mm: fix implicit stat.h usage in dmapool.c
[deliverable/linux.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
cdd6c482 15#include <linux/perf_event.h>
3e88c553 16#include <linux/resource.h>
dc009d92
EB
17#include <linux/kernel.h>
18#include <linux/kexec.h>
1da177e4 19#include <linux/workqueue.h>
c59ede7b 20#include <linux/capability.h>
1da177e4
LT
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
5a0e3ad6 38#include <linux/gfp.h>
40dc166c 39#include <linux/syscore_ops.h>
be27425d
AK
40#include <linux/version.h>
41#include <linux/ctype.h>
1da177e4
LT
42
43#include <linux/compat.h>
44#include <linux/syscalls.h>
00d7c05a 45#include <linux/kprobes.h>
acce292c 46#include <linux/user_namespace.h>
1da177e4 47
04c6862c 48#include <linux/kmsg_dump.h>
be27425d
AK
49/* Move somewhere else to avoid recompiling? */
50#include <generated/utsrelease.h>
04c6862c 51
1da177e4
LT
52#include <asm/uaccess.h>
53#include <asm/io.h>
54#include <asm/unistd.h>
55
56#ifndef SET_UNALIGN_CTL
57# define SET_UNALIGN_CTL(a,b) (-EINVAL)
58#endif
59#ifndef GET_UNALIGN_CTL
60# define GET_UNALIGN_CTL(a,b) (-EINVAL)
61#endif
62#ifndef SET_FPEMU_CTL
63# define SET_FPEMU_CTL(a,b) (-EINVAL)
64#endif
65#ifndef GET_FPEMU_CTL
66# define GET_FPEMU_CTL(a,b) (-EINVAL)
67#endif
68#ifndef SET_FPEXC_CTL
69# define SET_FPEXC_CTL(a,b) (-EINVAL)
70#endif
71#ifndef GET_FPEXC_CTL
72# define GET_FPEXC_CTL(a,b) (-EINVAL)
73#endif
651d765d
AB
74#ifndef GET_ENDIAN
75# define GET_ENDIAN(a,b) (-EINVAL)
76#endif
77#ifndef SET_ENDIAN
78# define SET_ENDIAN(a,b) (-EINVAL)
79#endif
8fb402bc
EB
80#ifndef GET_TSC_CTL
81# define GET_TSC_CTL(a) (-EINVAL)
82#endif
83#ifndef SET_TSC_CTL
84# define SET_TSC_CTL(a) (-EINVAL)
85#endif
1da177e4
LT
86
87/*
88 * this is where the system-wide overflow UID and GID are defined, for
89 * architectures that now have 32-bit UID/GID but didn't in the past
90 */
91
92int overflowuid = DEFAULT_OVERFLOWUID;
93int overflowgid = DEFAULT_OVERFLOWGID;
94
95#ifdef CONFIG_UID16
96EXPORT_SYMBOL(overflowuid);
97EXPORT_SYMBOL(overflowgid);
98#endif
99
100/*
101 * the same as above, but for filesystems which can only store a 16-bit
102 * UID and GID. as such, this is needed on all architectures
103 */
104
105int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
106int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
107
108EXPORT_SYMBOL(fs_overflowuid);
109EXPORT_SYMBOL(fs_overflowgid);
110
111/*
112 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
113 */
114
115int C_A_D = 1;
9ec52099
CLG
116struct pid *cad_pid;
117EXPORT_SYMBOL(cad_pid);
1da177e4 118
bd804eba
RW
119/*
120 * If set, this is used for preparing the system to power off.
121 */
122
123void (*pm_power_off_prepare)(void);
bd804eba 124
fc832ad3
SH
125/*
126 * Returns true if current's euid is same as p's uid or euid,
127 * or has CAP_SYS_NICE to p's user_ns.
128 *
129 * Called with rcu_read_lock, creds are safe
130 */
131static bool set_one_prio_perm(struct task_struct *p)
132{
133 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
134
135 if (pcred->user->user_ns == cred->user->user_ns &&
136 (pcred->uid == cred->euid ||
137 pcred->euid == cred->euid))
138 return true;
139 if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
140 return true;
141 return false;
142}
143
c69e8d9c
DH
144/*
145 * set the priority of a task
146 * - the caller must hold the RCU read lock
147 */
1da177e4
LT
148static int set_one_prio(struct task_struct *p, int niceval, int error)
149{
150 int no_nice;
151
fc832ad3 152 if (!set_one_prio_perm(p)) {
1da177e4
LT
153 error = -EPERM;
154 goto out;
155 }
e43379f1 156 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
157 error = -EACCES;
158 goto out;
159 }
160 no_nice = security_task_setnice(p, niceval);
161 if (no_nice) {
162 error = no_nice;
163 goto out;
164 }
165 if (error == -ESRCH)
166 error = 0;
167 set_user_nice(p, niceval);
168out:
169 return error;
170}
171
754fe8d2 172SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
173{
174 struct task_struct *g, *p;
175 struct user_struct *user;
86a264ab 176 const struct cred *cred = current_cred();
1da177e4 177 int error = -EINVAL;
41487c65 178 struct pid *pgrp;
1da177e4 179
3e88c553 180 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
181 goto out;
182
183 /* normalize: avoid signed division (rounding problems) */
184 error = -ESRCH;
185 if (niceval < -20)
186 niceval = -20;
187 if (niceval > 19)
188 niceval = 19;
189
d4581a23 190 rcu_read_lock();
1da177e4
LT
191 read_lock(&tasklist_lock);
192 switch (which) {
193 case PRIO_PROCESS:
41487c65 194 if (who)
228ebcbe 195 p = find_task_by_vpid(who);
41487c65
EB
196 else
197 p = current;
1da177e4
LT
198 if (p)
199 error = set_one_prio(p, niceval, error);
200 break;
201 case PRIO_PGRP:
41487c65 202 if (who)
b488893a 203 pgrp = find_vpid(who);
41487c65
EB
204 else
205 pgrp = task_pgrp(current);
2d70b68d 206 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 207 error = set_one_prio(p, niceval, error);
2d70b68d 208 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
209 break;
210 case PRIO_USER:
d84f4f99 211 user = (struct user_struct *) cred->user;
1da177e4 212 if (!who)
86a264ab
DH
213 who = cred->uid;
214 else if ((who != cred->uid) &&
215 !(user = find_user(who)))
216 goto out_unlock; /* No processes for this user */
1da177e4 217
dfc6a736 218 do_each_thread(g, p) {
86a264ab 219 if (__task_cred(p)->uid == who)
1da177e4 220 error = set_one_prio(p, niceval, error);
dfc6a736 221 } while_each_thread(g, p);
86a264ab 222 if (who != cred->uid)
1da177e4
LT
223 free_uid(user); /* For find_user() */
224 break;
225 }
226out_unlock:
227 read_unlock(&tasklist_lock);
d4581a23 228 rcu_read_unlock();
1da177e4
LT
229out:
230 return error;
231}
232
233/*
234 * Ugh. To avoid negative return values, "getpriority()" will
235 * not return the normal nice-value, but a negated value that
236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237 * to stay compatible.
