powerpc: Use generic time config
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
dd6414b5 104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
6e453a67
VP
105}
106
107static inline void
a6fa8e5a 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 109{
a6fa8e5a 110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 111 tbase_get_deferrable(timer->base));
6e453a67
VP
112}
113
9c133c46
AS
114static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
4c36a5de
AV
116{
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 137 * But never round down if @force_up is set.
4c36a5de 138 */
9c133c46 139 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150}
9c133c46
AS
151
152/**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172unsigned long __round_jiffies(unsigned long j, int cpu)
173{
174 return round_jiffies_common(j, cpu, false);
175}
4c36a5de
AV
176EXPORT_SYMBOL_GPL(__round_jiffies);
177
178/**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
72fd4a35 183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
72fd4a35 196 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
197 */
198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199{
9c133c46
AS
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
204}
205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207/**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
72fd4a35 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
72fd4a35 220 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
221 */
222unsigned long round_jiffies(unsigned long j)
223{
9c133c46 224 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(round_jiffies);
227
228/**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies_relative(unsigned long j)
244{
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246}
247EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
9c133c46
AS
249/**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259unsigned long __round_jiffies_up(unsigned long j, int cpu)
260{
261 return round_jiffies_common(j, cpu, true);
262}
263EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265/**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276{
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281}
282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284/**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293unsigned long round_jiffies_up(unsigned long j)
294{
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296}
297EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299/**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308unsigned long round_jiffies_up_relative(unsigned long j)
309{
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311}
312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
3bbb9ec9
AV
314/**
315 * set_timer_slack - set the allowed slack for a timer
0caa6210 316 * @timer: the timer to be modified
3bbb9ec9
AV
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327void set_timer_slack(struct timer_list *timer, int slack_hz)
328{
329 timer->slack = slack_hz;
330}
331EXPORT_SYMBOL_GPL(set_timer_slack);
332
a6fa8e5a 333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
334{
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373}
374
82f67cd9
IM
375#ifdef CONFIG_TIMER_STATS
376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377{
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384}
c5c061b8
VP
385
386static void timer_stats_account_timer(struct timer_list *timer)
387{
388 unsigned int flag = 0;
389
507e1231
HC
390 if (likely(!timer->start_site))
391 return;
c5c061b8
VP
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397}
398
399#else
400static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
401#endif
402
c6f3a97f
TG
403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405static struct debug_obj_descr timer_debug_descr;
406
99777288
SG
407static void *timer_debug_hint(void *addr)
408{
409 return ((struct timer_list *) addr)->function;
410}
411
c6f3a97f
TG
412/*
413 * fixup_init is called when:
414 * - an active object is initialized
55c888d6 415 */
c6f3a97f
TG
416static int timer_fixup_init(void *addr, enum debug_obj_state state)
417{
418 struct timer_list *timer = addr;
419
420 switch (state) {
421 case ODEBUG_STATE_ACTIVE:
422 del_timer_sync(timer);
423 debug_object_init(timer, &timer_debug_descr);
424 return 1;
425 default:
426 return 0;
427 }
428}
429
fb16b8cf
SB
430/* Stub timer callback for improperly used timers. */
431static void stub_timer(unsigned long data)
432{
433 WARN_ON(1);
434}
435
c6f3a97f
TG
436/*
437 * fixup_activate is called when:
438 * - an active object is activated
439 * - an unknown object is activated (might be a statically initialized object)
440 */
441static int timer_fixup_activate(void *addr, enum debug_obj_state state)
442{
443 struct timer_list *timer = addr;
444
445 switch (state) {
446
447 case ODEBUG_STATE_NOTAVAILABLE:
448 /*
449 * This is not really a fixup. The timer was
450 * statically initialized. We just make sure that it
451 * is tracked in the object tracker.
452 */
453 if (timer->entry.next == NULL &&
454 timer->entry.prev == TIMER_ENTRY_STATIC) {
455 debug_object_init(timer, &timer_debug_descr);
456 debug_object_activate(timer, &timer_debug_descr);
457 return 0;
458 } else {
fb16b8cf
SB
459 setup_timer(timer, stub_timer, 0);
460 return 1;
c6f3a97f
TG
461 }
462 return 0;
463
464 case ODEBUG_STATE_ACTIVE:
465 WARN_ON(1);
466
467 default:
468 return 0;
469 }
470}
471
472/*
473 * fixup_free is called when:
474 * - an active object is freed
475 */
476static int timer_fixup_free(void *addr, enum debug_obj_state state)
477{
478 struct timer_list *timer = addr;
479
480 switch (state) {
481 case ODEBUG_STATE_ACTIVE:
482 del_timer_sync(timer);
483 debug_object_free(timer, &timer_debug_descr);
484 return 1;
485 default:
486 return 0;
487 }
488}
489
dc4218bd
CC
490/*
491 * fixup_assert_init is called when:
492 * - an untracked/uninit-ed object is found
493 */
494static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
495{
496 struct timer_list *timer = addr;
497
498 switch (state) {
499 case ODEBUG_STATE_NOTAVAILABLE:
500 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
501 /*
502 * This is not really a fixup. The timer was
503 * statically initialized. We just make sure that it
504 * is tracked in the object tracker.
