time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
[deliverable/linux.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de 2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
025b40ab 17#include <linux/module.h>
023f333a 18#include <linux/rtc.h>
4c7ee8de 19
aa6f9c59 20#include "ntp_internal.h"
e2830b5c 21
b0ee7556 22/*
53bbfa9e 23 * NTP timekeeping variables:
a076b214
JS
24 *
25 * Note: All of the NTP state is protected by the timekeeping locks.
b0ee7556 26 */
b0ee7556 27
bd331268 28
53bbfa9e
IM
29/* USER_HZ period (usecs): */
30unsigned long tick_usec = TICK_USEC;
31
02ab20ae 32/* SHIFTED_HZ period (nsecs): */
53bbfa9e 33unsigned long tick_nsec;
7dffa3c6 34
ea7cf49a 35static u64 tick_length;
53bbfa9e
IM
36static u64 tick_length_base;
37
90bf361c 38#define SECS_PER_DAY 86400
bbd12676 39#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 40#define MAX_TICKADJ_SCALED \
bbd12676 41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de 42
43/*
44 * phase-lock loop variables
45 */
53bbfa9e
IM
46
47/*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52static int time_state = TIME_OK;
53
54/* clock status bits: */
8357929e 55static int time_status = STA_UNSYNC;
53bbfa9e 56
53bbfa9e
IM
57/* time adjustment (nsecs): */
58static s64 time_offset;
59
60/* pll time constant: */
61static long time_constant = 2;
62
63/* maximum error (usecs): */
1f5b8f8a 64static long time_maxerror = NTP_PHASE_LIMIT;
53bbfa9e
IM
65
66/* estimated error (usecs): */
1f5b8f8a 67static long time_esterror = NTP_PHASE_LIMIT;
53bbfa9e
IM
68
69/* frequency offset (scaled nsecs/secs): */
70static s64 time_freq;
71
72/* time at last adjustment (secs): */
73static long time_reftime;
74
e1292ba1 75static long time_adjust;
53bbfa9e 76
069569e0
IM
77/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78static s64 ntp_tick_adj;
53bbfa9e 79
833f32d7
JS
80/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81static time64_t ntp_next_leap_sec = TIME64_MAX;
82
025b40ab
AG
83#ifdef CONFIG_NTP_PPS
84
85/*
86 * The following variables are used when a pulse-per-second (PPS) signal
87 * is available. They establish the engineering parameters of the clock
88 * discipline loop when controlled by the PPS signal.
89 */
90#define PPS_VALID 10 /* PPS signal watchdog max (s) */
91#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
92#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
93#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
94#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
95 increase pps_shift or consecutive bad
96 intervals to decrease it */
97#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
98
99static int pps_valid; /* signal watchdog counter */
100static long pps_tf[3]; /* phase median filter */
101static long pps_jitter; /* current jitter (ns) */
102static struct timespec pps_fbase; /* beginning of the last freq interval */
103static int pps_shift; /* current interval duration (s) (shift) */
104static int pps_intcnt; /* interval counter */
105static s64 pps_freq; /* frequency offset (scaled ns/s) */
106static long pps_stabil; /* current stability (scaled ns/s) */
107
108/*
109 * PPS signal quality monitors
110 */
111static long pps_calcnt; /* calibration intervals */
112static long pps_jitcnt; /* jitter limit exceeded */
113static long pps_stbcnt; /* stability limit exceeded */
114static long pps_errcnt; /* calibration errors */
115
116
117/* PPS kernel consumer compensates the whole phase error immediately.
118 * Otherwise, reduce the offset by a fixed factor times the time constant.
