Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4 61/*
500462a9
TG
62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64 * level has a different granularity.
65 *
66 * The level granularity is: LVL_CLK_DIV ^ lvl
67 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
68 *
69 * The array level of a newly armed timer depends on the relative expiry
70 * time. The farther the expiry time is away the higher the array level and
71 * therefor the granularity becomes.
72 *
73 * Contrary to the original timer wheel implementation, which aims for 'exact'
74 * expiry of the timers, this implementation removes the need for recascading
75 * the timers into the lower array levels. The previous 'classic' timer wheel
76 * implementation of the kernel already violated the 'exact' expiry by adding
77 * slack to the expiry time to provide batched expiration. The granularity
78 * levels provide implicit batching.
79 *
80 * This is an optimization of the original timer wheel implementation for the
81 * majority of the timer wheel use cases: timeouts. The vast majority of
82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83 * the timeout expires it indicates that normal operation is disturbed, so it
84 * does not matter much whether the timeout comes with a slight delay.
85 *
86 * The only exception to this are networking timers with a small expiry
87 * time. They rely on the granularity. Those fit into the first wheel level,
88 * which has HZ granularity.
89 *
90 * We don't have cascading anymore. timers with a expiry time above the
91 * capacity of the last wheel level are force expired at the maximum timeout
92 * value of the last wheel level. From data sampling we know that the maximum
93 * value observed is 5 days (network connection tracking), so this should not
94 * be an issue.
95 *
96 * The currently chosen array constants values are a good compromise between
97 * array size and granularity.
98 *
99 * This results in the following granularity and range levels:
100 *
101 * HZ 1000 steps
102 * Level Offset Granularity Range
103 * 0 0 1 ms 0 ms - 63 ms
104 * 1 64 8 ms 64 ms - 511 ms
105 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
106 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
107 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
108 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
109 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
110 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
111 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
112 *
113 * HZ 300
114 * Level Offset Granularity Range
115 * 0 0 3 ms 0 ms - 210 ms
116 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
117 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
118 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
119 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
120 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
121 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
122 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
123 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124 *
125 * HZ 250
126 * Level Offset Granularity Range
127 * 0 0 4 ms 0 ms - 255 ms
128 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
129 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
130 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
131 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
132 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
133 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
134 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
135 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136 *
137 * HZ 100
138 * Level Offset Granularity Range
139 * 0 0 10 ms 0 ms - 630 ms
140 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
141 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
142 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
143 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
144 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
145 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
146 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
1da177e4 147 */
1da177e4 148
500462a9
TG
149/* Clock divisor for the next level */
150#define LVL_CLK_SHIFT 3
151#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
152#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
153#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
154#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
1da177e4 155
500462a9
TG
156/*
157 * The time start value for each level to select the bucket at enqueue
158 * time.
159 */
160#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
161
162/* Size of each clock level */
163#define LVL_BITS 6
164#define LVL_SIZE (1UL << LVL_BITS)
165#define LVL_MASK (LVL_SIZE - 1)
166#define LVL_OFFS(n) ((n) * LVL_SIZE)
167
168/* Level depth */
169#if HZ > 100
170# define LVL_DEPTH 9
171# else
172# define LVL_DEPTH 8
173#endif
174
175/* The cutoff (max. capacity of the wheel) */
176#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
177#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178
179/*
180 * The resulting wheel size. If NOHZ is configured we allocate two
181 * wheels so we have a separate storage for the deferrable timers.
182 */
183#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
184
185#ifdef CONFIG_NO_HZ_COMMON
186# define NR_BASES 2
187# define BASE_STD 0
188# define BASE_DEF 1
189#else
190# define NR_BASES 1
191# define BASE_STD 0
192# define BASE_DEF 0
193#endif
1da177e4 194
494af3ed 195struct timer_base {
500462a9
TG
196 spinlock_t lock;
197 struct timer_list *running_timer;
198 unsigned long clk;
a683f390 199 unsigned long next_expiry;
500462a9
TG
200 unsigned int cpu;
201 bool migration_enabled;
202 bool nohz_active;
a683f390 203 bool is_idle;
500462a9
TG
204 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205 struct hlist_head vectors[WHEEL_SIZE];
6e453a67 206} ____cacheline_aligned;
e52b1db3 207
500462a9 208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
6e453a67 209
bc7a34b8
TG
210#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
211unsigned int sysctl_timer_migration = 1;
212
683be13a 213void timers_update_migration(bool update_nohz)
bc7a34b8
TG
214{
215 bool on = sysctl_timer_migration && tick_nohz_active;
216 unsigned int cpu;
217
218 /* Avoid the loop, if nothing to update */
500462a9 219 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
bc7a34b8
TG
220 return;
221
222 for_each_possible_cpu(cpu) {
500462a9
TG
223 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
224 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
bc7a34b8 225 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
683be13a
TG
226 if (!update_nohz)
227 continue;
500462a9
TG
228 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
229 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
683be13a 230 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
bc7a34b8
TG
231 }
232}
233
234int timer_migration_handler(struct ctl_table *table, int write,
235 void __user *buffer, size_t *lenp,
236 loff_t *ppos)
237{
238 static DEFINE_MUTEX(mutex);
239 int ret;
240
241 mutex_lock(&mutex);
242 ret = proc_dointvec(table, write, buffer, lenp, ppos);
243 if (!ret && write)
683be13a 244 timers_update_migration(false);
bc7a34b8
TG
245 mutex_unlock(&mutex);
246 return ret;
247}
bc7a34b8
TG
248#endif
249
9c133c46
AS
250static unsigned long round_jiffies_common(unsigned long j, int cpu,
251 bool force_up)
4c36a5de
AV
252{
253 int rem;
254 unsigned long original = j;
255
256 /*
257 * We don't want all cpus firing their timers at once hitting the
258 * same lock or cachelines, so we skew each extra cpu with an extra
259 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
260 * already did this.
261 * The skew is done by adding 3*cpunr, then round, then subtract this
262 * extra offset again.
263 */
264 j += cpu * 3;
265
266 rem = j % HZ;
267
268 /*
269 * If the target jiffie is just after a whole second (which can happen
270 * due to delays of the timer irq, long irq off times etc etc) then
271 * we should round down to the whole second, not up. Use 1/4th second
272 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 273 * But never round down if @force_up is set.
4c36a5de 274 */
9c133c46 275 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
276 j = j - rem;
277 else /* round up */
278 j = j - rem + HZ;
279
280 /* now that we have rounded, subtract the extra skew again */
281 j -= cpu * 3;
282
9e04d380
BVA
283 /*
284 * Make sure j is still in the future. Otherwise return the
285 * unmodified value.
286 */
287 return time_is_after_jiffies(j) ? j : original;
4c36a5de 288}
9c133c46
AS
289
290/**
291 * __round_jiffies - function to round jiffies to a full second
292 * @j: the time in (absolute) jiffies that should be rounded
293 * @cpu: the processor number on which the timeout will happen
294 *
295 * __round_jiffies() rounds an absolute time in the future (in jiffies)
296 * up or down to (approximately) full seconds. This is useful for timers
297 * for which the exact time they fire does not matter too much, as long as
298 * they fire approximately every X seconds.
299 *
300 * By rounding these timers to whole seconds, all such timers will fire
301 * at the same time, rather than at various times spread out. The goal
302 * of this is to have the CPU wake up less, which saves power.
303 *
304 * The exact rounding is skewed for each processor to avoid all
305 * processors firing at the exact same time, which could lead
306 * to lock contention or spurious cache line bouncing.
307 *
308 * The return value is the rounded version of the @j parameter.
309 */
310unsigned long __round_jiffies(unsigned long j, int cpu)
311{
312 return round_jiffies_common(j, cpu, false);
313}
4c36a5de
AV
314EXPORT_SYMBOL_GPL(__round_jiffies);
315
316/**
317 * __round_jiffies_relative - function to round jiffies to a full second
318 * @j: the time in (relative) jiffies that should be rounded
319 * @cpu: the processor number on which the timeout will happen
320 *
72fd4a35 321 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
322 * up or down to (approximately) full seconds. This is useful for timers
323 * for which the exact time they fire does not matter too much, as long as
324 * they fire approximately every X seconds.
