Linux 4.3-rc3
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 121
3c17ad19
JS
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
876e7881
PZ
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
4ca22c26 139
57d05a93
JS
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 145 tk->last_warning = jiffies;
4ca22c26 146 }
57d05a93 147 tk->underflow_seen = 0;
4ca22c26
JS
148 }
149
57d05a93
JS
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 155 tk->last_warning = jiffies;
4ca22c26 156 }
57d05a93 157 tk->overflow_seen = 0;
4ca22c26 158 }
3c17ad19 159}
a558cd02
JS
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
57d05a93 163 struct timekeeper *tk = &tk_core.timekeeper;
4ca22c26
JS
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
a558cd02 166
4ca22c26
JS
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 181
4ca22c26 182 delta = clocksource_delta(now, last, mask);
a558cd02 183
057b87e3
JS
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
4ca22c26 188 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 189 tk->underflow_seen = 1;
057b87e3 190 delta = 0;
4ca22c26 191 }
057b87e3 192
a558cd02 193 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 194 if (unlikely(delta > max)) {
57d05a93 195 tk->overflow_seen = 1;
a558cd02 196 delta = tkr->clock->max_cycles;
4ca22c26 197 }
a558cd02
JS
198
199 return delta;
200}
3c17ad19
JS
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
a558cd02
JS
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
3c17ad19
JS
217#endif
218
155ec602 219/**
d26e4fe0 220 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 221 *
d26e4fe0 222 * @tk: The target timekeeper to setup.
155ec602
MS
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
f726a697 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
231{
232 cycle_t interval;
a386b5af 233 u64 tmp, ntpinterval;
1e75fa8b 234 struct clocksource *old_clock;
155ec602 235
876e7881
PZ
236 old_clock = tk->tkr_mono.clock;
237 tk->tkr_mono.clock = clock;
238 tk->tkr_mono.read = clock->read;
239 tk->tkr_mono.mask = clock->mask;
240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 241
4a4ad80d
PZ
242 tk->tkr_raw.clock = clock;
243 tk->tkr_raw.read = clock->read;
244 tk->tkr_raw.mask = clock->mask;
245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
155ec602
MS
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp = NTP_INTERVAL_LENGTH;
249 tmp <<= clock->shift;
a386b5af 250 ntpinterval = tmp;
0a544198
MS
251 tmp += clock->mult/2;
252 do_div(tmp, clock->mult);
155ec602
MS
253 if (tmp == 0)
254 tmp = 1;
255
256 interval = (cycle_t) tmp;
f726a697 257 tk->cycle_interval = interval;
155ec602
MS
258
259 /* Go back from cycles -> shifted ns */
f726a697
JS
260 tk->xtime_interval = (u64) interval * clock->mult;
261 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 tk->raw_interval =
0a544198 263 ((u64) interval * clock->mult) >> clock->shift;
155ec602 264
1e75fa8b
JS
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
876e7881 269 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 270 else
876e7881 271 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 272 }
4a4ad80d
PZ
273 tk->tkr_raw.xtime_nsec = 0;
274
876e7881 275 tk->tkr_mono.shift = clock->shift;
4a4ad80d 276 tk->tkr_raw.shift = clock->shift;
155ec602 277
f726a697
JS
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
281
282 /*
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
286 */
876e7881 287 tk->tkr_mono.mult = clock->mult;
4a4ad80d 288 tk->tkr_raw.mult = clock->mult;
dc491596 289 tk->ntp_err_mult = 0;
155ec602 290}
8524070b 291
2ba2a305 292/* Timekeeper helper functions. */
7b1f6207
SW
293
294#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
295static u32 default_arch_gettimeoffset(void) { return 0; }
296u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 297#else
e06fde37 298static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
299#endif
300
0e5ac3a8 301static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 302{
a558cd02 303 cycle_t delta;
1e75fa8b 304 s64 nsec;
2ba2a305 305
a558cd02 306 delta = timekeeping_get_delta(tkr);
2ba2a305 307
0e5ac3a8
TG
308 nsec = delta * tkr->mult + tkr->xtime_nsec;
309 nsec >>= tkr->shift;
f2a5a085 310
7b1f6207 311 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 312 return nsec + arch_gettimeoffset();
2ba2a305
MS
313}
314
4396e058
TG
315/**
316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 317 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
318 *
319 * We want to use this from any context including NMI and tracing /
320 * instrumenting the timekeeping code itself.
321 *
6695b92a 322 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
323 *
324 * So if a NMI hits the update of base[0] then it will use base[1]
325 * which is still consistent. In the worst case this can result is a
326 * slightly wrong timestamp (a few nanoseconds). See
327 * @ktime_get_mono_fast_ns.
328 */
4498e746 329static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 330{
4498e746 331 struct tk_read_base *base = tkf->base;
4396e058
TG
332
333 /* Force readers off to base[1] */
4498e746 334 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
335
336 /* Update base[0] */
affe3e85 337 memcpy(base, tkr, sizeof(*base));
4396e058
TG
338
339 /* Force readers back to base[0] */
4498e746 340 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
341
342 /* Update base[1] */
343 memcpy(base + 1, base, sizeof(*base));
344}
345
346/**
347 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
348 *
349 * This timestamp is not guaranteed to be monotonic across an update.
350 * The timestamp is calculated by:
351 *
352 * now = base_mono + clock_delta * slope
353 *
354 * So if the update lowers the slope, readers who are forced to the
355 * not yet updated second array are still using the old steeper slope.
356 *
357 * tmono
358 * ^
359 * | o n
360 * | o n
361 * | u
362 * | o
363 * |o
364 * |12345678---> reader order
365 *
366 * o = old slope
367 * u = update
368 * n = new slope
369 *
370 * So reader 6 will observe time going backwards versus reader 5.
371 *
372 * While other CPUs are likely to be able observe that, the only way
373 * for a CPU local observation is when an NMI hits in the middle of
374 * the update. Timestamps taken from that NMI context might be ahead
375 * of the following timestamps. Callers need to be aware of that and
376 * deal with it.
377 */
4498e746 378static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
379{
380 struct tk_read_base *tkr;
381 unsigned int seq;
382 u64 now;
383
384 do {
7fc26327 385 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 386 tkr = tkf->base + (seq & 0x01);
876e7881 387 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 388 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 389
4396e058
TG
390 return now;
391}
4498e746
PZ
392
393u64 ktime_get_mono_fast_ns(void)
394{
395 return __ktime_get_fast_ns(&tk_fast_mono);
396}
4396e058
TG
397EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
398
f09cb9a1
PZ
399u64 ktime_get_raw_fast_ns(void)
400{
401 return __ktime_get_fast_ns(&tk_fast_raw);
402}
403EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
404
060407ae
RW
405/* Suspend-time cycles value for halted fast timekeeper. */
406static cycle_t cycles_at_suspend;
407
408static cycle_t dummy_clock_read(struct clocksource *cs)
409{
410 return cycles_at_suspend;
411}
412
413/**
414 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
415 * @tk: Timekeeper to snapshot.
416 *
417 * It generally is unsafe to access the clocksource after timekeeping has been
418 * suspended, so take a snapshot of the readout base of @tk and use it as the
419 * fast timekeeper's readout base while suspended. It will return the same
420 * number of cycles every time until timekeeping is resumed at which time the
421 * proper readout base for the fast timekeeper will be restored automatically.
