remove CONFIG_UTS_NS and CONFIG_IPC_NS
[deliverable/linux.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/smp_lock.h>
12#include <linux/notifier.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
1da177e4
LT
15#include <linux/highuid.h>
16#include <linux/fs.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1da177e4
LT
34
35#include <linux/compat.h>
36#include <linux/syscalls.h>
00d7c05a 37#include <linux/kprobes.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
40#include <asm/io.h>
41#include <asm/unistd.h>
42
43#ifndef SET_UNALIGN_CTL
44# define SET_UNALIGN_CTL(a,b) (-EINVAL)
45#endif
46#ifndef GET_UNALIGN_CTL
47# define GET_UNALIGN_CTL(a,b) (-EINVAL)
48#endif
49#ifndef SET_FPEMU_CTL
50# define SET_FPEMU_CTL(a,b) (-EINVAL)
51#endif
52#ifndef GET_FPEMU_CTL
53# define GET_FPEMU_CTL(a,b) (-EINVAL)
54#endif
55#ifndef SET_FPEXC_CTL
56# define SET_FPEXC_CTL(a,b) (-EINVAL)
57#endif
58#ifndef GET_FPEXC_CTL
59# define GET_FPEXC_CTL(a,b) (-EINVAL)
60#endif
651d765d
AB
61#ifndef GET_ENDIAN
62# define GET_ENDIAN(a,b) (-EINVAL)
63#endif
64#ifndef SET_ENDIAN
65# define SET_ENDIAN(a,b) (-EINVAL)
66#endif
1da177e4
LT
67
68/*
69 * this is where the system-wide overflow UID and GID are defined, for
70 * architectures that now have 32-bit UID/GID but didn't in the past
71 */
72
73int overflowuid = DEFAULT_OVERFLOWUID;
74int overflowgid = DEFAULT_OVERFLOWGID;
75
76#ifdef CONFIG_UID16
77EXPORT_SYMBOL(overflowuid);
78EXPORT_SYMBOL(overflowgid);
79#endif
80
81/*
82 * the same as above, but for filesystems which can only store a 16-bit
83 * UID and GID. as such, this is needed on all architectures
84 */
85
86int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
87int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
88
89EXPORT_SYMBOL(fs_overflowuid);
90EXPORT_SYMBOL(fs_overflowgid);
91
92/*
93 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
94 */
95
96int C_A_D = 1;
9ec52099
CLG
97struct pid *cad_pid;
98EXPORT_SYMBOL(cad_pid);
1da177e4
LT
99
100/*
101 * Notifier list for kernel code which wants to be called
102 * at shutdown. This is used to stop any idling DMA operations
103 * and the like.
104 */
105
e041c683
AS
106static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
107
108/*
109 * Notifier chain core routines. The exported routines below
110 * are layered on top of these, with appropriate locking added.
111 */
112
113static int notifier_chain_register(struct notifier_block **nl,
114 struct notifier_block *n)
115{
116 while ((*nl) != NULL) {
117 if (n->priority > (*nl)->priority)
118 break;
119 nl = &((*nl)->next);
120 }
121 n->next = *nl;
122 rcu_assign_pointer(*nl, n);
123 return 0;
124}
125
126static int notifier_chain_unregister(struct notifier_block **nl,
127 struct notifier_block *n)
128{
129 while ((*nl) != NULL) {
130 if ((*nl) == n) {
131 rcu_assign_pointer(*nl, n->next);
132 return 0;
133 }
134 nl = &((*nl)->next);
135 }
136 return -ENOENT;
137}
138
6f7cc11a
GS
139/**
140 * notifier_call_chain - Informs the registered notifiers about an event.
141 * @nl: Pointer to head of the blocking notifier chain
142 * @val: Value passed unmodified to notifier function
143 * @v: Pointer passed unmodified to notifier function
144 * @nr_to_call: Number of notifier functions to be called. Don't care
145 * value of this parameter is -1.
146 * @nr_calls: Records the number of notifications sent. Don't care
147 * value of this field is NULL.
148 * @returns: notifier_call_chain returns the value returned by the
149 * last notifier function called.
150 */
151
e041c683 152static int __kprobes notifier_call_chain(struct notifier_block **nl,
6f7cc11a
GS
153 unsigned long val, void *v,
154 int nr_to_call, int *nr_calls)
e041c683
AS
155{
156 int ret = NOTIFY_DONE;
bbb1747d 157 struct notifier_block *nb, *next_nb;
e041c683
AS
158
159 nb = rcu_dereference(*nl);
6f7cc11a
GS
160
161 while (nb && nr_to_call) {
bbb1747d 162 next_nb = rcu_dereference(nb->next);
e041c683 163 ret = nb->notifier_call(nb, val, v);
6f7cc11a
GS
164
165 if (nr_calls)
166 (*nr_calls)++;
167
e041c683
AS
168 if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
169 break;
bbb1747d 170 nb = next_nb;
6f7cc11a 171 nr_to_call--;
e041c683
AS
172 }
173 return ret;
174}
175
176/*
177 * Atomic notifier chain routines. Registration and unregistration
eabc0694 178 * use a spinlock, and call_chain is synchronized by RCU (no locks).
e041c683 179 */
1da177e4
LT
180
181/**
e041c683
AS
182 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
183 * @nh: Pointer to head of the atomic notifier chain
1da177e4
LT
184 * @n: New entry in notifier chain
185 *
e041c683 186 * Adds a notifier to an atomic notifier chain.
1da177e4
LT
187 *
188 * Currently always returns zero.
189 */
e041c683
AS
190
191int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
192 struct notifier_block *n)
193{
194 unsigned long flags;
195 int ret;
196
197 spin_lock_irqsave(&nh->lock, flags);
198 ret = notifier_chain_register(&nh->head, n);
199 spin_unlock_irqrestore(&nh->lock, flags);
200 return ret;
201}
202
203EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
204
205/**
206 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
207 * @nh: Pointer to head of the atomic notifier chain
208 * @n: Entry to remove from notifier chain
209 *
210 * Removes a notifier from an atomic notifier chain.
211 *
212 * Returns zero on success or %-ENOENT on failure.
213 */
214int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
215 struct notifier_block *n)
216{
217 unsigned long flags;
218 int ret;
219
220 spin_lock_irqsave(&nh->lock, flags);
221 ret = notifier_chain_unregister(&nh->head, n);
222 spin_unlock_irqrestore(&nh->lock, flags);
223 synchronize_rcu();
224 return ret;
225}
226
227EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
228
229/**
6f7cc11a 230 * __atomic_notifier_call_chain - Call functions in an atomic notifier chain
e041c683
AS
231 * @nh: Pointer to head of the atomic notifier chain
232 * @val: Value passed unmodified to notifier function
233 * @v: Pointer passed unmodified to notifier function
6f7cc11a
GS
234 * @nr_to_call: See the comment for notifier_call_chain.
235 * @nr_calls: See the comment for notifier_call_chain.
e041c683
AS
236 *
237 * Calls each function in a notifier chain in turn. The functions
238 * run in an atomic context, so they must not block.
239 * This routine uses RCU to synchronize with changes to the chain.
240 *
241 * If the return value of the notifier can be and'ed
72fd4a35 242 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
e041c683
AS
243 * will return immediately, with the return value of
244 * the notifier function which halted execution.
245 * Otherwise the return value is the return value
246 * of the last notifier function called.
247 */
1da177e4 248
6f7cc11a
GS
249int __kprobes __atomic_notifier_call_chain(struct atomic_notifier_head *nh,
250 unsigned long val, void *v,
251 int nr_to_call, int *nr_calls)
1da177e4 252{
e041c683
AS
253 int ret;
254
255 rcu_read_lock();
6f7cc11a 256 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
e041c683
AS
257 rcu_read_unlock();
258 return ret;
1da177e4
LT
259}
260
6f7cc11a
GS
261EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain);
262
263int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
264 unsigned long val, void *v)
265{
266 return __atomic_notifier_call_chain(nh, val, v, -1, NULL);
267}
e041c683 268
6f7cc11a 269EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
e041c683
AS
270/*
271 * Blocking notifier chain routines. All access to the chain is
272 * synchronized by an rwsem.
273 */
1da177e4
LT
274
275/**
e041c683
AS
276 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
277 * @nh: Pointer to head of the blocking notifier chain
1da177e4
LT
278 * @n: New entry in notifier chain
279 *
e041c683
AS
280 * Adds a notifier to a blocking notifier chain.
281 * Must be called in process context.
1da177e4 282 *
e041c683 283 * Currently always returns zero.
1da177e4
LT
284 */
285
e041c683
AS
286int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
287 struct notifier_block *n)
1da177e4 288{
e041c683
AS
289 int ret;
290
291 /*
292 * This code gets used during boot-up, when task switching is
293 * not yet working and interrupts must remain disabled. At
294 * such times we must not call down_write().
