ntp: Fix second_overflow's input parameter type to be 64bits
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 121
3c17ad19
JS
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
876e7881
PZ
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
4ca22c26 139
57d05a93
JS
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 145 tk->last_warning = jiffies;
4ca22c26 146 }
57d05a93 147 tk->underflow_seen = 0;
4ca22c26
JS
148 }
149
57d05a93
JS
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 155 tk->last_warning = jiffies;
4ca22c26 156 }
57d05a93 157 tk->overflow_seen = 0;
4ca22c26 158 }
3c17ad19 159}
a558cd02
JS
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
57d05a93 163 struct timekeeper *tk = &tk_core.timekeeper;
4ca22c26
JS
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
a558cd02 166
4ca22c26
JS
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 181
4ca22c26 182 delta = clocksource_delta(now, last, mask);
a558cd02 183
057b87e3
JS
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
4ca22c26 188 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 189 tk->underflow_seen = 1;
057b87e3 190 delta = 0;
4ca22c26 191 }
057b87e3 192
a558cd02 193 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 194 if (unlikely(delta > max)) {
57d05a93 195 tk->overflow_seen = 1;
a558cd02 196 delta = tkr->clock->max_cycles;
4ca22c26 197 }
a558cd02
JS
198
199 return delta;
200}
3c17ad19
JS
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
a558cd02
JS
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
3c17ad19
JS
217#endif
218
155ec602 219/**
d26e4fe0 220 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 221 *
d26e4fe0 222 * @tk: The target timekeeper to setup.
155ec602
MS
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
f726a697 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
231{
232 cycle_t interval;
a386b5af 233 u64 tmp, ntpinterval;
1e75fa8b 234 struct clocksource *old_clock;
155ec602 235
876e7881
PZ
236 old_clock = tk->tkr_mono.clock;
237 tk->tkr_mono.clock = clock;
238 tk->tkr_mono.read = clock->read;
239 tk->tkr_mono.mask = clock->mask;
240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 241
4a4ad80d
PZ
242 tk->tkr_raw.clock = clock;
243 tk->tkr_raw.read = clock->read;
244 tk->tkr_raw.mask = clock->mask;
245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
155ec602
MS
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp = NTP_INTERVAL_LENGTH;
249 tmp <<= clock->shift;
a386b5af 250 ntpinterval = tmp;
0a544198
MS
251 tmp += clock->mult/2;
252 do_div(tmp, clock->mult);
155ec602
MS
253 if (tmp == 0)
254 tmp = 1;
255
256 interval = (cycle_t) tmp;
f726a697 257 tk->cycle_interval = interval;
155ec602
MS
258
259 /* Go back from cycles -> shifted ns */
f726a697
JS
260 tk->xtime_interval = (u64) interval * clock->mult;
261 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 tk->raw_interval =
0a544198 263 ((u64) interval * clock->mult) >> clock->shift;
155ec602 264
1e75fa8b
JS
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
876e7881 269 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 270 else
876e7881 271 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 272 }
4a4ad80d
PZ
273 tk->tkr_raw.xtime_nsec = 0;
274
876e7881 275 tk->tkr_mono.shift = clock->shift;
4a4ad80d 276 tk->tkr_raw.shift = clock->shift;
155ec602 277
f726a697
JS
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
281
282 /*
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
286 */
876e7881 287 tk->tkr_mono.mult = clock->mult;
4a4ad80d 288 tk->tkr_raw.mult = clock->mult;
dc491596 289 tk->ntp_err_mult = 0;
155ec602 290}
8524070b 291
2ba2a305 292/* Timekeeper helper functions. */
7b1f6207
SW
293
294#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
295static u32 default_arch_gettimeoffset(void) { return 0; }
296u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 297#else
e06fde37 298static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
299#endif
300
0e5ac3a8 301static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 302{
a558cd02 303 cycle_t delta;
1e75fa8b 304 s64 nsec;
2ba2a305 305
a558cd02 306 delta = timekeeping_get_delta(tkr);
2ba2a305 307
35a4933a 308 nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
f2a5a085 309
7b1f6207 310 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 311 return nsec + arch_gettimeoffset();
2ba2a305
MS
312}
313
4396e058
TG
314/**
315 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 316 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
317 *
318 * We want to use this from any context including NMI and tracing /
319 * instrumenting the timekeeping code itself.
320 *
6695b92a 321 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
322 *
323 * So if a NMI hits the update of base[0] then it will use base[1]
324 * which is still consistent. In the worst case this can result is a
325 * slightly wrong timestamp (a few nanoseconds). See
326 * @ktime_get_mono_fast_ns.
327 */
4498e746 328static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 329{
4498e746 330 struct tk_read_base *base = tkf->base;
4396e058
TG
331
332 /* Force readers off to base[1] */
4498e746 333 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
334
335 /* Update base[0] */
affe3e85 336 memcpy(base, tkr, sizeof(*base));
4396e058
TG
337
338 /* Force readers back to base[0] */
4498e746 339 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
340
341 /* Update base[1] */
342 memcpy(base + 1, base, sizeof(*base));
343}
344
345/**
346 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
347 *
348 * This timestamp is not guaranteed to be monotonic across an update.
349 * The timestamp is calculated by:
350 *
351 * now = base_mono + clock_delta * slope
352 *
353 * So if the update lowers the slope, readers who are forced to the
354 * not yet updated second array are still using the old steeper slope.
355 *
356 * tmono
357 * ^
358 * | o n
359 * | o n
360 * | u
361 * | o
362 * |o
363 * |12345678---> reader order
364 *
365 * o = old slope
366 * u = update
367 * n = new slope
368 *
369 * So reader 6 will observe time going backwards versus reader 5.
370 *
371 * While other CPUs are likely to be able observe that, the only way
372 * for a CPU local observation is when an NMI hits in the middle of
373 * the update. Timestamps taken from that NMI context might be ahead
374 * of the following timestamps. Callers need to be aware of that and
375 * deal with it.
376 */
4498e746 377static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
378{
379 struct tk_read_base *tkr;
380 unsigned int seq;
381 u64 now;
382
383 do {
7fc26327 384 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 385 tkr = tkf->base + (seq & 0x01);
876e7881 386 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 387 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 388
4396e058
TG
389 return now;
390}
4498e746
PZ
391
392u64 ktime_get_mono_fast_ns(void)
393{
394 return __ktime_get_fast_ns(&tk_fast_mono);
395}
4396e058
TG
396EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
397
f09cb9a1
PZ
398u64 ktime_get_raw_fast_ns(void)
399{
400 return __ktime_get_fast_ns(&tk_fast_raw);
401}
402EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
403
060407ae
RW
404/* Suspend-time cycles value for halted fast timekeeper. */
405static cycle_t cycles_at_suspend;
406
407static cycle_t dummy_clock_read(struct clocksource *cs)
408{
409 return cycles_at_suspend;
410}
411
412/**
413 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
414 * @tk: Timekeeper to snapshot.
415 *
416 * It generally is unsafe to access the clocksource after timekeeping has been
417 * suspended, so take a snapshot of the readout base of @tk and use it as the
418 * fast timekeeper's readout base while suspended. It will return the same
419 * number of cycles every time until timekeeping is resumed at which time the
420 * proper readout base for the fast timekeeper will be restored automatically.
