exec: move the final allow_write_access/fput into free_bprm()
[deliverable/linux.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92 18#include <linux/kernel.h>
1da177e4 19#include <linux/workqueue.h>
c59ede7b 20#include <linux/capability.h>
1da177e4
LT
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
b32dfe37
CG
38#include <linux/file.h>
39#include <linux/mount.h>
5a0e3ad6 40#include <linux/gfp.h>
40dc166c 41#include <linux/syscore_ops.h>
be27425d
AK
42#include <linux/version.h>
43#include <linux/ctype.h>
1da177e4
LT
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
00d7c05a 47#include <linux/kprobes.h>
acce292c 48#include <linux/user_namespace.h>
7fe5e042 49#include <linux/binfmts.h>
1da177e4 50
4a22f166
SR
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
04c6862c 56#include <linux/kmsg_dump.h>
be27425d
AK
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
04c6862c 59
1da177e4
LT
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
65# define SET_UNALIGN_CTL(a,b) (-EINVAL)
66#endif
67#ifndef GET_UNALIGN_CTL
68# define GET_UNALIGN_CTL(a,b) (-EINVAL)
69#endif
70#ifndef SET_FPEMU_CTL
71# define SET_FPEMU_CTL(a,b) (-EINVAL)
72#endif
73#ifndef GET_FPEMU_CTL
74# define GET_FPEMU_CTL(a,b) (-EINVAL)
75#endif
76#ifndef SET_FPEXC_CTL
77# define SET_FPEXC_CTL(a,b) (-EINVAL)
78#endif
79#ifndef GET_FPEXC_CTL
80# define GET_FPEXC_CTL(a,b) (-EINVAL)
81#endif
651d765d
AB
82#ifndef GET_ENDIAN
83# define GET_ENDIAN(a,b) (-EINVAL)
84#endif
85#ifndef SET_ENDIAN
86# define SET_ENDIAN(a,b) (-EINVAL)
87#endif
8fb402bc
EB
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
1da177e4
LT
94
95/*
96 * this is where the system-wide overflow UID and GID are defined, for
97 * architectures that now have 32-bit UID/GID but didn't in the past
98 */
99
100int overflowuid = DEFAULT_OVERFLOWUID;
101int overflowgid = DEFAULT_OVERFLOWGID;
102
1da177e4
LT
103EXPORT_SYMBOL(overflowuid);
104EXPORT_SYMBOL(overflowgid);
1da177e4
LT
105
106/*
107 * the same as above, but for filesystems which can only store a 16-bit
108 * UID and GID. as such, this is needed on all architectures
109 */
110
111int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
112int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
113
114EXPORT_SYMBOL(fs_overflowuid);
115EXPORT_SYMBOL(fs_overflowgid);
116
fc832ad3
SH
117/*
118 * Returns true if current's euid is same as p's uid or euid,
119 * or has CAP_SYS_NICE to p's user_ns.
120 *
121 * Called with rcu_read_lock, creds are safe
122 */
123static bool set_one_prio_perm(struct task_struct *p)
124{
125 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126
5af66203
EB
127 if (uid_eq(pcred->uid, cred->euid) ||
128 uid_eq(pcred->euid, cred->euid))
fc832ad3 129 return true;
c4a4d603 130 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
131 return true;
132 return false;
133}
134
c69e8d9c
DH
135/*
136 * set the priority of a task
137 * - the caller must hold the RCU read lock
138 */
1da177e4
LT
139static int set_one_prio(struct task_struct *p, int niceval, int error)
140{
141 int no_nice;
142
fc832ad3 143 if (!set_one_prio_perm(p)) {
1da177e4
LT
144 error = -EPERM;
145 goto out;
146 }
e43379f1 147 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
148 error = -EACCES;
149 goto out;
150 }
151 no_nice = security_task_setnice(p, niceval);
152 if (no_nice) {
153 error = no_nice;
154 goto out;
155 }
156 if (error == -ESRCH)
157 error = 0;
158 set_user_nice(p, niceval);
159out:
160 return error;
161}
162
754fe8d2 163SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
164{
165 struct task_struct *g, *p;
166 struct user_struct *user;
86a264ab 167 const struct cred *cred = current_cred();
1da177e4 168 int error = -EINVAL;
41487c65 169 struct pid *pgrp;
7b44ab97 170 kuid_t uid;
1da177e4 171
3e88c553 172 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
173 goto out;
174
175 /* normalize: avoid signed division (rounding problems) */
176 error = -ESRCH;
177 if (niceval < -20)
178 niceval = -20;
179 if (niceval > 19)
180 niceval = 19;
181
d4581a23 182 rcu_read_lock();
1da177e4
LT
183 read_lock(&tasklist_lock);
184 switch (which) {
185 case PRIO_PROCESS:
41487c65 186 if (who)
228ebcbe 187 p = find_task_by_vpid(who);
41487c65
EB
188 else
189 p = current;
1da177e4
LT
190 if (p)
191 error = set_one_prio(p, niceval, error);
192 break;
193 case PRIO_PGRP:
41487c65 194 if (who)
b488893a 195 pgrp = find_vpid(who);
41487c65
EB
196 else
197 pgrp = task_pgrp(current);
2d70b68d 198 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 199 error = set_one_prio(p, niceval, error);
2d70b68d 200 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
201 break;
202 case PRIO_USER:
7b44ab97 203 uid = make_kuid(cred->user_ns, who);
74ba508f 204 user = cred->user;
1da177e4 205 if (!who)
078de5f7
EB
206 uid = cred->uid;
207 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 208 !(user = find_user(uid)))
86a264ab 209 goto out_unlock; /* No processes for this user */
1da177e4 210
dfc6a736 211 do_each_thread(g, p) {
078de5f7 212 if (uid_eq(task_uid(p), uid))
1da177e4 213 error = set_one_prio(p, niceval, error);
dfc6a736 214 } while_each_thread(g, p);
078de5f7 215 if (!uid_eq(uid, cred->uid))
1da177e4
LT
216 free_uid(user); /* For find_user() */
217 break;
218 }
219out_unlock:
220 read_unlock(&tasklist_lock);
d4581a23 221 rcu_read_unlock();
1da177e4
LT
222out:
223 return error;
224}
225
226/*
227 * Ugh. To avoid negative return values, "getpriority()" will
228 * not return the normal nice-value, but a negated value that
229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
230 * to stay compatible.
231 */
754fe8d2 232SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
233{
234 struct task_struct *g, *p;
235 struct user_struct *user;
86a264ab 236 const struct cred *cred = current_cred();
1da177e4 237 long niceval, retval = -ESRCH;
41487c65 238 struct pid *pgrp;
7b44ab97 239 kuid_t uid;
1da177e4 240
3e88c553 241 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
242 return -EINVAL;
243
70118837 244 rcu_read_lock();
1da177e4
LT
245 read_lock(&tasklist_lock);
246 switch (which) {
247 case PRIO_PROCESS:
41487c65 248 if (who)
228ebcbe 249 p = find_task_by_vpid(who);
41487c65
EB
250 else
251 p = current;
1da177e4
LT
252 if (p) {
253 niceval = 20 - task_nice(p);
254 if (niceval > retval)
255 retval = niceval;
256 }
257 break;
258 case PRIO_PGRP:
41487c65 259 if (who)
b488893a 260 pgrp = find_vpid(who);
41487c65
EB
261 else
262 pgrp = task_pgrp(current);
2d70b68d 263 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
264 niceval = 20 - task_nice(p);
265 if (niceval > retval)
266 retval = niceval;
2d70b68d 267 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
268 break;
269 case PRIO_USER:
7b44ab97 270 uid = make_kuid(cred->user_ns, who);
74ba508f 271 user = cred->user;
1da177e4 272 if (!who)
078de5f7
EB
273 uid = cred->uid;
274 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 275 !(user = find_user(uid)))
86a264ab 276 goto out_unlock; /* No processes for this user */
1da177e4 277
dfc6a736 278 do_each_thread(g, p) {
078de5f7 279 if (uid_eq(task_uid(p), uid)) {
1da177e4
LT
280 niceval = 20 - task_nice(p);
281 if (niceval > retval)
282 retval = niceval;
283 }
dfc6a736 284 } while_each_thread(g, p);
078de5f7 285 if (!uid_eq(uid, cred->uid))
1da177e4
LT
286 free_uid(user); /* for find_user() */
287 break;
288 }
289out_unlock:
290 read_unlock(&tasklist_lock);
70118837 291 rcu_read_unlock();
1da177e4
LT
292
293 return retval;
294}
295
1da177e4
LT
296/*
297 * Unprivileged users may change the real gid to the effective gid
298 * or vice versa. (BSD-style)
299 *
300 * If you set the real gid at all, or set the effective gid to a value not
301 * equal to the real gid, then the saved gid is set to the new effective gid.
