sys_prctl(): arg2 is unsigned long which is never < 0
[deliverable/linux.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
b32dfe37
CG
39#include <linux/file.h>
40#include <linux/mount.h>
5a0e3ad6 41#include <linux/gfp.h>
40dc166c 42#include <linux/syscore_ops.h>
be27425d
AK
43#include <linux/version.h>
44#include <linux/ctype.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
7fe5e042 50#include <linux/binfmts.h>
1da177e4 51
04c6862c 52#include <linux/kmsg_dump.h>
be27425d
AK
53/* Move somewhere else to avoid recompiling? */
54#include <generated/utsrelease.h>
04c6862c 55
1da177e4
LT
56#include <asm/uaccess.h>
57#include <asm/io.h>
58#include <asm/unistd.h>
59
60#ifndef SET_UNALIGN_CTL
61# define SET_UNALIGN_CTL(a,b) (-EINVAL)
62#endif
63#ifndef GET_UNALIGN_CTL
64# define GET_UNALIGN_CTL(a,b) (-EINVAL)
65#endif
66#ifndef SET_FPEMU_CTL
67# define SET_FPEMU_CTL(a,b) (-EINVAL)
68#endif
69#ifndef GET_FPEMU_CTL
70# define GET_FPEMU_CTL(a,b) (-EINVAL)
71#endif
72#ifndef SET_FPEXC_CTL
73# define SET_FPEXC_CTL(a,b) (-EINVAL)
74#endif
75#ifndef GET_FPEXC_CTL
76# define GET_FPEXC_CTL(a,b) (-EINVAL)
77#endif
651d765d
AB
78#ifndef GET_ENDIAN
79# define GET_ENDIAN(a,b) (-EINVAL)
80#endif
81#ifndef SET_ENDIAN
82# define SET_ENDIAN(a,b) (-EINVAL)
83#endif
8fb402bc
EB
84#ifndef GET_TSC_CTL
85# define GET_TSC_CTL(a) (-EINVAL)
86#endif
87#ifndef SET_TSC_CTL
88# define SET_TSC_CTL(a) (-EINVAL)
89#endif
1da177e4
LT
90
91/*
92 * this is where the system-wide overflow UID and GID are defined, for
93 * architectures that now have 32-bit UID/GID but didn't in the past
94 */
95
96int overflowuid = DEFAULT_OVERFLOWUID;
97int overflowgid = DEFAULT_OVERFLOWGID;
98
1da177e4
LT
99EXPORT_SYMBOL(overflowuid);
100EXPORT_SYMBOL(overflowgid);
1da177e4
LT
101
102/*
103 * the same as above, but for filesystems which can only store a 16-bit
104 * UID and GID. as such, this is needed on all architectures
105 */
106
107int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
108int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
109
110EXPORT_SYMBOL(fs_overflowuid);
111EXPORT_SYMBOL(fs_overflowgid);
112
113/*
114 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
115 */
116
117int C_A_D = 1;
9ec52099
CLG
118struct pid *cad_pid;
119EXPORT_SYMBOL(cad_pid);
1da177e4 120
bd804eba
RW
121/*
122 * If set, this is used for preparing the system to power off.
123 */
124
125void (*pm_power_off_prepare)(void);
bd804eba 126
fc832ad3
SH
127/*
128 * Returns true if current's euid is same as p's uid or euid,
129 * or has CAP_SYS_NICE to p's user_ns.
130 *
131 * Called with rcu_read_lock, creds are safe
132 */
133static bool set_one_prio_perm(struct task_struct *p)
134{
135 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
136
5af66203
EB
137 if (uid_eq(pcred->uid, cred->euid) ||
138 uid_eq(pcred->euid, cred->euid))
fc832ad3 139 return true;
c4a4d603 140 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
141 return true;
142 return false;
143}
144
c69e8d9c
DH
145/*
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
148 */
1da177e4
LT
149static int set_one_prio(struct task_struct *p, int niceval, int error)
150{
151 int no_nice;
152
fc832ad3 153 if (!set_one_prio_perm(p)) {
1da177e4
LT
154 error = -EPERM;
155 goto out;
156 }
e43379f1 157 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
158 error = -EACCES;
159 goto out;
160 }
161 no_nice = security_task_setnice(p, niceval);
162 if (no_nice) {
163 error = no_nice;
164 goto out;
165 }
166 if (error == -ESRCH)
167 error = 0;
168 set_user_nice(p, niceval);
169out:
170 return error;
171}
172
754fe8d2 173SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
174{
175 struct task_struct *g, *p;
176 struct user_struct *user;
86a264ab 177 const struct cred *cred = current_cred();
1da177e4 178 int error = -EINVAL;
41487c65 179 struct pid *pgrp;
7b44ab97 180 kuid_t uid;
1da177e4 181
3e88c553 182 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
183 goto out;
184
185 /* normalize: avoid signed division (rounding problems) */
186 error = -ESRCH;
187 if (niceval < -20)
188 niceval = -20;
189 if (niceval > 19)
190 niceval = 19;
191
d4581a23 192 rcu_read_lock();
1da177e4
LT
193 read_lock(&tasklist_lock);
194 switch (which) {
195 case PRIO_PROCESS:
41487c65 196 if (who)
228ebcbe 197 p = find_task_by_vpid(who);
41487c65
EB
198 else
199 p = current;
1da177e4
LT
200 if (p)
201 error = set_one_prio(p, niceval, error);
202 break;
203 case PRIO_PGRP:
41487c65 204 if (who)
b488893a 205 pgrp = find_vpid(who);
41487c65
EB
206 else
207 pgrp = task_pgrp(current);
2d70b68d 208 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 209 error = set_one_prio(p, niceval, error);
2d70b68d 210 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
211 break;
212 case PRIO_USER:
7b44ab97 213 uid = make_kuid(cred->user_ns, who);
74ba508f 214 user = cred->user;
1da177e4 215 if (!who)
078de5f7
EB
216 uid = cred->uid;
217 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 218 !(user = find_user(uid)))
86a264ab 219 goto out_unlock; /* No processes for this user */
1da177e4 220
dfc6a736 221 do_each_thread(g, p) {
078de5f7 222 if (uid_eq(task_uid(p), uid))
1da177e4 223 error = set_one_prio(p, niceval, error);
dfc6a736 224 } while_each_thread(g, p);
078de5f7 225 if (!uid_eq(uid, cred->uid))
1da177e4
LT
226 free_uid(user); /* For find_user() */
227 break;
228 }
229out_unlock:
230 read_unlock(&tasklist_lock);
d4581a23 231 rcu_read_unlock();
1da177e4
LT
232out:
233 return error;
234}
235
236/*
237 * Ugh. To avoid negative return values, "getpriority()" will
238 * not return the normal nice-value, but a negated value that
239 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
240 * to stay compatible.
241 */
754fe8d2 242SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
243{
244 struct task_struct *g, *p;
245 struct user_struct *user;
86a264ab 246 const struct cred *cred = current_cred();
1da177e4 247 long niceval, retval = -ESRCH;
41487c65 248 struct pid *pgrp;
7b44ab97 249 kuid_t uid;
1da177e4 250
3e88c553 251 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
252 return -EINVAL;
253
70118837 254 rcu_read_lock();
1da177e4
LT
255 read_lock(&tasklist_lock);
256 switch (which) {
257 case PRIO_PROCESS:
41487c65 258 if (who)
228ebcbe 259 p = find_task_by_vpid(who);
41487c65
EB
260 else
261 p = current;
1da177e4
LT
262 if (p) {
263 niceval = 20 - task_nice(p);
264 if (niceval > retval)
265 retval = niceval;
266 }
267 break;
268 case PRIO_PGRP:
41487c65 269 if (who)
b488893a 270 pgrp = find_vpid(who);
41487c65
EB
271 else
272 pgrp = task_pgrp(current);
2d70b68d 273 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
274 niceval = 20 - task_nice(p);
275 if (niceval > retval)
276 retval = niceval;
2d70b68d 277 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
278 break;
279 case PRIO_USER:
7b44ab97 280 uid = make_kuid(cred->user_ns, who);
74ba508f 281 user = cred->user;
1da177e4 282 if (!who)
078de5f7
EB
283 uid = cred->uid;
284 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 285 !(user = find_user(uid)))
86a264ab 286 goto out_unlock; /* No processes for this user */
1da177e4 287
dfc6a736 288 do_each_thread(g, p) {
078de5f7 289 if (uid_eq(task_uid(p), uid)) {
1da177e4
LT
290 niceval = 20 - task_nice(p);
291 if (niceval > retval)
292 retval = niceval;
293 }
dfc6a736 294 } while_each_thread(g, p);
078de5f7 295 if (!uid_eq(uid, cred->uid))
1da177e4
LT
296 free_uid(user); /* for find_user() */
297 break;
298 }
299out_unlock:
300 read_unlock(&tasklist_lock);
70118837 301 rcu_read_unlock();
1da177e4
LT
302
303 return retval;
304}
305
e4c94330
EB
306/**
307 * emergency_restart - reboot the system
308 *
309 * Without shutting down any hardware or taking any locks
310 * reboot the system. This is called when we know we are in
311 * trouble so this is our best effort to reboot. This is
312 * safe to call in interrupt context.
