userns: make has_capability* into real functions
[deliverable/linux.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/notifier.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
5a0e3ad6 39#include <linux/gfp.h>
40dc166c 40#include <linux/syscore_ops.h>
1da177e4
LT
41
42#include <linux/compat.h>
43#include <linux/syscalls.h>
00d7c05a 44#include <linux/kprobes.h>
acce292c 45#include <linux/user_namespace.h>
1da177e4 46
04c6862c
SA
47#include <linux/kmsg_dump.h>
48
1da177e4
LT
49#include <asm/uaccess.h>
50#include <asm/io.h>
51#include <asm/unistd.h>
52
53#ifndef SET_UNALIGN_CTL
54# define SET_UNALIGN_CTL(a,b) (-EINVAL)
55#endif
56#ifndef GET_UNALIGN_CTL
57# define GET_UNALIGN_CTL(a,b) (-EINVAL)
58#endif
59#ifndef SET_FPEMU_CTL
60# define SET_FPEMU_CTL(a,b) (-EINVAL)
61#endif
62#ifndef GET_FPEMU_CTL
63# define GET_FPEMU_CTL(a,b) (-EINVAL)
64#endif
65#ifndef SET_FPEXC_CTL
66# define SET_FPEXC_CTL(a,b) (-EINVAL)
67#endif
68#ifndef GET_FPEXC_CTL
69# define GET_FPEXC_CTL(a,b) (-EINVAL)
70#endif
651d765d
AB
71#ifndef GET_ENDIAN
72# define GET_ENDIAN(a,b) (-EINVAL)
73#endif
74#ifndef SET_ENDIAN
75# define SET_ENDIAN(a,b) (-EINVAL)
76#endif
8fb402bc
EB
77#ifndef GET_TSC_CTL
78# define GET_TSC_CTL(a) (-EINVAL)
79#endif
80#ifndef SET_TSC_CTL
81# define SET_TSC_CTL(a) (-EINVAL)
82#endif
1da177e4
LT
83
84/*
85 * this is where the system-wide overflow UID and GID are defined, for
86 * architectures that now have 32-bit UID/GID but didn't in the past
87 */
88
89int overflowuid = DEFAULT_OVERFLOWUID;
90int overflowgid = DEFAULT_OVERFLOWGID;
91
92#ifdef CONFIG_UID16
93EXPORT_SYMBOL(overflowuid);
94EXPORT_SYMBOL(overflowgid);
95#endif
96
97/*
98 * the same as above, but for filesystems which can only store a 16-bit
99 * UID and GID. as such, this is needed on all architectures
100 */
101
102int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
103int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
104
105EXPORT_SYMBOL(fs_overflowuid);
106EXPORT_SYMBOL(fs_overflowgid);
107
108/*
109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
110 */
111
112int C_A_D = 1;
9ec52099
CLG
113struct pid *cad_pid;
114EXPORT_SYMBOL(cad_pid);
1da177e4 115
bd804eba
RW
116/*
117 * If set, this is used for preparing the system to power off.
118 */
119
120void (*pm_power_off_prepare)(void);
bd804eba 121
c69e8d9c
DH
122/*
123 * set the priority of a task
124 * - the caller must hold the RCU read lock
125 */
1da177e4
LT
126static int set_one_prio(struct task_struct *p, int niceval, int error)
127{
c69e8d9c 128 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
1da177e4
LT
129 int no_nice;
130
c69e8d9c
DH
131 if (pcred->uid != cred->euid &&
132 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
1da177e4
LT
133 error = -EPERM;
134 goto out;
135 }
e43379f1 136 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
137 error = -EACCES;
138 goto out;
139 }
140 no_nice = security_task_setnice(p, niceval);
141 if (no_nice) {
142 error = no_nice;
143 goto out;
144 }
145 if (error == -ESRCH)
146 error = 0;
147 set_user_nice(p, niceval);
148out:
149 return error;
150}
151
754fe8d2 152SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
153{
154 struct task_struct *g, *p;
155 struct user_struct *user;
86a264ab 156 const struct cred *cred = current_cred();
1da177e4 157 int error = -EINVAL;
41487c65 158 struct pid *pgrp;
1da177e4 159
3e88c553 160 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
161 goto out;
162
163 /* normalize: avoid signed division (rounding problems) */
164 error = -ESRCH;
165 if (niceval < -20)
166 niceval = -20;
167 if (niceval > 19)
168 niceval = 19;
169
d4581a23 170 rcu_read_lock();
1da177e4
LT
171 read_lock(&tasklist_lock);
172 switch (which) {
173 case PRIO_PROCESS:
41487c65 174 if (who)
228ebcbe 175 p = find_task_by_vpid(who);
41487c65
EB
176 else
177 p = current;
1da177e4
LT
178 if (p)
179 error = set_one_prio(p, niceval, error);
180 break;
181 case PRIO_PGRP:
41487c65 182 if (who)
b488893a 183 pgrp = find_vpid(who);
41487c65
EB
184 else
185 pgrp = task_pgrp(current);
2d70b68d 186 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 187 error = set_one_prio(p, niceval, error);
2d70b68d 188 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
189 break;
190 case PRIO_USER:
d84f4f99 191 user = (struct user_struct *) cred->user;
1da177e4 192 if (!who)
86a264ab
DH
193 who = cred->uid;
194 else if ((who != cred->uid) &&
195 !(user = find_user(who)))
196 goto out_unlock; /* No processes for this user */
1da177e4 197
dfc6a736 198 do_each_thread(g, p) {
86a264ab 199 if (__task_cred(p)->uid == who)
1da177e4 200 error = set_one_prio(p, niceval, error);
dfc6a736 201 } while_each_thread(g, p);
86a264ab 202 if (who != cred->uid)
1da177e4
LT
203 free_uid(user); /* For find_user() */
204 break;
205 }
206out_unlock:
207 read_unlock(&tasklist_lock);
d4581a23 208 rcu_read_unlock();
1da177e4
LT
209out:
210 return error;
211}
212
213/*
214 * Ugh. To avoid negative return values, "getpriority()" will
215 * not return the normal nice-value, but a negated value that
216 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
217 * to stay compatible.
218 */
754fe8d2 219SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
220{
221 struct task_struct *g, *p;
222 struct user_struct *user;
86a264ab 223 const struct cred *cred = current_cred();
1da177e4 224 long niceval, retval = -ESRCH;
41487c65 225 struct pid *pgrp;
1da177e4 226
3e88c553 227 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
228 return -EINVAL;
229
70118837 230 rcu_read_lock();
1da177e4
LT
231 read_lock(&tasklist_lock);
232 switch (which) {
233 case PRIO_PROCESS:
41487c65 234 if (who)
228ebcbe 235 p = find_task_by_vpid(who);
41487c65
EB
236 else
237 p = current;
1da177e4
LT
238 if (p) {
239 niceval = 20 - task_nice(p);
240 if (niceval > retval)
241 retval = niceval;
242 }
243 break;
244 case PRIO_PGRP:
41487c65 245 if (who)
b488893a 246 pgrp = find_vpid(who);
41487c65
EB
247 else
248 pgrp = task_pgrp(current);
2d70b68d 249 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
250 niceval = 20 - task_nice(p);
251 if (niceval > retval)
252 retval = niceval;
2d70b68d 253 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
254 break;
255 case PRIO_USER:
86a264ab 256 user = (struct user_struct *) cred->user;
1da177e4 257 if (!who)
86a264ab
DH
258 who = cred->uid;
259 else if ((who != cred->uid) &&
260 !(user = find_user(who)))
261 goto out_unlock; /* No processes for this user */
1da177e4 262
dfc6a736 263 do_each_thread(g, p) {
86a264ab 264 if (__task_cred(p)->uid == who) {
1da177e4
LT
265 niceval = 20 - task_nice(p);
266 if (niceval > retval)
267 retval = niceval;
268 }
dfc6a736 269 } while_each_thread(g, p);
86a264ab 270 if (who != cred->uid)
1da177e4
LT
271 free_uid(user); /* for find_user() */
272 break;
273 }
274out_unlock:
275 read_unlock(&tasklist_lock);
70118837 276 rcu_read_unlock();
1da177e4
LT
277
278 return retval;
279}
280
e4c94330
EB
281/**
282 * emergency_restart - reboot the system
283 *
284 * Without shutting down any hardware or taking any locks
285 * reboot the system. This is called when we know we are in
286 * trouble so this is our best effort to reboot. This is
287 * safe to call in interrupt context.