422 */
423static void halt_fast_timekeeper(struct timekeeper *tk)
424{
425 static struct tk_read_base tkr_dummy;
876e7881 426 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
427
428 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
429 cycles_at_suspend = tkr->read(tkr->clock);
430 tkr_dummy.read = dummy_clock_read;
4498e746 431 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
432
433 tkr = &tk->tkr_raw;
434 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
435 tkr_dummy.read = dummy_clock_read;
436 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
437}
438
c905fae4
TG
439#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
440
441static inline void update_vsyscall(struct timekeeper *tk)
442{
0680eb1f 443 struct timespec xt, wm;
c905fae4 444
e2dff1ec 445 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 446 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
447 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
448 tk->tkr_mono.cycle_last);
c905fae4
TG
449}
450
451static inline void old_vsyscall_fixup(struct timekeeper *tk)
452{
453 s64 remainder;
454
455 /*
456 * Store only full nanoseconds into xtime_nsec after rounding
457 * it up and add the remainder to the error difference.
458 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
459 * by truncating the remainder in vsyscalls. However, it causes
460 * additional work to be done in timekeeping_adjust(). Once
461 * the vsyscall implementations are converted to use xtime_nsec
462 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
463 * users are removed, this can be killed.
464 */
876e7881
PZ
465 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
466 tk->tkr_mono.xtime_nsec -= remainder;
467 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
c905fae4 468 tk->ntp_error += remainder << tk->ntp_error_shift;
876e7881 469 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
c905fae4
TG
470}
471#else
472#define old_vsyscall_fixup(tk)
473#endif
474
e0b306fe
MT
475static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
476
780427f0 477static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 478{
780427f0 479 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
480}
481
482/**
483 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
484 */
485int pvclock_gtod_register_notifier(struct notifier_block *nb)
486{
3fdb14fd 487 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
488 unsigned long flags;
489 int ret;
490
9a7a71b1 491 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 492 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 493 update_pvclock_gtod(tk, true);
9a7a71b1 494 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
495
496 return ret;
497}
498EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
499
500/**
501 * pvclock_gtod_unregister_notifier - unregister a pvclock
502 * timedata update listener
e0b306fe
MT
503 */
504int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
505{
e0b306fe
MT
506 unsigned long flags;
507 int ret;
508
9a7a71b1 509 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 510 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 511 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
512
513 return ret;
514}
515EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
516
833f32d7
JS
517/*
518 * tk_update_leap_state - helper to update the next_leap_ktime
519 */
520static inline void tk_update_leap_state(struct timekeeper *tk)
521{
522 tk->next_leap_ktime = ntp_get_next_leap();
523 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
524 /* Convert to monotonic time */
525 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
526}
527
7c032df5
TG
528/*
529 * Update the ktime_t based scalar nsec members of the timekeeper
530 */
531static inline void tk_update_ktime_data(struct timekeeper *tk)
532{
9e3680b1
HS
533 u64 seconds;
534 u32 nsec;
7c032df5
TG
535
536 /*
537 * The xtime based monotonic readout is:
538 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
539 * The ktime based monotonic readout is:
540 * nsec = base_mono + now();
541 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
542 */
9e3680b1
HS
543 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
544 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 545 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
546
547 /* Update the monotonic raw base */
4a4ad80d 548 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
549
550 /*
551 * The sum of the nanoseconds portions of xtime and
552 * wall_to_monotonic can be greater/equal one second. Take
553 * this into account before updating tk->ktime_sec.
554 */
876e7881 555 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
556 if (nsec >= NSEC_PER_SEC)
557 seconds++;
558 tk->ktime_sec = seconds;
7c032df5
TG
559}
560
9a7a71b1 561/* must hold timekeeper_lock */
04397fe9 562static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 563{
04397fe9 564 if (action & TK_CLEAR_NTP) {
f726a697 565 tk->ntp_error = 0;
cc06268c
TG
566 ntp_clear();
567 }
48cdc135 568
833f32d7 569 tk_update_leap_state(tk);
7c032df5
TG
570 tk_update_ktime_data(tk);
571
9bf2419f
TG
572 update_vsyscall(tk);
573 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
574
4498e746 575 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 576 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
577
578 if (action & TK_CLOCK_WAS_SET)
579 tk->clock_was_set_seq++;
d1518326
JS
580 /*
581 * The mirroring of the data to the shadow-timekeeper needs
582 * to happen last here to ensure we don't over-write the
583 * timekeeper structure on the next update with stale data
584 */
585 if (action & TK_MIRROR)
586 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
587 sizeof(tk_core.timekeeper));
cc06268c
TG
588}
589
8524070b 590/**
155ec602 591 * timekeeping_forward_now - update clock to the current time
8524070b 592 *
9a055117
RZ
593 * Forward the current clock to update its state since the last call to
594 * update_wall_time(). This is useful before significant clock changes,
595 * as it avoids having to deal with this time offset explicitly.
8524070b 596 */
f726a697 597static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 598{
876e7881 599 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 600 cycle_t cycle_now, delta;
9a055117 601 s64 nsec;
8524070b 602
876e7881
PZ
603 cycle_now = tk->tkr_mono.read(clock);
604 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
605 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 606 tk->tkr_raw.cycle_last = cycle_now;
8524070b 607
876e7881 608 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 609
7b1f6207 610 /* If arch requires, add in get_arch_timeoffset() */
876e7881 611 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 612
f726a697 613 tk_normalize_xtime(tk);
2d42244a 614
4a4ad80d 615 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 616 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 617}
618
619/**
d6d29896 620 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 621 * @ts: pointer to the timespec to be set
622 *
1e817fb6
KC
623 * Updates the time of day in the timespec.
624 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 625 */
d6d29896 626int __getnstimeofday64(struct timespec64 *ts)
8524070b 627{
3fdb14fd 628 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 629 unsigned long seq;
1e75fa8b 630 s64 nsecs = 0;
8524070b 631
632 do {
3fdb14fd 633 seq = read_seqcount_begin(&tk_core.seq);
8524070b 634
4e250fdd 635 ts->tv_sec = tk->xtime_sec;
876e7881 636 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 637
3fdb14fd 638 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 639
ec145bab 640 ts->tv_nsec = 0;
d6d29896 641 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
642
643 /*
644 * Do not bail out early, in case there were callers still using
645 * the value, even in the face of the WARN_ON.