313 */
7c903473
EB
314void emergency_restart(void)
315{
04c6862c 316 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
317 machine_emergency_restart();
318}
319EXPORT_SYMBOL_GPL(emergency_restart);
320
ca195b7f 321void kernel_restart_prepare(char *cmd)
4a00ea1e 322{
e041c683 323 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 324 system_state = SYSTEM_RESTART;
b50fa7c8 325 usermodehelper_disable();
4a00ea1e 326 device_shutdown();
40dc166c 327 syscore_shutdown();
e4c94330 328}
1e5d5331 329
c5f41752
AW
330/**
331 * register_reboot_notifier - Register function to be called at reboot time
332 * @nb: Info about notifier function to be called
333 *
334 * Registers a function with the list of functions
335 * to be called at reboot time.
336 *
337 * Currently always returns zero, as blocking_notifier_chain_register()
338 * always returns zero.
339 */
340int register_reboot_notifier(struct notifier_block *nb)
341{
342 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
343}
344EXPORT_SYMBOL(register_reboot_notifier);
345
346/**
347 * unregister_reboot_notifier - Unregister previously registered reboot notifier
348 * @nb: Hook to be unregistered
349 *
350 * Unregisters a previously registered reboot
351 * notifier function.
352 *
353 * Returns zero on success, or %-ENOENT on failure.
354 */
355int unregister_reboot_notifier(struct notifier_block *nb)
356{
357 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
358}
359EXPORT_SYMBOL(unregister_reboot_notifier);
360
1e5d5331
RD
361/**
362 * kernel_restart - reboot the system
363 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 364 * or %NULL
1e5d5331
RD
365 *
366 * Shutdown everything and perform a clean reboot.
367 * This is not safe to call in interrupt context.
368 */
e4c94330
EB
369void kernel_restart(char *cmd)
370{
371 kernel_restart_prepare(cmd);
f96972f2 372 disable_nonboot_cpus();
756184b7 373 if (!cmd)
4a00ea1e 374 printk(KERN_EMERG "Restarting system.\n");
756184b7 375 else
4a00ea1e 376 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 377 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
378 machine_restart(cmd);
379}
380EXPORT_SYMBOL_GPL(kernel_restart);
381
4ef7229f 382static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 383{
e041c683 384 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
385 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
386 system_state = state;
b50fa7c8 387 usermodehelper_disable();
729b4d4c
AS
388 device_shutdown();
389}
e4c94330
EB
390/**
391 * kernel_halt - halt the system
392 *
393 * Shutdown everything and perform a clean system halt.
394 */
e4c94330
EB
395void kernel_halt(void)
396{
729b4d4c 397 kernel_shutdown_prepare(SYSTEM_HALT);
40dc166c 398 syscore_shutdown();
4a00ea1e 399 printk(KERN_EMERG "System halted.\n");
04c6862c 400 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
401 machine_halt();
402}
729b4d4c 403
4a00ea1e
EB
404EXPORT_SYMBOL_GPL(kernel_halt);
405
e4c94330
EB
406/**
407 * kernel_power_off - power_off the system
408 *
409 * Shutdown everything and perform a clean system power_off.
410 */
e4c94330
EB
411void kernel_power_off(void)
412{
729b4d4c 413 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
414 if (pm_power_off_prepare)
415 pm_power_off_prepare();
4047727e 416 disable_nonboot_cpus();
40dc166c 417 syscore_shutdown();
4a00ea1e 418 printk(KERN_EMERG "Power down.\n");
04c6862c 419 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
420 machine_power_off();
421}
422EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
423
424static DEFINE_MUTEX(reboot_mutex);
425
1da177e4
LT
426/*
427 * Reboot system call: for obvious reasons only root may call it,
428 * and even root needs to set up some magic numbers in the registers
429 * so that some mistake won't make this reboot the whole machine.
430 * You can also set the meaning of the ctrl-alt-del-key here.
431 *
432 * reboot doesn't sync: do that yourself before calling this.
433 */
754fe8d2
HC
434SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
435 void __user *, arg)
1da177e4
LT
436{
437 char buffer[256];
3d26dcf7 438 int ret = 0;
1da177e4
LT
439
440 /* We only trust the superuser with rebooting the system. */
441 if (!capable(CAP_SYS_BOOT))
442 return -EPERM;
443
444 /* For safety, we require "magic" arguments. */
445 if (magic1 != LINUX_REBOOT_MAGIC1 ||
446 (magic2 != LINUX_REBOOT_MAGIC2 &&
447 magic2 != LINUX_REBOOT_MAGIC2A &&
448 magic2 != LINUX_REBOOT_MAGIC2B &&
449 magic2 != LINUX_REBOOT_MAGIC2C))
450 return -EINVAL;
451
cf3f8921
DL
452 /*
453 * If pid namespaces are enabled and the current task is in a child
454 * pid_namespace, the command is handled by reboot_pid_ns() which will
455 * call do_exit().
456 */
457 ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
458 if (ret)
459 return ret;
460
5e38291d
EB
461 /* Instead of trying to make the power_off code look like
462 * halt when pm_power_off is not set do it the easy way.
463 */
464 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
465 cmd = LINUX_REBOOT_CMD_HALT;
466
6f15fa50 467 mutex_lock(&reboot_mutex);
1da177e4
LT
468 switch (cmd) {
469 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 470 kernel_restart(NULL);
1da177e4
LT
471 break;
472
473 case LINUX_REBOOT_CMD_CAD_ON:
474 C_A_D = 1;
475 break;
476
477 case LINUX_REBOOT_CMD_CAD_OFF:
478 C_A_D = 0;
479 break;
480
481 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 482 kernel_halt();
1da177e4 483 do_exit(0);
3d26dcf7 484 panic("cannot halt");
1da177e4
LT
485
486 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 487 kernel_power_off();
1da177e4
LT
488 do_exit(0);
489 break;
490
491 case LINUX_REBOOT_CMD_RESTART2:
492 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
493 ret = -EFAULT;
494 break;
1da177e4
LT
495 }
496 buffer[sizeof(buffer) - 1] = '\0';
497
4a00ea1e 498 kernel_restart(buffer);
1da177e4
LT
499 break;
500
3ab83521 501#ifdef CONFIG_KEXEC
dc009d92 502 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
503 ret = kernel_kexec();
504 break;
3ab83521 505#endif
4a00ea1e 506
b0cb1a19 507#ifdef CONFIG_HIBERNATION
1da177e4 508 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
509 ret = hibernate();
510 break;
1da177e4
LT
511#endif
512
513 default:
3d26dcf7
AK
514 ret = -EINVAL;
515 break;
1da177e4 516 }
6f15fa50 517 mutex_unlock(&reboot_mutex);
3d26dcf7 518 return ret;
1da177e4
LT
519}
520
65f27f38 521static void deferred_cad(struct work_struct *dummy)
1da177e4 522{
abcd9e51 523 kernel_restart(NULL);
1da177e4
LT
524}
525
526/*
527 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
528 * As it's called within an interrupt, it may NOT sync: the only choice
529 * is whether to reboot at once, or just ignore the ctrl-alt-del.
530 */
531void ctrl_alt_del(void)
532{
65f27f38 533 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
534
535 if (C_A_D)
536 schedule_work(&cad_work);
537 else
9ec52099 538 kill_cad_pid(SIGINT, 1);
1da177e4
LT
539}
540
1da177e4
LT
541/*
542 * Unprivileged users may change the real gid to the effective gid
543 * or vice versa. (BSD-style)
544 *
545 * If you set the real gid at all, or set the effective gid to a value not
546 * equal to the real gid, then the saved gid is set to the new effective gid.
547 *
548 * This makes it possible for a setgid program to completely drop its
549 * privileges, which is often a useful assertion to make when you are doing
550 * a security audit over a program.
551 *
552 * The general idea is that a program which uses just setregid() will be
553 * 100% compatible with BSD. A program which uses just setgid() will be
554 * 100% compatible with POSIX with saved IDs.
555 *
556 * SMP: There are not races, the GIDs are checked only by filesystem
557 * operations (as far as semantic preservation is concerned).
558 */
ae1251ab 559SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 560{
a29c33f4 561 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
562 const struct cred *old;
563 struct cred *new;
1da177e4 564 int retval;
a29c33f4
EB
565 kgid_t krgid, kegid;
566
567 krgid = make_kgid(ns, rgid);
568 kegid = make_kgid(ns, egid);
569
570 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
571 return -EINVAL;
572 if ((egid != (gid_t) -1) && !gid_valid(kegid))
573 return -EINVAL;
1da177e4 574
d84f4f99
DH
575 new = prepare_creds();
576 if (!new)
577 return -ENOMEM;
578 old = current_cred();
579
d84f4f99 580 retval = -EPERM;
1da177e4 581 if (rgid != (gid_t) -1) {
a29c33f4
EB
582 if (gid_eq(old->gid, krgid) ||
583 gid_eq(old->egid, krgid) ||
fc832ad3 584 nsown_capable(CAP_SETGID))
a29c33f4 585 new->gid = krgid;
1da177e4 586 else
d84f4f99 587 goto error;
1da177e4
LT
588 }
589 if (egid != (gid_t) -1) {
a29c33f4
EB
590 if (gid_eq(old->gid, kegid) ||
591 gid_eq(old->egid, kegid) ||
592 gid_eq(old->sgid, kegid) ||
fc832ad3 593 nsown_capable(CAP_SETGID))
a29c33f4 594 new->egid = kegid;
756184b7 595 else
d84f4f99 596 goto error;
1da177e4 597 }
d84f4f99 598
1da177e4 599 if (rgid != (gid_t) -1 ||
a29c33f4 600 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
601 new->sgid = new->egid;
602 new->fsgid = new->egid;
603
604 return commit_creds(new);
605
606error:
607 abort_creds(new);
608 return retval;
1da177e4
LT
609}
610
611/*
612 * setgid() is implemented like SysV w/ SAVED_IDS
613 *
614 * SMP: Same implicit races as above.
