5ab293 783 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
784
785 shares = (tg->shares * load);
786 if (load_weight)
787 shares /= load_weight;
788
789 if (shares < MIN_SHARES)
790 shares = MIN_SHARES;
791 if (shares > tg->shares)
792 shares = tg->shares;
793
794 return shares;
795}
796
797static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
798{
799 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
800 update_cfs_load(cfs_rq, 0);
6d5ab293 801 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
802 }
803}
804# else /* CONFIG_SMP */
805static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
806{
807}
808
6d5ab293 809static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
810{
811 return tg->shares;
812}
813
814static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
815{
816}
817# endif /* CONFIG_SMP */
2069dd75
PZ
818static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
819 unsigned long weight)
820{
19e5eebb
PT
821 if (se->on_rq) {
822 /* commit outstanding execution time */
823 if (cfs_rq->curr == se)
824 update_curr(cfs_rq);
2069dd75 825 account_entity_dequeue(cfs_rq, se);
19e5eebb 826 }
2069dd75
PZ
827
828 update_load_set(&se->load, weight);
829
830 if (se->on_rq)
831 account_entity_enqueue(cfs_rq, se);
832}
833
6d5ab293 834static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
835{
836 struct task_group *tg;
837 struct sched_entity *se;
3ff6dcac 838 long shares;
2069dd75 839
2069dd75
PZ
840 tg = cfs_rq->tg;
841 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 842 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 843 return;
3ff6dcac
YZ
844#ifndef CONFIG_SMP
845 if (likely(se->load.weight == tg->shares))
846 return;
847#endif
6d5ab293 848 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
849
850 reweight_entity(cfs_rq_of(se), se, shares);
851}
852#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 853static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
854{
855}
856
6d5ab293 857static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
858{
859}
43365bd7
PT
860
861static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
862{
863}
2069dd75
PZ
864#endif /* CONFIG_FAIR_GROUP_SCHED */
865
2396af69 866static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 867{
bf0f6f24 868#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
869 struct task_struct *tsk = NULL;
870
871 if (entity_is_task(se))
872 tsk = task_of(se);
873
41acab88
LDM
874 if (se->statistics.sleep_start) {
875 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
876
877 if ((s64)delta < 0)
878 delta = 0;
879
41acab88
LDM
880 if (unlikely(delta > se->statistics.sleep_max))
881 se->statistics.sleep_max = delta;
bf0f6f24 882
41acab88
LDM
883 se->statistics.sleep_start = 0;
884 se->statistics.sum_sleep_runtime += delta;
9745512c 885
768d0c27 886 if (tsk) {
e414314c 887 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
888 trace_sched_stat_sleep(tsk, delta);
889 }
bf0f6f24 890 }
41acab88
LDM
891 if (se->statistics.block_start) {
892 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
893
894 if ((s64)delta < 0)
895 delta = 0;
896
41acab88
LDM
897 if (unlikely(delta > se->statistics.block_max))
898 se->statistics.block_max = delta;
bf0f6f24 899
41acab88
LDM
900 se->statistics.block_start = 0;
901 se->statistics.sum_sleep_runtime += delta;
30084fbd 902
e414314c 903 if (tsk) {
8f0dfc34 904 if (tsk->in_iowait) {
41acab88
LDM
905 se->statistics.iowait_sum += delta;
906 se->statistics.iowait_count++;
768d0c27 907 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
908 }
909
e414314c
PZ
910 /*
911 * Blocking time is in units of nanosecs, so shift by
912 * 20 to get a milliseconds-range estimation of the
913 * amount of time that the task spent sleeping:
914 */
915 if (unlikely(prof_on == SLEEP_PROFILING)) {
916 profile_hits(SLEEP_PROFILING,
917 (void *)get_wchan(tsk),
918 delta >> 20);
919 }
920 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 921 }
bf0f6f24
IM
922 }
923#endif
924}
925
ddc97297
PZ
926static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
927{
928#ifdef CONFIG_SCHED_DEBUG
929 s64 d = se->vruntime - cfs_rq->min_vruntime;
930
931 if (d < 0)
932 d = -d;
933
934 if (d > 3*sysctl_sched_latency)
935 schedstat_inc(cfs_rq, nr_spread_over);
936#endif
937}
938
aeb73b04
PZ
939static void
940place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
941{
1af5f730 942 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 943
2cb8600e
PZ
944 /*
945 * The 'current' period is already promised to the current tasks,
946 * however the extra weight of the new task will slow them down a
947 * little, place the new task so that it fits in the slot that
948 * stays open at the end.
949 */
94dfb5e7 950 if (initial && sched_feat(START_DEBIT))
f9c0b095 951 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 952
a2e7a7eb 953 /* sleeps up to a single latency don't count. */
5ca9880c 954 if (!initial) {
a2e7a7eb 955 unsigned long thresh = sysctl_sched_latency;
a7be37ac 956
a2e7a7eb
MG
957 /*
958 * Halve their sleep time's effect, to allow
959 * for a gentler effect of sleepers:
960 */
961 if (sched_feat(GENTLE_FAIR_SLEEPERS))
962 thresh >>= 1;
51e0304c 963
a2e7a7eb 964 vruntime -= thresh;
aeb73b04
PZ
965 }
966
b5d9d734
MG
967 /* ensure we never gain time by being placed backwards. */
968 vruntime = max_vruntime(se->vruntime, vruntime);
969
67e9fb2a 970 se->vruntime = vruntime;
aeb73b04
PZ
971}
972
d3d9dc33
PT
973static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
974
bf0f6f24 975static void
88ec22d3 976enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 977{
88ec22d3
PZ
978 /*
979 * Update the normalized vruntime before updating min_vruntime
980 * through callig update_curr().
981 */
371fd7e7 982 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
983 se->vruntime += cfs_rq->min_vruntime;
984
bf0f6f24 985 /*
a2a2d680 986 * Update run-time statistics of the 'current'.
bf0f6f24 987 */
b7cc0896 988 update_curr(cfs_rq);
d6b55918 989 update_cfs_load(cfs_rq, 0);
a992241d 990 account_entity_enqueue(cfs_rq, se);
6d5ab293 991 update_cfs_shares(cfs_rq);
bf0f6f24 992
88ec22d3 993 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 994 place_entity(cfs_rq, se, 0);
2396af69 995 enqueue_sleeper(cfs_rq, se);
e9acbff6 996 }
bf0f6f24 997
d2417e5a 998 update_stats_enqueue(cfs_rq, se);
ddc97297 999 check_spread(cfs_rq, se);
83b699ed
SV
1000 if (se != cfs_rq->curr)
1001 __enqueue_entity(cfs_rq, se);
2069dd75 1002 se->on_rq = 1;
3d4b47b4 1003
d3d9dc33 1004 if (cfs_rq->nr_running == 1) {
3d4b47b4 1005 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1006 check_enqueue_throttle(cfs_rq);
1007 }
bf0f6f24
IM
1008}
1009
2c13c919 1010static void __clear_buddies_last(struct sched_entity *se)
2002c695 1011{
2c13c919
RR
1012 for_each_sched_entity(se) {
1013 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1014 if (cfs_rq->last == se)
1015 cfs_rq->last = NULL;
1016 else
1017 break;
1018 }
1019}
2002c695 1020
2c13c919
RR
1021static void __clear_buddies_next(struct sched_entity *se)
1022{
1023 for_each_sched_entity(se) {
1024 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1025 if (cfs_rq->next == se)
1026 cfs_rq->next = NULL;
1027 else
1028 break;
1029 }
2002c695
PZ
1030}
1031
ac53db59
RR
1032static void __clear_buddies_skip(struct sched_entity *se)
1033{
1034 for_each_sched_entity(se) {
1035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1036 if (cfs_rq->skip == se)
1037 cfs_rq->skip = NULL;
1038 else
1039 break;
1040 }
1041}
1042
a571bbea
PZ
1043static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1044{
2c13c919
RR
1045 if (cfs_rq->last == se)
1046 __clear_buddies_last(se);
1047
1048 if (cfs_rq->next == se)
1049 __clear_buddies_next(se);
ac53db59
RR
1050
1051 if (cfs_rq->skip == se)
1052 __clear_buddies_skip(se);
a571bbea
PZ
1053}
1054
bf0f6f24 1055static void
371fd7e7 1056dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1057{
a2a2d680
DA
1058 /*
1059 * Update run-time statistics of the 'current'.
1060 */
1061 update_curr(cfs_rq);
1062
19b6a2e3 1063 update_stats_dequeue(cfs_rq, se);
371fd7e7 1064 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1065#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1066 if (entity_is_task(se)) {
1067 struct task_struct *tsk = task_of(se);
1068
1069 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1070 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1071 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1072 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1073 }
db36cc7d 1074#endif
67e9fb2a
PZ
1075 }
1076
2002c695 1077 clear_buddies(cfs_rq, se);
4793241b 1078
83b699ed 1079 if (se != cfs_rq->curr)
30cfdcfc 1080 __dequeue_entity(cfs_rq, se);
2069dd75 1081 se->on_rq = 0;
d6b55918 1082 update_cfs_load(cfs_rq, 0);
30cfdcfc 1083 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1084
1085 /*
1086 * Normalize the entity after updating the min_vruntime because the
1087 * update can refer to the ->curr item and we need to reflect this
1088 * movement in our normalized position.
1089 */
371fd7e7 1090 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1091 se->vruntime -= cfs_rq->min_vruntime;
1e876231
PZ
1092
1093 update_min_vruntime(cfs_rq);
1094 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1095}
1096
1097/*
1098 * Preempt the current task with a newly woken task if needed:
1099 */
7c92e54f 1100static void
2e09bf55 1101check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1102{
11697830
PZ
1103 unsigned long ideal_runtime, delta_exec;
1104
6d0f0ebd 1105 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1106 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1107 if (delta_exec > ideal_runtime) {
bf0f6f24 1108 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1109 /*
1110 * The current task ran long enough, ensure it doesn't get
1111 * re-elected due to buddy favours.
1112 */
1113 clear_buddies(cfs_rq, curr);
f685ceac
MG
1114 return;
1115 }
1116
1117 /*
1118 * Ensure that a task that missed wakeup preemption by a
1119 * narrow margin doesn't have to wait for a full slice.
1120 * This also mitigates buddy induced latencies under load.
1121 */
f685ceac
MG
1122 if (delta_exec < sysctl_sched_min_granularity)
1123 return;
1124
1125 if (cfs_rq->nr_running > 1) {
ac53db59 1126 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1127 s64 delta = curr->vruntime - se->vruntime;
1128
d7d82944
MG
1129 if (delta < 0)
1130 return;
1131
f685ceac
MG
1132 if (delta > ideal_runtime)
1133 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1134 }
bf0f6f24
IM
1135}
1136
83b699ed 1137static void
8494f412 1138set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1139{
83b699ed
SV
1140 /* 'current' is not kept within the tree. */
1141 if (se->on_rq) {
1142 /*
1143 * Any task has to be enqueued before it get to execute on
1144 * a CPU. So account for the time it spent waiting on the
1145 * runqueue.
1146 */
1147 update_stats_wait_end(cfs_rq, se);
1148 __dequeue_entity(cfs_rq, se);
1149 }
1150
79303e9e 1151 update_stats_curr_start(cfs_rq, se);
429d43bc 1152 cfs_rq->curr = se;
eba1ed4b
IM
1153#ifdef CONFIG_SCHEDSTATS
1154 /*
1155 * Track our maximum slice length, if the CPU's load is at
1156 * least twice that of our own weight (i.e. dont track it
1157 * when there are only lesser-weight tasks around):
1158 */
495eca49 1159 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1160 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1161 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1162 }
1163#endif
4a55b450 1164 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1165}
1166
3f3a4904
PZ
1167static int
1168wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1169
ac53db59
RR
1170/*
1171 * Pick the next process, keeping these things in mind, in this order:
1172 * 1) keep things fair between processes/task groups
1173 * 2) pick the "next" process, since someone really wants that to run
1174 * 3) pick the "last" process, for cache locality
1175 * 4) do not run the "skip" process, if something else is available
1176 */
f4b6755f 1177static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1178{
ac53db59 1179 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1180 struct sched_entity *left = se;
f4b6755f 1181
ac53db59
RR
1182 /*
1183 * Avoid running the skip buddy, if running something else can
1184 * be done without getting too unfair.
1185 */
1186 if (cfs_rq->skip == se) {
1187 struct sched_entity *second = __pick_next_entity(se);
1188 if (second && wakeup_preempt_entity(second, left) < 1)
1189 se = second;
1190 }
aa2ac252 1191
f685ceac
MG
1192 /*
1193 * Prefer last buddy, try to return the CPU to a preempted task.
1194 */
1195 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1196 se = cfs_rq->last;
1197
ac53db59
RR
1198 /*
1199 * Someone really wants this to run. If it's not unfair, run it.
1200 */
1201 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1202 se = cfs_rq->next;
1203
f685ceac 1204 clear_buddies(cfs_rq, se);
4793241b
PZ
1205
1206 return se;
aa2ac252
PZ
1207}
1208
d3d9dc33
PT
1209static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1210
ab6cde26 1211static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1212{
1213 /*
1214 * If still on the runqueue then deactivate_task()
1215 * was not called and update_curr() has to be done:
1216 */
1217 if (prev->on_rq)
b7cc0896 1218 update_curr(cfs_rq);
bf0f6f24 1219
d3d9dc33
PT
1220 /* throttle cfs_rqs exceeding runtime */
1221 check_cfs_rq_runtime(cfs_rq);
1222
ddc97297 1223 check_spread(cfs_rq, prev);
30cfdcfc 1224 if (prev->on_rq) {
5870db5b 1225 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1226 /* Put 'current' back into the tree. */
1227 __enqueue_entity(cfs_rq, prev);
1228 }
429d43bc 1229 cfs_rq->curr = NULL;
bf0f6f24
IM
1230}
1231
8f4d37ec
PZ
1232static void
1233entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1234{
bf0f6f24 1235 /*
30cfdcfc 1236 * Update run-time statistics of the 'current'.
bf0f6f24 1237 */
30cfdcfc 1238 update_curr(cfs_rq);
bf0f6f24 1239
43365bd7
PT
1240 /*
1241 * Update share accounting for long-running entities.
1242 */
1243 update_entity_shares_tick(cfs_rq);
1244
8f4d37ec
PZ
1245#ifdef CONFIG_SCHED_HRTICK
1246 /*
1247 * queued ticks are scheduled to match the slice, so don't bother
1248 * validating it and just reschedule.
1249 */
983ed7a6
HH
1250 if (queued) {
1251 resched_task(rq_of(cfs_rq)->curr);
1252 return;
1253 }
8f4d37ec
PZ
1254 /*
1255 * don't let the period tick interfere with the hrtick preemption
1256 */
1257 if (!sched_feat(DOUBLE_TICK) &&
1258 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1259 return;
1260#endif
1261
2c2efaed 1262 if (cfs_rq->nr_running > 1)
2e09bf55 1263 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1264}
1265
ab84d31e
PT
1266
1267/**************************************************
1268 * CFS bandwidth control machinery
1269 */
1270
1271#ifdef CONFIG_CFS_BANDWIDTH
1272/*
1273 * default period for cfs group bandwidth.
1274 * default: 0.1s, units: nanoseconds
1275 */
1276static inline u64 default_cfs_period(void)
1277{
1278 return 100000000ULL;
1279}
ec12cb7f
PT
1280
1281static inline u64 sched_cfs_bandwidth_slice(void)
1282{
1283 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1284}
1285
a9cf55b2
PT
1286/*
1287 * Replenish runtime according to assigned quota and update expiration time.
1288 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1289 * additional synchronization around rq->lock.
1290 *
1291 * requires cfs_b->lock
1292 */
1293static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1294{
1295 u64 now;
1296
1297 if (cfs_b->quota == RUNTIME_INF)
1298 return;
1299
1300 now = sched_clock_cpu(smp_processor_id());
1301 cfs_b->runtime = cfs_b->quota;
1302 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1303}
1304
85dac906
PT
1305/* returns 0 on failure to allocate runtime */
1306static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1307{
1308 struct task_group *tg = cfs_rq->tg;
1309 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1310 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1311
1312 /* note: this is a positive sum as runtime_remaining <= 0 */
1313 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1314
1315 raw_spin_lock(&cfs_b->lock);
1316 if (cfs_b->quota == RUNTIME_INF)
1317 amount = min_amount;
58088ad0 1318 else {
a9cf55b2
PT
1319 /*
1320 * If the bandwidth pool has become inactive, then at least one
1321 * period must have elapsed since the last consumption.
