time: Fix a bug in timekeeping_suspend() with no persistent clock
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
31ade306
FT
67/* Flag for if there is a persistent clock on this platform */
68bool __read_mostly persistent_clock_exist = false;
69
1e75fa8b
JS
70static inline void tk_normalize_xtime(struct timekeeper *tk)
71{
876e7881
PZ
72 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
73 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
74 tk->xtime_sec++;
75 }
76}
77
c905fae4
TG
78static inline struct timespec64 tk_xtime(struct timekeeper *tk)
79{
80 struct timespec64 ts;
81
82 ts.tv_sec = tk->xtime_sec;
876e7881 83 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
84 return ts;
85}
86
7d489d15 87static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
88{
89 tk->xtime_sec = ts->tv_sec;
876e7881 90 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
91}
92
7d489d15 93static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
94{
95 tk->xtime_sec += ts->tv_sec;
876e7881 96 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 97 tk_normalize_xtime(tk);
1e75fa8b 98}
8fcce546 99
7d489d15 100static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 101{
7d489d15 102 struct timespec64 tmp;
6d0ef903
JS
103
104 /*
105 * Verify consistency of: offset_real = -wall_to_monotonic
106 * before modifying anything
107 */
7d489d15 108 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 109 -tk->wall_to_monotonic.tv_nsec);
7d489d15 110 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 111 tk->wall_to_monotonic = wtm;
7d489d15
JS
112 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
113 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 114 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
115}
116
47da70d3 117static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 118{
47da70d3 119 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
120}
121
3c17ad19 122#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26
JS
123#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
124/*
125 * These simple flag variables are managed
126 * without locks, which is racy, but ok since
127 * we don't really care about being super
128 * precise about how many events were seen,
129 * just that a problem was observed.
130 */
131static int timekeeping_underflow_seen;
132static int timekeeping_overflow_seen;
133
134/* last_warning is only modified under the timekeeping lock */
135static long timekeeping_last_warning;
136
3c17ad19
JS
137static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
138{
139
876e7881
PZ
140 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
141 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
142
143 if (offset > max_cycles) {
a558cd02 144 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 145 offset, name, max_cycles);
a558cd02 146 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
147 } else {
148 if (offset > (max_cycles >> 1)) {
149 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
150 offset, name, max_cycles >> 1);
151 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
152 }
153 }
4ca22c26
JS
154
155 if (timekeeping_underflow_seen) {
156 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
157 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
158 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
159 printk_deferred(" Your kernel is probably still fine.\n");
160 timekeeping_last_warning = jiffies;
161 }
162 timekeeping_underflow_seen = 0;
163 }
164
165 if (timekeeping_overflow_seen) {
166 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
167 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
168 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
169 printk_deferred(" Your kernel is probably still fine.\n");
170 timekeeping_last_warning = jiffies;
171 }
172 timekeeping_overflow_seen = 0;
173 }
3c17ad19 174}
a558cd02
JS
175
176static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
177{
4ca22c26
JS
178 cycle_t now, last, mask, max, delta;
179 unsigned int seq;
a558cd02 180
4ca22c26
JS
181 /*
182 * Since we're called holding a seqlock, the data may shift
183 * under us while we're doing the calculation. This can cause
184 * false positives, since we'd note a problem but throw the
185 * results away. So nest another seqlock here to atomically
186 * grab the points we are checking with.
187 */
188 do {
189 seq = read_seqcount_begin(&tk_core.seq);
190 now = tkr->read(tkr->clock);
191 last = tkr->cycle_last;
192 mask = tkr->mask;
193 max = tkr->clock->max_cycles;
194 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 195
4ca22c26 196 delta = clocksource_delta(now, last, mask);
a558cd02 197
057b87e3
JS
198 /*
199 * Try to catch underflows by checking if we are seeing small
200 * mask-relative negative values.
201 */
4ca22c26
JS
202 if (unlikely((~delta & mask) < (mask >> 3))) {
203 timekeeping_underflow_seen = 1;
057b87e3 204 delta = 0;
4ca22c26 205 }
057b87e3 206
a558cd02 207 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26
JS
208 if (unlikely(delta > max)) {
209 timekeeping_overflow_seen = 1;
a558cd02 210 delta = tkr->clock->max_cycles;
4ca22c26 211 }
a558cd02
JS
212
213 return delta;
214}
3c17ad19
JS
215#else
216static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
217{
218}
a558cd02
JS
219static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
220{
221 cycle_t cycle_now, delta;
222
223 /* read clocksource */
224 cycle_now = tkr->read(tkr->clock);
225
226 /* calculate the delta since the last update_wall_time */
227 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
228
229 return delta;
230}
3c17ad19
JS
231#endif
232
155ec602 233/**
d26e4fe0 234 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 235 *
d26e4fe0 236 * @tk: The target timekeeper to setup.
155ec602
MS
237 * @clock: Pointer to clocksource.
238 *
239 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
240 * pair and interval request.
241 *
242 * Unless you're the timekeeping code, you should not be using this!
243 */
f726a697 244static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
245{
246 cycle_t interval;
a386b5af 247 u64 tmp, ntpinterval;
1e75fa8b 248 struct clocksource *old_clock;
155ec602 249
876e7881
PZ
250 old_clock = tk->tkr_mono.clock;
251 tk->tkr_mono.clock = clock;
252 tk->tkr_mono.read = clock->read;
253 tk->tkr_mono.mask = clock->mask;
254 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 255
4a4ad80d
PZ
256 tk->tkr_raw.clock = clock;
257 tk->tkr_raw.read = clock->read;
258 tk->tkr_raw.mask = clock->mask;
259 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
260
155ec602
MS
261 /* Do the ns -> cycle conversion first, using original mult */
262 tmp = NTP_INTERVAL_LENGTH;
263 tmp <<= clock->shift;
a386b5af 264 ntpinterval = tmp;
0a544198
MS
265 tmp += clock->mult/2;
266 do_div(tmp, clock->mult);
155ec602
MS
267 if (tmp == 0)
268 tmp = 1;
269
270 interval = (cycle_t) tmp;
f726a697 271 tk->cycle_interval = interval;
155ec602
MS
272
273 /* Go back from cycles -> shifted ns */
f726a697
JS
274 tk->xtime_interval = (u64) interval * clock->mult;
275 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
276 tk->raw_interval =
0a544198 277 ((u64) interval * clock->mult) >> clock->shift;
155ec602 278
1e75fa8b
JS
279 /* if changing clocks, convert xtime_nsec shift units */
280 if (old_clock) {
281 int shift_change = clock->shift - old_clock->shift;
282 if (shift_change < 0)
876e7881 283 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 284 else
876e7881 285 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 286 }
4a4ad80d
PZ
287 tk->tkr_raw.xtime_nsec = 0;
288
876e7881 289 tk->tkr_mono.shift = clock->shift;
4a4ad80d 290 tk->tkr_raw.shift = clock->shift;
155ec602 291
f726a697
JS
292 tk->ntp_error = 0;
293 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 294 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
295
296 /*
297 * The timekeeper keeps its own mult values for the currently
298 * active clocksource. These value will be adjusted via NTP
299 * to counteract clock drifting.
300 */
876e7881 301 tk->tkr_mono.mult = clock->mult;
4a4ad80d 302 tk->tkr_raw.mult = clock->mult;
dc491596 303 tk->ntp_err_mult = 0;
155ec602 304}
8524070b 305
2ba2a305 306/* Timekeeper helper functions. */
7b1f6207
SW
307
308#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
309static u32 default_arch_gettimeoffset(void) { return 0; }
310u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 311#else
e06fde37 312static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
313#endif
314
0e5ac3a8 315static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 316{
a558cd02 317 cycle_t delta;
1e75fa8b 318 s64 nsec;
2ba2a305 319
a558cd02 320 delta = timekeeping_get_delta(tkr);
2ba2a305 321
0e5ac3a8
TG
322 nsec = delta * tkr->mult + tkr->xtime_nsec;
323 nsec >>= tkr->shift;
f2a5a085 324
7b1f6207 325 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 326 return nsec + arch_gettimeoffset();
2ba2a305
MS
327}
328
4396e058
TG
329/**
330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 331 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
332 *
333 * We want to use this from any context including NMI and tracing /
334 * instrumenting the timekeeping code itself.