615 */
ae1251ab 616SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 617{
a29c33f4 618 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
619 const struct cred *old;
620 struct cred *new;
1da177e4 621 int retval;
a29c33f4
EB
622 kgid_t kgid;
623
624 kgid = make_kgid(ns, gid);
625 if (!gid_valid(kgid))
626 return -EINVAL;
1da177e4 627
d84f4f99
DH
628 new = prepare_creds();
629 if (!new)
630 return -ENOMEM;
631 old = current_cred();
632
d84f4f99 633 retval = -EPERM;
fc832ad3 634 if (nsown_capable(CAP_SETGID))
a29c33f4
EB
635 new->gid = new->egid = new->sgid = new->fsgid = kgid;
636 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
637 new->egid = new->fsgid = kgid;
1da177e4 638 else
d84f4f99 639 goto error;
1da177e4 640
d84f4f99
DH
641 return commit_creds(new);
642
643error:
644 abort_creds(new);
645 return retval;
1da177e4 646}
54e99124 647
d84f4f99
DH
648/*
649 * change the user struct in a credentials set to match the new UID
650 */
651static int set_user(struct cred *new)
1da177e4
LT
652{
653 struct user_struct *new_user;
654
078de5f7 655 new_user = alloc_uid(new->uid);
1da177e4
LT
656 if (!new_user)
657 return -EAGAIN;
658
72fa5997
VK
659 /*
660 * We don't fail in case of NPROC limit excess here because too many
661 * poorly written programs don't check set*uid() return code, assuming
662 * it never fails if called by root. We may still enforce NPROC limit
663 * for programs doing set*uid()+execve() by harmlessly deferring the
664 * failure to the execve() stage.
665 */
78d7d407 666 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
667 new_user != INIT_USER)
668 current->flags |= PF_NPROC_EXCEEDED;
669 else
670 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 671
d84f4f99
DH
672 free_uid(new->user);
673 new->user = new_user;
1da177e4
LT
674 return 0;
675}
676
677/*
678 * Unprivileged users may change the real uid to the effective uid
679 * or vice versa. (BSD-style)
680 *
681 * If you set the real uid at all, or set the effective uid to a value not
682 * equal to the real uid, then the saved uid is set to the new effective uid.
683 *
684 * This makes it possible for a setuid program to completely drop its
685 * privileges, which is often a useful assertion to make when you are doing
686 * a security audit over a program.
687 *
688 * The general idea is that a program which uses just setreuid() will be
689 * 100% compatible with BSD. A program which uses just setuid() will be
690 * 100% compatible with POSIX with saved IDs.
691 */
ae1251ab 692SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 693{
a29c33f4 694 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
695 const struct cred *old;
696 struct cred *new;
1da177e4 697 int retval;
a29c33f4
EB
698 kuid_t kruid, keuid;
699
700 kruid = make_kuid(ns, ruid);
701 keuid = make_kuid(ns, euid);
702
703 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
704 return -EINVAL;
705 if ((euid != (uid_t) -1) && !uid_valid(keuid))
706 return -EINVAL;
1da177e4 707
d84f4f99
DH
708 new = prepare_creds();
709 if (!new)
710 return -ENOMEM;
711 old = current_cred();
712
d84f4f99 713 retval = -EPERM;
1da177e4 714 if (ruid != (uid_t) -1) {
a29c33f4
EB
715 new->uid = kruid;
716 if (!uid_eq(old->uid, kruid) &&
717 !uid_eq(old->euid, kruid) &&
fc832ad3 718 !nsown_capable(CAP_SETUID))
d84f4f99 719 goto error;
1da177e4
LT
720 }
721
722 if (euid != (uid_t) -1) {
a29c33f4
EB
723 new->euid = keuid;
724 if (!uid_eq(old->uid, keuid) &&
725 !uid_eq(old->euid, keuid) &&
726 !uid_eq(old->suid, keuid) &&
fc832ad3 727 !nsown_capable(CAP_SETUID))
d84f4f99 728 goto error;
1da177e4
LT
729 }
730
a29c33f4 731 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
732 retval = set_user(new);
733 if (retval < 0)
734 goto error;
735 }
1da177e4 736 if (ruid != (uid_t) -1 ||
a29c33f4 737 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
738 new->suid = new->euid;
739 new->fsuid = new->euid;
1da177e4 740
d84f4f99
DH
741 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
742 if (retval < 0)
743 goto error;
1da177e4 744
d84f4f99 745 return commit_creds(new);
1da177e4 746
d84f4f99
DH
747error:
748 abort_creds(new);
749 return retval;
750}
1da177e4
LT
751
752/*
753 * setuid() is implemented like SysV with SAVED_IDS
754 *
755 * Note that SAVED_ID's is deficient in that a setuid root program
756 * like sendmail, for example, cannot set its uid to be a normal
757 * user and then switch back, because if you're root, setuid() sets
758 * the saved uid too. If you don't like this, blame the bright people
759 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
760 * will allow a root program to temporarily drop privileges and be able to
761 * regain them by swapping the real and effective uid.
762 */
ae1251ab 763SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 764{
a29c33f4 765 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
766 const struct cred *old;
767 struct cred *new;
1da177e4 768 int retval;
a29c33f4
EB
769 kuid_t kuid;
770
771 kuid = make_kuid(ns, uid);
772 if (!uid_valid(kuid))
773 return -EINVAL;
1da177e4 774
d84f4f99
DH
775 new = prepare_creds();
776 if (!new)
777 return -ENOMEM;
778 old = current_cred();
779
d84f4f99 780 retval = -EPERM;
fc832ad3 781 if (nsown_capable(CAP_SETUID)) {
a29c33f4
EB
782 new->suid = new->uid = kuid;
783 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
784 retval = set_user(new);
785 if (retval < 0)
786 goto error;
d84f4f99 787 }
a29c33f4 788 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 789 goto error;
1da177e4 790 }
1da177e4 791
a29c33f4 792 new->fsuid = new->euid = kuid;
d84f4f99
DH
793
794 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
795 if (retval < 0)
796 goto error;
1da177e4 797
d84f4f99 798 return commit_creds(new);
1da177e4 799
d84f4f99
DH
800error:
801 abort_creds(new);
802 return retval;
1da177e4
LT
803}
804
805
806/*
807 * This function implements a generic ability to update ruid, euid,
808 * and suid. This allows you to implement the 4.4 compatible seteuid().
809 */
ae1251ab 810SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 811{
a29c33f4 812 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
813 const struct cred *old;
814 struct cred *new;
1da177e4 815 int retval;
a29c33f4
EB
816 kuid_t kruid, keuid, ksuid;
817
818 kruid = make_kuid(ns, ruid);
819 keuid = make_kuid(ns, euid);
820 ksuid = make_kuid(ns, suid);
821
822 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
823 return -EINVAL;
824
825 if ((euid != (uid_t) -1) && !uid_valid(keuid))
826 return -EINVAL;
827
828 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
829 return -EINVAL;
1da177e4 830
d84f4f99
DH
831 new = prepare_creds();
832 if (!new)
833 return -ENOMEM;
834
d84f4f99 835 old = current_cred();
1da177e4 836
d84f4f99 837 retval = -EPERM;
fc832ad3 838 if (!nsown_capable(CAP_SETUID)) {
a29c33f4
EB
839 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
840 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 841 goto error;
a29c33f4
EB
842 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
843 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 844 goto error;
a29c33f4
EB
845 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
846 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 847 goto error;
1da177e4 848 }
d84f4f99 849
1da177e4 850 if (ruid != (uid_t) -1) {
a29c33f4
EB
851 new->uid = kruid;
852 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
853 retval = set_user(new);
854 if (retval < 0)
855 goto error;
856 }
1da177e4 857 }
d84f4f99 858 if (euid != (uid_t) -1)
a29c33f4 859 new->euid = keuid;
1da177e4 860 if (suid != (uid_t) -1)
a29c33f4 861 new->suid = ksuid;
d84f4f99 862 new->fsuid = new->euid;
1da177e4 863
d84f4f99
DH
864 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
865 if (retval < 0)
866 goto error;
1da177e4 867
d84f4f99 868 return commit_creds(new);
1da177e4 869
d84f4f99
DH
870error:
871 abort_creds(new);
872 return retval;
1da177e4
LT
873}
874
a29c33f4 875SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 876{
86a264ab 877 const struct cred *cred = current_cred();
1da177e4 878 int retval;
a29c33f4
EB
879 uid_t ruid, euid, suid;
880
881 ruid = from_kuid_munged(cred->user_ns, cred->uid);
882 euid = from_kuid_munged(cred->user_ns, cred->euid);
883 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 884
a29c33f4
EB
885 if (!(retval = put_user(ruid, ruidp)) &&
886 !(retval = put_user(euid, euidp)))
887 retval = put_user(suid, suidp);
1da177e4
LT
888
889 return retval;
890}
891
892/*
893 * Same as above, but for rgid, egid, sgid.