302 *
303 * This makes it possible for a setgid program to completely drop its
304 * privileges, which is often a useful assertion to make when you are doing
305 * a security audit over a program.
306 *
307 * The general idea is that a program which uses just setregid() will be
308 * 100% compatible with BSD. A program which uses just setgid() will be
309 * 100% compatible with POSIX with saved IDs.
310 *
311 * SMP: There are not races, the GIDs are checked only by filesystem
312 * operations (as far as semantic preservation is concerned).
313 */
ae1251ab 314SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 315{
a29c33f4 316 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
317 const struct cred *old;
318 struct cred *new;
1da177e4 319 int retval;
a29c33f4
EB
320 kgid_t krgid, kegid;
321
322 krgid = make_kgid(ns, rgid);
323 kegid = make_kgid(ns, egid);
324
325 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
326 return -EINVAL;
327 if ((egid != (gid_t) -1) && !gid_valid(kegid))
328 return -EINVAL;
1da177e4 329
d84f4f99
DH
330 new = prepare_creds();
331 if (!new)
332 return -ENOMEM;
333 old = current_cred();
334
d84f4f99 335 retval = -EPERM;
1da177e4 336 if (rgid != (gid_t) -1) {
a29c33f4
EB
337 if (gid_eq(old->gid, krgid) ||
338 gid_eq(old->egid, krgid) ||
c7b96acf 339 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 340 new->gid = krgid;
1da177e4 341 else
d84f4f99 342 goto error;
1da177e4
LT
343 }
344 if (egid != (gid_t) -1) {
a29c33f4
EB
345 if (gid_eq(old->gid, kegid) ||
346 gid_eq(old->egid, kegid) ||
347 gid_eq(old->sgid, kegid) ||
c7b96acf 348 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 349 new->egid = kegid;
756184b7 350 else
d84f4f99 351 goto error;
1da177e4 352 }
d84f4f99 353
1da177e4 354 if (rgid != (gid_t) -1 ||
a29c33f4 355 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
356 new->sgid = new->egid;
357 new->fsgid = new->egid;
358
359 return commit_creds(new);
360
361error:
362 abort_creds(new);
363 return retval;
1da177e4
LT
364}
365
366/*
367 * setgid() is implemented like SysV w/ SAVED_IDS
368 *
369 * SMP: Same implicit races as above.
370 */
ae1251ab 371SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 372{
a29c33f4 373 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
374 const struct cred *old;
375 struct cred *new;
1da177e4 376 int retval;
a29c33f4
EB
377 kgid_t kgid;
378
379 kgid = make_kgid(ns, gid);
380 if (!gid_valid(kgid))
381 return -EINVAL;
1da177e4 382
d84f4f99
DH
383 new = prepare_creds();
384 if (!new)
385 return -ENOMEM;
386 old = current_cred();
387
d84f4f99 388 retval = -EPERM;
c7b96acf 389 if (ns_capable(old->user_ns, CAP_SETGID))
a29c33f4
EB
390 new->gid = new->egid = new->sgid = new->fsgid = kgid;
391 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
392 new->egid = new->fsgid = kgid;
1da177e4 393 else
d84f4f99 394 goto error;
1da177e4 395
d84f4f99
DH
396 return commit_creds(new);
397
398error:
399 abort_creds(new);
400 return retval;
1da177e4 401}
54e99124 402
d84f4f99
DH
403/*
404 * change the user struct in a credentials set to match the new UID
405 */
406static int set_user(struct cred *new)
1da177e4
LT
407{
408 struct user_struct *new_user;
409
078de5f7 410 new_user = alloc_uid(new->uid);
1da177e4
LT
411 if (!new_user)
412 return -EAGAIN;
413
72fa5997
VK
414 /*
415 * We don't fail in case of NPROC limit excess here because too many
416 * poorly written programs don't check set*uid() return code, assuming
417 * it never fails if called by root. We may still enforce NPROC limit
418 * for programs doing set*uid()+execve() by harmlessly deferring the
419 * failure to the execve() stage.
420 */
78d7d407 421 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
422 new_user != INIT_USER)
423 current->flags |= PF_NPROC_EXCEEDED;
424 else
425 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 426
d84f4f99
DH
427 free_uid(new->user);
428 new->user = new_user;
1da177e4
LT
429 return 0;
430}
431
432/*
433 * Unprivileged users may change the real uid to the effective uid
434 * or vice versa. (BSD-style)
435 *
436 * If you set the real uid at all, or set the effective uid to a value not
437 * equal to the real uid, then the saved uid is set to the new effective uid.
438 *
439 * This makes it possible for a setuid program to completely drop its
440 * privileges, which is often a useful assertion to make when you are doing
441 * a security audit over a program.
442 *
443 * The general idea is that a program which uses just setreuid() will be
444 * 100% compatible with BSD. A program which uses just setuid() will be
445 * 100% compatible with POSIX with saved IDs.
446 */
ae1251ab 447SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 448{
a29c33f4 449 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
450 const struct cred *old;
451 struct cred *new;
1da177e4 452 int retval;
a29c33f4
EB
453 kuid_t kruid, keuid;
454
455 kruid = make_kuid(ns, ruid);
456 keuid = make_kuid(ns, euid);
457
458 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
459 return -EINVAL;
460 if ((euid != (uid_t) -1) && !uid_valid(keuid))
461 return -EINVAL;
1da177e4 462
d84f4f99
DH
463 new = prepare_creds();
464 if (!new)
465 return -ENOMEM;
466 old = current_cred();
467
d84f4f99 468 retval = -EPERM;
1da177e4 469 if (ruid != (uid_t) -1) {
a29c33f4
EB
470 new->uid = kruid;
471 if (!uid_eq(old->uid, kruid) &&
472 !uid_eq(old->euid, kruid) &&
c7b96acf 473 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 474 goto error;
1da177e4
LT
475 }
476
477 if (euid != (uid_t) -1) {
a29c33f4
EB
478 new->euid = keuid;
479 if (!uid_eq(old->uid, keuid) &&
480 !uid_eq(old->euid, keuid) &&
481 !uid_eq(old->suid, keuid) &&
c7b96acf 482 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 483 goto error;
1da177e4
LT
484 }
485
a29c33f4 486 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
487 retval = set_user(new);
488 if (retval < 0)
489 goto error;
490 }
1da177e4 491 if (ruid != (uid_t) -1 ||
a29c33f4 492 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
493 new->suid = new->euid;
494 new->fsuid = new->euid;
1da177e4 495
d84f4f99
DH
496 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
497 if (retval < 0)
498 goto error;
1da177e4 499
d84f4f99 500 return commit_creds(new);
1da177e4 501
d84f4f99
DH
502error:
503 abort_creds(new);
504 return retval;
505}
1da177e4
LT
506
507/*
508 * setuid() is implemented like SysV with SAVED_IDS
509 *
510 * Note that SAVED_ID's is deficient in that a setuid root program
511 * like sendmail, for example, cannot set its uid to be a normal
512 * user and then switch back, because if you're root, setuid() sets
513 * the saved uid too. If you don't like this, blame the bright people
514 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
515 * will allow a root program to temporarily drop privileges and be able to
516 * regain them by swapping the real and effective uid.
517 */
ae1251ab 518SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 519{
a29c33f4 520 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
521 const struct cred *old;
522 struct cred *new;
1da177e4 523 int retval;
a29c33f4
EB
524 kuid_t kuid;
525
526 kuid = make_kuid(ns, uid);
527 if (!uid_valid(kuid))
528 return -EINVAL;
1da177e4 529
d84f4f99
DH
530 new = prepare_creds();
531 if (!new)
532 return -ENOMEM;
533 old = current_cred();
534
d84f4f99 535 retval = -EPERM;
c7b96acf 536 if (ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
537 new->suid = new->uid = kuid;
538 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
539 retval = set_user(new);
540 if (retval < 0)
541 goto error;
d84f4f99 542 }
a29c33f4 543 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 544 goto error;
1da177e4 545 }
1da177e4 546
a29c33f4 547 new->fsuid = new->euid = kuid;
d84f4f99
DH
548
549 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
550 if (retval < 0)
551 goto error;
1da177e4 552
d84f4f99 553 return commit_creds(new);
1da177e4 554
d84f4f99
DH
555error:
556 abort_creds(new);
557 return retval;
1da177e4
LT
558}
559
560
561/*
562 * This function implements a generic ability to update ruid, euid,
563 * and suid. This allows you to implement the 4.4 compatible seteuid().