295 */
296 if (unlikely(system_state == SYSTEM_BOOTING))
297 return notifier_chain_register(&nh->head, n);
298
299 down_write(&nh->rwsem);
300 ret = notifier_chain_register(&nh->head, n);
301 up_write(&nh->rwsem);
302 return ret;
1da177e4
LT
303}
304
e041c683 305EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
1da177e4
LT
306
307/**
e041c683
AS
308 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
309 * @nh: Pointer to head of the blocking notifier chain
310 * @n: Entry to remove from notifier chain
311 *
312 * Removes a notifier from a blocking notifier chain.
313 * Must be called from process context.
314 *
315 * Returns zero on success or %-ENOENT on failure.
316 */
317int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
318 struct notifier_block *n)
319{
320 int ret;
321
322 /*
323 * This code gets used during boot-up, when task switching is
324 * not yet working and interrupts must remain disabled. At
325 * such times we must not call down_write().
326 */
327 if (unlikely(system_state == SYSTEM_BOOTING))
328 return notifier_chain_unregister(&nh->head, n);
329
330 down_write(&nh->rwsem);
331 ret = notifier_chain_unregister(&nh->head, n);
332 up_write(&nh->rwsem);
333 return ret;
334}
335
336EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
337
338/**
6f7cc11a 339 * __blocking_notifier_call_chain - Call functions in a blocking notifier chain
e041c683 340 * @nh: Pointer to head of the blocking notifier chain
1da177e4
LT
341 * @val: Value passed unmodified to notifier function
342 * @v: Pointer passed unmodified to notifier function
6f7cc11a
GS
343 * @nr_to_call: See comment for notifier_call_chain.
344 * @nr_calls: See comment for notifier_call_chain.
1da177e4 345 *
e041c683
AS
346 * Calls each function in a notifier chain in turn. The functions
347 * run in a process context, so they are allowed to block.
1da177e4 348 *
e041c683 349 * If the return value of the notifier can be and'ed
72fd4a35 350 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
1da177e4
LT
351 * will return immediately, with the return value of
352 * the notifier function which halted execution.
e041c683 353 * Otherwise the return value is the return value
1da177e4
LT
354 * of the last notifier function called.
355 */
356
6f7cc11a
GS
357int __blocking_notifier_call_chain(struct blocking_notifier_head *nh,
358 unsigned long val, void *v,
359 int nr_to_call, int *nr_calls)
1da177e4 360{
1b5180b6 361 int ret = NOTIFY_DONE;
e041c683 362
1b5180b6
IM
363 /*
364 * We check the head outside the lock, but if this access is
365 * racy then it does not matter what the result of the test
366 * is, we re-check the list after having taken the lock anyway:
367 */
368 if (rcu_dereference(nh->head)) {
369 down_read(&nh->rwsem);
6f7cc11a
GS
370 ret = notifier_call_chain(&nh->head, val, v, nr_to_call,
371 nr_calls);
1b5180b6
IM
372 up_read(&nh->rwsem);
373 }
1da177e4
LT
374 return ret;
375}
6f7cc11a 376EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain);
1da177e4 377
6f7cc11a
GS
378int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
379 unsigned long val, void *v)
380{
381 return __blocking_notifier_call_chain(nh, val, v, -1, NULL);
382}
e041c683
AS
383EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
384
385/*
386 * Raw notifier chain routines. There is no protection;
387 * the caller must provide it. Use at your own risk!
388 */
389
390/**
391 * raw_notifier_chain_register - Add notifier to a raw notifier chain
392 * @nh: Pointer to head of the raw notifier chain
393 * @n: New entry in notifier chain
394 *
395 * Adds a notifier to a raw notifier chain.
396 * All locking must be provided by the caller.
397 *
398 * Currently always returns zero.
399 */
400
401int raw_notifier_chain_register(struct raw_notifier_head *nh,
402 struct notifier_block *n)
403{
404 return notifier_chain_register(&nh->head, n);
405}
406
407EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
408
409/**
410 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
411 * @nh: Pointer to head of the raw notifier chain
412 * @n: Entry to remove from notifier chain
413 *
414 * Removes a notifier from a raw notifier chain.
415 * All locking must be provided by the caller.
416 *
417 * Returns zero on success or %-ENOENT on failure.
418 */
419int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
420 struct notifier_block *n)
421{
422 return notifier_chain_unregister(&nh->head, n);
423}
424
425EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
426
427/**
6f7cc11a 428 * __raw_notifier_call_chain - Call functions in a raw notifier chain
e041c683
AS
429 * @nh: Pointer to head of the raw notifier chain
430 * @val: Value passed unmodified to notifier function
431 * @v: Pointer passed unmodified to notifier function
6f7cc11a
GS
432 * @nr_to_call: See comment for notifier_call_chain.
433 * @nr_calls: See comment for notifier_call_chain
e041c683
AS
434 *
435 * Calls each function in a notifier chain in turn. The functions
436 * run in an undefined context.
437 * All locking must be provided by the caller.
438 *
439 * If the return value of the notifier can be and'ed
72fd4a35 440 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
e041c683
AS
441 * will return immediately, with the return value of
442 * the notifier function which halted execution.
443 * Otherwise the return value is the return value
444 * of the last notifier function called.
445 */
446
6f7cc11a
GS
447int __raw_notifier_call_chain(struct raw_notifier_head *nh,
448 unsigned long val, void *v,
449 int nr_to_call, int *nr_calls)
450{
451 return notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
452}
453
454EXPORT_SYMBOL_GPL(__raw_notifier_call_chain);
455
e041c683
AS
456int raw_notifier_call_chain(struct raw_notifier_head *nh,
457 unsigned long val, void *v)
458{
6f7cc11a 459 return __raw_notifier_call_chain(nh, val, v, -1, NULL);
e041c683
AS
460}
461
462EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
1da177e4 463
eabc0694
AS
464/*
465 * SRCU notifier chain routines. Registration and unregistration
466 * use a mutex, and call_chain is synchronized by SRCU (no locks).
467 */
468
469/**
470 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
471 * @nh: Pointer to head of the SRCU notifier chain
472 * @n: New entry in notifier chain
473 *
474 * Adds a notifier to an SRCU notifier chain.
475 * Must be called in process context.
476 *
477 * Currently always returns zero.
478 */
479
480int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
481 struct notifier_block *n)
482{
483 int ret;
484
485 /*
486 * This code gets used during boot-up, when task switching is
487 * not yet working and interrupts must remain disabled. At
488 * such times we must not call mutex_lock().
489 */
490 if (unlikely(system_state == SYSTEM_BOOTING))
491 return notifier_chain_register(&nh->head, n);
492
493 mutex_lock(&nh->mutex);
494 ret = notifier_chain_register(&nh->head, n);
495 mutex_unlock(&nh->mutex);
496 return ret;
497}
498
499EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
500
501/**
502 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
503 * @nh: Pointer to head of the SRCU notifier chain
504 * @n: Entry to remove from notifier chain
505 *
506 * Removes a notifier from an SRCU notifier chain.
507 * Must be called from process context.
508 *
509 * Returns zero on success or %-ENOENT on failure.
510 */
511int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
512 struct notifier_block *n)
513{
514 int ret;
515
516 /*
517 * This code gets used during boot-up, when task switching is
518 * not yet working and interrupts must remain disabled. At
519 * such times we must not call mutex_lock().
520 */
521 if (unlikely(system_state == SYSTEM_BOOTING))
522 return notifier_chain_unregister(&nh->head, n);
523
524 mutex_lock(&nh->mutex);
525 ret = notifier_chain_unregister(&nh->head, n);
526 mutex_unlock(&nh->mutex);
527 synchronize_srcu(&nh->srcu);
528 return ret;
529}
530
531EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
532
533/**
6f7cc11a 534 * __srcu_notifier_call_chain - Call functions in an SRCU notifier chain
eabc0694
AS
535 * @nh: Pointer to head of the SRCU notifier chain
536 * @val: Value passed unmodified to notifier function
537 * @v: Pointer passed unmodified to notifier function
6f7cc11a
GS
538 * @nr_to_call: See comment for notifier_call_chain.
539 * @nr_calls: See comment for notifier_call_chain
eabc0694
AS
540 *
541 * Calls each function in a notifier chain in turn. The functions
542 * run in a process context, so they are allowed to block.
543 *
544 * If the return value of the notifier can be and'ed
72fd4a35 545 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
eabc0694
AS
546 * will return immediately, with the return value of
547 * the notifier function which halted execution.
548 * Otherwise the return value is the return value
549 * of the last notifier function called.
550 */
551
6f7cc11a
GS
552int __srcu_notifier_call_chain(struct srcu_notifier_head *nh,
553 unsigned long val, void *v,
554 int nr_to_call, int *nr_calls)
eabc0694
AS
555{
556 int ret;
557 int idx;
558
559 idx = srcu_read_lock(&nh->srcu);
6f7cc11a 560 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
eabc0694
AS
561 srcu_read_unlock(&nh->srcu, idx);
562 return ret;
563}
6f7cc11a 564EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain);
eabc0694 565
6f7cc11a
GS
566int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
567 unsigned long val, void *v)
568{
569 return __srcu_notifier_call_chain(nh, val, v, -1, NULL);
570}
eabc0694
AS
571EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
572
573/**
574 * srcu_init_notifier_head - Initialize an SRCU notifier head
575 * @nh: Pointer to head of the srcu notifier chain
576 *
577 * Unlike other sorts of notifier heads, SRCU notifier heads require
578 * dynamic initialization. Be sure to call this routine before
579 * calling any of the other SRCU notifier routines for this head.