894 */
ae1251ab 895SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 896{
a29c33f4 897 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
898 const struct cred *old;
899 struct cred *new;
1da177e4 900 int retval;
a29c33f4
EB
901 kgid_t krgid, kegid, ksgid;
902
903 krgid = make_kgid(ns, rgid);
904 kegid = make_kgid(ns, egid);
905 ksgid = make_kgid(ns, sgid);
906
907 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
908 return -EINVAL;
909 if ((egid != (gid_t) -1) && !gid_valid(kegid))
910 return -EINVAL;
911 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
912 return -EINVAL;
1da177e4 913
d84f4f99
DH
914 new = prepare_creds();
915 if (!new)
916 return -ENOMEM;
917 old = current_cred();
918
d84f4f99 919 retval = -EPERM;
fc832ad3 920 if (!nsown_capable(CAP_SETGID)) {
a29c33f4
EB
921 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
922 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 923 goto error;
a29c33f4
EB
924 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
925 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 926 goto error;
a29c33f4
EB
927 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
928 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 929 goto error;
1da177e4 930 }
d84f4f99 931
1da177e4 932 if (rgid != (gid_t) -1)
a29c33f4 933 new->gid = krgid;
d84f4f99 934 if (egid != (gid_t) -1)
a29c33f4 935 new->egid = kegid;
1da177e4 936 if (sgid != (gid_t) -1)
a29c33f4 937 new->sgid = ksgid;
d84f4f99 938 new->fsgid = new->egid;
1da177e4 939
d84f4f99
DH
940 return commit_creds(new);
941
942error:
943 abort_creds(new);
944 return retval;
1da177e4
LT
945}
946
a29c33f4 947SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 948{
86a264ab 949 const struct cred *cred = current_cred();
1da177e4 950 int retval;
a29c33f4
EB
951 gid_t rgid, egid, sgid;
952
953 rgid = from_kgid_munged(cred->user_ns, cred->gid);
954 egid = from_kgid_munged(cred->user_ns, cred->egid);
955 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 956
a29c33f4
EB
957 if (!(retval = put_user(rgid, rgidp)) &&
958 !(retval = put_user(egid, egidp)))
959 retval = put_user(sgid, sgidp);
1da177e4
LT
960
961 return retval;
962}
963
964
965/*
966 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
967 * is used for "access()" and for the NFS daemon (letting nfsd stay at
968 * whatever uid it wants to). It normally shadows "euid", except when
969 * explicitly set by setfsuid() or for access..
970 */
ae1251ab 971SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 972{
d84f4f99
DH
973 const struct cred *old;
974 struct cred *new;
975 uid_t old_fsuid;
a29c33f4
EB
976 kuid_t kuid;
977
978 old = current_cred();
979 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
980
981 kuid = make_kuid(old->user_ns, uid);
982 if (!uid_valid(kuid))
983 return old_fsuid;
1da177e4 984
d84f4f99
DH
985 new = prepare_creds();
986 if (!new)
a29c33f4 987 return old_fsuid;
1da177e4 988
a29c33f4
EB
989 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
990 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
fc832ad3 991 nsown_capable(CAP_SETUID)) {
a29c33f4
EB
992 if (!uid_eq(kuid, old->fsuid)) {
993 new->fsuid = kuid;
d84f4f99
DH
994 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
995 goto change_okay;
1da177e4 996 }
1da177e4
LT
997 }
998
d84f4f99
DH
999 abort_creds(new);
1000 return old_fsuid;
1da177e4 1001
d84f4f99
DH
1002change_okay:
1003 commit_creds(new);
1da177e4
LT
1004 return old_fsuid;
1005}
1006
1007/*
f42df9e6 1008 * Samma på svenska..
1da177e4 1009 */
ae1251ab 1010SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 1011{
d84f4f99
DH
1012 const struct cred *old;
1013 struct cred *new;
1014 gid_t old_fsgid;
a29c33f4
EB
1015 kgid_t kgid;
1016
1017 old = current_cred();
1018 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1019
1020 kgid = make_kgid(old->user_ns, gid);
1021 if (!gid_valid(kgid))
1022 return old_fsgid;
d84f4f99
DH
1023
1024 new = prepare_creds();
1025 if (!new)
a29c33f4 1026 return old_fsgid;
1da177e4 1027
a29c33f4
EB
1028 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
1029 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
fc832ad3 1030 nsown_capable(CAP_SETGID)) {
a29c33f4
EB
1031 if (!gid_eq(kgid, old->fsgid)) {
1032 new->fsgid = kgid;
d84f4f99 1033 goto change_okay;
1da177e4 1034 }
1da177e4 1035 }
d84f4f99 1036
d84f4f99
DH
1037 abort_creds(new);
1038 return old_fsgid;
1039
1040change_okay:
1041 commit_creds(new);
1da177e4
LT
1042 return old_fsgid;
1043}
1044
f06febc9
FM
1045void do_sys_times(struct tms *tms)
1046{
0cf55e1e 1047 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 1048
2b5fe6de 1049 spin_lock_irq(&current->sighand->siglock);
e80d0a1a 1050 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
1051 cutime = current->signal->cutime;
1052 cstime = current->signal->cstime;
1053 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
1054 tms->tms_utime = cputime_to_clock_t(tgutime);
1055 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
1056 tms->tms_cutime = cputime_to_clock_t(cutime);
1057 tms->tms_cstime = cputime_to_clock_t(cstime);
1058}
1059
58fd3aa2 1060SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 1061{
1da177e4
LT
1062 if (tbuf) {
1063 struct tms tmp;
f06febc9
FM
1064
1065 do_sys_times(&tmp);
1da177e4
LT
1066 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1067 return -EFAULT;
1068 }
e3d5a27d 1069 force_successful_syscall_return();
1da177e4
LT
1070 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1071}
1072
1073/*
1074 * This needs some heavy checking ...
1075 * I just haven't the stomach for it. I also don't fully
1076 * understand sessions/pgrp etc. Let somebody who does explain it.
1077 *
1078 * OK, I think I have the protection semantics right.... this is really
1079 * only important on a multi-user system anyway, to make sure one user
1080 * can't send a signal to a process owned by another. -TYT, 12/12/91
1081 *
1082 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1083 * LBT 04.03.94
1084 */
b290ebe2 1085SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1086{
1087 struct task_struct *p;
ee0acf90 1088 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1089 struct pid *pgrp;
1090 int err;
1da177e4
LT
1091
1092 if (!pid)
b488893a 1093 pid = task_pid_vnr(group_leader);
1da177e4
LT
1094 if (!pgid)
1095 pgid = pid;
1096 if (pgid < 0)
1097 return -EINVAL;
950eaaca 1098 rcu_read_lock();
1da177e4
LT
1099
1100 /* From this point forward we keep holding onto the tasklist lock
1101 * so that our parent does not change from under us. -DaveM
1102 */
1103 write_lock_irq(&tasklist_lock);
1104
1105 err = -ESRCH;
4e021306 1106 p = find_task_by_vpid(pid);
1da177e4
LT
1107 if (!p)
1108 goto out;
1109
1110 err = -EINVAL;
1111 if (!thread_group_leader(p))
1112 goto out;
1113
4e021306 1114 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1115 err = -EPERM;
41487c65 1116 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1117 goto out;
1118 err = -EACCES;
1119 if (p->did_exec)
1120 goto out;
1121 } else {
1122 err = -ESRCH;
ee0acf90 1123 if (p != group_leader)
1da177e4
LT
1124 goto out;
1125 }
1126
1127 err = -EPERM;
1128 if (p->signal->leader)
1129 goto out;
1130
4e021306 1131 pgrp = task_pid(p);
1da177e4 1132 if (pgid != pid) {
b488893a 1133 struct task_struct *g;
1da177e4 1134
4e021306
ON
1135 pgrp = find_vpid(pgid);
1136 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1137 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1138 goto out;
1da177e4
LT
1139 }
1140
1da177e4
LT
1141 err = security_task_setpgid(p, pgid);
1142 if (err)
1143 goto out;
1144
1b0f7ffd 1145 if (task_pgrp(p) != pgrp)
83beaf3c 1146 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1147
1148 err = 0;
1149out:
1150 /* All paths lead to here, thus we are safe. -DaveM */
1151 write_unlock_irq(&tasklist_lock);
950eaaca 1152 rcu_read_unlock();
1da177e4
LT
1153 return err;
1154}
1155
dbf040d9 1156SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1157{
12a3de0a
ON
1158 struct task_struct *p;
1159 struct pid *grp;
1160 int retval;
1161
1162 rcu_read_lock();
756184b7 1163 if (!pid)
12a3de0a 1164 grp = task_pgrp(current);
756184b7 1165 else {
1da177e4 1166 retval = -ESRCH;
12a3de0a
ON
1167 p = find_task_by_vpid(pid);
1168 if (!p)
1169 goto out;
1170 grp = task_pgrp(p);
1171 if (!grp)
1172 goto out;
1173
1174 retval = security_task_getpgid(p);
1175 if (retval)
1176 goto out;
1da177e4 1177 }
12a3de0a
ON
1178 retval = pid_vnr(grp);
1179out:
1180 rcu_read_unlock();
1181 return retval;
1da177e4
LT
1182}
1183
1184#ifdef __ARCH_WANT_SYS_GETPGRP
1185
dbf040d9 1186SYSCALL_DEFINE0(getpgrp)
1da177e4 1187{
12a3de0a 1188 return sys_getpgid(0);
1da177e4
LT
1189}
1190
1191#endif
1192
dbf040d9 1193SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1194{
1dd768c0
ON
1195 struct task_struct *p;
1196 struct pid *sid;
1197 int retval;
1198
1199 rcu_read_lock();
756184b7 1200 if (!pid)
1dd768c0 1201 sid = task_session(current);
756184b7 1202 else {
1da177e4 1203 retval = -ESRCH;
1dd768c0
ON
1204 p = find_task_by_vpid(pid);
1205 if (!p)
1206 goto out;
1207 sid = task_session(p);
1208 if (!sid)
1209 goto out;
1210
1211 retval = security_task_getsid(p);
1212 if (retval)
1213 goto out;
1da177e4 1214 }
1dd768c0
ON
1215 retval = pid_vnr(sid);
1216out:
1217 rcu_read_unlock();
1218 return retval;
1da177e4
LT
1219}
1220
b290ebe2 1221SYSCALL_DEFINE0(setsid)
1da177e4 1222{
e19f247a 1223 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1224 struct pid *sid = task_pid(group_leader);
1225 pid_t session = pid_vnr(sid);
1da177e4
LT
1226 int err = -EPERM;
1227
1da177e4 1228 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1229 /* Fail if I am already a session leader */
1230 if (group_leader->signal->leader)
1231 goto out;
1232
430c6231
ON
1233 /* Fail if a process group id already exists that equals the
1234 * proposed session id.