288 */
7c903473
EB
289void emergency_restart(void)
290{
04c6862c 291 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
292 machine_emergency_restart();
293}
294EXPORT_SYMBOL_GPL(emergency_restart);
295
ca195b7f 296void kernel_restart_prepare(char *cmd)
4a00ea1e 297{
e041c683 298 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 299 system_state = SYSTEM_RESTART;
4a00ea1e 300 device_shutdown();
58b3b71d 301 sysdev_shutdown();
40dc166c 302 syscore_shutdown();
e4c94330 303}
1e5d5331
RD
304
305/**
306 * kernel_restart - reboot the system
307 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 308 * or %NULL
1e5d5331
RD
309 *
310 * Shutdown everything and perform a clean reboot.
311 * This is not safe to call in interrupt context.
312 */
e4c94330
EB
313void kernel_restart(char *cmd)
314{
315 kernel_restart_prepare(cmd);
756184b7 316 if (!cmd)
4a00ea1e 317 printk(KERN_EMERG "Restarting system.\n");
756184b7 318 else
4a00ea1e 319 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 320 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
321 machine_restart(cmd);
322}
323EXPORT_SYMBOL_GPL(kernel_restart);
324
4ef7229f 325static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 326{
e041c683 327 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
328 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
329 system_state = state;
330 device_shutdown();
331}
e4c94330
EB
332/**
333 * kernel_halt - halt the system
334 *
335 * Shutdown everything and perform a clean system halt.
336 */
e4c94330
EB
337void kernel_halt(void)
338{
729b4d4c 339 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 340 sysdev_shutdown();
40dc166c 341 syscore_shutdown();
4a00ea1e 342 printk(KERN_EMERG "System halted.\n");
04c6862c 343 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
344 machine_halt();
345}
729b4d4c 346
4a00ea1e
EB
347EXPORT_SYMBOL_GPL(kernel_halt);
348
e4c94330
EB
349/**
350 * kernel_power_off - power_off the system
351 *
352 * Shutdown everything and perform a clean system power_off.
353 */
e4c94330
EB
354void kernel_power_off(void)
355{
729b4d4c 356 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
357 if (pm_power_off_prepare)
358 pm_power_off_prepare();
4047727e 359 disable_nonboot_cpus();
58b3b71d 360 sysdev_shutdown();
40dc166c 361 syscore_shutdown();
4a00ea1e 362 printk(KERN_EMERG "Power down.\n");
04c6862c 363 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
364 machine_power_off();
365}
366EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
367
368static DEFINE_MUTEX(reboot_mutex);
369
1da177e4
LT
370/*
371 * Reboot system call: for obvious reasons only root may call it,
372 * and even root needs to set up some magic numbers in the registers
373 * so that some mistake won't make this reboot the whole machine.
374 * You can also set the meaning of the ctrl-alt-del-key here.
375 *
376 * reboot doesn't sync: do that yourself before calling this.
377 */
754fe8d2
HC
378SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
379 void __user *, arg)
1da177e4
LT
380{
381 char buffer[256];
3d26dcf7 382 int ret = 0;
1da177e4
LT
383
384 /* We only trust the superuser with rebooting the system. */
385 if (!capable(CAP_SYS_BOOT))
386 return -EPERM;
387
388 /* For safety, we require "magic" arguments. */
389 if (magic1 != LINUX_REBOOT_MAGIC1 ||
390 (magic2 != LINUX_REBOOT_MAGIC2 &&
391 magic2 != LINUX_REBOOT_MAGIC2A &&
392 magic2 != LINUX_REBOOT_MAGIC2B &&
393 magic2 != LINUX_REBOOT_MAGIC2C))
394 return -EINVAL;
395
5e38291d
EB
396 /* Instead of trying to make the power_off code look like
397 * halt when pm_power_off is not set do it the easy way.
398 */
399 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
400 cmd = LINUX_REBOOT_CMD_HALT;
401
6f15fa50 402 mutex_lock(&reboot_mutex);
1da177e4
LT
403 switch (cmd) {
404 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 405 kernel_restart(NULL);
1da177e4
LT
406 break;
407
408 case LINUX_REBOOT_CMD_CAD_ON:
409 C_A_D = 1;
410 break;
411
412 case LINUX_REBOOT_CMD_CAD_OFF:
413 C_A_D = 0;
414 break;
415
416 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 417 kernel_halt();
1da177e4 418 do_exit(0);
3d26dcf7 419 panic("cannot halt");
1da177e4
LT
420
421 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 422 kernel_power_off();
1da177e4
LT
423 do_exit(0);
424 break;
425
426 case LINUX_REBOOT_CMD_RESTART2:
427 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
428 ret = -EFAULT;
429 break;
1da177e4
LT
430 }
431 buffer[sizeof(buffer) - 1] = '\0';
432
4a00ea1e 433 kernel_restart(buffer);
1da177e4
LT
434 break;
435
3ab83521 436#ifdef CONFIG_KEXEC
dc009d92 437 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
438 ret = kernel_kexec();
439 break;
3ab83521 440#endif
4a00ea1e 441
b0cb1a19 442#ifdef CONFIG_HIBERNATION
1da177e4 443 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
444 ret = hibernate();
445 break;
1da177e4
LT
446#endif
447
448 default:
3d26dcf7
AK
449 ret = -EINVAL;
450 break;
1da177e4 451 }
6f15fa50 452 mutex_unlock(&reboot_mutex);
3d26dcf7 453 return ret;
1da177e4
LT
454}
455
65f27f38 456static void deferred_cad(struct work_struct *dummy)
1da177e4 457{
abcd9e51 458 kernel_restart(NULL);
1da177e4
LT
459}
460
461/*
462 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
463 * As it's called within an interrupt, it may NOT sync: the only choice
464 * is whether to reboot at once, or just ignore the ctrl-alt-del.
465 */
466void ctrl_alt_del(void)
467{
65f27f38 468 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
469
470 if (C_A_D)
471 schedule_work(&cad_work);
472 else
9ec52099 473 kill_cad_pid(SIGINT, 1);
1da177e4
LT
474}
475
1da177e4
LT
476/*
477 * Unprivileged users may change the real gid to the effective gid
478 * or vice versa. (BSD-style)
479 *
480 * If you set the real gid at all, or set the effective gid to a value not
481 * equal to the real gid, then the saved gid is set to the new effective gid.