119 */
120static inline s64 ntp_offset_chunk(s64 offset)
121{
122 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 return offset;
124 else
125 return shift_right(offset, SHIFT_PLL + time_constant);
126}
127
128static inline void pps_reset_freq_interval(void)
129{
130 /* the PPS calibration interval may end
131 surprisingly early */
132 pps_shift = PPS_INTMIN;
133 pps_intcnt = 0;
134}
135
136/**
137 * pps_clear - Clears the PPS state variables
025b40ab
AG
138 */
139static inline void pps_clear(void)
140{
141 pps_reset_freq_interval();
142 pps_tf[0] = 0;
143 pps_tf[1] = 0;
144 pps_tf[2] = 0;
145 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 pps_freq = 0;
147}
148
149/* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
025b40ab
AG
152 */
153static inline void pps_dec_valid(void)
154{
155 if (pps_valid > 0)
156 pps_valid--;
157 else {
158 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 STA_PPSWANDER | STA_PPSERROR);
160 pps_clear();
161 }
162}
163
164static inline void pps_set_freq(s64 freq)
165{
166 pps_freq = freq;
167}
168
169static inline int is_error_status(int status)
170{
ea54bca3 171 return (status & (STA_UNSYNC|STA_CLOCKERR))
025b40ab
AG
172 /* PPS signal lost when either PPS time or
173 * PPS frequency synchronization requested
174 */
ea54bca3
GS
175 || ((status & (STA_PPSFREQ|STA_PPSTIME))
176 && !(status & STA_PPSSIGNAL))
025b40ab
AG
177 /* PPS jitter exceeded when
178 * PPS time synchronization requested */
ea54bca3 179 || ((status & (STA_PPSTIME|STA_PPSJITTER))
025b40ab
AG
180 == (STA_PPSTIME|STA_PPSJITTER))
181 /* PPS wander exceeded or calibration error when
182 * PPS frequency synchronization requested
183 */
ea54bca3
GS
184 || ((status & STA_PPSFREQ)
185 && (status & (STA_PPSWANDER|STA_PPSERROR)));
025b40ab
AG
186}
187
188static inline void pps_fill_timex(struct timex *txc)
189{
190 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 txc->jitter = pps_jitter;
193 if (!(time_status & STA_NANO))
194 txc->jitter /= NSEC_PER_USEC;
195 txc->shift = pps_shift;
196 txc->stabil = pps_stabil;
197 txc->jitcnt = pps_jitcnt;
198 txc->calcnt = pps_calcnt;
199 txc->errcnt = pps_errcnt;
200 txc->stbcnt = pps_stbcnt;
201}
202
203#else /* !CONFIG_NTP_PPS */
204
205static inline s64 ntp_offset_chunk(s64 offset)
206{
207 return shift_right(offset, SHIFT_PLL + time_constant);
208}
209
210static inline void pps_reset_freq_interval(void) {}
211static inline void pps_clear(void) {}
212static inline void pps_dec_valid(void) {}
213static inline void pps_set_freq(s64 freq) {}
214
215static inline int is_error_status(int status)
216{
217 return status & (STA_UNSYNC|STA_CLOCKERR);
218}
219
220static inline void pps_fill_timex(struct timex *txc)
221{
222 /* PPS is not implemented, so these are zero */
223 txc->ppsfreq = 0;
224 txc->jitter = 0;
225 txc->shift = 0;
226 txc->stabil = 0;
227 txc->jitcnt = 0;
228 txc->calcnt = 0;
229 txc->errcnt = 0;
230 txc->stbcnt = 0;
231}
232
233#endif /* CONFIG_NTP_PPS */
234
8357929e
JS
235
236/**
237 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
238 *
239 */
240static inline int ntp_synced(void)
241{
242 return !(time_status & STA_UNSYNC);
243}
244
245
53bbfa9e
IM
246/*
247 * NTP methods:
248 */
4c7ee8de 249
9ce616aa
IM
250/*
251 * Update (tick_length, tick_length_base, tick_nsec), based
252 * on (tick_usec, ntp_tick_adj, time_freq):
253 */
70bc42f9
AB
254static void ntp_update_frequency(void)
255{
9ce616aa 256 u64 second_length;
bc26c31d 257 u64 new_base;
9ce616aa
IM
258
259 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 << NTP_SCALE_SHIFT;
261
069569e0 262 second_length += ntp_tick_adj;
9ce616aa 263 second_length += time_freq;
70bc42f9 264
9ce616aa 265 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 266 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b 267
268 /*
269 * Don't wait for the next second_overflow, apply
bc26c31d 270 * the change to the tick length immediately:
fdcedf7b 271 */
bc26c31d
IM
272 tick_length += new_base - tick_length_base;
273 tick_length_base = new_base;
70bc42f9
AB
274}
275
478b7aab 276static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
f939890b
IM
277{
278 time_status &= ~STA_MODE;
279
280 if (secs < MINSEC)
478b7aab 281 return 0;
f939890b
IM
282
283 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
478b7aab 284 return 0;
f939890b 285
f939890b
IM
286 time_status |= STA_MODE;
287
a078c6d0 288 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
f939890b
IM
289}
290
ee9851b2
RZ
291static void ntp_update_offset(long offset)
292{
ee9851b2 293 s64 freq_adj;
f939890b
IM
294 s64 offset64;
295 long secs;
ee9851b2
RZ
296
297 if (!(time_status & STA_PLL))
298 return;
299
eea83d89 300 if (!(time_status & STA_NANO))
9f14f669 301 offset *= NSEC_PER_USEC;
ee9851b2
RZ
302
303 /*
304 * Scale the phase adjustment and
305 * clamp to the operating range.