564 */
ae1251ab 565SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 566{
a29c33f4 567 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
568 const struct cred *old;
569 struct cred *new;
1da177e4 570 int retval;
a29c33f4
EB
571 kuid_t kruid, keuid, ksuid;
572
573 kruid = make_kuid(ns, ruid);
574 keuid = make_kuid(ns, euid);
575 ksuid = make_kuid(ns, suid);
576
577 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
578 return -EINVAL;
579
580 if ((euid != (uid_t) -1) && !uid_valid(keuid))
581 return -EINVAL;
582
583 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
584 return -EINVAL;
1da177e4 585
d84f4f99
DH
586 new = prepare_creds();
587 if (!new)
588 return -ENOMEM;
589
d84f4f99 590 old = current_cred();
1da177e4 591
d84f4f99 592 retval = -EPERM;
c7b96acf 593 if (!ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
594 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
595 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 596 goto error;
a29c33f4
EB
597 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
598 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 599 goto error;
a29c33f4
EB
600 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
601 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 602 goto error;
1da177e4 603 }
d84f4f99 604
1da177e4 605 if (ruid != (uid_t) -1) {
a29c33f4
EB
606 new->uid = kruid;
607 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
608 retval = set_user(new);
609 if (retval < 0)
610 goto error;
611 }
1da177e4 612 }
d84f4f99 613 if (euid != (uid_t) -1)
a29c33f4 614 new->euid = keuid;
1da177e4 615 if (suid != (uid_t) -1)
a29c33f4 616 new->suid = ksuid;
d84f4f99 617 new->fsuid = new->euid;
1da177e4 618
d84f4f99
DH
619 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
620 if (retval < 0)
621 goto error;
1da177e4 622
d84f4f99 623 return commit_creds(new);
1da177e4 624
d84f4f99
DH
625error:
626 abort_creds(new);
627 return retval;
1da177e4
LT
628}
629
a29c33f4 630SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 631{
86a264ab 632 const struct cred *cred = current_cred();
1da177e4 633 int retval;
a29c33f4
EB
634 uid_t ruid, euid, suid;
635
636 ruid = from_kuid_munged(cred->user_ns, cred->uid);
637 euid = from_kuid_munged(cred->user_ns, cred->euid);
638 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 639
a29c33f4
EB
640 if (!(retval = put_user(ruid, ruidp)) &&
641 !(retval = put_user(euid, euidp)))
642 retval = put_user(suid, suidp);
1da177e4
LT
643
644 return retval;
645}
646
647/*
648 * Same as above, but for rgid, egid, sgid.
649 */
ae1251ab 650SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 651{
a29c33f4 652 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
653 const struct cred *old;
654 struct cred *new;
1da177e4 655 int retval;
a29c33f4
EB
656 kgid_t krgid, kegid, ksgid;
657
658 krgid = make_kgid(ns, rgid);
659 kegid = make_kgid(ns, egid);
660 ksgid = make_kgid(ns, sgid);
661
662 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
663 return -EINVAL;
664 if ((egid != (gid_t) -1) && !gid_valid(kegid))
665 return -EINVAL;
666 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
667 return -EINVAL;
1da177e4 668
d84f4f99
DH
669 new = prepare_creds();
670 if (!new)
671 return -ENOMEM;
672 old = current_cred();
673
d84f4f99 674 retval = -EPERM;
c7b96acf 675 if (!ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
676 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
677 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 678 goto error;
a29c33f4
EB
679 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
680 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 681 goto error;
a29c33f4
EB
682 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
683 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 684 goto error;
1da177e4 685 }
d84f4f99 686
1da177e4 687 if (rgid != (gid_t) -1)
a29c33f4 688 new->gid = krgid;
d84f4f99 689 if (egid != (gid_t) -1)
a29c33f4 690 new->egid = kegid;
1da177e4 691 if (sgid != (gid_t) -1)
a29c33f4 692 new->sgid = ksgid;
d84f4f99 693 new->fsgid = new->egid;
1da177e4 694
d84f4f99
DH
695 return commit_creds(new);
696
697error:
698 abort_creds(new);
699 return retval;
1da177e4
LT
700}
701
a29c33f4 702SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 703{
86a264ab 704 const struct cred *cred = current_cred();
1da177e4 705 int retval;
a29c33f4
EB
706 gid_t rgid, egid, sgid;
707
708 rgid = from_kgid_munged(cred->user_ns, cred->gid);
709 egid = from_kgid_munged(cred->user_ns, cred->egid);
710 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 711
a29c33f4
EB
712 if (!(retval = put_user(rgid, rgidp)) &&
713 !(retval = put_user(egid, egidp)))
714 retval = put_user(sgid, sgidp);
1da177e4
LT
715
716 return retval;
717}
718
719
720/*
721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
723 * whatever uid it wants to). It normally shadows "euid", except when
724 * explicitly set by setfsuid() or for access..
725 */
ae1251ab 726SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 727{
d84f4f99
DH
728 const struct cred *old;
729 struct cred *new;
730 uid_t old_fsuid;
a29c33f4
EB
731 kuid_t kuid;
732
733 old = current_cred();
734 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
735
736 kuid = make_kuid(old->user_ns, uid);
737 if (!uid_valid(kuid))
738 return old_fsuid;
1da177e4 739
d84f4f99
DH
740 new = prepare_creds();
741 if (!new)
a29c33f4 742 return old_fsuid;
1da177e4 743
a29c33f4
EB
744 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
745 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
c7b96acf 746 ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
747 if (!uid_eq(kuid, old->fsuid)) {
748 new->fsuid = kuid;
d84f4f99
DH
749 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
750 goto change_okay;
1da177e4 751 }
1da177e4
LT
752 }
753
d84f4f99
DH
754 abort_creds(new);
755 return old_fsuid;
1da177e4 756
d84f4f99
DH
757change_okay:
758 commit_creds(new);
1da177e4
LT
759 return old_fsuid;
760}
761
762/*
f42df9e6 763 * Samma på svenska..
1da177e4 764 */
ae1251ab 765SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 766{
d84f4f99
DH
767 const struct cred *old;
768 struct cred *new;
769 gid_t old_fsgid;
a29c33f4
EB
770 kgid_t kgid;
771
772 old = current_cred();
773 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
774
775 kgid = make_kgid(old->user_ns, gid);
776 if (!gid_valid(kgid))
777 return old_fsgid;
d84f4f99
DH
778
779 new = prepare_creds();
780 if (!new)
a29c33f4 781 return old_fsgid;
1da177e4 782
a29c33f4
EB
783 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
784 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
c7b96acf 785 ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
786 if (!gid_eq(kgid, old->fsgid)) {
787 new->fsgid = kgid;
d84f4f99 788 goto change_okay;
1da177e4 789 }
1da177e4 790 }
d84f4f99 791
d84f4f99
DH
792 abort_creds(new);
793 return old_fsgid;
794
795change_okay:
796 commit_creds(new);
1da177e4
LT
797 return old_fsgid;
798}
799
4a22f166
SR
800/**
801 * sys_getpid - return the thread group id of the current process
802 *
803 * Note, despite the name, this returns the tgid not the pid. The tgid and
804 * the pid are identical unless CLONE_THREAD was specified on clone() in
805 * which case the tgid is the same in all threads of the same group.
806 *
807 * This is SMP safe as current->tgid does not change.
808 */
809SYSCALL_DEFINE0(getpid)
810{
811 return task_tgid_vnr(current);
812}
813
814/* Thread ID - the internal kernel "pid" */
815SYSCALL_DEFINE0(gettid)
816{
817 return task_pid_vnr(current);
818}
819
820/*
821 * Accessing ->real_parent is not SMP-safe, it could
822 * change from under us. However, we can use a stale
823 * value of ->real_parent under rcu_read_lock(), see
824 * release_task()->call_rcu(delayed_put_task_struct).
825 */
826SYSCALL_DEFINE0(getppid)
827{
828 int pid;
829
830 rcu_read_lock();
831 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
832 rcu_read_unlock();
833
834 return pid;
835}
836
837SYSCALL_DEFINE0(getuid)
838{
839 /* Only we change this so SMP safe */
840 return from_kuid_munged(current_user_ns(), current_uid());
841}
842
843SYSCALL_DEFINE0(geteuid)
844{
845 /* Only we change this so SMP safe */
846 return from_kuid_munged(current_user_ns(), current_euid());
847}
848
849SYSCALL_DEFINE0(getgid)
850{
851 /* Only we change this so SMP safe */
852 return from_kgid_munged(current_user_ns(), current_gid());
853}
854
855SYSCALL_DEFINE0(getegid)
856{
857 /* Only we change this so SMP safe */
858 return from_kgid_munged(current_user_ns(), current_egid());
859}
860
f06febc9
FM
861void do_sys_times(struct tms *tms)
862{
0cf55e1e 863 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 864
2b5fe6de 865 spin_lock_irq(&current->sighand->siglock);
e80d0a1a 866 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
867 cutime = current->signal->cutime;
868 cstime = current->signal->cstime;
869 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
870 tms->tms_utime = cputime_to_clock_t(tgutime);
871 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
872 tms->tms_cutime = cputime_to_clock_t(cutime);
873 tms->tms_cstime = cputime_to_clock_t(cstime);
874}
875
58fd3aa2 876SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 877{
1da177e4
LT
878 if (tbuf) {
879 struct tms tmp;
f06febc9
FM
880
881 do_sys_times(&tmp);
1da177e4
LT
882 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
883 return -EFAULT;
884 }
e3d5a27d 885 force_successful_syscall_return();
1da177e4
LT
886 return (long) jiffies_64_to_clock_t(get_jiffies_64());
887}
888
889/*
890 * This needs some heavy checking ...