505 */
506 debug_object_init(timer, &timer_debug_descr);
507 return 0;
508 } else {
509 setup_timer(timer, stub_timer, 0);
510 return 1;
511 }
512 default:
513 return 0;
514 }
515}
516
c6f3a97f 517static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
518 .name = "timer_list",
519 .debug_hint = timer_debug_hint,
520 .fixup_init = timer_fixup_init,
521 .fixup_activate = timer_fixup_activate,
522 .fixup_free = timer_fixup_free,
523 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
524};
525
526static inline void debug_timer_init(struct timer_list *timer)
527{
528 debug_object_init(timer, &timer_debug_descr);
529}
530
531static inline void debug_timer_activate(struct timer_list *timer)
532{
533 debug_object_activate(timer, &timer_debug_descr);
534}
535
536static inline void debug_timer_deactivate(struct timer_list *timer)
537{
538 debug_object_deactivate(timer, &timer_debug_descr);
539}
540
541static inline void debug_timer_free(struct timer_list *timer)
542{
543 debug_object_free(timer, &timer_debug_descr);
544}
545
dc4218bd
CC
546static inline void debug_timer_assert_init(struct timer_list *timer)
547{
548 debug_object_assert_init(timer, &timer_debug_descr);
549}
550
6f2b9b9a
JB
551static void __init_timer(struct timer_list *timer,
552 const char *name,
553 struct lock_class_key *key);
c6f3a97f 554
6f2b9b9a
JB
555void init_timer_on_stack_key(struct timer_list *timer,
556 const char *name,
557 struct lock_class_key *key)
c6f3a97f
TG
558{
559 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 560 __init_timer(timer, name, key);
c6f3a97f 561}
6f2b9b9a 562EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
563
564void destroy_timer_on_stack(struct timer_list *timer)
565{
566 debug_object_free(timer, &timer_debug_descr);
567}
568EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
569
570#else
571static inline void debug_timer_init(struct timer_list *timer) { }
572static inline void debug_timer_activate(struct timer_list *timer) { }
573static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 574static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
575#endif
576
2b022e3d
XG
577static inline void debug_init(struct timer_list *timer)
578{
579 debug_timer_init(timer);
580 trace_timer_init(timer);
581}
582
583static inline void
584debug_activate(struct timer_list *timer, unsigned long expires)
585{
586 debug_timer_activate(timer);
587 trace_timer_start(timer, expires);
588}
589
590static inline void debug_deactivate(struct timer_list *timer)
591{
592 debug_timer_deactivate(timer);
593 trace_timer_cancel(timer);
594}
595
dc4218bd
CC
596static inline void debug_assert_init(struct timer_list *timer)
597{
598 debug_timer_assert_init(timer);
599}
600
6f2b9b9a
JB
601static void __init_timer(struct timer_list *timer,
602 const char *name,
603 struct lock_class_key *key)
55c888d6
ON
604{
605 timer->entry.next = NULL;
bfe5d834 606 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 607 timer->slack = -1;
82f67cd9
IM
608#ifdef CONFIG_TIMER_STATS
609 timer->start_site = NULL;
610 timer->start_pid = -1;
611 memset(timer->start_comm, 0, TASK_COMM_LEN);
612#endif
6f2b9b9a 613 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 614}
c6f3a97f 615
8cadd283
JB
616void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
617 const char *name,
618 struct lock_class_key *key,
619 void (*function)(unsigned long),
620 unsigned long data)
621{
622 timer->function = function;
623 timer->data = data;
624 init_timer_on_stack_key(timer, name, key);
625 timer_set_deferrable(timer);
626}
627EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
628
c6f3a97f 629/**
633fe795 630 * init_timer_key - initialize a timer
c6f3a97f 631 * @timer: the timer to be initialized
633fe795
RD
632 * @name: name of the timer
633 * @key: lockdep class key of the fake lock used for tracking timer
634 * sync lock dependencies
c6f3a97f 635 *
633fe795 636 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
637 * other timer functions.