1322 * Refresh the global state and ensure bandwidth timer becomes
1323 * active.
1324 */
1325 if (!cfs_b->timer_active) {
1326 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1327 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1328 }
58088ad0
PT
1329
1330 if (cfs_b->runtime > 0) {
1331 amount = min(cfs_b->runtime, min_amount);
1332 cfs_b->runtime -= amount;
1333 cfs_b->idle = 0;
1334 }
ec12cb7f 1335 }
a9cf55b2 1336 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1337 raw_spin_unlock(&cfs_b->lock);
1338
1339 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1340 /*
1341 * we may have advanced our local expiration to account for allowed
1342 * spread between our sched_clock and the one on which runtime was
1343 * issued.
1344 */
1345 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1346 cfs_rq->runtime_expires = expires;
85dac906
PT
1347
1348 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1349}
1350
a9cf55b2
PT
1351/*
1352 * Note: This depends on the synchronization provided by sched_clock and the
1353 * fact that rq->clock snapshots this value.
1354 */
1355static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1356{
a9cf55b2
PT
1357 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1358 struct rq *rq = rq_of(cfs_rq);
1359
1360 /* if the deadline is ahead of our clock, nothing to do */
1361 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1362 return;
1363
a9cf55b2
PT
1364 if (cfs_rq->runtime_remaining < 0)
1365 return;
1366
1367 /*
1368 * If the local deadline has passed we have to consider the
1369 * possibility that our sched_clock is 'fast' and the global deadline
1370 * has not truly expired.
1371 *
1372 * Fortunately we can check determine whether this the case by checking
1373 * whether the global deadline has advanced.
1374 */
1375
1376 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1377 /* extend local deadline, drift is bounded above by 2 ticks */
1378 cfs_rq->runtime_expires += TICK_NSEC;
1379 } else {
1380 /* global deadline is ahead, expiration has passed */
1381 cfs_rq->runtime_remaining = 0;
1382 }
1383}
1384
1385static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1386 unsigned long delta_exec)
1387{
1388 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1389 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1390 expire_cfs_rq_runtime(cfs_rq);
1391
1392 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1393 return;
1394
85dac906
PT
1395 /*
1396 * if we're unable to extend our runtime we resched so that the active
1397 * hierarchy can be throttled
1398 */
1399 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1400 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1401}
1402
1403static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1404 unsigned long delta_exec)
1405{
1406 if (!cfs_rq->runtime_enabled)
1407 return;
1408
1409 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1410}
1411
85dac906
PT
1412static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1413{
1414 return cfs_rq->throttled;
1415}
1416
64660c86
PT
1417/* check whether cfs_rq, or any parent, is throttled */
1418static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1419{
1420 return cfs_rq->throttle_count;
1421}
1422
1423/*
1424 * Ensure that neither of the group entities corresponding to src_cpu or
1425 * dest_cpu are members of a throttled hierarchy when performing group
1426 * load-balance operations.
1427 */
1428static inline int throttled_lb_pair(struct task_group *tg,
1429 int src_cpu, int dest_cpu)
1430{
1431 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1432
1433 src_cfs_rq = tg->cfs_rq[src_cpu];
1434 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1435
1436 return throttled_hierarchy(src_cfs_rq) ||
1437 throttled_hierarchy(dest_cfs_rq);
1438}
1439
1440/* updated child weight may affect parent so we have to do this bottom up */
1441static int tg_unthrottle_up(struct task_group *tg, void *data)
1442{
1443 struct rq *rq = data;
1444 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1445
1446 cfs_rq->throttle_count--;
1447#ifdef CONFIG_SMP
1448 if (!cfs_rq->throttle_count) {
1449 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1450
1451 /* leaving throttled state, advance shares averaging windows */
1452 cfs_rq->load_stamp += delta;
1453 cfs_rq->load_last += delta;
1454
1455 /* update entity weight now that we are on_rq again */
1456 update_cfs_shares(cfs_rq);
1457 }
1458#endif
1459
1460 return 0;
1461}
1462
1463static int tg_throttle_down(struct task_group *tg, void *data)
1464{
1465 struct rq *rq = data;
1466 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1467
1468 /* group is entering throttled state, record last load */
1469 if (!cfs_rq->throttle_count)
1470 update_cfs_load(cfs_rq, 0);
1471 cfs_rq->throttle_count++;
1472
1473 return 0;
1474}
1475
d3d9dc33 1476static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1477{
1478 struct rq *rq = rq_of(cfs_rq);
1479 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1480 struct sched_entity *se;
1481 long task_delta, dequeue = 1;
1482
1483 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1484
1485 /* account load preceding throttle */
64660c86
PT
1486 rcu_read_lock();
1487 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1488 rcu_read_unlock();
85dac906
PT
1489
1490 task_delta = cfs_rq->h_nr_running;
1491 for_each_sched_entity(se) {
1492 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1493 /* throttled entity or throttle-on-deactivate */
1494 if (!se->on_rq)
1495 break;
1496
1497 if (dequeue)
1498 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1499 qcfs_rq->h_nr_running -= task_delta;
1500
1501 if (qcfs_rq->load.weight)
1502 dequeue = 0;
1503 }
1504
1505 if (!se)
1506 rq->nr_running -= task_delta;
1507
1508 cfs_rq->throttled = 1;
1509 raw_spin_lock(&cfs_b->lock);
1510 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1511 raw_spin_unlock(&cfs_b->lock);
1512}
1513
671fd9da
PT
1514static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1515{
1516 struct rq *rq = rq_of(cfs_rq);
1517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1518 struct sched_entity *se;
1519 int enqueue = 1;
1520 long task_delta;
1521
1522 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1523
1524 cfs_rq->throttled = 0;
1525 raw_spin_lock(&cfs_b->lock);
1526 list_del_rcu(&cfs_rq->throttled_list);
1527 raw_spin_unlock(&cfs_b->lock);
1528
64660c86
PT
1529 update_rq_clock(rq);
1530 /* update hierarchical throttle state */
1531 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1532
671fd9da
PT
1533 if (!cfs_rq->load.weight)
1534 return;
1535
1536 task_delta = cfs_rq->h_nr_running;
1537 for_each_sched_entity(se) {
1538 if (se->on_rq)
1539 enqueue = 0;
1540
1541 cfs_rq = cfs_rq_of(se);
1542 if (enqueue)
1543 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1544 cfs_rq->h_nr_running += task_delta;
1545
1546 if (cfs_rq_throttled(cfs_rq))
1547 break;
1548 }
1549
1550 if (!se)
1551 rq->nr_running += task_delta;
1552
1553 /* determine whether we need to wake up potentially idle cpu */
1554 if (rq->curr == rq->idle && rq->cfs.nr_running)
1555 resched_task(rq->curr);
1556}
1557
1558static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1559 u64 remaining, u64 expires)
1560{
1561 struct cfs_rq *cfs_rq;
1562 u64 runtime = remaining;
1563
1564 rcu_read_lock();
1565 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1566 throttled_list) {
1567 struct rq *rq = rq_of(cfs_rq);
1568
1569 raw_spin_lock(&rq->lock);
1570 if (!cfs_rq_throttled(cfs_rq))
1571 goto next;
1572
1573 runtime = -cfs_rq->runtime_remaining + 1;
1574 if (runtime > remaining)
1575 runtime = remaining;
1576 remaining -= runtime;
1577
1578 cfs_rq->runtime_remaining += runtime;
1579 cfs_rq->runtime_expires = expires;
1580
1581 /* we check whether we're throttled above */
1582 if (cfs_rq->runtime_remaining > 0)
1583 unthrottle_cfs_rq(cfs_rq);
1584
1585next:
1586 raw_spin_unlock(&rq->lock);
1587
1588 if (!remaining)
1589 break;
1590 }
1591 rcu_read_unlock();
1592
1593 return remaining;
1594}
1595
58088ad0
PT
1596/*
1597 * Responsible for refilling a task_group's bandwidth and unthrottling its
1598 * cfs_rqs as appropriate. If there has been no activity within the last
1599 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1600 * used to track this state.
1601 */
1602static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1603{
671fd9da
PT
1604 u64 runtime, runtime_expires;
1605 int idle = 1, throttled;
58088ad0
PT
1606
1607 raw_spin_lock(&cfs_b->lock);
1608 /* no need to continue the timer with no bandwidth constraint */
1609 if (cfs_b->quota == RUNTIME_INF)
1610 goto out_unlock;
1611
671fd9da
PT
1612 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1613 /* idle depends on !throttled (for the case of a large deficit) */
1614 idle = cfs_b->idle && !throttled;
1615
a9cf55b2
PT
1616 /* if we're going inactive then everything else can be deferred */
1617 if (idle)
1618 goto out_unlock;
1619
1620 __refill_cfs_bandwidth_runtime(cfs_b);
1621
671fd9da
PT
1622 if (!throttled) {
1623 /* mark as potentially idle for the upcoming period */
1624 cfs_b->idle = 1;
1625 goto out_unlock;
1626 }
1627
1628 /*
1629 * There are throttled entities so we must first use the new bandwidth
1630 * to unthrottle them before making it generally available. This
1631 * ensures that all existing debts will be paid before a new cfs_rq is
1632 * allowed to run.
1633 */
1634 runtime = cfs_b->runtime;
1635 runtime_expires = cfs_b->runtime_expires;
1636 cfs_b->runtime = 0;
1637
1638 /*
1639 * This check is repeated as we are holding onto the new bandwidth
1640 * while we unthrottle. This can potentially race with an unthrottled
1641 * group trying to acquire new bandwidth from the global pool.
1642 */
1643 while (throttled && runtime > 0) {
1644 raw_spin_unlock(&cfs_b->lock);
1645 /* we can't nest cfs_b->lock while distributing bandwidth */
1646 runtime = distribute_cfs_runtime(cfs_b, runtime,
1647 runtime_expires);
1648 raw_spin_lock(&cfs_b->lock);
1649
1650 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1651 }
58088ad0 1652
671fd9da
PT
1653 /* return (any) remaining runtime */
1654 cfs_b->runtime = runtime;
1655 /*
1656 * While we are ensured activity in the period following an
1657 * unthrottle, this also covers the case in which the new bandwidth is
1658 * insufficient to cover the existing bandwidth deficit. (Forcing the
1659 * timer to remain active while there are any throttled entities.)
1660 */
1661 cfs_b->idle = 0;
58088ad0
PT
1662out_unlock:
1663 if (idle)
1664 cfs_b->timer_active = 0;
1665 raw_spin_unlock(&cfs_b->lock);
1666
1667 return idle;
1668}
d3d9dc33
PT
1669
1670/*
1671 * When a group wakes up we want to make sure that its quota is not already
1672 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1673 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1674 */
1675static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1676{
1677 /* an active group must be handled by the update_curr()->put() path */
1678 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1679 return;
1680
1681 /* ensure the group is not already throttled */
1682 if (cfs_rq_throttled(cfs_rq))
1683 return;
1684
1685 /* update runtime allocation */
1686 account_cfs_rq_runtime(cfs_rq, 0);
1687 if (cfs_rq->runtime_remaining <= 0)
1688 throttle_cfs_rq(cfs_rq);
1689}
1690
1691/* conditionally throttle active cfs_rq's from put_prev_entity() */
1692static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1693{
1694 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1695 return;
1696
1697 /*
1698 * it's possible for a throttled entity to be forced into a running
1699 * state (e.g. set_curr_task), in this case we're finished.
1700 */
1701 if (cfs_rq_throttled(cfs_rq))
1702 return;
1703
1704 throttle_cfs_rq(cfs_rq);
1705}
ec12cb7f
PT
1706#else
1707static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1708 unsigned long delta_exec) {}
d3d9dc33
PT
1709static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1710static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
85dac906
PT
1711
1712static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1713{
1714 return 0;
1715}
64660c86
PT
1716
1717static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1718{
1719 return 0;
1720}
1721
1722static inline int throttled_lb_pair(struct task_group *tg,
1723 int src_cpu, int dest_cpu)
1724{
1725 return 0;
1726}
ab84d31e
PT
1727#endif
1728
bf0f6f24
IM
1729/**************************************************
1730 * CFS operations on tasks:
1731 */
1732
8f4d37ec
PZ
1733#ifdef CONFIG_SCHED_HRTICK
1734static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1735{
8f4d37ec
PZ
1736 struct sched_entity *se = &p->se;
1737 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1738
1739 WARN_ON(task_rq(p) != rq);
1740
1741 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1742 u64 slice = sched_slice(cfs_rq, se);
1743 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1744 s64 delta = slice - ran;
1745
1746 if (delta < 0) {
1747 if (rq->curr == p)
1748 resched_task(p);
1749 return;
1750 }
1751
1752 /*
1753 * Don't schedule slices shorter than 10000ns, that just
1754 * doesn't make sense. Rely on vruntime for fairness.
1755 */
31656519 1756 if (rq->curr != p)
157124c1 1757 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1758
31656519 1759 hrtick_start(rq, delta);
8f4d37ec
PZ
1760 }
1761}
a4c2f00f
PZ
1762
1763/*
1764 * called from enqueue/dequeue and updates the hrtick when the
1765 * current task is from our class and nr_running is low enough
1766 * to matter.
1767 */
1768static void hrtick_update(struct rq *rq)
1769{
1770 struct task_struct *curr = rq->curr;
1771
1772 if (curr->sched_class != &fair_sched_class)
1773 return;
1774
1775 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1776 hrtick_start_fair(rq, curr);
1777}
55e12e5e 1778#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1779static inline void
1780hrtick_start_fair(struct rq *rq, struct task_struct *p)
1781{
1782}
a4c2f00f
PZ
1783
1784static inline void hrtick_update(struct rq *rq)
1785{
1786}
8f4d37ec
PZ
1787#endif
1788
bf0f6f24
IM
1789/*
1790 * The enqueue_task method is called before nr_running is
1791 * increased. Here we update the fair scheduling stats and
1792 * then put the task into the rbtree:
1793 */
ea87bb78 1794static void
371fd7e7 1795enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1796{
1797 struct cfs_rq *cfs_rq;
62fb1851 1798 struct sched_entity *se = &p->se;
bf0f6f24
IM
1799
1800 for_each_sched_entity(se) {
62fb1851 1801 if (se->on_rq)
bf0f6f24
IM
1802 break;
1803 cfs_rq = cfs_rq_of(se);
88ec22d3 1804 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
1805
1806 /*
1807 * end evaluation on encountering a throttled cfs_rq
1808 *
1809 * note: in the case of encountering a throttled cfs_rq we will
1810 * post the final h_nr_running increment below.
1811 */
1812 if (cfs_rq_throttled(cfs_rq))
1813 break;
953bfcd1 1814 cfs_rq->h_nr_running++;
85dac906 1815
88ec22d3 1816 flags = ENQUEUE_WAKEUP;
bf0f6f24 1817 }
8f4d37ec 1818
2069dd75 1819 for_each_sched_entity(se) {
0f317143 1820 cfs_rq = cfs_rq_of(se);
953bfcd1 1821 cfs_rq->h_nr_running++;
2069dd75 1822
85dac906
PT
1823 if (cfs_rq_throttled(cfs_rq))
1824 break;
1825
d6b55918 1826 update_cfs_load(cfs_rq, 0);
6d5ab293 1827 update_cfs_shares(cfs_rq);
2069dd75
PZ
1828 }
1829
85dac906
PT
1830 if (!se)
1831 inc_nr_running(rq);
a4c2f00f 1832 hrtick_update(rq);
bf0f6f24
IM
1833}
1834
2f36825b
VP
1835static void set_next_buddy(struct sched_entity *se);
1836
bf0f6f24
IM
1837/*
1838 * The dequeue_task method is called before nr_running is
1839 * decreased. We remove the task from the rbtree and
1840 * update the fair scheduling stats:
1841 */
371fd7e7 1842static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1843{
1844 struct cfs_rq *cfs_rq;
62fb1851 1845 struct sched_entity *se = &p->se;
2f36825b 1846 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1847
1848 for_each_sched_entity(se) {
1849 cfs_rq = cfs_rq_of(se);
371fd7e7 1850 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
1851
1852 /*
1853 * end evaluation on encountering a throttled cfs_rq
1854 *
1855 * note: in the case of encountering a throttled cfs_rq we will
1856 * post the final h_nr_running decrement below.