390e2ff0 1235 */
6806aac6 1236 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1237 goto out;
1238
e19f247a 1239 group_leader->signal->leader = 1;
8520d7c7 1240 __set_special_pids(sid);
24ec839c 1241
9c9f4ded 1242 proc_clear_tty(group_leader);
24ec839c 1243
e4cc0a9c 1244 err = session;
1da177e4
LT
1245out:
1246 write_unlock_irq(&tasklist_lock);
5091faa4 1247 if (err > 0) {
0d0df599 1248 proc_sid_connector(group_leader);
5091faa4
MG
1249 sched_autogroup_create_attach(group_leader);
1250 }
1da177e4
LT
1251 return err;
1252}
1253
1da177e4
LT
1254DECLARE_RWSEM(uts_sem);
1255
e28cbf22
CH
1256#ifdef COMPAT_UTS_MACHINE
1257#define override_architecture(name) \
46da2766 1258 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1259 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1260 sizeof(COMPAT_UTS_MACHINE)))
1261#else
1262#define override_architecture(name) 0
1263#endif
1264
be27425d
AK
1265/*
1266 * Work around broken programs that cannot handle "Linux 3.0".
1267 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1268 */
2702b152 1269static int override_release(char __user *release, size_t len)
be27425d
AK
1270{
1271 int ret = 0;
be27425d
AK
1272
1273 if (current->personality & UNAME26) {
2702b152
KC
1274 const char *rest = UTS_RELEASE;
1275 char buf[65] = { 0 };
be27425d
AK
1276 int ndots = 0;
1277 unsigned v;
2702b152 1278 size_t copy;
be27425d
AK
1279
1280 while (*rest) {
1281 if (*rest == '.' && ++ndots >= 3)
1282 break;
1283 if (!isdigit(*rest) && *rest != '.')
1284 break;
1285 rest++;
1286 }
1287 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
31fd84b9 1288 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1289 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1290 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1291 }
1292 return ret;
1293}
1294
e48fbb69 1295SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1296{
1297 int errno = 0;
1298
1299 down_read(&uts_sem);
e9ff3990 1300 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1301 errno = -EFAULT;
1302 up_read(&uts_sem);
e28cbf22 1303
be27425d
AK
1304 if (!errno && override_release(name->release, sizeof(name->release)))
1305 errno = -EFAULT;
e28cbf22
CH
1306 if (!errno && override_architecture(name))
1307 errno = -EFAULT;
1da177e4
LT
1308 return errno;
1309}
1310
5cacdb4a
CH
1311#ifdef __ARCH_WANT_SYS_OLD_UNAME
1312/*
1313 * Old cruft
1314 */
1315SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1316{
1317 int error = 0;
1318
1319 if (!name)
1320 return -EFAULT;
1321
1322 down_read(&uts_sem);
1323 if (copy_to_user(name, utsname(), sizeof(*name)))
1324 error = -EFAULT;
1325 up_read(&uts_sem);
1326
be27425d
AK
1327 if (!error && override_release(name->release, sizeof(name->release)))
1328 error = -EFAULT;
5cacdb4a
CH
1329 if (!error && override_architecture(name))
1330 error = -EFAULT;
1331 return error;
1332}
1333
1334SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1335{
1336 int error;
1337
1338 if (!name)
1339 return -EFAULT;
1340 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1341 return -EFAULT;
1342
1343 down_read(&uts_sem);
1344 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1345 __OLD_UTS_LEN);
1346 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1347 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1348 __OLD_UTS_LEN);
1349 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1350 error |= __copy_to_user(&name->release, &utsname()->release,
1351 __OLD_UTS_LEN);
1352 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1353 error |= __copy_to_user(&name->version, &utsname()->version,
1354 __OLD_UTS_LEN);
1355 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1356 error |= __copy_to_user(&name->machine, &utsname()->machine,
1357 __OLD_UTS_LEN);
1358 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1359 up_read(&uts_sem);
1360
1361 if (!error && override_architecture(name))
1362 error = -EFAULT;
be27425d
AK
1363 if (!error && override_release(name->release, sizeof(name->release)))
1364 error = -EFAULT;
5cacdb4a
CH
1365 return error ? -EFAULT : 0;
1366}
1367#endif
1368
5a8a82b1 1369SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1370{
1371 int errno;
1372 char tmp[__NEW_UTS_LEN];
1373
bb96a6f5 1374 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1375 return -EPERM;
fc832ad3 1376
1da177e4
LT
1377 if (len < 0 || len > __NEW_UTS_LEN)
1378 return -EINVAL;
1379 down_write(&uts_sem);
1380 errno = -EFAULT;
1381 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1382 struct new_utsname *u = utsname();
1383
1384 memcpy(u->nodename, tmp, len);
1385 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1386 errno = 0;
499eea6b 1387 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1388 }
1389 up_write(&uts_sem);
1390 return errno;
1391}
1392
1393#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1394
5a8a82b1 1395SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1396{
1397 int i, errno;
9679e4dd 1398 struct new_utsname *u;
1da177e4
LT
1399
1400 if (len < 0)
1401 return -EINVAL;
1402 down_read(&uts_sem);
9679e4dd
AM
1403 u = utsname();
1404 i = 1 + strlen(u->nodename);
1da177e4
LT
1405 if (i > len)
1406 i = len;
1407 errno = 0;
9679e4dd 1408 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1409 errno = -EFAULT;
1410 up_read(&uts_sem);
1411 return errno;
1412}
1413
1414#endif
1415
1416/*
1417 * Only setdomainname; getdomainname can be implemented by calling
1418 * uname()
1419 */
5a8a82b1 1420SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1421{
1422 int errno;
1423 char tmp[__NEW_UTS_LEN];
1424
fc832ad3 1425 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1426 return -EPERM;
1427 if (len < 0 || len > __NEW_UTS_LEN)
1428 return -EINVAL;
1429
1430 down_write(&uts_sem);
1431 errno = -EFAULT;
1432 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1433 struct new_utsname *u = utsname();
1434
1435 memcpy(u->domainname, tmp, len);
1436 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1437 errno = 0;
499eea6b 1438 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1439 }
1440 up_write(&uts_sem);
1441 return errno;
1442}
1443
e48fbb69 1444SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1445{
b9518345
JS
1446 struct rlimit value;
1447 int ret;
1448
1449 ret = do_prlimit(current, resource, NULL, &value);
1450 if (!ret)
1451 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1452
1453 return ret;
1da177e4
LT
1454}
1455
1456#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1457
1458/*
1459 * Back compatibility for getrlimit. Needed for some apps.