646 */
647 if (unlikely(timekeeping_suspended))
648 return -EAGAIN;
649 return 0;
650}
d6d29896 651EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
652
653/**
d6d29896 654 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 655 * @ts: pointer to the timespec64 to be set
1e817fb6 656 *
5322e4c2 657 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 658 */
d6d29896 659void getnstimeofday64(struct timespec64 *ts)
1e817fb6 660{
d6d29896 661 WARN_ON(__getnstimeofday64(ts));
8524070b 662}
d6d29896 663EXPORT_SYMBOL(getnstimeofday64);
8524070b 664
951ed4d3
MS
665ktime_t ktime_get(void)
666{
3fdb14fd 667 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 668 unsigned int seq;
a016a5bd
TG
669 ktime_t base;
670 s64 nsecs;
951ed4d3
MS
671
672 WARN_ON(timekeeping_suspended);
673
674 do {
3fdb14fd 675 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
676 base = tk->tkr_mono.base;
677 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 678
3fdb14fd 679 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 680
a016a5bd 681 return ktime_add_ns(base, nsecs);
951ed4d3
MS
682}
683EXPORT_SYMBOL_GPL(ktime_get);
684
6374f912
HG
685u32 ktime_get_resolution_ns(void)
686{
687 struct timekeeper *tk = &tk_core.timekeeper;
688 unsigned int seq;
689 u32 nsecs;
690
691 WARN_ON(timekeeping_suspended);
692
693 do {
694 seq = read_seqcount_begin(&tk_core.seq);
695 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
696 } while (read_seqcount_retry(&tk_core.seq, seq));
697
698 return nsecs;
699}
700EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
701
0077dc60
TG
702static ktime_t *offsets[TK_OFFS_MAX] = {
703 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
704 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
705 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
706};
707
708ktime_t ktime_get_with_offset(enum tk_offsets offs)
709{
710 struct timekeeper *tk = &tk_core.timekeeper;
711 unsigned int seq;
712 ktime_t base, *offset = offsets[offs];
713 s64 nsecs;
714
715 WARN_ON(timekeeping_suspended);
716
717 do {
718 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
719 base = ktime_add(tk->tkr_mono.base, *offset);
720 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
721
722 } while (read_seqcount_retry(&tk_core.seq, seq));
723
724 return ktime_add_ns(base, nsecs);
725
726}
727EXPORT_SYMBOL_GPL(ktime_get_with_offset);
728
9a6b5197
TG
729/**
730 * ktime_mono_to_any() - convert mononotic time to any other time
731 * @tmono: time to convert.
732 * @offs: which offset to use
733 */
734ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
735{
736 ktime_t *offset = offsets[offs];
737 unsigned long seq;
738 ktime_t tconv;
739
740 do {
741 seq = read_seqcount_begin(&tk_core.seq);
742 tconv = ktime_add(tmono, *offset);
743 } while (read_seqcount_retry(&tk_core.seq, seq));
744
745 return tconv;
746}
747EXPORT_SYMBOL_GPL(ktime_mono_to_any);
748
f519b1a2
TG
749/**
750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751 */
752ktime_t ktime_get_raw(void)
753{
754 struct timekeeper *tk = &tk_core.timekeeper;
755 unsigned int seq;
756 ktime_t base;
757 s64 nsecs;
758
759 do {
760 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
761 base = tk->tkr_raw.base;
762 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
763
764 } while (read_seqcount_retry(&tk_core.seq, seq));
765
766 return ktime_add_ns(base, nsecs);
767}
768EXPORT_SYMBOL_GPL(ktime_get_raw);
769
951ed4d3 770/**
d6d29896 771 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
772 * @ts: pointer to timespec variable
773 *
774 * The function calculates the monotonic clock from the realtime
775 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 776 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 777 */
d6d29896 778void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 779{
3fdb14fd 780 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 781 struct timespec64 tomono;
ec145bab 782 s64 nsec;
951ed4d3 783 unsigned int seq;
951ed4d3
MS
784
785 WARN_ON(timekeeping_suspended);
786
787 do {
3fdb14fd 788 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 789 ts->tv_sec = tk->xtime_sec;
876e7881 790 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 791 tomono = tk->wall_to_monotonic;
951ed4d3 792
3fdb14fd 793 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 794
d6d29896
TG
795 ts->tv_sec += tomono.tv_sec;
796 ts->tv_nsec = 0;
797 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 798}
d6d29896 799EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 800
9e3680b1
HS
801/**
802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803 *
804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806 * works on both 32 and 64 bit systems. On 32 bit systems the readout
807 * covers ~136 years of uptime which should be enough to prevent
808 * premature wrap arounds.
809 */
810time64_t ktime_get_seconds(void)
811{
812 struct timekeeper *tk = &tk_core.timekeeper;
813
814 WARN_ON(timekeeping_suspended);
815 return tk->ktime_sec;
816}
817EXPORT_SYMBOL_GPL(ktime_get_seconds);
818
dbe7aa62
HS
819/**
820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821 *
822 * Returns the wall clock seconds since 1970. This replaces the
823 * get_seconds() interface which is not y2038 safe on 32bit systems.
824 *
825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826 * 32bit systems the access must be protected with the sequence
827 * counter to provide "atomic" access to the 64bit tk->xtime_sec
828 * value.
829 */
830time64_t ktime_get_real_seconds(void)
831{
832 struct timekeeper *tk = &tk_core.timekeeper;
833 time64_t seconds;
834 unsigned int seq;
835
836 if (IS_ENABLED(CONFIG_64BIT))
837 return tk->xtime_sec;
838
839 do {
840 seq = read_seqcount_begin(&tk_core.seq);
841 seconds = tk->xtime_sec;
842
843 } while (read_seqcount_retry(&tk_core.seq, seq));
844
845 return seconds;
846}
847EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
848
e2c18e49
AG
849#ifdef CONFIG_NTP_PPS
850
851/**
852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853 * @ts_raw: pointer to the timespec to be set to raw monotonic time
854 * @ts_real: pointer to the timespec to be set to the time of day
855 *
856 * This function reads both the time of day and raw monotonic time at the
857 * same time atomically and stores the resulting timestamps in timespec
858 * format.
859 */
860void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
861{
3fdb14fd 862 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
863 unsigned long seq;
864 s64 nsecs_raw, nsecs_real;
865
866 WARN_ON_ONCE(timekeeping_suspended);
867
868 do {
3fdb14fd 869 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 870
7d489d15 871 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 872 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 873 ts_real->tv_nsec = 0;
e2c18e49 874
4a4ad80d 875 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876e7881 876 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
e2c18e49 877
3fdb14fd 878 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
879
880 timespec_add_ns(ts_raw, nsecs_raw);
881 timespec_add_ns(ts_real, nsecs_real);
882}
883EXPORT_SYMBOL(getnstime_raw_and_real);
884
885#endif /* CONFIG_NTP_PPS */
886
8524070b 887/**
888 * do_gettimeofday - Returns the time of day in a timeval
889 * @tv: pointer to the timeval to be set
890 *
efd9ac86 891 * NOTE: Users should be converted to using getnstimeofday()
8524070b 892 */
893void do_gettimeofday(struct timeval *tv)
894{
d6d29896 895 struct timespec64 now;
8524070b 896
d6d29896 897 getnstimeofday64(&now);
8524070b 898 tv->tv_sec = now.tv_sec;
899 tv->tv_usec = now.tv_nsec/1000;
900}
8524070b 901EXPORT_SYMBOL(do_gettimeofday);
d239f49d 902
8524070b 903/**
21f7eca5 904 * do_settimeofday64 - Sets the time of day.
905 * @ts: pointer to the timespec64 variable containing the new time
8524070b 906 *
907 * Sets the time of day to the new time and update NTP and notify hrtimers
908 */
21f7eca5 909int do_settimeofday64(const struct timespec64 *ts)
8524070b 910{
3fdb14fd 911 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 912 struct timespec64 ts_delta, xt;
92c1d3ed 913 unsigned long flags;
e1d7ba87 914 int ret = 0;
8524070b 915
21f7eca5 916 if (!timespec64_valid_strict(ts))
8524070b 917 return -EINVAL;
918
9a7a71b1 919 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 920 write_seqcount_begin(&tk_core.seq);
8524070b 921
4e250fdd 922 timekeeping_forward_now(tk);
9a055117 923
4e250fdd 924 xt = tk_xtime(tk);
21f7eca5 925 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
926 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 927
e1d7ba87
WY
928 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
929 ret = -EINVAL;
930 goto out;
931 }
932
7d489d15 933 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 934
21f7eca5 935 tk_set_xtime(tk, ts);
e1d7ba87 936out:
780427f0 937 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 938
3fdb14fd 939 write_seqcount_end(&tk_core.seq);
9a7a71b1 940 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 941
942 /* signal hrtimers about time change */
943 clock_was_set();
944
e1d7ba87 945 return ret;
8524070b 946}
21f7eca5 947EXPORT_SYMBOL(do_settimeofday64);
8524070b 948
c528f7c6
JS
949/**
950 * timekeeping_inject_offset - Adds or subtracts from the current time.