1857 */
1858 if (cfs_rq_throttled(cfs_rq))
1859 break;
953bfcd1 1860 cfs_rq->h_nr_running--;
2069dd75 1861
bf0f6f24 1862 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1863 if (cfs_rq->load.weight) {
1864 /*
1865 * Bias pick_next to pick a task from this cfs_rq, as
1866 * p is sleeping when it is within its sched_slice.
1867 */
1868 if (task_sleep && parent_entity(se))
1869 set_next_buddy(parent_entity(se));
9598c82d
PT
1870
1871 /* avoid re-evaluating load for this entity */
1872 se = parent_entity(se);
bf0f6f24 1873 break;
2f36825b 1874 }
371fd7e7 1875 flags |= DEQUEUE_SLEEP;
bf0f6f24 1876 }
8f4d37ec 1877
2069dd75 1878 for_each_sched_entity(se) {
0f317143 1879 cfs_rq = cfs_rq_of(se);
953bfcd1 1880 cfs_rq->h_nr_running--;
2069dd75 1881
85dac906
PT
1882 if (cfs_rq_throttled(cfs_rq))
1883 break;
1884
d6b55918 1885 update_cfs_load(cfs_rq, 0);
6d5ab293 1886 update_cfs_shares(cfs_rq);
2069dd75
PZ
1887 }
1888
85dac906
PT
1889 if (!se)
1890 dec_nr_running(rq);
a4c2f00f 1891 hrtick_update(rq);
bf0f6f24
IM
1892}
1893
e7693a36 1894#ifdef CONFIG_SMP
098fb9db 1895
74f8e4b2 1896static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1897{
1898 struct sched_entity *se = &p->se;
1899 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1900 u64 min_vruntime;
1901
1902#ifndef CONFIG_64BIT
1903 u64 min_vruntime_copy;
88ec22d3 1904
3fe1698b
PZ
1905 do {
1906 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1907 smp_rmb();
1908 min_vruntime = cfs_rq->min_vruntime;
1909 } while (min_vruntime != min_vruntime_copy);
1910#else
1911 min_vruntime = cfs_rq->min_vruntime;
1912#endif
88ec22d3 1913
3fe1698b 1914 se->vruntime -= min_vruntime;
88ec22d3
PZ
1915}
1916
bb3469ac 1917#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1918/*
1919 * effective_load() calculates the load change as seen from the root_task_group
1920 *
1921 * Adding load to a group doesn't make a group heavier, but can cause movement
1922 * of group shares between cpus. Assuming the shares were perfectly aligned one
1923 * can calculate the shift in shares.
f5bfb7d9 1924 */
2069dd75 1925static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1926{
4be9daaa 1927 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1928
1929 if (!tg->parent)
1930 return wl;
1931
4be9daaa 1932 for_each_sched_entity(se) {
977dda7c 1933 long lw, w;
4be9daaa 1934
977dda7c
PT
1935 tg = se->my_q->tg;
1936 w = se->my_q->load.weight;
bb3469ac 1937
977dda7c
PT
1938 /* use this cpu's instantaneous contribution */
1939 lw = atomic_read(&tg->load_weight);
1940 lw -= se->my_q->load_contribution;
1941 lw += w + wg;
4be9daaa 1942
977dda7c 1943 wl += w;
940959e9 1944
977dda7c
PT
1945 if (lw > 0 && wl < lw)
1946 wl = (wl * tg->shares) / lw;
1947 else
1948 wl = tg->shares;
940959e9 1949
977dda7c
PT
1950 /* zero point is MIN_SHARES */
1951 if (wl < MIN_SHARES)
1952 wl = MIN_SHARES;
1953 wl -= se->load.weight;
4be9daaa 1954 wg = 0;
4be9daaa 1955 }
bb3469ac 1956
4be9daaa 1957 return wl;
bb3469ac
PZ
1958}
1959#else
4be9daaa 1960
83378269
PZ
1961static inline unsigned long effective_load(struct task_group *tg, int cpu,
1962 unsigned long wl, unsigned long wg)
4be9daaa 1963{
83378269 1964 return wl;
bb3469ac 1965}
4be9daaa 1966
bb3469ac
PZ
1967#endif
1968
c88d5910 1969static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1970{
e37b6a7b 1971 s64 this_load, load;
c88d5910 1972 int idx, this_cpu, prev_cpu;
098fb9db 1973 unsigned long tl_per_task;
c88d5910 1974 struct task_group *tg;
83378269 1975 unsigned long weight;
b3137bc8 1976 int balanced;
098fb9db 1977
c88d5910
PZ
1978 idx = sd->wake_idx;
1979 this_cpu = smp_processor_id();
1980 prev_cpu = task_cpu(p);
1981 load = source_load(prev_cpu, idx);
1982 this_load = target_load(this_cpu, idx);
098fb9db 1983
b3137bc8
MG
1984 /*
1985 * If sync wakeup then subtract the (maximum possible)
1986 * effect of the currently running task from the load
1987 * of the current CPU:
1988 */
83378269
PZ
1989 if (sync) {
1990 tg = task_group(current);
1991 weight = current->se.load.weight;
1992
c88d5910 1993 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1994 load += effective_load(tg, prev_cpu, 0, -weight);
1995 }
b3137bc8 1996
83378269
PZ
1997 tg = task_group(p);
1998 weight = p->se.load.weight;
b3137bc8 1999
71a29aa7
PZ
2000 /*
2001 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2002 * due to the sync cause above having dropped this_load to 0, we'll
2003 * always have an imbalance, but there's really nothing you can do
2004 * about that, so that's good too.
71a29aa7
PZ
2005 *
2006 * Otherwise check if either cpus are near enough in load to allow this
2007 * task to be woken on this_cpu.
2008 */
e37b6a7b
PT
2009 if (this_load > 0) {
2010 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2011
2012 this_eff_load = 100;
2013 this_eff_load *= power_of(prev_cpu);
2014 this_eff_load *= this_load +
2015 effective_load(tg, this_cpu, weight, weight);
2016
2017 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2018 prev_eff_load *= power_of(this_cpu);
2019 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2020
2021 balanced = this_eff_load <= prev_eff_load;
2022 } else
2023 balanced = true;
b3137bc8 2024
098fb9db 2025 /*
4ae7d5ce
IM
2026 * If the currently running task will sleep within
2027 * a reasonable amount of time then attract this newly
2028 * woken task:
098fb9db 2029 */
2fb7635c
PZ
2030 if (sync && balanced)
2031 return 1;
098fb9db 2032
41acab88 2033 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2034 tl_per_task = cpu_avg_load_per_task(this_cpu);
2035
c88d5910
PZ
2036 if (balanced ||
2037 (this_load <= load &&
2038 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2039 /*
2040 * This domain has SD_WAKE_AFFINE and
2041 * p is cache cold in this domain, and
2042 * there is no bad imbalance.
2043 */
c88d5910 2044 schedstat_inc(sd, ttwu_move_affine);
41acab88 2045 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2046
2047 return 1;
2048 }
2049 return 0;
2050}
2051
aaee1203
PZ
2052/*
2053 * find_idlest_group finds and returns the least busy CPU group within the
2054 * domain.
2055 */
2056static struct sched_group *
78e7ed53 2057find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2058 int this_cpu, int load_idx)
e7693a36 2059{
b3bd3de6 2060 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2061 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2062 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2063
aaee1203
PZ
2064 do {
2065 unsigned long load, avg_load;
2066 int local_group;
2067 int i;
e7693a36 2068
aaee1203
PZ
2069 /* Skip over this group if it has no CPUs allowed */
2070 if (!cpumask_intersects(sched_group_cpus(group),
2071 &p->cpus_allowed))
2072 continue;
2073
2074 local_group = cpumask_test_cpu(this_cpu,
2075 sched_group_cpus(group));
2076
2077 /* Tally up the load of all CPUs in the group */
2078 avg_load = 0;
2079
2080 for_each_cpu(i, sched_group_cpus(group)) {
2081 /* Bias balancing toward cpus of our domain */
2082 if (local_group)
2083 load = source_load(i, load_idx);
2084 else
2085 load = target_load(i, load_idx);
2086
2087 avg_load += load;
2088 }
2089
2090 /* Adjust by relative CPU power of the group */
9c3f75cb 2091 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2092
2093 if (local_group) {
2094 this_load = avg_load;
aaee1203
PZ
2095 } else if (avg_load < min_load) {
2096 min_load = avg_load;
2097 idlest = group;
2098 }
2099 } while (group = group->next, group != sd->groups);
2100
2101 if (!idlest || 100*this_load < imbalance*min_load)
2102 return NULL;
2103 return idlest;
2104}
2105
2106/*
2107 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2108 */
2109static int
2110find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2111{
2112 unsigned long load, min_load = ULONG_MAX;
2113 int idlest = -1;
2114 int i;
2115
2116 /* Traverse only the allowed CPUs */
2117 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2118 load = weighted_cpuload(i);
2119
2120 if (load < min_load || (load == min_load && i == this_cpu)) {
2121 min_load = load;
2122 idlest = i;
e7693a36
GH
2123 }
2124 }
2125
aaee1203
PZ
2126 return idlest;
2127}
e7693a36 2128
a50bde51
PZ
2129/*
2130 * Try and locate an idle CPU in the sched_domain.
2131 */
99bd5e2f 2132static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2133{
2134 int cpu = smp_processor_id();
2135 int prev_cpu = task_cpu(p);
99bd5e2f 2136 struct sched_domain *sd;
a50bde51
PZ
2137 int i;
2138
2139 /*
99bd5e2f
SS
2140 * If the task is going to be woken-up on this cpu and if it is
2141 * already idle, then it is the right target.
a50bde51 2142 */
99bd5e2f
SS
2143 if (target == cpu && idle_cpu(cpu))
2144 return cpu;
2145
2146 /*
2147 * If the task is going to be woken-up on the cpu where it previously
2148 * ran and if it is currently idle, then it the right target.
2149 */
2150 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2151 return prev_cpu;
a50bde51
PZ
2152
2153 /*
99bd5e2f 2154 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2155 */
dce840a0 2156 rcu_read_lock();
99bd5e2f
SS
2157 for_each_domain(target, sd) {
2158 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 2159 break;
99bd5e2f
SS
2160
2161 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
2162 if (idle_cpu(i)) {
2163 target = i;
2164 break;
2165 }
a50bde51 2166 }
99bd5e2f
SS
2167
2168 /*
2169 * Lets stop looking for an idle sibling when we reached
2170 * the domain that spans the current cpu and prev_cpu.
2171 */
2172 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
2173 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
2174 break;
a50bde51 2175 }
dce840a0 2176 rcu_read_unlock();
a50bde51
PZ
2177
2178 return target;
2179}
2180
aaee1203
PZ
2181/*
2182 * sched_balance_self: balance the current task (running on cpu) in domains
2183 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2184 * SD_BALANCE_EXEC.
2185 *
2186 * Balance, ie. select the least loaded group.
2187 *
2188 * Returns the target CPU number, or the same CPU if no balancing is needed.
2189 *
2190 * preempt must be disabled.
2191 */
0017d735 2192static int
7608dec2 2193select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2194{
29cd8bae 2195 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2196 int cpu = smp_processor_id();
2197 int prev_cpu = task_cpu(p);
2198 int new_cpu = cpu;
99bd5e2f 2199 int want_affine = 0;
29cd8bae 2200 int want_sd = 1;
5158f4e4 2201 int sync = wake_flags & WF_SYNC;
c88d5910 2202
0763a660 2203 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 2204 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
2205 want_affine = 1;
2206 new_cpu = prev_cpu;
2207 }
aaee1203 2208
dce840a0 2209 rcu_read_lock();
aaee1203 2210 for_each_domain(cpu, tmp) {
e4f42888
PZ
2211 if (!(tmp->flags & SD_LOAD_BALANCE))
2212 continue;
2213
aaee1203 2214 /*
ae154be1
PZ
2215 * If power savings logic is enabled for a domain, see if we
2216 * are not overloaded, if so, don't balance wider.
aaee1203 2217 */
59abf026 2218 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2219 unsigned long power = 0;
2220 unsigned long nr_running = 0;
2221 unsigned long capacity;
2222 int i;
2223
2224 for_each_cpu(i, sched_domain_span(tmp)) {
2225 power += power_of(i);
2226 nr_running += cpu_rq(i)->cfs.nr_running;
2227 }
2228
1399fa78 2229 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2230
59abf026
PZ
2231 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2232 nr_running /= 2;
2233
2234 if (nr_running < capacity)
29cd8bae 2235 want_sd = 0;
ae154be1 2236 }
aaee1203 2237
fe3bcfe1 2238 /*
99bd5e2f
SS
2239 * If both cpu and prev_cpu are part of this domain,
2240 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2241 */
99bd5e2f
SS
2242 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2243 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2244 affine_sd = tmp;
2245 want_affine = 0;
c88d5910
PZ
2246 }
2247
29cd8bae
PZ
2248 if (!want_sd && !want_affine)
2249 break;
2250
0763a660 2251 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2252 continue;
2253
29cd8bae
PZ
2254 if (want_sd)
2255 sd = tmp;
2256 }
2257
8b911acd 2258 if (affine_sd) {
99bd5e2f 2259 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2260 prev_cpu = cpu;
2261
2262 new_cpu = select_idle_sibling(p, prev_cpu);
2263 goto unlock;
8b911acd 2264 }
e7693a36 2265
aaee1203 2266 while (sd) {
5158f4e4 2267 int load_idx = sd->forkexec_idx;
aaee1203 2268 struct sched_group *group;
c88d5910 2269 int weight;
098fb9db 2270
0763a660 2271 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2272 sd = sd->child;
2273 continue;
2274 }
098fb9db 2275
5158f4e4
PZ
2276 if (sd_flag & SD_BALANCE_WAKE)
2277 load_idx = sd->wake_idx;
098fb9db 2278
5158f4e4 2279 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2280 if (!group) {
2281 sd = sd->child;
2282 continue;
2283 }
4ae7d5ce 2284
d7c33c49 2285 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2286 if (new_cpu == -1 || new_cpu == cpu) {
2287 /* Now try balancing at a lower domain level of cpu */
2288 sd = sd->child;
2289 continue;
e7693a36 2290 }
aaee1203
PZ
2291
2292 /* Now try balancing at a lower domain level of new_cpu */
2293 cpu = new_cpu;
669c55e9 2294 weight = sd->span_weight;
aaee1203
PZ
2295 sd = NULL;
2296 for_each_domain(cpu, tmp) {
669c55e9 2297 if (weight <= tmp->span_weight)
aaee1203 2298 break;
0763a660 2299 if (tmp->flags & sd_flag)
aaee1203
PZ
2300 sd = tmp;
2301 }
2302 /* while loop will break here if sd == NULL */
e7693a36 2303 }
dce840a0
PZ
2304unlock:
2305 rcu_read_unlock();
e7693a36 2306
c88d5910 2307 return new_cpu;
e7693a36
GH
2308}
2309#endif /* CONFIG_SMP */
2310
e52fb7c0
PZ
2311static unsigned long
2312wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2313{
2314 unsigned long gran = sysctl_sched_wakeup_granularity;
2315
2316 /*
e52fb7c0
PZ
2317 * Since its curr running now, convert the gran from real-time
2318 * to virtual-time in his units.
13814d42
MG
2319 *
2320 * By using 'se' instead of 'curr' we penalize light tasks, so
2321 * they get preempted easier. That is, if 'se' < 'curr' then
2322 * the resulting gran will be larger, therefore penalizing the
2323 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2324 * be smaller, again penalizing the lighter task.
2325 *
2326 * This is especially important for buddies when the leftmost
2327 * task is higher priority than the buddy.
0bbd3336 2328 */
f4ad9bd2 2329 return calc_delta_fair(gran, se);
0bbd3336
PZ
2330}
2331
464b7527
PZ
2332/*
2333 * Should 'se' preempt 'curr'.