325 *
326 * By rounding these timers to whole seconds, all such timers will fire
327 * at the same time, rather than at various times spread out. The goal
328 * of this is to have the CPU wake up less, which saves power.
329 *
330 * The exact rounding is skewed for each processor to avoid all
331 * processors firing at the exact same time, which could lead
332 * to lock contention or spurious cache line bouncing.
333 *
72fd4a35 334 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
335 */
336unsigned long __round_jiffies_relative(unsigned long j, int cpu)
337{
9c133c46
AS
338 unsigned long j0 = jiffies;
339
340 /* Use j0 because jiffies might change while we run */
341 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
342}
343EXPORT_SYMBOL_GPL(__round_jiffies_relative);
344
345/**
346 * round_jiffies - function to round jiffies to a full second
347 * @j: the time in (absolute) jiffies that should be rounded
348 *
72fd4a35 349 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
350 * up or down to (approximately) full seconds. This is useful for timers
351 * for which the exact time they fire does not matter too much, as long as
352 * they fire approximately every X seconds.
353 *
354 * By rounding these timers to whole seconds, all such timers will fire
355 * at the same time, rather than at various times spread out. The goal
356 * of this is to have the CPU wake up less, which saves power.
357 *
72fd4a35 358 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
359 */
360unsigned long round_jiffies(unsigned long j)
361{
9c133c46 362 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
363}
364EXPORT_SYMBOL_GPL(round_jiffies);
365
366/**
367 * round_jiffies_relative - function to round jiffies to a full second
368 * @j: the time in (relative) jiffies that should be rounded
369 *
72fd4a35 370 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
371 * up or down to (approximately) full seconds. This is useful for timers
372 * for which the exact time they fire does not matter too much, as long as
373 * they fire approximately every X seconds.
374 *
375 * By rounding these timers to whole seconds, all such timers will fire
376 * at the same time, rather than at various times spread out. The goal
377 * of this is to have the CPU wake up less, which saves power.
378 *
72fd4a35 379 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
380 */
381unsigned long round_jiffies_relative(unsigned long j)
382{
383 return __round_jiffies_relative(j, raw_smp_processor_id());
384}
385EXPORT_SYMBOL_GPL(round_jiffies_relative);
386
9c133c46
AS
387/**
388 * __round_jiffies_up - function to round jiffies up to a full second
389 * @j: the time in (absolute) jiffies that should be rounded
390 * @cpu: the processor number on which the timeout will happen
391 *
392 * This is the same as __round_jiffies() except that it will never
393 * round down. This is useful for timeouts for which the exact time
394 * of firing does not matter too much, as long as they don't fire too
395 * early.
396 */
397unsigned long __round_jiffies_up(unsigned long j, int cpu)
398{
399 return round_jiffies_common(j, cpu, true);
400}
401EXPORT_SYMBOL_GPL(__round_jiffies_up);
402
403/**
404 * __round_jiffies_up_relative - function to round jiffies up to a full second
405 * @j: the time in (relative) jiffies that should be rounded
406 * @cpu: the processor number on which the timeout will happen
407 *
408 * This is the same as __round_jiffies_relative() except that it will never
409 * round down. This is useful for timeouts for which the exact time
410 * of firing does not matter too much, as long as they don't fire too
411 * early.
412 */
413unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
414{
415 unsigned long j0 = jiffies;
416
417 /* Use j0 because jiffies might change while we run */
418 return round_jiffies_common(j + j0, cpu, true) - j0;
419}
420EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
421
422/**
423 * round_jiffies_up - function to round jiffies up to a full second
424 * @j: the time in (absolute) jiffies that should be rounded
425 *
426 * This is the same as round_jiffies() except that it will never
427 * round down. This is useful for timeouts for which the exact time
428 * of firing does not matter too much, as long as they don't fire too
429 * early.
430 */
431unsigned long round_jiffies_up(unsigned long j)
432{
433 return round_jiffies_common(j, raw_smp_processor_id(), true);
434}
435EXPORT_SYMBOL_GPL(round_jiffies_up);
436
437/**
438 * round_jiffies_up_relative - function to round jiffies up to a full second
439 * @j: the time in (relative) jiffies that should be rounded
440 *
441 * This is the same as round_jiffies_relative() except that it will never
442 * round down. This is useful for timeouts for which the exact time
443 * of firing does not matter too much, as long as they don't fire too
444 * early.
445 */
446unsigned long round_jiffies_up_relative(unsigned long j)
447{
448 return __round_jiffies_up_relative(j, raw_smp_processor_id());
449}
450EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
451
3bbb9ec9 452
500462a9 453static inline unsigned int timer_get_idx(struct timer_list *timer)
3bbb9ec9 454{
500462a9 455 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
3bbb9ec9 456}
3bbb9ec9 457
500462a9 458static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
1da177e4 459{
500462a9
TG
460 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
461 idx << TIMER_ARRAYSHIFT;
462}
1da177e4 463
500462a9
TG
464/*
465 * Helper function to calculate the array index for a given expiry
466 * time.
467 */
468static inline unsigned calc_index(unsigned expires, unsigned lvl)
469{
470 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
471 return LVL_OFFS(lvl) + (expires & LVL_MASK);
472}
473
ffdf0477 474static int calc_wheel_index(unsigned long expires, unsigned long clk)
1da177e4 475{
ffdf0477 476 unsigned long delta = expires - clk;
500462a9
TG
477 unsigned int idx;
478
479 if (delta < LVL_START(1)) {
480 idx = calc_index(expires, 0);
481 } else if (delta < LVL_START(2)) {
482 idx = calc_index(expires, 1);
483 } else if (delta < LVL_START(3)) {
484 idx = calc_index(expires, 2);
485 } else if (delta < LVL_START(4)) {
486 idx = calc_index(expires, 3);
487 } else if (delta < LVL_START(5)) {
488 idx = calc_index(expires, 4);
489 } else if (delta < LVL_START(6)) {
490 idx = calc_index(expires, 5);
491 } else if (delta < LVL_START(7)) {
492 idx = calc_index(expires, 6);
493 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
494 idx = calc_index(expires, 7);
495 } else if ((long) delta < 0) {
ffdf0477 496 idx = clk & LVL_MASK;
1da177e4 497 } else {
500462a9
TG
498 /*
499 * Force expire obscene large timeouts to expire at the
500 * capacity limit of the wheel.
1da177e4 501 */
500462a9
TG
502 if (expires >= WHEEL_TIMEOUT_CUTOFF)
503 expires = WHEEL_TIMEOUT_MAX;
1bd04bf6 504
500462a9 505 idx = calc_index(expires, LVL_DEPTH - 1);
1da177e4 506 }
ffdf0477
AMG
507 return idx;
508}
1bd04bf6 509
ffdf0477
AMG
510/*
511 * Enqueue the timer into the hash bucket, mark it pending in
512 * the bitmap and store the index in the timer flags.