580 *
581 * If an SRCU notifier head is deallocated, it must first be cleaned
582 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
583 * per-cpu data (used by the SRCU mechanism) will leak.
584 */
585
586void srcu_init_notifier_head(struct srcu_notifier_head *nh)
587{
588 mutex_init(&nh->mutex);
e6a92013
AS
589 if (init_srcu_struct(&nh->srcu) < 0)
590 BUG();
eabc0694
AS
591 nh->head = NULL;
592}
593
594EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
595
1da177e4
LT
596/**
597 * register_reboot_notifier - Register function to be called at reboot time
598 * @nb: Info about notifier function to be called
599 *
600 * Registers a function with the list of functions
601 * to be called at reboot time.
602 *
72fd4a35 603 * Currently always returns zero, as blocking_notifier_chain_register()
1da177e4
LT
604 * always returns zero.
605 */
606
607int register_reboot_notifier(struct notifier_block * nb)
608{
e041c683 609 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
1da177e4
LT
610}
611
612EXPORT_SYMBOL(register_reboot_notifier);
613
614/**
615 * unregister_reboot_notifier - Unregister previously registered reboot notifier
616 * @nb: Hook to be unregistered
617 *
618 * Unregisters a previously registered reboot
619 * notifier function.
620 *
621 * Returns zero on success, or %-ENOENT on failure.
622 */
623
624int unregister_reboot_notifier(struct notifier_block * nb)
625{
e041c683 626 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
1da177e4
LT
627}
628
629EXPORT_SYMBOL(unregister_reboot_notifier);
630
631static int set_one_prio(struct task_struct *p, int niceval, int error)
632{
633 int no_nice;
634
635 if (p->uid != current->euid &&
636 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
637 error = -EPERM;
638 goto out;
639 }
e43379f1 640 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
641 error = -EACCES;
642 goto out;
643 }
644 no_nice = security_task_setnice(p, niceval);
645 if (no_nice) {
646 error = no_nice;
647 goto out;
648 }
649 if (error == -ESRCH)
650 error = 0;
651 set_user_nice(p, niceval);
652out:
653 return error;
654}
655
656asmlinkage long sys_setpriority(int which, int who, int niceval)
657{
658 struct task_struct *g, *p;
659 struct user_struct *user;
660 int error = -EINVAL;
41487c65 661 struct pid *pgrp;
1da177e4 662
3e88c553 663 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
664 goto out;
665
666 /* normalize: avoid signed division (rounding problems) */
667 error = -ESRCH;
668 if (niceval < -20)
669 niceval = -20;
670 if (niceval > 19)
671 niceval = 19;
672
673 read_lock(&tasklist_lock);
674 switch (which) {
675 case PRIO_PROCESS:
41487c65
EB
676 if (who)
677 p = find_task_by_pid(who);
678 else
679 p = current;
1da177e4
LT
680 if (p)
681 error = set_one_prio(p, niceval, error);
682 break;
683 case PRIO_PGRP:
41487c65
EB
684 if (who)
685 pgrp = find_pid(who);
686 else
687 pgrp = task_pgrp(current);
688 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1da177e4 689 error = set_one_prio(p, niceval, error);
41487c65 690 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
691 break;
692 case PRIO_USER:
693 user = current->user;
694 if (!who)
695 who = current->uid;
696 else
697 if ((who != current->uid) && !(user = find_user(who)))
698 goto out_unlock; /* No processes for this user */
699
700 do_each_thread(g, p)
701 if (p->uid == who)
702 error = set_one_prio(p, niceval, error);
703 while_each_thread(g, p);
704 if (who != current->uid)
705 free_uid(user); /* For find_user() */
706 break;
707 }
708out_unlock:
709 read_unlock(&tasklist_lock);
710out:
711 return error;
712}
713
714/*
715 * Ugh. To avoid negative return values, "getpriority()" will
716 * not return the normal nice-value, but a negated value that
717 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
718 * to stay compatible.
719 */
720asmlinkage long sys_getpriority(int which, int who)
721{
722 struct task_struct *g, *p;
723 struct user_struct *user;
724 long niceval, retval = -ESRCH;
41487c65 725 struct pid *pgrp;
1da177e4 726
3e88c553 727 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
728 return -EINVAL;
729
730 read_lock(&tasklist_lock);
731 switch (which) {
732 case PRIO_PROCESS:
41487c65
EB
733 if (who)
734 p = find_task_by_pid(who);
735 else
736 p = current;
1da177e4
LT
737 if (p) {
738 niceval = 20 - task_nice(p);
739 if (niceval > retval)
740 retval = niceval;
741 }
742 break;
743 case PRIO_PGRP:
41487c65
EB
744 if (who)
745 pgrp = find_pid(who);
746 else
747 pgrp = task_pgrp(current);
748 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
749 niceval = 20 - task_nice(p);
750 if (niceval > retval)
751 retval = niceval;
41487c65 752 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
753 break;
754 case PRIO_USER:
755 user = current->user;
756 if (!who)
757 who = current->uid;
758 else
759 if ((who != current->uid) && !(user = find_user(who)))
760 goto out_unlock; /* No processes for this user */
761
762 do_each_thread(g, p)
763 if (p->uid == who) {
764 niceval = 20 - task_nice(p);
765 if (niceval > retval)
766 retval = niceval;
767 }
768 while_each_thread(g, p);
769 if (who != current->uid)
770 free_uid(user); /* for find_user() */
771 break;
772 }
773out_unlock:
774 read_unlock(&tasklist_lock);
775
776 return retval;
777}
778
e4c94330
EB
779/**
780 * emergency_restart - reboot the system
781 *
782 * Without shutting down any hardware or taking any locks
783 * reboot the system. This is called when we know we are in
784 * trouble so this is our best effort to reboot. This is
785 * safe to call in interrupt context.
786 */
7c903473
EB
787void emergency_restart(void)
788{
789 machine_emergency_restart();
790}
791EXPORT_SYMBOL_GPL(emergency_restart);
792
83cc5ed3 793static void kernel_restart_prepare(char *cmd)
4a00ea1e 794{
e041c683 795 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 796 system_state = SYSTEM_RESTART;
4a00ea1e 797 device_shutdown();
e4c94330 798}
1e5d5331
RD
799
800/**
801 * kernel_restart - reboot the system
802 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 803 * or %NULL
1e5d5331
RD
804 *
805 * Shutdown everything and perform a clean reboot.
806 * This is not safe to call in interrupt context.
807 */
e4c94330
EB
808void kernel_restart(char *cmd)
809{
810 kernel_restart_prepare(cmd);
756184b7 811 if (!cmd)
4a00ea1e 812 printk(KERN_EMERG "Restarting system.\n");
756184b7 813 else
4a00ea1e 814 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
4a00ea1e
EB
815 machine_restart(cmd);
816}
817EXPORT_SYMBOL_GPL(kernel_restart);
818
e4c94330
EB
819/**
820 * kernel_kexec - reboot the system
821 *
822 * Move into place and start executing a preloaded standalone
823 * executable. If nothing was preloaded return an error.
824 */
83cc5ed3 825static void kernel_kexec(void)
4a00ea1e
EB
826{
827#ifdef CONFIG_KEXEC
828 struct kimage *image;
4bb8089c 829 image = xchg(&kexec_image, NULL);
756184b7 830 if (!image)
4a00ea1e 831 return;
e4c94330 832 kernel_restart_prepare(NULL);
4a00ea1e
EB
833 printk(KERN_EMERG "Starting new kernel\n");
834 machine_shutdown();
835 machine_kexec(image);
836#endif
837}
4a00ea1e 838
729b4d4c
AS
839void kernel_shutdown_prepare(enum system_states state)
840{
e041c683 841 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
842 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
843 system_state = state;
844 device_shutdown();
845}
e4c94330
EB
846/**
847 * kernel_halt - halt the system
848 *
849 * Shutdown everything and perform a clean system halt.
850 */
e4c94330
EB
851void kernel_halt(void)
852{
729b4d4c 853 kernel_shutdown_prepare(SYSTEM_HALT);
4a00ea1e
EB
854 printk(KERN_EMERG "System halted.\n");
855 machine_halt();
856}
729b4d4c 857
4a00ea1e
EB
858EXPORT_SYMBOL_GPL(kernel_halt);
859
e4c94330
EB
860/**
861 * kernel_power_off - power_off the system
862 *
863 * Shutdown everything and perform a clean system power_off.
864 */
e4c94330
EB
865void kernel_power_off(void)
866{
729b4d4c 867 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
4a00ea1e
EB
868 printk(KERN_EMERG "Power down.\n");
869 machine_power_off();
870}
871EXPORT_SYMBOL_GPL(kernel_power_off);
1da177e4
LT
872/*
873 * Reboot system call: for obvious reasons only root may call it,
874 * and even root needs to set up some magic numbers in the registers
875 * so that some mistake won't make this reboot the whole machine.