2334 *
2335 * |s1
2336 * |s2
2337 * |s3
2338 * g
2339 * |<--->|c
2340 *
2341 * w(c, s1) = -1
2342 * w(c, s2) = 0
2343 * w(c, s3) = 1
2344 *
2345 */
2346static int
2347wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2348{
2349 s64 gran, vdiff = curr->vruntime - se->vruntime;
2350
2351 if (vdiff <= 0)
2352 return -1;
2353
e52fb7c0 2354 gran = wakeup_gran(curr, se);
464b7527
PZ
2355 if (vdiff > gran)
2356 return 1;
2357
2358 return 0;
2359}
2360
02479099
PZ
2361static void set_last_buddy(struct sched_entity *se)
2362{
69c80f3e
VP
2363 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2364 return;
2365
2366 for_each_sched_entity(se)
2367 cfs_rq_of(se)->last = se;
02479099
PZ
2368}
2369
2370static void set_next_buddy(struct sched_entity *se)
2371{
69c80f3e
VP
2372 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2373 return;
2374
2375 for_each_sched_entity(se)
2376 cfs_rq_of(se)->next = se;
02479099
PZ
2377}
2378
ac53db59
RR
2379static void set_skip_buddy(struct sched_entity *se)
2380{
69c80f3e
VP
2381 for_each_sched_entity(se)
2382 cfs_rq_of(se)->skip = se;
ac53db59
RR
2383}
2384
bf0f6f24
IM
2385/*
2386 * Preempt the current task with a newly woken task if needed:
2387 */
5a9b86f6 2388static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2389{
2390 struct task_struct *curr = rq->curr;
8651a86c 2391 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2392 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2393 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2394 int next_buddy_marked = 0;
bf0f6f24 2395
4ae7d5ce
IM
2396 if (unlikely(se == pse))
2397 return;
2398
5238cdd3
PT
2399 /*
2400 * This is possible from callers such as pull_task(), in which we
2401 * unconditionally check_prempt_curr() after an enqueue (which may have
2402 * lead to a throttle). This both saves work and prevents false
2403 * next-buddy nomination below.
2404 */
2405 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2406 return;
2407
2f36825b 2408 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2409 set_next_buddy(pse);
2f36825b
VP
2410 next_buddy_marked = 1;
2411 }
57fdc26d 2412
aec0a514
BR
2413 /*
2414 * We can come here with TIF_NEED_RESCHED already set from new task
2415 * wake up path.
5238cdd3
PT
2416 *
2417 * Note: this also catches the edge-case of curr being in a throttled
2418 * group (e.g. via set_curr_task), since update_curr() (in the
2419 * enqueue of curr) will have resulted in resched being set. This
2420 * prevents us from potentially nominating it as a false LAST_BUDDY
2421 * below.
aec0a514
BR
2422 */
2423 if (test_tsk_need_resched(curr))
2424 return;
2425
a2f5c9ab
DH
2426 /* Idle tasks are by definition preempted by non-idle tasks. */
2427 if (unlikely(curr->policy == SCHED_IDLE) &&
2428 likely(p->policy != SCHED_IDLE))
2429 goto preempt;
2430
91c234b4 2431 /*
a2f5c9ab
DH
2432 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2433 * is driven by the tick):
91c234b4 2434 */
6bc912b7 2435 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2436 return;
bf0f6f24 2437
464b7527 2438 find_matching_se(&se, &pse);
9bbd7374 2439 update_curr(cfs_rq_of(se));
002f128b 2440 BUG_ON(!pse);
2f36825b
VP
2441 if (wakeup_preempt_entity(se, pse) == 1) {
2442 /*
2443 * Bias pick_next to pick the sched entity that is
2444 * triggering this preemption.
2445 */
2446 if (!next_buddy_marked)
2447 set_next_buddy(pse);
3a7e73a2 2448 goto preempt;
2f36825b 2449 }
464b7527 2450
3a7e73a2 2451 return;
a65ac745 2452
3a7e73a2
PZ
2453preempt:
2454 resched_task(curr);
2455 /*
2456 * Only set the backward buddy when the current task is still
2457 * on the rq. This can happen when a wakeup gets interleaved
2458 * with schedule on the ->pre_schedule() or idle_balance()
2459 * point, either of which can * drop the rq lock.
2460 *
2461 * Also, during early boot the idle thread is in the fair class,
2462 * for obvious reasons its a bad idea to schedule back to it.
2463 */
2464 if (unlikely(!se->on_rq || curr == rq->idle))
2465 return;
2466
2467 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2468 set_last_buddy(se);
bf0f6f24
IM
2469}
2470
fb8d4724 2471static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2472{
8f4d37ec 2473 struct task_struct *p;
bf0f6f24
IM
2474 struct cfs_rq *cfs_rq = &rq->cfs;
2475 struct sched_entity *se;
2476
36ace27e 2477 if (!cfs_rq->nr_running)
bf0f6f24
IM
2478 return NULL;
2479
2480 do {
9948f4b2 2481 se = pick_next_entity(cfs_rq);
f4b6755f 2482 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2483 cfs_rq = group_cfs_rq(se);
2484 } while (cfs_rq);
2485
8f4d37ec
PZ
2486 p = task_of(se);
2487 hrtick_start_fair(rq, p);
2488
2489 return p;
bf0f6f24
IM
2490}
2491
2492/*
2493 * Account for a descheduled task:
2494 */
31ee529c 2495static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
2496{
2497 struct sched_entity *se = &prev->se;
2498 struct cfs_rq *cfs_rq;
2499
2500 for_each_sched_entity(se) {
2501 cfs_rq = cfs_rq_of(se);
ab6cde26 2502 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
2503 }
2504}
2505
ac53db59
RR
2506/*
2507 * sched_yield() is very simple
2508 *
2509 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2510 */
2511static void yield_task_fair(struct rq *rq)
2512{
2513 struct task_struct *curr = rq->curr;
2514 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2515 struct sched_entity *se = &curr->se;
2516
2517 /*
2518 * Are we the only task in the tree?
2519 */
2520 if (unlikely(rq->nr_running == 1))
2521 return;
2522
2523 clear_buddies(cfs_rq, se);
2524
2525 if (curr->policy != SCHED_BATCH) {
2526 update_rq_clock(rq);
2527 /*
2528 * Update run-time statistics of the 'current'.
2529 */
2530 update_curr(cfs_rq);
2531 }
2532
2533 set_skip_buddy(se);
2534}
2535
d95f4122
MG
2536static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2537{
2538 struct sched_entity *se = &p->se;
2539
5238cdd3
PT
2540 /* throttled hierarchies are not runnable */
2541 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
2542 return false;
2543
2544 /* Tell the scheduler that we'd really like pse to run next. */
2545 set_next_buddy(se);
2546
d95f4122
MG
2547 yield_task_fair(rq);
2548
2549 return true;
2550}
2551
681f3e68 2552#ifdef CONFIG_SMP
bf0f6f24
IM
2553/**************************************************
2554 * Fair scheduling class load-balancing methods:
2555 */
2556
1e3c88bd
PZ
2557/*
2558 * pull_task - move a task from a remote runqueue to the local runqueue.
2559 * Both runqueues must be locked.
2560 */
2561static void pull_task(struct rq *src_rq, struct task_struct *p,
2562 struct rq *this_rq, int this_cpu)
2563{
2564 deactivate_task(src_rq, p, 0);
2565 set_task_cpu(p, this_cpu);
2566 activate_task(this_rq, p, 0);
2567 check_preempt_curr(this_rq, p, 0);
2568}
2569
2570/*
2571 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2572 */
2573static
2574int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2575 struct sched_domain *sd, enum cpu_idle_type idle,
2576 int *all_pinned)
2577{
2578 int tsk_cache_hot = 0;
2579 /*
2580 * We do not migrate tasks that are:
2581 * 1) running (obviously), or
2582 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2583 * 3) are cache-hot on their current CPU.
2584 */
2585 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2586 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2587 return 0;
2588 }
2589 *all_pinned = 0;
2590
2591 if (task_running(rq, p)) {
41acab88 2592 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2593 return 0;
2594 }
2595
2596 /*
2597 * Aggressive migration if:
2598 * 1) task is cache cold, or
2599 * 2) too many balance attempts have failed.
2600 */
2601
305e6835 2602 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2603 if (!tsk_cache_hot ||
2604 sd->nr_balance_failed > sd->cache_nice_tries) {
2605#ifdef CONFIG_SCHEDSTATS
2606 if (tsk_cache_hot) {
2607 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2608 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2609 }
2610#endif
2611 return 1;
2612 }
2613
2614 if (tsk_cache_hot) {
41acab88 2615 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2616 return 0;
2617 }
2618 return 1;
2619}
2620
897c395f
PZ
2621/*
2622 * move_one_task tries to move exactly one task from busiest to this_rq, as
2623 * part of active balancing operations within "domain".
2624 * Returns 1 if successful and 0 otherwise.
2625 *
2626 * Called with both runqueues locked.
2627 */
2628static int
2629move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2630 struct sched_domain *sd, enum cpu_idle_type idle)
2631{
2632 struct task_struct *p, *n;
2633 struct cfs_rq *cfs_rq;
2634 int pinned = 0;
2635
2636 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2637 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
2638 if (throttled_lb_pair(task_group(p),
2639 busiest->cpu, this_cpu))
2640 break;
897c395f
PZ
2641
2642 if (!can_migrate_task(p, busiest, this_cpu,
2643 sd, idle, &pinned))
2644 continue;
2645
2646 pull_task(busiest, p, this_rq, this_cpu);
2647 /*
2648 * Right now, this is only the second place pull_task()
2649 * is called, so we can safely collect pull_task()
2650 * stats here rather than inside pull_task().
2651 */
2652 schedstat_inc(sd, lb_gained[idle]);
2653 return 1;
2654 }
2655 }
2656
2657 return 0;
2658}
2659
1e3c88bd
PZ
2660static unsigned long
2661balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2662 unsigned long max_load_move, struct sched_domain *sd,
2663 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2664 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2665{
b30aef17 2666 int loops = 0, pulled = 0;
1e3c88bd 2667 long rem_load_move = max_load_move;
ee00e66f 2668 struct task_struct *p, *n;
1e3c88bd
PZ
2669
2670 if (max_load_move == 0)
2671 goto out;
2672
ee00e66f
PZ
2673 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2674 if (loops++ > sysctl_sched_nr_migrate)
2675 break;
1e3c88bd 2676
ee00e66f 2677 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2678 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2679 all_pinned))
ee00e66f 2680 continue;
1e3c88bd 2681
ee00e66f
PZ
2682 pull_task(busiest, p, this_rq, this_cpu);
2683 pulled++;
2684 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2685
2686#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2687 /*
2688 * NEWIDLE balancing is a source of latency, so preemptible
2689 * kernels will stop after the first task is pulled to minimize
2690 * the critical section.
2691 */
2692 if (idle == CPU_NEWLY_IDLE)
2693 break;
1e3c88bd
PZ
2694#endif
2695
ee00e66f
PZ
2696 /*
2697 * We only want to steal up to the prescribed amount of
2698 * weighted load.
2699 */
2700 if (rem_load_move <= 0)
2701 break;
1e3c88bd
PZ
2702 }
2703out:
2704 /*
2705 * Right now, this is one of only two places pull_task() is called,
2706 * so we can safely collect pull_task() stats here rather than
2707 * inside pull_task().
2708 */
2709 schedstat_add(sd, lb_gained[idle], pulled);
2710
1e3c88bd
PZ
2711 return max_load_move - rem_load_move;
2712}
2713
230059de 2714#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2715/*
2716 * update tg->load_weight by folding this cpu's load_avg
2717 */
67e86250 2718static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2719{
2720 struct cfs_rq *cfs_rq;
2721 unsigned long flags;
2722 struct rq *rq;
9e3081ca
PZ
2723
2724 if (!tg->se[cpu])
2725 return 0;
2726
2727 rq = cpu_rq(cpu);
2728 cfs_rq = tg->cfs_rq[cpu];
2729
2730 raw_spin_lock_irqsave(&rq->lock, flags);
2731
2732 update_rq_clock(rq);
d6b55918 2733 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2734
2735 /*
2736 * We need to update shares after updating tg->load_weight in
2737 * order to adjust the weight of groups with long running tasks.
2738 */
6d5ab293 2739 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2740
2741 raw_spin_unlock_irqrestore(&rq->lock, flags);
2742
2743 return 0;
2744}
2745
2746static void update_shares(int cpu)
2747{
2748 struct cfs_rq *cfs_rq;
2749 struct rq *rq = cpu_rq(cpu);
2750
2751 rcu_read_lock();
9763b67f
PZ
2752 /*
2753 * Iterates the task_group tree in a bottom up fashion, see
2754 * list_add_leaf_cfs_rq() for details.
2755 */
64660c86
PT
2756 for_each_leaf_cfs_rq(rq, cfs_rq) {
2757 /* throttled entities do not contribute to load */
2758 if (throttled_hierarchy(cfs_rq))
2759 continue;
2760
67e86250 2761 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 2762 }
9e3081ca
PZ
2763 rcu_read_unlock();
2764}
2765
9763b67f
PZ
2766/*
2767 * Compute the cpu's hierarchical load factor for each task group.
2768 * This needs to be done in a top-down fashion because the load of a child
2769 * group is a fraction of its parents load.
2770 */
2771static int tg_load_down(struct task_group *tg, void *data)
2772{
2773 unsigned long load;
2774 long cpu = (long)data;
2775
2776 if (!tg->parent) {
2777 load = cpu_rq(cpu)->load.weight;
2778 } else {
2779 load = tg->parent->cfs_rq[cpu]->h_load;
2780 load *= tg->se[cpu]->load.weight;
2781 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2782 }
2783
2784 tg->cfs_rq[cpu]->h_load = load;
2785
2786 return 0;
2787}
2788
2789static void update_h_load(long cpu)
2790{
2791 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2792}
2793
230059de
PZ
2794static unsigned long
2795load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2796 unsigned long max_load_move,
2797 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2798 int *all_pinned)
230059de
PZ
2799{
2800 long rem_load_move = max_load_move;
9763b67f 2801 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
2802
2803 rcu_read_lock();
9763b67f 2804 update_h_load(cpu_of(busiest));
230059de 2805
9763b67f 2806 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
2807 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2808 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2809 u64 rem_load, moved_load;
2810
2811 /*
64660c86 2812 * empty group or part of a throttled hierarchy
230059de 2813 */
64660c86
PT
2814 if (!busiest_cfs_rq->task_weight ||
2815 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
2816 continue;
2817
2818 rem_load = (u64)rem_load_move * busiest_weight;
2819 rem_load = div_u64(rem_load, busiest_h_load + 1);
2820
2821 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2822 rem_load, sd, idle, all_pinned,
230059de
PZ
2823 busiest_cfs_rq);
2824
2825 if (!moved_load)
2826 continue;
2827
2828 moved_load *= busiest_h_load;
2829 moved_load = div_u64(moved_load, busiest_weight + 1);
2830
2831 rem_load_move -= moved_load;
2832 if (rem_load_move < 0)
2833 break;
2834 }
2835 rcu_read_unlock();
2836
2837 return max_load_move - rem_load_move;
2838}
2839#else
9e3081ca
PZ
2840static inline void update_shares(int cpu)
2841{
2842}
2843
230059de
PZ
2844static unsigned long
2845load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2846 unsigned long max_load_move,
2847 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2848 int *all_pinned)
230059de
PZ
2849{
2850 return balance_tasks(this_rq, this_cpu, busiest,
2851 max_load_move, sd, idle, all_pinned,
931aeeda 2852 &busiest->cfs);
230059de
PZ
2853}
2854#endif
2855
1e3c88bd
PZ
2856/*
2857 * move_tasks tries to move up to max_load_move weighted load from busiest to
2858 * this_rq, as part of a balancing operation within domain "sd".
2859 * Returns 1 if successful and 0 otherwise.
2860 *
2861 * Called with both runqueues locked.
2862 */
2863static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2864 unsigned long max_load_move,
2865 struct sched_domain *sd, enum cpu_idle_type idle,
2866 int *all_pinned)
2867{
3d45fd80 2868 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2869
2870 do {
3d45fd80 2871 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2872 max_load_move - total_load_moved,
931aeeda 2873 sd, idle, all_pinned);
3d45fd80
PZ
2874
2875 total_load_moved += load_moved;
1e3c88bd
PZ
2876
2877#ifdef CONFIG_PREEMPT
2878 /*
2879 * NEWIDLE balancing is a source of latency, so preemptible
2880 * kernels will stop after the first task is pulled to minimize
2881 * the critical section.