638 */
6f2b9b9a
JB
639void init_timer_key(struct timer_list *timer,
640 const char *name,
641 struct lock_class_key *key)
c6f3a97f 642{
2b022e3d 643 debug_init(timer);
6f2b9b9a 644 __init_timer(timer, name, key);
c6f3a97f 645}
6f2b9b9a 646EXPORT_SYMBOL(init_timer_key);
55c888d6 647
6f2b9b9a
JB
648void init_timer_deferrable_key(struct timer_list *timer,
649 const char *name,
650 struct lock_class_key *key)
6e453a67 651{
6f2b9b9a 652 init_timer_key(timer, name, key);
6e453a67
VP
653 timer_set_deferrable(timer);
654}
6f2b9b9a 655EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 656
55c888d6 657static inline void detach_timer(struct timer_list *timer,
82f67cd9 658 int clear_pending)
55c888d6
ON
659{
660 struct list_head *entry = &timer->entry;
661
2b022e3d 662 debug_deactivate(timer);
c6f3a97f 663
55c888d6
ON
664 __list_del(entry->prev, entry->next);
665 if (clear_pending)
666 entry->next = NULL;
667 entry->prev = LIST_POISON2;
668}
669
670/*
3691c519 671 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
672 * means that all timers which are tied to this base via timer->base are
673 * locked, and the base itself is locked too.
674 *
675 * So __run_timers/migrate_timers can safely modify all timers which could
676 * be found on ->tvX lists.
677 *
678 * When the timer's base is locked, and the timer removed from list, it is
679 * possible to set timer->base = NULL and drop the lock: the timer remains
680 * locked.
681 */
a6fa8e5a 682static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 683 unsigned long *flags)
89e7e374 684 __acquires(timer->base->lock)
55c888d6 685{
a6fa8e5a 686 struct tvec_base *base;
55c888d6
ON
687
688 for (;;) {
a6fa8e5a 689 struct tvec_base *prelock_base = timer->base;
6e453a67 690 base = tbase_get_base(prelock_base);
55c888d6
ON
691 if (likely(base != NULL)) {
692 spin_lock_irqsave(&base->lock, *flags);
6e453a67 693 if (likely(prelock_base == timer->base))
55c888d6
ON
694 return base;
695 /* The timer has migrated to another CPU */
696 spin_unlock_irqrestore(&base->lock, *flags);
697 }
698 cpu_relax();
699 }
700}
701
74019224 702static inline int
597d0275
AB
703__mod_timer(struct timer_list *timer, unsigned long expires,
704 bool pending_only, int pinned)
1da177e4 705{
a6fa8e5a 706 struct tvec_base *base, *new_base;
1da177e4 707 unsigned long flags;
eea08f32 708 int ret = 0 , cpu;
1da177e4 709
82f67cd9 710 timer_stats_timer_set_start_info(timer);
1da177e4 711 BUG_ON(!timer->function);
1da177e4 712
55c888d6
ON
713 base = lock_timer_base(timer, &flags);
714
715 if (timer_pending(timer)) {
716 detach_timer(timer, 0);
97fd9ed4
MS
717 if (timer->expires == base->next_timer &&
718 !tbase_get_deferrable(timer->base))
719 base->next_timer = base->timer_jiffies;
55c888d6 720 ret = 1;
74019224
IM
721 } else {
722 if (pending_only)
723 goto out_unlock;
55c888d6
ON
724 }
725
2b022e3d 726 debug_activate(timer, expires);
c6f3a97f 727
eea08f32
AB
728 cpu = smp_processor_id();
729
730#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
731 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
732 cpu = get_nohz_timer_target();
eea08f32
AB
733#endif
734 new_base = per_cpu(tvec_bases, cpu);
735
3691c519 736 if (base != new_base) {
1da177e4 737 /*
55c888d6
ON
738 * We are trying to schedule the timer on the local CPU.
739 * However we can't change timer's base while it is running,
740 * otherwise del_timer_sync() can't detect that the timer's
741 * handler yet has not finished. This also guarantees that
742 * the timer is serialized wrt itself.
1da177e4 743 */
a2c348fe 744 if (likely(base->running_timer != timer)) {
55c888d6 745 /* See the comment in lock_timer_base() */
6e453a67 746 timer_set_base(timer, NULL);
55c888d6 747 spin_unlock(&base->lock);
a2c348fe
ON
748 base = new_base;
749 spin_lock(&base->lock);
6e453a67 750 timer_set_base(timer, base);
1da177e4
LT
751 }
752 }
753
1da177e4 754 timer->expires = expires;
97fd9ed4
MS
755 if (time_before(timer->expires, base->next_timer) &&
756 !tbase_get_deferrable(timer->base))
757 base->next_timer = timer->expires;
a2c348fe 758 internal_add_timer(base, timer);
74019224
IM
759
760out_unlock:
a2c348fe 761 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
762
763 return ret;
764}
765
2aae4a10 766/**
74019224
IM
767 * mod_timer_pending - modify a pending timer's timeout
768 * @timer: the pending timer to be modified
769 * @expires: new timeout in jiffies
1da177e4 770 *
74019224
IM
771 * mod_timer_pending() is the same for pending timers as mod_timer(),
772 * but will not re-activate and modify already deleted timers.