1460 */
1461
e48fbb69
HC
1462SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1463 struct rlimit __user *, rlim)
1da177e4
LT
1464{
1465 struct rlimit x;
1466 if (resource >= RLIM_NLIMITS)
1467 return -EINVAL;
1468
1469 task_lock(current->group_leader);
1470 x = current->signal->rlim[resource];
1471 task_unlock(current->group_leader);
756184b7 1472 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1473 x.rlim_cur = 0x7FFFFFFF;
756184b7 1474 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1475 x.rlim_max = 0x7FFFFFFF;
1476 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1477}
1478
1479#endif
1480
c022a0ac
JS
1481static inline bool rlim64_is_infinity(__u64 rlim64)
1482{
1483#if BITS_PER_LONG < 64
1484 return rlim64 >= ULONG_MAX;
1485#else
1486 return rlim64 == RLIM64_INFINITY;
1487#endif
1488}
1489
1490static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1491{
1492 if (rlim->rlim_cur == RLIM_INFINITY)
1493 rlim64->rlim_cur = RLIM64_INFINITY;
1494 else
1495 rlim64->rlim_cur = rlim->rlim_cur;
1496 if (rlim->rlim_max == RLIM_INFINITY)
1497 rlim64->rlim_max = RLIM64_INFINITY;
1498 else
1499 rlim64->rlim_max = rlim->rlim_max;
1500}
1501
1502static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1503{
1504 if (rlim64_is_infinity(rlim64->rlim_cur))
1505 rlim->rlim_cur = RLIM_INFINITY;
1506 else
1507 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1508 if (rlim64_is_infinity(rlim64->rlim_max))
1509 rlim->rlim_max = RLIM_INFINITY;
1510 else
1511 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1512}
1513
1c1e618d 1514/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1515int do_prlimit(struct task_struct *tsk, unsigned int resource,
1516 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1517{
5b41535a 1518 struct rlimit *rlim;
86f162f4 1519 int retval = 0;
1da177e4
LT
1520
1521 if (resource >= RLIM_NLIMITS)
1522 return -EINVAL;
5b41535a
JS
1523 if (new_rlim) {
1524 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1525 return -EINVAL;
1526 if (resource == RLIMIT_NOFILE &&
1527 new_rlim->rlim_max > sysctl_nr_open)
1528 return -EPERM;
1529 }
1da177e4 1530
1c1e618d
JS
1531 /* protect tsk->signal and tsk->sighand from disappearing */
1532 read_lock(&tasklist_lock);
1533 if (!tsk->sighand) {
1534 retval = -ESRCH;
1535 goto out;
1536 }
1537
5b41535a 1538 rlim = tsk->signal->rlim + resource;
86f162f4 1539 task_lock(tsk->group_leader);
5b41535a 1540 if (new_rlim) {
fc832ad3
SH
1541 /* Keep the capable check against init_user_ns until
1542 cgroups can contain all limits */
5b41535a
JS
1543 if (new_rlim->rlim_max > rlim->rlim_max &&
1544 !capable(CAP_SYS_RESOURCE))
1545 retval = -EPERM;
1546 if (!retval)
1547 retval = security_task_setrlimit(tsk->group_leader,
1548 resource, new_rlim);
1549 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1550 /*
1551 * The caller is asking for an immediate RLIMIT_CPU
1552 * expiry. But we use the zero value to mean "it was
1553 * never set". So let's cheat and make it one second
1554 * instead
1555 */
1556 new_rlim->rlim_cur = 1;
1557 }
1558 }
1559 if (!retval) {
1560 if (old_rlim)
1561 *old_rlim = *rlim;
1562 if (new_rlim)
1563 *rlim = *new_rlim;
9926e4c7 1564 }
7855c35d 1565 task_unlock(tsk->group_leader);
1da177e4 1566
d3561f78
AM
1567 /*
1568 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1569 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1570 * very long-standing error, and fixing it now risks breakage of
1571 * applications, so we live with it
1572 */
5b41535a
JS
1573 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1574 new_rlim->rlim_cur != RLIM_INFINITY)
1575 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1576out:
1c1e618d 1577 read_unlock(&tasklist_lock);
2fb9d268 1578 return retval;
1da177e4
LT
1579}
1580
c022a0ac
JS
1581/* rcu lock must be held */
1582static int check_prlimit_permission(struct task_struct *task)
1583{
1584 const struct cred *cred = current_cred(), *tcred;
1585
fc832ad3
SH
1586 if (current == task)
1587 return 0;
c022a0ac 1588
fc832ad3 1589 tcred = __task_cred(task);
5af66203
EB
1590 if (uid_eq(cred->uid, tcred->euid) &&
1591 uid_eq(cred->uid, tcred->suid) &&
1592 uid_eq(cred->uid, tcred->uid) &&
1593 gid_eq(cred->gid, tcred->egid) &&
1594 gid_eq(cred->gid, tcred->sgid) &&
1595 gid_eq(cred->gid, tcred->gid))
fc832ad3 1596 return 0;
c4a4d603 1597 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1598 return 0;
1599
1600 return -EPERM;
c022a0ac
JS
1601}
1602
1603SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1604 const struct rlimit64 __user *, new_rlim,
1605 struct rlimit64 __user *, old_rlim)
1606{
1607 struct rlimit64 old64, new64;
1608 struct rlimit old, new;
1609 struct task_struct *tsk;
1610 int ret;
1611
1612 if (new_rlim) {
1613 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1614 return -EFAULT;
1615 rlim64_to_rlim(&new64, &new);
1616 }
1617
1618 rcu_read_lock();
1619 tsk = pid ? find_task_by_vpid(pid) : current;
1620 if (!tsk) {
1621 rcu_read_unlock();
1622 return -ESRCH;
1623 }
1624 ret = check_prlimit_permission(tsk);
1625 if (ret) {
1626 rcu_read_unlock();
1627 return ret;
1628 }
1629 get_task_struct(tsk);
1630 rcu_read_unlock();
1631
1632 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1633 old_rlim ? &old : NULL);
1634
1635 if (!ret && old_rlim) {
1636 rlim_to_rlim64(&old, &old64);
1637 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1638 ret = -EFAULT;
1639 }
1640
1641 put_task_struct(tsk);
1642 return ret;
1643}
1644
7855c35d
JS
1645SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1646{
1647 struct rlimit new_rlim;
1648
1649 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1650 return -EFAULT;
5b41535a 1651 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1652}
1653
1da177e4
LT
1654/*
1655 * It would make sense to put struct rusage in the task_struct,
1656 * except that would make the task_struct be *really big*. After
1657 * task_struct gets moved into malloc'ed memory, it would
1658 * make sense to do this. It will make moving the rest of the information
1659 * a lot simpler! (Which we're not doing right now because we're not
1660 * measuring them yet).
1661 *
1da177e4
LT
1662 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1663 * races with threads incrementing their own counters. But since word
1664 * reads are atomic, we either get new values or old values and we don't
1665 * care which for the sums. We always take the siglock to protect reading
1666 * the c* fields from p->signal from races with exit.c updating those
1667 * fields when reaping, so a sample either gets all the additions of a
1668 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1669 *
de047c1b
RT
1670 * Locking:
1671 * We need to take the siglock for CHILDEREN, SELF and BOTH
1672 * for the cases current multithreaded, non-current single threaded
1673 * non-current multithreaded. Thread traversal is now safe with
1674 * the siglock held.
1675 * Strictly speaking, we donot need to take the siglock if we are current and
1676 * single threaded, as no one else can take our signal_struct away, no one
1677 * else can reap the children to update signal->c* counters, and no one else
1678 * can race with the signal-> fields. If we do not take any lock, the
1679 * signal-> fields could be read out of order while another thread was just
1680 * exiting. So we should place a read memory barrier when we avoid the lock.