513 */
514static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
515 unsigned int idx)
516{
517 hlist_add_head(&timer->entry, base->vectors + idx);
500462a9
TG
518 __set_bit(idx, base->pending_map);
519 timer_set_idx(timer, idx);
1da177e4
LT
520}
521
ffdf0477
AMG
522static void
523__internal_add_timer(struct timer_base *base, struct timer_list *timer)
facbb4a7 524{
ffdf0477
AMG
525 unsigned int idx;
526
527 idx = calc_wheel_index(timer->expires, base->clk);
528 enqueue_timer(base, timer, idx);
529}
9f6d9baa 530
ffdf0477
AMG
531static void
532trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
533{
a683f390
TG
534 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
535 return;
3bb475a3 536
facbb4a7 537 /*
a683f390
TG
538 * TODO: This wants some optimizing similar to the code below, but we
539 * will do that when we switch from push to pull for deferrable timers.
facbb4a7 540 */
a683f390
TG
541 if (timer->flags & TIMER_DEFERRABLE) {
542 if (tick_nohz_full_cpu(base->cpu))
683be13a 543 wake_up_nohz_cpu(base->cpu);
a683f390 544 return;
99d5f3aa 545 }
9f6d9baa
VK
546
547 /*
a683f390
TG
548 * We might have to IPI the remote CPU if the base is idle and the
549 * timer is not deferrable. If the other CPU is on the way to idle
550 * then it can't set base->is_idle as we hold the base lock:
9f6d9baa 551 */
a683f390
TG
552 if (!base->is_idle)
553 return;
554
555 /* Check whether this is the new first expiring timer: */
556 if (time_after_eq(timer->expires, base->next_expiry))
557 return;
558
559 /*
560 * Set the next expiry time and kick the CPU so it can reevaluate the
561 * wheel:
562 */
563 base->next_expiry = timer->expires;
ffdf0477
AMG
564 wake_up_nohz_cpu(base->cpu);
565}
566
567static void
568internal_add_timer(struct timer_base *base, struct timer_list *timer)
569{
570 __internal_add_timer(base, timer);
571 trigger_dyntick_cpu(base, timer);
facbb4a7
TG
572}
573
82f67cd9
IM
574#ifdef CONFIG_TIMER_STATS
575void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
576{
577 if (timer->start_site)
578 return;
579
580 timer->start_site = addr;
581 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
582 timer->start_pid = current->pid;
583}
c5c061b8
VP
584
585static void timer_stats_account_timer(struct timer_list *timer)
586{
3ed769bd
DV
587 void *site;
588
589 /*
590 * start_site can be concurrently reset by
591 * timer_stats_timer_clear_start_info()
592 */
593 site = READ_ONCE(timer->start_site);
594 if (likely(!site))
507e1231 595 return;
c5c061b8 596
3ed769bd 597 timer_stats_update_stats(timer, timer->start_pid, site,
c74441a1
TG
598 timer->function, timer->start_comm,
599 timer->flags);
c5c061b8
VP
600}
601
602#else
603static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
604#endif
605
c6f3a97f
TG
606#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
607
608static struct debug_obj_descr timer_debug_descr;
609
99777288
SG
610static void *timer_debug_hint(void *addr)
611{
612 return ((struct timer_list *) addr)->function;
613}
614
b9fdac7f
DC
615static bool timer_is_static_object(void *addr)
616{
617 struct timer_list *timer = addr;
618
619 return (timer->entry.pprev == NULL &&
620 timer->entry.next == TIMER_ENTRY_STATIC);
621}
622
c6f3a97f
TG
623/*
624 * fixup_init is called when:
625 * - an active object is initialized
55c888d6 626 */
e3252464 627static bool timer_fixup_init(void *addr, enum debug_obj_state state)
c6f3a97f
TG
628{
629 struct timer_list *timer = addr;
630
631 switch (state) {
632 case ODEBUG_STATE_ACTIVE:
633 del_timer_sync(timer);
634 debug_object_init(timer, &timer_debug_descr);
e3252464 635 return true;
c6f3a97f 636 default:
e3252464 637 return false;
c6f3a97f
TG
638 }
639}
640
fb16b8cf
SB
641/* Stub timer callback for improperly used timers. */
642static void stub_timer(unsigned long data)
643{
644 WARN_ON(1);
645}
646
c6f3a97f
TG
647/*
648 * fixup_activate is called when:
649 * - an active object is activated
b9fdac7f 650 * - an unknown non-static object is activated
c6f3a97f 651 */
e3252464 652static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
c6f3a97f
TG
653{
654 struct timer_list *timer = addr;
655
656 switch (state) {
c6f3a97f 657 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
DC
658 setup_timer(timer, stub_timer, 0);
659 return true;
c6f3a97f
TG
660
661 case ODEBUG_STATE_ACTIVE:
662 WARN_ON(1);
663
664 default:
e3252464 665 return false;
c6f3a97f
TG
666 }
667}
668
669/*
670 * fixup_free is called when:
671 * - an active object is freed
672 */
e3252464 673static bool timer_fixup_free(void *addr, enum debug_obj_state state)
c6f3a97f
TG
674{
675 struct timer_list *timer = addr;
676
677 switch (state) {
678 case ODEBUG_STATE_ACTIVE:
679 del_timer_sync(timer);
680 debug_object_free(timer, &timer_debug_descr);
e3252464 681 return true;
c6f3a97f 682 default:
e3252464 683 return false;
c6f3a97f
TG
684 }
685}
686
dc4218bd
CC
687/*
688 * fixup_assert_init is called when:
689 * - an untracked/uninit-ed object is found
690 */
e3252464 691static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
dc4218bd
CC
692{
693 struct timer_list *timer = addr;
694
695 switch (state) {
696 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
DC
697 setup_timer(timer, stub_timer, 0);
698 return true;
dc4218bd 699 default:
e3252464 700 return false;
dc4218bd
CC
701 }
702}
703
c6f3a97f 704static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
705 .name = "timer_list",
706 .debug_hint = timer_debug_hint,
b9fdac7f 707 .is_static_object = timer_is_static_object,
dc4218bd
CC
708 .fixup_init = timer_fixup_init,
709 .fixup_activate = timer_fixup_activate,
710 .fixup_free = timer_fixup_free,
711 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
712};
713
714static inline void debug_timer_init(struct timer_list *timer)
715{
716 debug_object_init(timer, &timer_debug_descr);
717}
718
719static inline void debug_timer_activate(struct timer_list *timer)
720{
721 debug_object_activate(timer, &timer_debug_descr);
722}
723
724static inline void debug_timer_deactivate(struct timer_list *timer)
725{
726 debug_object_deactivate(timer, &timer_debug_descr);
727}
728
729static inline void debug_timer_free(struct timer_list *timer)
730{
731 debug_object_free(timer, &timer_debug_descr);
732}
733
dc4218bd
CC
734static inline void debug_timer_assert_init(struct timer_list *timer)
735{
736 debug_object_assert_init(timer, &timer_debug_descr);
737}
738
fc683995
TH
739static void do_init_timer(struct timer_list *timer, unsigned int flags,
740 const char *name, struct lock_class_key *key);
c6f3a97f 741
fc683995
TH
742void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
743 const char *name, struct lock_class_key *key)
c6f3a97f
TG
744{
745 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 746 do_init_timer(timer, flags, name, key);
c6f3a97f 747}
6f2b9b9a 748EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
749
750void destroy_timer_on_stack(struct timer_list *timer)
751{
752 debug_object_free(timer, &timer_debug_descr);
753}
754EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
755
756#else
757static inline void debug_timer_init(struct timer_list *timer) { }
758static inline void debug_timer_activate(struct timer_list *timer) { }
759static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 760static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
761#endif
762
2b022e3d
XG
763static inline void debug_init(struct timer_list *timer)
764{
765 debug_timer_init(timer);
766 trace_timer_init(timer);
767}
768
769static inline void
770debug_activate(struct timer_list *timer, unsigned long expires)
771{
772 debug_timer_activate(timer);
0eeda71b 773 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
774}
775
776static inline void debug_deactivate(struct timer_list *timer)
777{
778 debug_timer_deactivate(timer);
779 trace_timer_cancel(timer);
780}
781
dc4218bd
CC
782static inline void debug_assert_init(struct timer_list *timer)
783{
784 debug_timer_assert_init(timer);
785}
786
fc683995
TH
787static void do_init_timer(struct timer_list *timer, unsigned int flags,
788 const char *name, struct lock_class_key *key)
55c888d6 789{
1dabbcec 790 timer->entry.pprev = NULL;
0eeda71b 791 timer->flags = flags | raw_smp_processor_id();
82f67cd9
IM
792#ifdef CONFIG_TIMER_STATS
793 timer->start_site = NULL;
794 timer->start_pid = -1;
795 memset(timer->start_comm, 0, TASK_COMM_LEN);
796#endif
6f2b9b9a 797 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 798}
c6f3a97f
TG
799
800/**
633fe795 801 * init_timer_key - initialize a timer
c6f3a97f 802 * @timer: the timer to be initialized
fc683995 803 * @flags: timer flags
633fe795
RD
804 * @name: name of the timer
805 * @key: lockdep class key of the fake lock used for tracking timer
806 * sync lock dependencies
c6f3a97f 807 *
633fe795 808 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
809 * other timer functions.