876 * You can also set the meaning of the ctrl-alt-del-key here.
877 *
878 * reboot doesn't sync: do that yourself before calling this.
879 */
880asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
881{
882 char buffer[256];
883
884 /* We only trust the superuser with rebooting the system. */
885 if (!capable(CAP_SYS_BOOT))
886 return -EPERM;
887
888 /* For safety, we require "magic" arguments. */
889 if (magic1 != LINUX_REBOOT_MAGIC1 ||
890 (magic2 != LINUX_REBOOT_MAGIC2 &&
891 magic2 != LINUX_REBOOT_MAGIC2A &&
892 magic2 != LINUX_REBOOT_MAGIC2B &&
893 magic2 != LINUX_REBOOT_MAGIC2C))
894 return -EINVAL;
895
5e38291d
EB
896 /* Instead of trying to make the power_off code look like
897 * halt when pm_power_off is not set do it the easy way.
898 */
899 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
900 cmd = LINUX_REBOOT_CMD_HALT;
901
1da177e4
LT
902 lock_kernel();
903 switch (cmd) {
904 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 905 kernel_restart(NULL);
1da177e4
LT
906 break;
907
908 case LINUX_REBOOT_CMD_CAD_ON:
909 C_A_D = 1;
910 break;
911
912 case LINUX_REBOOT_CMD_CAD_OFF:
913 C_A_D = 0;
914 break;
915
916 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 917 kernel_halt();
1da177e4
LT
918 unlock_kernel();
919 do_exit(0);
920 break;
921
922 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 923 kernel_power_off();
1da177e4
LT
924 unlock_kernel();
925 do_exit(0);
926 break;
927
928 case LINUX_REBOOT_CMD_RESTART2:
929 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
930 unlock_kernel();
931 return -EFAULT;
932 }
933 buffer[sizeof(buffer) - 1] = '\0';
934
4a00ea1e 935 kernel_restart(buffer);
1da177e4
LT
936 break;
937
dc009d92 938 case LINUX_REBOOT_CMD_KEXEC:
4a00ea1e
EB
939 kernel_kexec();
940 unlock_kernel();
941 return -EINVAL;
942
1da177e4
LT
943#ifdef CONFIG_SOFTWARE_SUSPEND
944 case LINUX_REBOOT_CMD_SW_SUSPEND:
945 {
a3d25c27 946 int ret = hibernate();
1da177e4
LT
947 unlock_kernel();
948 return ret;
949 }
950#endif
951
952 default:
953 unlock_kernel();
954 return -EINVAL;
955 }
956 unlock_kernel();
957 return 0;
958}
959
65f27f38 960static void deferred_cad(struct work_struct *dummy)
1da177e4 961{
abcd9e51 962 kernel_restart(NULL);
1da177e4
LT
963}
964
965/*
966 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
967 * As it's called within an interrupt, it may NOT sync: the only choice
968 * is whether to reboot at once, or just ignore the ctrl-alt-del.
969 */
970void ctrl_alt_del(void)
971{
65f27f38 972 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
973
974 if (C_A_D)
975 schedule_work(&cad_work);
976 else
9ec52099 977 kill_cad_pid(SIGINT, 1);
1da177e4
LT
978}
979
1da177e4
LT
980/*
981 * Unprivileged users may change the real gid to the effective gid
982 * or vice versa. (BSD-style)
983 *
984 * If you set the real gid at all, or set the effective gid to a value not
985 * equal to the real gid, then the saved gid is set to the new effective gid.
986 *
987 * This makes it possible for a setgid program to completely drop its
988 * privileges, which is often a useful assertion to make when you are doing
989 * a security audit over a program.
990 *
991 * The general idea is that a program which uses just setregid() will be
992 * 100% compatible with BSD. A program which uses just setgid() will be
993 * 100% compatible with POSIX with saved IDs.
994 *
995 * SMP: There are not races, the GIDs are checked only by filesystem
996 * operations (as far as semantic preservation is concerned).
997 */
998asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
999{
1000 int old_rgid = current->gid;
1001 int old_egid = current->egid;
1002 int new_rgid = old_rgid;
1003 int new_egid = old_egid;
1004 int retval;
1005
1006 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
1007 if (retval)
1008 return retval;
1009
1010 if (rgid != (gid_t) -1) {
1011 if ((old_rgid == rgid) ||
1012 (current->egid==rgid) ||
1013 capable(CAP_SETGID))
1014 new_rgid = rgid;
1015 else
1016 return -EPERM;
1017 }
1018 if (egid != (gid_t) -1) {
1019 if ((old_rgid == egid) ||
1020 (current->egid == egid) ||
1021 (current->sgid == egid) ||
1022 capable(CAP_SETGID))
1023 new_egid = egid;
756184b7 1024 else
1da177e4 1025 return -EPERM;
1da177e4 1026 }
756184b7 1027 if (new_egid != old_egid) {
d6e71144 1028 current->mm->dumpable = suid_dumpable;
d59dd462 1029 smp_wmb();
1da177e4
LT
1030 }
1031 if (rgid != (gid_t) -1 ||
1032 (egid != (gid_t) -1 && egid != old_rgid))
1033 current->sgid = new_egid;
1034 current->fsgid = new_egid;
1035 current->egid = new_egid;
1036 current->gid = new_rgid;
1037 key_fsgid_changed(current);
9f46080c 1038 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
1039 return 0;
1040}
1041
1042/*
1043 * setgid() is implemented like SysV w/ SAVED_IDS
1044 *
1045 * SMP: Same implicit races as above.
1046 */
1047asmlinkage long sys_setgid(gid_t gid)
1048{
1049 int old_egid = current->egid;
1050 int retval;
1051
1052 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
1053 if (retval)
1054 return retval;
1055
756184b7
CP
1056 if (capable(CAP_SETGID)) {
1057 if (old_egid != gid) {
d6e71144 1058 current->mm->dumpable = suid_dumpable;
d59dd462 1059 smp_wmb();
1da177e4
LT
1060 }
1061 current->gid = current->egid = current->sgid = current->fsgid = gid;
756184b7
CP
1062 } else if ((gid == current->gid) || (gid == current->sgid)) {
1063 if (old_egid != gid) {
d6e71144 1064 current->mm->dumpable = suid_dumpable;
d59dd462 1065 smp_wmb();
1da177e4
LT
1066 }
1067 current->egid = current->fsgid = gid;
1068 }
1069 else
1070 return -EPERM;
1071
1072 key_fsgid_changed(current);
9f46080c 1073 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
1074 return 0;
1075}
1076
1077static int set_user(uid_t new_ruid, int dumpclear)
1078{
1079 struct user_struct *new_user;
1080
1081 new_user = alloc_uid(new_ruid);
1082 if (!new_user)
1083 return -EAGAIN;
1084
1085 if (atomic_read(&new_user->processes) >=
1086 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1087 new_user != &root_user) {
1088 free_uid(new_user);
1089 return -EAGAIN;
1090 }
1091
1092 switch_uid(new_user);
1093
756184b7 1094 if (dumpclear) {
d6e71144 1095 current->mm->dumpable = suid_dumpable;
d59dd462 1096 smp_wmb();
1da177e4
LT
1097 }
1098 current->uid = new_ruid;
1099 return 0;
1100}
1101
1102/*
1103 * Unprivileged users may change the real uid to the effective uid
1104 * or vice versa. (BSD-style)
1105 *
1106 * If you set the real uid at all, or set the effective uid to a value not
1107 * equal to the real uid, then the saved uid is set to the new effective uid.
1108 *
1109 * This makes it possible for a setuid program to completely drop its
1110 * privileges, which is often a useful assertion to make when you are doing
1111 * a security audit over a program.
1112 *
1113 * The general idea is that a program which uses just setreuid() will be
1114 * 100% compatible with BSD. A program which uses just setuid() will be
1115 * 100% compatible with POSIX with saved IDs.
1116 */
1117asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1118{
1119 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1120 int retval;
1121
1122 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1123 if (retval)
1124 return retval;
1125
1126 new_ruid = old_ruid = current->uid;
1127 new_euid = old_euid = current->euid;
1128 old_suid = current->suid;
1129
1130 if (ruid != (uid_t) -1) {
1131 new_ruid = ruid;
1132 if ((old_ruid != ruid) &&
1133 (current->euid != ruid) &&
1134 !capable(CAP_SETUID))
1135 return -EPERM;
1136 }
1137
1138 if (euid != (uid_t) -1) {
1139 new_euid = euid;
1140 if ((old_ruid != euid) &&
1141 (current->euid != euid) &&
1142 (current->suid != euid) &&
1143 !capable(CAP_SETUID))
1144 return -EPERM;
1145 }
1146
1147 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1148 return -EAGAIN;
1149
756184b7 1150 if (new_euid != old_euid) {
d6e71144 1151 current->mm->dumpable = suid_dumpable;
d59dd462 1152 smp_wmb();
1da177e4
LT
1153 }
1154 current->fsuid = current->euid = new_euid;
1155 if (ruid != (uid_t) -1 ||
1156 (euid != (uid_t) -1 && euid != old_ruid))
1157 current->suid = current->euid;
1158 current->fsuid = current->euid;
1159
1160 key_fsuid_changed(current);
9f46080c 1161 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
1162
1163 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1164}
1165
1166
1167
1168/*
1169 * setuid() is implemented like SysV with SAVED_IDS
1170 *
1171 * Note that SAVED_ID's is deficient in that a setuid root program
1172 * like sendmail, for example, cannot set its uid to be a normal
1173 * user and then switch back, because if you're root, setuid() sets
1174 * the saved uid too. If you don't like this, blame the bright people
1175 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1176 * will allow a root program to temporarily drop privileges and be able to
1177 * regain them by swapping the real and effective uid.