891 * I just haven't the stomach for it. I also don't fully
892 * understand sessions/pgrp etc. Let somebody who does explain it.
893 *
894 * OK, I think I have the protection semantics right.... this is really
895 * only important on a multi-user system anyway, to make sure one user
896 * can't send a signal to a process owned by another. -TYT, 12/12/91
897 *
898 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
899 * LBT 04.03.94
900 */
b290ebe2 901SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
902{
903 struct task_struct *p;
ee0acf90 904 struct task_struct *group_leader = current->group_leader;
4e021306
ON
905 struct pid *pgrp;
906 int err;
1da177e4
LT
907
908 if (!pid)
b488893a 909 pid = task_pid_vnr(group_leader);
1da177e4
LT
910 if (!pgid)
911 pgid = pid;
912 if (pgid < 0)
913 return -EINVAL;
950eaaca 914 rcu_read_lock();
1da177e4
LT
915
916 /* From this point forward we keep holding onto the tasklist lock
917 * so that our parent does not change from under us. -DaveM
918 */
919 write_lock_irq(&tasklist_lock);
920
921 err = -ESRCH;
4e021306 922 p = find_task_by_vpid(pid);
1da177e4
LT
923 if (!p)
924 goto out;
925
926 err = -EINVAL;
927 if (!thread_group_leader(p))
928 goto out;
929
4e021306 930 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 931 err = -EPERM;
41487c65 932 if (task_session(p) != task_session(group_leader))
1da177e4
LT
933 goto out;
934 err = -EACCES;
935 if (p->did_exec)
936 goto out;
937 } else {
938 err = -ESRCH;
ee0acf90 939 if (p != group_leader)
1da177e4
LT
940 goto out;
941 }
942
943 err = -EPERM;
944 if (p->signal->leader)
945 goto out;
946
4e021306 947 pgrp = task_pid(p);
1da177e4 948 if (pgid != pid) {
b488893a 949 struct task_struct *g;
1da177e4 950
4e021306
ON
951 pgrp = find_vpid(pgid);
952 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 953 if (!g || task_session(g) != task_session(group_leader))
f020bc46 954 goto out;
1da177e4
LT
955 }
956
1da177e4
LT
957 err = security_task_setpgid(p, pgid);
958 if (err)
959 goto out;
960
1b0f7ffd 961 if (task_pgrp(p) != pgrp)
83beaf3c 962 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
963
964 err = 0;
965out:
966 /* All paths lead to here, thus we are safe. -DaveM */
967 write_unlock_irq(&tasklist_lock);
950eaaca 968 rcu_read_unlock();
1da177e4
LT
969 return err;
970}
971
dbf040d9 972SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 973{
12a3de0a
ON
974 struct task_struct *p;
975 struct pid *grp;
976 int retval;
977
978 rcu_read_lock();
756184b7 979 if (!pid)
12a3de0a 980 grp = task_pgrp(current);
756184b7 981 else {
1da177e4 982 retval = -ESRCH;
12a3de0a
ON
983 p = find_task_by_vpid(pid);
984 if (!p)
985 goto out;
986 grp = task_pgrp(p);
987 if (!grp)
988 goto out;
989
990 retval = security_task_getpgid(p);
991 if (retval)
992 goto out;
1da177e4 993 }
12a3de0a
ON
994 retval = pid_vnr(grp);
995out:
996 rcu_read_unlock();
997 return retval;
1da177e4
LT
998}
999
1000#ifdef __ARCH_WANT_SYS_GETPGRP
1001
dbf040d9 1002SYSCALL_DEFINE0(getpgrp)
1da177e4 1003{
12a3de0a 1004 return sys_getpgid(0);
1da177e4
LT
1005}
1006
1007#endif
1008
dbf040d9 1009SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1010{
1dd768c0
ON
1011 struct task_struct *p;
1012 struct pid *sid;
1013 int retval;
1014
1015 rcu_read_lock();
756184b7 1016 if (!pid)
1dd768c0 1017 sid = task_session(current);
756184b7 1018 else {
1da177e4 1019 retval = -ESRCH;
1dd768c0
ON
1020 p = find_task_by_vpid(pid);
1021 if (!p)
1022 goto out;
1023 sid = task_session(p);
1024 if (!sid)
1025 goto out;
1026
1027 retval = security_task_getsid(p);
1028 if (retval)
1029 goto out;
1da177e4 1030 }
1dd768c0
ON
1031 retval = pid_vnr(sid);
1032out:
1033 rcu_read_unlock();
1034 return retval;
1da177e4
LT
1035}
1036
81dabb46
ON
1037static void set_special_pids(struct pid *pid)
1038{
1039 struct task_struct *curr = current->group_leader;
1040
1041 if (task_session(curr) != pid)
1042 change_pid(curr, PIDTYPE_SID, pid);
1043
1044 if (task_pgrp(curr) != pid)
1045 change_pid(curr, PIDTYPE_PGID, pid);
1046}
1047
b290ebe2 1048SYSCALL_DEFINE0(setsid)
1da177e4 1049{
e19f247a 1050 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1051 struct pid *sid = task_pid(group_leader);
1052 pid_t session = pid_vnr(sid);
1da177e4
LT
1053 int err = -EPERM;
1054
1da177e4 1055 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1056 /* Fail if I am already a session leader */
1057 if (group_leader->signal->leader)
1058 goto out;
1059
430c6231
ON
1060 /* Fail if a process group id already exists that equals the
1061 * proposed session id.
390e2ff0 1062 */
6806aac6 1063 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1064 goto out;
1065
e19f247a 1066 group_leader->signal->leader = 1;
81dabb46 1067 set_special_pids(sid);
24ec839c 1068
9c9f4ded 1069 proc_clear_tty(group_leader);
24ec839c 1070
e4cc0a9c 1071 err = session;
1da177e4
LT
1072out:
1073 write_unlock_irq(&tasklist_lock);
5091faa4 1074 if (err > 0) {
0d0df599 1075 proc_sid_connector(group_leader);
5091faa4
MG
1076 sched_autogroup_create_attach(group_leader);
1077 }
1da177e4
LT
1078 return err;
1079}
1080
1da177e4
LT
1081DECLARE_RWSEM(uts_sem);
1082
e28cbf22
CH
1083#ifdef COMPAT_UTS_MACHINE
1084#define override_architecture(name) \
46da2766 1085 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1086 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1087 sizeof(COMPAT_UTS_MACHINE)))
1088#else
1089#define override_architecture(name) 0
1090#endif
1091
be27425d
AK
1092/*
1093 * Work around broken programs that cannot handle "Linux 3.0".
1094 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1095 */
2702b152 1096static int override_release(char __user *release, size_t len)
be27425d
AK
1097{
1098 int ret = 0;
be27425d
AK
1099
1100 if (current->personality & UNAME26) {
2702b152
KC
1101 const char *rest = UTS_RELEASE;
1102 char buf[65] = { 0 };
be27425d
AK
1103 int ndots = 0;
1104 unsigned v;
2702b152 1105 size_t copy;
be27425d
AK
1106
1107 while (*rest) {
1108 if (*rest == '.' && ++ndots >= 3)
1109 break;
1110 if (!isdigit(*rest) && *rest != '.')