335 *
336 * So we handle this differently than the other timekeeping accessor
337 * functions which retry when the sequence count has changed. The
338 * update side does:
339 *
340 * smp_wmb(); <- Ensure that the last base[1] update is visible
341 * tkf->seq++;
342 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 343 * update(tkf->base[0], tkr);
4396e058
TG
344 * smp_wmb(); <- Ensure that the base[0] update is visible
345 * tkf->seq++;
346 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 347 * update(tkf->base[1], tkr);
4396e058
TG
348 *
349 * The reader side does:
350 *
351 * do {
352 * seq = tkf->seq;
353 * smp_rmb();
354 * idx = seq & 0x01;
355 * now = now(tkf->base[idx]);
356 * smp_rmb();
357 * } while (seq != tkf->seq)
358 *
359 * As long as we update base[0] readers are forced off to
360 * base[1]. Once base[0] is updated readers are redirected to base[0]
361 * and the base[1] update takes place.
362 *
363 * So if a NMI hits the update of base[0] then it will use base[1]
364 * which is still consistent. In the worst case this can result is a
365 * slightly wrong timestamp (a few nanoseconds). See
366 * @ktime_get_mono_fast_ns.
367 */
4498e746 368static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 369{
4498e746 370 struct tk_read_base *base = tkf->base;
4396e058
TG
371
372 /* Force readers off to base[1] */
4498e746 373 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
374
375 /* Update base[0] */
affe3e85 376 memcpy(base, tkr, sizeof(*base));
4396e058
TG
377
378 /* Force readers back to base[0] */
4498e746 379 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
380
381 /* Update base[1] */
382 memcpy(base + 1, base, sizeof(*base));
383}
384
385/**
386 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
387 *
388 * This timestamp is not guaranteed to be monotonic across an update.
389 * The timestamp is calculated by:
390 *
391 * now = base_mono + clock_delta * slope
392 *
393 * So if the update lowers the slope, readers who are forced to the
394 * not yet updated second array are still using the old steeper slope.
395 *
396 * tmono
397 * ^
398 * | o n
399 * | o n
400 * | u
401 * | o
402 * |o
403 * |12345678---> reader order
404 *
405 * o = old slope
406 * u = update
407 * n = new slope
408 *
409 * So reader 6 will observe time going backwards versus reader 5.
410 *
411 * While other CPUs are likely to be able observe that, the only way
412 * for a CPU local observation is when an NMI hits in the middle of
413 * the update. Timestamps taken from that NMI context might be ahead
414 * of the following timestamps. Callers need to be aware of that and
415 * deal with it.
416 */
4498e746 417static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
418{
419 struct tk_read_base *tkr;
420 unsigned int seq;
421 u64 now;
422
423 do {
4498e746
PZ
424 seq = raw_read_seqcount(&tkf->seq);
425 tkr = tkf->base + (seq & 0x01);
876e7881 426 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 427 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 428
4396e058
TG
429 return now;
430}
4498e746
PZ
431
432u64 ktime_get_mono_fast_ns(void)
433{
434 return __ktime_get_fast_ns(&tk_fast_mono);
435}
4396e058
TG
436EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
437
f09cb9a1
PZ
438u64 ktime_get_raw_fast_ns(void)
439{
440 return __ktime_get_fast_ns(&tk_fast_raw);
441}
442EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
443
060407ae
RW
444/* Suspend-time cycles value for halted fast timekeeper. */
445static cycle_t cycles_at_suspend;
446
447static cycle_t dummy_clock_read(struct clocksource *cs)
448{
449 return cycles_at_suspend;
450}
451
452/**
453 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
454 * @tk: Timekeeper to snapshot.
455 *
456 * It generally is unsafe to access the clocksource after timekeeping has been
457 * suspended, so take a snapshot of the readout base of @tk and use it as the
458 * fast timekeeper's readout base while suspended. It will return the same
459 * number of cycles every time until timekeeping is resumed at which time the
460 * proper readout base for the fast timekeeper will be restored automatically.
461 */
462static void halt_fast_timekeeper(struct timekeeper *tk)
463{
464 static struct tk_read_base tkr_dummy;
876e7881 465 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
466
467 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
468 cycles_at_suspend = tkr->read(tkr->clock);
469 tkr_dummy.read = dummy_clock_read;
4498e746 470 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
471
472 tkr = &tk->tkr_raw;
473 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
474 tkr_dummy.read = dummy_clock_read;
475 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
476}
477
c905fae4
TG
478#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
479
480static inline void update_vsyscall(struct timekeeper *tk)
481{
0680eb1f 482 struct timespec xt, wm;
c905fae4 483
e2dff1ec 484 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 485 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
486 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
487 tk->tkr_mono.cycle_last);
c905fae4
TG
488}
489
490static inline void old_vsyscall_fixup(struct timekeeper *tk)
491{
492 s64 remainder;
493
494 /*
495 * Store only full nanoseconds into xtime_nsec after rounding
496 * it up and add the remainder to the error difference.
497 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
498 * by truncating the remainder in vsyscalls. However, it causes
499 * additional work to be done in timekeeping_adjust(). Once
500 * the vsyscall implementations are converted to use xtime_nsec
501 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
502 * users are removed, this can be killed.
503 */
876e7881
PZ
504 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
505 tk->tkr_mono.xtime_nsec -= remainder;
506 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
c905fae4 507 tk->ntp_error += remainder << tk->ntp_error_shift;
876e7881 508 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
c905fae4
TG
509}
510#else
511#define old_vsyscall_fixup(tk)
512#endif
513
e0b306fe
MT
514static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
515
780427f0 516static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 517{
780427f0 518 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
519}
520
521/**
522 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
523 */
524int pvclock_gtod_register_notifier(struct notifier_block *nb)
525{
3fdb14fd 526 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
527 unsigned long flags;
528 int ret;
529
9a7a71b1 530 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 531 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 532 update_pvclock_gtod(tk, true);
9a7a71b1 533 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
534
535 return ret;
536}
537EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
538
539/**
540 * pvclock_gtod_unregister_notifier - unregister a pvclock
541 * timedata update listener
e0b306fe
MT
542 */
543int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
544{
e0b306fe
MT
545 unsigned long flags;
546 int ret;
547
9a7a71b1 548 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 549 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 550 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
551
552 return ret;
553}
554EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
555
7c032df5
TG
556/*
557 * Update the ktime_t based scalar nsec members of the timekeeper
558 */
559static inline void tk_update_ktime_data(struct timekeeper *tk)
560{
9e3680b1
HS
561 u64 seconds;
562 u32 nsec;
7c032df5
TG
563
564 /*
565 * The xtime based monotonic readout is:
566 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
567 * The ktime based monotonic readout is:
568 * nsec = base_mono + now();
569 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
570 */
9e3680b1
HS
571 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
572 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 573 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
574
575 /* Update the monotonic raw base */
4a4ad80d 576 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
577
578 /*
579 * The sum of the nanoseconds portions of xtime and
580 * wall_to_monotonic can be greater/equal one second. Take
581 * this into account before updating tk->ktime_sec.