773 *
774 * It is useful for unserialized use of timers.
1da177e4 775 */
74019224 776int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 777{
597d0275 778 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 779}
74019224 780EXPORT_SYMBOL(mod_timer_pending);
1da177e4 781
3bbb9ec9
AV
782/*
783 * Decide where to put the timer while taking the slack into account
784 *
785 * Algorithm:
786 * 1) calculate the maximum (absolute) time
787 * 2) calculate the highest bit where the expires and new max are different
788 * 3) use this bit to make a mask
789 * 4) use the bitmask to round down the maximum time, so that all last
790 * bits are zeros
791 */
792static inline
793unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
794{
795 unsigned long expires_limit, mask;
796 int bit;
797
8e63d779 798 if (timer->slack >= 0) {
f00e047e 799 expires_limit = expires + timer->slack;
8e63d779 800 } else {
1c3cc116
SAS
801 long delta = expires - jiffies;
802
803 if (delta < 256)
804 return expires;
3bbb9ec9 805
1c3cc116 806 expires_limit = expires + delta / 256;
8e63d779 807 }
3bbb9ec9 808 mask = expires ^ expires_limit;
3bbb9ec9
AV
809 if (mask == 0)
810 return expires;
811
812 bit = find_last_bit(&mask, BITS_PER_LONG);
813
814 mask = (1 << bit) - 1;
815
816 expires_limit = expires_limit & ~(mask);
817
818 return expires_limit;
819}
820
2aae4a10 821/**
1da177e4
LT
822 * mod_timer - modify a timer's timeout
823 * @timer: the timer to be modified
2aae4a10 824 * @expires: new timeout in jiffies
1da177e4 825 *
72fd4a35 826 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
827 * active timer (if the timer is inactive it will be activated)
828 *
829 * mod_timer(timer, expires) is equivalent to:
830 *
831 * del_timer(timer); timer->expires = expires; add_timer(timer);
832 *
833 * Note that if there are multiple unserialized concurrent users of the
834 * same timer, then mod_timer() is the only safe way to modify the timeout,
835 * since add_timer() cannot modify an already running timer.
836 *
837 * The function returns whether it has modified a pending timer or not.
838 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
839 * active timer returns 1.)
840 */
841int mod_timer(struct timer_list *timer, unsigned long expires)
842{
1c3cc116
SAS
843 expires = apply_slack(timer, expires);
844
1da177e4
LT
845 /*
846 * This is a common optimization triggered by the
847 * networking code - if the timer is re-modified
848 * to be the same thing then just return:
849 */
4841158b 850 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
851 return 1;
852
597d0275 853 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 854}
1da177e4
LT
855EXPORT_SYMBOL(mod_timer);
856
597d0275
AB
857/**
858 * mod_timer_pinned - modify a timer's timeout
859 * @timer: the timer to be modified
860 * @expires: new timeout in jiffies
861 *
862 * mod_timer_pinned() is a way to update the expire field of an
863 * active timer (if the timer is inactive it will be activated)
864 * and not allow the timer to be migrated to a different CPU.
865 *
866 * mod_timer_pinned(timer, expires) is equivalent to:
867 *
868 * del_timer(timer); timer->expires = expires; add_timer(timer);
869 */
870int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
871{
872 if (timer->expires == expires && timer_pending(timer))
873 return 1;
874
875 return __mod_timer(timer, expires, false, TIMER_PINNED);
876}
877EXPORT_SYMBOL(mod_timer_pinned);
878
74019224
IM
879/**
880 * add_timer - start a timer
881 * @timer: the timer to be added
882 *
883 * The kernel will do a ->function(->data) callback from the
884 * timer interrupt at the ->expires point in the future. The
885 * current time is 'jiffies'.
886 *
887 * The timer's ->expires, ->function (and if the handler uses it, ->data)
888 * fields must be set prior calling this function.
889 *
890 * Timers with an ->expires field in the past will be executed in the next
891 * timer tick.
892 */
893void add_timer(struct timer_list *timer)
894{
895 BUG_ON(timer_pending(timer));
896 mod_timer(timer, timer->expires);
897}
898EXPORT_SYMBOL(add_timer);
899
900/**
901 * add_timer_on - start a timer on a particular CPU
902 * @timer: the timer to be added
903 * @cpu: the CPU to start it on
904 *
905 * This is not very scalable on SMP. Double adds are not possible.