482 *
483 * This makes it possible for a setgid program to completely drop its
484 * privileges, which is often a useful assertion to make when you are doing
485 * a security audit over a program.
486 *
487 * The general idea is that a program which uses just setregid() will be
488 * 100% compatible with BSD. A program which uses just setgid() will be
489 * 100% compatible with POSIX with saved IDs.
490 *
491 * SMP: There are not races, the GIDs are checked only by filesystem
492 * operations (as far as semantic preservation is concerned).
493 */
ae1251ab 494SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 495{
d84f4f99
DH
496 const struct cred *old;
497 struct cred *new;
1da177e4
LT
498 int retval;
499
d84f4f99
DH
500 new = prepare_creds();
501 if (!new)
502 return -ENOMEM;
503 old = current_cred();
504
d84f4f99 505 retval = -EPERM;
1da177e4 506 if (rgid != (gid_t) -1) {
d84f4f99
DH
507 if (old->gid == rgid ||
508 old->egid == rgid ||
1da177e4 509 capable(CAP_SETGID))
d84f4f99 510 new->gid = rgid;
1da177e4 511 else
d84f4f99 512 goto error;
1da177e4
LT
513 }
514 if (egid != (gid_t) -1) {
d84f4f99
DH
515 if (old->gid == egid ||
516 old->egid == egid ||
517 old->sgid == egid ||
1da177e4 518 capable(CAP_SETGID))
d84f4f99 519 new->egid = egid;
756184b7 520 else
d84f4f99 521 goto error;
1da177e4 522 }
d84f4f99 523
1da177e4 524 if (rgid != (gid_t) -1 ||
d84f4f99
DH
525 (egid != (gid_t) -1 && egid != old->gid))
526 new->sgid = new->egid;
527 new->fsgid = new->egid;
528
529 return commit_creds(new);
530
531error:
532 abort_creds(new);
533 return retval;
1da177e4
LT
534}
535
536/*
537 * setgid() is implemented like SysV w/ SAVED_IDS
538 *
539 * SMP: Same implicit races as above.
540 */
ae1251ab 541SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 542{
d84f4f99
DH
543 const struct cred *old;
544 struct cred *new;
1da177e4
LT
545 int retval;
546
d84f4f99
DH
547 new = prepare_creds();
548 if (!new)
549 return -ENOMEM;
550 old = current_cred();
551
d84f4f99
DH
552 retval = -EPERM;
553 if (capable(CAP_SETGID))
554 new->gid = new->egid = new->sgid = new->fsgid = gid;
555 else if (gid == old->gid || gid == old->sgid)
556 new->egid = new->fsgid = gid;
1da177e4 557 else
d84f4f99 558 goto error;
1da177e4 559
d84f4f99
DH
560 return commit_creds(new);
561
562error:
563 abort_creds(new);
564 return retval;
1da177e4 565}
54e99124 566
d84f4f99
DH
567/*
568 * change the user struct in a credentials set to match the new UID
569 */
570static int set_user(struct cred *new)
1da177e4
LT
571{
572 struct user_struct *new_user;
573
18b6e041 574 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
575 if (!new_user)
576 return -EAGAIN;
577
78d7d407 578 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
18b6e041 579 new_user != INIT_USER) {
1da177e4
LT
580 free_uid(new_user);
581 return -EAGAIN;
582 }
583
d84f4f99
DH
584 free_uid(new->user);
585 new->user = new_user;
1da177e4
LT
586 return 0;
587}
588
589/*
590 * Unprivileged users may change the real uid to the effective uid
591 * or vice versa. (BSD-style)
592 *
593 * If you set the real uid at all, or set the effective uid to a value not
594 * equal to the real uid, then the saved uid is set to the new effective uid.
595 *
596 * This makes it possible for a setuid program to completely drop its
597 * privileges, which is often a useful assertion to make when you are doing
598 * a security audit over a program.
599 *
600 * The general idea is that a program which uses just setreuid() will be
601 * 100% compatible with BSD. A program which uses just setuid() will be
602 * 100% compatible with POSIX with saved IDs.
603 */
ae1251ab 604SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 605{
d84f4f99
DH
606 const struct cred *old;
607 struct cred *new;
1da177e4
LT
608 int retval;
609
d84f4f99
DH
610 new = prepare_creds();
611 if (!new)
612 return -ENOMEM;
613 old = current_cred();
614
d84f4f99 615 retval = -EPERM;
1da177e4 616 if (ruid != (uid_t) -1) {
d84f4f99
DH
617 new->uid = ruid;
618 if (old->uid != ruid &&
619 old->euid != ruid &&
1da177e4 620 !capable(CAP_SETUID))
d84f4f99 621 goto error;
1da177e4
LT
622 }
623
624 if (euid != (uid_t) -1) {
d84f4f99
DH
625 new->euid = euid;
626 if (old->uid != euid &&
627 old->euid != euid &&
628 old->suid != euid &&
1da177e4 629 !capable(CAP_SETUID))
d84f4f99 630 goto error;
1da177e4
LT
631 }
632
54e99124
DG
633 if (new->uid != old->uid) {
634 retval = set_user(new);
635 if (retval < 0)
636 goto error;
637 }
1da177e4 638 if (ruid != (uid_t) -1 ||
d84f4f99
DH
639 (euid != (uid_t) -1 && euid != old->uid))
640 new->suid = new->euid;
641 new->fsuid = new->euid;
1da177e4 642
d84f4f99
DH
643 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
644 if (retval < 0)
645 goto error;
1da177e4 646
d84f4f99 647 return commit_creds(new);
1da177e4 648
d84f4f99
DH
649error:
650 abort_creds(new);
651 return retval;
652}
1da177e4
LT
653
654/*
655 * setuid() is implemented like SysV with SAVED_IDS
656 *
657 * Note that SAVED_ID's is deficient in that a setuid root program
658 * like sendmail, for example, cannot set its uid to be a normal
659 * user and then switch back, because if you're root, setuid() sets
660 * the saved uid too. If you don't like this, blame the bright people
661 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
662 * will allow a root program to temporarily drop privileges and be able to
663 * regain them by swapping the real and effective uid.
664 */
ae1251ab 665SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 666{
d84f4f99
DH
667 const struct cred *old;
668 struct cred *new;
1da177e4
LT
669 int retval;
670
d84f4f99
DH
671 new = prepare_creds();
672 if (!new)
673 return -ENOMEM;
674 old = current_cred();
675
d84f4f99 676 retval = -EPERM;
1da177e4 677 if (capable(CAP_SETUID)) {
d84f4f99 678 new->suid = new->uid = uid;
54e99124
DG
679 if (uid != old->uid) {
680 retval = set_user(new);
681 if (retval < 0)
682 goto error;
d84f4f99
DH
683 }
684 } else if (uid != old->uid && uid != new->suid) {
685 goto error;
1da177e4 686 }
1da177e4 687
d84f4f99
DH
688 new->fsuid = new->euid = uid;
689
690 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
691 if (retval < 0)
692 goto error;
1da177e4 693
d84f4f99 694 return commit_creds(new);
1da177e4 695
d84f4f99
DH
696error:
697 abort_creds(new);
698 return retval;
1da177e4
LT
699}
700
701
702/*
703 * This function implements a generic ability to update ruid, euid,
704 * and suid. This allows you to implement the 4.4 compatible seteuid().