810 */
fc683995
TH
811void init_timer_key(struct timer_list *timer, unsigned int flags,
812 const char *name, struct lock_class_key *key)
c6f3a97f 813{
2b022e3d 814 debug_init(timer);
fc683995 815 do_init_timer(timer, flags, name, key);
c6f3a97f 816}
6f2b9b9a 817EXPORT_SYMBOL(init_timer_key);
55c888d6 818
ec44bc7a 819static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 820{
1dabbcec 821 struct hlist_node *entry = &timer->entry;
55c888d6 822
2b022e3d 823 debug_deactivate(timer);
c6f3a97f 824
1dabbcec 825 __hlist_del(entry);
55c888d6 826 if (clear_pending)
1dabbcec
TG
827 entry->pprev = NULL;
828 entry->next = LIST_POISON2;
55c888d6
ON
829}
830
494af3ed 831static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
ec44bc7a
TG
832 bool clear_pending)
833{
500462a9
TG
834 unsigned idx = timer_get_idx(timer);
835
ec44bc7a
TG
836 if (!timer_pending(timer))
837 return 0;
838
500462a9
TG
839 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
840 __clear_bit(idx, base->pending_map);
841
ec44bc7a 842 detach_timer(timer, clear_pending);
ec44bc7a
TG
843 return 1;
844}
845
500462a9
TG
846static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
847{
848 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
849
850 /*
851 * If the timer is deferrable and nohz is active then we need to use
852 * the deferrable base.
853 */
854 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
855 (tflags & TIMER_DEFERRABLE))
856 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
857 return base;
858}
859
860static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
861{
862 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
863
864 /*
865 * If the timer is deferrable and nohz is active then we need to use
866 * the deferrable base.
867 */
868 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
869 (tflags & TIMER_DEFERRABLE))
870 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
871 return base;
872}
873
874static inline struct timer_base *get_timer_base(u32 tflags)
875{
876 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
877}
878
a683f390
TG
879#ifdef CONFIG_NO_HZ_COMMON
880static inline struct timer_base *
881__get_target_base(struct timer_base *base, unsigned tflags)
500462a9 882{
a683f390 883#ifdef CONFIG_SMP
500462a9
TG
884 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
885 return get_timer_this_cpu_base(tflags);
886 return get_timer_cpu_base(tflags, get_nohz_timer_target());
887#else
888 return get_timer_this_cpu_base(tflags);
889#endif
890}
891
a683f390
TG
892static inline void forward_timer_base(struct timer_base *base)
893{
894 /*
895 * We only forward the base when it's idle and we have a delta between
896 * base clock and jiffies.
897 */
898 if (!base->is_idle || (long) (jiffies - base->clk) < 2)
899 return;
900
901 /*
902 * If the next expiry value is > jiffies, then we fast forward to
903 * jiffies otherwise we forward to the next expiry value.
904 */
905 if (time_after(base->next_expiry, jiffies))
906 base->clk = jiffies;
907 else
908 base->clk = base->next_expiry;
909}
910#else
911static inline struct timer_base *
912__get_target_base(struct timer_base *base, unsigned tflags)
913{
914 return get_timer_this_cpu_base(tflags);
915}
916
917static inline void forward_timer_base(struct timer_base *base) { }
918#endif
919
920static inline struct timer_base *
921get_target_base(struct timer_base *base, unsigned tflags)
922{
923 struct timer_base *target = __get_target_base(base, tflags);
924
925 forward_timer_base(target);
926 return target;
927}
928
55c888d6 929/*
500462a9
TG
930 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
931 * that all timers which are tied to this base are locked, and the base itself
932 * is locked too.
55c888d6
ON
933 *
934 * So __run_timers/migrate_timers can safely modify all timers which could
500462a9 935 * be found in the base->vectors array.
55c888d6 936 *
500462a9
TG
937 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
938 * to wait until the migration is done.
55c888d6 939 */
494af3ed 940static struct timer_base *lock_timer_base(struct timer_list *timer,
500462a9 941 unsigned long *flags)
89e7e374 942 __acquires(timer->base->lock)
55c888d6 943{
55c888d6 944 for (;;) {
494af3ed 945 struct timer_base *base;
0eeda71b 946 u32 tf = timer->flags;
0eeda71b
TG
947
948 if (!(tf & TIMER_MIGRATING)) {
500462a9 949 base = get_timer_base(tf);
55c888d6 950 spin_lock_irqsave(&base->lock, *flags);
0eeda71b 951 if (timer->flags == tf)
55c888d6 952 return base;
55c888d6
ON
953 spin_unlock_irqrestore(&base->lock, *flags);
954 }
955 cpu_relax();
956 }
957}
958
74019224 959static inline int
177ec0a0 960__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 961{
494af3ed 962 struct timer_base *base, *new_base;
f00c0afd
AMG
963 unsigned int idx = UINT_MAX;
964 unsigned long clk = 0, flags;
bc7a34b8 965 int ret = 0;
1da177e4 966
500462a9 967 /*
f00c0afd
AMG
968 * This is a common optimization triggered by the networking code - if
969 * the timer is re-modified to have the same timeout or ends up in the
970 * same array bucket then just return:
500462a9
TG
971 */
972 if (timer_pending(timer)) {
973 if (timer->expires == expires)
974 return 1;
f00c0afd
AMG
975 /*
976 * Take the current timer_jiffies of base, but without holding
977 * the lock!
978 */
979 base = get_timer_base(timer->flags);
980 clk = base->clk;
981
982 idx = calc_wheel_index(expires, clk);
983
984 /*
985 * Retrieve and compare the array index of the pending
986 * timer. If it matches set the expiry to the new value so a
987 * subsequent call will exit in the expires check above.
988 */
989 if (idx == timer_get_idx(timer)) {
990 timer->expires = expires;
991 return 1;
992 }
500462a9
TG
993 }
994
82f67cd9 995 timer_stats_timer_set_start_info(timer);
1da177e4 996 BUG_ON(!timer->function);
1da177e4 997
55c888d6
ON
998 base = lock_timer_base(timer, &flags);
999
ec44bc7a
TG
1000 ret = detach_if_pending(timer, base, false);
1001 if (!ret && pending_only)
1002 goto out_unlock;
55c888d6 1003
2b022e3d 1004 debug_activate(timer, expires);
c6f3a97f 1005
500462a9 1006 new_base = get_target_base(base, timer->flags);
eea08f32 1007
3691c519 1008 if (base != new_base) {
1da177e4 1009 /*
500462a9 1010 * We are trying to schedule the timer on the new base.
55c888d6
ON
1011 * However we can't change timer's base while it is running,
1012 * otherwise del_timer_sync() can't detect that the timer's
500462a9
TG
1013 * handler yet has not finished. This also guarantees that the
1014 * timer is serialized wrt itself.
1da177e4 1015 */
a2c348fe 1016 if (likely(base->running_timer != timer)) {
55c888d6 1017 /* See the comment in lock_timer_base() */
0eeda71b
TG
1018 timer->flags |= TIMER_MIGRATING;
1019
55c888d6 1020 spin_unlock(&base->lock);
a2c348fe
ON
1021 base = new_base;
1022 spin_lock(&base->lock);
d0023a14
ED
1023 WRITE_ONCE(timer->flags,
1024 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1da177e4
LT
1025 }
1026 }
1027
1da177e4 1028 timer->expires = expires;
f00c0afd
AMG
1029 /*
1030 * If 'idx' was calculated above and the base time did not advance
1031 * between calculating 'idx' and taking the lock, only enqueue_timer()
1032 * and trigger_dyntick_cpu() is required. Otherwise we need to
1033 * (re)calculate the wheel index via internal_add_timer().