306 */
9f14f669
RZ
307 offset = min(offset, MAXPHASE);
308 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
309
310 /*
311 * Select how the frequency is to be controlled
312 * and in which mode (PLL or FLL).
313 */
7e1b5847 314 secs = get_seconds() - time_reftime;
10dd31a7 315 if (unlikely(time_status & STA_FREQHOLD))
c7986acb
IM
316 secs = 0;
317
7e1b5847 318 time_reftime = get_seconds();
ee9851b2 319
f939890b 320 offset64 = offset;
8af3c153 321 freq_adj = ntp_update_offset_fll(offset64, secs);
f939890b 322
8af3c153
ML
323 /*
324 * Clamp update interval to reduce PLL gain with low
325 * sampling rate (e.g. intermittent network connection)
326 * to avoid instability.
327 */
328 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
329 secs = 1 << (SHIFT_PLL + 1 + time_constant);
330
331 freq_adj += (offset64 * secs) <<
332 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
f939890b
IM
333
334 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
335
336 time_freq = max(freq_adj, -MAXFREQ_SCALED);
337
338 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
339}
340
b0ee7556
RZ
341/**
342 * ntp_clear - Clears the NTP state variables
b0ee7556
RZ
343 */
344void ntp_clear(void)
345{
53bbfa9e
IM
346 time_adjust = 0; /* stop active adjtime() */
347 time_status |= STA_UNSYNC;
348 time_maxerror = NTP_PHASE_LIMIT;
349 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
350
351 ntp_update_frequency();
352
53bbfa9e
IM
353 tick_length = tick_length_base;
354 time_offset = 0;
025b40ab 355
833f32d7 356 ntp_next_leap_sec = TIME64_MAX;
025b40ab
AG
357 /* Clear PPS state variables */
358 pps_clear();
b0ee7556
RZ
359}
360
ea7cf49a
JS
361
362u64 ntp_tick_length(void)
363{
a076b214 364 return tick_length;
ea7cf49a
JS
365}
366
833f32d7
JS
367/**
368 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
369 *
370 * Provides the time of the next leapsecond against CLOCK_REALTIME in
371 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
372 */
373ktime_t ntp_get_next_leap(void)
374{
375 ktime_t ret;
376
377 if ((time_state == TIME_INS) && (time_status & STA_INS))
378 return ktime_set(ntp_next_leap_sec, 0);
379 ret.tv64 = KTIME_MAX;
380 return ret;
381}
ea7cf49a 382
4c7ee8de 383/*
6b43ae8a
JS
384 * this routine handles the overflow of the microsecond field
385 *
386 * The tricky bits of code to handle the accurate clock support
387 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
388 * They were originally developed for SUN and DEC kernels.
389 * All the kudos should go to Dave for this stuff.
390 *
391 * Also handles leap second processing, and returns leap offset
4c7ee8de 392 */
6b43ae8a 393int second_overflow(unsigned long secs)
4c7ee8de 394{
6b43ae8a 395 s64 delta;
bd331268 396 int leap = 0;
6b43ae8a
JS
397
398 /*
399 * Leap second processing. If in leap-insert state at the end of the
400 * day, the system clock is set back one second; if in leap-delete
401 * state, the system clock is set ahead one second.