582 */
876e7881 583 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
584 if (nsec >= NSEC_PER_SEC)
585 seconds++;
586 tk->ktime_sec = seconds;
7c032df5
TG
587}
588
9a7a71b1 589/* must hold timekeeper_lock */
04397fe9 590static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 591{
04397fe9 592 if (action & TK_CLEAR_NTP) {
f726a697 593 tk->ntp_error = 0;
cc06268c
TG
594 ntp_clear();
595 }
48cdc135 596
7c032df5
TG
597 tk_update_ktime_data(tk);
598
9bf2419f
TG
599 update_vsyscall(tk);
600 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
601
04397fe9 602 if (action & TK_MIRROR)
3fdb14fd
TG
603 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
604 sizeof(tk_core.timekeeper));
4396e058 605
4498e746 606 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 607 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
cc06268c
TG
608}
609
8524070b 610/**
155ec602 611 * timekeeping_forward_now - update clock to the current time
8524070b 612 *
9a055117
RZ
613 * Forward the current clock to update its state since the last call to
614 * update_wall_time(). This is useful before significant clock changes,
615 * as it avoids having to deal with this time offset explicitly.
8524070b 616 */
f726a697 617static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 618{
876e7881 619 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 620 cycle_t cycle_now, delta;
9a055117 621 s64 nsec;
8524070b 622
876e7881
PZ
623 cycle_now = tk->tkr_mono.read(clock);
624 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
625 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 626 tk->tkr_raw.cycle_last = cycle_now;
8524070b 627
876e7881 628 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 629
7b1f6207 630 /* If arch requires, add in get_arch_timeoffset() */
876e7881 631 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 632
f726a697 633 tk_normalize_xtime(tk);
2d42244a 634
4a4ad80d 635 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 636 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 637}
638
639/**
d6d29896 640 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 641 * @ts: pointer to the timespec to be set
642 *
1e817fb6
KC
643 * Updates the time of day in the timespec.
644 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 645 */
d6d29896 646int __getnstimeofday64(struct timespec64 *ts)
8524070b 647{
3fdb14fd 648 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 649 unsigned long seq;
1e75fa8b 650 s64 nsecs = 0;
8524070b 651
652 do {
3fdb14fd 653 seq = read_seqcount_begin(&tk_core.seq);
8524070b 654
4e250fdd 655 ts->tv_sec = tk->xtime_sec;
876e7881 656 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 657
3fdb14fd 658 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 659
ec145bab 660 ts->tv_nsec = 0;
d6d29896 661 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
662
663 /*
664 * Do not bail out early, in case there were callers still using
665 * the value, even in the face of the WARN_ON.
666 */
667 if (unlikely(timekeeping_suspended))
668 return -EAGAIN;
669 return 0;
670}
d6d29896 671EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
672
673/**
d6d29896 674 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 675 * @ts: pointer to the timespec64 to be set
1e817fb6 676 *
5322e4c2 677 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 678 */
d6d29896 679void getnstimeofday64(struct timespec64 *ts)
1e817fb6 680{
d6d29896 681 WARN_ON(__getnstimeofday64(ts));
8524070b 682}
d6d29896 683EXPORT_SYMBOL(getnstimeofday64);
8524070b 684
951ed4d3
MS
685ktime_t ktime_get(void)
686{
3fdb14fd 687 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 688 unsigned int seq;
a016a5bd
TG
689 ktime_t base;
690 s64 nsecs;
951ed4d3
MS
691
692 WARN_ON(timekeeping_suspended);
693
694 do {
3fdb14fd 695 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
696 base = tk->tkr_mono.base;
697 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 698
3fdb14fd 699 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 700
a016a5bd 701 return ktime_add_ns(base, nsecs);
951ed4d3
MS
702}
703EXPORT_SYMBOL_GPL(ktime_get);
704
0077dc60
TG
705static ktime_t *offsets[TK_OFFS_MAX] = {
706 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
707 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
708 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
709};
710
711ktime_t ktime_get_with_offset(enum tk_offsets offs)
712{
713 struct timekeeper *tk = &tk_core.timekeeper;
714 unsigned int seq;
715 ktime_t base, *offset = offsets[offs];
716 s64 nsecs;
717
718 WARN_ON(timekeeping_suspended);
719
720 do {
721 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
722 base = ktime_add(tk->tkr_mono.base, *offset);
723 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
724
725 } while (read_seqcount_retry(&tk_core.seq, seq));
726
727 return ktime_add_ns(base, nsecs);
728
729}
730EXPORT_SYMBOL_GPL(ktime_get_with_offset);
731
9a6b5197
TG
732/**
733 * ktime_mono_to_any() - convert mononotic time to any other time
734 * @tmono: time to convert.
735 * @offs: which offset to use
736 */
737ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
738{
739 ktime_t *offset = offsets[offs];
740 unsigned long seq;
741 ktime_t tconv;
742
743 do {
744 seq = read_seqcount_begin(&tk_core.seq);
745 tconv = ktime_add(tmono, *offset);
746 } while (read_seqcount_retry(&tk_core.seq, seq));
747
748 return tconv;
749}
750EXPORT_SYMBOL_GPL(ktime_mono_to_any);
751
f519b1a2
TG
752/**
753 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
754 */
755ktime_t ktime_get_raw(void)
756{
757 struct timekeeper *tk = &tk_core.timekeeper;
758 unsigned int seq;
759 ktime_t base;
760 s64 nsecs;
761
762 do {
763 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
764 base = tk->tkr_raw.base;
765 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
766
767 } while (read_seqcount_retry(&tk_core.seq, seq));
768
769 return ktime_add_ns(base, nsecs);
770}
771EXPORT_SYMBOL_GPL(ktime_get_raw);
772
951ed4d3 773/**
d6d29896 774 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
775 * @ts: pointer to timespec variable
776 *
777 * The function calculates the monotonic clock from the realtime
778 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 779 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 780 */
d6d29896 781void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 782{
3fdb14fd 783 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 784 struct timespec64 tomono;
ec145bab 785 s64 nsec;
951ed4d3 786 unsigned int seq;
951ed4d3
MS
787
788 WARN_ON(timekeeping_suspended);
789
790 do {
3fdb14fd 791 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 792 ts->tv_sec = tk->xtime_sec;
876e7881 793 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 794 tomono = tk->wall_to_monotonic;
951ed4d3 795
3fdb14fd 796 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 797
d6d29896
TG
798 ts->tv_sec += tomono.tv_sec;
799 ts->tv_nsec = 0;
800 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 801}
d6d29896 802EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 803
9e3680b1
HS
804/**
805 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
806 *
807 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
808 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
809 * works on both 32 and 64 bit systems. On 32 bit systems the readout
810 * covers ~136 years of uptime which should be enough to prevent
811 * premature wrap arounds.
812 */
813time64_t ktime_get_seconds(void)
814{
815 struct timekeeper *tk = &tk_core.timekeeper;
816
817 WARN_ON(timekeeping_suspended);
818 return tk->ktime_sec;
819}
820EXPORT_SYMBOL_GPL(ktime_get_seconds);
821
dbe7aa62
HS
822/**
823 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
824 *
825 * Returns the wall clock seconds since 1970. This replaces the
826 * get_seconds() interface which is not y2038 safe on 32bit systems.
827 *
828 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
829 * 32bit systems the access must be protected with the sequence
830 * counter to provide "atomic" access to the 64bit tk->xtime_sec
831 * value.
832 */
833time64_t ktime_get_real_seconds(void)
834{
835 struct timekeeper *tk = &tk_core.timekeeper;
836 time64_t seconds;
837 unsigned int seq;
838
839 if (IS_ENABLED(CONFIG_64BIT))
840 return tk->xtime_sec;
841
842 do {
843 seq = read_seqcount_begin(&tk_core.seq);
844 seconds = tk->xtime_sec;
845
846 } while (read_seqcount_retry(&tk_core.seq, seq));
847
848 return seconds;
849}
850EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
851
e2c18e49
AG
852#ifdef CONFIG_NTP_PPS
853
854/**
855 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
856 * @ts_raw: pointer to the timespec to be set to raw monotonic time
857 * @ts_real: pointer to the timespec to be set to the time of day
858 *
859 * This function reads both the time of day and raw monotonic time at the
860 * same time atomically and stores the resulting timestamps in timespec
861 * format.