421 */
422static void halt_fast_timekeeper(struct timekeeper *tk)
423{
424 static struct tk_read_base tkr_dummy;
876e7881 425 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
426
427 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
428 cycles_at_suspend = tkr->read(tkr->clock);
429 tkr_dummy.read = dummy_clock_read;
4498e746 430 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
431
432 tkr = &tk->tkr_raw;
433 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
434 tkr_dummy.read = dummy_clock_read;
435 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
436}
437
c905fae4
TG
438#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
439
440static inline void update_vsyscall(struct timekeeper *tk)
441{
0680eb1f 442 struct timespec xt, wm;
c905fae4 443
e2dff1ec 444 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 445 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
446 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
447 tk->tkr_mono.cycle_last);
c905fae4
TG
448}
449
450static inline void old_vsyscall_fixup(struct timekeeper *tk)
451{
452 s64 remainder;
453
454 /*
455 * Store only full nanoseconds into xtime_nsec after rounding
456 * it up and add the remainder to the error difference.
457 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
458 * by truncating the remainder in vsyscalls. However, it causes
459 * additional work to be done in timekeeping_adjust(). Once
460 * the vsyscall implementations are converted to use xtime_nsec
461 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
462 * users are removed, this can be killed.
463 */
876e7881
PZ
464 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
465 tk->tkr_mono.xtime_nsec -= remainder;
466 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
c905fae4 467 tk->ntp_error += remainder << tk->ntp_error_shift;
876e7881 468 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
c905fae4
TG
469}
470#else
471#define old_vsyscall_fixup(tk)
472#endif
473
e0b306fe
MT
474static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
475
780427f0 476static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 477{
780427f0 478 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
479}
480
481/**
482 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
483 */
484int pvclock_gtod_register_notifier(struct notifier_block *nb)
485{
3fdb14fd 486 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
487 unsigned long flags;
488 int ret;
489
9a7a71b1 490 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 491 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 492 update_pvclock_gtod(tk, true);
9a7a71b1 493 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
494
495 return ret;
496}
497EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
498
499/**
500 * pvclock_gtod_unregister_notifier - unregister a pvclock
501 * timedata update listener
e0b306fe
MT
502 */
503int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
504{
e0b306fe
MT
505 unsigned long flags;
506 int ret;
507
9a7a71b1 508 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 509 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 510 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
511
512 return ret;
513}
514EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
515
833f32d7
JS
516/*
517 * tk_update_leap_state - helper to update the next_leap_ktime
518 */
519static inline void tk_update_leap_state(struct timekeeper *tk)
520{
521 tk->next_leap_ktime = ntp_get_next_leap();
522 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
523 /* Convert to monotonic time */
524 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
525}
526
7c032df5
TG
527/*
528 * Update the ktime_t based scalar nsec members of the timekeeper
529 */
530static inline void tk_update_ktime_data(struct timekeeper *tk)
531{
9e3680b1
HS
532 u64 seconds;
533 u32 nsec;
7c032df5
TG
534
535 /*
536 * The xtime based monotonic readout is:
537 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
538 * The ktime based monotonic readout is:
539 * nsec = base_mono + now();
540 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
541 */
9e3680b1
HS
542 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
543 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 544 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
545
546 /* Update the monotonic raw base */
4a4ad80d 547 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
548
549 /*
550 * The sum of the nanoseconds portions of xtime and
551 * wall_to_monotonic can be greater/equal one second. Take
552 * this into account before updating tk->ktime_sec.
553 */
876e7881 554 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
555 if (nsec >= NSEC_PER_SEC)
556 seconds++;
557 tk->ktime_sec = seconds;
7c032df5
TG
558}
559
9a7a71b1 560/* must hold timekeeper_lock */
04397fe9 561static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 562{
04397fe9 563 if (action & TK_CLEAR_NTP) {
f726a697 564 tk->ntp_error = 0;
cc06268c
TG
565 ntp_clear();
566 }
48cdc135 567
833f32d7 568 tk_update_leap_state(tk);
7c032df5
TG
569 tk_update_ktime_data(tk);
570
9bf2419f
TG
571 update_vsyscall(tk);
572 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
573
4498e746 574 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 575 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
576
577 if (action & TK_CLOCK_WAS_SET)
578 tk->clock_was_set_seq++;
d1518326
JS
579 /*
580 * The mirroring of the data to the shadow-timekeeper needs
581 * to happen last here to ensure we don't over-write the
582 * timekeeper structure on the next update with stale data
583 */
584 if (action & TK_MIRROR)
585 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
586 sizeof(tk_core.timekeeper));
cc06268c
TG
587}
588
8524070b 589/**
155ec602 590 * timekeeping_forward_now - update clock to the current time
8524070b 591 *
9a055117
RZ
592 * Forward the current clock to update its state since the last call to
593 * update_wall_time(). This is useful before significant clock changes,
594 * as it avoids having to deal with this time offset explicitly.
8524070b 595 */
f726a697 596static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 597{
876e7881 598 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 599 cycle_t cycle_now, delta;
9a055117 600 s64 nsec;
8524070b 601
876e7881
PZ
602 cycle_now = tk->tkr_mono.read(clock);
603 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
604 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 605 tk->tkr_raw.cycle_last = cycle_now;
8524070b 606
876e7881 607 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 608
7b1f6207 609 /* If arch requires, add in get_arch_timeoffset() */
876e7881 610 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 611
f726a697 612 tk_normalize_xtime(tk);
2d42244a 613
4a4ad80d 614 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 615 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 616}
617
618/**
d6d29896 619 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 620 * @ts: pointer to the timespec to be set
621 *
1e817fb6
KC
622 * Updates the time of day in the timespec.
623 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 624 */
d6d29896 625int __getnstimeofday64(struct timespec64 *ts)
8524070b 626{
3fdb14fd 627 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 628 unsigned long seq;
1e75fa8b 629 s64 nsecs = 0;
8524070b 630
631 do {
3fdb14fd 632 seq = read_seqcount_begin(&tk_core.seq);
8524070b 633
4e250fdd 634 ts->tv_sec = tk->xtime_sec;
876e7881 635 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 636
3fdb14fd 637 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 638
ec145bab 639 ts->tv_nsec = 0;
d6d29896 640 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
641
642 /*
643 * Do not bail out early, in case there were callers still using
644 * the value, even in the face of the WARN_ON.
645 */
646 if (unlikely(timekeeping_suspended))
647 return -EAGAIN;
648 return 0;
649}
d6d29896 650EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
651
652/**
d6d29896 653 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 654 * @ts: pointer to the timespec64 to be set
1e817fb6 655 *
5322e4c2 656 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 657 */
d6d29896 658void getnstimeofday64(struct timespec64 *ts)
1e817fb6 659{
d6d29896 660 WARN_ON(__getnstimeofday64(ts));
8524070b 661}
d6d29896 662EXPORT_SYMBOL(getnstimeofday64);
8524070b 663
951ed4d3
MS
664ktime_t ktime_get(void)
665{
3fdb14fd 666 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 667 unsigned int seq;
a016a5bd
TG
668 ktime_t base;
669 s64 nsecs;
951ed4d3
MS
670
671 WARN_ON(timekeeping_suspended);
672
673 do {
3fdb14fd 674 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
675 base = tk->tkr_mono.base;
676 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 677
3fdb14fd 678 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 679
a016a5bd 680 return ktime_add_ns(base, nsecs);
951ed4d3
MS
681}
682EXPORT_SYMBOL_GPL(ktime_get);
683
6374f912
HG
684u32 ktime_get_resolution_ns(void)
685{
686 struct timekeeper *tk = &tk_core.timekeeper;
687 unsigned int seq;
688 u32 nsecs;
689
690 WARN_ON(timekeeping_suspended);
691
692 do {
693 seq = read_seqcount_begin(&tk_core.seq);
694 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
695 } while (read_seqcount_retry(&tk_core.seq, seq));
696
697 return nsecs;
698}
699EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
700
0077dc60
TG
701static ktime_t *offsets[TK_OFFS_MAX] = {
702 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
703 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
704 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
705};
706
707ktime_t ktime_get_with_offset(enum tk_offsets offs)
708{
709 struct timekeeper *tk = &tk_core.timekeeper;
710 unsigned int seq;
711 ktime_t base, *offset = offsets[offs];
712 s64 nsecs;
713
714 WARN_ON(timekeeping_suspended);
715
716 do {
717 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
718 base = ktime_add(tk->tkr_mono.base, *offset);
719 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
720
721 } while (read_seqcount_retry(&tk_core.seq, seq));
722
723 return ktime_add_ns(base, nsecs);
724
725}
726EXPORT_SYMBOL_GPL(ktime_get_with_offset);
727
9a6b5197
TG
728/**
729 * ktime_mono_to_any() - convert mononotic time to any other time
730 * @tmono: time to convert.