951 * @tv: pointer to the timespec variable containing the offset
952 *
953 * Adds or subtracts an offset value from the current time.
954 */
955int timekeeping_inject_offset(struct timespec *ts)
956{
3fdb14fd 957 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 958 unsigned long flags;
7d489d15 959 struct timespec64 ts64, tmp;
4e8b1452 960 int ret = 0;
c528f7c6
JS
961
962 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
963 return -EINVAL;
964
7d489d15
JS
965 ts64 = timespec_to_timespec64(*ts);
966
9a7a71b1 967 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 968 write_seqcount_begin(&tk_core.seq);
c528f7c6 969
4e250fdd 970 timekeeping_forward_now(tk);
c528f7c6 971
4e8b1452 972 /* Make sure the proposed value is valid */
7d489d15 973 tmp = timespec64_add(tk_xtime(tk), ts64);
e1d7ba87
WY
974 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
975 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
976 ret = -EINVAL;
977 goto error;
978 }
1e75fa8b 979
7d489d15
JS
980 tk_xtime_add(tk, &ts64);
981 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 982
4e8b1452 983error: /* even if we error out, we forwarded the time, so call update */
780427f0 984 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 985
3fdb14fd 986 write_seqcount_end(&tk_core.seq);
9a7a71b1 987 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
988
989 /* signal hrtimers about time change */
990 clock_was_set();
991
4e8b1452 992 return ret;
c528f7c6
JS
993}
994EXPORT_SYMBOL(timekeeping_inject_offset);
995
cc244dda
JS
996
997/**
998 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
999 *
1000 */
1001s32 timekeeping_get_tai_offset(void)
1002{
3fdb14fd 1003 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1004 unsigned int seq;
1005 s32 ret;
1006
1007 do {
3fdb14fd 1008 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1009 ret = tk->tai_offset;
3fdb14fd 1010 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1011
1012 return ret;
1013}
1014
1015/**
1016 * __timekeeping_set_tai_offset - Lock free worker function
1017 *
1018 */
dd5d70e8 1019static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1020{
1021 tk->tai_offset = tai_offset;
04005f60 1022 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1023}
1024
1025/**
1026 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1027 *
1028 */
1029void timekeeping_set_tai_offset(s32 tai_offset)
1030{
3fdb14fd 1031 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1032 unsigned long flags;
1033
9a7a71b1 1034 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1035 write_seqcount_begin(&tk_core.seq);
cc244dda 1036 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1037 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1038 write_seqcount_end(&tk_core.seq);
9a7a71b1 1039 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1040 clock_was_set();
cc244dda
JS
1041}
1042
8524070b 1043/**
1044 * change_clocksource - Swaps clocksources if a new one is available
1045 *
1046 * Accumulates current time interval and initializes new clocksource
1047 */
75c5158f 1048static int change_clocksource(void *data)
8524070b 1049{
3fdb14fd 1050 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1051 struct clocksource *new, *old;
f695cf94 1052 unsigned long flags;
8524070b 1053
75c5158f 1054 new = (struct clocksource *) data;
8524070b 1055
9a7a71b1 1056 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1057 write_seqcount_begin(&tk_core.seq);
f695cf94 1058
4e250fdd 1059 timekeeping_forward_now(tk);
09ac369c
TG
1060 /*
1061 * If the cs is in module, get a module reference. Succeeds
1062 * for built-in code (owner == NULL) as well.
1063 */
1064 if (try_module_get(new->owner)) {
1065 if (!new->enable || new->enable(new) == 0) {
876e7881 1066 old = tk->tkr_mono.clock;
09ac369c
TG
1067 tk_setup_internals(tk, new);
1068 if (old->disable)
1069 old->disable(old);
1070 module_put(old->owner);
1071 } else {
1072 module_put(new->owner);
1073 }
75c5158f 1074 }
780427f0 1075 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1076
3fdb14fd 1077 write_seqcount_end(&tk_core.seq);
9a7a71b1 1078 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1079
75c5158f
MS
1080 return 0;
1081}
8524070b 1082
75c5158f
MS
1083/**
1084 * timekeeping_notify - Install a new clock source
1085 * @clock: pointer to the clock source
1086 *
1087 * This function is called from clocksource.c after a new, better clock
1088 * source has been registered. The caller holds the clocksource_mutex.
1089 */
ba919d1c 1090int timekeeping_notify(struct clocksource *clock)
75c5158f 1091{
3fdb14fd 1092 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1093
876e7881 1094 if (tk->tkr_mono.clock == clock)
ba919d1c 1095 return 0;
75c5158f 1096 stop_machine(change_clocksource, clock, NULL);
8524070b 1097 tick_clock_notify();
876e7881 1098 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1099}
75c5158f 1100
2d42244a 1101/**
cdba2ec5
JS
1102 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1103 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1104 *
1105 * Returns the raw monotonic time (completely un-modified by ntp)
1106 */
cdba2ec5 1107void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1108{
3fdb14fd 1109 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1110 struct timespec64 ts64;
2d42244a
JS
1111 unsigned long seq;
1112 s64 nsecs;
2d42244a
JS
1113
1114 do {
3fdb14fd 1115 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1116 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1117 ts64 = tk->raw_time;
2d42244a 1118
3fdb14fd 1119 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1120
7d489d15 1121 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1122 *ts = ts64;
2d42244a 1123}
cdba2ec5
JS
1124EXPORT_SYMBOL(getrawmonotonic64);
1125
2d42244a 1126
8524070b 1127/**
cf4fc6cb 1128 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1129 */
cf4fc6cb 1130int timekeeping_valid_for_hres(void)
8524070b 1131{
3fdb14fd 1132 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1133 unsigned long seq;
1134 int ret;
1135
1136 do {
3fdb14fd 1137 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1138
876e7881 1139 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1140
3fdb14fd 1141 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1142
1143 return ret;
1144}
1145
98962465
JH
1146/**
1147 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1148 */
1149u64 timekeeping_max_deferment(void)
1150{
3fdb14fd 1151 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1152 unsigned long seq;
1153 u64 ret;
42e71e81 1154
70471f2f 1155 do {
3fdb14fd 1156 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1157
876e7881 1158 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1159
3fdb14fd 1160 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1161
1162 return ret;
98962465
JH
1163}
1164
8524070b 1165/**
d4f587c6 1166 * read_persistent_clock - Return time from the persistent clock.
8524070b 1167 *
1168 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1169 * Reads the time from the battery backed persistent clock.
1170 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1171 *
1172 * XXX - Do be sure to remove it once all arches implement it.
1173 */
52f5684c 1174void __weak read_persistent_clock(struct timespec *ts)
8524070b 1175{
d4f587c6
MS
1176 ts->tv_sec = 0;
1177 ts->tv_nsec = 0;
8524070b 1178}
1179
2ee96632
XP
1180void __weak read_persistent_clock64(struct timespec64 *ts64)
1181{
1182 struct timespec ts;
1183
1184 read_persistent_clock(&ts);
1185 *ts64 = timespec_to_timespec64(ts);
1186}
1187
23970e38 1188/**
e83d0a41 1189 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1190 *
1191 * Weak dummy function for arches that do not yet support it.