1178 */
1179asmlinkage long sys_setuid(uid_t uid)
1180{
1181 int old_euid = current->euid;
a09c17a6 1182 int old_ruid, old_suid, new_suid;
1da177e4
LT
1183 int retval;
1184
1185 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1186 if (retval)
1187 return retval;
1188
a09c17a6 1189 old_ruid = current->uid;
1da177e4
LT
1190 old_suid = current->suid;
1191 new_suid = old_suid;
1192
1193 if (capable(CAP_SETUID)) {
1194 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1195 return -EAGAIN;
1196 new_suid = uid;
1197 } else if ((uid != current->uid) && (uid != new_suid))
1198 return -EPERM;
1199
756184b7 1200 if (old_euid != uid) {
d6e71144 1201 current->mm->dumpable = suid_dumpable;
d59dd462 1202 smp_wmb();
1da177e4
LT
1203 }
1204 current->fsuid = current->euid = uid;
1205 current->suid = new_suid;
1206
1207 key_fsuid_changed(current);
9f46080c 1208 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
1209
1210 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1211}
1212
1213
1214/*
1215 * This function implements a generic ability to update ruid, euid,
1216 * and suid. This allows you to implement the 4.4 compatible seteuid().
1217 */
1218asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1219{
1220 int old_ruid = current->uid;
1221 int old_euid = current->euid;
1222 int old_suid = current->suid;
1223 int retval;
1224
1225 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1226 if (retval)
1227 return retval;
1228
1229 if (!capable(CAP_SETUID)) {
1230 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1231 (ruid != current->euid) && (ruid != current->suid))
1232 return -EPERM;
1233 if ((euid != (uid_t) -1) && (euid != current->uid) &&
1234 (euid != current->euid) && (euid != current->suid))
1235 return -EPERM;
1236 if ((suid != (uid_t) -1) && (suid != current->uid) &&
1237 (suid != current->euid) && (suid != current->suid))
1238 return -EPERM;
1239 }
1240 if (ruid != (uid_t) -1) {
1241 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1242 return -EAGAIN;
1243 }
1244 if (euid != (uid_t) -1) {
756184b7 1245 if (euid != current->euid) {
d6e71144 1246 current->mm->dumpable = suid_dumpable;
d59dd462 1247 smp_wmb();
1da177e4
LT
1248 }
1249 current->euid = euid;
1250 }
1251 current->fsuid = current->euid;
1252 if (suid != (uid_t) -1)
1253 current->suid = suid;
1254
1255 key_fsuid_changed(current);
9f46080c 1256 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
1257
1258 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1259}
1260
1261asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1262{
1263 int retval;
1264
1265 if (!(retval = put_user(current->uid, ruid)) &&
1266 !(retval = put_user(current->euid, euid)))
1267 retval = put_user(current->suid, suid);
1268
1269 return retval;
1270}
1271
1272/*
1273 * Same as above, but for rgid, egid, sgid.
1274 */
1275asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1276{
1277 int retval;
1278
1279 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1280 if (retval)
1281 return retval;
1282
1283 if (!capable(CAP_SETGID)) {
1284 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1285 (rgid != current->egid) && (rgid != current->sgid))
1286 return -EPERM;
1287 if ((egid != (gid_t) -1) && (egid != current->gid) &&
1288 (egid != current->egid) && (egid != current->sgid))
1289 return -EPERM;
1290 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1291 (sgid != current->egid) && (sgid != current->sgid))
1292 return -EPERM;
1293 }
1294 if (egid != (gid_t) -1) {
756184b7 1295 if (egid != current->egid) {
d6e71144 1296 current->mm->dumpable = suid_dumpable;
d59dd462 1297 smp_wmb();
1da177e4
LT
1298 }
1299 current->egid = egid;
1300 }
1301 current->fsgid = current->egid;
1302 if (rgid != (gid_t) -1)
1303 current->gid = rgid;
1304 if (sgid != (gid_t) -1)
1305 current->sgid = sgid;
1306
1307 key_fsgid_changed(current);
9f46080c 1308 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
1309 return 0;
1310}
1311
1312asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1313{
1314 int retval;
1315
1316 if (!(retval = put_user(current->gid, rgid)) &&
1317 !(retval = put_user(current->egid, egid)))
1318 retval = put_user(current->sgid, sgid);
1319
1320 return retval;
1321}
1322
1323
1324/*
1325 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1326 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1327 * whatever uid it wants to). It normally shadows "euid", except when
1328 * explicitly set by setfsuid() or for access..
1329 */
1330asmlinkage long sys_setfsuid(uid_t uid)
1331{
1332 int old_fsuid;
1333
1334 old_fsuid = current->fsuid;
1335 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1336 return old_fsuid;
1337
1338 if (uid == current->uid || uid == current->euid ||
1339 uid == current->suid || uid == current->fsuid ||
756184b7
CP
1340 capable(CAP_SETUID)) {
1341 if (uid != old_fsuid) {
d6e71144 1342 current->mm->dumpable = suid_dumpable;
d59dd462 1343 smp_wmb();
1da177e4
LT
1344 }
1345 current->fsuid = uid;
1346 }
1347
1348 key_fsuid_changed(current);
9f46080c 1349 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
1350
1351 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1352
1353 return old_fsuid;
1354}
1355
1356/*
f42df9e6 1357 * Samma på svenska..
1da177e4
LT
1358 */
1359asmlinkage long sys_setfsgid(gid_t gid)
1360{
1361 int old_fsgid;
1362
1363 old_fsgid = current->fsgid;
1364 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1365 return old_fsgid;
1366
1367 if (gid == current->gid || gid == current->egid ||
1368 gid == current->sgid || gid == current->fsgid ||
756184b7
CP
1369 capable(CAP_SETGID)) {
1370 if (gid != old_fsgid) {
d6e71144 1371 current->mm->dumpable = suid_dumpable;
d59dd462 1372 smp_wmb();
1da177e4
LT
1373 }
1374 current->fsgid = gid;
1375 key_fsgid_changed(current);
9f46080c 1376 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
1377 }
1378 return old_fsgid;
1379}
1380
1381asmlinkage long sys_times(struct tms __user * tbuf)
1382{
1383 /*
1384 * In the SMP world we might just be unlucky and have one of
1385 * the times increment as we use it. Since the value is an
1386 * atomically safe type this is just fine. Conceptually its
1387 * as if the syscall took an instant longer to occur.
1388 */
1389 if (tbuf) {
1390 struct tms tmp;
35f5cad8
ON
1391 struct task_struct *tsk = current;
1392 struct task_struct *t;
1da177e4
LT
1393 cputime_t utime, stime, cutime, cstime;
1394
7d7185c8 1395 spin_lock_irq(&tsk->sighand->siglock);
35f5cad8
ON
1396 utime = tsk->signal->utime;
1397 stime = tsk->signal->stime;
1398 t = tsk;
1399 do {
1400 utime = cputime_add(utime, t->utime);
1401 stime = cputime_add(stime, t->stime);
1402 t = next_thread(t);
1403 } while (t != tsk);
1404
35f5cad8
ON
1405 cutime = tsk->signal->cutime;
1406 cstime = tsk->signal->cstime;
1407 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
1408
1409 tmp.tms_utime = cputime_to_clock_t(utime);
1410 tmp.tms_stime = cputime_to_clock_t(stime);
1411 tmp.tms_cutime = cputime_to_clock_t(cutime);
1412 tmp.tms_cstime = cputime_to_clock_t(cstime);
1413 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1414 return -EFAULT;
1415 }
1416 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1417}
1418
1419/*
1420 * This needs some heavy checking ...
1421 * I just haven't the stomach for it. I also don't fully
1422 * understand sessions/pgrp etc. Let somebody who does explain it.