862 */
863void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
864{
3fdb14fd 865 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
866 unsigned long seq;
867 s64 nsecs_raw, nsecs_real;
868
869 WARN_ON_ONCE(timekeeping_suspended);
870
871 do {
3fdb14fd 872 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 873
7d489d15 874 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 875 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 876 ts_real->tv_nsec = 0;
e2c18e49 877
4a4ad80d 878 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876e7881 879 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
e2c18e49 880
3fdb14fd 881 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
882
883 timespec_add_ns(ts_raw, nsecs_raw);
884 timespec_add_ns(ts_real, nsecs_real);
885}
886EXPORT_SYMBOL(getnstime_raw_and_real);
887
888#endif /* CONFIG_NTP_PPS */
889
8524070b 890/**
891 * do_gettimeofday - Returns the time of day in a timeval
892 * @tv: pointer to the timeval to be set
893 *
efd9ac86 894 * NOTE: Users should be converted to using getnstimeofday()
8524070b 895 */
896void do_gettimeofday(struct timeval *tv)
897{
d6d29896 898 struct timespec64 now;
8524070b 899
d6d29896 900 getnstimeofday64(&now);
8524070b 901 tv->tv_sec = now.tv_sec;
902 tv->tv_usec = now.tv_nsec/1000;
903}
8524070b 904EXPORT_SYMBOL(do_gettimeofday);
d239f49d 905
8524070b 906/**
21f7eca5 907 * do_settimeofday64 - Sets the time of day.
908 * @ts: pointer to the timespec64 variable containing the new time
8524070b 909 *
910 * Sets the time of day to the new time and update NTP and notify hrtimers
911 */
21f7eca5 912int do_settimeofday64(const struct timespec64 *ts)
8524070b 913{
3fdb14fd 914 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 915 struct timespec64 ts_delta, xt;
92c1d3ed 916 unsigned long flags;
8524070b 917
21f7eca5 918 if (!timespec64_valid_strict(ts))
8524070b 919 return -EINVAL;
920
9a7a71b1 921 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 922 write_seqcount_begin(&tk_core.seq);
8524070b 923
4e250fdd 924 timekeeping_forward_now(tk);
9a055117 925
4e250fdd 926 xt = tk_xtime(tk);
21f7eca5 927 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
928 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 929
7d489d15 930 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 931
21f7eca5 932 tk_set_xtime(tk, ts);
1e75fa8b 933
780427f0 934 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 935
3fdb14fd 936 write_seqcount_end(&tk_core.seq);
9a7a71b1 937 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 938
939 /* signal hrtimers about time change */
940 clock_was_set();
941
942 return 0;
943}
21f7eca5 944EXPORT_SYMBOL(do_settimeofday64);
8524070b 945
c528f7c6
JS
946/**
947 * timekeeping_inject_offset - Adds or subtracts from the current time.
948 * @tv: pointer to the timespec variable containing the offset
949 *
950 * Adds or subtracts an offset value from the current time.
951 */
952int timekeeping_inject_offset(struct timespec *ts)
953{
3fdb14fd 954 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 955 unsigned long flags;
7d489d15 956 struct timespec64 ts64, tmp;
4e8b1452 957 int ret = 0;
c528f7c6
JS
958
959 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
960 return -EINVAL;
961
7d489d15
JS
962 ts64 = timespec_to_timespec64(*ts);
963
9a7a71b1 964 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 965 write_seqcount_begin(&tk_core.seq);
c528f7c6 966
4e250fdd 967 timekeeping_forward_now(tk);
c528f7c6 968
4e8b1452 969 /* Make sure the proposed value is valid */
7d489d15
JS
970 tmp = timespec64_add(tk_xtime(tk), ts64);
971 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
972 ret = -EINVAL;
973 goto error;
974 }
1e75fa8b 975
7d489d15
JS
976 tk_xtime_add(tk, &ts64);
977 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 978
4e8b1452 979error: /* even if we error out, we forwarded the time, so call update */
780427f0 980 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 981
3fdb14fd 982 write_seqcount_end(&tk_core.seq);
9a7a71b1 983 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
984
985 /* signal hrtimers about time change */
986 clock_was_set();
987
4e8b1452 988 return ret;
c528f7c6
JS
989}
990EXPORT_SYMBOL(timekeeping_inject_offset);
991
cc244dda
JS
992
993/**
994 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
995 *
996 */
997s32 timekeeping_get_tai_offset(void)
998{
3fdb14fd 999 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1000 unsigned int seq;
1001 s32 ret;
1002
1003 do {
3fdb14fd 1004 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1005 ret = tk->tai_offset;
3fdb14fd 1006 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1007
1008 return ret;
1009}
1010
1011/**
1012 * __timekeeping_set_tai_offset - Lock free worker function
1013 *
1014 */
dd5d70e8 1015static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1016{
1017 tk->tai_offset = tai_offset;
04005f60 1018 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1019}
1020
1021/**
1022 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1023 *
1024 */
1025void timekeeping_set_tai_offset(s32 tai_offset)
1026{
3fdb14fd 1027 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1028 unsigned long flags;
1029
9a7a71b1 1030 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1031 write_seqcount_begin(&tk_core.seq);
cc244dda 1032 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1033 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1034 write_seqcount_end(&tk_core.seq);
9a7a71b1 1035 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1036 clock_was_set();
cc244dda
JS
1037}
1038
8524070b 1039/**
1040 * change_clocksource - Swaps clocksources if a new one is available
1041 *
1042 * Accumulates current time interval and initializes new clocksource
1043 */
75c5158f 1044static int change_clocksource(void *data)
8524070b 1045{
3fdb14fd 1046 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1047 struct clocksource *new, *old;
f695cf94 1048 unsigned long flags;
8524070b 1049
75c5158f 1050 new = (struct clocksource *) data;
8524070b 1051
9a7a71b1 1052 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1053 write_seqcount_begin(&tk_core.seq);
f695cf94 1054
4e250fdd 1055 timekeeping_forward_now(tk);
09ac369c
TG
1056 /*
1057 * If the cs is in module, get a module reference. Succeeds
1058 * for built-in code (owner == NULL) as well.
1059 */
1060 if (try_module_get(new->owner)) {
1061 if (!new->enable || new->enable(new) == 0) {
876e7881 1062 old = tk->tkr_mono.clock;
09ac369c
TG
1063 tk_setup_internals(tk, new);
1064 if (old->disable)
1065 old->disable(old);
1066 module_put(old->owner);
1067 } else {
1068 module_put(new->owner);
1069 }
75c5158f 1070 }
780427f0 1071 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1072
3fdb14fd 1073 write_seqcount_end(&tk_core.seq);
9a7a71b1 1074 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1075
75c5158f
MS
1076 return 0;
1077}
8524070b 1078
75c5158f
MS
1079/**
1080 * timekeeping_notify - Install a new clock source
1081 * @clock: pointer to the clock source
1082 *
1083 * This function is called from clocksource.c after a new, better clock
1084 * source has been registered. The caller holds the clocksource_mutex.