1681 * On the writer side, write memory barrier is implied in __exit_signal
1682 * as __exit_signal releases the siglock spinlock after updating the signal->
1683 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1684 *
1da177e4
LT
1685 */
1686
f06febc9 1687static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1688{
679c9cd4
SK
1689 r->ru_nvcsw += t->nvcsw;
1690 r->ru_nivcsw += t->nivcsw;
1691 r->ru_minflt += t->min_flt;
1692 r->ru_majflt += t->maj_flt;
1693 r->ru_inblock += task_io_get_inblock(t);
1694 r->ru_oublock += task_io_get_oublock(t);
1695}
1696
1da177e4
LT
1697static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1698{
1699 struct task_struct *t;
1700 unsigned long flags;
0cf55e1e 1701 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1702 unsigned long maxrss = 0;
1da177e4
LT
1703
1704 memset((char *) r, 0, sizeof *r);
64861634 1705 utime = stime = 0;
1da177e4 1706
679c9cd4 1707 if (who == RUSAGE_THREAD) {
e80d0a1a 1708 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1709 accumulate_thread_rusage(p, r);
1f10206c 1710 maxrss = p->signal->maxrss;
679c9cd4
SK
1711 goto out;
1712 }
1713
d6cf723a 1714 if (!lock_task_sighand(p, &flags))
de047c1b 1715 return;
0f59cc4a 1716
1da177e4 1717 switch (who) {
0f59cc4a 1718 case RUSAGE_BOTH:
1da177e4 1719 case RUSAGE_CHILDREN:
1da177e4
LT
1720 utime = p->signal->cutime;
1721 stime = p->signal->cstime;
1722 r->ru_nvcsw = p->signal->cnvcsw;
1723 r->ru_nivcsw = p->signal->cnivcsw;
1724 r->ru_minflt = p->signal->cmin_flt;
1725 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1726 r->ru_inblock = p->signal->cinblock;
1727 r->ru_oublock = p->signal->coublock;
1f10206c 1728 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1729
1730 if (who == RUSAGE_CHILDREN)
1731 break;
1732
1da177e4 1733 case RUSAGE_SELF:
e80d0a1a 1734 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
64861634
MS
1735 utime += tgutime;
1736 stime += tgstime;
1da177e4
LT
1737 r->ru_nvcsw += p->signal->nvcsw;
1738 r->ru_nivcsw += p->signal->nivcsw;
1739 r->ru_minflt += p->signal->min_flt;
1740 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1741 r->ru_inblock += p->signal->inblock;
1742 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1743 if (maxrss < p->signal->maxrss)
1744 maxrss = p->signal->maxrss;
1da177e4
LT
1745 t = p;
1746 do {
f06febc9 1747 accumulate_thread_rusage(t, r);
1da177e4
LT
1748 t = next_thread(t);
1749 } while (t != p);
1da177e4 1750 break;
0f59cc4a 1751
1da177e4
LT
1752 default:
1753 BUG();
1754 }
de047c1b 1755 unlock_task_sighand(p, &flags);
de047c1b 1756
679c9cd4 1757out:
0f59cc4a
ON
1758 cputime_to_timeval(utime, &r->ru_utime);
1759 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1760
1761 if (who != RUSAGE_CHILDREN) {
1762 struct mm_struct *mm = get_task_mm(p);
1763 if (mm) {
1764 setmax_mm_hiwater_rss(&maxrss, mm);
1765 mmput(mm);
1766 }
1767 }
1768 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1769}
1770
1771int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1772{
1773 struct rusage r;
1da177e4 1774 k_getrusage(p, who, &r);
1da177e4
LT
1775 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1776}
1777
e48fbb69 1778SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1779{
679c9cd4
SK
1780 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1781 who != RUSAGE_THREAD)
1da177e4
LT
1782 return -EINVAL;
1783 return getrusage(current, who, ru);
1784}
1785
e48fbb69 1786SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1787{
1788 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1789 return mask;
1790}
3b7391de 1791
028ee4be 1792#ifdef CONFIG_CHECKPOINT_RESTORE
b32dfe37
CG
1793static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1794{
2903ff01 1795 struct fd exe;
b32dfe37 1796 struct dentry *dentry;
2903ff01 1797 int err;
b32dfe37 1798
2903ff01
AV
1799 exe = fdget(fd);
1800 if (!exe.file)
b32dfe37
CG
1801 return -EBADF;
1802
2903ff01 1803 dentry = exe.file->f_path.dentry;
b32dfe37
CG
1804
1805 /*
1806 * Because the original mm->exe_file points to executable file, make
1807 * sure that this one is executable as well, to avoid breaking an
1808 * overall picture.
1809 */
1810 err = -EACCES;
1811 if (!S_ISREG(dentry->d_inode->i_mode) ||
2903ff01 1812 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
b32dfe37
CG
1813 goto exit;
1814
1815 err = inode_permission(dentry->d_inode, MAY_EXEC);
1816 if (err)
1817 goto exit;
1818
bafb282d
KK
1819 down_write(&mm->mmap_sem);
1820
1821 /*
4229fb1d 1822 * Forbid mm->exe_file change if old file still mapped.
bafb282d
KK
1823 */
1824 err = -EBUSY;
4229fb1d
KK
1825 if (mm->exe_file) {
1826 struct vm_area_struct *vma;
1827
1828 for (vma = mm->mmap; vma; vma = vma->vm_next)
1829 if (vma->vm_file &&
1830 path_equal(&vma->vm_file->f_path,
1831 &mm->exe_file->f_path))
1832 goto exit_unlock;
bafb282d
KK
1833 }
1834
b32dfe37
CG
1835 /*
1836 * The symlink can be changed only once, just to disallow arbitrary
1837 * transitions malicious software might bring in. This means one
1838 * could make a snapshot over all processes running and monitor
1839 * /proc/pid/exe changes to notice unusual activity if needed.
1840 */
bafb282d
KK
1841 err = -EPERM;
1842 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1843 goto exit_unlock;
1844
4229fb1d 1845 err = 0;
2903ff01 1846 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
bafb282d 1847exit_unlock:
b32dfe37
CG
1848 up_write(&mm->mmap_sem);
1849
1850exit:
2903ff01 1851 fdput(exe);
b32dfe37
CG
1852 return err;
1853}
1854
028ee4be
CG
1855static int prctl_set_mm(int opt, unsigned long addr,
1856 unsigned long arg4, unsigned long arg5)
1857{
1858 unsigned long rlim = rlimit(RLIMIT_DATA);
028ee4be 1859 struct mm_struct *mm = current->mm;
fe8c7f5c
CG
1860 struct vm_area_struct *vma;
1861 int error;
028ee4be 1862
fe8c7f5c 1863 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
028ee4be
CG
1864 return -EINVAL;
1865
79f0713d 1866 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1867 return -EPERM;
1868
b32dfe37
CG
1869 if (opt == PR_SET_MM_EXE_FILE)
1870 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1871
1ad75b9e 1872 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
1873 return -EINVAL;
1874
fe8c7f5c
CG
1875 error = -EINVAL;
1876
028ee4be
CG
1877 down_read(&mm->mmap_sem);
1878 vma = find_vma(mm, addr);
1879
028ee4be
CG
1880 switch (opt) {
1881 case PR_SET_MM_START_CODE:
fe8c7f5c
CG
1882 mm->start_code = addr;
1883 break;
028ee4be 1884 case PR_SET_MM_END_CODE:
fe8c7f5c 1885 mm->end_code = addr;
028ee4be 1886 break;
028ee4be 1887 case PR_SET_MM_START_DATA:
fe8c7f5c 1888 mm->start_data = addr;
028ee4be 1889 break;
fe8c7f5c
CG
1890 case PR_SET_MM_END_DATA:
1891 mm->end_data = addr;
028ee4be
CG
1892 break;
1893
1894 case PR_SET_MM_START_BRK:
1895 if (addr <= mm->end_data)
1896 goto out;
1897
1898 if (rlim < RLIM_INFINITY &&
1899 (mm->brk - addr) +
1900 (mm->end_data - mm->start_data) > rlim)
1901 goto out;
1902
1903 mm->start_brk = addr;
1904 break;
1905
1906 case PR_SET_MM_BRK:
1907 if (addr <= mm->end_data)
1908 goto out;
1909
1910 if (rlim < RLIM_INFINITY &&
1911 (addr - mm->start_brk) +
1912 (mm->end_data - mm->start_data) > rlim)
1913 goto out;
1914
1915 mm->brk = addr;
1916 break;
1917
fe8c7f5c
CG
1918 /*
1919 * If command line arguments and environment
1920 * are placed somewhere else on stack, we can
1921 * set them up here, ARG_START/END to setup
1922 * command line argumets and ENV_START/END
1923 * for environment.
1924 */
1925 case PR_SET_MM_START_STACK:
1926 case PR_SET_MM_ARG_START:
1927 case PR_SET_MM_ARG_END:
1928 case PR_SET_MM_ENV_START:
1929 case PR_SET_MM_ENV_END:
1930 if (!vma) {
1931 error = -EFAULT;
1932 goto out;
1933 }
fe8c7f5c
CG
1934 if (opt == PR_SET_MM_START_STACK)
1935 mm->start_stack = addr;
1936 else if (opt == PR_SET_MM_ARG_START)
1937 mm->arg_start = addr;
1938 else if (opt == PR_SET_MM_ARG_END)
1939 mm->arg_end = addr;
1940 else if (opt == PR_SET_MM_ENV_START)
1941 mm->env_start = addr;
1942 else if (opt == PR_SET_MM_ENV_END)
1943 mm->env_end = addr;
1944 break;
1945
1946 /*
1947 * This doesn't move auxiliary vector itself
1948 * since it's pinned to mm_struct, but allow
1949 * to fill vector with new values. It's up
1950 * to a caller to provide sane values here
1951 * otherwise user space tools which use this
1952 * vector might be unhappy.