1423 *
1424 * OK, I think I have the protection semantics right.... this is really
1425 * only important on a multi-user system anyway, to make sure one user
1426 * can't send a signal to a process owned by another. -TYT, 12/12/91
1427 *
1428 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1429 * LBT 04.03.94
1430 */
1431
1432asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1433{
1434 struct task_struct *p;
ee0acf90 1435 struct task_struct *group_leader = current->group_leader;
1da177e4
LT
1436 int err = -EINVAL;
1437
1438 if (!pid)
ee0acf90 1439 pid = group_leader->pid;
1da177e4
LT
1440 if (!pgid)
1441 pgid = pid;
1442 if (pgid < 0)
1443 return -EINVAL;
1444
1445 /* From this point forward we keep holding onto the tasklist lock
1446 * so that our parent does not change from under us. -DaveM
1447 */
1448 write_lock_irq(&tasklist_lock);
1449
1450 err = -ESRCH;
1451 p = find_task_by_pid(pid);
1452 if (!p)
1453 goto out;
1454
1455 err = -EINVAL;
1456 if (!thread_group_leader(p))
1457 goto out;
1458
f7dd795e 1459 if (p->real_parent == group_leader) {
1da177e4 1460 err = -EPERM;
41487c65 1461 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1462 goto out;
1463 err = -EACCES;
1464 if (p->did_exec)
1465 goto out;
1466 } else {
1467 err = -ESRCH;
ee0acf90 1468 if (p != group_leader)
1da177e4
LT
1469 goto out;
1470 }
1471
1472 err = -EPERM;
1473 if (p->signal->leader)
1474 goto out;
1475
1476 if (pgid != pid) {
f020bc46
ON
1477 struct task_struct *g =
1478 find_task_by_pid_type(PIDTYPE_PGID, pgid);
1da177e4 1479
41487c65 1480 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1481 goto out;
1da177e4
LT
1482 }
1483
1da177e4
LT
1484 err = security_task_setpgid(p, pgid);
1485 if (err)
1486 goto out;
1487
1488 if (process_group(p) != pgid) {
1489 detach_pid(p, PIDTYPE_PGID);
1490 p->signal->pgrp = pgid;
e713d0da 1491 attach_pid(p, PIDTYPE_PGID, find_pid(pgid));
1da177e4
LT
1492 }
1493
1494 err = 0;
1495out:
1496 /* All paths lead to here, thus we are safe. -DaveM */
1497 write_unlock_irq(&tasklist_lock);
1498 return err;
1499}
1500
1501asmlinkage long sys_getpgid(pid_t pid)
1502{
756184b7 1503 if (!pid)
1da177e4 1504 return process_group(current);
756184b7 1505 else {
1da177e4
LT
1506 int retval;
1507 struct task_struct *p;
1508
1509 read_lock(&tasklist_lock);
1510 p = find_task_by_pid(pid);
1511
1512 retval = -ESRCH;
1513 if (p) {
1514 retval = security_task_getpgid(p);
1515 if (!retval)
1516 retval = process_group(p);
1517 }
1518 read_unlock(&tasklist_lock);
1519 return retval;
1520 }
1521}
1522
1523#ifdef __ARCH_WANT_SYS_GETPGRP
1524
1525asmlinkage long sys_getpgrp(void)
1526{
1527 /* SMP - assuming writes are word atomic this is fine */
1528 return process_group(current);
1529}
1530
1531#endif
1532
1533asmlinkage long sys_getsid(pid_t pid)
1534{
756184b7 1535 if (!pid)
937949d9 1536 return process_session(current);
756184b7 1537 else {
1da177e4
LT
1538 int retval;
1539 struct task_struct *p;
1540
1541 read_lock(&tasklist_lock);
1542 p = find_task_by_pid(pid);
1543
1544 retval = -ESRCH;
756184b7 1545 if (p) {
1da177e4
LT
1546 retval = security_task_getsid(p);
1547 if (!retval)
937949d9 1548 retval = process_session(p);
1da177e4
LT
1549 }
1550 read_unlock(&tasklist_lock);
1551 return retval;
1552 }
1553}
1554
1555asmlinkage long sys_setsid(void)
1556{
e19f247a 1557 struct task_struct *group_leader = current->group_leader;
390e2ff0 1558 pid_t session;
1da177e4
LT
1559 int err = -EPERM;
1560
1da177e4
LT
1561 write_lock_irq(&tasklist_lock);
1562
390e2ff0
EB
1563 /* Fail if I am already a session leader */
1564 if (group_leader->signal->leader)
1565 goto out;
1566
1567 session = group_leader->pid;
1568 /* Fail if a process group id already exists that equals the
1569 * proposed session id.
1570 *
1571 * Don't check if session id == 1 because kernel threads use this
1572 * session id and so the check will always fail and make it so
1573 * init cannot successfully call setsid.
1574 */
1575 if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1da177e4
LT
1576 goto out;
1577
e19f247a 1578 group_leader->signal->leader = 1;
390e2ff0 1579 __set_special_pids(session, session);
24ec839c
PZ
1580
1581 spin_lock(&group_leader->sighand->siglock);
e19f247a 1582 group_leader->signal->tty = NULL;
24ec839c
PZ
1583 spin_unlock(&group_leader->sighand->siglock);
1584
e19f247a 1585 err = process_group(group_leader);
1da177e4
LT
1586out:
1587 write_unlock_irq(&tasklist_lock);
1da177e4
LT
1588 return err;
1589}
1590
1591/*
1592 * Supplementary group IDs
1593 */
1594
1595/* init to 2 - one for init_task, one to ensure it is never freed */
1596struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1597
1598struct group_info *groups_alloc(int gidsetsize)
1599{
1600 struct group_info *group_info;
1601 int nblocks;
1602 int i;
1603
1604 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1605 /* Make sure we always allocate at least one indirect block pointer */
1606 nblocks = nblocks ? : 1;
1607 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1608 if (!group_info)
1609 return NULL;
1610 group_info->ngroups = gidsetsize;
1611 group_info->nblocks = nblocks;
1612 atomic_set(&group_info->usage, 1);
1613
756184b7 1614 if (gidsetsize <= NGROUPS_SMALL)
1da177e4 1615 group_info->blocks[0] = group_info->small_block;
756184b7 1616 else {
1da177e4
LT
1617 for (i = 0; i < nblocks; i++) {
1618 gid_t *b;
1619 b = (void *)__get_free_page(GFP_USER);
1620 if (!b)
1621 goto out_undo_partial_alloc;
1622 group_info->blocks[i] = b;
1623 }
1624 }
1625 return group_info;
1626
1627out_undo_partial_alloc:
1628 while (--i >= 0) {
1629 free_page((unsigned long)group_info->blocks[i]);
1630 }
1631 kfree(group_info);
1632 return NULL;
1633}
1634
1635EXPORT_SYMBOL(groups_alloc);
1636
1637void groups_free(struct group_info *group_info)
1638{
1639 if (group_info->blocks[0] != group_info->small_block) {
1640 int i;
1641 for (i = 0; i < group_info->nblocks; i++)
1642 free_page((unsigned long)group_info->blocks[i]);
1643 }
1644 kfree(group_info);
1645}
1646
1647EXPORT_SYMBOL(groups_free);
1648
1649/* export the group_info to a user-space array */
1650static int groups_to_user(gid_t __user *grouplist,
1651 struct group_info *group_info)
1652{
1653 int i;
1654 int count = group_info->ngroups;
1655
1656 for (i = 0; i < group_info->nblocks; i++) {
1657 int cp_count = min(NGROUPS_PER_BLOCK, count);
1658 int off = i * NGROUPS_PER_BLOCK;
1659 int len = cp_count * sizeof(*grouplist);
1660
1661 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1662 return -EFAULT;
1663
1664 count -= cp_count;
1665 }
1666 return 0;
1667}
1668
1669/* fill a group_info from a user-space array - it must be allocated already */
1670static int groups_from_user(struct group_info *group_info,
1671 gid_t __user *grouplist)
756184b7 1672{
1da177e4
LT
1673 int i;
1674 int count = group_info->ngroups;
1675
1676 for (i = 0; i < group_info->nblocks; i++) {
1677 int cp_count = min(NGROUPS_PER_BLOCK, count);
1678 int off = i * NGROUPS_PER_BLOCK;
1679 int len = cp_count * sizeof(*grouplist);
1680
1681 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1682 return -EFAULT;
1683
1684 count -= cp_count;
1685 }
1686 return 0;
1687}
1688
ebe8b541 1689/* a simple Shell sort */
1da177e4
LT
1690static void groups_sort(struct group_info *group_info)
1691{
1692 int base, max, stride;
1693 int gidsetsize = group_info->ngroups;
1694
1695 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1696 ; /* nothing */
1697 stride /= 3;
1698
1699 while (stride) {
1700 max = gidsetsize - stride;
1701 for (base = 0; base < max; base++) {
1702 int left = base;
1703 int right = left + stride;
1704 gid_t tmp = GROUP_AT(group_info, right);
1705
1706 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1707 GROUP_AT(group_info, right) =
1708 GROUP_AT(group_info, left);
1709 right = left;
1710 left -= stride;
1711 }
1712 GROUP_AT(group_info, right) = tmp;
1713 }
1714 stride /= 3;
1715 }
1716}
1717
1718/* a simple bsearch */
3e30148c 1719int groups_search(struct group_info *group_info, gid_t grp)
1da177e4 1720{
d74beb9f 1721 unsigned int left, right;
1da177e4
LT
1722
1723 if (!group_info)
1724 return 0;
1725
1726 left = 0;
1727 right = group_info->ngroups;
1728 while (left < right) {
d74beb9f 1729 unsigned int mid = (left+right)/2;
1da177e4
LT
1730 int cmp = grp - GROUP_AT(group_info, mid);
1731 if (cmp > 0)
1732 left = mid + 1;
1733 else if (cmp < 0)
1734 right = mid;
1735 else
1736 return 1;
1737 }
1738 return 0;
1739}
1740
1741/* validate and set current->group_info */
1742int set_current_groups(struct group_info *group_info)
1743{
1744 int retval;
1745 struct group_info *old_info;
1746
1747 retval = security_task_setgroups(group_info);
1748 if (retval)
1749 return retval;
1750
1751 groups_sort(group_info);
1752 get_group_info(group_info);
1753
1754 task_lock(current);
1755 old_info = current->group_info;
1756 current->group_info = group_info;
1757 task_unlock(current);
1758
1759 put_group_info(old_info);
1760
1761 return 0;
1762}
1763
1764EXPORT_SYMBOL(set_current_groups);
1765
1766asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1767{
1768 int i = 0;
1769
1770 /*
1771 * SMP: Nobody else can change our grouplist. Thus we are
1772 * safe.