1085 */
ba919d1c 1086int timekeeping_notify(struct clocksource *clock)
75c5158f 1087{
3fdb14fd 1088 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1089
876e7881 1090 if (tk->tkr_mono.clock == clock)
ba919d1c 1091 return 0;
75c5158f 1092 stop_machine(change_clocksource, clock, NULL);
8524070b 1093 tick_clock_notify();
876e7881 1094 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1095}
75c5158f 1096
2d42244a 1097/**
cdba2ec5
JS
1098 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1099 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1100 *
1101 * Returns the raw monotonic time (completely un-modified by ntp)
1102 */
cdba2ec5 1103void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1104{
3fdb14fd 1105 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1106 struct timespec64 ts64;
2d42244a
JS
1107 unsigned long seq;
1108 s64 nsecs;
2d42244a
JS
1109
1110 do {
3fdb14fd 1111 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1112 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1113 ts64 = tk->raw_time;
2d42244a 1114
3fdb14fd 1115 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1116
7d489d15 1117 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1118 *ts = ts64;
2d42244a 1119}
cdba2ec5
JS
1120EXPORT_SYMBOL(getrawmonotonic64);
1121
2d42244a 1122
8524070b 1123/**
cf4fc6cb 1124 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1125 */
cf4fc6cb 1126int timekeeping_valid_for_hres(void)
8524070b 1127{
3fdb14fd 1128 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1129 unsigned long seq;
1130 int ret;
1131
1132 do {
3fdb14fd 1133 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1134
876e7881 1135 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1136
3fdb14fd 1137 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1138
1139 return ret;
1140}
1141
98962465
JH
1142/**
1143 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1144 */
1145u64 timekeeping_max_deferment(void)
1146{
3fdb14fd 1147 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1148 unsigned long seq;
1149 u64 ret;
42e71e81 1150
70471f2f 1151 do {
3fdb14fd 1152 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1153
876e7881 1154 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1155
3fdb14fd 1156 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1157
1158 return ret;
98962465
JH
1159}
1160
8524070b 1161/**
d4f587c6 1162 * read_persistent_clock - Return time from the persistent clock.
8524070b 1163 *
1164 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1165 * Reads the time from the battery backed persistent clock.
1166 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1167 *
1168 * XXX - Do be sure to remove it once all arches implement it.
1169 */
52f5684c 1170void __weak read_persistent_clock(struct timespec *ts)
8524070b 1171{
d4f587c6
MS
1172 ts->tv_sec = 0;
1173 ts->tv_nsec = 0;
8524070b 1174}
1175
2ee96632
XP
1176void __weak read_persistent_clock64(struct timespec64 *ts64)
1177{
1178 struct timespec ts;
1179
1180 read_persistent_clock(&ts);
1181 *ts64 = timespec_to_timespec64(ts);
1182}
1183
23970e38
MS
1184/**
1185 * read_boot_clock - Return time of the system start.
1186 *
1187 * Weak dummy function for arches that do not yet support it.
1188 * Function to read the exact time the system has been started.
1189 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1190 *
1191 * XXX - Do be sure to remove it once all arches implement it.
1192 */
52f5684c 1193void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
1194{
1195 ts->tv_sec = 0;
1196 ts->tv_nsec = 0;
1197}
1198
9a806ddb
XP
1199void __weak read_boot_clock64(struct timespec64 *ts64)
1200{
1201 struct timespec ts;
1202
1203 read_boot_clock(&ts);
1204 *ts64 = timespec_to_timespec64(ts);
1205}
1206
8524070b 1207/*
1208 * timekeeping_init - Initializes the clocksource and common timekeeping values
1209 */
1210void __init timekeeping_init(void)
1211{
3fdb14fd 1212 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1213 struct clocksource *clock;
8524070b 1214 unsigned long flags;
7d489d15 1215 struct timespec64 now, boot, tmp;
31ade306 1216
2ee96632 1217 read_persistent_clock64(&now);
7d489d15 1218 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1219 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1220 " Check your CMOS/BIOS settings.\n");
1221 now.tv_sec = 0;
1222 now.tv_nsec = 0;
31ade306
FT
1223 } else if (now.tv_sec || now.tv_nsec)
1224 persistent_clock_exist = true;
4e8b1452 1225
9a806ddb 1226 read_boot_clock64(&boot);
7d489d15 1227 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1228 pr_warn("WARNING: Boot clock returned invalid value!\n"
1229 " Check your CMOS/BIOS settings.\n");
1230 boot.tv_sec = 0;
1231 boot.tv_nsec = 0;
1232 }
8524070b 1233
9a7a71b1 1234 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1235 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1236 ntp_init();
1237
f1b82746 1238 clock = clocksource_default_clock();
a0f7d48b
MS
1239 if (clock->enable)
1240 clock->enable(clock);
4e250fdd 1241 tk_setup_internals(tk, clock);
8524070b 1242
4e250fdd
JS
1243 tk_set_xtime(tk, &now);
1244 tk->raw_time.tv_sec = 0;
1245 tk->raw_time.tv_nsec = 0;
1e75fa8b 1246 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1247 boot = tk_xtime(tk);
1e75fa8b 1248
7d489d15 1249 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1250 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1251
f111adfd 1252 timekeeping_update(tk, TK_MIRROR);
48cdc135 1253
3fdb14fd 1254 write_seqcount_end(&tk_core.seq);
9a7a71b1 1255 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1256}
1257
264bb3f7 1258/* time in seconds when suspend began for persistent clock */
7d489d15 1259static struct timespec64 timekeeping_suspend_time;
8524070b 1260
304529b1
JS
1261/**
1262 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1263 * @delta: pointer to a timespec delta value
1264 *
1265 * Takes a timespec offset measuring a suspend interval and properly
1266 * adds the sleep offset to the timekeeping variables.
1267 */
f726a697 1268static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1269 struct timespec64 *delta)
304529b1 1270{
7d489d15 1271 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1272 printk_deferred(KERN_WARNING
1273 "__timekeeping_inject_sleeptime: Invalid "
1274 "sleep delta value!\n");
cb5de2f8
JS
1275 return;
1276 }
f726a697 1277 tk_xtime_add(tk, delta);
7d489d15 1278 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1279 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1280 tk_debug_account_sleep_time(delta);
304529b1
JS
1281}
1282
7f298139 1283#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
304529b1 1284/**
04d90890 1285 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1286 * @delta: pointer to a timespec64 delta value
304529b1 1287 *
2ee96632 1288 * This hook is for architectures that cannot support read_persistent_clock64
304529b1
JS
1289 * because their RTC/persistent clock is only accessible when irqs are enabled.
1290 *
1291 * This function should only be called by rtc_resume(), and allows
1292 * a suspend offset to be injected into the timekeeping values.
1293 */
04d90890 1294void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1295{
3fdb14fd 1296 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1297 unsigned long flags;
304529b1 1298
31ade306
FT
1299 /*
1300 * Make sure we don't set the clock twice, as timekeeping_resume()
1301 * already did it
1302 */
1303 if (has_persistent_clock())
304529b1
JS
1304 return;
1305
9a7a71b1 1306 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1307 write_seqcount_begin(&tk_core.seq);
70471f2f 1308
4e250fdd 1309 timekeeping_forward_now(tk);
304529b1 1310
04d90890 1311 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1312
780427f0 1313 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1314
3fdb14fd 1315 write_seqcount_end(&tk_core.seq);
9a7a71b1 1316 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1317
1318 /* signal hrtimers about time change */
1319 clock_was_set();
1320}
7f298139 1321#endif
304529b1 1322
8524070b 1323/**
1324 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1325 *
1326 * This is for the generic clocksource timekeeping.
1327 * xtime/wall_to_monotonic/jiffies/etc are
1328 * still managed by arch specific suspend/resume code.
1329 */
124cf911 1330void timekeeping_resume(void)
8524070b 1331{
3fdb14fd 1332 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1333 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1334 unsigned long flags;
7d489d15 1335 struct timespec64 ts_new, ts_delta;
e445cf1c
FT
1336 cycle_t cycle_now, cycle_delta;
1337 bool suspendtime_found = false;
d4f587c6 1338
2ee96632 1339 read_persistent_clock64(&ts_new);
8524070b 1340
adc78e6b 1341 clockevents_resume();
d10ff3fb
TG
1342 clocksource_resume();
1343
9a7a71b1 1344 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1345 write_seqcount_begin(&tk_core.seq);
8524070b 1346
e445cf1c
FT
1347 /*
1348 * After system resumes, we need to calculate the suspended time and
1349 * compensate it for the OS time. There are 3 sources that could be
1350 * used: Nonstop clocksource during suspend, persistent clock and rtc
1351 * device.