2882 */
2883 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2884 break;
baa8c110
PZ
2885
2886 if (raw_spin_is_contended(&this_rq->lock) ||
2887 raw_spin_is_contended(&busiest->lock))
2888 break;
1e3c88bd 2889#endif
3d45fd80 2890 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2891
2892 return total_load_moved > 0;
2893}
2894
1e3c88bd
PZ
2895/********** Helpers for find_busiest_group ************************/
2896/*
2897 * sd_lb_stats - Structure to store the statistics of a sched_domain
2898 * during load balancing.
2899 */
2900struct sd_lb_stats {
2901 struct sched_group *busiest; /* Busiest group in this sd */
2902 struct sched_group *this; /* Local group in this sd */
2903 unsigned long total_load; /* Total load of all groups in sd */
2904 unsigned long total_pwr; /* Total power of all groups in sd */
2905 unsigned long avg_load; /* Average load across all groups in sd */
2906
2907 /** Statistics of this group */
2908 unsigned long this_load;
2909 unsigned long this_load_per_task;
2910 unsigned long this_nr_running;
fab47622 2911 unsigned long this_has_capacity;
aae6d3dd 2912 unsigned int this_idle_cpus;
1e3c88bd
PZ
2913
2914 /* Statistics of the busiest group */
aae6d3dd 2915 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2916 unsigned long max_load;
2917 unsigned long busiest_load_per_task;
2918 unsigned long busiest_nr_running;
dd5feea1 2919 unsigned long busiest_group_capacity;
fab47622 2920 unsigned long busiest_has_capacity;
aae6d3dd 2921 unsigned int busiest_group_weight;
1e3c88bd
PZ
2922
2923 int group_imb; /* Is there imbalance in this sd */
2924#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2925 int power_savings_balance; /* Is powersave balance needed for this sd */
2926 struct sched_group *group_min; /* Least loaded group in sd */
2927 struct sched_group *group_leader; /* Group which relieves group_min */
2928 unsigned long min_load_per_task; /* load_per_task in group_min */
2929 unsigned long leader_nr_running; /* Nr running of group_leader */
2930 unsigned long min_nr_running; /* Nr running of group_min */
2931#endif
2932};
2933
2934/*
2935 * sg_lb_stats - stats of a sched_group required for load_balancing
2936 */
2937struct sg_lb_stats {
2938 unsigned long avg_load; /*Avg load across the CPUs of the group */
2939 unsigned long group_load; /* Total load over the CPUs of the group */
2940 unsigned long sum_nr_running; /* Nr tasks running in the group */
2941 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2942 unsigned long group_capacity;
aae6d3dd
SS
2943 unsigned long idle_cpus;
2944 unsigned long group_weight;
1e3c88bd 2945 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2946 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2947};
2948
2949/**
2950 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2951 * @group: The group whose first cpu is to be returned.
2952 */
2953static inline unsigned int group_first_cpu(struct sched_group *group)
2954{
2955 return cpumask_first(sched_group_cpus(group));
2956}
2957
2958/**
2959 * get_sd_load_idx - Obtain the load index for a given sched domain.
2960 * @sd: The sched_domain whose load_idx is to be obtained.
2961 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2962 */
2963static inline int get_sd_load_idx(struct sched_domain *sd,
2964 enum cpu_idle_type idle)
2965{
2966 int load_idx;
2967
2968 switch (idle) {
2969 case CPU_NOT_IDLE:
2970 load_idx = sd->busy_idx;
2971 break;
2972
2973 case CPU_NEWLY_IDLE:
2974 load_idx = sd->newidle_idx;
2975 break;
2976 default:
2977 load_idx = sd->idle_idx;
2978 break;
2979 }
2980
2981 return load_idx;
2982}
2983
2984
2985#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2986/**
2987 * init_sd_power_savings_stats - Initialize power savings statistics for
2988 * the given sched_domain, during load balancing.
2989 *
2990 * @sd: Sched domain whose power-savings statistics are to be initialized.
2991 * @sds: Variable containing the statistics for sd.
2992 * @idle: Idle status of the CPU at which we're performing load-balancing.
2993 */
2994static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2995 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2996{
2997 /*
2998 * Busy processors will not participate in power savings
2999 * balance.
3000 */
3001 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3002 sds->power_savings_balance = 0;
3003 else {
3004 sds->power_savings_balance = 1;
3005 sds->min_nr_running = ULONG_MAX;
3006 sds->leader_nr_running = 0;
3007 }
3008}
3009
3010/**
3011 * update_sd_power_savings_stats - Update the power saving stats for a
3012 * sched_domain while performing load balancing.
3013 *
3014 * @group: sched_group belonging to the sched_domain under consideration.
3015 * @sds: Variable containing the statistics of the sched_domain
3016 * @local_group: Does group contain the CPU for which we're performing
3017 * load balancing ?
3018 * @sgs: Variable containing the statistics of the group.
3019 */
3020static inline void update_sd_power_savings_stats(struct sched_group *group,
3021 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3022{
3023
3024 if (!sds->power_savings_balance)
3025 return;
3026
3027 /*
3028 * If the local group is idle or completely loaded
3029 * no need to do power savings balance at this domain
3030 */
3031 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3032 !sds->this_nr_running))
3033 sds->power_savings_balance = 0;
3034
3035 /*
3036 * If a group is already running at full capacity or idle,
3037 * don't include that group in power savings calculations
3038 */
3039 if (!sds->power_savings_balance ||
3040 sgs->sum_nr_running >= sgs->group_capacity ||
3041 !sgs->sum_nr_running)
3042 return;
3043
3044 /*
3045 * Calculate the group which has the least non-idle load.
3046 * This is the group from where we need to pick up the load
3047 * for saving power
3048 */
3049 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3050 (sgs->sum_nr_running == sds->min_nr_running &&
3051 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3052 sds->group_min = group;
3053 sds->min_nr_running = sgs->sum_nr_running;
3054 sds->min_load_per_task = sgs->sum_weighted_load /
3055 sgs->sum_nr_running;
3056 }
3057
3058 /*
3059 * Calculate the group which is almost near its
3060 * capacity but still has some space to pick up some load
3061 * from other group and save more power
3062 */
3063 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3064 return;
3065
3066 if (sgs->sum_nr_running > sds->leader_nr_running ||
3067 (sgs->sum_nr_running == sds->leader_nr_running &&
3068 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3069 sds->group_leader = group;
3070 sds->leader_nr_running = sgs->sum_nr_running;
3071 }
3072}
3073
3074/**
3075 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3076 * @sds: Variable containing the statistics of the sched_domain
3077 * under consideration.
3078 * @this_cpu: Cpu at which we're currently performing load-balancing.
3079 * @imbalance: Variable to store the imbalance.
3080 *
3081 * Description:
3082 * Check if we have potential to perform some power-savings balance.
3083 * If yes, set the busiest group to be the least loaded group in the
3084 * sched_domain, so that it's CPUs can be put to idle.
3085 *
3086 * Returns 1 if there is potential to perform power-savings balance.
3087 * Else returns 0.
3088 */
3089static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3090 int this_cpu, unsigned long *imbalance)
3091{
3092 if (!sds->power_savings_balance)
3093 return 0;
3094
3095 if (sds->this != sds->group_leader ||
3096 sds->group_leader == sds->group_min)
3097 return 0;
3098
3099 *imbalance = sds->min_load_per_task;
3100 sds->busiest = sds->group_min;
3101
3102 return 1;
3103
3104}
3105#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3106static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3107 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3108{
3109 return;
3110}
3111
3112static inline void update_sd_power_savings_stats(struct sched_group *group,
3113 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3114{
3115 return;
3116}
3117
3118static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3119 int this_cpu, unsigned long *imbalance)
3120{
3121 return 0;
3122}
3123#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3124
3125
3126unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3127{
1399fa78 3128 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3129}
3130
3131unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3132{
3133 return default_scale_freq_power(sd, cpu);
3134}
3135
3136unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3137{
669c55e9 3138 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3139 unsigned long smt_gain = sd->smt_gain;
3140
3141 smt_gain /= weight;
3142
3143 return smt_gain;
3144}
3145
3146unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3147{
3148 return default_scale_smt_power(sd, cpu);
3149}
3150
3151unsigned long scale_rt_power(int cpu)
3152{
3153 struct rq *rq = cpu_rq(cpu);
3154 u64 total, available;
3155
1e3c88bd 3156 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3157
3158 if (unlikely(total < rq->rt_avg)) {
3159 /* Ensures that power won't end up being negative */
3160 available = 0;
3161 } else {
3162 available = total - rq->rt_avg;
3163 }
1e3c88bd 3164
1399fa78
NR
3165 if (unlikely((s64)total < SCHED_POWER_SCALE))
3166 total = SCHED_POWER_SCALE;
1e3c88bd 3167
1399fa78 3168 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3169
3170 return div_u64(available, total);
3171}
3172
3173static void update_cpu_power(struct sched_domain *sd, int cpu)
3174{
669c55e9 3175 unsigned long weight = sd->span_weight;
1399fa78 3176 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3177 struct sched_group *sdg = sd->groups;
3178
1e3c88bd
PZ
3179 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3180 if (sched_feat(ARCH_POWER))
3181 power *= arch_scale_smt_power(sd, cpu);
3182 else
3183 power *= default_scale_smt_power(sd, cpu);
3184
1399fa78 3185 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3186 }
3187
9c3f75cb 3188 sdg->sgp->power_orig = power;
9d5efe05
SV
3189
3190 if (sched_feat(ARCH_POWER))
3191 power *= arch_scale_freq_power(sd, cpu);
3192 else
3193 power *= default_scale_freq_power(sd, cpu);
3194
1399fa78 3195 power >>= SCHED_POWER_SHIFT;
9d5efe05 3196
1e3c88bd 3197 power *= scale_rt_power(cpu);
1399fa78 3198 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3199
3200 if (!power)
3201 power = 1;
3202
e51fd5e2 3203 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3204 sdg->sgp->power = power;
1e3c88bd
PZ
3205}
3206
3207static void update_group_power(struct sched_domain *sd, int cpu)
3208{
3209 struct sched_domain *child = sd->child;
3210 struct sched_group *group, *sdg = sd->groups;
3211 unsigned long power;
3212
3213 if (!child) {
3214 update_cpu_power(sd, cpu);
3215 return;
3216 }
3217
3218 power = 0;
3219
3220 group = child->groups;
3221 do {
9c3f75cb 3222 power += group->sgp->power;
1e3c88bd
PZ
3223 group = group->next;
3224 } while (group != child->groups);
3225
9c3f75cb 3226 sdg->sgp->power = power;
1e3c88bd
PZ
3227}
3228
9d5efe05
SV
3229/*
3230 * Try and fix up capacity for tiny siblings, this is needed when
3231 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3232 * which on its own isn't powerful enough.
3233 *
3234 * See update_sd_pick_busiest() and check_asym_packing().
3235 */
3236static inline int
3237fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3238{
3239 /*
1399fa78 3240 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3241 */
a6c75f2f 3242 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3243 return 0;
3244
3245 /*
3246 * If ~90% of the cpu_power is still there, we're good.
3247 */
9c3f75cb 3248 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3249 return 1;
3250
3251 return 0;
3252}
3253
1e3c88bd
PZ
3254/**
3255 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3256 * @sd: The sched_domain whose statistics are to be updated.
3257 * @group: sched_group whose statistics are to be updated.
3258 * @this_cpu: Cpu for which load balance is currently performed.
3259 * @idle: Idle status of this_cpu
3260 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3261 * @local_group: Does group contain this_cpu.
3262 * @cpus: Set of cpus considered for load balancing.
3263 * @balance: Should we balance.
3264 * @sgs: variable to hold the statistics for this group.
3265 */
3266static inline void update_sg_lb_stats(struct sched_domain *sd,
3267 struct sched_group *group, int this_cpu,
46e49b38 3268 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3269 int local_group, const struct cpumask *cpus,
3270 int *balance, struct sg_lb_stats *sgs)
3271{
2582f0eb 3272 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3273 int i;
3274 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3275 unsigned long avg_load_per_task = 0;
1e3c88bd 3276
871e35bc 3277 if (local_group)
1e3c88bd 3278 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3279
3280 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3281 max_cpu_load = 0;
3282 min_cpu_load = ~0UL;
2582f0eb 3283 max_nr_running = 0;
1e3c88bd
PZ
3284
3285 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3286 struct rq *rq = cpu_rq(i);
3287
1e3c88bd
PZ
3288 /* Bias balancing toward cpus of our domain */
3289 if (local_group) {
3290 if (idle_cpu(i) && !first_idle_cpu) {
3291 first_idle_cpu = 1;
3292 balance_cpu = i;
3293 }
3294
3295 load = target_load(i, load_idx);
3296 } else {
3297 load = source_load(i, load_idx);
2582f0eb 3298 if (load > max_cpu_load) {
1e3c88bd 3299 max_cpu_load = load;
2582f0eb
NR
3300 max_nr_running = rq->nr_running;
3301 }
1e3c88bd
PZ
3302 if (min_cpu_load > load)
3303 min_cpu_load = load;
3304 }
3305
3306 sgs->group_load += load;
3307 sgs->sum_nr_running += rq->nr_running;
3308 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3309 if (idle_cpu(i))
3310 sgs->idle_cpus++;
1e3c88bd
PZ
3311 }
3312
3313 /*
3314 * First idle cpu or the first cpu(busiest) in this sched group
3315 * is eligible for doing load balancing at this and above
3316 * domains. In the newly idle case, we will allow all the cpu's
3317 * to do the newly idle load balance.
3318 */
bbc8cb5b
PZ
3319 if (idle != CPU_NEWLY_IDLE && local_group) {
3320 if (balance_cpu != this_cpu) {
3321 *balance = 0;
3322 return;
3323 }
3324 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3325 }
3326
3327 /* Adjust by relative CPU power of the group */
9c3f75cb 3328 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3329
1e3c88bd
PZ
3330 /*
3331 * Consider the group unbalanced when the imbalance is larger
866ab43e 3332 * than the average weight of a task.
1e3c88bd
PZ
3333 *
3334 * APZ: with cgroup the avg task weight can vary wildly and
3335 * might not be a suitable number - should we keep a
3336 * normalized nr_running number somewhere that negates
3337 * the hierarchy?
3338 */
dd5feea1
SS
3339 if (sgs->sum_nr_running)
3340 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3341
866ab43e 3342 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3343 sgs->group_imb = 1;
3344
9c3f75cb 3345 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3346 SCHED_POWER_SCALE);
9d5efe05
SV
3347 if (!sgs->group_capacity)
3348 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3349 sgs->group_weight = group->group_weight;
fab47622
NR
3350
3351 if (sgs->group_capacity > sgs->sum_nr_running)
3352 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3353}
3354
532cb4c4
MN
3355/**
3356 * update_sd_pick_busiest - return 1 on busiest group
3357 * @sd: sched_domain whose statistics are to be checked
3358 * @sds: sched_domain statistics
3359 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3360 * @sgs: sched_group statistics
3361 * @this_cpu: the current cpu
532cb4c4
MN
3362 *
3363 * Determine if @sg is a busier group than the previously selected
3364 * busiest group.
3365 */
3366static bool update_sd_pick_busiest(struct sched_domain *sd,
3367 struct sd_lb_stats *sds,
3368 struct sched_group *sg,
3369 struct sg_lb_stats *sgs,
3370 int this_cpu)
3371{
3372 if (sgs->avg_load <= sds->max_load)
3373 return false;
3374
3375 if (sgs->sum_nr_running > sgs->group_capacity)
3376 return true;
3377
3378 if (sgs->group_imb)
3379 return true;
3380
3381 /*
3382 * ASYM_PACKING needs to move all the work to the lowest
3383 * numbered CPUs in the group, therefore mark all groups
3384 * higher than ourself as busy.
3385 */
3386 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3387 this_cpu < group_first_cpu(sg)) {
3388 if (!sds->busiest)
3389 return true;
3390
3391 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3392 return true;
3393 }
3394
3395 return false;
3396}
3397
1e3c88bd
PZ
3398/**
3399 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3400 * @sd: sched_domain whose statistics are to be updated.
3401 * @this_cpu: Cpu for which load balance is currently performed.