1192 * Function to read the exact time the system has been started.
e83d0a41 1193 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1194 *
1195 * XXX - Do be sure to remove it once all arches implement it.
1196 */
e83d0a41 1197void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1198{
1199 ts->tv_sec = 0;
1200 ts->tv_nsec = 0;
1201}
1202
0fa88cb4
XP
1203/* Flag for if timekeeping_resume() has injected sleeptime */
1204static bool sleeptime_injected;
1205
1206/* Flag for if there is a persistent clock on this platform */
1207static bool persistent_clock_exists;
1208
8524070b 1209/*
1210 * timekeeping_init - Initializes the clocksource and common timekeeping values
1211 */
1212void __init timekeeping_init(void)
1213{
3fdb14fd 1214 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1215 struct clocksource *clock;
8524070b 1216 unsigned long flags;
7d489d15 1217 struct timespec64 now, boot, tmp;
31ade306 1218
2ee96632 1219 read_persistent_clock64(&now);
7d489d15 1220 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1221 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1222 " Check your CMOS/BIOS settings.\n");
1223 now.tv_sec = 0;
1224 now.tv_nsec = 0;
31ade306 1225 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1226 persistent_clock_exists = true;
4e8b1452 1227
9a806ddb 1228 read_boot_clock64(&boot);
7d489d15 1229 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1230 pr_warn("WARNING: Boot clock returned invalid value!\n"
1231 " Check your CMOS/BIOS settings.\n");
1232 boot.tv_sec = 0;
1233 boot.tv_nsec = 0;
1234 }
8524070b 1235
9a7a71b1 1236 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1237 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1238 ntp_init();
1239
f1b82746 1240 clock = clocksource_default_clock();
a0f7d48b
MS
1241 if (clock->enable)
1242 clock->enable(clock);
4e250fdd 1243 tk_setup_internals(tk, clock);
8524070b 1244
4e250fdd
JS
1245 tk_set_xtime(tk, &now);
1246 tk->raw_time.tv_sec = 0;
1247 tk->raw_time.tv_nsec = 0;
1e75fa8b 1248 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1249 boot = tk_xtime(tk);
1e75fa8b 1250
7d489d15 1251 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1252 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1253
f111adfd 1254 timekeeping_update(tk, TK_MIRROR);
48cdc135 1255
3fdb14fd 1256 write_seqcount_end(&tk_core.seq);
9a7a71b1 1257 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1258}
1259
264bb3f7 1260/* time in seconds when suspend began for persistent clock */
7d489d15 1261static struct timespec64 timekeeping_suspend_time;
8524070b 1262
304529b1
JS
1263/**
1264 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1265 * @delta: pointer to a timespec delta value
1266 *
1267 * Takes a timespec offset measuring a suspend interval and properly
1268 * adds the sleep offset to the timekeeping variables.
1269 */
f726a697 1270static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1271 struct timespec64 *delta)
304529b1 1272{
7d489d15 1273 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1274 printk_deferred(KERN_WARNING
1275 "__timekeeping_inject_sleeptime: Invalid "
1276 "sleep delta value!\n");
cb5de2f8
JS
1277 return;
1278 }
f726a697 1279 tk_xtime_add(tk, delta);
7d489d15 1280 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1281 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1282 tk_debug_account_sleep_time(delta);
304529b1
JS
1283}
1284
7f298139 1285#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1286/**
1287 * We have three kinds of time sources to use for sleep time
1288 * injection, the preference order is:
1289 * 1) non-stop clocksource
1290 * 2) persistent clock (ie: RTC accessible when irqs are off)
1291 * 3) RTC
1292 *
1293 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1294 * If system has neither 1) nor 2), 3) will be used finally.
1295 *
1296 *
1297 * If timekeeping has injected sleeptime via either 1) or 2),
1298 * 3) becomes needless, so in this case we don't need to call
1299 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1300 * means.
1301 */
1302bool timekeeping_rtc_skipresume(void)
1303{
1304 return sleeptime_injected;
1305}
1306
1307/**
1308 * 1) can be determined whether to use or not only when doing
1309 * timekeeping_resume() which is invoked after rtc_suspend(),
1310 * so we can't skip rtc_suspend() surely if system has 1).
1311 *
1312 * But if system has 2), 2) will definitely be used, so in this
1313 * case we don't need to call rtc_suspend(), and this is what
1314 * timekeeping_rtc_skipsuspend() means.
1315 */
1316bool timekeeping_rtc_skipsuspend(void)
1317{
1318 return persistent_clock_exists;
1319}
1320
304529b1 1321/**
04d90890 1322 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1323 * @delta: pointer to a timespec64 delta value
304529b1 1324 *
2ee96632 1325 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1326 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1327 * and also don't have an effective nonstop clocksource.
304529b1
JS
1328 *
1329 * This function should only be called by rtc_resume(), and allows
1330 * a suspend offset to be injected into the timekeeping values.
1331 */
04d90890 1332void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1333{
3fdb14fd 1334 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1335 unsigned long flags;
304529b1 1336
9a7a71b1 1337 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1338 write_seqcount_begin(&tk_core.seq);
70471f2f 1339
4e250fdd 1340 timekeeping_forward_now(tk);
304529b1 1341
04d90890 1342 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1343
780427f0 1344 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1345
3fdb14fd 1346 write_seqcount_end(&tk_core.seq);
9a7a71b1 1347 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1348
1349 /* signal hrtimers about time change */
1350 clock_was_set();
1351}
7f298139 1352#endif
304529b1 1353
8524070b 1354/**
1355 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1356 */
124cf911 1357void timekeeping_resume(void)
8524070b 1358{
3fdb14fd 1359 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1360 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1361 unsigned long flags;
7d489d15 1362 struct timespec64 ts_new, ts_delta;
e445cf1c 1363 cycle_t cycle_now, cycle_delta;
d4f587c6 1364
0fa88cb4 1365 sleeptime_injected = false;
2ee96632 1366 read_persistent_clock64(&ts_new);
8524070b 1367
adc78e6b 1368 clockevents_resume();
d10ff3fb
TG
1369 clocksource_resume();
1370
9a7a71b1 1371 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1372 write_seqcount_begin(&tk_core.seq);
8524070b 1373
e445cf1c
FT
1374 /*
1375 * After system resumes, we need to calculate the suspended time and
1376 * compensate it for the OS time. There are 3 sources that could be
1377 * used: Nonstop clocksource during suspend, persistent clock and rtc
1378 * device.
1379 *
1380 * One specific platform may have 1 or 2 or all of them, and the
1381 * preference will be:
1382 * suspend-nonstop clocksource -> persistent clock -> rtc
1383 * The less preferred source will only be tried if there is no better
1384 * usable source. The rtc part is handled separately in rtc core code.