1034 */
1035 if (idx != UINT_MAX && clk == base->clk) {
1036 enqueue_timer(base, timer, idx);
1037 trigger_dyntick_cpu(base, timer);
1038 } else {
1039 internal_add_timer(base, timer);
1040 }
74019224
IM
1041
1042out_unlock:
a2c348fe 1043 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
1044
1045 return ret;
1046}
1047
2aae4a10 1048/**
74019224
IM
1049 * mod_timer_pending - modify a pending timer's timeout
1050 * @timer: the pending timer to be modified
1051 * @expires: new timeout in jiffies
1da177e4 1052 *
74019224
IM
1053 * mod_timer_pending() is the same for pending timers as mod_timer(),
1054 * but will not re-activate and modify already deleted timers.
1055 *
1056 * It is useful for unserialized use of timers.
1da177e4 1057 */
74019224 1058int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 1059{
177ec0a0 1060 return __mod_timer(timer, expires, true);
1da177e4 1061}
74019224 1062EXPORT_SYMBOL(mod_timer_pending);
1da177e4 1063
2aae4a10 1064/**
1da177e4
LT
1065 * mod_timer - modify a timer's timeout
1066 * @timer: the timer to be modified
2aae4a10 1067 * @expires: new timeout in jiffies
1da177e4 1068 *
72fd4a35 1069 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
1070 * active timer (if the timer is inactive it will be activated)
1071 *
1072 * mod_timer(timer, expires) is equivalent to:
1073 *
1074 * del_timer(timer); timer->expires = expires; add_timer(timer);
1075 *
1076 * Note that if there are multiple unserialized concurrent users of the
1077 * same timer, then mod_timer() is the only safe way to modify the timeout,
1078 * since add_timer() cannot modify an already running timer.
1079 *
1080 * The function returns whether it has modified a pending timer or not.
1081 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1082 * active timer returns 1.)
1083 */
1084int mod_timer(struct timer_list *timer, unsigned long expires)
1085{
177ec0a0 1086 return __mod_timer(timer, expires, false);
1da177e4 1087}
1da177e4
LT
1088EXPORT_SYMBOL(mod_timer);
1089
74019224
IM
1090/**
1091 * add_timer - start a timer
1092 * @timer: the timer to be added
1093 *
1094 * The kernel will do a ->function(->data) callback from the
1095 * timer interrupt at the ->expires point in the future. The
1096 * current time is 'jiffies'.
1097 *
1098 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1099 * fields must be set prior calling this function.
1100 *
1101 * Timers with an ->expires field in the past will be executed in the next
1102 * timer tick.
1103 */
1104void add_timer(struct timer_list *timer)
1105{
1106 BUG_ON(timer_pending(timer));
1107 mod_timer(timer, timer->expires);
1108}
1109EXPORT_SYMBOL(add_timer);
1110
1111/**
1112 * add_timer_on - start a timer on a particular CPU
1113 * @timer: the timer to be added
1114 * @cpu: the CPU to start it on
1115 *
1116 * This is not very scalable on SMP. Double adds are not possible.
1117 */
1118void add_timer_on(struct timer_list *timer, int cpu)
1119{
500462a9 1120 struct timer_base *new_base, *base;
74019224
IM
1121 unsigned long flags;
1122
1123 timer_stats_timer_set_start_info(timer);
1124 BUG_ON(timer_pending(timer) || !timer->function);
22b886dd 1125
500462a9
TG
1126 new_base = get_timer_cpu_base(timer->flags, cpu);
1127
22b886dd
TH
1128 /*
1129 * If @timer was on a different CPU, it should be migrated with the
1130 * old base locked to prevent other operations proceeding with the
1131 * wrong base locked. See lock_timer_base().
1132 */
1133 base = lock_timer_base(timer, &flags);
1134 if (base != new_base) {
1135 timer->flags |= TIMER_MIGRATING;
1136
1137 spin_unlock(&base->lock);
1138 base = new_base;
1139 spin_lock(&base->lock);
1140 WRITE_ONCE(timer->flags,
1141 (timer->flags & ~TIMER_BASEMASK) | cpu);
1142 }
1143
2b022e3d 1144 debug_activate(timer, timer->expires);
74019224 1145 internal_add_timer(base, timer);
74019224
IM
1146 spin_unlock_irqrestore(&base->lock, flags);
1147}
a9862e05 1148EXPORT_SYMBOL_GPL(add_timer_on);
74019224 1149
2aae4a10 1150/**
1da177e4
LT
1151 * del_timer - deactive a timer.
1152 * @timer: the timer to be deactivated
1153 *
1154 * del_timer() deactivates a timer - this works on both active and inactive
1155 * timers.
1156 *
1157 * The function returns whether it has deactivated a pending timer or not.
1158 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1159 * active timer returns 1.)
1160 */
1161int del_timer(struct timer_list *timer)
1162{
494af3ed 1163 struct timer_base *base;
1da177e4 1164 unsigned long flags;
55c888d6 1165 int ret = 0;
1da177e4 1166
dc4218bd
CC
1167 debug_assert_init(timer);
1168
82f67cd9 1169 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
1170 if (timer_pending(timer)) {
1171 base = lock_timer_base(timer, &flags);
ec44bc7a 1172 ret = detach_if_pending(timer, base, true);
1da177e4 1173 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1174 }
1da177e4 1175
55c888d6 1176 return ret;
1da177e4 1177}
1da177e4
LT
1178EXPORT_SYMBOL(del_timer);
1179
2aae4a10
REB
1180/**
1181 * try_to_del_timer_sync - Try to deactivate a timer
1182 * @timer: timer do del
1183 *
fd450b73
ON
1184 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1185 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1186 */
1187int try_to_del_timer_sync(struct timer_list *timer)
1188{
494af3ed 1189 struct timer_base *base;
fd450b73
ON
1190 unsigned long flags;
1191 int ret = -1;
1192
dc4218bd
CC
1193 debug_assert_init(timer);
1194
fd450b73
ON
1195 base = lock_timer_base(timer, &flags);
1196
ec44bc7a
TG
1197 if (base->running_timer != timer) {
1198 timer_stats_timer_clear_start_info(timer);
1199 ret = detach_if_pending(timer, base, true);
fd450b73 1200 }
fd450b73
ON
1201 spin_unlock_irqrestore(&base->lock, flags);
1202
1203 return ret;
1204}
e19dff1f
DH
1205EXPORT_SYMBOL(try_to_del_timer_sync);
1206
6f1bc451 1207#ifdef CONFIG_SMP
2aae4a10 1208/**
1da177e4
LT
1209 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1210 * @timer: the timer to be deactivated
1211 *
1212 * This function only differs from del_timer() on SMP: besides deactivating
1213 * the timer it also makes sure the handler has finished executing on other
1214 * CPUs.
1215 *
72fd4a35 1216 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1217 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1218 * interrupt contexts unless the timer is an irqsafe one. The caller must
1219 * not hold locks which would prevent completion of the timer's
1220 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1221 * timer is not queued and the handler is not running on any CPU.
1da177e4 1222 *
c5f66e99
TH
1223 * Note: For !irqsafe timers, you must not hold locks that are held in
1224 * interrupt context while calling this function. Even if the lock has
1225 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1226 *
1227 * CPU0 CPU1
1228 * ---- ----
1229 * <SOFTIRQ>
1230 * call_timer_fn();
1231 * base->running_timer = mytimer;
1232 * spin_lock_irq(somelock);
1233 * <IRQ>
1234 * spin_lock(somelock);
1235 * del_timer_sync(mytimer);
1236 * while (base->running_timer == mytimer);
1237 *
1238 * Now del_timer_sync() will never return and never release somelock.
1239 * The interrupt on the other CPU is waiting to grab somelock but
1240 * it has interrupted the softirq that CPU0 is waiting to finish.