3402 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3403 * @cpus: Set of cpus considered for load balancing.
3404 * @balance: Should we balance.
3405 * @sds: variable to hold the statistics for this sched_domain.
3406 */
3407static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3408 enum cpu_idle_type idle, const struct cpumask *cpus,
3409 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3410{
3411 struct sched_domain *child = sd->child;
532cb4c4 3412 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3413 struct sg_lb_stats sgs;
3414 int load_idx, prefer_sibling = 0;
3415
3416 if (child && child->flags & SD_PREFER_SIBLING)
3417 prefer_sibling = 1;
3418
3419 init_sd_power_savings_stats(sd, sds, idle);
3420 load_idx = get_sd_load_idx(sd, idle);
3421
3422 do {
3423 int local_group;
3424
532cb4c4 3425 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3426 memset(&sgs, 0, sizeof(sgs));
46e49b38 3427 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3428 local_group, cpus, balance, &sgs);
3429
8f190fb3 3430 if (local_group && !(*balance))
1e3c88bd
PZ
3431 return;
3432
3433 sds->total_load += sgs.group_load;
9c3f75cb 3434 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3435
3436 /*
3437 * In case the child domain prefers tasks go to siblings
532cb4c4 3438 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3439 * and move all the excess tasks away. We lower the capacity
3440 * of a group only if the local group has the capacity to fit
3441 * these excess tasks, i.e. nr_running < group_capacity. The
3442 * extra check prevents the case where you always pull from the
3443 * heaviest group when it is already under-utilized (possible
3444 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3445 */
75dd321d 3446 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3447 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3448
3449 if (local_group) {
3450 sds->this_load = sgs.avg_load;
532cb4c4 3451 sds->this = sg;
1e3c88bd
PZ
3452 sds->this_nr_running = sgs.sum_nr_running;
3453 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3454 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3455 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 3456 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 3457 sds->max_load = sgs.avg_load;
532cb4c4 3458 sds->busiest = sg;
1e3c88bd 3459 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3460 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3461 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3462 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3463 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3464 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3465 sds->group_imb = sgs.group_imb;
3466 }
3467
532cb4c4
MN
3468 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3469 sg = sg->next;
3470 } while (sg != sd->groups);
3471}
3472
2ec57d44 3473int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
3474{
3475 return 0*SD_ASYM_PACKING;
3476}
3477
3478/**
3479 * check_asym_packing - Check to see if the group is packed into the
3480 * sched doman.
3481 *
3482 * This is primarily intended to used at the sibling level. Some
3483 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3484 * case of POWER7, it can move to lower SMT modes only when higher
3485 * threads are idle. When in lower SMT modes, the threads will
3486 * perform better since they share less core resources. Hence when we
3487 * have idle threads, we want them to be the higher ones.
3488 *
3489 * This packing function is run on idle threads. It checks to see if
3490 * the busiest CPU in this domain (core in the P7 case) has a higher
3491 * CPU number than the packing function is being run on. Here we are
3492 * assuming lower CPU number will be equivalent to lower a SMT thread
3493 * number.
3494 *
b6b12294
MN
3495 * Returns 1 when packing is required and a task should be moved to
3496 * this CPU. The amount of the imbalance is returned in *imbalance.
3497 *
532cb4c4
MN
3498 * @sd: The sched_domain whose packing is to be checked.
3499 * @sds: Statistics of the sched_domain which is to be packed
3500 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3501 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
3502 */
3503static int check_asym_packing(struct sched_domain *sd,
3504 struct sd_lb_stats *sds,
3505 int this_cpu, unsigned long *imbalance)
3506{
3507 int busiest_cpu;
3508
3509 if (!(sd->flags & SD_ASYM_PACKING))
3510 return 0;
3511
3512 if (!sds->busiest)
3513 return 0;
3514
3515 busiest_cpu = group_first_cpu(sds->busiest);
3516 if (this_cpu > busiest_cpu)
3517 return 0;
3518
9c3f75cb 3519 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 3520 SCHED_POWER_SCALE);
532cb4c4 3521 return 1;
1e3c88bd
PZ
3522}
3523
3524/**
3525 * fix_small_imbalance - Calculate the minor imbalance that exists
3526 * amongst the groups of a sched_domain, during
3527 * load balancing.
3528 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3529 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3530 * @imbalance: Variable to store the imbalance.
3531 */
3532static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3533 int this_cpu, unsigned long *imbalance)
3534{
3535 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3536 unsigned int imbn = 2;
dd5feea1 3537 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
3538
3539 if (sds->this_nr_running) {
3540 sds->this_load_per_task /= sds->this_nr_running;
3541 if (sds->busiest_load_per_task >
3542 sds->this_load_per_task)
3543 imbn = 1;
3544 } else
3545 sds->this_load_per_task =
3546 cpu_avg_load_per_task(this_cpu);
3547
dd5feea1 3548 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3549 * SCHED_POWER_SCALE;
9c3f75cb 3550 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3551
3552 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3553 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3554 *imbalance = sds->busiest_load_per_task;
3555 return;
3556 }
3557
3558 /*
3559 * OK, we don't have enough imbalance to justify moving tasks,
3560 * however we may be able to increase total CPU power used by
3561 * moving them.
3562 */
3563
9c3f75cb 3564 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3565 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3566 pwr_now += sds->this->sgp->power *
1e3c88bd 3567 min(sds->this_load_per_task, sds->this_load);
1399fa78 3568 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3569
3570 /* Amount of load we'd subtract */
1399fa78 3571 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3572 sds->busiest->sgp->power;
1e3c88bd 3573 if (sds->max_load > tmp)
9c3f75cb 3574 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3575 min(sds->busiest_load_per_task, sds->max_load - tmp);
3576
3577 /* Amount of load we'd add */
9c3f75cb 3578 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3579 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3580 tmp = (sds->max_load * sds->busiest->sgp->power) /
3581 sds->this->sgp->power;
1e3c88bd 3582 else
1399fa78 3583 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3584 sds->this->sgp->power;
3585 pwr_move += sds->this->sgp->power *
1e3c88bd 3586 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3587 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3588
3589 /* Move if we gain throughput */
3590 if (pwr_move > pwr_now)
3591 *imbalance = sds->busiest_load_per_task;
3592}
3593
3594/**
3595 * calculate_imbalance - Calculate the amount of imbalance present within the
3596 * groups of a given sched_domain during load balance.
3597 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3598 * @this_cpu: Cpu for which currently load balance is being performed.
3599 * @imbalance: The variable to store the imbalance.
3600 */
3601static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3602 unsigned long *imbalance)
3603{
dd5feea1
SS
3604 unsigned long max_pull, load_above_capacity = ~0UL;
3605
3606 sds->busiest_load_per_task /= sds->busiest_nr_running;
3607 if (sds->group_imb) {
3608 sds->busiest_load_per_task =
3609 min(sds->busiest_load_per_task, sds->avg_load);
3610 }
3611
1e3c88bd
PZ
3612 /*
3613 * In the presence of smp nice balancing, certain scenarios can have
3614 * max load less than avg load(as we skip the groups at or below
3615 * its cpu_power, while calculating max_load..)
3616 */
3617 if (sds->max_load < sds->avg_load) {
3618 *imbalance = 0;
3619 return fix_small_imbalance(sds, this_cpu, imbalance);
3620 }
3621
dd5feea1
SS
3622 if (!sds->group_imb) {
3623 /*
3624 * Don't want to pull so many tasks that a group would go idle.
3625 */
3626 load_above_capacity = (sds->busiest_nr_running -
3627 sds->busiest_group_capacity);
3628
1399fa78 3629 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3630
9c3f75cb 3631 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3632 }
3633
3634 /*
3635 * We're trying to get all the cpus to the average_load, so we don't
3636 * want to push ourselves above the average load, nor do we wish to
3637 * reduce the max loaded cpu below the average load. At the same time,
3638 * we also don't want to reduce the group load below the group capacity
3639 * (so that we can implement power-savings policies etc). Thus we look
3640 * for the minimum possible imbalance.
3641 * Be careful of negative numbers as they'll appear as very large values
3642 * with unsigned longs.
3643 */
3644 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3645
3646 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3647 *imbalance = min(max_pull * sds->busiest->sgp->power,
3648 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3649 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3650
3651 /*
3652 * if *imbalance is less than the average load per runnable task
25985edc 3653 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3654 * a think about bumping its value to force at least one task to be
3655 * moved
3656 */
3657 if (*imbalance < sds->busiest_load_per_task)
3658 return fix_small_imbalance(sds, this_cpu, imbalance);
3659
3660}
fab47622 3661
1e3c88bd
PZ
3662/******* find_busiest_group() helpers end here *********************/
3663
3664/**
3665 * find_busiest_group - Returns the busiest group within the sched_domain
3666 * if there is an imbalance. If there isn't an imbalance, and
3667 * the user has opted for power-savings, it returns a group whose
3668 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3669 * such a group exists.
3670 *
3671 * Also calculates the amount of weighted load which should be moved
3672 * to restore balance.
3673 *
3674 * @sd: The sched_domain whose busiest group is to be returned.
3675 * @this_cpu: The cpu for which load balancing is currently being performed.
3676 * @imbalance: Variable which stores amount of weighted load which should
3677 * be moved to restore balance/put a group to idle.
3678 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3679 * @cpus: The set of CPUs under consideration for load-balancing.
3680 * @balance: Pointer to a variable indicating if this_cpu
3681 * is the appropriate cpu to perform load balancing at this_level.
3682 *
3683 * Returns: - the busiest group if imbalance exists.
3684 * - If no imbalance and user has opted for power-savings balance,
3685 * return the least loaded group whose CPUs can be
3686 * put to idle by rebalancing its tasks onto our group.
3687 */
3688static struct sched_group *
3689find_busiest_group(struct sched_domain *sd, int this_cpu,
3690 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3691 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3692{
3693 struct sd_lb_stats sds;
3694
3695 memset(&sds, 0, sizeof(sds));
3696
3697 /*
3698 * Compute the various statistics relavent for load balancing at
3699 * this level.
3700 */
46e49b38 3701 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3702
cc57aa8f
PZ
3703 /*
3704 * this_cpu is not the appropriate cpu to perform load balancing at
3705 * this level.
1e3c88bd 3706 */
8f190fb3 3707 if (!(*balance))
1e3c88bd
PZ
3708 goto ret;
3709
532cb4c4
MN
3710 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3711 check_asym_packing(sd, &sds, this_cpu, imbalance))
3712 return sds.busiest;
3713
cc57aa8f 3714 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3715 if (!sds.busiest || sds.busiest_nr_running == 0)
3716 goto out_balanced;
3717
1399fa78 3718 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3719
866ab43e
PZ
3720 /*
3721 * If the busiest group is imbalanced the below checks don't
3722 * work because they assumes all things are equal, which typically
3723 * isn't true due to cpus_allowed constraints and the like.
3724 */
3725 if (sds.group_imb)
3726 goto force_balance;
3727
cc57aa8f 3728 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3729 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3730 !sds.busiest_has_capacity)
3731 goto force_balance;
3732
cc57aa8f
PZ
3733 /*
3734 * If the local group is more busy than the selected busiest group
3735 * don't try and pull any tasks.
3736 */
1e3c88bd
PZ
3737 if (sds.this_load >= sds.max_load)
3738 goto out_balanced;
3739
cc57aa8f
PZ
3740 /*
3741 * Don't pull any tasks if this group is already above the domain
3742 * average load.
3743 */
1e3c88bd
PZ
3744 if (sds.this_load >= sds.avg_load)
3745 goto out_balanced;
3746
c186fafe 3747 if (idle == CPU_IDLE) {
aae6d3dd
SS
3748 /*
3749 * This cpu is idle. If the busiest group load doesn't
3750 * have more tasks than the number of available cpu's and
3751 * there is no imbalance between this and busiest group
3752 * wrt to idle cpu's, it is balanced.
3753 */
c186fafe 3754 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3755 sds.busiest_nr_running <= sds.busiest_group_weight)
3756 goto out_balanced;
c186fafe
PZ
3757 } else {
3758 /*
3759 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3760 * imbalance_pct to be conservative.
3761 */
3762 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3763 goto out_balanced;
aae6d3dd 3764 }
1e3c88bd 3765
fab47622 3766force_balance:
1e3c88bd
PZ
3767 /* Looks like there is an imbalance. Compute it */
3768 calculate_imbalance(&sds, this_cpu, imbalance);
3769 return sds.busiest;
3770
3771out_balanced:
3772 /*
3773 * There is no obvious imbalance. But check if we can do some balancing
3774 * to save power.
3775 */
3776 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3777 return sds.busiest;
3778ret:
3779 *imbalance = 0;
3780 return NULL;
3781}
3782
3783/*
3784 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3785 */
3786static struct rq *
9d5efe05
SV
3787find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3788 enum cpu_idle_type idle, unsigned long imbalance,
3789 const struct cpumask *cpus)
1e3c88bd
PZ
3790{
3791 struct rq *busiest = NULL, *rq;
3792 unsigned long max_load = 0;
3793 int i;
3794
3795 for_each_cpu(i, sched_group_cpus(group)) {
3796 unsigned long power = power_of(i);
1399fa78
NR
3797 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3798 SCHED_POWER_SCALE);
1e3c88bd
PZ
3799 unsigned long wl;
3800
9d5efe05
SV
3801 if (!capacity)
3802 capacity = fix_small_capacity(sd, group);
3803
1e3c88bd
PZ
3804 if (!cpumask_test_cpu(i, cpus))
3805 continue;
3806
3807 rq = cpu_rq(i);
6e40f5bb 3808 wl = weighted_cpuload(i);
1e3c88bd 3809
6e40f5bb
TG
3810 /*
3811 * When comparing with imbalance, use weighted_cpuload()
3812 * which is not scaled with the cpu power.
3813 */
1e3c88bd
PZ
3814 if (capacity && rq->nr_running == 1 && wl > imbalance)
3815 continue;
3816
6e40f5bb
TG
3817 /*
3818 * For the load comparisons with the other cpu's, consider
3819 * the weighted_cpuload() scaled with the cpu power, so that
3820 * the load can be moved away from the cpu that is potentially
3821 * running at a lower capacity.
3822 */
1399fa78 3823 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3824
1e3c88bd
PZ
3825 if (wl > max_load) {
3826 max_load = wl;
3827 busiest = rq;
3828 }
3829 }
3830
3831 return busiest;
3832}
3833
3834/*
3835 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3836 * so long as it is large enough.
3837 */
3838#define MAX_PINNED_INTERVAL 512
3839
3840/* Working cpumask for load_balance and load_balance_newidle. */
3841static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3842
46e49b38 3843static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3844 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3845{
3846 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3847
3848 /*
3849 * ASYM_PACKING needs to force migrate tasks from busy but
3850 * higher numbered CPUs in order to pack all tasks in the
3851 * lowest numbered CPUs.
3852 */
3853 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3854 return 1;
3855
1af3ed3d
PZ
3856 /*
3857 * The only task running in a non-idle cpu can be moved to this
3858 * cpu in an attempt to completely freeup the other CPU
3859 * package.
3860 *
3861 * The package power saving logic comes from
3862 * find_busiest_group(). If there are no imbalance, then
3863 * f_b_g() will return NULL. However when sched_mc={1,2} then
3864 * f_b_g() will select a group from which a running task may be
3865 * pulled to this cpu in order to make the other package idle.
3866 * If there is no opportunity to make a package idle and if
3867 * there are no imbalance, then f_b_g() will return NULL and no
3868 * action will be taken in load_balance_newidle().
3869 *
3870 * Under normal task pull operation due to imbalance, there
3871 * will be more than one task in the source run queue and
3872 * move_tasks() will succeed. ld_moved will be true and this
3873 * active balance code will not be triggered.
3874 */
1af3ed3d
PZ
3875 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3876 return 0;
3877 }
3878
3879 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3880}
3881
969c7921
TH
3882static int active_load_balance_cpu_stop(void *data);
3883
1e3c88bd
PZ
3884/*
3885 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3886 * tasks if there is an imbalance.