731 * @offs: which offset to use
732 */
733ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
734{
735 ktime_t *offset = offsets[offs];
736 unsigned long seq;
737 ktime_t tconv;
738
739 do {
740 seq = read_seqcount_begin(&tk_core.seq);
741 tconv = ktime_add(tmono, *offset);
742 } while (read_seqcount_retry(&tk_core.seq, seq));
743
744 return tconv;
745}
746EXPORT_SYMBOL_GPL(ktime_mono_to_any);
747
f519b1a2
TG
748/**
749 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
750 */
751ktime_t ktime_get_raw(void)
752{
753 struct timekeeper *tk = &tk_core.timekeeper;
754 unsigned int seq;
755 ktime_t base;
756 s64 nsecs;
757
758 do {
759 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
760 base = tk->tkr_raw.base;
761 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
762
763 } while (read_seqcount_retry(&tk_core.seq, seq));
764
765 return ktime_add_ns(base, nsecs);
766}
767EXPORT_SYMBOL_GPL(ktime_get_raw);
768
951ed4d3 769/**
d6d29896 770 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
771 * @ts: pointer to timespec variable
772 *
773 * The function calculates the monotonic clock from the realtime
774 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 775 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 776 */
d6d29896 777void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 778{
3fdb14fd 779 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 780 struct timespec64 tomono;
ec145bab 781 s64 nsec;
951ed4d3 782 unsigned int seq;
951ed4d3
MS
783
784 WARN_ON(timekeeping_suspended);
785
786 do {
3fdb14fd 787 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 788 ts->tv_sec = tk->xtime_sec;
876e7881 789 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 790 tomono = tk->wall_to_monotonic;
951ed4d3 791
3fdb14fd 792 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 793
d6d29896
TG
794 ts->tv_sec += tomono.tv_sec;
795 ts->tv_nsec = 0;
796 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 797}
d6d29896 798EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 799
9e3680b1
HS
800/**
801 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
802 *
803 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805 * works on both 32 and 64 bit systems. On 32 bit systems the readout
806 * covers ~136 years of uptime which should be enough to prevent
807 * premature wrap arounds.
808 */
809time64_t ktime_get_seconds(void)
810{
811 struct timekeeper *tk = &tk_core.timekeeper;
812
813 WARN_ON(timekeeping_suspended);
814 return tk->ktime_sec;
815}
816EXPORT_SYMBOL_GPL(ktime_get_seconds);
817
dbe7aa62
HS
818/**
819 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
820 *
821 * Returns the wall clock seconds since 1970. This replaces the
822 * get_seconds() interface which is not y2038 safe on 32bit systems.
823 *
824 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825 * 32bit systems the access must be protected with the sequence
826 * counter to provide "atomic" access to the 64bit tk->xtime_sec
827 * value.
828 */
829time64_t ktime_get_real_seconds(void)
830{
831 struct timekeeper *tk = &tk_core.timekeeper;
832 time64_t seconds;
833 unsigned int seq;
834
835 if (IS_ENABLED(CONFIG_64BIT))
836 return tk->xtime_sec;
837
838 do {
839 seq = read_seqcount_begin(&tk_core.seq);
840 seconds = tk->xtime_sec;
841
842 } while (read_seqcount_retry(&tk_core.seq, seq));
843
844 return seconds;
845}
846EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
847
dee36654
D
848/**
849 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
850 * but without the sequence counter protect. This internal function
851 * is called just when timekeeping lock is already held.
852 */
853time64_t __ktime_get_real_seconds(void)
854{
855 struct timekeeper *tk = &tk_core.timekeeper;
856
857 return tk->xtime_sec;
858}
859
860
e2c18e49
AG
861#ifdef CONFIG_NTP_PPS
862
863/**
071eee45 864 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
e2c18e49
AG
865 * @ts_raw: pointer to the timespec to be set to raw monotonic time
866 * @ts_real: pointer to the timespec to be set to the time of day
867 *
868 * This function reads both the time of day and raw monotonic time at the
869 * same time atomically and stores the resulting timestamps in timespec
870 * format.
871 */
071eee45 872void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
e2c18e49 873{
3fdb14fd 874 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
875 unsigned long seq;
876 s64 nsecs_raw, nsecs_real;
877
878 WARN_ON_ONCE(timekeeping_suspended);
879
880 do {
3fdb14fd 881 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 882
071eee45 883 *ts_raw = tk->raw_time;
4e250fdd 884 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 885 ts_real->tv_nsec = 0;
e2c18e49 886
4a4ad80d 887 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876e7881 888 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
e2c18e49 889
3fdb14fd 890 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49 891
071eee45
AB
892 timespec64_add_ns(ts_raw, nsecs_raw);
893 timespec64_add_ns(ts_real, nsecs_real);
e2c18e49 894}
071eee45 895EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
e2c18e49
AG
896
897#endif /* CONFIG_NTP_PPS */
898
8524070b 899/**
900 * do_gettimeofday - Returns the time of day in a timeval
901 * @tv: pointer to the timeval to be set
902 *
efd9ac86 903 * NOTE: Users should be converted to using getnstimeofday()
8524070b 904 */
905void do_gettimeofday(struct timeval *tv)
906{
d6d29896 907 struct timespec64 now;
8524070b 908
d6d29896 909 getnstimeofday64(&now);
8524070b 910 tv->tv_sec = now.tv_sec;
911 tv->tv_usec = now.tv_nsec/1000;
912}
8524070b 913EXPORT_SYMBOL(do_gettimeofday);
d239f49d 914
8524070b 915/**
21f7eca5 916 * do_settimeofday64 - Sets the time of day.
917 * @ts: pointer to the timespec64 variable containing the new time
8524070b 918 *
919 * Sets the time of day to the new time and update NTP and notify hrtimers
920 */
21f7eca5 921int do_settimeofday64(const struct timespec64 *ts)
8524070b 922{
3fdb14fd 923 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 924 struct timespec64 ts_delta, xt;
92c1d3ed 925 unsigned long flags;
e1d7ba87 926 int ret = 0;
8524070b 927
21f7eca5 928 if (!timespec64_valid_strict(ts))
8524070b 929 return -EINVAL;
930
9a7a71b1 931 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 932 write_seqcount_begin(&tk_core.seq);
8524070b 933
4e250fdd 934 timekeeping_forward_now(tk);
9a055117 935
4e250fdd 936 xt = tk_xtime(tk);
21f7eca5 937 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
938 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 939
e1d7ba87
WY
940 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
941 ret = -EINVAL;
942 goto out;
943 }
944
7d489d15 945 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 946
21f7eca5 947 tk_set_xtime(tk, ts);
e1d7ba87 948out:
780427f0 949 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 950
3fdb14fd 951 write_seqcount_end(&tk_core.seq);
9a7a71b1 952 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 953
954 /* signal hrtimers about time change */
955 clock_was_set();
956
e1d7ba87 957 return ret;
8524070b 958}
21f7eca5 959EXPORT_SYMBOL(do_settimeofday64);
8524070b 960
c528f7c6
JS
961/**
962 * timekeeping_inject_offset - Adds or subtracts from the current time.