1385 */
876e7881 1386 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1387 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1388 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1389 u64 num, max = ULLONG_MAX;
1390 u32 mult = clock->mult;
1391 u32 shift = clock->shift;
1392 s64 nsec = 0;
1393
876e7881
PZ
1394 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1395 tk->tkr_mono.mask);
e445cf1c
FT
1396
1397 /*
1398 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1399 * suspended time is too long. In that case we need do the
1400 * 64 bits math carefully
1401 */
1402 do_div(max, mult);
1403 if (cycle_delta > max) {
1404 num = div64_u64(cycle_delta, max);
1405 nsec = (((u64) max * mult) >> shift) * num;
1406 cycle_delta -= num * max;
1407 }
1408 nsec += ((u64) cycle_delta * mult) >> shift;
1409
7d489d15 1410 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1411 sleeptime_injected = true;
7d489d15
JS
1412 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1413 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1414 sleeptime_injected = true;
8524070b 1415 }
e445cf1c 1416
0fa88cb4 1417 if (sleeptime_injected)
e445cf1c
FT
1418 __timekeeping_inject_sleeptime(tk, &ts_delta);
1419
1420 /* Re-base the last cycle value */
876e7881 1421 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1422 tk->tkr_raw.cycle_last = cycle_now;
1423
4e250fdd 1424 tk->ntp_error = 0;
8524070b 1425 timekeeping_suspended = 0;
780427f0 1426 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1427 write_seqcount_end(&tk_core.seq);
9a7a71b1 1428 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1429
1430 touch_softlockup_watchdog();
1431
4ffee521 1432 tick_resume();
b12a03ce 1433 hrtimers_resume();
8524070b 1434}
1435
124cf911 1436int timekeeping_suspend(void)
8524070b 1437{
3fdb14fd 1438 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1439 unsigned long flags;
7d489d15
JS
1440 struct timespec64 delta, delta_delta;
1441 static struct timespec64 old_delta;
8524070b 1442
2ee96632 1443 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1444
0d6bd995
ZM
1445 /*
1446 * On some systems the persistent_clock can not be detected at
1447 * timekeeping_init by its return value, so if we see a valid
1448 * value returned, update the persistent_clock_exists flag.
1449 */
1450 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1451 persistent_clock_exists = true;
0d6bd995 1452
9a7a71b1 1453 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1454 write_seqcount_begin(&tk_core.seq);
4e250fdd 1455 timekeeping_forward_now(tk);
8524070b 1456 timekeeping_suspended = 1;
cb33217b 1457
0fa88cb4 1458 if (persistent_clock_exists) {
cb33217b 1459 /*
264bb3f7
XP
1460 * To avoid drift caused by repeated suspend/resumes,
1461 * which each can add ~1 second drift error,
1462 * try to compensate so the difference in system time
1463 * and persistent_clock time stays close to constant.
cb33217b 1464 */
264bb3f7
XP
1465 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1466 delta_delta = timespec64_sub(delta, old_delta);
1467 if (abs(delta_delta.tv_sec) >= 2) {
1468 /*
1469 * if delta_delta is too large, assume time correction
1470 * has occurred and set old_delta to the current delta.
1471 */
1472 old_delta = delta;
1473 } else {
1474 /* Otherwise try to adjust old_system to compensate */
1475 timekeeping_suspend_time =
1476 timespec64_add(timekeeping_suspend_time, delta_delta);
1477 }
cb33217b 1478 }
330a1617
JS
1479
1480 timekeeping_update(tk, TK_MIRROR);
060407ae 1481 halt_fast_timekeeper(tk);
3fdb14fd 1482 write_seqcount_end(&tk_core.seq);
9a7a71b1 1483 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1484
4ffee521 1485 tick_suspend();
c54a42b1 1486 clocksource_suspend();
adc78e6b 1487 clockevents_suspend();
8524070b 1488
1489 return 0;
1490}
1491
1492/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1493static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1494 .resume = timekeeping_resume,
1495 .suspend = timekeeping_suspend,
8524070b 1496};
1497
e1a85b2c 1498static int __init timekeeping_init_ops(void)
8524070b 1499{
e1a85b2c
RW
1500 register_syscore_ops(&timekeeping_syscore_ops);
1501 return 0;
8524070b 1502}
e1a85b2c 1503device_initcall(timekeeping_init_ops);
8524070b 1504
1505/*
dc491596 1506 * Apply a multiplier adjustment to the timekeeper
8524070b 1507 */
dc491596
JS
1508static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1509 s64 offset,
1510 bool negative,
1511 int adj_scale)
8524070b 1512{
dc491596
JS
1513 s64 interval = tk->cycle_interval;
1514 s32 mult_adj = 1;
8524070b 1515
dc491596
JS
1516 if (negative) {
1517 mult_adj = -mult_adj;
1518 interval = -interval;
1519 offset = -offset;
1d17d174 1520 }
dc491596
JS
1521 mult_adj <<= adj_scale;
1522 interval <<= adj_scale;
1523 offset <<= adj_scale;
8524070b 1524
c2bc1111
JS
1525 /*
1526 * So the following can be confusing.
1527 *
dc491596 1528 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1529 *
dc491596 1530 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1531 * have been appropriately scaled so the math is the same.
1532 *
1533 * The basic idea here is that we're increasing the multiplier
1534 * by one, this causes the xtime_interval to be incremented by
1535 * one cycle_interval. This is because:
1536 * xtime_interval = cycle_interval * mult
1537 * So if mult is being incremented by one:
1538 * xtime_interval = cycle_interval * (mult + 1)
1539 * Its the same as:
1540 * xtime_interval = (cycle_interval * mult) + cycle_interval
1541 * Which can be shortened to:
1542 * xtime_interval += cycle_interval
1543 *
1544 * So offset stores the non-accumulated cycles. Thus the current
1545 * time (in shifted nanoseconds) is:
1546 * now = (offset * adj) + xtime_nsec
1547 * Now, even though we're adjusting the clock frequency, we have
1548 * to keep time consistent. In other words, we can't jump back
1549 * in time, and we also want to avoid jumping forward in time.
1550 *
1551 * So given the same offset value, we need the time to be the same
1552 * both before and after the freq adjustment.
1553 * now = (offset * adj_1) + xtime_nsec_1
1554 * now = (offset * adj_2) + xtime_nsec_2
1555 * So:
1556 * (offset * adj_1) + xtime_nsec_1 =
1557 * (offset * adj_2) + xtime_nsec_2
1558 * And we know:
1559 * adj_2 = adj_1 + 1
1560 * So:
1561 * (offset * adj_1) + xtime_nsec_1 =
1562 * (offset * (adj_1+1)) + xtime_nsec_2
1563 * (offset * adj_1) + xtime_nsec_1 =
1564 * (offset * adj_1) + offset + xtime_nsec_2
1565 * Canceling the sides:
1566 * xtime_nsec_1 = offset + xtime_nsec_2
1567 * Which gives us:
1568 * xtime_nsec_2 = xtime_nsec_1 - offset
1569 * Which simplfies to:
1570 * xtime_nsec -= offset
1571 *
1572 * XXX - TODO: Doc ntp_error calculation.