3887 */
3888static int load_balance(int this_cpu, struct rq *this_rq,
3889 struct sched_domain *sd, enum cpu_idle_type idle,
3890 int *balance)
3891{
46e49b38 3892 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3893 struct sched_group *group;
3894 unsigned long imbalance;
3895 struct rq *busiest;
3896 unsigned long flags;
3897 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3898
3899 cpumask_copy(cpus, cpu_active_mask);
3900
1e3c88bd
PZ
3901 schedstat_inc(sd, lb_count[idle]);
3902
3903redo:
46e49b38 3904 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3905 cpus, balance);
3906
3907 if (*balance == 0)
3908 goto out_balanced;
3909
3910 if (!group) {
3911 schedstat_inc(sd, lb_nobusyg[idle]);
3912 goto out_balanced;
3913 }
3914
9d5efe05 3915 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3916 if (!busiest) {
3917 schedstat_inc(sd, lb_nobusyq[idle]);
3918 goto out_balanced;
3919 }
3920
3921 BUG_ON(busiest == this_rq);
3922
3923 schedstat_add(sd, lb_imbalance[idle], imbalance);
3924
3925 ld_moved = 0;
3926 if (busiest->nr_running > 1) {
3927 /*
3928 * Attempt to move tasks. If find_busiest_group has found
3929 * an imbalance but busiest->nr_running <= 1, the group is
3930 * still unbalanced. ld_moved simply stays zero, so it is
3931 * correctly treated as an imbalance.
3932 */
b30aef17 3933 all_pinned = 1;
1e3c88bd
PZ
3934 local_irq_save(flags);
3935 double_rq_lock(this_rq, busiest);
3936 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3937 imbalance, sd, idle, &all_pinned);
3938 double_rq_unlock(this_rq, busiest);
3939 local_irq_restore(flags);
3940
3941 /*
3942 * some other cpu did the load balance for us.
3943 */
3944 if (ld_moved && this_cpu != smp_processor_id())
3945 resched_cpu(this_cpu);
3946
3947 /* All tasks on this runqueue were pinned by CPU affinity */
3948 if (unlikely(all_pinned)) {
3949 cpumask_clear_cpu(cpu_of(busiest), cpus);
3950 if (!cpumask_empty(cpus))
3951 goto redo;
3952 goto out_balanced;
3953 }
3954 }
3955
3956 if (!ld_moved) {
3957 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3958 /*
3959 * Increment the failure counter only on periodic balance.
3960 * We do not want newidle balance, which can be very
3961 * frequent, pollute the failure counter causing
3962 * excessive cache_hot migrations and active balances.
3963 */
3964 if (idle != CPU_NEWLY_IDLE)
3965 sd->nr_balance_failed++;
1e3c88bd 3966
46e49b38 3967 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3968 raw_spin_lock_irqsave(&busiest->lock, flags);
3969
969c7921
TH
3970 /* don't kick the active_load_balance_cpu_stop,
3971 * if the curr task on busiest cpu can't be
3972 * moved to this_cpu
1e3c88bd
PZ
3973 */
3974 if (!cpumask_test_cpu(this_cpu,
3975 &busiest->curr->cpus_allowed)) {
3976 raw_spin_unlock_irqrestore(&busiest->lock,
3977 flags);
3978 all_pinned = 1;
3979 goto out_one_pinned;
3980 }
3981
969c7921
TH
3982 /*
3983 * ->active_balance synchronizes accesses to
3984 * ->active_balance_work. Once set, it's cleared
3985 * only after active load balance is finished.
3986 */
1e3c88bd
PZ
3987 if (!busiest->active_balance) {
3988 busiest->active_balance = 1;
3989 busiest->push_cpu = this_cpu;
3990 active_balance = 1;
3991 }
3992 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3993
1e3c88bd 3994 if (active_balance)
969c7921
TH
3995 stop_one_cpu_nowait(cpu_of(busiest),
3996 active_load_balance_cpu_stop, busiest,
3997 &busiest->active_balance_work);
1e3c88bd
PZ
3998
3999 /*
4000 * We've kicked active balancing, reset the failure
4001 * counter.
4002 */
4003 sd->nr_balance_failed = sd->cache_nice_tries+1;
4004 }
4005 } else
4006 sd->nr_balance_failed = 0;
4007
4008 if (likely(!active_balance)) {
4009 /* We were unbalanced, so reset the balancing interval */
4010 sd->balance_interval = sd->min_interval;
4011 } else {
4012 /*
4013 * If we've begun active balancing, start to back off. This
4014 * case may not be covered by the all_pinned logic if there
4015 * is only 1 task on the busy runqueue (because we don't call
4016 * move_tasks).
4017 */
4018 if (sd->balance_interval < sd->max_interval)
4019 sd->balance_interval *= 2;
4020 }
4021
1e3c88bd
PZ
4022 goto out;
4023
4024out_balanced:
4025 schedstat_inc(sd, lb_balanced[idle]);
4026
4027 sd->nr_balance_failed = 0;
4028
4029out_one_pinned:
4030 /* tune up the balancing interval */
4031 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4032 (sd->balance_interval < sd->max_interval))
4033 sd->balance_interval *= 2;
4034
46e49b38 4035 ld_moved = 0;
1e3c88bd 4036out:
1e3c88bd
PZ
4037 return ld_moved;
4038}
4039
1e3c88bd
PZ
4040/*
4041 * idle_balance is called by schedule() if this_cpu is about to become
4042 * idle. Attempts to pull tasks from other CPUs.
4043 */
4044static void idle_balance(int this_cpu, struct rq *this_rq)
4045{
4046 struct sched_domain *sd;
4047 int pulled_task = 0;
4048 unsigned long next_balance = jiffies + HZ;
4049
4050 this_rq->idle_stamp = this_rq->clock;
4051
4052 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4053 return;
4054
f492e12e
PZ
4055 /*
4056 * Drop the rq->lock, but keep IRQ/preempt disabled.
4057 */
4058 raw_spin_unlock(&this_rq->lock);
4059
c66eaf61 4060 update_shares(this_cpu);
dce840a0 4061 rcu_read_lock();
1e3c88bd
PZ
4062 for_each_domain(this_cpu, sd) {
4063 unsigned long interval;
f492e12e 4064 int balance = 1;
1e3c88bd
PZ
4065
4066 if (!(sd->flags & SD_LOAD_BALANCE))
4067 continue;
4068
f492e12e 4069 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4070 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4071 pulled_task = load_balance(this_cpu, this_rq,
4072 sd, CPU_NEWLY_IDLE, &balance);
4073 }
1e3c88bd
PZ
4074
4075 interval = msecs_to_jiffies(sd->balance_interval);
4076 if (time_after(next_balance, sd->last_balance + interval))
4077 next_balance = sd->last_balance + interval;
d5ad140b
NR
4078 if (pulled_task) {
4079 this_rq->idle_stamp = 0;
1e3c88bd 4080 break;
d5ad140b 4081 }
1e3c88bd 4082 }
dce840a0 4083 rcu_read_unlock();
f492e12e
PZ
4084
4085 raw_spin_lock(&this_rq->lock);
4086
1e3c88bd
PZ
4087 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4088 /*
4089 * We are going idle. next_balance may be set based on
4090 * a busy processor. So reset next_balance.
4091 */
4092 this_rq->next_balance = next_balance;
4093 }
4094}
4095
4096/*
969c7921
TH
4097 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4098 * running tasks off the busiest CPU onto idle CPUs. It requires at
4099 * least 1 task to be running on each physical CPU where possible, and
4100 * avoids physical / logical imbalances.
1e3c88bd 4101 */
969c7921 4102static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4103{
969c7921
TH
4104 struct rq *busiest_rq = data;
4105 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4106 int target_cpu = busiest_rq->push_cpu;
969c7921 4107 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4108 struct sched_domain *sd;
969c7921
TH
4109
4110 raw_spin_lock_irq(&busiest_rq->lock);
4111
4112 /* make sure the requested cpu hasn't gone down in the meantime */
4113 if (unlikely(busiest_cpu != smp_processor_id() ||
4114 !busiest_rq->active_balance))
4115 goto out_unlock;
1e3c88bd
PZ
4116
4117 /* Is there any task to move? */
4118 if (busiest_rq->nr_running <= 1)
969c7921 4119 goto out_unlock;
1e3c88bd
PZ
4120
4121 /*
4122 * This condition is "impossible", if it occurs
4123 * we need to fix it. Originally reported by
4124 * Bjorn Helgaas on a 128-cpu setup.
4125 */
4126 BUG_ON(busiest_rq == target_rq);
4127
4128 /* move a task from busiest_rq to target_rq */
4129 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4130
4131 /* Search for an sd spanning us and the target CPU. */
dce840a0 4132 rcu_read_lock();
1e3c88bd
PZ
4133 for_each_domain(target_cpu, sd) {
4134 if ((sd->flags & SD_LOAD_BALANCE) &&
4135 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4136 break;
4137 }
4138
4139 if (likely(sd)) {
4140 schedstat_inc(sd, alb_count);
4141
4142 if (move_one_task(target_rq, target_cpu, busiest_rq,
4143 sd, CPU_IDLE))
4144 schedstat_inc(sd, alb_pushed);
4145 else
4146 schedstat_inc(sd, alb_failed);
4147 }
dce840a0 4148 rcu_read_unlock();
1e3c88bd 4149 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4150out_unlock:
4151 busiest_rq->active_balance = 0;
4152 raw_spin_unlock_irq(&busiest_rq->lock);
4153 return 0;
1e3c88bd
PZ
4154}
4155
4156#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4157
4158static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
4159
4160static void trigger_sched_softirq(void *data)
4161{
4162 raise_softirq_irqoff(SCHED_SOFTIRQ);
4163}
4164
4165static inline void init_sched_softirq_csd(struct call_single_data *csd)
4166{
4167 csd->func = trigger_sched_softirq;
4168 csd->info = NULL;
4169 csd->flags = 0;
4170 csd->priv = 0;
4171}
4172
4173/*
4174 * idle load balancing details
4175 * - One of the idle CPUs nominates itself as idle load_balancer, while
4176 * entering idle.
4177 * - This idle load balancer CPU will also go into tickless mode when
4178 * it is idle, just like all other idle CPUs
4179 * - When one of the busy CPUs notice that there may be an idle rebalancing
4180 * needed, they will kick the idle load balancer, which then does idle
4181 * load balancing for all the idle CPUs.
4182 */
1e3c88bd
PZ
4183static struct {
4184 atomic_t load_balancer;
83cd4fe2
VP
4185 atomic_t first_pick_cpu;
4186 atomic_t second_pick_cpu;
4187 cpumask_var_t idle_cpus_mask;
4188 cpumask_var_t grp_idle_mask;
4189 unsigned long next_balance; /* in jiffy units */
4190} nohz ____cacheline_aligned;
1e3c88bd
PZ
4191
4192int get_nohz_load_balancer(void)
4193{
4194 return atomic_read(&nohz.load_balancer);
4195}
4196
4197#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4198/**
4199 * lowest_flag_domain - Return lowest sched_domain containing flag.
4200 * @cpu: The cpu whose lowest level of sched domain is to
4201 * be returned.
4202 * @flag: The flag to check for the lowest sched_domain
4203 * for the given cpu.
4204 *
4205 * Returns the lowest sched_domain of a cpu which contains the given flag.
4206 */
4207static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4208{
4209 struct sched_domain *sd;
4210
4211 for_each_domain(cpu, sd)
08354716 4212 if (sd->flags & flag)
1e3c88bd
PZ
4213 break;
4214
4215 return sd;
4216}
4217
4218/**
4219 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4220 * @cpu: The cpu whose domains we're iterating over.
4221 * @sd: variable holding the value of the power_savings_sd
4222 * for cpu.
4223 * @flag: The flag to filter the sched_domains to be iterated.
4224 *
4225 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4226 * set, starting from the lowest sched_domain to the highest.
4227 */
4228#define for_each_flag_domain(cpu, sd, flag) \
4229 for (sd = lowest_flag_domain(cpu, flag); \
4230 (sd && (sd->flags & flag)); sd = sd->parent)
4231
4232/**
4233 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4234 * @ilb_group: group to be checked for semi-idleness
4235 *
4236 * Returns: 1 if the group is semi-idle. 0 otherwise.
4237 *
4238 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4239 * and atleast one non-idle CPU. This helper function checks if the given
4240 * sched_group is semi-idle or not.
4241 */
4242static inline int is_semi_idle_group(struct sched_group *ilb_group)
4243{
83cd4fe2 4244 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
4245 sched_group_cpus(ilb_group));
4246
4247 /*
4248 * A sched_group is semi-idle when it has atleast one busy cpu
4249 * and atleast one idle cpu.
4250 */
83cd4fe2 4251 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
4252 return 0;
4253
83cd4fe2 4254 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
4255 return 0;
4256
4257 return 1;
4258}
4259/**
4260 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4261 * @cpu: The cpu which is nominating a new idle_load_balancer.
4262 *
4263 * Returns: Returns the id of the idle load balancer if it exists,
4264 * Else, returns >= nr_cpu_ids.
4265 *
4266 * This algorithm picks the idle load balancer such that it belongs to a
4267 * semi-idle powersavings sched_domain. The idea is to try and avoid
4268 * completely idle packages/cores just for the purpose of idle load balancing
4269 * when there are other idle cpu's which are better suited for that job.
4270 */
4271static int find_new_ilb(int cpu)
4272{
4273 struct sched_domain *sd;
4274 struct sched_group *ilb_group;
dce840a0 4275 int ilb = nr_cpu_ids;
1e3c88bd
PZ
4276
4277 /*
4278 * Have idle load balancer selection from semi-idle packages only
4279 * when power-aware load balancing is enabled
4280 */
4281 if (!(sched_smt_power_savings || sched_mc_power_savings))
4282 goto out_done;
4283
4284 /*
4285 * Optimize for the case when we have no idle CPUs or only one
4286 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4287 */
83cd4fe2 4288 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4289 goto out_done;
4290
dce840a0 4291 rcu_read_lock();
1e3c88bd
PZ
4292 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4293 ilb_group = sd->groups;
4294
4295 do {
dce840a0
PZ
4296 if (is_semi_idle_group(ilb_group)) {
4297 ilb = cpumask_first(nohz.grp_idle_mask);
4298 goto unlock;
4299 }
1e3c88bd
PZ
4300
4301 ilb_group = ilb_group->next;
4302
4303 } while (ilb_group != sd->groups);
4304 }
dce840a0
PZ
4305unlock:
4306 rcu_read_unlock();
1e3c88bd
PZ
4307
4308out_done:
dce840a0 4309 return ilb;
1e3c88bd
PZ
4310}
4311#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4312static inline int find_new_ilb(int call_cpu)
4313{
83cd4fe2 4314 return nr_cpu_ids;
1e3c88bd
PZ
4315}
4316#endif
4317
83cd4fe2
VP
4318/*
4319 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4320 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4321 * CPU (if there is one).
4322 */
4323static void nohz_balancer_kick(int cpu)
4324{
4325 int ilb_cpu;
4326
4327 nohz.next_balance++;
4328
4329 ilb_cpu = get_nohz_load_balancer();
4330
4331 if (ilb_cpu >= nr_cpu_ids) {
4332 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4333 if (ilb_cpu >= nr_cpu_ids)
4334 return;
4335 }
4336
4337 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
4338 struct call_single_data *cp;
4339
4340 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4341 cp = &per_cpu(remote_sched_softirq_cb, cpu);
4342 __smp_call_function_single(ilb_cpu, cp, 0);
4343 }
4344 return;
4345}
4346
1e3c88bd
PZ
4347/*
4348 * This routine will try to nominate the ilb (idle load balancing)
4349 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 4350 * load balancing on behalf of all those cpus.
1e3c88bd 4351 *
83cd4fe2
VP
4352 * When the ilb owner becomes busy, we will not have new ilb owner until some
4353 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4354 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4355 *
83cd4fe2
VP
4356 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4357 * ilb owner CPU in future (when there is a need for idle load balancing on
4358 * behalf of all idle CPUs).
1e3c88bd 4359 */
83cd4fe2 4360void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4361{
4362 int cpu = smp_processor_id();
4363
4364 if (stop_tick) {
1e3c88bd
PZ
4365 if (!cpu_active(cpu)) {
4366 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4367 return;
1e3c88bd
PZ
4368
4369 /*
4370 * If we are going offline and still the leader,
4371 * give up!