402 */
4c7ee8de 403 switch (time_state) {
404 case TIME_OK:
833f32d7 405 if (time_status & STA_INS) {
6b43ae8a 406 time_state = TIME_INS;
833f32d7
JS
407 ntp_next_leap_sec = secs + SECS_PER_DAY -
408 (secs % SECS_PER_DAY);
409 } else if (time_status & STA_DEL) {
6b43ae8a 410 time_state = TIME_DEL;
833f32d7
JS
411 ntp_next_leap_sec = secs + SECS_PER_DAY -
412 ((secs+1) % SECS_PER_DAY);
413 }
4c7ee8de 414 break;
415 case TIME_INS:
833f32d7
JS
416 if (!(time_status & STA_INS)) {
417 ntp_next_leap_sec = TIME64_MAX;
6b1859db 418 time_state = TIME_OK;
833f32d7 419 } else if (secs % SECS_PER_DAY == 0) {
6b43ae8a
JS
420 leap = -1;
421 time_state = TIME_OOP;
422 printk(KERN_NOTICE
423 "Clock: inserting leap second 23:59:60 UTC\n");
424 }
4c7ee8de 425 break;
426 case TIME_DEL:
833f32d7
JS
427 if (!(time_status & STA_DEL)) {
428 ntp_next_leap_sec = TIME64_MAX;
6b1859db 429 time_state = TIME_OK;
833f32d7 430 } else if ((secs + 1) % SECS_PER_DAY == 0) {
6b43ae8a 431 leap = 1;
833f32d7 432 ntp_next_leap_sec = TIME64_MAX;
6b43ae8a
JS
433 time_state = TIME_WAIT;
434 printk(KERN_NOTICE
435 "Clock: deleting leap second 23:59:59 UTC\n");
436 }
4c7ee8de 437 break;
438 case TIME_OOP:
833f32d7 439 ntp_next_leap_sec = TIME64_MAX;
4c7ee8de 440 time_state = TIME_WAIT;
6b43ae8a 441 break;
4c7ee8de 442 case TIME_WAIT:
443 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 444 time_state = TIME_OK;
7dffa3c6
RZ
445 break;
446 }
bd331268 447
7dffa3c6
RZ
448
449 /* Bump the maxerror field */
450 time_maxerror += MAXFREQ / NSEC_PER_USEC;
451 if (time_maxerror > NTP_PHASE_LIMIT) {
452 time_maxerror = NTP_PHASE_LIMIT;
453 time_status |= STA_UNSYNC;
4c7ee8de 454 }
455
025b40ab 456 /* Compute the phase adjustment for the next second */
39854fe8
IM
457 tick_length = tick_length_base;
458
025b40ab 459 delta = ntp_offset_chunk(time_offset);
39854fe8
IM
460 time_offset -= delta;
461 tick_length += delta;
4c7ee8de 462
025b40ab
AG
463 /* Check PPS signal */
464 pps_dec_valid();
465
3c972c24 466 if (!time_adjust)
bd331268 467 goto out;
3c972c24
IM
468
469 if (time_adjust > MAX_TICKADJ) {
470 time_adjust -= MAX_TICKADJ;
471 tick_length += MAX_TICKADJ_SCALED;
bd331268 472 goto out;
4c7ee8de 473 }
3c972c24
IM
474
475 if (time_adjust < -MAX_TICKADJ) {
476 time_adjust += MAX_TICKADJ;
477 tick_length -= MAX_TICKADJ_SCALED;
bd331268 478 goto out;
3c972c24
IM
479 }
480
481 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
482 << NTP_SCALE_SHIFT;
483 time_adjust = 0;
6b43ae8a 484
bd331268 485out:
6b43ae8a 486 return leap;
4c7ee8de 487}
488
3c00a1fe
XP
489#ifdef CONFIG_GENERIC_CMOS_UPDATE
490int __weak update_persistent_clock64(struct timespec64 now64)
491{
492 struct timespec now;
493
494 now = timespec64_to_timespec(now64);
495 return update_persistent_clock(now);
496}
497#endif
498
023f333a 499#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
eb3f938f 500static void sync_cmos_clock(struct work_struct *work);
82644459 501
eb3f938f 502static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 503
eb3f938f 504static void sync_cmos_clock(struct work_struct *work)
82644459 505{
d6d29896
TG
506 struct timespec64 now;
507 struct timespec next;
82644459
TG
508 int fail = 1;
509
510 /*
511 * If we have an externally synchronized Linux clock, then update
512 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
513 * called as close as possible to 500 ms before the new second starts.