238 */
754fe8d2 239SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
240{
241 struct task_struct *g, *p;
242 struct user_struct *user;
86a264ab 243 const struct cred *cred = current_cred();
1da177e4 244 long niceval, retval = -ESRCH;
41487c65 245 struct pid *pgrp;
1da177e4 246
3e88c553 247 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
248 return -EINVAL;
249
70118837 250 rcu_read_lock();
1da177e4
LT
251 read_lock(&tasklist_lock);
252 switch (which) {
253 case PRIO_PROCESS:
41487c65 254 if (who)
228ebcbe 255 p = find_task_by_vpid(who);
41487c65
EB
256 else
257 p = current;
1da177e4
LT
258 if (p) {
259 niceval = 20 - task_nice(p);
260 if (niceval > retval)
261 retval = niceval;
262 }
263 break;
264 case PRIO_PGRP:
41487c65 265 if (who)
b488893a 266 pgrp = find_vpid(who);
41487c65
EB
267 else
268 pgrp = task_pgrp(current);
2d70b68d 269 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
270 niceval = 20 - task_nice(p);
271 if (niceval > retval)
272 retval = niceval;
2d70b68d 273 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
274 break;
275 case PRIO_USER:
86a264ab 276 user = (struct user_struct *) cred->user;
1da177e4 277 if (!who)
86a264ab
DH
278 who = cred->uid;
279 else if ((who != cred->uid) &&
280 !(user = find_user(who)))
281 goto out_unlock; /* No processes for this user */
1da177e4 282
dfc6a736 283 do_each_thread(g, p) {
86a264ab 284 if (__task_cred(p)->uid == who) {
1da177e4
LT
285 niceval = 20 - task_nice(p);
286 if (niceval > retval)
287 retval = niceval;
288 }
dfc6a736 289 } while_each_thread(g, p);
86a264ab 290 if (who != cred->uid)
1da177e4
LT
291 free_uid(user); /* for find_user() */
292 break;
293 }
294out_unlock:
295 read_unlock(&tasklist_lock);
70118837 296 rcu_read_unlock();
1da177e4
LT
297
298 return retval;
299}
300
e4c94330
EB
301/**
302 * emergency_restart - reboot the system
303 *
304 * Without shutting down any hardware or taking any locks
305 * reboot the system. This is called when we know we are in
306 * trouble so this is our best effort to reboot. This is
307 * safe to call in interrupt context.
308 */
7c903473
EB
309void emergency_restart(void)
310{
04c6862c 311 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
312 machine_emergency_restart();
313}
314EXPORT_SYMBOL_GPL(emergency_restart);
315
ca195b7f 316void kernel_restart_prepare(char *cmd)
4a00ea1e 317{
e041c683 318 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 319 system_state = SYSTEM_RESTART;
b50fa7c8 320 usermodehelper_disable();
4a00ea1e 321 device_shutdown();
40dc166c 322 syscore_shutdown();
e4c94330 323}
1e5d5331 324
c5f41752
AW
325/**
326 * register_reboot_notifier - Register function to be called at reboot time
327 * @nb: Info about notifier function to be called
328 *
329 * Registers a function with the list of functions
330 * to be called at reboot time.
331 *
332 * Currently always returns zero, as blocking_notifier_chain_register()
333 * always returns zero.
334 */
335int register_reboot_notifier(struct notifier_block *nb)
336{
337 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
338}
339EXPORT_SYMBOL(register_reboot_notifier);
340
341/**
342 * unregister_reboot_notifier - Unregister previously registered reboot notifier
343 * @nb: Hook to be unregistered
344 *
345 * Unregisters a previously registered reboot
346 * notifier function.
347 *
348 * Returns zero on success, or %-ENOENT on failure.
349 */
350int unregister_reboot_notifier(struct notifier_block *nb)
351{
352 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
353}
354EXPORT_SYMBOL(unregister_reboot_notifier);
355
1e5d5331
RD
356/**
357 * kernel_restart - reboot the system
358 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 359 * or %NULL
1e5d5331
RD
360 *
361 * Shutdown everything and perform a clean reboot.
362 * This is not safe to call in interrupt context.
363 */
e4c94330
EB
364void kernel_restart(char *cmd)
365{
366 kernel_restart_prepare(cmd);
756184b7 367 if (!cmd)
4a00ea1e 368 printk(KERN_EMERG "Restarting system.\n");
756184b7 369 else
4a00ea1e 370 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 371 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
372 machine_restart(cmd);
373}
374EXPORT_SYMBOL_GPL(kernel_restart);
375
4ef7229f 376static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 377{
e041c683 378 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
379 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
380 system_state = state;
b50fa7c8 381 usermodehelper_disable();
729b4d4c
AS
382 device_shutdown();
383}
e4c94330
EB
384/**
385 * kernel_halt - halt the system
386 *
387 * Shutdown everything and perform a clean system halt.
388 */
e4c94330
EB
389void kernel_halt(void)
390{
729b4d4c 391 kernel_shutdown_prepare(SYSTEM_HALT);
40dc166c 392 syscore_shutdown();
4a00ea1e 393 printk(KERN_EMERG "System halted.\n");
04c6862c 394 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
395 machine_halt();
396}
729b4d4c 397
4a00ea1e
EB
398EXPORT_SYMBOL_GPL(kernel_halt);
399
e4c94330
EB
400/**
401 * kernel_power_off - power_off the system
402 *
403 * Shutdown everything and perform a clean system power_off.
404 */
e4c94330
EB
405void kernel_power_off(void)
406{
729b4d4c 407 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
408 if (pm_power_off_prepare)
409 pm_power_off_prepare();
4047727e 410 disable_nonboot_cpus();
40dc166c 411 syscore_shutdown();
4a00ea1e 412 printk(KERN_EMERG "Power down.\n");
04c6862c 413 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
414 machine_power_off();
415}
416EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
417
418static DEFINE_MUTEX(reboot_mutex);
419
1da177e4
LT
420/*
421 * Reboot system call: for obvious reasons only root may call it,
422 * and even root needs to set up some magic numbers in the registers
423 * so that some mistake won't make this reboot the whole machine.
424 * You can also set the meaning of the ctrl-alt-del-key here.
425 *
426 * reboot doesn't sync: do that yourself before calling this.
427 */
754fe8d2
HC
428SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
429 void __user *, arg)
1da177e4
LT
430{
431 char buffer[256];
3d26dcf7 432 int ret = 0;
1da177e4
LT
433
434 /* We only trust the superuser with rebooting the system. */
435 if (!capable(CAP_SYS_BOOT))
436 return -EPERM;
437
438 /* For safety, we require "magic" arguments. */
439 if (magic1 != LINUX_REBOOT_MAGIC1 ||
440 (magic2 != LINUX_REBOOT_MAGIC2 &&
441 magic2 != LINUX_REBOOT_MAGIC2A &&
442 magic2 != LINUX_REBOOT_MAGIC2B &&
443 magic2 != LINUX_REBOOT_MAGIC2C))
444 return -EINVAL;
445
5e38291d
EB
446 /* Instead of trying to make the power_off code look like
447 * halt when pm_power_off is not set do it the easy way.
448 */
449 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
450 cmd = LINUX_REBOOT_CMD_HALT;
451
6f15fa50 452 mutex_lock(&reboot_mutex);
1da177e4
LT
453 switch (cmd) {
454 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 455 kernel_restart(NULL);
1da177e4
LT
456 break;
457
458 case LINUX_REBOOT_CMD_CAD_ON:
459 C_A_D = 1;
460 break;
461
462 case LINUX_REBOOT_CMD_CAD_OFF:
463 C_A_D = 0;
464 break;
465
466 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 467 kernel_halt();
1da177e4 468 do_exit(0);
3d26dcf7 469 panic("cannot halt");
1da177e4
LT
470
471 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 472 kernel_power_off();
1da177e4
LT
473 do_exit(0);
474 break;
475
476 case LINUX_REBOOT_CMD_RESTART2:
477 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
478 ret = -EFAULT;
479 break;
1da177e4
LT
480 }
481 buffer[sizeof(buffer) - 1] = '\0';
482
4a00ea1e 483 kernel_restart(buffer);
1da177e4
LT
484 break;
485
3ab83521 486#ifdef CONFIG_KEXEC
dc009d92 487 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
488 ret = kernel_kexec();
489 break;
3ab83521 490#endif
4a00ea1e 491
b0cb1a19 492#ifdef CONFIG_HIBERNATION
1da177e4 493 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
494 ret = hibernate();
495 break;
1da177e4
LT
496#endif
497
498 default:
3d26dcf7
AK
499 ret = -EINVAL;
500 break;
1da177e4 501 }
6f15fa50 502 mutex_unlock(&reboot_mutex);
3d26dcf7 503 return ret;
1da177e4
LT
504}
505
65f27f38 506static void deferred_cad(struct work_struct *dummy)
1da177e4 507{
abcd9e51 508 kernel_restart(NULL);
1da177e4
LT
509}
510
511/*
512 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
513 * As it's called within an interrupt, it may NOT sync: the only choice
514 * is whether to reboot at once, or just ignore the ctrl-alt-del.