1573 */
876e7881 1574 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1575 /* NTP adjustment caused clocksource mult overflow */
1576 WARN_ON_ONCE(1);
1577 return;
1578 }
1579
876e7881 1580 tk->tkr_mono.mult += mult_adj;
f726a697 1581 tk->xtime_interval += interval;
876e7881 1582 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1583 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1584}
1585
1586/*
1587 * Calculate the multiplier adjustment needed to match the frequency
1588 * specified by NTP
1589 */
1590static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1591 s64 offset)
1592{
1593 s64 interval = tk->cycle_interval;
1594 s64 xinterval = tk->xtime_interval;
1595 s64 tick_error;
1596 bool negative;
1597 u32 adj;
1598
1599 /* Remove any current error adj from freq calculation */
1600 if (tk->ntp_err_mult)
1601 xinterval -= tk->cycle_interval;
1602
375f45b5
JS
1603 tk->ntp_tick = ntp_tick_length();
1604
dc491596
JS
1605 /* Calculate current error per tick */
1606 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1607 tick_error -= (xinterval + tk->xtime_remainder);
1608
1609 /* Don't worry about correcting it if its small */
1610 if (likely((tick_error >= 0) && (tick_error <= interval)))
1611 return;
1612
1613 /* preserve the direction of correction */
1614 negative = (tick_error < 0);
1615
1616 /* Sort out the magnitude of the correction */
2619d7e9 1617 tick_error = abs64(tick_error);
dc491596
JS
1618 for (adj = 0; tick_error > interval; adj++)
1619 tick_error >>= 1;
1620
1621 /* scale the corrections */
1622 timekeeping_apply_adjustment(tk, offset, negative, adj);
1623}
1624
1625/*
1626 * Adjust the timekeeper's multiplier to the correct frequency
1627 * and also to reduce the accumulated error value.
1628 */
1629static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1630{
1631 /* Correct for the current frequency error */
1632 timekeeping_freqadjust(tk, offset);
1633
1634 /* Next make a small adjustment to fix any cumulative error */
1635 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1636 tk->ntp_err_mult = 1;
1637 timekeeping_apply_adjustment(tk, offset, 0, 0);
1638 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1639 /* Undo any existing error adjustment */
1640 timekeeping_apply_adjustment(tk, offset, 1, 0);
1641 tk->ntp_err_mult = 0;
1642 }
1643
876e7881
PZ
1644 if (unlikely(tk->tkr_mono.clock->maxadj &&
1645 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1646 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1647 printk_once(KERN_WARNING
1648 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1649 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1650 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1651 }
2a8c0883
JS
1652
1653 /*
1654 * It may be possible that when we entered this function, xtime_nsec
1655 * was very small. Further, if we're slightly speeding the clocksource
1656 * in the code above, its possible the required corrective factor to
1657 * xtime_nsec could cause it to underflow.
1658 *
1659 * Now, since we already accumulated the second, cannot simply roll
1660 * the accumulated second back, since the NTP subsystem has been
1661 * notified via second_overflow. So instead we push xtime_nsec forward
1662 * by the amount we underflowed, and add that amount into the error.
1663 *
1664 * We'll correct this error next time through this function, when
1665 * xtime_nsec is not as small.
1666 */
876e7881
PZ
1667 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1668 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1669 tk->tkr_mono.xtime_nsec = 0;
f726a697 1670 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1671 }
8524070b 1672}
1673
1f4f9487
JS
1674/**
1675 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1676 *
1677 * Helper function that accumulates a the nsecs greater then a second
1678 * from the xtime_nsec field to the xtime_secs field.
1679 * It also calls into the NTP code to handle leapsecond processing.
1680 *
1681 */
780427f0 1682static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1683{
876e7881 1684 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1685 unsigned int clock_set = 0;
1f4f9487 1686
876e7881 1687 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1688 int leap;
1689
876e7881 1690 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1691 tk->xtime_sec++;
1692
1693 /* Figure out if its a leap sec and apply if needed */
1694 leap = second_overflow(tk->xtime_sec);
6d0ef903 1695 if (unlikely(leap)) {
7d489d15 1696 struct timespec64 ts;
6d0ef903
JS
1697
1698 tk->xtime_sec += leap;
1f4f9487 1699
6d0ef903
JS
1700 ts.tv_sec = leap;
1701 ts.tv_nsec = 0;
1702 tk_set_wall_to_mono(tk,
7d489d15 1703 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1704
cc244dda
JS
1705 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1706
5258d3f2 1707 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1708 }
1f4f9487 1709 }
5258d3f2 1710 return clock_set;
1f4f9487
JS
1711}
1712
a092ff0f 1713/**
1714 * logarithmic_accumulation - shifted accumulation of cycles
1715 *
1716 * This functions accumulates a shifted interval of cycles into
1717 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1718 * loop.
1719 *
1720 * Returns the unconsumed cycles.
1721 */
f726a697 1722static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1723 u32 shift,
1724 unsigned int *clock_set)
a092ff0f 1725{
23a9537a 1726 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1727 u64 raw_nsecs;
a092ff0f 1728
f726a697 1729 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1730 if (offset < interval)
a092ff0f 1731 return offset;
1732
1733 /* Accumulate one shifted interval */
23a9537a 1734 offset -= interval;
876e7881 1735 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1736 tk->tkr_raw.cycle_last += interval;
a092ff0f 1737
876e7881 1738 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1739 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1740
deda2e81 1741 /* Accumulate raw time */
5b3900cd 1742 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1743 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1744 if (raw_nsecs >= NSEC_PER_SEC) {
1745 u64 raw_secs = raw_nsecs;
1746 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1747 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1748 }
f726a697 1749 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1750
1751 /* Accumulate error between NTP and clock interval */
375f45b5 1752 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1753 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1754 (tk->ntp_error_shift + shift);
a092ff0f 1755
1756 return offset;
1757}
1758
8524070b 1759/**
1760 * update_wall_time - Uses the current clocksource to increment the wall time
1761 *
8524070b 1762 */
47a1b796 1763void update_wall_time(void)
8524070b 1764{
3fdb14fd 1765 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1766 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1767 cycle_t offset;
a092ff0f 1768 int shift = 0, maxshift;
5258d3f2 1769 unsigned int clock_set = 0;
70471f2f
JS
1770 unsigned long flags;
1771
9a7a71b1 1772 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1773
1774 /* Make sure we're fully resumed: */
1775 if (unlikely(timekeeping_suspended))
70471f2f 1776 goto out;
8524070b 1777
592913ec 1778#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1779 offset = real_tk->cycle_interval;
592913ec 1780#else
876e7881
PZ
1781 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1782 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 1783#endif
8524070b 1784
bf2ac312 1785 /* Check if there's really nothing to do */
48cdc135 1786 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1787 goto out;
1788
3c17ad19
JS
1789 /* Do some additional sanity checking */
1790 timekeeping_check_update(real_tk, offset);
1791
a092ff0f 1792 /*
1793 * With NO_HZ we may have to accumulate many cycle_intervals
1794 * (think "ticks") worth of time at once. To do this efficiently,
1795 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1796 * that is smaller than the offset. We then accumulate that
a092ff0f 1797 * chunk in one go, and then try to consume the next smaller
1798 * doubled multiple.
8524070b 1799 */
4e250fdd 1800 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1801 shift = max(0, shift);
88b28adf 1802 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1803 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1804 shift = min(shift, maxshift);
4e250fdd 1805 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1806 offset = logarithmic_accumulation(tk, offset, shift,
1807 &clock_set);
4e250fdd 1808 if (offset < tk->cycle_interval<<shift)
830ec045 1809 shift--;
8524070b 1810 }
1811
1812 /* correct the clock when NTP error is too big */
4e250fdd 1813 timekeeping_adjust(tk, offset);
8524070b 1814
6a867a39 1815 /*
92bb1fcf
JS
1816 * XXX This can be killed once everyone converts
1817 * to the new update_vsyscall.
1818 */
1819 old_vsyscall_fixup(tk);
8524070b 1820
6a867a39
JS
1821 /*
1822 * Finally, make sure that after the rounding
1e75fa8b 1823 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1824 */
5258d3f2 1825 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1826
3fdb14fd 1827 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1828 /*
1829 * Update the real timekeeper.