963 * @tv: pointer to the timespec variable containing the offset
964 *
965 * Adds or subtracts an offset value from the current time.
966 */
967int timekeeping_inject_offset(struct timespec *ts)
968{
3fdb14fd 969 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 970 unsigned long flags;
7d489d15 971 struct timespec64 ts64, tmp;
4e8b1452 972 int ret = 0;
c528f7c6 973
37cf4dc3 974 if (!timespec_inject_offset_valid(ts))
c528f7c6
JS
975 return -EINVAL;
976
7d489d15
JS
977 ts64 = timespec_to_timespec64(*ts);
978
9a7a71b1 979 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 980 write_seqcount_begin(&tk_core.seq);
c528f7c6 981
4e250fdd 982 timekeeping_forward_now(tk);
c528f7c6 983
4e8b1452 984 /* Make sure the proposed value is valid */
7d489d15 985 tmp = timespec64_add(tk_xtime(tk), ts64);
e1d7ba87
WY
986 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
987 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
988 ret = -EINVAL;
989 goto error;
990 }
1e75fa8b 991
7d489d15
JS
992 tk_xtime_add(tk, &ts64);
993 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 994
4e8b1452 995error: /* even if we error out, we forwarded the time, so call update */
780427f0 996 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 997
3fdb14fd 998 write_seqcount_end(&tk_core.seq);
9a7a71b1 999 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1000
1001 /* signal hrtimers about time change */
1002 clock_was_set();
1003
4e8b1452 1004 return ret;
c528f7c6
JS
1005}
1006EXPORT_SYMBOL(timekeeping_inject_offset);
1007
cc244dda
JS
1008
1009/**
1010 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1011 *
1012 */
1013s32 timekeeping_get_tai_offset(void)
1014{
3fdb14fd 1015 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1016 unsigned int seq;
1017 s32 ret;
1018
1019 do {
3fdb14fd 1020 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1021 ret = tk->tai_offset;
3fdb14fd 1022 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1023
1024 return ret;
1025}
1026
1027/**
1028 * __timekeeping_set_tai_offset - Lock free worker function
1029 *
1030 */
dd5d70e8 1031static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1032{
1033 tk->tai_offset = tai_offset;
04005f60 1034 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1035}
1036
1037/**
1038 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1039 *
1040 */
1041void timekeeping_set_tai_offset(s32 tai_offset)
1042{
3fdb14fd 1043 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1044 unsigned long flags;
1045
9a7a71b1 1046 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1047 write_seqcount_begin(&tk_core.seq);
cc244dda 1048 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1049 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1050 write_seqcount_end(&tk_core.seq);
9a7a71b1 1051 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1052 clock_was_set();
cc244dda
JS
1053}
1054
8524070b 1055/**
1056 * change_clocksource - Swaps clocksources if a new one is available
1057 *
1058 * Accumulates current time interval and initializes new clocksource
1059 */
75c5158f 1060static int change_clocksource(void *data)
8524070b 1061{
3fdb14fd 1062 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1063 struct clocksource *new, *old;
f695cf94 1064 unsigned long flags;
8524070b 1065
75c5158f 1066 new = (struct clocksource *) data;
8524070b 1067
9a7a71b1 1068 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1069 write_seqcount_begin(&tk_core.seq);
f695cf94 1070
4e250fdd 1071 timekeeping_forward_now(tk);
09ac369c
TG
1072 /*
1073 * If the cs is in module, get a module reference. Succeeds
1074 * for built-in code (owner == NULL) as well.
1075 */
1076 if (try_module_get(new->owner)) {
1077 if (!new->enable || new->enable(new) == 0) {
876e7881 1078 old = tk->tkr_mono.clock;
09ac369c
TG
1079 tk_setup_internals(tk, new);
1080 if (old->disable)
1081 old->disable(old);
1082 module_put(old->owner);
1083 } else {
1084 module_put(new->owner);
1085 }
75c5158f 1086 }
780427f0 1087 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1088
3fdb14fd 1089 write_seqcount_end(&tk_core.seq);
9a7a71b1 1090 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1091
75c5158f
MS
1092 return 0;
1093}
8524070b 1094
75c5158f
MS
1095/**
1096 * timekeeping_notify - Install a new clock source
1097 * @clock: pointer to the clock source
1098 *
1099 * This function is called from clocksource.c after a new, better clock
1100 * source has been registered. The caller holds the clocksource_mutex.
1101 */
ba919d1c 1102int timekeeping_notify(struct clocksource *clock)
75c5158f 1103{
3fdb14fd 1104 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1105
876e7881 1106 if (tk->tkr_mono.clock == clock)
ba919d1c 1107 return 0;
75c5158f 1108 stop_machine(change_clocksource, clock, NULL);
8524070b 1109 tick_clock_notify();
876e7881 1110 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1111}
75c5158f 1112
2d42244a 1113/**
cdba2ec5
JS
1114 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1115 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1116 *
1117 * Returns the raw monotonic time (completely un-modified by ntp)
1118 */
cdba2ec5 1119void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1120{
3fdb14fd 1121 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1122 struct timespec64 ts64;
2d42244a
JS
1123 unsigned long seq;
1124 s64 nsecs;
2d42244a
JS
1125
1126 do {
3fdb14fd 1127 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1128 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1129 ts64 = tk->raw_time;
2d42244a 1130
3fdb14fd 1131 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1132
7d489d15 1133 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1134 *ts = ts64;
2d42244a 1135}
cdba2ec5
JS
1136EXPORT_SYMBOL(getrawmonotonic64);
1137
2d42244a 1138
8524070b 1139/**
cf4fc6cb 1140 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1141 */
cf4fc6cb 1142int timekeeping_valid_for_hres(void)
8524070b 1143{
3fdb14fd 1144 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1145 unsigned long seq;
1146 int ret;
1147
1148 do {
3fdb14fd 1149 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1150
876e7881 1151 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1152
3fdb14fd 1153 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1154
1155 return ret;
1156}
1157
98962465
JH
1158/**
1159 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1160 */
1161u64 timekeeping_max_deferment(void)
1162{
3fdb14fd 1163 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1164 unsigned long seq;
1165 u64 ret;
42e71e81 1166
70471f2f 1167 do {
3fdb14fd 1168 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1169
876e7881 1170 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1171
3fdb14fd 1172 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1173
1174 return ret;
98962465
JH
1175}
1176
8524070b 1177/**
d4f587c6 1178 * read_persistent_clock - Return time from the persistent clock.
8524070b 1179 *
1180 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1181 * Reads the time from the battery backed persistent clock.
1182 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1183 *
1184 * XXX - Do be sure to remove it once all arches implement it.