514 * This code is run on a timer. If the clock is set, that timer
515 * may not expire at the correct time. Thus, we adjust...
a97ad0c4 516 * We want the clock to be within a couple of ticks from the target.
82644459 517 */
53bbfa9e 518 if (!ntp_synced()) {
82644459
TG
519 /*
520 * Not synced, exit, do not restart a timer (if one is
521 * running, let it run out).
522 */
523 return;
53bbfa9e 524 }
82644459 525
d6d29896 526 getnstimeofday64(&now);
a97ad0c4 527 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
9a4a445e 528 struct timespec64 adjust = now;
84e345e4 529
023f333a 530 fail = -ENODEV;
84e345e4
PB
531 if (persistent_clock_is_local)
532 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
023f333a 533#ifdef CONFIG_GENERIC_CMOS_UPDATE
3c00a1fe 534 fail = update_persistent_clock64(adjust);
023f333a 535#endif
3c00a1fe 536
023f333a
JG
537#ifdef CONFIG_RTC_SYSTOHC
538 if (fail == -ENODEV)
84e345e4 539 fail = rtc_set_ntp_time(adjust);
023f333a
JG
540#endif
541 }
82644459 542
4ff4b9e1 543 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
544 if (next.tv_nsec <= 0)
545 next.tv_nsec += NSEC_PER_SEC;
546
023f333a 547 if (!fail || fail == -ENODEV)
82644459
TG
548 next.tv_sec = 659;
549 else
550 next.tv_sec = 0;
551
552 if (next.tv_nsec >= NSEC_PER_SEC) {
553 next.tv_sec++;
554 next.tv_nsec -= NSEC_PER_SEC;
555 }
e8b17594
SD
556 queue_delayed_work(system_power_efficient_wq,
557 &sync_cmos_work, timespec_to_jiffies(&next));
82644459
TG
558}
559
7bd36014 560void ntp_notify_cmos_timer(void)
4c7ee8de 561{
e8b17594 562 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
4c7ee8de 563}
564
82644459 565#else
7bd36014 566void ntp_notify_cmos_timer(void) { }
82644459
TG
567#endif
568
80f22571
IM
569
570/*
571 * Propagate a new txc->status value into the NTP state:
572 */
7d489d15 573static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
80f22571 574{
80f22571
IM
575 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
576 time_state = TIME_OK;
577 time_status = STA_UNSYNC;
833f32d7 578 ntp_next_leap_sec = TIME64_MAX;
025b40ab
AG
579 /* restart PPS frequency calibration */
580 pps_reset_freq_interval();
80f22571 581 }
80f22571
IM
582
583 /*
584 * If we turn on PLL adjustments then reset the
585 * reference time to current time.
586 */
587 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
7e1b5847 588 time_reftime = get_seconds();
80f22571 589
a2a5ac86
JS
590 /* only set allowed bits */
591 time_status &= STA_RONLY;
80f22571 592 time_status |= txc->status & ~STA_RONLY;
80f22571 593}
cd5398be 594
a076b214 595
cc244dda 596static inline void process_adjtimex_modes(struct timex *txc,
7d489d15 597 struct timespec64 *ts,
cc244dda 598 s32 *time_tai)
80f22571
IM
599{
600 if (txc->modes & ADJ_STATUS)
601 process_adj_status(txc, ts);
602
603 if (txc->modes & ADJ_NANO)
604 time_status |= STA_NANO;
e9629165 605
80f22571
IM
606 if (txc->modes & ADJ_MICRO)
607 time_status &= ~STA_NANO;
608
609 if (txc->modes & ADJ_FREQUENCY) {
2b9d1496 610 time_freq = txc->freq * PPM_SCALE;
80f22571
IM
611 time_freq = min(time_freq, MAXFREQ_SCALED);
612 time_freq = max(time_freq, -MAXFREQ_SCALED);
025b40ab
AG
613 /* update pps_freq */
614 pps_set_freq(time_freq);
80f22571
IM
615 }
616
617 if (txc->modes & ADJ_MAXERROR)
618 time_maxerror = txc->maxerror;
e9629165 619
80f22571
IM
620 if (txc->modes & ADJ_ESTERROR)
621 time_esterror = txc->esterror;
622
623 if (txc->modes & ADJ_TIMECONST) {