1953 */
1954 case PR_SET_MM_AUXV: {
1955 unsigned long user_auxv[AT_VECTOR_SIZE];
1956
1957 if (arg4 > sizeof(user_auxv))
1958 goto out;
1959 up_read(&mm->mmap_sem);
1960
1961 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1962 return -EFAULT;
1963
1964 /* Make sure the last entry is always AT_NULL */
1965 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1966 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1967
1968 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1969
1970 task_lock(current);
1971 memcpy(mm->saved_auxv, user_auxv, arg4);
1972 task_unlock(current);
1973
1974 return 0;
1975 }
028ee4be 1976 default:
028ee4be
CG
1977 goto out;
1978 }
1979
1980 error = 0;
028ee4be
CG
1981out:
1982 up_read(&mm->mmap_sem);
028ee4be
CG
1983 return error;
1984}
300f786b
CG
1985
1986static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1987{
1988 return put_user(me->clear_child_tid, tid_addr);
1989}
1990
028ee4be
CG
1991#else /* CONFIG_CHECKPOINT_RESTORE */
1992static int prctl_set_mm(int opt, unsigned long addr,
1993 unsigned long arg4, unsigned long arg5)
1994{
1995 return -EINVAL;
1996}
300f786b
CG
1997static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1998{
1999 return -EINVAL;
2000}
028ee4be
CG
2001#endif
2002
c4ea37c2
HC
2003SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2004 unsigned long, arg4, unsigned long, arg5)
1da177e4 2005{
b6dff3ec
DH
2006 struct task_struct *me = current;
2007 unsigned char comm[sizeof(me->comm)];
2008 long error;
1da177e4 2009
d84f4f99
DH
2010 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2011 if (error != -ENOSYS)
1da177e4
LT
2012 return error;
2013
d84f4f99 2014 error = 0;
1da177e4
LT
2015 switch (option) {
2016 case PR_SET_PDEATHSIG:
0730ded5 2017 if (!valid_signal(arg2)) {
1da177e4
LT
2018 error = -EINVAL;
2019 break;
2020 }
b6dff3ec 2021 me->pdeath_signal = arg2;
1da177e4
LT
2022 break;
2023 case PR_GET_PDEATHSIG:
b6dff3ec 2024 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
2025 break;
2026 case PR_GET_DUMPABLE:
b6dff3ec 2027 error = get_dumpable(me->mm);
1da177e4
LT
2028 break;
2029 case PR_SET_DUMPABLE:
7fe5e042
CG
2030 if (arg2 != SUID_DUMP_DISABLE &&
2031 arg2 != SUID_DUMP_USER) {
1da177e4
LT
2032 error = -EINVAL;
2033 break;
2034 }
b6dff3ec 2035 set_dumpable(me->mm, arg2);
1da177e4
LT
2036 break;
2037
2038 case PR_SET_UNALIGN:
b6dff3ec 2039 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
2040 break;
2041 case PR_GET_UNALIGN:
b6dff3ec 2042 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
2043 break;
2044 case PR_SET_FPEMU:
b6dff3ec 2045 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
2046 break;
2047 case PR_GET_FPEMU:
b6dff3ec 2048 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
2049 break;
2050 case PR_SET_FPEXC:
b6dff3ec 2051 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
2052 break;
2053 case PR_GET_FPEXC:
b6dff3ec 2054 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
2055 break;
2056 case PR_GET_TIMING:
2057 error = PR_TIMING_STATISTICAL;
2058 break;
2059 case PR_SET_TIMING:
7b26655f 2060 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4
LT
2061 error = -EINVAL;
2062 break;
b6dff3ec
DH
2063 case PR_SET_NAME:
2064 comm[sizeof(me->comm)-1] = 0;
2065 if (strncpy_from_user(comm, (char __user *)arg2,
2066 sizeof(me->comm) - 1) < 0)
1da177e4 2067 return -EFAULT;
b6dff3ec 2068 set_task_comm(me, comm);
f786ecba 2069 proc_comm_connector(me);
f1fd75bf 2070 break;
b6dff3ec
DH
2071 case PR_GET_NAME:
2072 get_task_comm(comm, me);
2073 if (copy_to_user((char __user *)arg2, comm,
2074 sizeof(comm)))
1da177e4 2075 return -EFAULT;
f1fd75bf 2076 break;
651d765d 2077 case PR_GET_ENDIAN:
b6dff3ec 2078 error = GET_ENDIAN(me, arg2);
651d765d
AB
2079 break;
2080 case PR_SET_ENDIAN:
b6dff3ec 2081 error = SET_ENDIAN(me, arg2);
651d765d 2082 break;
1d9d02fe
AA
2083 case PR_GET_SECCOMP:
2084 error = prctl_get_seccomp();
2085 break;
2086 case PR_SET_SECCOMP:
e2cfabdf 2087 error = prctl_set_seccomp(arg2, (char __user *)arg3);
1d9d02fe 2088 break;
8fb402bc
EB
2089 case PR_GET_TSC:
2090 error = GET_TSC_CTL(arg2);
2091 break;
2092 case PR_SET_TSC:
2093 error = SET_TSC_CTL(arg2);
2094 break;
cdd6c482
IM
2095 case PR_TASK_PERF_EVENTS_DISABLE:
2096 error = perf_event_task_disable();
1d1c7ddb 2097 break;
cdd6c482
IM
2098 case PR_TASK_PERF_EVENTS_ENABLE:
2099 error = perf_event_task_enable();
1d1c7ddb 2100 break;
6976675d
AV
2101 case PR_GET_TIMERSLACK:
2102 error = current->timer_slack_ns;
2103 break;
2104 case PR_SET_TIMERSLACK:
2105 if (arg2 <= 0)
2106 current->timer_slack_ns =
2107 current->default_timer_slack_ns;
2108 else
2109 current->timer_slack_ns = arg2;
2110 break;
4db96cf0
AK
2111 case PR_MCE_KILL:
2112 if (arg4 | arg5)
2113 return -EINVAL;
2114 switch (arg2) {
1087e9b4 2115 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
2116 if (arg3 != 0)
2117 return -EINVAL;
2118 current->flags &= ~PF_MCE_PROCESS;
2119 break;
1087e9b4 2120 case PR_MCE_KILL_SET:
4db96cf0 2121 current->flags |= PF_MCE_PROCESS;
1087e9b4 2122 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 2123 current->flags |= PF_MCE_EARLY;
1087e9b4 2124 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 2125 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
2126 else if (arg3 == PR_MCE_KILL_DEFAULT)
2127 current->flags &=
2128 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2129 else
2130 return -EINVAL;
4db96cf0
AK
2131 break;
2132 default:
2133 return -EINVAL;
2134 }
4db96cf0 2135 break;
1087e9b4
AK
2136 case PR_MCE_KILL_GET:
2137 if (arg2 | arg3 | arg4 | arg5)
2138 return -EINVAL;
2139 if (current->flags & PF_MCE_PROCESS)
2140 error = (current->flags & PF_MCE_EARLY) ?
2141 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2142 else
2143 error = PR_MCE_KILL_DEFAULT;
2144 break;
028ee4be
CG
2145 case PR_SET_MM:
2146 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2147 break;
5702c5ee
CG
2148 case PR_GET_TID_ADDRESS:
2149 error = prctl_get_tid_address(me, (int __user **)arg2);
2150 break;
ebec18a6
LP
2151 case PR_SET_CHILD_SUBREAPER:
2152 me->signal->is_child_subreaper = !!arg2;
ebec18a6
LP
2153 break;
2154 case PR_GET_CHILD_SUBREAPER:
2155 error = put_user(me->signal->is_child_subreaper,
2156 (int __user *) arg2);
2157 break;
259e5e6c
AL
2158 case PR_SET_NO_NEW_PRIVS:
2159 if (arg2 != 1 || arg3 || arg4 || arg5)
2160 return -EINVAL;
2161
2162 current->no_new_privs = 1;
2163 break;
2164 case PR_GET_NO_NEW_PRIVS:
2165 if (arg2 || arg3 || arg4 || arg5)
2166 return -EINVAL;
2167 return current->no_new_privs ? 1 : 0;
1da177e4
LT
2168 default:
2169 error = -EINVAL;
2170 break;
2171 }
2172 return error;
2173}
3cfc348b 2174
836f92ad
HC
2175SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2176 struct getcpu_cache __user *, unused)
3cfc348b
AK
2177{
2178 int err = 0;
2179 int cpu = raw_smp_processor_id();
2180 if (cpup)
2181 err |= put_user(cpu, cpup);
2182 if (nodep)
2183 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2184 return err ? -EFAULT : 0;
2185}
10a0a8d4
JF
2186
2187char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2188
a06a4dc3 2189static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 2190{
a06a4dc3 2191 argv_free(info->argv);
10a0a8d4
JF
2192}
2193
b57b44ae 2194static int __orderly_poweroff(void)
10a0a8d4
JF
2195{
2196 int argc;
b57b44ae 2197 char **argv;
10a0a8d4
JF
2198 static char *envp[] = {
2199 "HOME=/",
2200 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2201 NULL
2202 };
b57b44ae 2203 int ret;
10a0a8d4 2204
b57b44ae 2205 argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
10a0a8d4
JF
2206 if (argv == NULL) {
2207 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2208 __func__, poweroff_cmd);
b57b44ae 2209 return -ENOMEM;
10a0a8d4
JF
2210 }
2211
6c0c0d4d 2212 ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_WAIT_EXEC,
81ab6e7b 2213 NULL, argv_cleanup, NULL);
81ab6e7b
BH
2214 if (ret == -ENOMEM)
2215 argv_free(argv);
10a0a8d4 2216
b57b44ae
AM
2217 return ret;
2218}
2219
2220/**
2221 * orderly_poweroff - Trigger an orderly system poweroff
2222 * @force: force poweroff if command execution fails
2223 *
2224 * This may be called from any context to trigger a system shutdown.
2225 * If the orderly shutdown fails, it will force an immediate shutdown.
2226 */
2227int orderly_poweroff(bool force)
2228{
2229 int ret = __orderly_poweroff();
2230
2231 if (ret && force) {
10a0a8d4
JF
2232 printk(KERN_WARNING "Failed to start orderly shutdown: "
2233 "forcing the issue\n");
2234
b57b44ae
AM
2235 /*
2236 * I guess this should try to kick off some daemon to sync and
2237 * poweroff asap. Or not even bother syncing if we're doing an
2238 * emergency shutdown?
2239 */
10a0a8d4
JF
2240 emergency_sync();
2241 kernel_power_off();
2242 }
2243
2244 return ret;
2245}
2246EXPORT_SYMBOL_GPL(orderly_poweroff);
This page took 0.933354 seconds and 5 git commands to generate.