515 */
516void ctrl_alt_del(void)
517{
65f27f38 518 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
519
520 if (C_A_D)
521 schedule_work(&cad_work);
522 else
9ec52099 523 kill_cad_pid(SIGINT, 1);
1da177e4
LT
524}
525
1da177e4
LT
526/*
527 * Unprivileged users may change the real gid to the effective gid
528 * or vice versa. (BSD-style)
529 *
530 * If you set the real gid at all, or set the effective gid to a value not
531 * equal to the real gid, then the saved gid is set to the new effective gid.
532 *
533 * This makes it possible for a setgid program to completely drop its
534 * privileges, which is often a useful assertion to make when you are doing
535 * a security audit over a program.
536 *
537 * The general idea is that a program which uses just setregid() will be
538 * 100% compatible with BSD. A program which uses just setgid() will be
539 * 100% compatible with POSIX with saved IDs.
540 *
541 * SMP: There are not races, the GIDs are checked only by filesystem
542 * operations (as far as semantic preservation is concerned).
543 */
ae1251ab 544SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 545{
d84f4f99
DH
546 const struct cred *old;
547 struct cred *new;
1da177e4
LT
548 int retval;
549
d84f4f99
DH
550 new = prepare_creds();
551 if (!new)
552 return -ENOMEM;
553 old = current_cred();
554
d84f4f99 555 retval = -EPERM;
1da177e4 556 if (rgid != (gid_t) -1) {
d84f4f99
DH
557 if (old->gid == rgid ||
558 old->egid == rgid ||
fc832ad3 559 nsown_capable(CAP_SETGID))
d84f4f99 560 new->gid = rgid;
1da177e4 561 else
d84f4f99 562 goto error;
1da177e4
LT
563 }
564 if (egid != (gid_t) -1) {
d84f4f99
DH
565 if (old->gid == egid ||
566 old->egid == egid ||
567 old->sgid == egid ||
fc832ad3 568 nsown_capable(CAP_SETGID))
d84f4f99 569 new->egid = egid;
756184b7 570 else
d84f4f99 571 goto error;
1da177e4 572 }
d84f4f99 573
1da177e4 574 if (rgid != (gid_t) -1 ||
d84f4f99
DH
575 (egid != (gid_t) -1 && egid != old->gid))
576 new->sgid = new->egid;
577 new->fsgid = new->egid;
578
579 return commit_creds(new);
580
581error:
582 abort_creds(new);
583 return retval;
1da177e4
LT
584}
585
586/*
587 * setgid() is implemented like SysV w/ SAVED_IDS
588 *
589 * SMP: Same implicit races as above.
590 */
ae1251ab 591SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 592{
d84f4f99
DH
593 const struct cred *old;
594 struct cred *new;
1da177e4
LT
595 int retval;
596
d84f4f99
DH
597 new = prepare_creds();
598 if (!new)
599 return -ENOMEM;
600 old = current_cred();
601
d84f4f99 602 retval = -EPERM;
fc832ad3 603 if (nsown_capable(CAP_SETGID))
d84f4f99
DH
604 new->gid = new->egid = new->sgid = new->fsgid = gid;
605 else if (gid == old->gid || gid == old->sgid)
606 new->egid = new->fsgid = gid;
1da177e4 607 else
d84f4f99 608 goto error;
1da177e4 609
d84f4f99
DH
610 return commit_creds(new);
611
612error:
613 abort_creds(new);
614 return retval;
1da177e4 615}
54e99124 616
d84f4f99
DH
617/*
618 * change the user struct in a credentials set to match the new UID
619 */
620static int set_user(struct cred *new)
1da177e4
LT
621{
622 struct user_struct *new_user;
623
18b6e041 624 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
625 if (!new_user)
626 return -EAGAIN;
627
72fa5997
VK
628 /*
629 * We don't fail in case of NPROC limit excess here because too many
630 * poorly written programs don't check set*uid() return code, assuming
631 * it never fails if called by root. We may still enforce NPROC limit
632 * for programs doing set*uid()+execve() by harmlessly deferring the
633 * failure to the execve() stage.
634 */
78d7d407 635 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
636 new_user != INIT_USER)
637 current->flags |= PF_NPROC_EXCEEDED;
638 else
639 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 640
d84f4f99
DH
641 free_uid(new->user);
642 new->user = new_user;
1da177e4
LT
643 return 0;
644}
645
646/*
647 * Unprivileged users may change the real uid to the effective uid
648 * or vice versa. (BSD-style)
649 *
650 * If you set the real uid at all, or set the effective uid to a value not
651 * equal to the real uid, then the saved uid is set to the new effective uid.
652 *
653 * This makes it possible for a setuid program to completely drop its
654 * privileges, which is often a useful assertion to make when you are doing
655 * a security audit over a program.
656 *
657 * The general idea is that a program which uses just setreuid() will be
658 * 100% compatible with BSD. A program which uses just setuid() will be
659 * 100% compatible with POSIX with saved IDs.
660 */
ae1251ab 661SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 662{
d84f4f99
DH
663 const struct cred *old;
664 struct cred *new;
1da177e4
LT
665 int retval;
666
d84f4f99
DH
667 new = prepare_creds();
668 if (!new)
669 return -ENOMEM;
670 old = current_cred();
671
d84f4f99 672 retval = -EPERM;
1da177e4 673 if (ruid != (uid_t) -1) {
d84f4f99
DH
674 new->uid = ruid;
675 if (old->uid != ruid &&
676 old->euid != ruid &&
fc832ad3 677 !nsown_capable(CAP_SETUID))
d84f4f99 678 goto error;
1da177e4
LT
679 }
680
681 if (euid != (uid_t) -1) {
d84f4f99
DH
682 new->euid = euid;
683 if (old->uid != euid &&
684 old->euid != euid &&
685 old->suid != euid &&
fc832ad3 686 !nsown_capable(CAP_SETUID))
d84f4f99 687 goto error;
1da177e4
LT
688 }
689
54e99124
DG
690 if (new->uid != old->uid) {
691 retval = set_user(new);
692 if (retval < 0)
693 goto error;
694 }
1da177e4 695 if (ruid != (uid_t) -1 ||
d84f4f99
DH
696 (euid != (uid_t) -1 && euid != old->uid))
697 new->suid = new->euid;
698 new->fsuid = new->euid;
1da177e4 699
d84f4f99
DH
700 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
701 if (retval < 0)
702 goto error;
1da177e4 703
d84f4f99 704 return commit_creds(new);
1da177e4 705
d84f4f99
DH
706error:
707 abort_creds(new);
708 return retval;
709}
1da177e4
LT
710
711/*
712 * setuid() is implemented like SysV with SAVED_IDS
713 *
714 * Note that SAVED_ID's is deficient in that a setuid root program
715 * like sendmail, for example, cannot set its uid to be a normal
716 * user and then switch back, because if you're root, setuid() sets
717 * the saved uid too. If you don't like this, blame the bright people
718 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
719 * will allow a root program to temporarily drop privileges and be able to
720 * regain them by swapping the real and effective uid.