705 */
ae1251ab 706SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 707{
d84f4f99
DH
708 const struct cred *old;
709 struct cred *new;
1da177e4
LT
710 int retval;
711
d84f4f99
DH
712 new = prepare_creds();
713 if (!new)
714 return -ENOMEM;
715
d84f4f99 716 old = current_cred();
1da177e4 717
d84f4f99 718 retval = -EPERM;
1da177e4 719 if (!capable(CAP_SETUID)) {
d84f4f99
DH
720 if (ruid != (uid_t) -1 && ruid != old->uid &&
721 ruid != old->euid && ruid != old->suid)
722 goto error;
723 if (euid != (uid_t) -1 && euid != old->uid &&
724 euid != old->euid && euid != old->suid)
725 goto error;
726 if (suid != (uid_t) -1 && suid != old->uid &&
727 suid != old->euid && suid != old->suid)
728 goto error;
1da177e4 729 }
d84f4f99 730
1da177e4 731 if (ruid != (uid_t) -1) {
d84f4f99 732 new->uid = ruid;
54e99124
DG
733 if (ruid != old->uid) {
734 retval = set_user(new);
735 if (retval < 0)
736 goto error;
737 }
1da177e4 738 }
d84f4f99
DH
739 if (euid != (uid_t) -1)
740 new->euid = euid;
1da177e4 741 if (suid != (uid_t) -1)
d84f4f99
DH
742 new->suid = suid;
743 new->fsuid = new->euid;
1da177e4 744
d84f4f99
DH
745 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
746 if (retval < 0)
747 goto error;
1da177e4 748
d84f4f99 749 return commit_creds(new);
1da177e4 750
d84f4f99
DH
751error:
752 abort_creds(new);
753 return retval;
1da177e4
LT
754}
755
dbf040d9 756SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 757{
86a264ab 758 const struct cred *cred = current_cred();
1da177e4
LT
759 int retval;
760
86a264ab
DH
761 if (!(retval = put_user(cred->uid, ruid)) &&
762 !(retval = put_user(cred->euid, euid)))
b6dff3ec 763 retval = put_user(cred->suid, suid);
1da177e4
LT
764
765 return retval;
766}
767
768/*
769 * Same as above, but for rgid, egid, sgid.
770 */
ae1251ab 771SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 772{
d84f4f99
DH
773 const struct cred *old;
774 struct cred *new;
1da177e4
LT
775 int retval;
776
d84f4f99
DH
777 new = prepare_creds();
778 if (!new)
779 return -ENOMEM;
780 old = current_cred();
781
d84f4f99 782 retval = -EPERM;
1da177e4 783 if (!capable(CAP_SETGID)) {
d84f4f99
DH
784 if (rgid != (gid_t) -1 && rgid != old->gid &&
785 rgid != old->egid && rgid != old->sgid)
786 goto error;
787 if (egid != (gid_t) -1 && egid != old->gid &&
788 egid != old->egid && egid != old->sgid)
789 goto error;
790 if (sgid != (gid_t) -1 && sgid != old->gid &&
791 sgid != old->egid && sgid != old->sgid)
792 goto error;
1da177e4 793 }
d84f4f99 794
1da177e4 795 if (rgid != (gid_t) -1)
d84f4f99
DH
796 new->gid = rgid;
797 if (egid != (gid_t) -1)
798 new->egid = egid;
1da177e4 799 if (sgid != (gid_t) -1)
d84f4f99
DH
800 new->sgid = sgid;
801 new->fsgid = new->egid;
1da177e4 802
d84f4f99
DH
803 return commit_creds(new);
804
805error:
806 abort_creds(new);
807 return retval;
1da177e4
LT
808}
809
dbf040d9 810SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 811{
86a264ab 812 const struct cred *cred = current_cred();
1da177e4
LT
813 int retval;
814
86a264ab
DH
815 if (!(retval = put_user(cred->gid, rgid)) &&
816 !(retval = put_user(cred->egid, egid)))
b6dff3ec 817 retval = put_user(cred->sgid, sgid);
1da177e4
LT
818
819 return retval;
820}
821
822
823/*
824 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
825 * is used for "access()" and for the NFS daemon (letting nfsd stay at
826 * whatever uid it wants to). It normally shadows "euid", except when
827 * explicitly set by setfsuid() or for access..
828 */
ae1251ab 829SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 830{
d84f4f99
DH
831 const struct cred *old;
832 struct cred *new;
833 uid_t old_fsuid;
1da177e4 834
d84f4f99
DH
835 new = prepare_creds();
836 if (!new)
837 return current_fsuid();
838 old = current_cred();
839 old_fsuid = old->fsuid;
1da177e4 840
d84f4f99
DH
841 if (uid == old->uid || uid == old->euid ||
842 uid == old->suid || uid == old->fsuid ||
756184b7
CP
843 capable(CAP_SETUID)) {
844 if (uid != old_fsuid) {
d84f4f99
DH
845 new->fsuid = uid;
846 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
847 goto change_okay;
1da177e4 848 }
1da177e4
LT
849 }
850
d84f4f99
DH
851 abort_creds(new);
852 return old_fsuid;
1da177e4 853
d84f4f99
DH
854change_okay:
855 commit_creds(new);
1da177e4
LT
856 return old_fsuid;
857}
858
859/*
f42df9e6 860 * Samma på svenska..
1da177e4 861 */
ae1251ab 862SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 863{
d84f4f99
DH
864 const struct cred *old;
865 struct cred *new;
866 gid_t old_fsgid;
867
868 new = prepare_creds();
869 if (!new)
870 return current_fsgid();
871 old = current_cred();
872 old_fsgid = old->fsgid;
1da177e4 873
d84f4f99
DH
874 if (gid == old->gid || gid == old->egid ||
875 gid == old->sgid || gid == old->fsgid ||
756184b7
CP
876 capable(CAP_SETGID)) {
877 if (gid != old_fsgid) {
d84f4f99
DH
878 new->fsgid = gid;
879 goto change_okay;
1da177e4 880 }
1da177e4 881 }
d84f4f99 882
d84f4f99
DH
883 abort_creds(new);
884 return old_fsgid;
885
886change_okay:
887 commit_creds(new);
1da177e4
LT
888 return old_fsgid;
889}
890
f06febc9
FM
891void do_sys_times(struct tms *tms)
892{
0cf55e1e 893 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 894
2b5fe6de 895 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 896 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
897 cutime = current->signal->cutime;
898 cstime = current->signal->cstime;
899 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
900 tms->tms_utime = cputime_to_clock_t(tgutime);
901 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
902 tms->tms_cutime = cputime_to_clock_t(cutime);
903 tms->tms_cstime = cputime_to_clock_t(cstime);
904}
905
58fd3aa2 906SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 907{
1da177e4
LT
908 if (tbuf) {
909 struct tms tmp;
f06febc9
FM
910
911 do_sys_times(&tmp);
1da177e4
LT
912 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
913 return -EFAULT;
914 }
e3d5a27d 915 force_successful_syscall_return();
1da177e4
LT
916 return (long) jiffies_64_to_clock_t(get_jiffies_64());
917}
918
919/*
920 * This needs some heavy checking ...
921 * I just haven't the stomach for it. I also don't fully
922 * understand sessions/pgrp etc. Let somebody who does explain it.