4372 */
83cd4fe2
VP
4373 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4374 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4375 BUG();
4376
83cd4fe2 4377 return;
1e3c88bd
PZ
4378 }
4379
83cd4fe2 4380 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4381
83cd4fe2
VP
4382 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4383 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4384 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4385 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4386
83cd4fe2 4387 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4388 int new_ilb;
4389
83cd4fe2
VP
4390 /* make me the ilb owner */
4391 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4392 cpu) != nr_cpu_ids)
4393 return;
4394
1e3c88bd
PZ
4395 /*
4396 * Check to see if there is a more power-efficient
4397 * ilb.
4398 */
4399 new_ilb = find_new_ilb(cpu);
4400 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4401 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4402 resched_cpu(new_ilb);
83cd4fe2 4403 return;
1e3c88bd 4404 }
83cd4fe2 4405 return;
1e3c88bd
PZ
4406 }
4407 } else {
83cd4fe2
VP
4408 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4409 return;
1e3c88bd 4410
83cd4fe2 4411 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4412
4413 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4414 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4415 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4416 BUG();
4417 }
83cd4fe2 4418 return;
1e3c88bd
PZ
4419}
4420#endif
4421
4422static DEFINE_SPINLOCK(balancing);
4423
49c022e6
PZ
4424static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4425
4426/*
4427 * Scale the max load_balance interval with the number of CPUs in the system.
4428 * This trades load-balance latency on larger machines for less cross talk.
4429 */
4430static void update_max_interval(void)
4431{
4432 max_load_balance_interval = HZ*num_online_cpus()/10;
4433}
4434
1e3c88bd
PZ
4435/*
4436 * It checks each scheduling domain to see if it is due to be balanced,
4437 * and initiates a balancing operation if so.
4438 *
4439 * Balancing parameters are set up in arch_init_sched_domains.
4440 */
4441static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4442{
4443 int balance = 1;
4444 struct rq *rq = cpu_rq(cpu);
4445 unsigned long interval;
4446 struct sched_domain *sd;
4447 /* Earliest time when we have to do rebalance again */
4448 unsigned long next_balance = jiffies + 60*HZ;
4449 int update_next_balance = 0;
4450 int need_serialize;
4451
2069dd75
PZ
4452 update_shares(cpu);
4453
dce840a0 4454 rcu_read_lock();
1e3c88bd
PZ
4455 for_each_domain(cpu, sd) {
4456 if (!(sd->flags & SD_LOAD_BALANCE))
4457 continue;
4458
4459 interval = sd->balance_interval;
4460 if (idle != CPU_IDLE)
4461 interval *= sd->busy_factor;
4462
4463 /* scale ms to jiffies */
4464 interval = msecs_to_jiffies(interval);
49c022e6 4465 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4466
4467 need_serialize = sd->flags & SD_SERIALIZE;
4468
4469 if (need_serialize) {
4470 if (!spin_trylock(&balancing))
4471 goto out;
4472 }
4473
4474 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4475 if (load_balance(cpu, rq, sd, idle, &balance)) {
4476 /*
4477 * We've pulled tasks over so either we're no
c186fafe 4478 * longer idle.
1e3c88bd
PZ
4479 */
4480 idle = CPU_NOT_IDLE;
4481 }
4482 sd->last_balance = jiffies;
4483 }
4484 if (need_serialize)
4485 spin_unlock(&balancing);
4486out:
4487 if (time_after(next_balance, sd->last_balance + interval)) {
4488 next_balance = sd->last_balance + interval;
4489 update_next_balance = 1;
4490 }
4491
4492 /*
4493 * Stop the load balance at this level. There is another
4494 * CPU in our sched group which is doing load balancing more
4495 * actively.
4496 */
4497 if (!balance)
4498 break;
4499 }
dce840a0 4500 rcu_read_unlock();
1e3c88bd
PZ
4501
4502 /*
4503 * next_balance will be updated only when there is a need.
4504 * When the cpu is attached to null domain for ex, it will not be
4505 * updated.
4506 */
4507 if (likely(update_next_balance))
4508 rq->next_balance = next_balance;
4509}
4510
83cd4fe2 4511#ifdef CONFIG_NO_HZ
1e3c88bd 4512/*
83cd4fe2 4513 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4514 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4515 */
83cd4fe2
VP
4516static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4517{
4518 struct rq *this_rq = cpu_rq(this_cpu);
4519 struct rq *rq;
4520 int balance_cpu;
4521
4522 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4523 return;
4524
4525 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4526 if (balance_cpu == this_cpu)
4527 continue;
4528
4529 /*
4530 * If this cpu gets work to do, stop the load balancing
4531 * work being done for other cpus. Next load
4532 * balancing owner will pick it up.
4533 */
4534 if (need_resched()) {
4535 this_rq->nohz_balance_kick = 0;
4536 break;
4537 }
4538
4539 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 4540 update_rq_clock(this_rq);
83cd4fe2
VP
4541 update_cpu_load(this_rq);
4542 raw_spin_unlock_irq(&this_rq->lock);
4543
4544 rebalance_domains(balance_cpu, CPU_IDLE);
4545
4546 rq = cpu_rq(balance_cpu);
4547 if (time_after(this_rq->next_balance, rq->next_balance))
4548 this_rq->next_balance = rq->next_balance;
4549 }
4550 nohz.next_balance = this_rq->next_balance;
4551 this_rq->nohz_balance_kick = 0;
4552}
4553
4554/*
4555 * Current heuristic for kicking the idle load balancer
4556 * - first_pick_cpu is the one of the busy CPUs. It will kick
4557 * idle load balancer when it has more than one process active. This
4558 * eliminates the need for idle load balancing altogether when we have
4559 * only one running process in the system (common case).
4560 * - If there are more than one busy CPU, idle load balancer may have
4561 * to run for active_load_balance to happen (i.e., two busy CPUs are
4562 * SMT or core siblings and can run better if they move to different
4563 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4564 * which will kick idle load balancer as soon as it has any load.
4565 */
4566static inline int nohz_kick_needed(struct rq *rq, int cpu)
4567{
4568 unsigned long now = jiffies;
4569 int ret;
4570 int first_pick_cpu, second_pick_cpu;
4571
4572 if (time_before(now, nohz.next_balance))
4573 return 0;
4574
f6c3f168 4575 if (rq->idle_at_tick)
83cd4fe2
VP
4576 return 0;
4577
4578 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4579 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4580
4581 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4582 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4583 return 0;
4584
4585 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4586 if (ret == nr_cpu_ids || ret == cpu) {
4587 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4588 if (rq->nr_running > 1)
4589 return 1;
4590 } else {
4591 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4592 if (ret == nr_cpu_ids || ret == cpu) {
4593 if (rq->nr_running)
4594 return 1;
4595 }
4596 }
4597 return 0;
4598}
4599#else
4600static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4601#endif
4602
4603/*
4604 * run_rebalance_domains is triggered when needed from the scheduler tick.
4605 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4606 */
1e3c88bd
PZ
4607static void run_rebalance_domains(struct softirq_action *h)
4608{
4609 int this_cpu = smp_processor_id();
4610 struct rq *this_rq = cpu_rq(this_cpu);
4611 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4612 CPU_IDLE : CPU_NOT_IDLE;
4613
4614 rebalance_domains(this_cpu, idle);
4615
1e3c88bd 4616 /*
83cd4fe2 4617 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4618 * balancing on behalf of the other idle cpus whose ticks are
4619 * stopped.
4620 */
83cd4fe2 4621 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4622}
4623
4624static inline int on_null_domain(int cpu)
4625{
90a6501f 4626 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4627}
4628
4629/*
4630 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4631 */
4632static inline void trigger_load_balance(struct rq *rq, int cpu)
4633{
1e3c88bd
PZ
4634 /* Don't need to rebalance while attached to NULL domain */
4635 if (time_after_eq(jiffies, rq->next_balance) &&
4636 likely(!on_null_domain(cpu)))
4637 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4638#ifdef CONFIG_NO_HZ
4639 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4640 nohz_balancer_kick(cpu);
4641#endif
1e3c88bd
PZ
4642}
4643
0bcdcf28
CE
4644static void rq_online_fair(struct rq *rq)
4645{
4646 update_sysctl();
4647}
4648
4649static void rq_offline_fair(struct rq *rq)
4650{
4651 update_sysctl();
4652}
4653
1e3c88bd
PZ
4654#else /* CONFIG_SMP */
4655
4656/*
4657 * on UP we do not need to balance between CPUs:
4658 */
4659static inline void idle_balance(int cpu, struct rq *rq)
4660{
4661}
4662
55e12e5e 4663#endif /* CONFIG_SMP */
e1d1484f 4664
bf0f6f24
IM
4665/*
4666 * scheduler tick hitting a task of our scheduling class:
4667 */
8f4d37ec 4668static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4669{
4670 struct cfs_rq *cfs_rq;
4671 struct sched_entity *se = &curr->se;
4672
4673 for_each_sched_entity(se) {
4674 cfs_rq = cfs_rq_of(se);
8f4d37ec 4675 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4676 }
4677}
4678
4679/*
cd29fe6f
PZ
4680 * called on fork with the child task as argument from the parent's context
4681 * - child not yet on the tasklist
4682 * - preemption disabled
bf0f6f24 4683 */
cd29fe6f 4684static void task_fork_fair(struct task_struct *p)
bf0f6f24 4685{
cd29fe6f 4686 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4687 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4688 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4689 struct rq *rq = this_rq();
4690 unsigned long flags;
4691
05fa785c 4692 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4693
861d034e
PZ
4694 update_rq_clock(rq);
4695
b0a0f667
PM
4696 if (unlikely(task_cpu(p) != this_cpu)) {
4697 rcu_read_lock();
cd29fe6f 4698 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4699 rcu_read_unlock();
4700 }
bf0f6f24 4701
7109c442 4702 update_curr(cfs_rq);
cd29fe6f 4703
b5d9d734
MG
4704 if (curr)
4705 se->vruntime = curr->vruntime;
aeb73b04 4706 place_entity(cfs_rq, se, 1);
4d78e7b6 4707
cd29fe6f 4708 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4709 /*
edcb60a3
IM
4710 * Upon rescheduling, sched_class::put_prev_task() will place
4711 * 'current' within the tree based on its new key value.
4712 */
4d78e7b6 4713 swap(curr->vruntime, se->vruntime);
aec0a514 4714 resched_task(rq->curr);
4d78e7b6 4715 }
bf0f6f24 4716
88ec22d3
PZ
4717 se->vruntime -= cfs_rq->min_vruntime;
4718
05fa785c 4719 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4720}
4721
cb469845
SR
4722/*
4723 * Priority of the task has changed. Check to see if we preempt
4724 * the current task.
4725 */
da7a735e
PZ
4726static void
4727prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4728{
da7a735e
PZ
4729 if (!p->se.on_rq)
4730 return;
4731
cb469845
SR
4732 /*
4733 * Reschedule if we are currently running on this runqueue and
4734 * our priority decreased, or if we are not currently running on
4735 * this runqueue and our priority is higher than the current's
4736 */
da7a735e 4737 if (rq->curr == p) {
cb469845
SR
4738 if (p->prio > oldprio)
4739 resched_task(rq->curr);
4740 } else
15afe09b 4741 check_preempt_curr(rq, p, 0);
cb469845
SR
4742}
4743
da7a735e
PZ
4744static void switched_from_fair(struct rq *rq, struct task_struct *p)
4745{
4746 struct sched_entity *se = &p->se;
4747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4748
4749 /*
4750 * Ensure the task's vruntime is normalized, so that when its
4751 * switched back to the fair class the enqueue_entity(.flags=0) will
4752 * do the right thing.
4753 *
4754 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4755 * have normalized the vruntime, if it was !on_rq, then only when
4756 * the task is sleeping will it still have non-normalized vruntime.
4757 */
4758 if (!se->on_rq && p->state != TASK_RUNNING) {
4759 /*
4760 * Fix up our vruntime so that the current sleep doesn't
4761 * cause 'unlimited' sleep bonus.
4762 */
4763 place_entity(cfs_rq, se, 0);
4764 se->vruntime -= cfs_rq->min_vruntime;
4765 }
4766}
4767
cb469845
SR
4768/*
4769 * We switched to the sched_fair class.
4770 */
da7a735e 4771static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4772{
da7a735e
PZ
4773 if (!p->se.on_rq)
4774 return;
4775
cb469845
SR
4776 /*
4777 * We were most likely switched from sched_rt, so
4778 * kick off the schedule if running, otherwise just see
4779 * if we can still preempt the current task.
4780 */
da7a735e 4781 if (rq->curr == p)
cb469845
SR
4782 resched_task(rq->curr);
4783 else
15afe09b 4784 check_preempt_curr(rq, p, 0);
cb469845
SR
4785}
4786
83b699ed
SV
4787/* Account for a task changing its policy or group.
4788 *
4789 * This routine is mostly called to set cfs_rq->curr field when a task
4790 * migrates between groups/classes.
4791 */
4792static void set_curr_task_fair(struct rq *rq)
4793{
4794 struct sched_entity *se = &rq->curr->se;
4795
ec12cb7f
PT
4796 for_each_sched_entity(se) {
4797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4798
4799 set_next_entity(cfs_rq, se);
4800 /* ensure bandwidth has been allocated on our new cfs_rq */
4801 account_cfs_rq_runtime(cfs_rq, 0);
4802 }
83b699ed
SV
4803}
4804
810b3817 4805#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4806static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4807{
b2b5ce02
PZ
4808 /*
4809 * If the task was not on the rq at the time of this cgroup movement
4810 * it must have been asleep, sleeping tasks keep their ->vruntime
4811 * absolute on their old rq until wakeup (needed for the fair sleeper
4812 * bonus in place_entity()).
4813 *
4814 * If it was on the rq, we've just 'preempted' it, which does convert
4815 * ->vruntime to a relative base.
4816 *
4817 * Make sure both cases convert their relative position when migrating
4818 * to another cgroup's rq. This does somewhat interfere with the
4819 * fair sleeper stuff for the first placement, but who cares.
4820 */
4821 if (!on_rq)
4822 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4823 set_task_rq(p, task_cpu(p));
88ec22d3 4824 if (!on_rq)
b2b5ce02 4825 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4826}
4827#endif
4828
6d686f45 4829static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4830{
4831 struct sched_entity *se = &task->se;
0d721cea
PW
4832 unsigned int rr_interval = 0;
4833
4834 /*
4835 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4836 * idle runqueue:
4837 */
0d721cea
PW
4838 if (rq->cfs.load.weight)
4839 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4840
4841 return rr_interval;
4842}
4843
bf0f6f24
IM
4844/*
4845 * All the scheduling class methods:
4846 */
5522d5d5
IM
4847static const struct sched_class fair_sched_class = {
4848 .next = &idle_sched_class,
bf0f6f24
IM
4849 .enqueue_task = enqueue_task_fair,
4850 .dequeue_task = dequeue_task_fair,
4851 .yield_task = yield_task_fair,
d95f4122 4852 .yield_to_task = yield_to_task_fair,
bf0f6f24 4853
2e09bf55 4854 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4855
4856 .pick_next_task = pick_next_task_fair,
4857 .put_prev_task = put_prev_task_fair,
4858
681f3e68 4859#ifdef CONFIG_SMP
4ce72a2c
LZ
4860 .select_task_rq = select_task_rq_fair,
4861
0bcdcf28
CE
4862 .rq_online = rq_online_fair,
4863 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4864
4865 .task_waking = task_waking_fair,
681f3e68 4866#endif
bf0f6f24 4867
83b699ed 4868 .set_curr_task = set_curr_task_fair,
bf0f6f24 4869 .task_tick = task_tick_fair,
cd29fe6f 4870 .task_fork = task_fork_fair,
cb469845
SR
4871
4872 .prio_changed = prio_changed_fair,
da7a735e 4873 .switched_from = switched_from_fair,
cb469845 4874 .switched_to = switched_to_fair,
810b3817 4875
0d721cea
PW
4876 .get_rr_interval = get_rr_interval_fair,
4877
810b3817 4878#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4879 .task_move_group = task_move_group_fair,
810b3817 4880#endif
bf0f6f24
IM
4881};
4882
4883#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4884static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4885{
bf0f6f24
IM
4886 struct cfs_rq *cfs_rq;
4887
5973e5b9 4888 rcu_read_lock();
c3b64f1e 4889 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4890 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4891 rcu_read_unlock();
bf0f6f24
IM
4892}
4893#endif
This page took 0.636207 seconds and 5 git commands to generate.