721 */
ae1251ab 722SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 723{
d84f4f99
DH
724 const struct cred *old;
725 struct cred *new;
1da177e4
LT
726 int retval;
727
d84f4f99
DH
728 new = prepare_creds();
729 if (!new)
730 return -ENOMEM;
731 old = current_cred();
732
d84f4f99 733 retval = -EPERM;
fc832ad3 734 if (nsown_capable(CAP_SETUID)) {
d84f4f99 735 new->suid = new->uid = uid;
54e99124
DG
736 if (uid != old->uid) {
737 retval = set_user(new);
738 if (retval < 0)
739 goto error;
d84f4f99
DH
740 }
741 } else if (uid != old->uid && uid != new->suid) {
742 goto error;
1da177e4 743 }
1da177e4 744
d84f4f99
DH
745 new->fsuid = new->euid = uid;
746
747 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
748 if (retval < 0)
749 goto error;
1da177e4 750
d84f4f99 751 return commit_creds(new);
1da177e4 752
d84f4f99
DH
753error:
754 abort_creds(new);
755 return retval;
1da177e4
LT
756}
757
758
759/*
760 * This function implements a generic ability to update ruid, euid,
761 * and suid. This allows you to implement the 4.4 compatible seteuid().
762 */
ae1251ab 763SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 764{
d84f4f99
DH
765 const struct cred *old;
766 struct cred *new;
1da177e4
LT
767 int retval;
768
d84f4f99
DH
769 new = prepare_creds();
770 if (!new)
771 return -ENOMEM;
772
d84f4f99 773 old = current_cred();
1da177e4 774
d84f4f99 775 retval = -EPERM;
fc832ad3 776 if (!nsown_capable(CAP_SETUID)) {
d84f4f99
DH
777 if (ruid != (uid_t) -1 && ruid != old->uid &&
778 ruid != old->euid && ruid != old->suid)
779 goto error;
780 if (euid != (uid_t) -1 && euid != old->uid &&
781 euid != old->euid && euid != old->suid)
782 goto error;
783 if (suid != (uid_t) -1 && suid != old->uid &&
784 suid != old->euid && suid != old->suid)
785 goto error;
1da177e4 786 }
d84f4f99 787
1da177e4 788 if (ruid != (uid_t) -1) {
d84f4f99 789 new->uid = ruid;
54e99124
DG
790 if (ruid != old->uid) {
791 retval = set_user(new);
792 if (retval < 0)
793 goto error;
794 }
1da177e4 795 }
d84f4f99
DH
796 if (euid != (uid_t) -1)
797 new->euid = euid;
1da177e4 798 if (suid != (uid_t) -1)
d84f4f99
DH
799 new->suid = suid;
800 new->fsuid = new->euid;
1da177e4 801
d84f4f99
DH
802 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
803 if (retval < 0)
804 goto error;
1da177e4 805
d84f4f99 806 return commit_creds(new);
1da177e4 807
d84f4f99
DH
808error:
809 abort_creds(new);
810 return retval;
1da177e4
LT
811}
812
dbf040d9 813SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 814{
86a264ab 815 const struct cred *cred = current_cred();
1da177e4
LT
816 int retval;
817
86a264ab
DH
818 if (!(retval = put_user(cred->uid, ruid)) &&
819 !(retval = put_user(cred->euid, euid)))
b6dff3ec 820 retval = put_user(cred->suid, suid);
1da177e4
LT
821
822 return retval;
823}
824
825/*
826 * Same as above, but for rgid, egid, sgid.
827 */
ae1251ab 828SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 829{
d84f4f99
DH
830 const struct cred *old;
831 struct cred *new;
1da177e4
LT
832 int retval;
833
d84f4f99
DH
834 new = prepare_creds();
835 if (!new)
836 return -ENOMEM;
837 old = current_cred();
838
d84f4f99 839 retval = -EPERM;
fc832ad3 840 if (!nsown_capable(CAP_SETGID)) {
d84f4f99
DH
841 if (rgid != (gid_t) -1 && rgid != old->gid &&
842 rgid != old->egid && rgid != old->sgid)
843 goto error;
844 if (egid != (gid_t) -1 && egid != old->gid &&
845 egid != old->egid && egid != old->sgid)
846 goto error;
847 if (sgid != (gid_t) -1 && sgid != old->gid &&
848 sgid != old->egid && sgid != old->sgid)
849 goto error;
1da177e4 850 }
d84f4f99 851
1da177e4 852 if (rgid != (gid_t) -1)
d84f4f99
DH
853 new->gid = rgid;
854 if (egid != (gid_t) -1)
855 new->egid = egid;
1da177e4 856 if (sgid != (gid_t) -1)
d84f4f99
DH
857 new->sgid = sgid;
858 new->fsgid = new->egid;
1da177e4 859
d84f4f99
DH
860 return commit_creds(new);
861
862error:
863 abort_creds(new);
864 return retval;
1da177e4
LT
865}
866
dbf040d9 867SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 868{
86a264ab 869 const struct cred *cred = current_cred();
1da177e4
LT
870 int retval;
871
86a264ab
DH
872 if (!(retval = put_user(cred->gid, rgid)) &&
873 !(retval = put_user(cred->egid, egid)))
b6dff3ec 874 retval = put_user(cred->sgid, sgid);
1da177e4
LT
875
876 return retval;
877}
878
879
880/*
881 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
882 * is used for "access()" and for the NFS daemon (letting nfsd stay at
883 * whatever uid it wants to). It normally shadows "euid", except when
884 * explicitly set by setfsuid() or for access..
885 */
ae1251ab 886SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 887{
d84f4f99
DH
888 const struct cred *old;
889 struct cred *new;
890 uid_t old_fsuid;
1da177e4 891
d84f4f99
DH
892 new = prepare_creds();
893 if (!new)
894 return current_fsuid();
895 old = current_cred();
896 old_fsuid = old->fsuid;
1da177e4 897
d84f4f99
DH
898 if (uid == old->uid || uid == old->euid ||
899 uid == old->suid || uid == old->fsuid ||
fc832ad3 900 nsown_capable(CAP_SETUID)) {
756184b7 901 if (uid != old_fsuid) {
d84f4f99
DH
902 new->fsuid = uid;
903 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
904 goto change_okay;
1da177e4 905 }
1da177e4
LT
906 }
907
d84f4f99
DH
908 abort_creds(new);
909 return old_fsuid;
1da177e4 910
d84f4f99
DH
911change_okay:
912 commit_creds(new);
1da177e4
LT
913 return old_fsuid;
914}
915
916/*
f42df9e6 917 * Samma på svenska..
1da177e4 918 */
ae1251ab 919SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 920{
d84f4f99
DH
921 const struct cred *old;
922 struct cred *new;
923 gid_t old_fsgid;
924
925 new = prepare_creds();
926 if (!new)
927 return current_fsgid();
928 old = current_cred();
929 old_fsgid = old->fsgid;
1da177e4 930
d84f4f99
DH
931 if (gid == old->gid || gid == old->egid ||
932 gid == old->sgid || gid == old->fsgid ||
fc832ad3 933 nsown_capable(CAP_SETGID)) {
756184b7 934 if (gid != old_fsgid) {
d84f4f99
DH
935 new->fsgid = gid;
936 goto change_okay;
1da177e4 937 }
1da177e4 938 }
d84f4f99 939
d84f4f99
DH
940 abort_creds(new);
941 return old_fsgid;
942
943change_okay:
944 commit_creds(new);
1da177e4
LT
945 return old_fsgid;
946}
947
f06febc9
FM
948void do_sys_times(struct tms *tms)
949{
0cf55e1e 950 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 951
2b5fe6de 952 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 953 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
954 cutime = current->signal->cutime;
955 cstime = current->signal->cstime;
956 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
957 tms->tms_utime = cputime_to_clock_t(tgutime);
958 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
959 tms->tms_cutime = cputime_to_clock_t(cutime);
960 tms->tms_cstime = cputime_to_clock_t(cstime);
961}
962
58fd3aa2 963SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 964{
1da177e4
LT
965 if (tbuf) {
966 struct tms tmp;
f06febc9
FM
967
968 do_sys_times(&tmp);
1da177e4
LT
969 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
970 return -EFAULT;
971 }
e3d5a27d 972 force_successful_syscall_return();
1da177e4
LT
973 return (long) jiffies_64_to_clock_t(get_jiffies_64());
974}
975
976/*
977 * This needs some heavy checking ...