1185 */
52f5684c 1186void __weak read_persistent_clock(struct timespec *ts)
8524070b 1187{
d4f587c6
MS
1188 ts->tv_sec = 0;
1189 ts->tv_nsec = 0;
8524070b 1190}
1191
2ee96632
XP
1192void __weak read_persistent_clock64(struct timespec64 *ts64)
1193{
1194 struct timespec ts;
1195
1196 read_persistent_clock(&ts);
1197 *ts64 = timespec_to_timespec64(ts);
1198}
1199
23970e38 1200/**
e83d0a41 1201 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1202 *
1203 * Weak dummy function for arches that do not yet support it.
1204 * Function to read the exact time the system has been started.
e83d0a41 1205 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1206 *
1207 * XXX - Do be sure to remove it once all arches implement it.
1208 */
e83d0a41 1209void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1210{
1211 ts->tv_sec = 0;
1212 ts->tv_nsec = 0;
1213}
1214
0fa88cb4
XP
1215/* Flag for if timekeeping_resume() has injected sleeptime */
1216static bool sleeptime_injected;
1217
1218/* Flag for if there is a persistent clock on this platform */
1219static bool persistent_clock_exists;
1220
8524070b 1221/*
1222 * timekeeping_init - Initializes the clocksource and common timekeeping values
1223 */
1224void __init timekeeping_init(void)
1225{
3fdb14fd 1226 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1227 struct clocksource *clock;
8524070b 1228 unsigned long flags;
7d489d15 1229 struct timespec64 now, boot, tmp;
31ade306 1230
2ee96632 1231 read_persistent_clock64(&now);
7d489d15 1232 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1233 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1234 " Check your CMOS/BIOS settings.\n");
1235 now.tv_sec = 0;
1236 now.tv_nsec = 0;
31ade306 1237 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1238 persistent_clock_exists = true;
4e8b1452 1239
9a806ddb 1240 read_boot_clock64(&boot);
7d489d15 1241 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1242 pr_warn("WARNING: Boot clock returned invalid value!\n"
1243 " Check your CMOS/BIOS settings.\n");
1244 boot.tv_sec = 0;
1245 boot.tv_nsec = 0;
1246 }
8524070b 1247
9a7a71b1 1248 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1249 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1250 ntp_init();
1251
f1b82746 1252 clock = clocksource_default_clock();
a0f7d48b
MS
1253 if (clock->enable)
1254 clock->enable(clock);
4e250fdd 1255 tk_setup_internals(tk, clock);
8524070b 1256
4e250fdd
JS
1257 tk_set_xtime(tk, &now);
1258 tk->raw_time.tv_sec = 0;
1259 tk->raw_time.tv_nsec = 0;
1e75fa8b 1260 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1261 boot = tk_xtime(tk);
1e75fa8b 1262
7d489d15 1263 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1264 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1265
56fd16ca 1266 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1267
3fdb14fd 1268 write_seqcount_end(&tk_core.seq);
9a7a71b1 1269 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1270}
1271
264bb3f7 1272/* time in seconds when suspend began for persistent clock */
7d489d15 1273static struct timespec64 timekeeping_suspend_time;
8524070b 1274
304529b1
JS
1275/**
1276 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1277 * @delta: pointer to a timespec delta value
1278 *
1279 * Takes a timespec offset measuring a suspend interval and properly
1280 * adds the sleep offset to the timekeeping variables.
1281 */
f726a697 1282static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1283 struct timespec64 *delta)
304529b1 1284{
7d489d15 1285 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1286 printk_deferred(KERN_WARNING
1287 "__timekeeping_inject_sleeptime: Invalid "
1288 "sleep delta value!\n");
cb5de2f8
JS
1289 return;
1290 }
f726a697 1291 tk_xtime_add(tk, delta);
7d489d15 1292 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1293 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1294 tk_debug_account_sleep_time(delta);
304529b1
JS
1295}
1296
7f298139 1297#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1298/**
1299 * We have three kinds of time sources to use for sleep time
1300 * injection, the preference order is:
1301 * 1) non-stop clocksource
1302 * 2) persistent clock (ie: RTC accessible when irqs are off)
1303 * 3) RTC
1304 *
1305 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1306 * If system has neither 1) nor 2), 3) will be used finally.
1307 *
1308 *
1309 * If timekeeping has injected sleeptime via either 1) or 2),
1310 * 3) becomes needless, so in this case we don't need to call
1311 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1312 * means.
1313 */
1314bool timekeeping_rtc_skipresume(void)
1315{
1316 return sleeptime_injected;
1317}
1318
1319/**
1320 * 1) can be determined whether to use or not only when doing
1321 * timekeeping_resume() which is invoked after rtc_suspend(),
1322 * so we can't skip rtc_suspend() surely if system has 1).
1323 *
1324 * But if system has 2), 2) will definitely be used, so in this
1325 * case we don't need to call rtc_suspend(), and this is what
1326 * timekeeping_rtc_skipsuspend() means.
1327 */
1328bool timekeeping_rtc_skipsuspend(void)
1329{
1330 return persistent_clock_exists;
1331}
1332
304529b1 1333/**
04d90890 1334 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1335 * @delta: pointer to a timespec64 delta value
304529b1 1336 *
2ee96632 1337 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1338 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1339 * and also don't have an effective nonstop clocksource.
304529b1
JS
1340 *
1341 * This function should only be called by rtc_resume(), and allows
1342 * a suspend offset to be injected into the timekeeping values.
1343 */
04d90890 1344void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1345{
3fdb14fd 1346 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1347 unsigned long flags;
304529b1 1348
9a7a71b1 1349 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1350 write_seqcount_begin(&tk_core.seq);
70471f2f 1351
4e250fdd 1352 timekeeping_forward_now(tk);
304529b1 1353
04d90890 1354 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1355
780427f0 1356 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1357
3fdb14fd 1358 write_seqcount_end(&tk_core.seq);
9a7a71b1 1359 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1360
1361 /* signal hrtimers about time change */
1362 clock_was_set();
1363}
7f298139 1364#endif
304529b1 1365
8524070b 1366/**
1367 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1368 */
124cf911 1369void timekeeping_resume(void)
8524070b 1370{
3fdb14fd 1371 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1372 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1373 unsigned long flags;
7d489d15 1374 struct timespec64 ts_new, ts_delta;
e445cf1c 1375 cycle_t cycle_now, cycle_delta;
d4f587c6 1376
0fa88cb4 1377 sleeptime_injected = false;
2ee96632 1378 read_persistent_clock64(&ts_new);
8524070b 1379
adc78e6b 1380 clockevents_resume();
d10ff3fb
TG
1381 clocksource_resume();
1382
9a7a71b1 1383 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1384 write_seqcount_begin(&tk_core.seq);
8524070b 1385
e445cf1c
FT
1386 /*
1387 * After system resumes, we need to calculate the suspended time and
1388 * compensate it for the OS time. There are 3 sources that could be
1389 * used: Nonstop clocksource during suspend, persistent clock and rtc
1390 * device.
1391 *
1392 * One specific platform may have 1 or 2 or all of them, and the
1393 * preference will be:
1394 * suspend-nonstop clocksource -> persistent clock -> rtc
1395 * The less preferred source will only be tried if there is no better
1396 * usable source. The rtc part is handled separately in rtc core code.