1111 break;
1112 rest++;
1113 }
1114 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
31fd84b9 1115 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1116 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1117 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1118 }
1119 return ret;
1120}
1121
e48fbb69 1122SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1123{
1124 int errno = 0;
1125
1126 down_read(&uts_sem);
e9ff3990 1127 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1128 errno = -EFAULT;
1129 up_read(&uts_sem);
e28cbf22 1130
be27425d
AK
1131 if (!errno && override_release(name->release, sizeof(name->release)))
1132 errno = -EFAULT;
e28cbf22
CH
1133 if (!errno && override_architecture(name))
1134 errno = -EFAULT;
1da177e4
LT
1135 return errno;
1136}
1137
5cacdb4a
CH
1138#ifdef __ARCH_WANT_SYS_OLD_UNAME
1139/*
1140 * Old cruft
1141 */
1142SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1143{
1144 int error = 0;
1145
1146 if (!name)
1147 return -EFAULT;
1148
1149 down_read(&uts_sem);
1150 if (copy_to_user(name, utsname(), sizeof(*name)))
1151 error = -EFAULT;
1152 up_read(&uts_sem);
1153
be27425d
AK
1154 if (!error && override_release(name->release, sizeof(name->release)))
1155 error = -EFAULT;
5cacdb4a
CH
1156 if (!error && override_architecture(name))
1157 error = -EFAULT;
1158 return error;
1159}
1160
1161SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1162{
1163 int error;
1164
1165 if (!name)
1166 return -EFAULT;
1167 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1168 return -EFAULT;
1169
1170 down_read(&uts_sem);
1171 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1172 __OLD_UTS_LEN);
1173 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1174 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1175 __OLD_UTS_LEN);
1176 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1177 error |= __copy_to_user(&name->release, &utsname()->release,
1178 __OLD_UTS_LEN);
1179 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1180 error |= __copy_to_user(&name->version, &utsname()->version,
1181 __OLD_UTS_LEN);
1182 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1183 error |= __copy_to_user(&name->machine, &utsname()->machine,
1184 __OLD_UTS_LEN);
1185 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1186 up_read(&uts_sem);
1187
1188 if (!error && override_architecture(name))
1189 error = -EFAULT;
be27425d
AK
1190 if (!error && override_release(name->release, sizeof(name->release)))
1191 error = -EFAULT;
5cacdb4a
CH
1192 return error ? -EFAULT : 0;
1193}
1194#endif
1195
5a8a82b1 1196SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1197{
1198 int errno;
1199 char tmp[__NEW_UTS_LEN];
1200
bb96a6f5 1201 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1202 return -EPERM;
fc832ad3 1203
1da177e4
LT
1204 if (len < 0 || len > __NEW_UTS_LEN)
1205 return -EINVAL;
1206 down_write(&uts_sem);
1207 errno = -EFAULT;
1208 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1209 struct new_utsname *u = utsname();
1210
1211 memcpy(u->nodename, tmp, len);
1212 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1213 errno = 0;
499eea6b 1214 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1215 }
1216 up_write(&uts_sem);
1217 return errno;
1218}
1219
1220#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1221
5a8a82b1 1222SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1223{
1224 int i, errno;
9679e4dd 1225 struct new_utsname *u;
1da177e4
LT
1226
1227 if (len < 0)
1228 return -EINVAL;
1229 down_read(&uts_sem);
9679e4dd
AM
1230 u = utsname();
1231 i = 1 + strlen(u->nodename);
1da177e4
LT
1232 if (i > len)
1233 i = len;
1234 errno = 0;
9679e4dd 1235 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1236 errno = -EFAULT;
1237 up_read(&uts_sem);
1238 return errno;
1239}
1240
1241#endif
1242
1243/*
1244 * Only setdomainname; getdomainname can be implemented by calling
1245 * uname()
1246 */
5a8a82b1 1247SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1248{
1249 int errno;
1250 char tmp[__NEW_UTS_LEN];
1251
fc832ad3 1252 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1253 return -EPERM;
1254 if (len < 0 || len > __NEW_UTS_LEN)
1255 return -EINVAL;
1256
1257 down_write(&uts_sem);
1258 errno = -EFAULT;
1259 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1260 struct new_utsname *u = utsname();
1261
1262 memcpy(u->domainname, tmp, len);
1263 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1264 errno = 0;
499eea6b 1265 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1266 }
1267 up_write(&uts_sem);
1268 return errno;
1269}
1270
e48fbb69 1271SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1272{
b9518345
JS
1273 struct rlimit value;
1274 int ret;
1275
1276 ret = do_prlimit(current, resource, NULL, &value);
1277 if (!ret)
1278 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1279
1280 return ret;
1da177e4
LT
1281}
1282
1283#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1284
1285/*
1286 * Back compatibility for getrlimit. Needed for some apps.
1287 */
1288
e48fbb69
HC
1289SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1290 struct rlimit __user *, rlim)
1da177e4
LT
1291{
1292 struct rlimit x;
1293 if (resource >= RLIM_NLIMITS)
1294 return -EINVAL;
1295
1296 task_lock(current->group_leader);
1297 x = current->signal->rlim[resource];
1298 task_unlock(current->group_leader);
756184b7 1299 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1300 x.rlim_cur = 0x7FFFFFFF;
756184b7 1301 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1302 x.rlim_max = 0x7FFFFFFF;
1303 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1304}
1305
1306#endif
1307
c022a0ac
JS
1308static inline bool rlim64_is_infinity(__u64 rlim64)
1309{
1310#if BITS_PER_LONG < 64
1311 return rlim64 >= ULONG_MAX;
1312#else
1313 return rlim64 == RLIM64_INFINITY;
1314#endif
1315}
1316
1317static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1318{
1319 if (rlim->rlim_cur == RLIM_INFINITY)
1320 rlim64->rlim_cur = RLIM64_INFINITY;
1321 else
1322 rlim64->rlim_cur = rlim->rlim_cur;
1323 if (rlim->rlim_max == RLIM_INFINITY)
1324 rlim64->rlim_max = RLIM64_INFINITY;
1325 else
1326 rlim64->rlim_max = rlim->rlim_max;
1327}
1328
1329static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1330{
1331 if (rlim64_is_infinity(rlim64->rlim_cur))
1332 rlim->rlim_cur = RLIM_INFINITY;
1333 else
1334 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1335 if (rlim64_is_infinity(rlim64->rlim_max))
1336 rlim->rlim_max = RLIM_INFINITY;
1337 else
1338 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1339}
1340
1c1e618d 1341/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1342int do_prlimit(struct task_struct *tsk, unsigned int resource,
1343 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1344{
5b41535a 1345 struct rlimit *rlim;
86f162f4 1346 int retval = 0;
1da177e4
LT
1347
1348 if (resource >= RLIM_NLIMITS)
1349 return -EINVAL;
5b41535a
JS
1350 if (new_rlim) {
1351 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1352 return -EINVAL;
1353 if (resource == RLIMIT_NOFILE &&
1354 new_rlim->rlim_max > sysctl_nr_open)
1355 return -EPERM;
1356 }
1da177e4 1357
1c1e618d
JS
1358 /* protect tsk->signal and tsk->sighand from disappearing */
1359 read_lock(&tasklist_lock);
1360 if (!tsk->sighand) {
1361 retval = -ESRCH;
1362 goto out;
1363 }
1364
5b41535a 1365 rlim = tsk->signal->rlim + resource;
86f162f4 1366 task_lock(tsk->group_leader);
5b41535a 1367 if (new_rlim) {
fc832ad3
SH
1368 /* Keep the capable check against init_user_ns until
1369 cgroups can contain all limits */
5b41535a
JS
1370 if (new_rlim->rlim_max > rlim->rlim_max &&
1371 !capable(CAP_SYS_RESOURCE))
1372 retval = -EPERM;
1373 if (!retval)
1374 retval = security_task_setrlimit(tsk->group_leader,
1375 resource, new_rlim);
1376 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1377 /*
1378 * The caller is asking for an immediate RLIMIT_CPU
1379 * expiry. But we use the zero value to mean "it was
1380 * never set". So let's cheat and make it one second
1381 * instead
1382 */
1383 new_rlim->rlim_cur = 1;
1384 }
1385 }
1386 if (!retval) {
1387 if (old_rlim)
1388 *old_rlim = *rlim;
1389 if (new_rlim)
1390 *rlim = *new_rlim;
9926e4c7 1391 }
7855c35d 1392 task_unlock(tsk->group_leader);
1da177e4 1393
d3561f78
AM
1394 /*
1395 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1396 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1397 * very long-standing error, and fixing it now risks breakage of
1398 * applications, so we live with it
1399 */
5b41535a
JS
1400 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1401 new_rlim->rlim_cur != RLIM_INFINITY)
1402 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1403out:
1c1e618d 1404 read_unlock(&tasklist_lock);
2fb9d268 1405 return retval;
1da177e4
LT
1406}
1407
c022a0ac
JS
1408/* rcu lock must be held */
1409static int check_prlimit_permission(struct task_struct *task)
1410{
1411 const struct cred *cred = current_cred(), *tcred;
1412
fc832ad3
SH
1413 if (current == task)
1414 return 0;
c022a0ac 1415
fc832ad3 1416 tcred = __task_cred(task);
5af66203
EB
1417 if (uid_eq(cred->uid, tcred->euid) &&
1418 uid_eq(cred->uid, tcred->suid) &&
1419 uid_eq(cred->uid, tcred->uid) &&
1420 gid_eq(cred->gid, tcred->egid) &&
1421 gid_eq(cred->gid, tcred->sgid) &&
1422 gid_eq(cred->gid, tcred->gid))
fc832ad3 1423 return 0;
c4a4d603 1424 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1425 return 0;
1426
1427 return -EPERM;
c022a0ac
JS
1428}
1429
1430SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1431 const struct rlimit64 __user *, new_rlim,
1432 struct rlimit64 __user *, old_rlim)
1433{
1434 struct rlimit64 old64, new64;
1435 struct rlimit old, new;
1436 struct task_struct *tsk;
1437 int ret;
1438
1439 if (new_rlim) {
1440 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1441 return -EFAULT;
1442 rlim64_to_rlim(&new64, &new);
1443 }
1444
1445 rcu_read_lock();
1446 tsk = pid ? find_task_by_vpid(pid) : current;
1447 if (!tsk) {
1448 rcu_read_unlock();
1449 return -ESRCH;
1450 }
1451 ret = check_prlimit_permission(tsk);
1452 if (ret) {
1453 rcu_read_unlock();
1454 return ret;
1455 }
1456 get_task_struct(tsk);
1457 rcu_read_unlock();
1458
1459 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1460 old_rlim ? &old : NULL);
1461
1462 if (!ret && old_rlim) {
1463 rlim_to_rlim64(&old, &old64);
1464 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1465 ret = -EFAULT;
1466 }
1467
1468 put_task_struct(tsk);
1469 return ret;
1470}
1471
7855c35d
JS
1472SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1473{
1474 struct rlimit new_rlim;
1475
1476 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1477 return -EFAULT;
5b41535a 1478 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1479}
1480
1da177e4
LT
1481/*
1482 * It would make sense to put struct rusage in the task_struct,
1483 * except that would make the task_struct be *really big*. After
1484 * task_struct gets moved into malloc'ed memory, it would
1485 * make sense to do this. It will make moving the rest of the information
1486 * a lot simpler! (Which we're not doing right now because we're not
1487 * measuring them yet).