906 */
907void add_timer_on(struct timer_list *timer, int cpu)
908{
909 struct tvec_base *base = per_cpu(tvec_bases, cpu);
910 unsigned long flags;
911
912 timer_stats_timer_set_start_info(timer);
913 BUG_ON(timer_pending(timer) || !timer->function);
914 spin_lock_irqsave(&base->lock, flags);
915 timer_set_base(timer, base);
2b022e3d 916 debug_activate(timer, timer->expires);
97fd9ed4
MS
917 if (time_before(timer->expires, base->next_timer) &&
918 !tbase_get_deferrable(timer->base))
919 base->next_timer = timer->expires;
74019224
IM
920 internal_add_timer(base, timer);
921 /*
922 * Check whether the other CPU is idle and needs to be
923 * triggered to reevaluate the timer wheel when nohz is
924 * active. We are protected against the other CPU fiddling
925 * with the timer by holding the timer base lock. This also
926 * makes sure that a CPU on the way to idle can not evaluate
927 * the timer wheel.
928 */
929 wake_up_idle_cpu(cpu);
930 spin_unlock_irqrestore(&base->lock, flags);
931}
a9862e05 932EXPORT_SYMBOL_GPL(add_timer_on);
74019224 933
2aae4a10 934/**
1da177e4
LT
935 * del_timer - deactive a timer.
936 * @timer: the timer to be deactivated
937 *
938 * del_timer() deactivates a timer - this works on both active and inactive
939 * timers.
940 *
941 * The function returns whether it has deactivated a pending timer or not.
942 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
943 * active timer returns 1.)
944 */
945int del_timer(struct timer_list *timer)
946{
a6fa8e5a 947 struct tvec_base *base;
1da177e4 948 unsigned long flags;
55c888d6 949 int ret = 0;
1da177e4 950
dc4218bd
CC
951 debug_assert_init(timer);
952
82f67cd9 953 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
954 if (timer_pending(timer)) {
955 base = lock_timer_base(timer, &flags);
956 if (timer_pending(timer)) {
957 detach_timer(timer, 1);
97fd9ed4
MS
958 if (timer->expires == base->next_timer &&
959 !tbase_get_deferrable(timer->base))
960 base->next_timer = base->timer_jiffies;
55c888d6
ON
961 ret = 1;
962 }
1da177e4 963 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 964 }
1da177e4 965
55c888d6 966 return ret;
1da177e4 967}
1da177e4
LT
968EXPORT_SYMBOL(del_timer);
969
2aae4a10
REB
970/**
971 * try_to_del_timer_sync - Try to deactivate a timer
972 * @timer: timer do del
973 *
fd450b73
ON
974 * This function tries to deactivate a timer. Upon successful (ret >= 0)
975 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
976 */
977int try_to_del_timer_sync(struct timer_list *timer)
978{
a6fa8e5a 979 struct tvec_base *base;
fd450b73
ON
980 unsigned long flags;
981 int ret = -1;
982
dc4218bd
CC
983 debug_assert_init(timer);
984
fd450b73
ON
985 base = lock_timer_base(timer, &flags);
986
987 if (base->running_timer == timer)
988 goto out;
989
829b6c1e 990 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
991 ret = 0;
992 if (timer_pending(timer)) {
993 detach_timer(timer, 1);
97fd9ed4
MS
994 if (timer->expires == base->next_timer &&
995 !tbase_get_deferrable(timer->base))
996 base->next_timer = base->timer_jiffies;
fd450b73
ON
997 ret = 1;
998 }
999out:
1000 spin_unlock_irqrestore(&base->lock, flags);
1001
1002 return ret;
1003}
e19dff1f
DH
1004EXPORT_SYMBOL(try_to_del_timer_sync);
1005
6f1bc451 1006#ifdef CONFIG_SMP
2aae4a10 1007/**
1da177e4
LT
1008 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1009 * @timer: the timer to be deactivated
1010 *
1011 * This function only differs from del_timer() on SMP: besides deactivating
1012 * the timer it also makes sure the handler has finished executing on other
1013 * CPUs.
1014 *
72fd4a35 1015 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1016 * otherwise this function is meaningless. It must not be called from
7ff20792 1017 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
1018 * completion of the timer's handler. The timer's handler must not call
1019 * add_timer_on(). Upon exit the timer is not queued and the handler is
1020 * not running on any CPU.
1da177e4 1021 *
48228f7b
SR
1022 * Note: You must not hold locks that are held in interrupt context
1023 * while calling this function. Even if the lock has nothing to do
1024 * with the timer in question. Here's why:
1025 *
1026 * CPU0 CPU1
1027 * ---- ----
1028 * <SOFTIRQ>
1029 * call_timer_fn();
1030 * base->running_timer = mytimer;
1031 * spin_lock_irq(somelock);
1032 * <IRQ>
1033 * spin_lock(somelock);
1034 * del_timer_sync(mytimer);
1035 * while (base->running_timer == mytimer);
1036 *
1037 * Now del_timer_sync() will never return and never release somelock.