1397 */
876e7881 1398 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1399 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1400 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1401 u64 num, max = ULLONG_MAX;
1402 u32 mult = clock->mult;
1403 u32 shift = clock->shift;
1404 s64 nsec = 0;
1405
876e7881
PZ
1406 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1407 tk->tkr_mono.mask);
e445cf1c
FT
1408
1409 /*
1410 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1411 * suspended time is too long. In that case we need do the
1412 * 64 bits math carefully
1413 */
1414 do_div(max, mult);
1415 if (cycle_delta > max) {
1416 num = div64_u64(cycle_delta, max);
1417 nsec = (((u64) max * mult) >> shift) * num;
1418 cycle_delta -= num * max;
1419 }
1420 nsec += ((u64) cycle_delta * mult) >> shift;
1421
7d489d15 1422 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1423 sleeptime_injected = true;
7d489d15
JS
1424 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1425 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1426 sleeptime_injected = true;
8524070b 1427 }
e445cf1c 1428
0fa88cb4 1429 if (sleeptime_injected)
e445cf1c
FT
1430 __timekeeping_inject_sleeptime(tk, &ts_delta);
1431
1432 /* Re-base the last cycle value */
876e7881 1433 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1434 tk->tkr_raw.cycle_last = cycle_now;
1435
4e250fdd 1436 tk->ntp_error = 0;
8524070b 1437 timekeeping_suspended = 0;
780427f0 1438 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1439 write_seqcount_end(&tk_core.seq);
9a7a71b1 1440 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1441
1442 touch_softlockup_watchdog();
1443
4ffee521 1444 tick_resume();
b12a03ce 1445 hrtimers_resume();
8524070b 1446}
1447
124cf911 1448int timekeeping_suspend(void)
8524070b 1449{
3fdb14fd 1450 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1451 unsigned long flags;
7d489d15
JS
1452 struct timespec64 delta, delta_delta;
1453 static struct timespec64 old_delta;
8524070b 1454
2ee96632 1455 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1456
0d6bd995
ZM
1457 /*
1458 * On some systems the persistent_clock can not be detected at
1459 * timekeeping_init by its return value, so if we see a valid
1460 * value returned, update the persistent_clock_exists flag.
1461 */
1462 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1463 persistent_clock_exists = true;
0d6bd995 1464
9a7a71b1 1465 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1466 write_seqcount_begin(&tk_core.seq);
4e250fdd 1467 timekeeping_forward_now(tk);
8524070b 1468 timekeeping_suspended = 1;
cb33217b 1469
0fa88cb4 1470 if (persistent_clock_exists) {
cb33217b 1471 /*
264bb3f7
XP
1472 * To avoid drift caused by repeated suspend/resumes,
1473 * which each can add ~1 second drift error,
1474 * try to compensate so the difference in system time
1475 * and persistent_clock time stays close to constant.
cb33217b 1476 */
264bb3f7
XP
1477 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1478 delta_delta = timespec64_sub(delta, old_delta);
1479 if (abs(delta_delta.tv_sec) >= 2) {
1480 /*
1481 * if delta_delta is too large, assume time correction
1482 * has occurred and set old_delta to the current delta.
1483 */
1484 old_delta = delta;
1485 } else {
1486 /* Otherwise try to adjust old_system to compensate */
1487 timekeeping_suspend_time =
1488 timespec64_add(timekeeping_suspend_time, delta_delta);
1489 }
cb33217b 1490 }
330a1617
JS
1491
1492 timekeeping_update(tk, TK_MIRROR);
060407ae 1493 halt_fast_timekeeper(tk);
3fdb14fd 1494 write_seqcount_end(&tk_core.seq);
9a7a71b1 1495 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1496
4ffee521 1497 tick_suspend();
c54a42b1 1498 clocksource_suspend();
adc78e6b 1499 clockevents_suspend();
8524070b 1500
1501 return 0;
1502}
1503
1504/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1505static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1506 .resume = timekeeping_resume,
1507 .suspend = timekeeping_suspend,
8524070b 1508};
1509
e1a85b2c 1510static int __init timekeeping_init_ops(void)
8524070b 1511{
e1a85b2c
RW
1512 register_syscore_ops(&timekeeping_syscore_ops);
1513 return 0;
8524070b 1514}
e1a85b2c 1515device_initcall(timekeeping_init_ops);
8524070b 1516
1517/*
dc491596 1518 * Apply a multiplier adjustment to the timekeeper
8524070b 1519 */
dc491596
JS
1520static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1521 s64 offset,
1522 bool negative,
1523 int adj_scale)
8524070b 1524{
dc491596
JS
1525 s64 interval = tk->cycle_interval;
1526 s32 mult_adj = 1;
8524070b 1527
dc491596
JS
1528 if (negative) {
1529 mult_adj = -mult_adj;
1530 interval = -interval;
1531 offset = -offset;
1d17d174 1532 }
dc491596
JS
1533 mult_adj <<= adj_scale;
1534 interval <<= adj_scale;
1535 offset <<= adj_scale;
8524070b 1536
c2bc1111
JS
1537 /*
1538 * So the following can be confusing.
1539 *
dc491596 1540 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1541 *
dc491596 1542 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1543 * have been appropriately scaled so the math is the same.
1544 *
1545 * The basic idea here is that we're increasing the multiplier
1546 * by one, this causes the xtime_interval to be incremented by
1547 * one cycle_interval. This is because:
1548 * xtime_interval = cycle_interval * mult
1549 * So if mult is being incremented by one:
1550 * xtime_interval = cycle_interval * (mult + 1)
1551 * Its the same as:
1552 * xtime_interval = (cycle_interval * mult) + cycle_interval
1553 * Which can be shortened to:
1554 * xtime_interval += cycle_interval
1555 *
1556 * So offset stores the non-accumulated cycles. Thus the current
1557 * time (in shifted nanoseconds) is:
1558 * now = (offset * adj) + xtime_nsec
1559 * Now, even though we're adjusting the clock frequency, we have
1560 * to keep time consistent. In other words, we can't jump back
1561 * in time, and we also want to avoid jumping forward in time.
1562 *
1563 * So given the same offset value, we need the time to be the same
1564 * both before and after the freq adjustment.
1565 * now = (offset * adj_1) + xtime_nsec_1
1566 * now = (offset * adj_2) + xtime_nsec_2
1567 * So:
1568 * (offset * adj_1) + xtime_nsec_1 =
1569 * (offset * adj_2) + xtime_nsec_2
1570 * And we know:
1571 * adj_2 = adj_1 + 1
1572 * So:
1573 * (offset * adj_1) + xtime_nsec_1 =
1574 * (offset * (adj_1+1)) + xtime_nsec_2
1575 * (offset * adj_1) + xtime_nsec_1 =
1576 * (offset * adj_1) + offset + xtime_nsec_2
1577 * Canceling the sides:
1578 * xtime_nsec_1 = offset + xtime_nsec_2
1579 * Which gives us:
1580 * xtime_nsec_2 = xtime_nsec_1 - offset
1581 * Which simplfies to:
1582 * xtime_nsec -= offset
1583 *
1584 * XXX - TODO: Doc ntp_error calculation.