1488 *
1da177e4
LT
1489 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1490 * races with threads incrementing their own counters. But since word
1491 * reads are atomic, we either get new values or old values and we don't
1492 * care which for the sums. We always take the siglock to protect reading
1493 * the c* fields from p->signal from races with exit.c updating those
1494 * fields when reaping, so a sample either gets all the additions of a
1495 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1496 *
de047c1b
RT
1497 * Locking:
1498 * We need to take the siglock for CHILDEREN, SELF and BOTH
1499 * for the cases current multithreaded, non-current single threaded
1500 * non-current multithreaded. Thread traversal is now safe with
1501 * the siglock held.
1502 * Strictly speaking, we donot need to take the siglock if we are current and
1503 * single threaded, as no one else can take our signal_struct away, no one
1504 * else can reap the children to update signal->c* counters, and no one else
1505 * can race with the signal-> fields. If we do not take any lock, the
1506 * signal-> fields could be read out of order while another thread was just
1507 * exiting. So we should place a read memory barrier when we avoid the lock.
1508 * On the writer side, write memory barrier is implied in __exit_signal
1509 * as __exit_signal releases the siglock spinlock after updating the signal->
1510 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1511 *
1da177e4
LT
1512 */
1513
f06febc9 1514static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1515{
679c9cd4
SK
1516 r->ru_nvcsw += t->nvcsw;
1517 r->ru_nivcsw += t->nivcsw;
1518 r->ru_minflt += t->min_flt;
1519 r->ru_majflt += t->maj_flt;
1520 r->ru_inblock += task_io_get_inblock(t);
1521 r->ru_oublock += task_io_get_oublock(t);
1522}
1523
1da177e4
LT
1524static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1525{
1526 struct task_struct *t;
1527 unsigned long flags;
0cf55e1e 1528 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1529 unsigned long maxrss = 0;
1da177e4
LT
1530
1531 memset((char *) r, 0, sizeof *r);
64861634 1532 utime = stime = 0;
1da177e4 1533
679c9cd4 1534 if (who == RUSAGE_THREAD) {
e80d0a1a 1535 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1536 accumulate_thread_rusage(p, r);
1f10206c 1537 maxrss = p->signal->maxrss;
679c9cd4
SK
1538 goto out;
1539 }
1540
d6cf723a 1541 if (!lock_task_sighand(p, &flags))
de047c1b 1542 return;
0f59cc4a 1543
1da177e4 1544 switch (who) {
0f59cc4a 1545 case RUSAGE_BOTH:
1da177e4 1546 case RUSAGE_CHILDREN:
1da177e4
LT
1547 utime = p->signal->cutime;
1548 stime = p->signal->cstime;
1549 r->ru_nvcsw = p->signal->cnvcsw;
1550 r->ru_nivcsw = p->signal->cnivcsw;
1551 r->ru_minflt = p->signal->cmin_flt;
1552 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1553 r->ru_inblock = p->signal->cinblock;
1554 r->ru_oublock = p->signal->coublock;
1f10206c 1555 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1556
1557 if (who == RUSAGE_CHILDREN)
1558 break;
1559
1da177e4 1560 case RUSAGE_SELF:
e80d0a1a 1561 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
64861634
MS
1562 utime += tgutime;
1563 stime += tgstime;
1da177e4
LT
1564 r->ru_nvcsw += p->signal->nvcsw;
1565 r->ru_nivcsw += p->signal->nivcsw;
1566 r->ru_minflt += p->signal->min_flt;
1567 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1568 r->ru_inblock += p->signal->inblock;
1569 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1570 if (maxrss < p->signal->maxrss)
1571 maxrss = p->signal->maxrss;
1da177e4
LT
1572 t = p;
1573 do {
f06febc9 1574 accumulate_thread_rusage(t, r);
1da177e4
LT
1575 t = next_thread(t);
1576 } while (t != p);
1da177e4 1577 break;
0f59cc4a 1578
1da177e4
LT
1579 default:
1580 BUG();
1581 }
de047c1b 1582 unlock_task_sighand(p, &flags);
de047c1b 1583
679c9cd4 1584out:
0f59cc4a
ON
1585 cputime_to_timeval(utime, &r->ru_utime);
1586 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1587
1588 if (who != RUSAGE_CHILDREN) {
1589 struct mm_struct *mm = get_task_mm(p);
1590 if (mm) {
1591 setmax_mm_hiwater_rss(&maxrss, mm);
1592 mmput(mm);
1593 }
1594 }
1595 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1596}
1597
1598int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1599{
1600 struct rusage r;
1da177e4 1601 k_getrusage(p, who, &r);
1da177e4
LT
1602 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1603}
1604
e48fbb69 1605SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1606{
679c9cd4
SK
1607 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1608 who != RUSAGE_THREAD)
1da177e4
LT
1609 return -EINVAL;
1610 return getrusage(current, who, ru);
1611}
1612
8d2d5c4a
AV
1613#ifdef CONFIG_COMPAT
1614COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1615{
1616 struct rusage r;
1617
1618 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1619 who != RUSAGE_THREAD)
1620 return -EINVAL;
1621
1622 k_getrusage(current, who, &r);
1623 return put_compat_rusage(&r, ru);
1624}
1625#endif
1626
e48fbb69 1627SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1628{
1629 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1630 return mask;
1631}
3b7391de 1632
b32dfe37
CG
1633static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1634{
2903ff01 1635 struct fd exe;
496ad9aa 1636 struct inode *inode;
2903ff01 1637 int err;
b32dfe37 1638
2903ff01
AV
1639 exe = fdget(fd);
1640 if (!exe.file)
b32dfe37
CG
1641 return -EBADF;
1642
496ad9aa 1643 inode = file_inode(exe.file);
b32dfe37
CG
1644
1645 /*
1646 * Because the original mm->exe_file points to executable file, make
1647 * sure that this one is executable as well, to avoid breaking an
1648 * overall picture.
1649 */
1650 err = -EACCES;
496ad9aa 1651 if (!S_ISREG(inode->i_mode) ||
2903ff01 1652 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
b32dfe37
CG
1653 goto exit;
1654
496ad9aa 1655 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1656 if (err)
1657 goto exit;
1658
bafb282d
KK
1659 down_write(&mm->mmap_sem);
1660
1661 /*
4229fb1d 1662 * Forbid mm->exe_file change if old file still mapped.
bafb282d
KK
1663 */
1664 err = -EBUSY;
4229fb1d
KK
1665 if (mm->exe_file) {
1666 struct vm_area_struct *vma;
1667
1668 for (vma = mm->mmap; vma; vma = vma->vm_next)
1669 if (vma->vm_file &&
1670 path_equal(&vma->vm_file->f_path,
1671 &mm->exe_file->f_path))
1672 goto exit_unlock;
bafb282d
KK
1673 }
1674
b32dfe37
CG
1675 /*
1676 * The symlink can be changed only once, just to disallow arbitrary
1677 * transitions malicious software might bring in. This means one
1678 * could make a snapshot over all processes running and monitor
1679 * /proc/pid/exe changes to notice unusual activity if needed.