1352 *
1353 * One specific platform may have 1 or 2 or all of them, and the
1354 * preference will be:
1355 * suspend-nonstop clocksource -> persistent clock -> rtc
1356 * The less preferred source will only be tried if there is no better
1357 * usable source. The rtc part is handled separately in rtc core code.
1358 */
876e7881 1359 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1360 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1361 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1362 u64 num, max = ULLONG_MAX;
1363 u32 mult = clock->mult;
1364 u32 shift = clock->shift;
1365 s64 nsec = 0;
1366
876e7881
PZ
1367 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1368 tk->tkr_mono.mask);
e445cf1c
FT
1369
1370 /*
1371 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1372 * suspended time is too long. In that case we need do the
1373 * 64 bits math carefully
1374 */
1375 do_div(max, mult);
1376 if (cycle_delta > max) {
1377 num = div64_u64(cycle_delta, max);
1378 nsec = (((u64) max * mult) >> shift) * num;
1379 cycle_delta -= num * max;
1380 }
1381 nsec += ((u64) cycle_delta * mult) >> shift;
1382
7d489d15 1383 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1384 suspendtime_found = true;
7d489d15
JS
1385 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1386 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1387 suspendtime_found = true;
8524070b 1388 }
e445cf1c
FT
1389
1390 if (suspendtime_found)
1391 __timekeeping_inject_sleeptime(tk, &ts_delta);
1392
1393 /* Re-base the last cycle value */
876e7881 1394 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1395 tk->tkr_raw.cycle_last = cycle_now;
1396
4e250fdd 1397 tk->ntp_error = 0;
8524070b 1398 timekeeping_suspended = 0;
780427f0 1399 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1400 write_seqcount_end(&tk_core.seq);
9a7a71b1 1401 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1402
1403 touch_softlockup_watchdog();
1404
4ffee521 1405 tick_resume();
b12a03ce 1406 hrtimers_resume();
8524070b 1407}
1408
124cf911 1409int timekeeping_suspend(void)
8524070b 1410{
3fdb14fd 1411 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1412 unsigned long flags;
7d489d15
JS
1413 struct timespec64 delta, delta_delta;
1414 static struct timespec64 old_delta;
8524070b 1415
2ee96632 1416 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1417
0d6bd995
ZM
1418 /*
1419 * On some systems the persistent_clock can not be detected at
1420 * timekeeping_init by its return value, so if we see a valid
1421 * value returned, update the persistent_clock_exists flag.
1422 */
1423 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1424 persistent_clock_exist = true;
1425
9a7a71b1 1426 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1427 write_seqcount_begin(&tk_core.seq);
4e250fdd 1428 timekeeping_forward_now(tk);
8524070b 1429 timekeeping_suspended = 1;
cb33217b 1430
264bb3f7 1431 if (has_persistent_clock()) {
cb33217b 1432 /*
264bb3f7
XP
1433 * To avoid drift caused by repeated suspend/resumes,
1434 * which each can add ~1 second drift error,
1435 * try to compensate so the difference in system time
1436 * and persistent_clock time stays close to constant.
cb33217b 1437 */
264bb3f7
XP
1438 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1439 delta_delta = timespec64_sub(delta, old_delta);
1440 if (abs(delta_delta.tv_sec) >= 2) {
1441 /*
1442 * if delta_delta is too large, assume time correction
1443 * has occurred and set old_delta to the current delta.
1444 */
1445 old_delta = delta;
1446 } else {
1447 /* Otherwise try to adjust old_system to compensate */
1448 timekeeping_suspend_time =
1449 timespec64_add(timekeeping_suspend_time, delta_delta);
1450 }
cb33217b 1451 }
330a1617
JS
1452
1453 timekeeping_update(tk, TK_MIRROR);
060407ae 1454 halt_fast_timekeeper(tk);
3fdb14fd 1455 write_seqcount_end(&tk_core.seq);
9a7a71b1 1456 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1457
4ffee521 1458 tick_suspend();
c54a42b1 1459 clocksource_suspend();
adc78e6b 1460 clockevents_suspend();
8524070b 1461
1462 return 0;
1463}
1464
1465/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1466static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1467 .resume = timekeeping_resume,
1468 .suspend = timekeeping_suspend,
8524070b 1469};
1470
e1a85b2c 1471static int __init timekeeping_init_ops(void)
8524070b 1472{
e1a85b2c
RW
1473 register_syscore_ops(&timekeeping_syscore_ops);
1474 return 0;
8524070b 1475}
e1a85b2c 1476device_initcall(timekeeping_init_ops);
8524070b 1477
1478/*
dc491596 1479 * Apply a multiplier adjustment to the timekeeper
8524070b 1480 */
dc491596
JS
1481static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1482 s64 offset,
1483 bool negative,
1484 int adj_scale)
8524070b 1485{
dc491596
JS
1486 s64 interval = tk->cycle_interval;
1487 s32 mult_adj = 1;
8524070b 1488
dc491596
JS
1489 if (negative) {
1490 mult_adj = -mult_adj;
1491 interval = -interval;
1492 offset = -offset;
1d17d174 1493 }
dc491596
JS
1494 mult_adj <<= adj_scale;
1495 interval <<= adj_scale;
1496 offset <<= adj_scale;
8524070b 1497
c2bc1111
JS
1498 /*
1499 * So the following can be confusing.
1500 *
dc491596 1501 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1502 *
dc491596 1503 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1504 * have been appropriately scaled so the math is the same.
1505 *
1506 * The basic idea here is that we're increasing the multiplier
1507 * by one, this causes the xtime_interval to be incremented by
1508 * one cycle_interval. This is because:
1509 * xtime_interval = cycle_interval * mult
1510 * So if mult is being incremented by one:
1511 * xtime_interval = cycle_interval * (mult + 1)
1512 * Its the same as:
1513 * xtime_interval = (cycle_interval * mult) + cycle_interval
1514 * Which can be shortened to:
1515 * xtime_interval += cycle_interval
1516 *
1517 * So offset stores the non-accumulated cycles. Thus the current
1518 * time (in shifted nanoseconds) is:
1519 * now = (offset * adj) + xtime_nsec
1520 * Now, even though we're adjusting the clock frequency, we have
1521 * to keep time consistent. In other words, we can't jump back
1522 * in time, and we also want to avoid jumping forward in time.
1523 *
1524 * So given the same offset value, we need the time to be the same
1525 * both before and after the freq adjustment.
1526 * now = (offset * adj_1) + xtime_nsec_1
1527 * now = (offset * adj_2) + xtime_nsec_2
1528 * So:
1529 * (offset * adj_1) + xtime_nsec_1 =
1530 * (offset * adj_2) + xtime_nsec_2
1531 * And we know:
1532 * adj_2 = adj_1 + 1
1533 * So:
1534 * (offset * adj_1) + xtime_nsec_1 =
1535 * (offset * (adj_1+1)) + xtime_nsec_2
1536 * (offset * adj_1) + xtime_nsec_1 =
1537 * (offset * adj_1) + offset + xtime_nsec_2
1538 * Canceling the sides:
1539 * xtime_nsec_1 = offset + xtime_nsec_2
1540 * Which gives us:
1541 * xtime_nsec_2 = xtime_nsec_1 - offset
1542 * Which simplfies to:
1543 * xtime_nsec -= offset
1544 *
1545 * XXX - TODO: Doc ntp_error calculation.