1773 */
1774
1775 if (gidsetsize < 0)
1776 return -EINVAL;
1777
1778 /* no need to grab task_lock here; it cannot change */
1da177e4
LT
1779 i = current->group_info->ngroups;
1780 if (gidsetsize) {
1781 if (i > gidsetsize) {
1782 i = -EINVAL;
1783 goto out;
1784 }
1785 if (groups_to_user(grouplist, current->group_info)) {
1786 i = -EFAULT;
1787 goto out;
1788 }
1789 }
1790out:
1da177e4
LT
1791 return i;
1792}
1793
1794/*
1795 * SMP: Our groups are copy-on-write. We can set them safely
1796 * without another task interfering.
1797 */
1798
1799asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1800{
1801 struct group_info *group_info;
1802 int retval;
1803
1804 if (!capable(CAP_SETGID))
1805 return -EPERM;
1806 if ((unsigned)gidsetsize > NGROUPS_MAX)
1807 return -EINVAL;
1808
1809 group_info = groups_alloc(gidsetsize);
1810 if (!group_info)
1811 return -ENOMEM;
1812 retval = groups_from_user(group_info, grouplist);
1813 if (retval) {
1814 put_group_info(group_info);
1815 return retval;
1816 }
1817
1818 retval = set_current_groups(group_info);
1819 put_group_info(group_info);
1820
1821 return retval;
1822}
1823
1824/*
1825 * Check whether we're fsgid/egid or in the supplemental group..
1826 */
1827int in_group_p(gid_t grp)
1828{
1829 int retval = 1;
756184b7 1830 if (grp != current->fsgid)
1da177e4 1831 retval = groups_search(current->group_info, grp);
1da177e4
LT
1832 return retval;
1833}
1834
1835EXPORT_SYMBOL(in_group_p);
1836
1837int in_egroup_p(gid_t grp)
1838{
1839 int retval = 1;
756184b7 1840 if (grp != current->egid)
1da177e4 1841 retval = groups_search(current->group_info, grp);
1da177e4
LT
1842 return retval;
1843}
1844
1845EXPORT_SYMBOL(in_egroup_p);
1846
1847DECLARE_RWSEM(uts_sem);
1848
393b0725
DM
1849EXPORT_SYMBOL(uts_sem);
1850
1da177e4
LT
1851asmlinkage long sys_newuname(struct new_utsname __user * name)
1852{
1853 int errno = 0;
1854
1855 down_read(&uts_sem);
e9ff3990 1856 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1857 errno = -EFAULT;
1858 up_read(&uts_sem);
1859 return errno;
1860}
1861
1862asmlinkage long sys_sethostname(char __user *name, int len)
1863{
1864 int errno;
1865 char tmp[__NEW_UTS_LEN];
1866
1867 if (!capable(CAP_SYS_ADMIN))
1868 return -EPERM;
1869 if (len < 0 || len > __NEW_UTS_LEN)
1870 return -EINVAL;
1871 down_write(&uts_sem);
1872 errno = -EFAULT;
1873 if (!copy_from_user(tmp, name, len)) {
e9ff3990
SH
1874 memcpy(utsname()->nodename, tmp, len);
1875 utsname()->nodename[len] = 0;
1da177e4
LT
1876 errno = 0;
1877 }
1878 up_write(&uts_sem);
1879 return errno;
1880}
1881
1882#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1883
1884asmlinkage long sys_gethostname(char __user *name, int len)
1885{
1886 int i, errno;
1887
1888 if (len < 0)
1889 return -EINVAL;
1890 down_read(&uts_sem);
e9ff3990 1891 i = 1 + strlen(utsname()->nodename);
1da177e4
LT
1892 if (i > len)
1893 i = len;
1894 errno = 0;
e9ff3990 1895 if (copy_to_user(name, utsname()->nodename, i))
1da177e4
LT
1896 errno = -EFAULT;
1897 up_read(&uts_sem);
1898 return errno;
1899}
1900
1901#endif
1902
1903/*
1904 * Only setdomainname; getdomainname can be implemented by calling
1905 * uname()
1906 */
1907asmlinkage long sys_setdomainname(char __user *name, int len)
1908{
1909 int errno;
1910 char tmp[__NEW_UTS_LEN];
1911
1912 if (!capable(CAP_SYS_ADMIN))
1913 return -EPERM;
1914 if (len < 0 || len > __NEW_UTS_LEN)
1915 return -EINVAL;
1916
1917 down_write(&uts_sem);
1918 errno = -EFAULT;
1919 if (!copy_from_user(tmp, name, len)) {
e9ff3990
SH
1920 memcpy(utsname()->domainname, tmp, len);
1921 utsname()->domainname[len] = 0;
1da177e4
LT
1922 errno = 0;
1923 }
1924 up_write(&uts_sem);
1925 return errno;
1926}
1927
1928asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1929{
1930 if (resource >= RLIM_NLIMITS)
1931 return -EINVAL;
1932 else {
1933 struct rlimit value;
1934 task_lock(current->group_leader);
1935 value = current->signal->rlim[resource];
1936 task_unlock(current->group_leader);
1937 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1938 }
1939}
1940
1941#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1942
1943/*
1944 * Back compatibility for getrlimit. Needed for some apps.
1945 */
1946
1947asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1948{
1949 struct rlimit x;
1950 if (resource >= RLIM_NLIMITS)
1951 return -EINVAL;
1952
1953 task_lock(current->group_leader);
1954 x = current->signal->rlim[resource];
1955 task_unlock(current->group_leader);
756184b7 1956 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1957 x.rlim_cur = 0x7FFFFFFF;
756184b7 1958 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1959 x.rlim_max = 0x7FFFFFFF;
1960 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1961}
1962
1963#endif
1964
1965asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1966{
1967 struct rlimit new_rlim, *old_rlim;
ec9e16ba 1968 unsigned long it_prof_secs;
1da177e4
LT
1969 int retval;
1970
1971 if (resource >= RLIM_NLIMITS)
1972 return -EINVAL;
ec9e16ba 1973 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1da177e4 1974 return -EFAULT;
ec9e16ba
AM
1975 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1976 return -EINVAL;
1da177e4
LT
1977 old_rlim = current->signal->rlim + resource;
1978 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1979 !capable(CAP_SYS_RESOURCE))
1980 return -EPERM;
1981 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
ec9e16ba 1982 return -EPERM;
1da177e4
LT
1983
1984 retval = security_task_setrlimit(resource, &new_rlim);
1985 if (retval)
1986 return retval;
1987
9926e4c7
TA
1988 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1989 /*
1990 * The caller is asking for an immediate RLIMIT_CPU
1991 * expiry. But we use the zero value to mean "it was
1992 * never set". So let's cheat and make it one second
1993 * instead
1994 */
1995 new_rlim.rlim_cur = 1;
1996 }
1997
1da177e4
LT
1998 task_lock(current->group_leader);
1999 *old_rlim = new_rlim;
2000 task_unlock(current->group_leader);
2001
ec9e16ba
AM
2002 if (resource != RLIMIT_CPU)
2003 goto out;
d3561f78
AM
2004
2005 /*
2006 * RLIMIT_CPU handling. Note that the kernel fails to return an error
2007 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
2008 * very long-standing error, and fixing it now risks breakage of
2009 * applications, so we live with it
2010 */
ec9e16ba
AM
2011 if (new_rlim.rlim_cur == RLIM_INFINITY)
2012 goto out;
2013
2014 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
2015 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
e0661111
AM
2016 unsigned long rlim_cur = new_rlim.rlim_cur;
2017 cputime_t cputime;
ec9e16ba 2018
e0661111 2019 cputime = secs_to_cputime(rlim_cur);
1da177e4
LT
2020 read_lock(&tasklist_lock);
2021 spin_lock_irq(&current->sighand->siglock);
ec9e16ba 2022 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1da177e4
LT
2023 spin_unlock_irq(&current->sighand->siglock);
2024 read_unlock(&tasklist_lock);
2025 }
ec9e16ba 2026out:
1da177e4
LT
2027 return 0;
2028}
2029
2030/*
2031 * It would make sense to put struct rusage in the task_struct,
2032 * except that would make the task_struct be *really big*. After
2033 * task_struct gets moved into malloc'ed memory, it would
2034 * make sense to do this. It will make moving the rest of the information
2035 * a lot simpler! (Which we're not doing right now because we're not
2036 * measuring them yet).