923 *
924 * OK, I think I have the protection semantics right.... this is really
925 * only important on a multi-user system anyway, to make sure one user
926 * can't send a signal to a process owned by another. -TYT, 12/12/91
927 *
928 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
929 * LBT 04.03.94
930 */
b290ebe2 931SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
932{
933 struct task_struct *p;
ee0acf90 934 struct task_struct *group_leader = current->group_leader;
4e021306
ON
935 struct pid *pgrp;
936 int err;
1da177e4
LT
937
938 if (!pid)
b488893a 939 pid = task_pid_vnr(group_leader);
1da177e4
LT
940 if (!pgid)
941 pgid = pid;
942 if (pgid < 0)
943 return -EINVAL;
950eaaca 944 rcu_read_lock();
1da177e4
LT
945
946 /* From this point forward we keep holding onto the tasklist lock
947 * so that our parent does not change from under us. -DaveM
948 */
949 write_lock_irq(&tasklist_lock);
950
951 err = -ESRCH;
4e021306 952 p = find_task_by_vpid(pid);
1da177e4
LT
953 if (!p)
954 goto out;
955
956 err = -EINVAL;
957 if (!thread_group_leader(p))
958 goto out;
959
4e021306 960 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 961 err = -EPERM;
41487c65 962 if (task_session(p) != task_session(group_leader))
1da177e4
LT
963 goto out;
964 err = -EACCES;
965 if (p->did_exec)
966 goto out;
967 } else {
968 err = -ESRCH;
ee0acf90 969 if (p != group_leader)
1da177e4
LT
970 goto out;
971 }
972
973 err = -EPERM;
974 if (p->signal->leader)
975 goto out;
976
4e021306 977 pgrp = task_pid(p);
1da177e4 978 if (pgid != pid) {
b488893a 979 struct task_struct *g;
1da177e4 980
4e021306
ON
981 pgrp = find_vpid(pgid);
982 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 983 if (!g || task_session(g) != task_session(group_leader))
f020bc46 984 goto out;
1da177e4
LT
985 }
986
1da177e4
LT
987 err = security_task_setpgid(p, pgid);
988 if (err)
989 goto out;
990
1b0f7ffd 991 if (task_pgrp(p) != pgrp)
83beaf3c 992 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
993
994 err = 0;
995out:
996 /* All paths lead to here, thus we are safe. -DaveM */
997 write_unlock_irq(&tasklist_lock);
950eaaca 998 rcu_read_unlock();
1da177e4
LT
999 return err;
1000}
1001
dbf040d9 1002SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1003{
12a3de0a
ON
1004 struct task_struct *p;
1005 struct pid *grp;
1006 int retval;
1007
1008 rcu_read_lock();
756184b7 1009 if (!pid)
12a3de0a 1010 grp = task_pgrp(current);
756184b7 1011 else {
1da177e4 1012 retval = -ESRCH;
12a3de0a
ON
1013 p = find_task_by_vpid(pid);
1014 if (!p)
1015 goto out;
1016 grp = task_pgrp(p);
1017 if (!grp)
1018 goto out;
1019
1020 retval = security_task_getpgid(p);
1021 if (retval)
1022 goto out;
1da177e4 1023 }
12a3de0a
ON
1024 retval = pid_vnr(grp);
1025out:
1026 rcu_read_unlock();
1027 return retval;
1da177e4
LT
1028}
1029
1030#ifdef __ARCH_WANT_SYS_GETPGRP
1031
dbf040d9 1032SYSCALL_DEFINE0(getpgrp)
1da177e4 1033{
12a3de0a 1034 return sys_getpgid(0);
1da177e4
LT
1035}
1036
1037#endif
1038
dbf040d9 1039SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1040{
1dd768c0
ON
1041 struct task_struct *p;
1042 struct pid *sid;
1043 int retval;
1044
1045 rcu_read_lock();
756184b7 1046 if (!pid)
1dd768c0 1047 sid = task_session(current);
756184b7 1048 else {
1da177e4 1049 retval = -ESRCH;
1dd768c0
ON
1050 p = find_task_by_vpid(pid);
1051 if (!p)
1052 goto out;
1053 sid = task_session(p);
1054 if (!sid)
1055 goto out;
1056
1057 retval = security_task_getsid(p);
1058 if (retval)
1059 goto out;
1da177e4 1060 }
1dd768c0
ON
1061 retval = pid_vnr(sid);
1062out:
1063 rcu_read_unlock();
1064 return retval;
1da177e4
LT
1065}
1066
b290ebe2 1067SYSCALL_DEFINE0(setsid)
1da177e4 1068{
e19f247a 1069 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1070 struct pid *sid = task_pid(group_leader);
1071 pid_t session = pid_vnr(sid);
1da177e4
LT
1072 int err = -EPERM;
1073
1da177e4 1074 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1075 /* Fail if I am already a session leader */
1076 if (group_leader->signal->leader)
1077 goto out;
1078
430c6231
ON
1079 /* Fail if a process group id already exists that equals the
1080 * proposed session id.
390e2ff0 1081 */
6806aac6 1082 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1083 goto out;
1084
e19f247a 1085 group_leader->signal->leader = 1;
8520d7c7 1086 __set_special_pids(sid);
24ec839c 1087
9c9f4ded 1088 proc_clear_tty(group_leader);
24ec839c 1089
e4cc0a9c 1090 err = session;
1da177e4
LT
1091out:
1092 write_unlock_irq(&tasklist_lock);
5091faa4 1093 if (err > 0) {
0d0df599 1094 proc_sid_connector(group_leader);
5091faa4
MG
1095 sched_autogroup_create_attach(group_leader);
1096 }
1da177e4
LT
1097 return err;
1098}
1099
1da177e4
LT
1100DECLARE_RWSEM(uts_sem);
1101
e28cbf22
CH
1102#ifdef COMPAT_UTS_MACHINE
1103#define override_architecture(name) \
46da2766 1104 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1105 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1106 sizeof(COMPAT_UTS_MACHINE)))
1107#else
1108#define override_architecture(name) 0
1109#endif
1110
e48fbb69 1111SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1112{
1113 int errno = 0;
1114
1115 down_read(&uts_sem);
e9ff3990 1116 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1117 errno = -EFAULT;
1118 up_read(&uts_sem);
e28cbf22
CH
1119
1120 if (!errno && override_architecture(name))
1121 errno = -EFAULT;
1da177e4
LT
1122 return errno;
1123}
1124
5cacdb4a
CH
1125#ifdef __ARCH_WANT_SYS_OLD_UNAME
1126/*
1127 * Old cruft
1128 */
1129SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1130{
1131 int error = 0;
1132
1133 if (!name)
1134 return -EFAULT;
1135
1136 down_read(&uts_sem);
1137 if (copy_to_user(name, utsname(), sizeof(*name)))
1138 error = -EFAULT;
1139 up_read(&uts_sem);
1140
1141 if (!error && override_architecture(name))
1142 error = -EFAULT;
1143 return error;
1144}
1145
1146SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1147{
1148 int error;
1149
1150 if (!name)
1151 return -EFAULT;
1152 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1153 return -EFAULT;
1154
1155 down_read(&uts_sem);
1156 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1157 __OLD_UTS_LEN);
1158 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1159 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1160 __OLD_UTS_LEN);
1161 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1162 error |= __copy_to_user(&name->release, &utsname()->release,
1163 __OLD_UTS_LEN);
1164 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1165 error |= __copy_to_user(&name->version, &utsname()->version,
1166 __OLD_UTS_LEN);
1167 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1168 error |= __copy_to_user(&name->machine, &utsname()->machine,
1169 __OLD_UTS_LEN);
1170 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1171 up_read(&uts_sem);
1172
1173 if (!error && override_architecture(name))
1174 error = -EFAULT;
1175 return error ? -EFAULT : 0;
1176}
1177#endif
1178
5a8a82b1 1179SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1180{
1181 int errno;
1182 char tmp[__NEW_UTS_LEN];
1183
bb96a6f5 1184 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1185 return -EPERM;
1186 if (len < 0 || len > __NEW_UTS_LEN)
1187 return -EINVAL;
1188 down_write(&uts_sem);
1189 errno = -EFAULT;
1190 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1191 struct new_utsname *u = utsname();
1192
1193 memcpy(u->nodename, tmp, len);
1194 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1195 errno = 0;
1196 }
1197 up_write(&uts_sem);
1198 return errno;
1199}
1200