1241 *
1da177e4 1242 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1243 */
1244int del_timer_sync(struct timer_list *timer)
1245{
6f2b9b9a 1246#ifdef CONFIG_LOCKDEP
f266a511
PZ
1247 unsigned long flags;
1248
48228f7b
SR
1249 /*
1250 * If lockdep gives a backtrace here, please reference
1251 * the synchronization rules above.
1252 */
7ff20792 1253 local_irq_save(flags);
6f2b9b9a
JB
1254 lock_map_acquire(&timer->lockdep_map);
1255 lock_map_release(&timer->lockdep_map);
7ff20792 1256 local_irq_restore(flags);
6f2b9b9a 1257#endif
466bd303
YZ
1258 /*
1259 * don't use it in hardirq context, because it
1260 * could lead to deadlock.
1261 */
0eeda71b 1262 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1263 for (;;) {
1264 int ret = try_to_del_timer_sync(timer);
1265 if (ret >= 0)
1266 return ret;
a0009652 1267 cpu_relax();
fd450b73 1268 }
1da177e4 1269}
55c888d6 1270EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1271#endif
1272
576da126
TG
1273static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1274 unsigned long data)
1275{
4a2b4b22 1276 int count = preempt_count();
576da126
TG
1277
1278#ifdef CONFIG_LOCKDEP
1279 /*
1280 * It is permissible to free the timer from inside the
1281 * function that is called from it, this we need to take into
1282 * account for lockdep too. To avoid bogus "held lock freed"
1283 * warnings as well as problems when looking into
1284 * timer->lockdep_map, make a copy and use that here.
1285 */
4d82a1de
PZ
1286 struct lockdep_map lockdep_map;
1287
1288 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1289#endif
1290 /*
1291 * Couple the lock chain with the lock chain at
1292 * del_timer_sync() by acquiring the lock_map around the fn()
1293 * call here and in del_timer_sync().
1294 */
1295 lock_map_acquire(&lockdep_map);
1296
1297 trace_timer_expire_entry(timer);
1298 fn(data);
1299 trace_timer_expire_exit(timer);
1300
1301 lock_map_release(&lockdep_map);
1302
4a2b4b22 1303 if (count != preempt_count()) {
802702e0 1304 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1305 fn, count, preempt_count());
802702e0
TG
1306 /*
1307 * Restore the preempt count. That gives us a decent
1308 * chance to survive and extract information. If the
1309 * callback kept a lock held, bad luck, but not worse
1310 * than the BUG() we had.
1311 */
4a2b4b22 1312 preempt_count_set(count);
576da126
TG
1313 }
1314}
1315
500462a9 1316static void expire_timers(struct timer_base *base, struct hlist_head *head)
1da177e4 1317{
500462a9
TG
1318 while (!hlist_empty(head)) {
1319 struct timer_list *timer;
1320 void (*fn)(unsigned long);
1321 unsigned long data;
1da177e4 1322
500462a9
TG
1323 timer = hlist_entry(head->first, struct timer_list, entry);
1324 timer_stats_account_timer(timer);
3bb475a3 1325
500462a9
TG
1326 base->running_timer = timer;
1327 detach_timer(timer, true);
3bb475a3 1328
500462a9
TG
1329 fn = timer->function;
1330 data = timer->data;
1331
1332 if (timer->flags & TIMER_IRQSAFE) {
1333 spin_unlock(&base->lock);
1334 call_timer_fn(timer, fn, data);
1335 spin_lock(&base->lock);
1336 } else {
1337 spin_unlock_irq(&base->lock);
1338 call_timer_fn(timer, fn, data);
1339 spin_lock_irq(&base->lock);
3bb475a3 1340 }
500462a9
TG
1341 }
1342}
3bb475a3 1343
23696838
AMG
1344static int __collect_expired_timers(struct timer_base *base,
1345 struct hlist_head *heads)
500462a9
TG
1346{
1347 unsigned long clk = base->clk;
1348 struct hlist_head *vec;
1349 int i, levels = 0;
1350 unsigned int idx;
626ab0e6 1351
500462a9
TG
1352 for (i = 0; i < LVL_DEPTH; i++) {
1353 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1354
1355 if (__test_and_clear_bit(idx, base->pending_map)) {
1356 vec = base->vectors + idx;
1357 hlist_move_list(vec, heads++);
1358 levels++;
1da177e4 1359 }
500462a9
TG
1360 /* Is it time to look at the next level? */
1361 if (clk & LVL_CLK_MASK)
1362 break;
1363 /* Shift clock for the next level granularity */
1364 clk >>= LVL_CLK_SHIFT;
1da177e4 1365 }
500462a9 1366 return levels;
1da177e4
LT
1367}
1368
3451d024 1369#ifdef CONFIG_NO_HZ_COMMON
1da177e4 1370/*
23696838
AMG
1371 * Find the next pending bucket of a level. Search from level start (@offset)
1372 * + @clk upwards and if nothing there, search from start of the level
1373 * (@offset) up to @offset + clk.
1da177e4 1374 */
500462a9
TG
1375static int next_pending_bucket(struct timer_base *base, unsigned offset,
1376 unsigned clk)
1377{
1378 unsigned pos, start = offset + clk;
1379 unsigned end = offset + LVL_SIZE;
1380
1381 pos = find_next_bit(base->pending_map, end, start);
1382 if (pos < end)
1383 return pos - start;
1384
1385 pos = find_next_bit(base->pending_map, start, offset);
1386 return pos < start ? pos + LVL_SIZE - start : -1;
1387}
1388
1389/*
23696838
AMG
1390 * Search the first expiring timer in the various clock levels. Caller must
1391 * hold base->lock.
1da177e4 1392 */
494af3ed 1393static unsigned long __next_timer_interrupt(struct timer_base *base)
1da177e4 1394{
500462a9
TG
1395 unsigned long clk, next, adj;
1396 unsigned lvl, offset = 0;
1397
500462a9
TG
1398 next = base->clk + NEXT_TIMER_MAX_DELTA;
1399 clk = base->clk;
1400 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1401 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1402
1403 if (pos >= 0) {
1404 unsigned long tmp = clk + (unsigned long) pos;
1405
1406 tmp <<= LVL_SHIFT(lvl);
1407 if (time_before(tmp, next))
1408 next = tmp;
1da177e4 1409 }
500462a9
TG
1410 /*
1411 * Clock for the next level. If the current level clock lower
1412 * bits are zero, we look at the next level as is. If not we
1413 * need to advance it by one because that's going to be the
1414 * next expiring bucket in that level. base->clk is the next
1415 * expiring jiffie. So in case of:
1416 *
1417 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1418 * 0 0 0 0 0 0
1419 *
1420 * we have to look at all levels @index 0. With
1421 *
1422 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1423 * 0 0 0 0 0 2
1424 *
1425 * LVL0 has the next expiring bucket @index 2. The upper
1426 * levels have the next expiring bucket @index 1.
1427 *
1428 * In case that the propagation wraps the next level the same
1429 * rules apply:
1430 *
1431 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1432 * 0 0 0 0 F 2
1433 *
1434 * So after looking at LVL0 we get:
1435 *
1436 * LVL5 LVL4 LVL3 LVL2 LVL1
1437 * 0 0 0 1 0
1438 *
1439 * So no propagation from LVL1 to LVL2 because that happened
1440 * with the add already, but then we need to propagate further
1441 * from LVL2 to LVL3.
1442 *
1443 * So the simple check whether the lower bits of the current
1444 * level are 0 or not is sufficient for all cases.