1038 * The interrupt on the other CPU is waiting to grab somelock but
1039 * it has interrupted the softirq that CPU0 is waiting to finish.
1040 *
1da177e4 1041 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1042 */
1043int del_timer_sync(struct timer_list *timer)
1044{
6f2b9b9a 1045#ifdef CONFIG_LOCKDEP
f266a511
PZ
1046 unsigned long flags;
1047
48228f7b
SR
1048 /*
1049 * If lockdep gives a backtrace here, please reference
1050 * the synchronization rules above.
1051 */
7ff20792 1052 local_irq_save(flags);
6f2b9b9a
JB
1053 lock_map_acquire(&timer->lockdep_map);
1054 lock_map_release(&timer->lockdep_map);
7ff20792 1055 local_irq_restore(flags);
6f2b9b9a 1056#endif
466bd303
YZ
1057 /*
1058 * don't use it in hardirq context, because it
1059 * could lead to deadlock.
1060 */
1061 WARN_ON(in_irq());
fd450b73
ON
1062 for (;;) {
1063 int ret = try_to_del_timer_sync(timer);
1064 if (ret >= 0)
1065 return ret;
a0009652 1066 cpu_relax();
fd450b73 1067 }
1da177e4 1068}
55c888d6 1069EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1070#endif
1071
a6fa8e5a 1072static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1073{
1074 /* cascade all the timers from tv up one level */
3439dd86
P
1075 struct timer_list *timer, *tmp;
1076 struct list_head tv_list;
1077
1078 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1079
1da177e4 1080 /*
3439dd86
P
1081 * We are removing _all_ timers from the list, so we
1082 * don't have to detach them individually.
1da177e4 1083 */
3439dd86 1084 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1085 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1086 internal_add_timer(base, timer);
1da177e4 1087 }
1da177e4
LT
1088
1089 return index;
1090}
1091
576da126
TG
1092static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1093 unsigned long data)
1094{
1095 int preempt_count = preempt_count();
1096
1097#ifdef CONFIG_LOCKDEP
1098 /*
1099 * It is permissible to free the timer from inside the
1100 * function that is called from it, this we need to take into
1101 * account for lockdep too. To avoid bogus "held lock freed"
1102 * warnings as well as problems when looking into
1103 * timer->lockdep_map, make a copy and use that here.
1104 */
1105 struct lockdep_map lockdep_map = timer->lockdep_map;
1106#endif
1107 /*
1108 * Couple the lock chain with the lock chain at
1109 * del_timer_sync() by acquiring the lock_map around the fn()
1110 * call here and in del_timer_sync().
1111 */
1112 lock_map_acquire(&lockdep_map);
1113
1114 trace_timer_expire_entry(timer);
1115 fn(data);
1116 trace_timer_expire_exit(timer);
1117
1118 lock_map_release(&lockdep_map);
1119
1120 if (preempt_count != preempt_count()) {
802702e0
TG
1121 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1122 fn, preempt_count, preempt_count());
1123 /*
1124 * Restore the preempt count. That gives us a decent
1125 * chance to survive and extract information. If the
1126 * callback kept a lock held, bad luck, but not worse
1127 * than the BUG() we had.
1128 */
1129 preempt_count() = preempt_count;
576da126
TG
1130 }
1131}
1132
2aae4a10
REB
1133#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1134
1135/**
1da177e4
LT
1136 * __run_timers - run all expired timers (if any) on this CPU.
1137 * @base: the timer vector to be processed.
1138 *
1139 * This function cascades all vectors and executes all expired timer
1140 * vectors.
1141 */
a6fa8e5a 1142static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1143{
1144 struct timer_list *timer;
1145
3691c519 1146 spin_lock_irq(&base->lock);
1da177e4 1147 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1148 struct list_head work_list;
1da177e4 1149 struct list_head *head = &work_list;
6819457d 1150 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1151
1da177e4
LT
1152 /*
1153 * Cascade timers:
1154 */
1155 if (!index &&
1156 (!cascade(base, &base->tv2, INDEX(0))) &&
1157 (!cascade(base, &base->tv3, INDEX(1))) &&
1158 !cascade(base, &base->tv4, INDEX(2)))
1159 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1160 ++base->timer_jiffies;
1161 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1162 while (!list_empty(head)) {
1da177e4
LT
1163 void (*fn)(unsigned long);
1164 unsigned long data;
1165
b5e61818 1166 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1167 fn = timer->function;
1168 data = timer->data;
1da177e4 1169
82f67cd9
IM
1170 timer_stats_account_timer(timer);
1171
6f1bc451 1172 base->running_timer = timer;
55c888d6 1173 detach_timer(timer, 1);
6f2b9b9a 1174
3691c519 1175 spin_unlock_irq(&base->lock);
576da126 1176 call_timer_fn(timer, fn, data);
3691c519 1177 spin_lock_irq(&base->lock);
1da177e4
LT
1178 }
1179 }
6f1bc451 1180 base->running_timer = NULL;
3691c519 1181 spin_unlock_irq(&base->lock);
1da177e4
LT
1182}
1183
ee9c5785 1184#ifdef CONFIG_NO_HZ
1da177e4
LT
1185/*
1186 * Find out when the next timer event is due to happen. This
90cba64a
RD
1187 * is used on S/390 to stop all activity when a CPU is idle.