624 time_constant = txc->constant;
625 if (!(time_status & STA_NANO))
626 time_constant += 4;
627 time_constant = min(time_constant, (long)MAXTC);
628 time_constant = max(time_constant, 0l);
629 }
630
631 if (txc->modes & ADJ_TAI && txc->constant > 0)
cc244dda 632 *time_tai = txc->constant;
80f22571
IM
633
634 if (txc->modes & ADJ_OFFSET)
635 ntp_update_offset(txc->offset);
e9629165 636
80f22571
IM
637 if (txc->modes & ADJ_TICK)
638 tick_usec = txc->tick;
639
640 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
641 ntp_update_frequency();
642}
643
ad460967
JS
644
645
646/**
647 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
4c7ee8de 648 */
ad460967 649int ntp_validate_timex(struct timex *txc)
4c7ee8de 650{
916c7a85 651 if (txc->modes & ADJ_ADJTIME) {
eea83d89 652 /* singleshot must not be used with any other mode bits */
916c7a85 653 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 654 return -EINVAL;
916c7a85
RZ
655 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
656 !capable(CAP_SYS_TIME))
657 return -EPERM;
658 } else {
659 /* In order to modify anything, you gotta be super-user! */
660 if (txc->modes && !capable(CAP_SYS_TIME))
661 return -EPERM;
53bbfa9e
IM
662 /*
663 * if the quartz is off by more than 10% then
664 * something is VERY wrong!
665 */
916c7a85
RZ
666 if (txc->modes & ADJ_TICK &&
667 (txc->tick < 900000/USER_HZ ||
668 txc->tick > 1100000/USER_HZ))
e9629165 669 return -EINVAL;
52bfb360 670 }
4c7ee8de 671
ad460967
JS
672 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
673 return -EPERM;
674
29183a70
JS
675 /*
676 * Check for potential multiplication overflows that can
677 * only happen on 64-bit systems:
678 */
679 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
680 if (LLONG_MIN / PPM_SCALE > txc->freq)
5e5aeb43 681 return -EINVAL;
29183a70 682 if (LLONG_MAX / PPM_SCALE < txc->freq)
5e5aeb43
SL
683 return -EINVAL;
684 }
685
ad460967
JS
686 return 0;
687}
688
689
690/*
691 * adjtimex mainly allows reading (and writing, if superuser) of
692 * kernel time-keeping variables. used by xntpd.
693 */
7d489d15 694int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
ad460967 695{
ad460967
JS
696 int result;
697
916c7a85
RZ
698 if (txc->modes & ADJ_ADJTIME) {
699 long save_adjust = time_adjust;
700
701 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
702 /* adjtime() is independent from ntp_adjtime() */
703 time_adjust = txc->offset;
704 ntp_update_frequency();
705 }
706 txc->offset = save_adjust;
e9629165 707 } else {
ee9851b2 708
e9629165
IM
709 /* If there are input parameters, then process them: */
710 if (txc->modes)
87ace39b 711 process_adjtimex_modes(txc, ts, time_tai);
eea83d89 712
e9629165 713 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
916c7a85 714 NTP_SCALE_SHIFT);
e9629165
IM
715 if (!(time_status & STA_NANO))
716 txc->offset /= NSEC_PER_USEC;
717 }
916c7a85 718
eea83d89 719 result = time_state; /* mostly `TIME_OK' */
025b40ab
AG
720 /* check for errors */
721 if (is_error_status(time_status))
4c7ee8de 722 result = TIME_ERROR;
723
d40e944c 724 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
2b9d1496 725 PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de 726 txc->maxerror = time_maxerror;
727 txc->esterror = time_esterror;
728 txc->status = time_status;
729 txc->constant = time_constant;
70bc42f9 730 txc->precision = 1;
074b3b87 731 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 732 txc->tick = tick_usec;