1546 */
876e7881 1547 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1548 /* NTP adjustment caused clocksource mult overflow */
1549 WARN_ON_ONCE(1);
1550 return;
1551 }
1552
876e7881 1553 tk->tkr_mono.mult += mult_adj;
f726a697 1554 tk->xtime_interval += interval;
876e7881 1555 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1556 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1557}
1558
1559/*
1560 * Calculate the multiplier adjustment needed to match the frequency
1561 * specified by NTP
1562 */
1563static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1564 s64 offset)
1565{
1566 s64 interval = tk->cycle_interval;
1567 s64 xinterval = tk->xtime_interval;
1568 s64 tick_error;
1569 bool negative;
1570 u32 adj;
1571
1572 /* Remove any current error adj from freq calculation */
1573 if (tk->ntp_err_mult)
1574 xinterval -= tk->cycle_interval;
1575
375f45b5
JS
1576 tk->ntp_tick = ntp_tick_length();
1577
dc491596
JS
1578 /* Calculate current error per tick */
1579 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1580 tick_error -= (xinterval + tk->xtime_remainder);
1581
1582 /* Don't worry about correcting it if its small */
1583 if (likely((tick_error >= 0) && (tick_error <= interval)))
1584 return;
1585
1586 /* preserve the direction of correction */
1587 negative = (tick_error < 0);
1588
1589 /* Sort out the magnitude of the correction */
1590 tick_error = abs(tick_error);
1591 for (adj = 0; tick_error > interval; adj++)
1592 tick_error >>= 1;
1593
1594 /* scale the corrections */
1595 timekeeping_apply_adjustment(tk, offset, negative, adj);
1596}
1597
1598/*
1599 * Adjust the timekeeper's multiplier to the correct frequency
1600 * and also to reduce the accumulated error value.
1601 */
1602static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1603{
1604 /* Correct for the current frequency error */
1605 timekeeping_freqadjust(tk, offset);
1606
1607 /* Next make a small adjustment to fix any cumulative error */
1608 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1609 tk->ntp_err_mult = 1;
1610 timekeeping_apply_adjustment(tk, offset, 0, 0);
1611 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1612 /* Undo any existing error adjustment */
1613 timekeeping_apply_adjustment(tk, offset, 1, 0);
1614 tk->ntp_err_mult = 0;
1615 }
1616
876e7881
PZ
1617 if (unlikely(tk->tkr_mono.clock->maxadj &&
1618 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1619 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1620 printk_once(KERN_WARNING
1621 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1622 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1623 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1624 }
2a8c0883
JS
1625
1626 /*
1627 * It may be possible that when we entered this function, xtime_nsec
1628 * was very small. Further, if we're slightly speeding the clocksource
1629 * in the code above, its possible the required corrective factor to
1630 * xtime_nsec could cause it to underflow.
1631 *
1632 * Now, since we already accumulated the second, cannot simply roll
1633 * the accumulated second back, since the NTP subsystem has been
1634 * notified via second_overflow. So instead we push xtime_nsec forward
1635 * by the amount we underflowed, and add that amount into the error.
1636 *
1637 * We'll correct this error next time through this function, when
1638 * xtime_nsec is not as small.
1639 */
876e7881
PZ
1640 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1641 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1642 tk->tkr_mono.xtime_nsec = 0;
f726a697 1643 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1644 }
8524070b 1645}
1646
1f4f9487
JS
1647/**
1648 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1649 *
1650 * Helper function that accumulates a the nsecs greater then a second
1651 * from the xtime_nsec field to the xtime_secs field.
1652 * It also calls into the NTP code to handle leapsecond processing.
1653 *
1654 */
780427f0 1655static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1656{
876e7881 1657 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1658 unsigned int clock_set = 0;
1f4f9487 1659
876e7881 1660 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1661 int leap;
1662
876e7881 1663 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1664 tk->xtime_sec++;
1665
1666 /* Figure out if its a leap sec and apply if needed */
1667 leap = second_overflow(tk->xtime_sec);
6d0ef903 1668 if (unlikely(leap)) {
7d489d15 1669 struct timespec64 ts;
6d0ef903
JS
1670
1671 tk->xtime_sec += leap;
1f4f9487 1672
6d0ef903
JS
1673 ts.tv_sec = leap;
1674 ts.tv_nsec = 0;
1675 tk_set_wall_to_mono(tk,
7d489d15 1676 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1677
cc244dda
JS
1678 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1679
5258d3f2 1680 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1681 }
1f4f9487 1682 }
5258d3f2 1683 return clock_set;
1f4f9487
JS
1684}
1685
a092ff0f 1686/**
1687 * logarithmic_accumulation - shifted accumulation of cycles
1688 *
1689 * This functions accumulates a shifted interval of cycles into
1690 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1691 * loop.
1692 *
1693 * Returns the unconsumed cycles.
1694 */
f726a697 1695static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1696 u32 shift,
1697 unsigned int *clock_set)
a092ff0f 1698{
23a9537a 1699 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1700 u64 raw_nsecs;
a092ff0f 1701
f726a697 1702 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1703 if (offset < interval)
a092ff0f 1704 return offset;
1705
1706 /* Accumulate one shifted interval */
23a9537a 1707 offset -= interval;
876e7881 1708 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1709 tk->tkr_raw.cycle_last += interval;
a092ff0f 1710
876e7881 1711 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1712 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1713
deda2e81 1714 /* Accumulate raw time */
5b3900cd 1715 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1716 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1717 if (raw_nsecs >= NSEC_PER_SEC) {
1718 u64 raw_secs = raw_nsecs;
1719 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1720 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1721 }
f726a697 1722 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1723
1724 /* Accumulate error between NTP and clock interval */
375f45b5 1725 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1726 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1727 (tk->ntp_error_shift + shift);
a092ff0f 1728
1729 return offset;
1730}
1731
8524070b 1732/**
1733 * update_wall_time - Uses the current clocksource to increment the wall time
1734 *
8524070b 1735 */
47a1b796 1736void update_wall_time(void)
8524070b 1737{
3fdb14fd 1738 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1739 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1740 cycle_t offset;
a092ff0f 1741 int shift = 0, maxshift;
5258d3f2 1742 unsigned int clock_set = 0;
70471f2f
JS
1743 unsigned long flags;
1744
9a7a71b1 1745 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1746
1747 /* Make sure we're fully resumed: */
1748 if (unlikely(timekeeping_suspended))
70471f2f 1749 goto out;
8524070b 1750
592913ec 1751#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1752 offset = real_tk->cycle_interval;
592913ec 1753#else
876e7881
PZ
1754 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1755 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 1756#endif
8524070b 1757
bf2ac312 1758 /* Check if there's really nothing to do */
48cdc135 1759 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1760 goto out;
1761
3c17ad19
JS
1762 /* Do some additional sanity checking */
1763 timekeeping_check_update(real_tk, offset);
1764
a092ff0f 1765 /*
1766 * With NO_HZ we may have to accumulate many cycle_intervals
1767 * (think "ticks") worth of time at once. To do this efficiently,
1768 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1769 * that is smaller than the offset. We then accumulate that
a092ff0f 1770 * chunk in one go, and then try to consume the next smaller
1771 * doubled multiple.
8524070b 1772 */
4e250fdd 1773 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1774 shift = max(0, shift);
88b28adf 1775 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1776 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1777 shift = min(shift, maxshift);
4e250fdd 1778 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1779 offset = logarithmic_accumulation(tk, offset, shift,
1780 &clock_set);
4e250fdd 1781 if (offset < tk->cycle_interval<<shift)
830ec045 1782 shift--;
8524070b 1783 }
1784
1785 /* correct the clock when NTP error is too big */
4e250fdd 1786 timekeeping_adjust(tk, offset);
8524070b 1787
6a867a39 1788 /*
92bb1fcf
JS
1789 * XXX This can be killed once everyone converts
1790 * to the new update_vsyscall.
1791 */
1792 old_vsyscall_fixup(tk);
8524070b 1793
6a867a39
JS
1794 /*
1795 * Finally, make sure that after the rounding
1e75fa8b 1796 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1797 */
5258d3f2 1798 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1799
3fdb14fd 1800 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1801 /*
1802 * Update the real timekeeper.
1803 *
1804 * We could avoid this memcpy by switching pointers, but that
1805 * requires changes to all other timekeeper usage sites as
1806 * well, i.e. move the timekeeper pointer getter into the
1807 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1808 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1809 * updating.