1188 * This function needs to be called with interrupts disabled.
1da177e4 1189 */
a6fa8e5a 1190static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1191{
1cfd6849 1192 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1193 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1194 int index, slot, array, found = 0;
1da177e4 1195 struct timer_list *nte;
a6fa8e5a 1196 struct tvec *varray[4];
1da177e4
LT
1197
1198 /* Look for timer events in tv1. */
1cfd6849 1199 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1200 do {
1cfd6849 1201 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1202 if (tbase_get_deferrable(nte->base))
1203 continue;
6e453a67 1204
1cfd6849 1205 found = 1;
1da177e4 1206 expires = nte->expires;
1cfd6849
TG
1207 /* Look at the cascade bucket(s)? */
1208 if (!index || slot < index)
1209 goto cascade;
1210 return expires;
1da177e4 1211 }
1cfd6849
TG
1212 slot = (slot + 1) & TVR_MASK;
1213 } while (slot != index);
1214
1215cascade:
1216 /* Calculate the next cascade event */
1217 if (index)
1218 timer_jiffies += TVR_SIZE - index;
1219 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1220
1221 /* Check tv2-tv5. */
1222 varray[0] = &base->tv2;
1223 varray[1] = &base->tv3;
1224 varray[2] = &base->tv4;
1225 varray[3] = &base->tv5;
1cfd6849
TG
1226
1227 for (array = 0; array < 4; array++) {
a6fa8e5a 1228 struct tvec *varp = varray[array];
1cfd6849
TG
1229
1230 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1231 do {
1cfd6849 1232 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1233 if (tbase_get_deferrable(nte->base))
1234 continue;
1235
1cfd6849 1236 found = 1;
1da177e4
LT
1237 if (time_before(nte->expires, expires))
1238 expires = nte->expires;
1cfd6849
TG
1239 }
1240 /*
1241 * Do we still search for the first timer or are
1242 * we looking up the cascade buckets ?
1243 */
1244 if (found) {
1245 /* Look at the cascade bucket(s)? */
1246 if (!index || slot < index)
1247 break;
1248 return expires;
1249 }
1250 slot = (slot + 1) & TVN_MASK;
1251 } while (slot != index);
1252
1253 if (index)
1254 timer_jiffies += TVN_SIZE - index;
1255 timer_jiffies >>= TVN_BITS;
1da177e4 1256 }
1cfd6849
TG
1257 return expires;
1258}
69239749 1259
1cfd6849
TG
1260/*
1261 * Check, if the next hrtimer event is before the next timer wheel
1262 * event:
1263 */
1264static unsigned long cmp_next_hrtimer_event(unsigned long now,
1265 unsigned long expires)
1266{
1267 ktime_t hr_delta = hrtimer_get_next_event();
1268 struct timespec tsdelta;
9501b6cf 1269 unsigned long delta;
1cfd6849
TG
1270
1271 if (hr_delta.tv64 == KTIME_MAX)
1272 return expires;
0662b713 1273
9501b6cf
TG
1274 /*
1275 * Expired timer available, let it expire in the next tick
1276 */
1277 if (hr_delta.tv64 <= 0)
1278 return now + 1;
69239749 1279
1cfd6849 1280 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1281 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1282
1283 /*
1284 * Limit the delta to the max value, which is checked in
1285 * tick_nohz_stop_sched_tick():
1286 */
1287 if (delta > NEXT_TIMER_MAX_DELTA)
1288 delta = NEXT_TIMER_MAX_DELTA;
1289
9501b6cf
TG
1290 /*
1291 * Take rounding errors in to account and make sure, that it
1292 * expires in the next tick. Otherwise we go into an endless
1293 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1294 * the timer softirq
1295 */
1296 if (delta < 1)
1297 delta = 1;
1298 now += delta;
1cfd6849
TG
1299 if (time_before(now, expires))
1300 return now;
1da177e4
LT
1301 return expires;
1302}
1cfd6849
TG
1303
1304/**
8dce39c2 1305 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1306 * @now: current time (in jiffies)
1cfd6849 1307 */
fd064b9b 1308unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1309{
7496351a 1310 struct tvec_base *base = __this_cpu_read(tvec_bases);
fd064b9b 1311 unsigned long expires;
1cfd6849 1312
dbd87b5a
HC
1313 /*
1314 * Pretend that there is no timer pending if the cpu is offline.