2037 *
1da177e4
LT
2038 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2039 * races with threads incrementing their own counters. But since word
2040 * reads are atomic, we either get new values or old values and we don't
2041 * care which for the sums. We always take the siglock to protect reading
2042 * the c* fields from p->signal from races with exit.c updating those
2043 * fields when reaping, so a sample either gets all the additions of a
2044 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 2045 *
de047c1b
RT
2046 * Locking:
2047 * We need to take the siglock for CHILDEREN, SELF and BOTH
2048 * for the cases current multithreaded, non-current single threaded
2049 * non-current multithreaded. Thread traversal is now safe with
2050 * the siglock held.
2051 * Strictly speaking, we donot need to take the siglock if we are current and
2052 * single threaded, as no one else can take our signal_struct away, no one
2053 * else can reap the children to update signal->c* counters, and no one else
2054 * can race with the signal-> fields. If we do not take any lock, the
2055 * signal-> fields could be read out of order while another thread was just
2056 * exiting. So we should place a read memory barrier when we avoid the lock.
2057 * On the writer side, write memory barrier is implied in __exit_signal
2058 * as __exit_signal releases the siglock spinlock after updating the signal->
2059 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 2060 *
1da177e4
LT
2061 */
2062
2063static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
2064{
2065 struct task_struct *t;
2066 unsigned long flags;
2067 cputime_t utime, stime;
2068
2069 memset((char *) r, 0, sizeof *r);
2dd0ebcd 2070 utime = stime = cputime_zero;
1da177e4 2071
de047c1b
RT
2072 rcu_read_lock();
2073 if (!lock_task_sighand(p, &flags)) {
2074 rcu_read_unlock();
2075 return;
2076 }
0f59cc4a 2077
1da177e4 2078 switch (who) {
0f59cc4a 2079 case RUSAGE_BOTH:
1da177e4 2080 case RUSAGE_CHILDREN:
1da177e4
LT
2081 utime = p->signal->cutime;
2082 stime = p->signal->cstime;
2083 r->ru_nvcsw = p->signal->cnvcsw;
2084 r->ru_nivcsw = p->signal->cnivcsw;
2085 r->ru_minflt = p->signal->cmin_flt;
2086 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
2087 r->ru_inblock = p->signal->cinblock;
2088 r->ru_oublock = p->signal->coublock;
0f59cc4a
ON
2089
2090 if (who == RUSAGE_CHILDREN)
2091 break;
2092
1da177e4 2093 case RUSAGE_SELF:
1da177e4
LT
2094 utime = cputime_add(utime, p->signal->utime);
2095 stime = cputime_add(stime, p->signal->stime);
2096 r->ru_nvcsw += p->signal->nvcsw;
2097 r->ru_nivcsw += p->signal->nivcsw;
2098 r->ru_minflt += p->signal->min_flt;
2099 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
2100 r->ru_inblock += p->signal->inblock;
2101 r->ru_oublock += p->signal->oublock;
1da177e4
LT
2102 t = p;
2103 do {
2104 utime = cputime_add(utime, t->utime);
2105 stime = cputime_add(stime, t->stime);
2106 r->ru_nvcsw += t->nvcsw;
2107 r->ru_nivcsw += t->nivcsw;
2108 r->ru_minflt += t->min_flt;
2109 r->ru_majflt += t->maj_flt;
6eaeeaba
ED
2110 r->ru_inblock += task_io_get_inblock(t);
2111 r->ru_oublock += task_io_get_oublock(t);
1da177e4
LT
2112 t = next_thread(t);
2113 } while (t != p);
1da177e4 2114 break;
0f59cc4a 2115
1da177e4
LT
2116 default:
2117 BUG();
2118 }
0f59cc4a 2119
de047c1b
RT
2120 unlock_task_sighand(p, &flags);
2121 rcu_read_unlock();
2122
0f59cc4a
ON
2123 cputime_to_timeval(utime, &r->ru_utime);
2124 cputime_to_timeval(stime, &r->ru_stime);
1da177e4
LT
2125}
2126
2127int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2128{
2129 struct rusage r;
1da177e4 2130 k_getrusage(p, who, &r);
1da177e4
LT
2131 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2132}
2133
2134asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2135{
2136 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2137 return -EINVAL;
2138 return getrusage(current, who, ru);
2139}
2140
2141asmlinkage long sys_umask(int mask)
2142{
2143 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2144 return mask;
2145}
2146
2147asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2148 unsigned long arg4, unsigned long arg5)
2149{
2150 long error;
1da177e4
LT
2151
2152 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2153 if (error)
2154 return error;
2155
2156 switch (option) {
2157 case PR_SET_PDEATHSIG:
0730ded5 2158 if (!valid_signal(arg2)) {
1da177e4
LT
2159 error = -EINVAL;
2160 break;
2161 }
0730ded5 2162 current->pdeath_signal = arg2;
1da177e4
LT
2163 break;
2164 case PR_GET_PDEATHSIG:
2165 error = put_user(current->pdeath_signal, (int __user *)arg2);
2166 break;
2167 case PR_GET_DUMPABLE:
2030c0fd 2168 error = current->mm->dumpable;
1da177e4
LT
2169 break;
2170 case PR_SET_DUMPABLE:
abf75a50 2171 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
2172 error = -EINVAL;
2173 break;
2174 }
2175 current->mm->dumpable = arg2;
2176 break;
2177
2178 case PR_SET_UNALIGN:
2179 error = SET_UNALIGN_CTL(current, arg2);
2180 break;
2181 case PR_GET_UNALIGN:
2182 error = GET_UNALIGN_CTL(current, arg2);
2183 break;
2184 case PR_SET_FPEMU:
2185 error = SET_FPEMU_CTL(current, arg2);
2186 break;
2187 case PR_GET_FPEMU:
2188 error = GET_FPEMU_CTL(current, arg2);
2189 break;
2190 case PR_SET_FPEXC:
2191 error = SET_FPEXC_CTL(current, arg2);
2192 break;
2193 case PR_GET_FPEXC:
2194 error = GET_FPEXC_CTL(current, arg2);
2195 break;
2196 case PR_GET_TIMING:
2197 error = PR_TIMING_STATISTICAL;
2198 break;
2199 case PR_SET_TIMING:
2200 if (arg2 == PR_TIMING_STATISTICAL)
2201 error = 0;
2202 else
2203 error = -EINVAL;
2204 break;
2205
2206 case PR_GET_KEEPCAPS:
2207 if (current->keep_capabilities)
2208 error = 1;
2209 break;
2210 case PR_SET_KEEPCAPS:
2211 if (arg2 != 0 && arg2 != 1) {
2212 error = -EINVAL;
2213 break;
2214 }
2215 current->keep_capabilities = arg2;
2216 break;
2217 case PR_SET_NAME: {
2218 struct task_struct *me = current;
2219 unsigned char ncomm[sizeof(me->comm)];
2220
2221 ncomm[sizeof(me->comm)-1] = 0;
2222 if (strncpy_from_user(ncomm, (char __user *)arg2,
2223 sizeof(me->comm)-1) < 0)
2224 return -EFAULT;
2225 set_task_comm(me, ncomm);
2226 return 0;
2227 }
2228 case PR_GET_NAME: {
2229 struct task_struct *me = current;
2230 unsigned char tcomm[sizeof(me->comm)];
2231
2232 get_task_comm(tcomm, me);
2233 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2234 return -EFAULT;
2235 return 0;
2236 }
651d765d
AB
2237 case PR_GET_ENDIAN:
2238 error = GET_ENDIAN(current, arg2);
2239 break;
2240 case PR_SET_ENDIAN:
2241 error = SET_ENDIAN(current, arg2);
2242 break;
2243
1da177e4
LT
2244 default:
2245 error = -EINVAL;
2246 break;
2247 }
2248 return error;
2249}
3cfc348b
AK
2250
2251asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2252 struct getcpu_cache __user *cache)
2253{
2254 int err = 0;
2255 int cpu = raw_smp_processor_id();
2256 if (cpup)
2257 err |= put_user(cpu, cpup);
2258 if (nodep)
2259 err |= put_user(cpu_to_node(cpu), nodep);
2260 if (cache) {
2261 /*
2262 * The cache is not needed for this implementation,
2263 * but make sure user programs pass something
2264 * valid. vsyscall implementations can instead make
2265 * good use of the cache. Only use t0 and t1 because
2266 * these are available in both 32bit and 64bit ABI (no
2267 * need for a compat_getcpu). 32bit has enough
2268 * padding
2269 */
2270 unsigned long t0, t1;
34596dc9
AK
2271 get_user(t0, &cache->blob[0]);
2272 get_user(t1, &cache->blob[1]);
3cfc348b
AK
2273 t0++;
2274 t1++;
34596dc9
AK
2275 put_user(t0, &cache->blob[0]);
2276 put_user(t1, &cache->blob[1]);
3cfc348b
AK
2277 }
2278 return err ? -EFAULT : 0;
2279}
This page took 0.448531 seconds and 5 git commands to generate.