1830 *
1831 * We could avoid this memcpy by switching pointers, but that
1832 * requires changes to all other timekeeper usage sites as
1833 * well, i.e. move the timekeeper pointer getter into the
1834 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1835 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1836 * updating.
1837 */
906c5557 1838 timekeeping_update(tk, clock_set);
48cdc135 1839 memcpy(real_tk, tk, sizeof(*tk));
906c5557 1840 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 1841 write_seqcount_end(&tk_core.seq);
ca4523cd 1842out:
9a7a71b1 1843 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1844 if (clock_set)
cab5e127
JS
1845 /* Have to call _delayed version, since in irq context*/
1846 clock_was_set_delayed();
8524070b 1847}
7c3f1a57
TJ
1848
1849/**
d08c0cdd
JS
1850 * getboottime64 - Return the real time of system boot.
1851 * @ts: pointer to the timespec64 to be set
7c3f1a57 1852 *
d08c0cdd 1853 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1854 *
1855 * This is based on the wall_to_monotonic offset and the total suspend
1856 * time. Calls to settimeofday will affect the value returned (which
1857 * basically means that however wrong your real time clock is at boot time,
1858 * you get the right time here).
1859 */
d08c0cdd 1860void getboottime64(struct timespec64 *ts)
7c3f1a57 1861{
3fdb14fd 1862 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1863 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1864
d08c0cdd 1865 *ts = ktime_to_timespec64(t);
7c3f1a57 1866}
d08c0cdd 1867EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1868
17c38b74 1869unsigned long get_seconds(void)
1870{
3fdb14fd 1871 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1872
1873 return tk->xtime_sec;
17c38b74 1874}
1875EXPORT_SYMBOL(get_seconds);
1876
da15cfda 1877struct timespec __current_kernel_time(void)
1878{
3fdb14fd 1879 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1880
7d489d15 1881 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1882}
17c38b74 1883
8758a240 1884struct timespec64 current_kernel_time64(void)
2c6b47de 1885{
3fdb14fd 1886 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1887 struct timespec64 now;
2c6b47de 1888 unsigned long seq;
1889
1890 do {
3fdb14fd 1891 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1892
4e250fdd 1893 now = tk_xtime(tk);
3fdb14fd 1894 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1895
8758a240 1896 return now;
2c6b47de 1897}
8758a240 1898EXPORT_SYMBOL(current_kernel_time64);
da15cfda 1899
334334b5 1900struct timespec64 get_monotonic_coarse64(void)
da15cfda 1901{
3fdb14fd 1902 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1903 struct timespec64 now, mono;
da15cfda 1904 unsigned long seq;
1905
1906 do {
3fdb14fd 1907 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1908
4e250fdd
JS
1909 now = tk_xtime(tk);
1910 mono = tk->wall_to_monotonic;
3fdb14fd 1911 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1912
7d489d15 1913 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1914 now.tv_nsec + mono.tv_nsec);
7d489d15 1915
334334b5 1916 return now;
da15cfda 1917}
871cf1e5
TH
1918
1919/*
d6ad4187 1920 * Must hold jiffies_lock
871cf1e5
TH
1921 */
1922void do_timer(unsigned long ticks)
1923{
1924 jiffies_64 += ticks;
871cf1e5
TH
1925 calc_global_load(ticks);
1926}
48cf76f7 1927
f6c06abf 1928/**
76f41088 1929 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 1930 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
1931 * @offs_real: pointer to storage for monotonic -> realtime offset
1932 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1933 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 1934 *
868a3e91
TG
1935 * Returns current monotonic time and updates the offsets if the
1936 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1937 * different.
1938 *
b7bc50e4 1939 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1940 */
868a3e91
TG
1941ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1942 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 1943{
3fdb14fd 1944 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1945 unsigned int seq;
a37c0aad
TG
1946 ktime_t base;
1947 u64 nsecs;
f6c06abf
TG
1948
1949 do {
3fdb14fd 1950 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1951
876e7881
PZ
1952 base = tk->tkr_mono.base;
1953 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
1954 base = ktime_add_ns(base, nsecs);
1955
868a3e91
TG
1956 if (*cwsseq != tk->clock_was_set_seq) {
1957 *cwsseq = tk->clock_was_set_seq;
1958 *offs_real = tk->offs_real;
1959 *offs_boot = tk->offs_boot;
1960 *offs_tai = tk->offs_tai;
1961 }
833f32d7
JS
1962
1963 /* Handle leapsecond insertion adjustments */
1964 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1965 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1966
3fdb14fd 1967 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1968
833f32d7 1969 return base;
f6c06abf 1970}
f6c06abf 1971
aa6f9c59
JS
1972/**
1973 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1974 */
1975int do_adjtimex(struct timex *txc)
1976{
3fdb14fd 1977 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1978 unsigned long flags;
7d489d15 1979 struct timespec64 ts;
4e8f8b34 1980 s32 orig_tai, tai;
e4085693
JS
1981 int ret;
1982
1983 /* Validate the data before disabling interrupts */
1984 ret = ntp_validate_timex(txc);
1985 if (ret)
1986 return ret;
1987
cef90377
JS
1988 if (txc->modes & ADJ_SETOFFSET) {
1989 struct timespec delta;
1990 delta.tv_sec = txc->time.tv_sec;
1991 delta.tv_nsec = txc->time.tv_usec;
1992 if (!(txc->modes & ADJ_NANO))
1993 delta.tv_nsec *= 1000;
1994 ret = timekeeping_inject_offset(&delta);
1995 if (ret)
1996 return ret;
1997 }
1998
d6d29896 1999 getnstimeofday64(&ts);
87ace39b 2000
06c017fd 2001 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2002 write_seqcount_begin(&tk_core.seq);
06c017fd 2003
4e8f8b34 2004 orig_tai = tai = tk->tai_offset;
87ace39b 2005 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2006
4e8f8b34
JS
2007 if (tai != orig_tai) {
2008 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2009 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2010 }
833f32d7
JS
2011 tk_update_leap_state(tk);
2012
3fdb14fd 2013 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2014 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2015
6fdda9a9
JS
2016 if (tai != orig_tai)
2017 clock_was_set();
2018
7bd36014
JS
2019 ntp_notify_cmos_timer();
2020
87ace39b
JS
2021 return ret;
2022}
aa6f9c59
JS
2023
2024#ifdef CONFIG_NTP_PPS
2025/**
2026 * hardpps() - Accessor function to NTP __hardpps function
2027 */
2028void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2029{
06c017fd
JS
2030 unsigned long flags;
2031
2032 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2033 write_seqcount_begin(&tk_core.seq);
06c017fd 2034
aa6f9c59 2035 __hardpps(phase_ts, raw_ts);
06c017fd 2036
3fdb14fd 2037 write_seqcount_end(&tk_core.seq);
06c017fd 2038 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2039}
2040EXPORT_SYMBOL(hardpps);
2041#endif
2042
f0af911a
TH
2043/**
2044 * xtime_update() - advances the timekeeping infrastructure
2045 * @ticks: number of ticks, that have elapsed since the last call.
2046 *
2047 * Must be called with interrupts disabled.
2048 */
2049void xtime_update(unsigned long ticks)
2050{
d6ad4187 2051 write_seqlock(&jiffies_lock);
f0af911a 2052 do_timer(ticks);
d6ad4187 2053 write_sequnlock(&jiffies_lock);
47a1b796 2054 update_wall_time();
f0af911a 2055}
This page took 0.687876 seconds and 5 git commands to generate.