1585 */
876e7881 1586 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1587 /* NTP adjustment caused clocksource mult overflow */
1588 WARN_ON_ONCE(1);
1589 return;
1590 }
1591
876e7881 1592 tk->tkr_mono.mult += mult_adj;
f726a697 1593 tk->xtime_interval += interval;
876e7881 1594 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1595 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1596}
1597
1598/*
1599 * Calculate the multiplier adjustment needed to match the frequency
1600 * specified by NTP
1601 */
1602static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1603 s64 offset)
1604{
1605 s64 interval = tk->cycle_interval;
1606 s64 xinterval = tk->xtime_interval;
1607 s64 tick_error;
1608 bool negative;
1609 u32 adj;
1610
1611 /* Remove any current error adj from freq calculation */
1612 if (tk->ntp_err_mult)
1613 xinterval -= tk->cycle_interval;
1614
375f45b5
JS
1615 tk->ntp_tick = ntp_tick_length();
1616
dc491596
JS
1617 /* Calculate current error per tick */
1618 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1619 tick_error -= (xinterval + tk->xtime_remainder);
1620
1621 /* Don't worry about correcting it if its small */
1622 if (likely((tick_error >= 0) && (tick_error <= interval)))
1623 return;
1624
1625 /* preserve the direction of correction */
1626 negative = (tick_error < 0);
1627
1628 /* Sort out the magnitude of the correction */
79211c8e 1629 tick_error = abs(tick_error);
dc491596
JS
1630 for (adj = 0; tick_error > interval; adj++)
1631 tick_error >>= 1;
1632
1633 /* scale the corrections */
1634 timekeeping_apply_adjustment(tk, offset, negative, adj);
1635}
1636
1637/*
1638 * Adjust the timekeeper's multiplier to the correct frequency
1639 * and also to reduce the accumulated error value.
1640 */
1641static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1642{
1643 /* Correct for the current frequency error */
1644 timekeeping_freqadjust(tk, offset);
1645
1646 /* Next make a small adjustment to fix any cumulative error */
1647 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1648 tk->ntp_err_mult = 1;
1649 timekeeping_apply_adjustment(tk, offset, 0, 0);
1650 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1651 /* Undo any existing error adjustment */
1652 timekeeping_apply_adjustment(tk, offset, 1, 0);
1653 tk->ntp_err_mult = 0;
1654 }
1655
876e7881
PZ
1656 if (unlikely(tk->tkr_mono.clock->maxadj &&
1657 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1658 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1659 printk_once(KERN_WARNING
1660 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1661 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1662 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1663 }
2a8c0883
JS
1664
1665 /*
1666 * It may be possible that when we entered this function, xtime_nsec
1667 * was very small. Further, if we're slightly speeding the clocksource
1668 * in the code above, its possible the required corrective factor to
1669 * xtime_nsec could cause it to underflow.
1670 *
1671 * Now, since we already accumulated the second, cannot simply roll
1672 * the accumulated second back, since the NTP subsystem has been
1673 * notified via second_overflow. So instead we push xtime_nsec forward
1674 * by the amount we underflowed, and add that amount into the error.
1675 *
1676 * We'll correct this error next time through this function, when
1677 * xtime_nsec is not as small.
1678 */
876e7881
PZ
1679 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1680 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1681 tk->tkr_mono.xtime_nsec = 0;
f726a697 1682 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1683 }
8524070b 1684}
1685
1f4f9487
JS
1686/**
1687 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1688 *
571af55a 1689 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1690 * from the xtime_nsec field to the xtime_secs field.
1691 * It also calls into the NTP code to handle leapsecond processing.
1692 *
1693 */
780427f0 1694static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1695{
876e7881 1696 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1697 unsigned int clock_set = 0;
1f4f9487 1698
876e7881 1699 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1700 int leap;
1701
876e7881 1702 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1703 tk->xtime_sec++;
1704
1705 /* Figure out if its a leap sec and apply if needed */
1706 leap = second_overflow(tk->xtime_sec);
6d0ef903 1707 if (unlikely(leap)) {
7d489d15 1708 struct timespec64 ts;
6d0ef903
JS
1709
1710 tk->xtime_sec += leap;
1f4f9487 1711
6d0ef903
JS
1712 ts.tv_sec = leap;
1713 ts.tv_nsec = 0;
1714 tk_set_wall_to_mono(tk,
7d489d15 1715 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1716
cc244dda
JS
1717 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1718
5258d3f2 1719 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1720 }
1f4f9487 1721 }
5258d3f2 1722 return clock_set;
1f4f9487
JS
1723}
1724
a092ff0f 1725/**
1726 * logarithmic_accumulation - shifted accumulation of cycles
1727 *
1728 * This functions accumulates a shifted interval of cycles into
1729 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1730 * loop.
1731 *
1732 * Returns the unconsumed cycles.
1733 */
f726a697 1734static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1735 u32 shift,
1736 unsigned int *clock_set)
a092ff0f 1737{
23a9537a 1738 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1739 u64 raw_nsecs;
a092ff0f 1740
571af55a 1741 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 1742 if (offset < interval)
a092ff0f 1743 return offset;
1744
1745 /* Accumulate one shifted interval */
23a9537a 1746 offset -= interval;
876e7881 1747 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1748 tk->tkr_raw.cycle_last += interval;
a092ff0f 1749
876e7881 1750 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1751 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1752
deda2e81 1753 /* Accumulate raw time */
5b3900cd 1754 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1755 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1756 if (raw_nsecs >= NSEC_PER_SEC) {
1757 u64 raw_secs = raw_nsecs;
1758 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1759 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1760 }
f726a697 1761 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1762
1763 /* Accumulate error between NTP and clock interval */
375f45b5 1764 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1765 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1766 (tk->ntp_error_shift + shift);
a092ff0f 1767
1768 return offset;
1769}
1770
8524070b 1771/**
1772 * update_wall_time - Uses the current clocksource to increment the wall time
1773 *
8524070b 1774 */
47a1b796 1775void update_wall_time(void)
8524070b 1776{
3fdb14fd 1777 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1778 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1779 cycle_t offset;
a092ff0f 1780 int shift = 0, maxshift;
5258d3f2 1781 unsigned int clock_set = 0;
70471f2f
JS
1782 unsigned long flags;
1783
9a7a71b1 1784 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1785
1786 /* Make sure we're fully resumed: */
1787 if (unlikely(timekeeping_suspended))
70471f2f 1788 goto out;
8524070b 1789
592913ec 1790#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1791 offset = real_tk->cycle_interval;
592913ec 1792#else
876e7881
PZ
1793 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1794 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 1795#endif
8524070b 1796
bf2ac312 1797 /* Check if there's really nothing to do */
48cdc135 1798 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1799 goto out;
1800
3c17ad19
JS
1801 /* Do some additional sanity checking */
1802 timekeeping_check_update(real_tk, offset);
1803
a092ff0f 1804 /*
1805 * With NO_HZ we may have to accumulate many cycle_intervals
1806 * (think "ticks") worth of time at once. To do this efficiently,
1807 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1808 * that is smaller than the offset. We then accumulate that
a092ff0f 1809 * chunk in one go, and then try to consume the next smaller
1810 * doubled multiple.
8524070b 1811 */
4e250fdd 1812 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1813 shift = max(0, shift);
88b28adf 1814 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1815 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1816 shift = min(shift, maxshift);
4e250fdd 1817 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1818 offset = logarithmic_accumulation(tk, offset, shift,
1819 &clock_set);
4e250fdd 1820 if (offset < tk->cycle_interval<<shift)
830ec045 1821 shift--;
8524070b 1822 }
1823
1824 /* correct the clock when NTP error is too big */
4e250fdd 1825 timekeeping_adjust(tk, offset);
8524070b 1826
6a867a39 1827 /*
92bb1fcf
JS
1828 * XXX This can be killed once everyone converts
1829 * to the new update_vsyscall.
1830 */
1831 old_vsyscall_fixup(tk);
8524070b 1832
6a867a39
JS
1833 /*
1834 * Finally, make sure that after the rounding
1e75fa8b 1835 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1836 */
5258d3f2 1837 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1838
3fdb14fd 1839 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1840 /*
1841 * Update the real timekeeper.