1201#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1202
5a8a82b1 1203SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1204{
1205 int i, errno;
9679e4dd 1206 struct new_utsname *u;
1da177e4
LT
1207
1208 if (len < 0)
1209 return -EINVAL;
1210 down_read(&uts_sem);
9679e4dd
AM
1211 u = utsname();
1212 i = 1 + strlen(u->nodename);
1da177e4
LT
1213 if (i > len)
1214 i = len;
1215 errno = 0;
9679e4dd 1216 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1217 errno = -EFAULT;
1218 up_read(&uts_sem);
1219 return errno;
1220}
1221
1222#endif
1223
1224/*
1225 * Only setdomainname; getdomainname can be implemented by calling
1226 * uname()
1227 */
5a8a82b1 1228SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1229{
1230 int errno;
1231 char tmp[__NEW_UTS_LEN];
1232
1233 if (!capable(CAP_SYS_ADMIN))
1234 return -EPERM;
1235 if (len < 0 || len > __NEW_UTS_LEN)
1236 return -EINVAL;
1237
1238 down_write(&uts_sem);
1239 errno = -EFAULT;
1240 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1241 struct new_utsname *u = utsname();
1242
1243 memcpy(u->domainname, tmp, len);
1244 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1245 errno = 0;
1246 }
1247 up_write(&uts_sem);
1248 return errno;
1249}
1250
e48fbb69 1251SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1252{
b9518345
JS
1253 struct rlimit value;
1254 int ret;
1255
1256 ret = do_prlimit(current, resource, NULL, &value);
1257 if (!ret)
1258 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1259
1260 return ret;
1da177e4
LT
1261}
1262
1263#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1264
1265/*
1266 * Back compatibility for getrlimit. Needed for some apps.
1267 */
1268
e48fbb69
HC
1269SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1270 struct rlimit __user *, rlim)
1da177e4
LT
1271{
1272 struct rlimit x;
1273 if (resource >= RLIM_NLIMITS)
1274 return -EINVAL;
1275
1276 task_lock(current->group_leader);
1277 x = current->signal->rlim[resource];
1278 task_unlock(current->group_leader);
756184b7 1279 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1280 x.rlim_cur = 0x7FFFFFFF;
756184b7 1281 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1282 x.rlim_max = 0x7FFFFFFF;
1283 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1284}
1285
1286#endif
1287
c022a0ac
JS
1288static inline bool rlim64_is_infinity(__u64 rlim64)
1289{
1290#if BITS_PER_LONG < 64
1291 return rlim64 >= ULONG_MAX;
1292#else
1293 return rlim64 == RLIM64_INFINITY;
1294#endif
1295}
1296
1297static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1298{
1299 if (rlim->rlim_cur == RLIM_INFINITY)
1300 rlim64->rlim_cur = RLIM64_INFINITY;
1301 else
1302 rlim64->rlim_cur = rlim->rlim_cur;
1303 if (rlim->rlim_max == RLIM_INFINITY)
1304 rlim64->rlim_max = RLIM64_INFINITY;
1305 else
1306 rlim64->rlim_max = rlim->rlim_max;
1307}
1308
1309static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1310{
1311 if (rlim64_is_infinity(rlim64->rlim_cur))
1312 rlim->rlim_cur = RLIM_INFINITY;
1313 else
1314 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1315 if (rlim64_is_infinity(rlim64->rlim_max))
1316 rlim->rlim_max = RLIM_INFINITY;
1317 else
1318 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1319}
1320
1c1e618d 1321/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1322int do_prlimit(struct task_struct *tsk, unsigned int resource,
1323 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1324{
5b41535a 1325 struct rlimit *rlim;
86f162f4 1326 int retval = 0;
1da177e4
LT
1327
1328 if (resource >= RLIM_NLIMITS)
1329 return -EINVAL;
5b41535a
JS
1330 if (new_rlim) {
1331 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1332 return -EINVAL;
1333 if (resource == RLIMIT_NOFILE &&
1334 new_rlim->rlim_max > sysctl_nr_open)
1335 return -EPERM;
1336 }
1da177e4 1337
1c1e618d
JS
1338 /* protect tsk->signal and tsk->sighand from disappearing */
1339 read_lock(&tasklist_lock);
1340 if (!tsk->sighand) {
1341 retval = -ESRCH;
1342 goto out;
1343 }
1344
5b41535a 1345 rlim = tsk->signal->rlim + resource;
86f162f4 1346 task_lock(tsk->group_leader);
5b41535a
JS
1347 if (new_rlim) {
1348 if (new_rlim->rlim_max > rlim->rlim_max &&
1349 !capable(CAP_SYS_RESOURCE))
1350 retval = -EPERM;
1351 if (!retval)
1352 retval = security_task_setrlimit(tsk->group_leader,
1353 resource, new_rlim);
1354 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1355 /*
1356 * The caller is asking for an immediate RLIMIT_CPU
1357 * expiry. But we use the zero value to mean "it was
1358 * never set". So let's cheat and make it one second
1359 * instead
1360 */
1361 new_rlim->rlim_cur = 1;
1362 }
1363 }
1364 if (!retval) {
1365 if (old_rlim)
1366 *old_rlim = *rlim;
1367 if (new_rlim)
1368 *rlim = *new_rlim;
9926e4c7 1369 }
7855c35d 1370 task_unlock(tsk->group_leader);
1da177e4 1371
d3561f78
AM
1372 /*
1373 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1374 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1375 * very long-standing error, and fixing it now risks breakage of
1376 * applications, so we live with it
1377 */
5b41535a
JS
1378 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1379 new_rlim->rlim_cur != RLIM_INFINITY)
1380 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1381out:
1c1e618d 1382 read_unlock(&tasklist_lock);
2fb9d268 1383 return retval;
1da177e4
LT
1384}
1385
c022a0ac
JS
1386/* rcu lock must be held */
1387static int check_prlimit_permission(struct task_struct *task)
1388{
1389 const struct cred *cred = current_cred(), *tcred;
1390
1391 tcred = __task_cred(task);
aa5bd67d
KK
1392 if (current != task &&
1393 (cred->uid != tcred->euid ||
c022a0ac
JS
1394 cred->uid != tcred->suid ||
1395 cred->uid != tcred->uid ||
1396 cred->gid != tcred->egid ||
1397 cred->gid != tcred->sgid ||
1398 cred->gid != tcred->gid) &&
1399 !capable(CAP_SYS_RESOURCE)) {
1400 return -EPERM;
1401 }
1402
1403 return 0;
1404}
1405
1406SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1407 const struct rlimit64 __user *, new_rlim,
1408 struct rlimit64 __user *, old_rlim)
1409{
1410 struct rlimit64 old64, new64;
1411 struct rlimit old, new;
1412 struct task_struct *tsk;
1413 int ret;
1414
1415 if (new_rlim) {
1416 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1417 return -EFAULT;
1418 rlim64_to_rlim(&new64, &new);
1419 }
1420
1421 rcu_read_lock();
1422 tsk = pid ? find_task_by_vpid(pid) : current;
1423 if (!tsk) {
1424 rcu_read_unlock();
1425 return -ESRCH;
1426 }
1427 ret = check_prlimit_permission(tsk);
1428 if (ret) {
1429 rcu_read_unlock();
1430 return ret;
1431 }
1432 get_task_struct(tsk);
1433 rcu_read_unlock();
1434
1435 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1436 old_rlim ? &old : NULL);
1437
1438 if (!ret && old_rlim) {
1439 rlim_to_rlim64(&old, &old64);
1440 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1441 ret = -EFAULT;
1442 }
1443
1444 put_task_struct(tsk);
1445 return ret;
1446}
1447
7855c35d
JS
1448SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1449{
1450 struct rlimit new_rlim;
1451
1452 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1453 return -EFAULT;
5b41535a 1454 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1455}
1456
1da177e4
LT
1457/*
1458 * It would make sense to put struct rusage in the task_struct,
1459 * except that would make the task_struct be *really big*. After
1460 * task_struct gets moved into malloc'ed memory, it would
1461 * make sense to do this. It will make moving the rest of the information
1462 * a lot simpler! (Which we're not doing right now because we're not
1463 * measuring them yet).