978 * I just haven't the stomach for it. I also don't fully
979 * understand sessions/pgrp etc. Let somebody who does explain it.
980 *
981 * OK, I think I have the protection semantics right.... this is really
982 * only important on a multi-user system anyway, to make sure one user
983 * can't send a signal to a process owned by another. -TYT, 12/12/91
984 *
985 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
986 * LBT 04.03.94
987 */
b290ebe2 988SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
989{
990 struct task_struct *p;
ee0acf90 991 struct task_struct *group_leader = current->group_leader;
4e021306
ON
992 struct pid *pgrp;
993 int err;
1da177e4
LT
994
995 if (!pid)
b488893a 996 pid = task_pid_vnr(group_leader);
1da177e4
LT
997 if (!pgid)
998 pgid = pid;
999 if (pgid < 0)
1000 return -EINVAL;
950eaaca 1001 rcu_read_lock();
1da177e4
LT
1002
1003 /* From this point forward we keep holding onto the tasklist lock
1004 * so that our parent does not change from under us. -DaveM
1005 */
1006 write_lock_irq(&tasklist_lock);
1007
1008 err = -ESRCH;
4e021306 1009 p = find_task_by_vpid(pid);
1da177e4
LT
1010 if (!p)
1011 goto out;
1012
1013 err = -EINVAL;
1014 if (!thread_group_leader(p))
1015 goto out;
1016
4e021306 1017 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1018 err = -EPERM;
41487c65 1019 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1020 goto out;
1021 err = -EACCES;
1022 if (p->did_exec)
1023 goto out;
1024 } else {
1025 err = -ESRCH;
ee0acf90 1026 if (p != group_leader)
1da177e4
LT
1027 goto out;
1028 }
1029
1030 err = -EPERM;
1031 if (p->signal->leader)
1032 goto out;
1033
4e021306 1034 pgrp = task_pid(p);
1da177e4 1035 if (pgid != pid) {
b488893a 1036 struct task_struct *g;
1da177e4 1037
4e021306
ON
1038 pgrp = find_vpid(pgid);
1039 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1040 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1041 goto out;
1da177e4
LT
1042 }
1043
1da177e4
LT
1044 err = security_task_setpgid(p, pgid);
1045 if (err)
1046 goto out;
1047
1b0f7ffd 1048 if (task_pgrp(p) != pgrp)
83beaf3c 1049 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1050
1051 err = 0;
1052out:
1053 /* All paths lead to here, thus we are safe. -DaveM */
1054 write_unlock_irq(&tasklist_lock);
950eaaca 1055 rcu_read_unlock();
1da177e4
LT
1056 return err;
1057}
1058
dbf040d9 1059SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1060{
12a3de0a
ON
1061 struct task_struct *p;
1062 struct pid *grp;
1063 int retval;
1064
1065 rcu_read_lock();
756184b7 1066 if (!pid)
12a3de0a 1067 grp = task_pgrp(current);
756184b7 1068 else {
1da177e4 1069 retval = -ESRCH;
12a3de0a
ON
1070 p = find_task_by_vpid(pid);
1071 if (!p)
1072 goto out;
1073 grp = task_pgrp(p);
1074 if (!grp)
1075 goto out;
1076
1077 retval = security_task_getpgid(p);
1078 if (retval)
1079 goto out;
1da177e4 1080 }
12a3de0a
ON
1081 retval = pid_vnr(grp);
1082out:
1083 rcu_read_unlock();
1084 return retval;
1da177e4
LT
1085}
1086
1087#ifdef __ARCH_WANT_SYS_GETPGRP
1088
dbf040d9 1089SYSCALL_DEFINE0(getpgrp)
1da177e4 1090{
12a3de0a 1091 return sys_getpgid(0);
1da177e4
LT
1092}
1093
1094#endif
1095
dbf040d9 1096SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1097{
1dd768c0
ON
1098 struct task_struct *p;
1099 struct pid *sid;
1100 int retval;
1101
1102 rcu_read_lock();
756184b7 1103 if (!pid)
1dd768c0 1104 sid = task_session(current);
756184b7 1105 else {
1da177e4 1106 retval = -ESRCH;
1dd768c0
ON
1107 p = find_task_by_vpid(pid);
1108 if (!p)
1109 goto out;
1110 sid = task_session(p);
1111 if (!sid)
1112 goto out;
1113
1114 retval = security_task_getsid(p);
1115 if (retval)
1116 goto out;
1da177e4 1117 }
1dd768c0
ON
1118 retval = pid_vnr(sid);
1119out:
1120 rcu_read_unlock();
1121 return retval;
1da177e4
LT
1122}
1123
b290ebe2 1124SYSCALL_DEFINE0(setsid)
1da177e4 1125{
e19f247a 1126 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1127 struct pid *sid = task_pid(group_leader);
1128 pid_t session = pid_vnr(sid);
1da177e4
LT
1129 int err = -EPERM;
1130
1da177e4 1131 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1132 /* Fail if I am already a session leader */
1133 if (group_leader->signal->leader)
1134 goto out;
1135
430c6231
ON
1136 /* Fail if a process group id already exists that equals the
1137 * proposed session id.
390e2ff0 1138 */
6806aac6 1139 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1140 goto out;
1141
e19f247a 1142 group_leader->signal->leader = 1;
8520d7c7 1143 __set_special_pids(sid);
24ec839c 1144
9c9f4ded 1145 proc_clear_tty(group_leader);
24ec839c 1146
e4cc0a9c 1147 err = session;
1da177e4
LT
1148out:
1149 write_unlock_irq(&tasklist_lock);
5091faa4 1150 if (err > 0) {
0d0df599 1151 proc_sid_connector(group_leader);
5091faa4
MG
1152 sched_autogroup_create_attach(group_leader);
1153 }
1da177e4
LT
1154 return err;
1155}
1156
1da177e4
LT
1157DECLARE_RWSEM(uts_sem);
1158
e28cbf22
CH
1159#ifdef COMPAT_UTS_MACHINE
1160#define override_architecture(name) \
46da2766 1161 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1162 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1163 sizeof(COMPAT_UTS_MACHINE)))
1164#else
1165#define override_architecture(name) 0
1166#endif
1167
be27425d
AK
1168/*
1169 * Work around broken programs that cannot handle "Linux 3.0".
1170 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1171 */
1172static int override_release(char __user *release, int len)
1173{
1174 int ret = 0;
a84a79e4 1175 char buf[65];
be27425d
AK
1176
1177 if (current->personality & UNAME26) {
1178 char *rest = UTS_RELEASE;
1179 int ndots = 0;
1180 unsigned v;
1181
1182 while (*rest) {
1183 if (*rest == '.' && ++ndots >= 3)
1184 break;
1185 if (!isdigit(*rest) && *rest != '.')