1680 */
bafb282d
KK
1681 err = -EPERM;
1682 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1683 goto exit_unlock;
1684
4229fb1d 1685 err = 0;
2903ff01 1686 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
bafb282d 1687exit_unlock:
b32dfe37
CG
1688 up_write(&mm->mmap_sem);
1689
1690exit:
2903ff01 1691 fdput(exe);
b32dfe37
CG
1692 return err;
1693}
1694
028ee4be
CG
1695static int prctl_set_mm(int opt, unsigned long addr,
1696 unsigned long arg4, unsigned long arg5)
1697{
1698 unsigned long rlim = rlimit(RLIMIT_DATA);
028ee4be 1699 struct mm_struct *mm = current->mm;
fe8c7f5c
CG
1700 struct vm_area_struct *vma;
1701 int error;
028ee4be 1702
fe8c7f5c 1703 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
028ee4be
CG
1704 return -EINVAL;
1705
79f0713d 1706 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1707 return -EPERM;
1708
b32dfe37
CG
1709 if (opt == PR_SET_MM_EXE_FILE)
1710 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1711
1ad75b9e 1712 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
1713 return -EINVAL;
1714
fe8c7f5c
CG
1715 error = -EINVAL;
1716
028ee4be
CG
1717 down_read(&mm->mmap_sem);
1718 vma = find_vma(mm, addr);
1719
028ee4be
CG
1720 switch (opt) {
1721 case PR_SET_MM_START_CODE:
fe8c7f5c
CG
1722 mm->start_code = addr;
1723 break;
028ee4be 1724 case PR_SET_MM_END_CODE:
fe8c7f5c 1725 mm->end_code = addr;
028ee4be 1726 break;
028ee4be 1727 case PR_SET_MM_START_DATA:
fe8c7f5c 1728 mm->start_data = addr;
028ee4be 1729 break;
fe8c7f5c
CG
1730 case PR_SET_MM_END_DATA:
1731 mm->end_data = addr;
028ee4be
CG
1732 break;
1733
1734 case PR_SET_MM_START_BRK:
1735 if (addr <= mm->end_data)
1736 goto out;
1737
1738 if (rlim < RLIM_INFINITY &&
1739 (mm->brk - addr) +
1740 (mm->end_data - mm->start_data) > rlim)
1741 goto out;
1742
1743 mm->start_brk = addr;
1744 break;
1745
1746 case PR_SET_MM_BRK:
1747 if (addr <= mm->end_data)
1748 goto out;
1749
1750 if (rlim < RLIM_INFINITY &&
1751 (addr - mm->start_brk) +
1752 (mm->end_data - mm->start_data) > rlim)
1753 goto out;
1754
1755 mm->brk = addr;
1756 break;
1757
fe8c7f5c
CG
1758 /*
1759 * If command line arguments and environment
1760 * are placed somewhere else on stack, we can
1761 * set them up here, ARG_START/END to setup
1762 * command line argumets and ENV_START/END
1763 * for environment.
1764 */
1765 case PR_SET_MM_START_STACK:
1766 case PR_SET_MM_ARG_START:
1767 case PR_SET_MM_ARG_END:
1768 case PR_SET_MM_ENV_START:
1769 case PR_SET_MM_ENV_END:
1770 if (!vma) {
1771 error = -EFAULT;
1772 goto out;
1773 }
fe8c7f5c
CG
1774 if (opt == PR_SET_MM_START_STACK)
1775 mm->start_stack = addr;
1776 else if (opt == PR_SET_MM_ARG_START)
1777 mm->arg_start = addr;
1778 else if (opt == PR_SET_MM_ARG_END)
1779 mm->arg_end = addr;
1780 else if (opt == PR_SET_MM_ENV_START)
1781 mm->env_start = addr;
1782 else if (opt == PR_SET_MM_ENV_END)
1783 mm->env_end = addr;
1784 break;
1785
1786 /*
1787 * This doesn't move auxiliary vector itself
1788 * since it's pinned to mm_struct, but allow
1789 * to fill vector with new values. It's up
1790 * to a caller to provide sane values here
1791 * otherwise user space tools which use this
1792 * vector might be unhappy.
1793 */
1794 case PR_SET_MM_AUXV: {
1795 unsigned long user_auxv[AT_VECTOR_SIZE];
1796
1797 if (arg4 > sizeof(user_auxv))
1798 goto out;
1799 up_read(&mm->mmap_sem);
1800
1801 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1802 return -EFAULT;
1803
1804 /* Make sure the last entry is always AT_NULL */
1805 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1806 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1807
1808 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1809
1810 task_lock(current);
1811 memcpy(mm->saved_auxv, user_auxv, arg4);
1812 task_unlock(current);
1813
1814 return 0;
1815 }
028ee4be 1816 default:
028ee4be
CG
1817 goto out;
1818 }
1819
1820 error = 0;
028ee4be
CG
1821out:
1822 up_read(&mm->mmap_sem);
028ee4be
CG
1823 return error;
1824}
300f786b 1825
52b36941 1826#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
1827static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1828{
1829 return put_user(me->clear_child_tid, tid_addr);
1830}
52b36941 1831#else
300f786b
CG
1832static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1833{
1834 return -EINVAL;
1835}
028ee4be
CG
1836#endif
1837
c4ea37c2
HC
1838SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1839 unsigned long, arg4, unsigned long, arg5)
1da177e4 1840{
b6dff3ec
DH
1841 struct task_struct *me = current;
1842 unsigned char comm[sizeof(me->comm)];
1843 long error;
1da177e4 1844
d84f4f99
DH
1845 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1846 if (error != -ENOSYS)
1da177e4
LT
1847 return error;
1848
d84f4f99 1849 error = 0;
1da177e4 1850 switch (option) {
f3cbd435
AM
1851 case PR_SET_PDEATHSIG:
1852 if (!valid_signal(arg2)) {
1853 error = -EINVAL;
1da177e4 1854 break;
f3cbd435
AM
1855 }
1856 me->pdeath_signal = arg2;
1857 break;
1858 case PR_GET_PDEATHSIG:
1859 error = put_user(me->pdeath_signal, (int __user *)arg2);
1860 break;
1861 case PR_GET_DUMPABLE:
1862 error = get_dumpable(me->mm);
1863 break;
1864 case PR_SET_DUMPABLE:
1865 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1866 error = -EINVAL;
1da177e4 1867 break;
f3cbd435
AM
1868 }
1869 set_dumpable(me->mm, arg2);
1870 break;
1da177e4 1871
f3cbd435
AM
1872 case PR_SET_UNALIGN:
1873 error = SET_UNALIGN_CTL(me, arg2);
1874 break;
1875 case PR_GET_UNALIGN:
1876 error = GET_UNALIGN_CTL(me, arg2);
1877 break;
1878 case PR_SET_FPEMU:
1879 error = SET_FPEMU_CTL(me, arg2);
1880 break;
1881 case PR_GET_FPEMU:
1882 error = GET_FPEMU_CTL(me, arg2);
1883 break;
1884 case PR_SET_FPEXC:
1885 error = SET_FPEXC_CTL(me, arg2);
1886 break;
1887 case PR_GET_FPEXC:
1888 error = GET_FPEXC_CTL(me, arg2);
1889 break;
1890 case PR_GET_TIMING:
1891 error = PR_TIMING_STATISTICAL;
1892 break;
1893 case PR_SET_TIMING:
1894 if (arg2 != PR_TIMING_STATISTICAL)
1895 error = -EINVAL;
1896 break;
1897 case PR_SET_NAME:
1898 comm[sizeof(me->comm) - 1] = 0;
1899 if (strncpy_from_user(comm, (char __user *)arg2,
1900 sizeof(me->comm) - 1) < 0)
1901 return -EFAULT;
1902 set_task_comm(me, comm);
1903 proc_comm_connector(me);
1904 break;
1905 case PR_GET_NAME:
1906 get_task_comm(comm, me);
1907 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1908 return -EFAULT;
1909 break;
1910 case PR_GET_ENDIAN:
1911 error = GET_ENDIAN(me, arg2);
1912 break;
1913 case PR_SET_ENDIAN:
1914 error = SET_ENDIAN(me, arg2);
1915 break;
1916 case PR_GET_SECCOMP:
1917 error = prctl_get_seccomp();
1918 break;
1919 case PR_SET_SECCOMP:
1920 error = prctl_set_seccomp(arg2, (char __user *)arg3);
1921 break;
1922 case PR_GET_TSC:
1923 error = GET_TSC_CTL(arg2);
1924 break;
1925 case PR_SET_TSC:
1926 error = SET_TSC_CTL(arg2);
1927 break;
1928 case PR_TASK_PERF_EVENTS_DISABLE:
1929 error = perf_event_task_disable();
1930 break;
1931 case PR_TASK_PERF_EVENTS_ENABLE:
1932 error = perf_event_task_enable();
1933 break;
1934 case PR_GET_TIMERSLACK:
1935 error = current->timer_slack_ns;
1936 break;
1937 case PR_SET_TIMERSLACK:
1938 if (arg2 <= 0)
1939 current->timer_slack_ns =
6976675d 1940 current->default_timer_slack_ns;
f3cbd435
AM
1941 else
1942 current->timer_slack_ns = arg2;
1943 break;
1944 case PR_MCE_KILL:
1945 if (arg4 | arg5)
1946 return -EINVAL;
1947 switch (arg2) {
1948 case PR_MCE_KILL_CLEAR:
1949 if (arg3 != 0)
4db96cf0 1950 return -EINVAL;
f3cbd435 1951 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 1952 break;
f3cbd435
AM
1953 case PR_MCE_KILL_SET:
1954 current->flags |= PF_MCE_PROCESS;
1955 if (arg3 == PR_MCE_KILL_EARLY)
1956 current->flags |= PF_MCE_EARLY;
1957 else if (arg3 == PR_MCE_KILL_LATE)
1958 current->flags &= ~PF_MCE_EARLY;
1959 else if (arg3 == PR_MCE_KILL_DEFAULT)
1960 current->flags &=
1961 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 1962 else
259e5e6c 1963 return -EINVAL;
259e5e6c 1964 break;
1da177e4 1965 default:
f3cbd435
AM
1966 return -EINVAL;
1967 }
1968 break;
1969 case PR_MCE_KILL_GET:
1970 if (arg2 | arg3 | arg4 | arg5)
1971 return -EINVAL;
1972 if (current->flags & PF_MCE_PROCESS)
1973 error = (current->flags & PF_MCE_EARLY) ?