87ace39b 733 txc->tai = *time_tai;
4c7ee8de 734
025b40ab
AG
735 /* fill PPS status fields */
736 pps_fill_timex(txc);
e9629165 737
7d489d15 738 txc->time.tv_sec = (time_t)ts->tv_sec;
87ace39b 739 txc->time.tv_usec = ts->tv_nsec;
eea83d89
RZ
740 if (!(time_status & STA_NANO))
741 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 742
ee9851b2 743 return result;
4c7ee8de 744}
10a398d0 745
025b40ab
AG
746#ifdef CONFIG_NTP_PPS
747
748/* actually struct pps_normtime is good old struct timespec, but it is
749 * semantically different (and it is the reason why it was invented):
750 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
751 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
752struct pps_normtime {
753 __kernel_time_t sec; /* seconds */
754 long nsec; /* nanoseconds */
755};
756
757/* normalize the timestamp so that nsec is in the
758 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
759static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
760{
761 struct pps_normtime norm = {
762 .sec = ts.tv_sec,
763 .nsec = ts.tv_nsec
764 };
765
766 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
767 norm.nsec -= NSEC_PER_SEC;
768 norm.sec++;
769 }
770
771 return norm;
772}
773
774/* get current phase correction and jitter */
775static inline long pps_phase_filter_get(long *jitter)
776{
777 *jitter = pps_tf[0] - pps_tf[1];
778 if (*jitter < 0)
779 *jitter = -*jitter;
780
781 /* TODO: test various filters */
782 return pps_tf[0];
783}
784
785/* add the sample to the phase filter */
786static inline void pps_phase_filter_add(long err)
787{
788 pps_tf[2] = pps_tf[1];
789 pps_tf[1] = pps_tf[0];
790 pps_tf[0] = err;
791}
792
793/* decrease frequency calibration interval length.
794 * It is halved after four consecutive unstable intervals.
795 */
796static inline void pps_dec_freq_interval(void)
797{
798 if (--pps_intcnt <= -PPS_INTCOUNT) {
799 pps_intcnt = -PPS_INTCOUNT;
800 if (pps_shift > PPS_INTMIN) {
801 pps_shift--;
802 pps_intcnt = 0;
803 }
804 }
805}
806
807/* increase frequency calibration interval length.
808 * It is doubled after four consecutive stable intervals.
809 */
810static inline void pps_inc_freq_interval(void)
811{
812 if (++pps_intcnt >= PPS_INTCOUNT) {
813 pps_intcnt = PPS_INTCOUNT;
814 if (pps_shift < PPS_INTMAX) {
815 pps_shift++;
816 pps_intcnt = 0;
817 }
818 }
819}
820
821/* update clock frequency based on MONOTONIC_RAW clock PPS signal
822 * timestamps
823 *
824 * At the end of the calibration interval the difference between the
825 * first and last MONOTONIC_RAW clock timestamps divided by the length
826 * of the interval becomes the frequency update. If the interval was
827 * too long, the data are discarded.
828 * Returns the difference between old and new frequency values.
829 */
830static long hardpps_update_freq(struct pps_normtime freq_norm)
831{
832 long delta, delta_mod;
833 s64 ftemp;
834
835 /* check if the frequency interval was too long */
836 if (freq_norm.sec > (2 << pps_shift)) {
837 time_status |= STA_PPSERROR;
838 pps_errcnt++;
839 pps_dec_freq_interval();
6d9bcb62
JS
840 printk_deferred(KERN_ERR
841 "hardpps: PPSERROR: interval too long - %ld s\n",
842 freq_norm.sec);
025b40ab
AG
843 return 0;
844 }
845
846 /* here the raw frequency offset and wander (stability) is
847 * calculated. If the wander is less than the wander threshold
848 * the interval is increased; otherwise it is decreased.