1186 break;
1187 rest++;
1188 }
1189 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1190 snprintf(buf, len, "2.6.%u%s", v, rest);
1191 ret = copy_to_user(release, buf, len);
1192 }
1193 return ret;
1194}
1195
e48fbb69 1196SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1197{
1198 int errno = 0;
1199
1200 down_read(&uts_sem);
e9ff3990 1201 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1202 errno = -EFAULT;
1203 up_read(&uts_sem);
e28cbf22 1204
be27425d
AK
1205 if (!errno && override_release(name->release, sizeof(name->release)))
1206 errno = -EFAULT;
e28cbf22
CH
1207 if (!errno && override_architecture(name))
1208 errno = -EFAULT;
1da177e4
LT
1209 return errno;
1210}
1211
5cacdb4a
CH
1212#ifdef __ARCH_WANT_SYS_OLD_UNAME
1213/*
1214 * Old cruft
1215 */
1216SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1217{
1218 int error = 0;
1219
1220 if (!name)
1221 return -EFAULT;
1222
1223 down_read(&uts_sem);
1224 if (copy_to_user(name, utsname(), sizeof(*name)))
1225 error = -EFAULT;
1226 up_read(&uts_sem);
1227
be27425d
AK
1228 if (!error && override_release(name->release, sizeof(name->release)))
1229 error = -EFAULT;
5cacdb4a
CH
1230 if (!error && override_architecture(name))
1231 error = -EFAULT;
1232 return error;
1233}
1234
1235SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1236{
1237 int error;
1238
1239 if (!name)
1240 return -EFAULT;
1241 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1242 return -EFAULT;
1243
1244 down_read(&uts_sem);
1245 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1246 __OLD_UTS_LEN);
1247 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1248 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1249 __OLD_UTS_LEN);
1250 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1251 error |= __copy_to_user(&name->release, &utsname()->release,
1252 __OLD_UTS_LEN);
1253 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1254 error |= __copy_to_user(&name->version, &utsname()->version,
1255 __OLD_UTS_LEN);
1256 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1257 error |= __copy_to_user(&name->machine, &utsname()->machine,
1258 __OLD_UTS_LEN);
1259 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1260 up_read(&uts_sem);
1261
1262 if (!error && override_architecture(name))
1263 error = -EFAULT;
be27425d
AK
1264 if (!error && override_release(name->release, sizeof(name->release)))
1265 error = -EFAULT;
5cacdb4a
CH
1266 return error ? -EFAULT : 0;
1267}
1268#endif
1269
5a8a82b1 1270SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1271{
1272 int errno;
1273 char tmp[__NEW_UTS_LEN];
1274
bb96a6f5 1275 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1276 return -EPERM;
fc832ad3 1277
1da177e4
LT
1278 if (len < 0 || len > __NEW_UTS_LEN)
1279 return -EINVAL;
1280 down_write(&uts_sem);
1281 errno = -EFAULT;
1282 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1283 struct new_utsname *u = utsname();
1284
1285 memcpy(u->nodename, tmp, len);
1286 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1287 errno = 0;
1288 }
1289 up_write(&uts_sem);
1290 return errno;
1291}
1292
1293#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1294
5a8a82b1 1295SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1296{
1297 int i, errno;
9679e4dd 1298 struct new_utsname *u;
1da177e4
LT
1299
1300 if (len < 0)
1301 return -EINVAL;
1302 down_read(&uts_sem);
9679e4dd
AM
1303 u = utsname();
1304 i = 1 + strlen(u->nodename);
1da177e4
LT
1305 if (i > len)
1306 i = len;
1307 errno = 0;
9679e4dd 1308 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1309 errno = -EFAULT;
1310 up_read(&uts_sem);
1311 return errno;
1312}
1313
1314#endif
1315
1316/*
1317 * Only setdomainname; getdomainname can be implemented by calling
1318 * uname()
1319 */
5a8a82b1 1320SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1321{
1322 int errno;
1323 char tmp[__NEW_UTS_LEN];
1324
fc832ad3 1325 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1326 return -EPERM;
1327 if (len < 0 || len > __NEW_UTS_LEN)
1328 return -EINVAL;
1329
1330 down_write(&uts_sem);
1331 errno = -EFAULT;
1332 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1333 struct new_utsname *u = utsname();
1334
1335 memcpy(u->domainname, tmp, len);
1336 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1337 errno = 0;
1338 }
1339 up_write(&uts_sem);
1340 return errno;
1341}
1342
e48fbb69 1343SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1344{
b9518345
JS
1345 struct rlimit value;
1346 int ret;
1347
1348 ret = do_prlimit(current, resource, NULL, &value);
1349 if (!ret)
1350 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1351
1352 return ret;
1da177e4
LT
1353}
1354
1355#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1356
1357/*
1358 * Back compatibility for getrlimit. Needed for some apps.
1359 */
1360
e48fbb69
HC
1361SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1362 struct rlimit __user *, rlim)
1da177e4
LT
1363{
1364 struct rlimit x;
1365 if (resource >= RLIM_NLIMITS)
1366 return -EINVAL;
1367
1368 task_lock(current->group_leader);
1369 x = current->signal->rlim[resource];
1370 task_unlock(current->group_leader);
756184b7 1371 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1372 x.rlim_cur = 0x7FFFFFFF;
756184b7 1373 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1374 x.rlim_max = 0x7FFFFFFF;
1375 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1376}
1377
1378#endif
1379
c022a0ac
JS
1380static inline bool rlim64_is_infinity(__u64 rlim64)
1381{
1382#if BITS_PER_LONG < 64
1383 return rlim64 >= ULONG_MAX;
1384#else
1385 return rlim64 == RLIM64_INFINITY;
1386#endif
1387}
1388
1389static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1390{
1391 if (rlim->rlim_cur == RLIM_INFINITY)
1392 rlim64->rlim_cur = RLIM64_INFINITY;
1393 else
1394 rlim64->rlim_cur = rlim->rlim_cur;
1395 if (rlim->rlim_max == RLIM_INFINITY)
1396 rlim64->rlim_max = RLIM64_INFINITY;
1397 else
1398 rlim64->rlim_max = rlim->rlim_max;
1399}
1400
1401static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1402{
1403 if (rlim64_is_infinity(rlim64->rlim_cur))
1404 rlim->rlim_cur = RLIM_INFINITY;
1405 else
1406 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1407 if (rlim64_is_infinity(rlim64->rlim_max))
1408 rlim->rlim_max = RLIM_INFINITY;
1409 else
1410 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1411}
1412
1c1e618d 1413/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1414int do_prlimit(struct task_struct *tsk, unsigned int resource,
1415 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1416{
5b41535a 1417 struct rlimit *rlim;
86f162f4 1418 int retval = 0;
1da177e4
LT
1419
1420 if (resource >= RLIM_NLIMITS)
1421 return -EINVAL;
5b41535a
JS
1422 if (new_rlim) {
1423 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1424 return -EINVAL;
1425 if (resource == RLIMIT_NOFILE &&
1426 new_rlim->rlim_max > sysctl_nr_open)
1427 return -EPERM;
1428 }
1da177e4 1429
1c1e618d
JS
1430 /* protect tsk->signal and tsk->sighand from disappearing */
1431 read_lock(&tasklist_lock);
1432 if (!tsk->sighand) {
1433 retval = -ESRCH;
1434 goto out;
1435 }
1436
5b41535a 1437 rlim = tsk->signal->rlim + resource;
86f162f4 1438 task_lock(tsk->group_leader);
5b41535a 1439 if (new_rlim) {
fc832ad3
SH
1440 /* Keep the capable check against init_user_ns until
1441 cgroups can contain all limits */
5b41535a
JS
1442 if (new_rlim->rlim_max > rlim->rlim_max &&
1443 !capable(CAP_SYS_RESOURCE))
1444 retval = -EPERM;
1445 if (!retval)
1446 retval = security_task_setrlimit(tsk->group_leader,