1842 *
1843 * We could avoid this memcpy by switching pointers, but that
1844 * requires changes to all other timekeeper usage sites as
1845 * well, i.e. move the timekeeper pointer getter into the
1846 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1847 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1848 * updating.
1849 */
906c5557 1850 timekeeping_update(tk, clock_set);
48cdc135 1851 memcpy(real_tk, tk, sizeof(*tk));
906c5557 1852 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 1853 write_seqcount_end(&tk_core.seq);
ca4523cd 1854out:
9a7a71b1 1855 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1856 if (clock_set)
cab5e127
JS
1857 /* Have to call _delayed version, since in irq context*/
1858 clock_was_set_delayed();
8524070b 1859}
7c3f1a57
TJ
1860
1861/**
d08c0cdd
JS
1862 * getboottime64 - Return the real time of system boot.
1863 * @ts: pointer to the timespec64 to be set
7c3f1a57 1864 *
d08c0cdd 1865 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1866 *
1867 * This is based on the wall_to_monotonic offset and the total suspend
1868 * time. Calls to settimeofday will affect the value returned (which
1869 * basically means that however wrong your real time clock is at boot time,
1870 * you get the right time here).
1871 */
d08c0cdd 1872void getboottime64(struct timespec64 *ts)
7c3f1a57 1873{
3fdb14fd 1874 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1875 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1876
d08c0cdd 1877 *ts = ktime_to_timespec64(t);
7c3f1a57 1878}
d08c0cdd 1879EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1880
17c38b74 1881unsigned long get_seconds(void)
1882{
3fdb14fd 1883 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1884
1885 return tk->xtime_sec;
17c38b74 1886}
1887EXPORT_SYMBOL(get_seconds);
1888
da15cfda 1889struct timespec __current_kernel_time(void)
1890{
3fdb14fd 1891 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1892
7d489d15 1893 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1894}
17c38b74 1895
8758a240 1896struct timespec64 current_kernel_time64(void)
2c6b47de 1897{
3fdb14fd 1898 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1899 struct timespec64 now;
2c6b47de 1900 unsigned long seq;
1901
1902 do {
3fdb14fd 1903 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1904
4e250fdd 1905 now = tk_xtime(tk);
3fdb14fd 1906 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1907
8758a240 1908 return now;
2c6b47de 1909}
8758a240 1910EXPORT_SYMBOL(current_kernel_time64);
da15cfda 1911
334334b5 1912struct timespec64 get_monotonic_coarse64(void)
da15cfda 1913{
3fdb14fd 1914 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1915 struct timespec64 now, mono;
da15cfda 1916 unsigned long seq;
1917
1918 do {
3fdb14fd 1919 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1920
4e250fdd
JS
1921 now = tk_xtime(tk);
1922 mono = tk->wall_to_monotonic;
3fdb14fd 1923 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1924
7d489d15 1925 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1926 now.tv_nsec + mono.tv_nsec);
7d489d15 1927
334334b5 1928 return now;
da15cfda 1929}
871cf1e5
TH
1930
1931/*
d6ad4187 1932 * Must hold jiffies_lock
871cf1e5
TH
1933 */
1934void do_timer(unsigned long ticks)
1935{
1936 jiffies_64 += ticks;
871cf1e5
TH
1937 calc_global_load(ticks);
1938}
48cf76f7 1939
f6c06abf 1940/**
76f41088 1941 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 1942 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
1943 * @offs_real: pointer to storage for monotonic -> realtime offset
1944 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1945 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 1946 *
868a3e91
TG
1947 * Returns current monotonic time and updates the offsets if the
1948 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1949 * different.
1950 *
b7bc50e4 1951 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1952 */
868a3e91
TG
1953ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1954 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 1955{
3fdb14fd 1956 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1957 unsigned int seq;
a37c0aad
TG
1958 ktime_t base;
1959 u64 nsecs;
f6c06abf
TG
1960
1961 do {
3fdb14fd 1962 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1963
876e7881
PZ
1964 base = tk->tkr_mono.base;
1965 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
1966 base = ktime_add_ns(base, nsecs);
1967
868a3e91
TG
1968 if (*cwsseq != tk->clock_was_set_seq) {
1969 *cwsseq = tk->clock_was_set_seq;
1970 *offs_real = tk->offs_real;
1971 *offs_boot = tk->offs_boot;
1972 *offs_tai = tk->offs_tai;
1973 }
833f32d7
JS
1974
1975 /* Handle leapsecond insertion adjustments */
1976 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1977 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1978
3fdb14fd 1979 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1980
833f32d7 1981 return base;
f6c06abf 1982}
f6c06abf 1983
aa6f9c59
JS
1984/**
1985 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1986 */
1987int do_adjtimex(struct timex *txc)
1988{
3fdb14fd 1989 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1990 unsigned long flags;
7d489d15 1991 struct timespec64 ts;
4e8f8b34 1992 s32 orig_tai, tai;
e4085693
JS
1993 int ret;
1994
1995 /* Validate the data before disabling interrupts */
1996 ret = ntp_validate_timex(txc);
1997 if (ret)
1998 return ret;
1999
cef90377
JS
2000 if (txc->modes & ADJ_SETOFFSET) {
2001 struct timespec delta;
2002 delta.tv_sec = txc->time.tv_sec;
2003 delta.tv_nsec = txc->time.tv_usec;
2004 if (!(txc->modes & ADJ_NANO))
2005 delta.tv_nsec *= 1000;
2006 ret = timekeeping_inject_offset(&delta);
2007 if (ret)
2008 return ret;
2009 }
2010
d6d29896 2011 getnstimeofday64(&ts);
87ace39b 2012
06c017fd 2013 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2014 write_seqcount_begin(&tk_core.seq);
06c017fd 2015
4e8f8b34 2016 orig_tai = tai = tk->tai_offset;
87ace39b 2017 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2018
4e8f8b34
JS
2019 if (tai != orig_tai) {
2020 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2021 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2022 }
833f32d7
JS
2023 tk_update_leap_state(tk);
2024
3fdb14fd 2025 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2026 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2027
6fdda9a9
JS
2028 if (tai != orig_tai)
2029 clock_was_set();
2030
7bd36014
JS
2031 ntp_notify_cmos_timer();
2032
87ace39b
JS
2033 return ret;
2034}
aa6f9c59
JS
2035
2036#ifdef CONFIG_NTP_PPS
2037/**
2038 * hardpps() - Accessor function to NTP __hardpps function
2039 */
7ec88e4b 2040void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2041{
06c017fd
JS
2042 unsigned long flags;
2043
2044 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2045 write_seqcount_begin(&tk_core.seq);
06c017fd 2046
aa6f9c59 2047 __hardpps(phase_ts, raw_ts);
06c017fd 2048
3fdb14fd 2049 write_seqcount_end(&tk_core.seq);
06c017fd 2050 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2051}
2052EXPORT_SYMBOL(hardpps);
2053#endif
2054
f0af911a
TH
2055/**
2056 * xtime_update() - advances the timekeeping infrastructure
2057 * @ticks: number of ticks, that have elapsed since the last call.
2058 *
2059 * Must be called with interrupts disabled.
2060 */
2061void xtime_update(unsigned long ticks)
2062{
d6ad4187 2063 write_seqlock(&jiffies_lock);
f0af911a 2064 do_timer(ticks);
d6ad4187 2065 write_sequnlock(&jiffies_lock);
47a1b796 2066 update_wall_time();
f0af911a 2067}
This page took 0.637635 seconds and 5 git commands to generate.