849 */
850 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
851 freq_norm.sec);
852 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
853 pps_freq = ftemp;
854 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
6d9bcb62
JS
855 printk_deferred(KERN_WARNING
856 "hardpps: PPSWANDER: change=%ld\n", delta);
025b40ab
AG
857 time_status |= STA_PPSWANDER;
858 pps_stbcnt++;
859 pps_dec_freq_interval();
860 } else { /* good sample */
861 pps_inc_freq_interval();
862 }
863
864 /* the stability metric is calculated as the average of recent
865 * frequency changes, but is used only for performance
866 * monitoring
867 */
868 delta_mod = delta;
869 if (delta_mod < 0)
870 delta_mod = -delta_mod;
871 pps_stabil += (div_s64(((s64)delta_mod) <<
872 (NTP_SCALE_SHIFT - SHIFT_USEC),
873 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
874
875 /* if enabled, the system clock frequency is updated */
876 if ((time_status & STA_PPSFREQ) != 0 &&
877 (time_status & STA_FREQHOLD) == 0) {
878 time_freq = pps_freq;
879 ntp_update_frequency();
880 }
881
882 return delta;
883}
884
885/* correct REALTIME clock phase error against PPS signal */
886static void hardpps_update_phase(long error)
887{
888 long correction = -error;
889 long jitter;
890
891 /* add the sample to the median filter */
892 pps_phase_filter_add(correction);
893 correction = pps_phase_filter_get(&jitter);
894
895 /* Nominal jitter is due to PPS signal noise. If it exceeds the
896 * threshold, the sample is discarded; otherwise, if so enabled,
897 * the time offset is updated.
898 */
899 if (jitter > (pps_jitter << PPS_POPCORN)) {
6d9bcb62
JS
900 printk_deferred(KERN_WARNING
901 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
902 jitter, (pps_jitter << PPS_POPCORN));
025b40ab
AG
903 time_status |= STA_PPSJITTER;
904 pps_jitcnt++;
905 } else if (time_status & STA_PPSTIME) {
906 /* correct the time using the phase offset */
907 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
908 NTP_INTERVAL_FREQ);
909 /* cancel running adjtime() */
910 time_adjust = 0;
911 }
912 /* update jitter */
913 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
914}
915
916/*
aa6f9c59 917 * __hardpps() - discipline CPU clock oscillator to external PPS signal
025b40ab
AG
918 *
919 * This routine is called at each PPS signal arrival in order to
920 * discipline the CPU clock oscillator to the PPS signal. It takes two
921 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
922 * is used to correct clock phase error and the latter is used to
923 * correct the frequency.
924 *
925 * This code is based on David Mills's reference nanokernel
926 * implementation. It was mostly rewritten but keeps the same idea.
927 */
aa6f9c59 928void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
025b40ab
AG
929{
930 struct pps_normtime pts_norm, freq_norm;
025b40ab
AG
931
932 pts_norm = pps_normalize_ts(*phase_ts);
933
025b40ab
AG
934 /* clear the error bits, they will be set again if needed */
935 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
936
937 /* indicate signal presence */
938 time_status |= STA_PPSSIGNAL;
939 pps_valid = PPS_VALID;
940
941 /* when called for the first time,
942 * just start the frequency interval */
943 if (unlikely(pps_fbase.tv_sec == 0)) {
944 pps_fbase = *raw_ts;
025b40ab
AG
945 return;
946 }
947
948 /* ok, now we have a base for frequency calculation */
949 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
950
951 /* check that the signal is in the range
952 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
953 if ((freq_norm.sec == 0) ||
954 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
955 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
956 time_status |= STA_PPSJITTER;
957 /* restart the frequency calibration interval */
958 pps_fbase = *raw_ts;
6d9bcb62 959 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
025b40ab
AG
960 return;
961 }
962
963 /* signal is ok */
964
965 /* check if the current frequency interval is finished */
966 if (freq_norm.sec >= (1 << pps_shift)) {
967 pps_calcnt++;
968 /* restart the frequency calibration interval */
969 pps_fbase = *raw_ts;
970 hardpps_update_freq(freq_norm);
971 }
972
973 hardpps_update_phase(pts_norm.nsec);
974
025b40ab 975}
025b40ab
AG
976#endif /* CONFIG_NTP_PPS */
977
10a398d0
RZ
978static int __init ntp_tick_adj_setup(char *str)
979{
cdafb93f
FF
980 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
981
982 if (rc)
983 return rc;
069569e0
IM
984 ntp_tick_adj <<= NTP_SCALE_SHIFT;
985
10a398d0
RZ
986 return 1;
987}
988
989__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
990
991void __init ntp_init(void)
992{
993 ntp_clear();
7dffa3c6 994}
This page took 0.720078 seconds and 5 git commands to generate.