1447 resource, new_rlim);
1448 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1449 /*
1450 * The caller is asking for an immediate RLIMIT_CPU
1451 * expiry. But we use the zero value to mean "it was
1452 * never set". So let's cheat and make it one second
1453 * instead
1454 */
1455 new_rlim->rlim_cur = 1;
1456 }
1457 }
1458 if (!retval) {
1459 if (old_rlim)
1460 *old_rlim = *rlim;
1461 if (new_rlim)
1462 *rlim = *new_rlim;
9926e4c7 1463 }
7855c35d 1464 task_unlock(tsk->group_leader);
1da177e4 1465
d3561f78
AM
1466 /*
1467 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1468 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1469 * very long-standing error, and fixing it now risks breakage of
1470 * applications, so we live with it
1471 */
5b41535a
JS
1472 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1473 new_rlim->rlim_cur != RLIM_INFINITY)
1474 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1475out:
1c1e618d 1476 read_unlock(&tasklist_lock);
2fb9d268 1477 return retval;
1da177e4
LT
1478}
1479
c022a0ac
JS
1480/* rcu lock must be held */
1481static int check_prlimit_permission(struct task_struct *task)
1482{
1483 const struct cred *cred = current_cred(), *tcred;
1484
fc832ad3
SH
1485 if (current == task)
1486 return 0;
c022a0ac 1487
fc832ad3
SH
1488 tcred = __task_cred(task);
1489 if (cred->user->user_ns == tcred->user->user_ns &&
1490 (cred->uid == tcred->euid &&
1491 cred->uid == tcred->suid &&
1492 cred->uid == tcred->uid &&
1493 cred->gid == tcred->egid &&
1494 cred->gid == tcred->sgid &&
1495 cred->gid == tcred->gid))
1496 return 0;
1497 if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1498 return 0;
1499
1500 return -EPERM;
c022a0ac
JS
1501}
1502
1503SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1504 const struct rlimit64 __user *, new_rlim,
1505 struct rlimit64 __user *, old_rlim)
1506{
1507 struct rlimit64 old64, new64;
1508 struct rlimit old, new;
1509 struct task_struct *tsk;
1510 int ret;
1511
1512 if (new_rlim) {
1513 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1514 return -EFAULT;
1515 rlim64_to_rlim(&new64, &new);
1516 }
1517
1518 rcu_read_lock();
1519 tsk = pid ? find_task_by_vpid(pid) : current;
1520 if (!tsk) {
1521 rcu_read_unlock();
1522 return -ESRCH;
1523 }
1524 ret = check_prlimit_permission(tsk);
1525 if (ret) {
1526 rcu_read_unlock();
1527 return ret;
1528 }
1529 get_task_struct(tsk);
1530 rcu_read_unlock();
1531
1532 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1533 old_rlim ? &old : NULL);
1534
1535 if (!ret && old_rlim) {
1536 rlim_to_rlim64(&old, &old64);
1537 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1538 ret = -EFAULT;
1539 }
1540
1541 put_task_struct(tsk);
1542 return ret;
1543}
1544
7855c35d
JS
1545SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1546{
1547 struct rlimit new_rlim;
1548
1549 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1550 return -EFAULT;
5b41535a 1551 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1552}
1553
1da177e4
LT
1554/*
1555 * It would make sense to put struct rusage in the task_struct,
1556 * except that would make the task_struct be *really big*. After
1557 * task_struct gets moved into malloc'ed memory, it would
1558 * make sense to do this. It will make moving the rest of the information
1559 * a lot simpler! (Which we're not doing right now because we're not
1560 * measuring them yet).
1561 *
1da177e4
LT
1562 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1563 * races with threads incrementing their own counters. But since word
1564 * reads are atomic, we either get new values or old values and we don't
1565 * care which for the sums. We always take the siglock to protect reading
1566 * the c* fields from p->signal from races with exit.c updating those
1567 * fields when reaping, so a sample either gets all the additions of a
1568 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1569 *
de047c1b
RT
1570 * Locking:
1571 * We need to take the siglock for CHILDEREN, SELF and BOTH
1572 * for the cases current multithreaded, non-current single threaded
1573 * non-current multithreaded. Thread traversal is now safe with
1574 * the siglock held.
1575 * Strictly speaking, we donot need to take the siglock if we are current and
1576 * single threaded, as no one else can take our signal_struct away, no one
1577 * else can reap the children to update signal->c* counters, and no one else
1578 * can race with the signal-> fields. If we do not take any lock, the
1579 * signal-> fields could be read out of order while another thread was just
1580 * exiting. So we should place a read memory barrier when we avoid the lock.
1581 * On the writer side, write memory barrier is implied in __exit_signal
1582 * as __exit_signal releases the siglock spinlock after updating the signal->
1583 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1584 *
1da177e4
LT
1585 */
1586
f06febc9 1587static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1588{
679c9cd4
SK
1589 r->ru_nvcsw += t->nvcsw;
1590 r->ru_nivcsw += t->nivcsw;
1591 r->ru_minflt += t->min_flt;
1592 r->ru_majflt += t->maj_flt;
1593 r->ru_inblock += task_io_get_inblock(t);
1594 r->ru_oublock += task_io_get_oublock(t);
1595}
1596
1da177e4
LT
1597static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1598{
1599 struct task_struct *t;
1600 unsigned long flags;
0cf55e1e 1601 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1602 unsigned long maxrss = 0;
1da177e4
LT
1603
1604 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1605 utime = stime = cputime_zero;
1da177e4 1606
679c9cd4 1607 if (who == RUSAGE_THREAD) {
d180c5bc 1608 task_times(current, &utime, &stime);
f06febc9 1609 accumulate_thread_rusage(p, r);
1f10206c 1610 maxrss = p->signal->maxrss;
679c9cd4
SK
1611 goto out;
1612 }
1613
d6cf723a 1614 if (!lock_task_sighand(p, &flags))
de047c1b 1615 return;
0f59cc4a 1616
1da177e4 1617 switch (who) {
0f59cc4a 1618 case RUSAGE_BOTH:
1da177e4 1619 case RUSAGE_CHILDREN:
1da177e4
LT
1620 utime = p->signal->cutime;
1621 stime = p->signal->cstime;
1622 r->ru_nvcsw = p->signal->cnvcsw;
1623 r->ru_nivcsw = p->signal->cnivcsw;
1624 r->ru_minflt = p->signal->cmin_flt;
1625 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1626 r->ru_inblock = p->signal->cinblock;
1627 r->ru_oublock = p->signal->coublock;
1f10206c 1628 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1629
1630 if (who == RUSAGE_CHILDREN)
1631 break;
1632
1da177e4 1633 case RUSAGE_SELF:
0cf55e1e
HS
1634 thread_group_times(p, &tgutime, &tgstime);
1635 utime = cputime_add(utime, tgutime);
1636 stime = cputime_add(stime, tgstime);
1da177e4
LT
1637 r->ru_nvcsw += p->signal->nvcsw;
1638 r->ru_nivcsw += p->signal->nivcsw;
1639 r->ru_minflt += p->signal->min_flt;
1640 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1641 r->ru_inblock += p->signal->inblock;
1642 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1643 if (maxrss < p->signal->maxrss)
1644 maxrss = p->signal->maxrss;
1da177e4
LT
1645 t = p;
1646 do {
f06febc9 1647 accumulate_thread_rusage(t, r);
1da177e4
LT
1648 t = next_thread(t);
1649 } while (t != p);
1da177e4 1650 break;
0f59cc4a 1651
1da177e4
LT
1652 default:
1653 BUG();
1654 }
de047c1b 1655 unlock_task_sighand(p, &flags);
de047c1b 1656
679c9cd4 1657out:
0f59cc4a
ON
1658 cputime_to_timeval(utime, &r->ru_utime);
1659 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1660
1661 if (who != RUSAGE_CHILDREN) {
1662 struct mm_struct *mm = get_task_mm(p);
1663 if (mm) {