1974 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1975 else
1976 error = PR_MCE_KILL_DEFAULT;
1977 break;
1978 case PR_SET_MM:
1979 error = prctl_set_mm(arg2, arg3, arg4, arg5);
1980 break;
1981 case PR_GET_TID_ADDRESS:
1982 error = prctl_get_tid_address(me, (int __user **)arg2);
1983 break;
1984 case PR_SET_CHILD_SUBREAPER:
1985 me->signal->is_child_subreaper = !!arg2;
1986 break;
1987 case PR_GET_CHILD_SUBREAPER:
1988 error = put_user(me->signal->is_child_subreaper,
1989 (int __user *)arg2);
1990 break;
1991 case PR_SET_NO_NEW_PRIVS:
1992 if (arg2 != 1 || arg3 || arg4 || arg5)
1993 return -EINVAL;
1994
1995 current->no_new_privs = 1;
1996 break;
1997 case PR_GET_NO_NEW_PRIVS:
1998 if (arg2 || arg3 || arg4 || arg5)
1999 return -EINVAL;
2000 return current->no_new_privs ? 1 : 0;
2001 default:
2002 error = -EINVAL;
2003 break;
1da177e4
LT
2004 }
2005 return error;
2006}
3cfc348b 2007
836f92ad
HC
2008SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2009 struct getcpu_cache __user *, unused)
3cfc348b
AK
2010{
2011 int err = 0;
2012 int cpu = raw_smp_processor_id();
2013 if (cpup)
2014 err |= put_user(cpu, cpup);
2015 if (nodep)
2016 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2017 return err ? -EFAULT : 0;
2018}
10a0a8d4 2019
4a22f166
SR
2020/**
2021 * do_sysinfo - fill in sysinfo struct
2022 * @info: pointer to buffer to fill
2023 */
2024static int do_sysinfo(struct sysinfo *info)
2025{
2026 unsigned long mem_total, sav_total;
2027 unsigned int mem_unit, bitcount;
2028 struct timespec tp;
2029
2030 memset(info, 0, sizeof(struct sysinfo));
2031
45c64940 2032 get_monotonic_boottime(&tp);
4a22f166
SR
2033 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2034
2035 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2036
2037 info->procs = nr_threads;
2038
2039 si_meminfo(info);
2040 si_swapinfo(info);
2041
2042 /*
2043 * If the sum of all the available memory (i.e. ram + swap)
2044 * is less than can be stored in a 32 bit unsigned long then
2045 * we can be binary compatible with 2.2.x kernels. If not,
2046 * well, in that case 2.2.x was broken anyways...
2047 *
2048 * -Erik Andersen <andersee@debian.org>
2049 */
2050
2051 mem_total = info->totalram + info->totalswap;
2052 if (mem_total < info->totalram || mem_total < info->totalswap)
2053 goto out;
2054 bitcount = 0;
2055 mem_unit = info->mem_unit;
2056 while (mem_unit > 1) {
2057 bitcount++;
2058 mem_unit >>= 1;
2059 sav_total = mem_total;
2060 mem_total <<= 1;
2061 if (mem_total < sav_total)
2062 goto out;
2063 }
2064
2065 /*
2066 * If mem_total did not overflow, multiply all memory values by
2067 * info->mem_unit and set it to 1. This leaves things compatible
2068 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2069 * kernels...
2070 */
2071
2072 info->mem_unit = 1;
2073 info->totalram <<= bitcount;
2074 info->freeram <<= bitcount;
2075 info->sharedram <<= bitcount;
2076 info->bufferram <<= bitcount;
2077 info->totalswap <<= bitcount;
2078 info->freeswap <<= bitcount;
2079 info->totalhigh <<= bitcount;
2080 info->freehigh <<= bitcount;
2081
2082out:
2083 return 0;
2084}
2085
2086SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2087{
2088 struct sysinfo val;
2089
2090 do_sysinfo(&val);
2091
2092 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2093 return -EFAULT;
2094
2095 return 0;
2096}
2097
2098#ifdef CONFIG_COMPAT
2099struct compat_sysinfo {
2100 s32 uptime;
2101 u32 loads[3];
2102 u32 totalram;
2103 u32 freeram;
2104 u32 sharedram;
2105 u32 bufferram;
2106 u32 totalswap;
2107 u32 freeswap;
2108 u16 procs;
2109 u16 pad;
2110 u32 totalhigh;
2111 u32 freehigh;
2112 u32 mem_unit;
2113 char _f[20-2*sizeof(u32)-sizeof(int)];
2114};
2115
2116COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2117{
2118 struct sysinfo s;
2119
2120 do_sysinfo(&s);
2121
2122 /* Check to see if any memory value is too large for 32-bit and scale
2123 * down if needed
2124 */
2125 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2126 int bitcount = 0;
2127
2128 while (s.mem_unit < PAGE_SIZE) {
2129 s.mem_unit <<= 1;
2130 bitcount++;
2131 }
2132
2133 s.totalram >>= bitcount;
2134 s.freeram >>= bitcount;
2135 s.sharedram >>= bitcount;
2136 s.bufferram >>= bitcount;
2137 s.totalswap >>= bitcount;
2138 s.freeswap >>= bitcount;
2139 s.totalhigh >>= bitcount;
2140 s.freehigh >>= bitcount;
2141 }
2142
2143 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2144 __put_user(s.uptime, &info->uptime) ||
2145 __put_user(s.loads[0], &info->loads[0]) ||
2146 __put_user(s.loads[1], &info->loads[1]) ||
2147 __put_user(s.loads[2], &info->loads[2]) ||
2148 __put_user(s.totalram, &info->totalram) ||
2149 __put_user(s.freeram, &info->freeram) ||
2150 __put_user(s.sharedram, &info->sharedram) ||
2151 __put_user(s.bufferram, &info->bufferram) ||
2152 __put_user(s.totalswap, &info->totalswap) ||
2153 __put_user(s.freeswap, &info->freeswap) ||
2154 __put_user(s.procs, &info->procs) ||
2155 __put_user(s.totalhigh, &info->totalhigh) ||
2156 __put_user(s.freehigh, &info->freehigh) ||
2157 __put_user(s.mem_unit, &info->mem_unit))
2158 return -EFAULT;
2159
2160 return 0;
2161}
2162#endif /* CONFIG_COMPAT */
This page took 1.001273 seconds and 5 git commands to generate.