1445 */
1446 adj = clk & LVL_CLK_MASK ? 1 : 0;
1447 clk >>= LVL_CLK_SHIFT;
1448 clk += adj;
1da177e4 1449 }
500462a9 1450 return next;
1cfd6849 1451}
69239749 1452
1cfd6849
TG
1453/*
1454 * Check, if the next hrtimer event is before the next timer wheel
1455 * event:
1456 */
c1ad348b 1457static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1458{
c1ad348b 1459 u64 nextevt = hrtimer_get_next_event();
0662b713 1460
9501b6cf 1461 /*
c1ad348b
TG
1462 * If high resolution timers are enabled
1463 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1464 */
c1ad348b
TG
1465 if (expires <= nextevt)
1466 return expires;
eaad084b
TG
1467
1468 /*
c1ad348b
TG
1469 * If the next timer is already expired, return the tick base
1470 * time so the tick is fired immediately.
eaad084b 1471 */
c1ad348b
TG
1472 if (nextevt <= basem)
1473 return basem;
eaad084b 1474
9501b6cf 1475 /*
c1ad348b
TG
1476 * Round up to the next jiffie. High resolution timers are
1477 * off, so the hrtimers are expired in the tick and we need to
1478 * make sure that this tick really expires the timer to avoid
1479 * a ping pong of the nohz stop code.
1480 *
1481 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1482 */
c1ad348b 1483 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1484}
1cfd6849
TG
1485
1486/**
c1ad348b
TG
1487 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1488 * @basej: base time jiffies
1489 * @basem: base time clock monotonic
1490 *
1491 * Returns the tick aligned clock monotonic time of the next pending
1492 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1493 */
c1ad348b 1494u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1495{
500462a9 1496 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
c1ad348b
TG
1497 u64 expires = KTIME_MAX;
1498 unsigned long nextevt;
46c8f0b0 1499 bool is_max_delta;
1cfd6849 1500
dbd87b5a
HC
1501 /*
1502 * Pretend that there is no timer pending if the cpu is offline.
1503 * Possible pending timers will be migrated later to an active cpu.
1504 */
1505 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1506 return expires;
1507
1cfd6849 1508 spin_lock(&base->lock);
500462a9 1509 nextevt = __next_timer_interrupt(base);
46c8f0b0 1510 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
a683f390
TG
1511 base->next_expiry = nextevt;
1512 /*
1513 * We have a fresh next event. Check whether we can forward the base:
1514 */
1515 if (time_after(nextevt, jiffies))
1516 base->clk = jiffies;
1517 else if (time_after(nextevt, base->clk))
1518 base->clk = nextevt;
23696838 1519
a683f390 1520 if (time_before_eq(nextevt, basej)) {
500462a9 1521 expires = basem;
a683f390
TG
1522 base->is_idle = false;
1523 } else {
46c8f0b0
CM
1524 if (!is_max_delta)
1525 expires = basem + (nextevt - basej) * TICK_NSEC;
a683f390
TG
1526 /*
1527 * If we expect to sleep more than a tick, mark the base idle:
1528 */
1529 if ((expires - basem) > TICK_NSEC)
1530 base->is_idle = true;
e40468a5 1531 }
1cfd6849
TG
1532 spin_unlock(&base->lock);
1533
c1ad348b 1534 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1535}
23696838 1536
a683f390
TG
1537/**
1538 * timer_clear_idle - Clear the idle state of the timer base
1539 *
1540 * Called with interrupts disabled
1541 */
1542void timer_clear_idle(void)
1543{
1544 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1545
1546 /*
1547 * We do this unlocked. The worst outcome is a remote enqueue sending
1548 * a pointless IPI, but taking the lock would just make the window for
1549 * sending the IPI a few instructions smaller for the cost of taking
1550 * the lock in the exit from idle path.
1551 */
1552 base->is_idle = false;
1553}
1554
23696838
AMG
1555static int collect_expired_timers(struct timer_base *base,
1556 struct hlist_head *heads)
1557{
1558 /*
1559 * NOHZ optimization. After a long idle sleep we need to forward the
1560 * base to current jiffies. Avoid a loop by searching the bitfield for
1561 * the next expiring timer.
1562 */
1563 if ((long)(jiffies - base->clk) > 2) {
1564 unsigned long next = __next_timer_interrupt(base);
1565
1566 /*
1567 * If the next timer is ahead of time forward to current
a683f390 1568 * jiffies, otherwise forward to the next expiry time:
23696838
AMG
1569 */
1570 if (time_after(next, jiffies)) {
1571 /* The call site will increment clock! */
1572 base->clk = jiffies - 1;
1573 return 0;
1574 }
1575 base->clk = next;
1576 }
1577 return __collect_expired_timers(base, heads);
1578}
1579#else
1580static inline int collect_expired_timers(struct timer_base *base,
1581 struct hlist_head *heads)
1582{
1583 return __collect_expired_timers(base, heads);
1584}
1da177e4
LT
1585#endif
1586
1da177e4 1587/*
5b4db0c2 1588 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1589 * process. user_tick is 1 if the tick is user time, 0 for system.
1590 */
1591void update_process_times(int user_tick)
1592{
1593 struct task_struct *p = current;
1da177e4
LT
1594
1595 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1596 account_process_tick(p, user_tick);
1da177e4 1597 run_local_timers();
c3377c2d 1598 rcu_check_callbacks(user_tick);
e360adbe
PZ
1599#ifdef CONFIG_IRQ_WORK
1600 if (in_irq())
76a33061 1601 irq_work_tick();
e360adbe 1602#endif
1da177e4 1603 scheduler_tick();
6819457d 1604 run_posix_cpu_timers(p);
1da177e4
LT
1605}
1606
73420fea
AMG
1607/**
1608 * __run_timers - run all expired timers (if any) on this CPU.
1609 * @base: the timer vector to be processed.
1610 */
1611static inline void __run_timers(struct timer_base *base)
1612{
1613 struct hlist_head heads[LVL_DEPTH];
1614 int levels;
1615
1616 if (!time_after_eq(jiffies, base->clk))
1617 return;
1618
1619 spin_lock_irq(&base->lock);
1620
1621 while (time_after_eq(jiffies, base->clk)) {
1622
1623 levels = collect_expired_timers(base, heads);
1624 base->clk++;
1625
1626 while (levels--)
1627 expire_timers(base, heads + levels);
1628 }
1629 base->running_timer = NULL;
1630 spin_unlock_irq(&base->lock);
1631}
1632
1da177e4
LT
1633/*
1634 * This function runs timers and the timer-tq in bottom half context.
1635 */
1636static void run_timer_softirq(struct softirq_action *h)
1637{
500462a9 1638 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1da177e4 1639
500462a9
TG
1640 __run_timers(base);
1641 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1642 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1da177e4
LT
1643}
1644
1645/*
1646 * Called by the local, per-CPU timer interrupt on SMP.
1647 */
1648void run_local_timers(void)
1649{
4e85876a
TG
1650 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1651
d3d74453 1652 hrtimer_run_queues();
4e85876a
TG
1653 /* Raise the softirq only if required. */
1654 if (time_before(jiffies, base->clk)) {
1655 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1656 return;
1657 /* CPU is awake, so check the deferrable base. */
1658 base++;
1659 if (time_before(jiffies, base->clk))
1660 return;
1661 }
1da177e4
LT
1662 raise_softirq(TIMER_SOFTIRQ);
1663}
1664
1da177e4
LT
1665#ifdef __ARCH_WANT_SYS_ALARM
1666
1667/*
1668 * For backwards compatibility? This can be done in libc so Alpha
1669 * and all newer ports shouldn't need it.
1670 */
58fd3aa2 1671SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1672{
c08b8a49 1673 return alarm_setitimer(seconds);
1da177e4
LT
1674}
1675
1676#endif
1677
1da177e4
LT
1678static void process_timeout(unsigned long __data)
1679{
36c8b586 1680 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1681}
1682
1683/**
1684 * schedule_timeout - sleep until timeout
1685 * @timeout: timeout value in jiffies
1686 *
1687 * Make the current task sleep until @timeout jiffies have
1688 * elapsed. The routine will return immediately unless
1689 * the current task state has been set (see set_current_state()).
1690 *
1691 * You can set the task state as follows -
1692 *
1693 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1694 * pass before the routine returns. The routine will return 0
1695 *
1696 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1697 * delivered to the current task. In this case the remaining time
1698 * in jiffies will be returned, or 0 if the timer expired in time
1699 *
1700 * The current task state is guaranteed to be TASK_RUNNING when this
1701 * routine returns.