1664 setmax_mm_hiwater_rss(&maxrss, mm);
1665 mmput(mm);
1666 }
1667 }
1668 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1669}
1670
1671int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1672{
1673 struct rusage r;
1da177e4 1674 k_getrusage(p, who, &r);
1da177e4
LT
1675 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1676}
1677
e48fbb69 1678SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1679{
679c9cd4
SK
1680 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1681 who != RUSAGE_THREAD)
1da177e4
LT
1682 return -EINVAL;
1683 return getrusage(current, who, ru);
1684}
1685
e48fbb69 1686SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1687{
1688 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1689 return mask;
1690}
3b7391de 1691
c4ea37c2
HC
1692SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1693 unsigned long, arg4, unsigned long, arg5)
1da177e4 1694{
b6dff3ec
DH
1695 struct task_struct *me = current;
1696 unsigned char comm[sizeof(me->comm)];
1697 long error;
1da177e4 1698
d84f4f99
DH
1699 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1700 if (error != -ENOSYS)
1da177e4
LT
1701 return error;
1702
d84f4f99 1703 error = 0;
1da177e4
LT
1704 switch (option) {
1705 case PR_SET_PDEATHSIG:
0730ded5 1706 if (!valid_signal(arg2)) {
1da177e4
LT
1707 error = -EINVAL;
1708 break;
1709 }
b6dff3ec
DH
1710 me->pdeath_signal = arg2;
1711 error = 0;
1da177e4
LT
1712 break;
1713 case PR_GET_PDEATHSIG:
b6dff3ec 1714 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1715 break;
1716 case PR_GET_DUMPABLE:
b6dff3ec 1717 error = get_dumpable(me->mm);
1da177e4
LT
1718 break;
1719 case PR_SET_DUMPABLE:
abf75a50 1720 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1721 error = -EINVAL;
1722 break;
1723 }
b6dff3ec
DH
1724 set_dumpable(me->mm, arg2);
1725 error = 0;
1da177e4
LT
1726 break;
1727
1728 case PR_SET_UNALIGN:
b6dff3ec 1729 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1730 break;
1731 case PR_GET_UNALIGN:
b6dff3ec 1732 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1733 break;
1734 case PR_SET_FPEMU:
b6dff3ec 1735 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1736 break;
1737 case PR_GET_FPEMU:
b6dff3ec 1738 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1739 break;
1740 case PR_SET_FPEXC:
b6dff3ec 1741 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1742 break;
1743 case PR_GET_FPEXC:
b6dff3ec 1744 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1745 break;
1746 case PR_GET_TIMING:
1747 error = PR_TIMING_STATISTICAL;
1748 break;
1749 case PR_SET_TIMING:
7b26655f 1750 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1751 error = -EINVAL;
b6dff3ec
DH
1752 else
1753 error = 0;
1da177e4
LT
1754 break;
1755
b6dff3ec
DH
1756 case PR_SET_NAME:
1757 comm[sizeof(me->comm)-1] = 0;
1758 if (strncpy_from_user(comm, (char __user *)arg2,
1759 sizeof(me->comm) - 1) < 0)
1da177e4 1760 return -EFAULT;
b6dff3ec 1761 set_task_comm(me, comm);
f786ecba 1762 proc_comm_connector(me);
1da177e4 1763 return 0;
b6dff3ec
DH
1764 case PR_GET_NAME:
1765 get_task_comm(comm, me);
1766 if (copy_to_user((char __user *)arg2, comm,
1767 sizeof(comm)))
1da177e4
LT
1768 return -EFAULT;
1769 return 0;
651d765d 1770 case PR_GET_ENDIAN:
b6dff3ec 1771 error = GET_ENDIAN(me, arg2);
651d765d
AB
1772 break;
1773 case PR_SET_ENDIAN:
b6dff3ec 1774 error = SET_ENDIAN(me, arg2);
651d765d
AB
1775 break;
1776
1d9d02fe
AA
1777 case PR_GET_SECCOMP:
1778 error = prctl_get_seccomp();
1779 break;
1780 case PR_SET_SECCOMP:
1781 error = prctl_set_seccomp(arg2);
1782 break;
8fb402bc
EB
1783 case PR_GET_TSC:
1784 error = GET_TSC_CTL(arg2);
1785 break;
1786 case PR_SET_TSC:
1787 error = SET_TSC_CTL(arg2);
1788 break;
cdd6c482
IM
1789 case PR_TASK_PERF_EVENTS_DISABLE:
1790 error = perf_event_task_disable();
1d1c7ddb 1791 break;
cdd6c482
IM
1792 case PR_TASK_PERF_EVENTS_ENABLE:
1793 error = perf_event_task_enable();
1d1c7ddb 1794 break;
6976675d
AV
1795 case PR_GET_TIMERSLACK:
1796 error = current->timer_slack_ns;
1797 break;
1798 case PR_SET_TIMERSLACK:
1799 if (arg2 <= 0)
1800 current->timer_slack_ns =
1801 current->default_timer_slack_ns;
1802 else
1803 current->timer_slack_ns = arg2;
b6dff3ec 1804 error = 0;
6976675d 1805 break;
4db96cf0
AK
1806 case PR_MCE_KILL:
1807 if (arg4 | arg5)
1808 return -EINVAL;
1809 switch (arg2) {
1087e9b4 1810 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1811 if (arg3 != 0)
1812 return -EINVAL;
1813 current->flags &= ~PF_MCE_PROCESS;
1814 break;
1087e9b4 1815 case PR_MCE_KILL_SET:
4db96cf0 1816 current->flags |= PF_MCE_PROCESS;
1087e9b4 1817 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1818 current->flags |= PF_MCE_EARLY;
1087e9b4 1819 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1820 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1821 else if (arg3 == PR_MCE_KILL_DEFAULT)
1822 current->flags &=
1823 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1824 else
1825 return -EINVAL;
4db96cf0
AK
1826 break;
1827 default:
1828 return -EINVAL;
1829 }
1830 error = 0;
1831 break;
1087e9b4
AK
1832 case PR_MCE_KILL_GET:
1833 if (arg2 | arg3 | arg4 | arg5)
1834 return -EINVAL;
1835 if (current->flags & PF_MCE_PROCESS)
1836 error = (current->flags & PF_MCE_EARLY) ?
1837 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1838 else
1839 error = PR_MCE_KILL_DEFAULT;
1840 break;
1da177e4
LT
1841 default:
1842 error = -EINVAL;
1843 break;
1844 }
1845 return error;
1846}
3cfc348b 1847
836f92ad
HC
1848SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1849 struct getcpu_cache __user *, unused)
3cfc348b
AK
1850{
1851 int err = 0;
1852 int cpu = raw_smp_processor_id();
1853 if (cpup)
1854 err |= put_user(cpu, cpup);
1855 if (nodep)
1856 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1857 return err ? -EFAULT : 0;
1858}
10a0a8d4
JF
1859
1860char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1861
a06a4dc3 1862static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 1863{
a06a4dc3 1864 argv_free(info->argv);
10a0a8d4
JF
1865}
1866
1867/**
1868 * orderly_poweroff - Trigger an orderly system poweroff
1869 * @force: force poweroff if command execution fails
1870 *
1871 * This may be called from any context to trigger a system shutdown.
1872 * If the orderly shutdown fails, it will force an immediate shutdown.
1873 */
1874int orderly_poweroff(bool force)
1875{
1876 int argc;
1877 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1878 static char *envp[] = {
1879 "HOME=/",
1880 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1881 NULL
1882 };
1883 int ret = -ENOMEM;
1884 struct subprocess_info *info;
1885
1886 if (argv == NULL) {
1887 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1888 __func__, poweroff_cmd);
1889 goto out;
1890 }
1891
ac331d15 1892 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1893 if (info == NULL) {
1894 argv_free(argv);
1895 goto out;
1896 }
1897
a06a4dc3 1898 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
10a0a8d4 1899
86313c48 1900 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1901
1902 out:
1903 if (ret && force) {
1904 printk(KERN_WARNING "Failed to start orderly shutdown: "
1905 "forcing the issue\n");
1906
1907 /* I guess this should try to kick off some daemon to
1908 sync and poweroff asap. Or not even bother syncing
1909 if we're doing an emergency shutdown? */
1910 emergency_sync();
1911 kernel_power_off();
1912 }
1913
1914 return ret;
1915}
1916EXPORT_SYMBOL_GPL(orderly_poweroff);
This page took 0.780024 seconds and 5 git commands to generate.