1810 */
1811 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1812 timekeeping_update(real_tk, clock_set);
3fdb14fd 1813 write_seqcount_end(&tk_core.seq);
ca4523cd 1814out:
9a7a71b1 1815 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1816 if (clock_set)
cab5e127
JS
1817 /* Have to call _delayed version, since in irq context*/
1818 clock_was_set_delayed();
8524070b 1819}
7c3f1a57
TJ
1820
1821/**
d08c0cdd
JS
1822 * getboottime64 - Return the real time of system boot.
1823 * @ts: pointer to the timespec64 to be set
7c3f1a57 1824 *
d08c0cdd 1825 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1826 *
1827 * This is based on the wall_to_monotonic offset and the total suspend
1828 * time. Calls to settimeofday will affect the value returned (which
1829 * basically means that however wrong your real time clock is at boot time,
1830 * you get the right time here).
1831 */
d08c0cdd 1832void getboottime64(struct timespec64 *ts)
7c3f1a57 1833{
3fdb14fd 1834 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1835 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1836
d08c0cdd 1837 *ts = ktime_to_timespec64(t);
7c3f1a57 1838}
d08c0cdd 1839EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1840
17c38b74 1841unsigned long get_seconds(void)
1842{
3fdb14fd 1843 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1844
1845 return tk->xtime_sec;
17c38b74 1846}
1847EXPORT_SYMBOL(get_seconds);
1848
da15cfda 1849struct timespec __current_kernel_time(void)
1850{
3fdb14fd 1851 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1852
7d489d15 1853 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1854}
17c38b74 1855
2c6b47de 1856struct timespec current_kernel_time(void)
1857{
3fdb14fd 1858 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1859 struct timespec64 now;
2c6b47de 1860 unsigned long seq;
1861
1862 do {
3fdb14fd 1863 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1864
4e250fdd 1865 now = tk_xtime(tk);
3fdb14fd 1866 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1867
7d489d15 1868 return timespec64_to_timespec(now);
2c6b47de 1869}
2c6b47de 1870EXPORT_SYMBOL(current_kernel_time);
da15cfda 1871
334334b5 1872struct timespec64 get_monotonic_coarse64(void)
da15cfda 1873{
3fdb14fd 1874 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1875 struct timespec64 now, mono;
da15cfda 1876 unsigned long seq;
1877
1878 do {
3fdb14fd 1879 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1880
4e250fdd
JS
1881 now = tk_xtime(tk);
1882 mono = tk->wall_to_monotonic;
3fdb14fd 1883 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1884
7d489d15 1885 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1886 now.tv_nsec + mono.tv_nsec);
7d489d15 1887
334334b5 1888 return now;
da15cfda 1889}
871cf1e5
TH
1890
1891/*
d6ad4187 1892 * Must hold jiffies_lock
871cf1e5
TH
1893 */
1894void do_timer(unsigned long ticks)
1895{
1896 jiffies_64 += ticks;
871cf1e5
TH
1897 calc_global_load(ticks);
1898}
48cf76f7
TH
1899
1900/**
76f41088
JS
1901 * ktime_get_update_offsets_tick - hrtimer helper
1902 * @offs_real: pointer to storage for monotonic -> realtime offset
1903 * @offs_boot: pointer to storage for monotonic -> boottime offset
1904 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1905 *
1906 * Returns monotonic time at last tick and various offsets
48cf76f7 1907 */
76f41088
JS
1908ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1909 ktime_t *offs_tai)
48cf76f7 1910{
3fdb14fd 1911 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1912 unsigned int seq;
48064f5f
TG
1913 ktime_t base;
1914 u64 nsecs;
48cf76f7
TH
1915
1916 do {
3fdb14fd 1917 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1918
876e7881
PZ
1919 base = tk->tkr_mono.base;
1920 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
48064f5f 1921
76f41088
JS
1922 *offs_real = tk->offs_real;
1923 *offs_boot = tk->offs_boot;
1924 *offs_tai = tk->offs_tai;
3fdb14fd 1925 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1926
48064f5f 1927 return ktime_add_ns(base, nsecs);
48cf76f7 1928}
f0af911a 1929
f6c06abf
TG
1930#ifdef CONFIG_HIGH_RES_TIMERS
1931/**
76f41088 1932 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1933 * @offs_real: pointer to storage for monotonic -> realtime offset
1934 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1935 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1936 *
1937 * Returns current monotonic time and updates the offsets
b7bc50e4 1938 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1939 */
76f41088 1940ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1941 ktime_t *offs_tai)
f6c06abf 1942{
3fdb14fd 1943 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1944 unsigned int seq;
a37c0aad
TG
1945 ktime_t base;
1946 u64 nsecs;
f6c06abf
TG
1947
1948 do {
3fdb14fd 1949 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1950
876e7881
PZ
1951 base = tk->tkr_mono.base;
1952 nsecs = timekeeping_get_ns(&tk->tkr_mono);
f6c06abf 1953
4e250fdd
JS
1954 *offs_real = tk->offs_real;
1955 *offs_boot = tk->offs_boot;
90adda98 1956 *offs_tai = tk->offs_tai;
3fdb14fd 1957 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1958
a37c0aad 1959 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1960}
1961#endif
1962
aa6f9c59
JS
1963/**
1964 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1965 */
1966int do_adjtimex(struct timex *txc)
1967{
3fdb14fd 1968 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1969 unsigned long flags;
7d489d15 1970 struct timespec64 ts;
4e8f8b34 1971 s32 orig_tai, tai;
e4085693
JS
1972 int ret;
1973
1974 /* Validate the data before disabling interrupts */
1975 ret = ntp_validate_timex(txc);
1976 if (ret)
1977 return ret;
1978
cef90377
JS
1979 if (txc->modes & ADJ_SETOFFSET) {
1980 struct timespec delta;
1981 delta.tv_sec = txc->time.tv_sec;
1982 delta.tv_nsec = txc->time.tv_usec;
1983 if (!(txc->modes & ADJ_NANO))
1984 delta.tv_nsec *= 1000;
1985 ret = timekeeping_inject_offset(&delta);
1986 if (ret)
1987 return ret;
1988 }
1989
d6d29896 1990 getnstimeofday64(&ts);
87ace39b 1991
06c017fd 1992 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1993 write_seqcount_begin(&tk_core.seq);
06c017fd 1994
4e8f8b34 1995 orig_tai = tai = tk->tai_offset;
87ace39b 1996 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1997
4e8f8b34
JS
1998 if (tai != orig_tai) {
1999 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2000 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2001 }
3fdb14fd 2002 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2003 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2004
6fdda9a9
JS
2005 if (tai != orig_tai)
2006 clock_was_set();
2007
7bd36014
JS
2008 ntp_notify_cmos_timer();
2009
87ace39b
JS
2010 return ret;
2011}
aa6f9c59
JS
2012
2013#ifdef CONFIG_NTP_PPS
2014/**
2015 * hardpps() - Accessor function to NTP __hardpps function
2016 */
2017void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2018{
06c017fd
JS
2019 unsigned long flags;
2020
2021 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2022 write_seqcount_begin(&tk_core.seq);
06c017fd 2023
aa6f9c59 2024 __hardpps(phase_ts, raw_ts);
06c017fd 2025
3fdb14fd 2026 write_seqcount_end(&tk_core.seq);
06c017fd 2027 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2028}
2029EXPORT_SYMBOL(hardpps);
2030#endif
2031
f0af911a
TH
2032/**
2033 * xtime_update() - advances the timekeeping infrastructure
2034 * @ticks: number of ticks, that have elapsed since the last call.
2035 *
2036 * Must be called with interrupts disabled.
2037 */
2038void xtime_update(unsigned long ticks)
2039{
d6ad4187 2040 write_seqlock(&jiffies_lock);
f0af911a 2041 do_timer(ticks);
d6ad4187 2042 write_sequnlock(&jiffies_lock);
47a1b796 2043 update_wall_time();
f0af911a 2044}
This page took 0.694103 seconds and 5 git commands to generate.