1464 *
1da177e4
LT
1465 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1466 * races with threads incrementing their own counters. But since word
1467 * reads are atomic, we either get new values or old values and we don't
1468 * care which for the sums. We always take the siglock to protect reading
1469 * the c* fields from p->signal from races with exit.c updating those
1470 * fields when reaping, so a sample either gets all the additions of a
1471 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1472 *
de047c1b
RT
1473 * Locking:
1474 * We need to take the siglock for CHILDEREN, SELF and BOTH
1475 * for the cases current multithreaded, non-current single threaded
1476 * non-current multithreaded. Thread traversal is now safe with
1477 * the siglock held.
1478 * Strictly speaking, we donot need to take the siglock if we are current and
1479 * single threaded, as no one else can take our signal_struct away, no one
1480 * else can reap the children to update signal->c* counters, and no one else
1481 * can race with the signal-> fields. If we do not take any lock, the
1482 * signal-> fields could be read out of order while another thread was just
1483 * exiting. So we should place a read memory barrier when we avoid the lock.
1484 * On the writer side, write memory barrier is implied in __exit_signal
1485 * as __exit_signal releases the siglock spinlock after updating the signal->
1486 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1487 *
1da177e4
LT
1488 */
1489
f06febc9 1490static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1491{
679c9cd4
SK
1492 r->ru_nvcsw += t->nvcsw;
1493 r->ru_nivcsw += t->nivcsw;
1494 r->ru_minflt += t->min_flt;
1495 r->ru_majflt += t->maj_flt;
1496 r->ru_inblock += task_io_get_inblock(t);
1497 r->ru_oublock += task_io_get_oublock(t);
1498}
1499
1da177e4
LT
1500static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1501{
1502 struct task_struct *t;
1503 unsigned long flags;
0cf55e1e 1504 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1505 unsigned long maxrss = 0;
1da177e4
LT
1506
1507 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1508 utime = stime = cputime_zero;
1da177e4 1509
679c9cd4 1510 if (who == RUSAGE_THREAD) {
d180c5bc 1511 task_times(current, &utime, &stime);
f06febc9 1512 accumulate_thread_rusage(p, r);
1f10206c 1513 maxrss = p->signal->maxrss;
679c9cd4
SK
1514 goto out;
1515 }
1516
d6cf723a 1517 if (!lock_task_sighand(p, &flags))
de047c1b 1518 return;
0f59cc4a 1519
1da177e4 1520 switch (who) {
0f59cc4a 1521 case RUSAGE_BOTH:
1da177e4 1522 case RUSAGE_CHILDREN:
1da177e4
LT
1523 utime = p->signal->cutime;
1524 stime = p->signal->cstime;
1525 r->ru_nvcsw = p->signal->cnvcsw;
1526 r->ru_nivcsw = p->signal->cnivcsw;
1527 r->ru_minflt = p->signal->cmin_flt;
1528 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1529 r->ru_inblock = p->signal->cinblock;
1530 r->ru_oublock = p->signal->coublock;
1f10206c 1531 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1532
1533 if (who == RUSAGE_CHILDREN)
1534 break;
1535
1da177e4 1536 case RUSAGE_SELF:
0cf55e1e
HS
1537 thread_group_times(p, &tgutime, &tgstime);
1538 utime = cputime_add(utime, tgutime);
1539 stime = cputime_add(stime, tgstime);
1da177e4
LT
1540 r->ru_nvcsw += p->signal->nvcsw;
1541 r->ru_nivcsw += p->signal->nivcsw;
1542 r->ru_minflt += p->signal->min_flt;
1543 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1544 r->ru_inblock += p->signal->inblock;
1545 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1546 if (maxrss < p->signal->maxrss)
1547 maxrss = p->signal->maxrss;
1da177e4
LT
1548 t = p;
1549 do {
f06febc9 1550 accumulate_thread_rusage(t, r);
1da177e4
LT
1551 t = next_thread(t);
1552 } while (t != p);
1da177e4 1553 break;
0f59cc4a 1554
1da177e4
LT
1555 default:
1556 BUG();
1557 }
de047c1b 1558 unlock_task_sighand(p, &flags);
de047c1b 1559
679c9cd4 1560out:
0f59cc4a
ON
1561 cputime_to_timeval(utime, &r->ru_utime);
1562 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1563
1564 if (who != RUSAGE_CHILDREN) {
1565 struct mm_struct *mm = get_task_mm(p);
1566 if (mm) {
1567 setmax_mm_hiwater_rss(&maxrss, mm);
1568 mmput(mm);
1569 }
1570 }
1571 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1572}
1573
1574int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1575{
1576 struct rusage r;
1da177e4 1577 k_getrusage(p, who, &r);
1da177e4
LT
1578 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1579}
1580
e48fbb69 1581SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1582{
679c9cd4
SK
1583 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1584 who != RUSAGE_THREAD)
1da177e4
LT
1585 return -EINVAL;
1586 return getrusage(current, who, ru);
1587}
1588
e48fbb69 1589SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1590{
1591 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1592 return mask;
1593}
3b7391de 1594
c4ea37c2
HC
1595SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1596 unsigned long, arg4, unsigned long, arg5)
1da177e4 1597{
b6dff3ec
DH
1598 struct task_struct *me = current;
1599 unsigned char comm[sizeof(me->comm)];
1600 long error;
1da177e4 1601
d84f4f99
DH
1602 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1603 if (error != -ENOSYS)
1da177e4
LT
1604 return error;
1605
d84f4f99 1606 error = 0;
1da177e4
LT
1607 switch (option) {
1608 case PR_SET_PDEATHSIG:
0730ded5 1609 if (!valid_signal(arg2)) {
1da177e4
LT
1610 error = -EINVAL;
1611 break;
1612 }
b6dff3ec
DH
1613 me->pdeath_signal = arg2;
1614 error = 0;
1da177e4
LT
1615 break;
1616 case PR_GET_PDEATHSIG:
b6dff3ec 1617 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1618 break;
1619 case PR_GET_DUMPABLE:
b6dff3ec 1620 error = get_dumpable(me->mm);
1da177e4
LT
1621 break;
1622 case PR_SET_DUMPABLE:
abf75a50 1623 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1624 error = -EINVAL;
1625 break;
1626 }
b6dff3ec
DH
1627 set_dumpable(me->mm, arg2);
1628 error = 0;
1da177e4
LT
1629 break;
1630
1631 case PR_SET_UNALIGN:
b6dff3ec 1632 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1633 break;
1634 case PR_GET_UNALIGN:
b6dff3ec 1635 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1636 break;
1637 case PR_SET_FPEMU:
b6dff3ec 1638 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1639 break;
1640 case PR_GET_FPEMU:
b6dff3ec 1641 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1642 break;
1643 case PR_SET_FPEXC:
b6dff3ec 1644 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1645 break;
1646 case PR_GET_FPEXC:
b6dff3ec 1647 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1648 break;
1649 case PR_GET_TIMING:
1650 error = PR_TIMING_STATISTICAL;
1651 break;
1652 case PR_SET_TIMING:
7b26655f 1653 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1654 error = -EINVAL;
b6dff3ec
DH
1655 else
1656 error = 0;
1da177e4
LT
1657 break;
1658
b6dff3ec
DH
1659 case PR_SET_NAME:
1660 comm[sizeof(me->comm)-1] = 0;
1661 if (strncpy_from_user(comm, (char __user *)arg2,
1662 sizeof(me->comm) - 1) < 0)
1da177e4 1663 return -EFAULT;
b6dff3ec 1664 set_task_comm(me, comm);
1da177e4 1665 return 0;
b6dff3ec
DH
1666 case PR_GET_NAME:
1667 get_task_comm(comm, me);
1668 if (copy_to_user((char __user *)arg2, comm,
1669 sizeof(comm)))
1da177e4
LT
1670 return -EFAULT;
1671 return 0;
651d765d 1672 case PR_GET_ENDIAN:
b6dff3ec 1673 error = GET_ENDIAN(me, arg2);
651d765d
AB
1674 break;
1675 case PR_SET_ENDIAN:
b6dff3ec 1676 error = SET_ENDIAN(me, arg2);
651d765d
AB
1677 break;
1678
1d9d02fe
AA
1679 case PR_GET_SECCOMP:
1680 error = prctl_get_seccomp();
1681 break;
1682 case PR_SET_SECCOMP:
1683 error = prctl_set_seccomp(arg2);
1684 break;
8fb402bc
EB
1685 case PR_GET_TSC:
1686 error = GET_TSC_CTL(arg2);
1687 break;
1688 case PR_SET_TSC:
1689 error = SET_TSC_CTL(arg2);
1690 break;
cdd6c482
IM
1691 case PR_TASK_PERF_EVENTS_DISABLE:
1692 error = perf_event_task_disable();
1d1c7ddb 1693 break;
cdd6c482
IM
1694 case PR_TASK_PERF_EVENTS_ENABLE:
1695 error = perf_event_task_enable();
1d1c7ddb 1696 break;
6976675d
AV
1697 case PR_GET_TIMERSLACK:
1698 error = current->timer_slack_ns;
1699 break;
1700 case PR_SET_TIMERSLACK:
1701 if (arg2 <= 0)
1702 current->timer_slack_ns =
1703 current->default_timer_slack_ns;
1704 else
1705 current->timer_slack_ns = arg2;
b6dff3ec 1706 error = 0;
6976675d 1707 break;
4db96cf0
AK
1708 case PR_MCE_KILL:
1709 if (arg4 | arg5)
1710 return -EINVAL;
1711 switch (arg2) {
1087e9b4 1712 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1713 if (arg3 != 0)
1714 return -EINVAL;
1715 current->flags &= ~PF_MCE_PROCESS;
1716 break;
1087e9b4 1717 case PR_MCE_KILL_SET:
4db96cf0 1718 current->flags |= PF_MCE_PROCESS;
1087e9b4 1719 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1720 current->flags |= PF_MCE_EARLY;
1087e9b4 1721 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1722 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1723 else if (arg3 == PR_MCE_KILL_DEFAULT)
1724 current->flags &=
1725 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1726 else
1727 return -EINVAL;
4db96cf0
AK
1728 break;
1729 default:
1730 return -EINVAL;
1731 }
1732 error = 0;
1733 break;
1087e9b4
AK
1734 case PR_MCE_KILL_GET:
1735 if (arg2 | arg3 | arg4 | arg5)
1736 return -EINVAL;
1737 if (current->flags & PF_MCE_PROCESS)
1738 error = (current->flags & PF_MCE_EARLY) ?
1739 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1740 else
1741 error = PR_MCE_KILL_DEFAULT;
1742 break;
1da177e4
LT
1743 default:
1744 error = -EINVAL;
1745 break;
1746 }
1747 return error;
1748}
3cfc348b 1749
836f92ad
HC
1750SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1751 struct getcpu_cache __user *, unused)
3cfc348b
AK
1752{
1753 int err = 0;
1754 int cpu = raw_smp_processor_id();
1755 if (cpup)
1756 err |= put_user(cpu, cpup);
1757 if (nodep)
1758 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1759 return err ? -EFAULT : 0;
1760}
10a0a8d4
JF
1761
1762char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1763
a06a4dc3 1764static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 1765{
a06a4dc3 1766 argv_free(info->argv);
10a0a8d4
JF
1767}
1768
1769/**
1770 * orderly_poweroff - Trigger an orderly system poweroff
1771 * @force: force poweroff if command execution fails
1772 *
1773 * This may be called from any context to trigger a system shutdown.
1774 * If the orderly shutdown fails, it will force an immediate shutdown.
1775 */
1776int orderly_poweroff(bool force)
1777{
1778 int argc;
1779 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1780 static char *envp[] = {
1781 "HOME=/",
1782 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1783 NULL
1784 };
1785 int ret = -ENOMEM;
1786 struct subprocess_info *info;
1787
1788 if (argv == NULL) {
1789 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1790 __func__, poweroff_cmd);
1791 goto out;
1792 }
1793
ac331d15 1794 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1795 if (info == NULL) {
1796 argv_free(argv);
1797 goto out;
1798 }
1799
a06a4dc3 1800 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
10a0a8d4 1801
86313c48 1802 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1803
1804 out:
1805 if (ret && force) {
1806 printk(KERN_WARNING "Failed to start orderly shutdown: "
1807 "forcing the issue\n");
1808
1809 /* I guess this should try to kick off some daemon to
1810 sync and poweroff asap. Or not even bother syncing
1811 if we're doing an emergency shutdown? */
1812 emergency_sync();
1813 kernel_power_off();
1814 }
1815
1816 return ret;
1817}
1818EXPORT_SYMBOL_GPL(orderly_poweroff);
This page took 0.764427 seconds and 5 git commands to generate.