1702 *
1703 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1704 * the CPU away without a bound on the timeout. In this case the return
1705 * value will be %MAX_SCHEDULE_TIMEOUT.
1706 *
1707 * In all cases the return value is guaranteed to be non-negative.
1708 */
7ad5b3a5 1709signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1710{
1711 struct timer_list timer;
1712 unsigned long expire;
1713
1714 switch (timeout)
1715 {
1716 case MAX_SCHEDULE_TIMEOUT:
1717 /*
1718 * These two special cases are useful to be comfortable
1719 * in the caller. Nothing more. We could take
1720 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1721 * but I' d like to return a valid offset (>=0) to allow
1722 * the caller to do everything it want with the retval.
1723 */
1724 schedule();
1725 goto out;
1726 default:
1727 /*
1728 * Another bit of PARANOID. Note that the retval will be
1729 * 0 since no piece of kernel is supposed to do a check
1730 * for a negative retval of schedule_timeout() (since it
1731 * should never happens anyway). You just have the printk()
1732 * that will tell you if something is gone wrong and where.
1733 */
5b149bcc 1734 if (timeout < 0) {
1da177e4 1735 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1736 "value %lx\n", timeout);
1737 dump_stack();
1da177e4
LT
1738 current->state = TASK_RUNNING;
1739 goto out;
1740 }
1741 }
1742
1743 expire = timeout + jiffies;
1744
c6f3a97f 1745 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
177ec0a0 1746 __mod_timer(&timer, expire, false);
1da177e4
LT
1747 schedule();
1748 del_singleshot_timer_sync(&timer);
1749
c6f3a97f
TG
1750 /* Remove the timer from the object tracker */
1751 destroy_timer_on_stack(&timer);
1752
1da177e4
LT
1753 timeout = expire - jiffies;
1754
1755 out:
1756 return timeout < 0 ? 0 : timeout;
1757}
1da177e4
LT
1758EXPORT_SYMBOL(schedule_timeout);
1759
8a1c1757
AM
1760/*
1761 * We can use __set_current_state() here because schedule_timeout() calls
1762 * schedule() unconditionally.
1763 */
64ed93a2
NA
1764signed long __sched schedule_timeout_interruptible(signed long timeout)
1765{
a5a0d52c
AM
1766 __set_current_state(TASK_INTERRUPTIBLE);
1767 return schedule_timeout(timeout);
64ed93a2
NA
1768}
1769EXPORT_SYMBOL(schedule_timeout_interruptible);
1770
294d5cc2
MW
1771signed long __sched schedule_timeout_killable(signed long timeout)
1772{
1773 __set_current_state(TASK_KILLABLE);
1774 return schedule_timeout(timeout);
1775}
1776EXPORT_SYMBOL(schedule_timeout_killable);
1777
64ed93a2
NA
1778signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1779{
a5a0d52c
AM
1780 __set_current_state(TASK_UNINTERRUPTIBLE);
1781 return schedule_timeout(timeout);
64ed93a2
NA
1782}
1783EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1784
69b27baf
AM
1785/*
1786 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1787 * to load average.
1788 */
1789signed long __sched schedule_timeout_idle(signed long timeout)
1790{
1791 __set_current_state(TASK_IDLE);
1792 return schedule_timeout(timeout);
1793}
1794EXPORT_SYMBOL(schedule_timeout_idle);
1795
1da177e4 1796#ifdef CONFIG_HOTPLUG_CPU
494af3ed 1797static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1da177e4
LT
1798{
1799 struct timer_list *timer;
0eeda71b 1800 int cpu = new_base->cpu;
1da177e4 1801
1dabbcec
TG
1802 while (!hlist_empty(head)) {
1803 timer = hlist_entry(head->first, struct timer_list, entry);
ec44bc7a 1804 detach_timer(timer, false);
0eeda71b 1805 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1806 internal_add_timer(new_base, timer);
1da177e4 1807 }
1da177e4
LT
1808}
1809
24f73b99 1810int timers_dead_cpu(unsigned int cpu)
1da177e4 1811{
494af3ed
TG
1812 struct timer_base *old_base;
1813 struct timer_base *new_base;
500462a9 1814 int b, i;
1da177e4
LT
1815
1816 BUG_ON(cpu_online(cpu));
55c888d6 1817
500462a9
TG
1818 for (b = 0; b < NR_BASES; b++) {
1819 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1820 new_base = get_cpu_ptr(&timer_bases[b]);
1821 /*
1822 * The caller is globally serialized and nobody else
1823 * takes two locks at once, deadlock is not possible.
1824 */
1825 spin_lock_irq(&new_base->lock);
1826 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1827
1828 BUG_ON(old_base->running_timer);
1829
1830 for (i = 0; i < WHEEL_SIZE; i++)
1831 migrate_timer_list(new_base, old_base->vectors + i);
8def9060 1832
500462a9
TG
1833 spin_unlock(&old_base->lock);
1834 spin_unlock_irq(&new_base->lock);
1835 put_cpu_ptr(&timer_bases);
1836 }
24f73b99 1837 return 0;
1da177e4 1838}
1da177e4 1839
3650b57f 1840#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1841
0eeda71b 1842static void __init init_timer_cpu(int cpu)
8def9060 1843{
500462a9
TG
1844 struct timer_base *base;
1845 int i;
8def9060 1846
500462a9
TG
1847 for (i = 0; i < NR_BASES; i++) {
1848 base = per_cpu_ptr(&timer_bases[i], cpu);
1849 base->cpu = cpu;
1850 spin_lock_init(&base->lock);
1851 base->clk = jiffies;
1852 }
8def9060
VK
1853}
1854
1855static void __init init_timer_cpus(void)
1da177e4 1856{
8def9060
VK
1857 int cpu;
1858
0eeda71b
TG
1859 for_each_possible_cpu(cpu)
1860 init_timer_cpu(cpu);
8def9060 1861}
e52b1db3 1862
8def9060
VK
1863void __init init_timers(void)
1864{
8def9060 1865 init_timer_cpus();
c24a4a36 1866 init_timer_stats();
962cf36c 1867 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1868}
1869
1da177e4
LT
1870/**
1871 * msleep - sleep safely even with waitqueue interruptions
1872 * @msecs: Time in milliseconds to sleep for
1873 */
1874void msleep(unsigned int msecs)
1875{
1876 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1877
75bcc8c5
NA
1878 while (timeout)
1879 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1880}
1881
1882EXPORT_SYMBOL(msleep);
1883
1884/**
96ec3efd 1885 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1886 * @msecs: Time in milliseconds to sleep for
1887 */
1888unsigned long msleep_interruptible(unsigned int msecs)
1889{
1890 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1891
75bcc8c5
NA
1892 while (timeout && !signal_pending(current))
1893 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1894 return jiffies_to_msecs(timeout);
1895}
1896
1897EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1898
6deba083 1899static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1900{
1901 ktime_t kmin;
da8b44d5 1902 u64 delta;
5e7f5a17
PP
1903
1904 kmin = ktime_set(0, min * NSEC_PER_USEC);
da8b44d5 1905 delta = (u64)(max - min) * NSEC_PER_USEC;
6deba083 1906 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1907}
1908
1909/**
b5227d03 1910 * usleep_range - Sleep for an approximate time
5e7f5a17
PP
1911 * @min: Minimum time in usecs to sleep
1912 * @max: Maximum time in usecs to sleep
b5227d03
BH
1913 *
1914 * In non-atomic context where the exact wakeup time is flexible, use
1915 * usleep_range() instead of udelay(). The sleep improves responsiveness
1916 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1917 * power usage by allowing hrtimers to take advantage of an already-
1918 * scheduled interrupt instead of scheduling a new one just for this sleep.
5e7f5a17 1919 */
2ad5d327 1920void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1921{
1922 __set_current_state(TASK_UNINTERRUPTIBLE);
1923 do_usleep_range(min, max);
1924}
1925EXPORT_SYMBOL(usleep_range);
This page took 0.931958 seconds and 5 git commands to generate.