1315 * Possible pending timers will be migrated later to an active cpu.
1316 */
1317 if (cpu_is_offline(smp_processor_id()))
1318 return now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1319 spin_lock(&base->lock);
97fd9ed4
MS
1320 if (time_before_eq(base->next_timer, base->timer_jiffies))
1321 base->next_timer = __next_timer_interrupt(base);
1322 expires = base->next_timer;
1cfd6849
TG
1323 spin_unlock(&base->lock);
1324
1325 if (time_before_eq(expires, now))
1326 return now;
1327
1328 return cmp_next_hrtimer_event(now, expires);
1329}
1da177e4
LT
1330#endif
1331
1da177e4 1332/*
5b4db0c2 1333 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1334 * process. user_tick is 1 if the tick is user time, 0 for system.
1335 */
1336void update_process_times(int user_tick)
1337{
1338 struct task_struct *p = current;
1339 int cpu = smp_processor_id();
1340
1341 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1342 account_process_tick(p, user_tick);
1da177e4 1343 run_local_timers();
a157229c 1344 rcu_check_callbacks(cpu, user_tick);
b845b517 1345 printk_tick();
e360adbe
PZ
1346#ifdef CONFIG_IRQ_WORK
1347 if (in_irq())
1348 irq_work_run();
1349#endif
1da177e4 1350 scheduler_tick();
6819457d 1351 run_posix_cpu_timers(p);
1da177e4
LT
1352}
1353
1da177e4
LT
1354/*
1355 * This function runs timers and the timer-tq in bottom half context.
1356 */
1357static void run_timer_softirq(struct softirq_action *h)
1358{
7496351a 1359 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1360
d3d74453 1361 hrtimer_run_pending();
82f67cd9 1362
1da177e4
LT
1363 if (time_after_eq(jiffies, base->timer_jiffies))
1364 __run_timers(base);
1365}
1366
1367/*
1368 * Called by the local, per-CPU timer interrupt on SMP.
1369 */
1370void run_local_timers(void)
1371{
d3d74453 1372 hrtimer_run_queues();
1da177e4
LT
1373 raise_softirq(TIMER_SOFTIRQ);
1374}
1375
1da177e4
LT
1376#ifdef __ARCH_WANT_SYS_ALARM
1377
1378/*
1379 * For backwards compatibility? This can be done in libc so Alpha
1380 * and all newer ports shouldn't need it.
1381 */
58fd3aa2 1382SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1383{
c08b8a49 1384 return alarm_setitimer(seconds);
1da177e4
LT
1385}
1386
1387#endif
1388
1389#ifndef __alpha__
1390
1391/*
1392 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1393 * should be moved into arch/i386 instead?
1394 */
1395
1396/**
1397 * sys_getpid - return the thread group id of the current process
1398 *
1399 * Note, despite the name, this returns the tgid not the pid. The tgid and
1400 * the pid are identical unless CLONE_THREAD was specified on clone() in
1401 * which case the tgid is the same in all threads of the same group.
1402 *
1403 * This is SMP safe as current->tgid does not change.
1404 */
58fd3aa2 1405SYSCALL_DEFINE0(getpid)
1da177e4 1406{
b488893a 1407 return task_tgid_vnr(current);
1da177e4
LT
1408}
1409
1410/*
6997a6fa
KK
1411 * Accessing ->real_parent is not SMP-safe, it could
1412 * change from under us. However, we can use a stale
1413 * value of ->real_parent under rcu_read_lock(), see
1414 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1415 */
dbf040d9 1416SYSCALL_DEFINE0(getppid)
1da177e4
LT
1417{
1418 int pid;
1da177e4 1419
6997a6fa 1420 rcu_read_lock();
031af165 1421 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
6997a6fa 1422 rcu_read_unlock();
1da177e4 1423
1da177e4
LT
1424 return pid;
1425}
1426
dbf040d9 1427SYSCALL_DEFINE0(getuid)
1da177e4
LT
1428{
1429 /* Only we change this so SMP safe */
76aac0e9 1430 return current_uid();
1da177e4
LT
1431}
1432
dbf040d9 1433SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1434{
1435 /* Only we change this so SMP safe */
76aac0e9 1436 return current_euid();
1da177e4
LT
1437}
1438
dbf040d9 1439SYSCALL_DEFINE0(getgid)
1da177e4
LT
1440{
1441 /* Only we change this so SMP safe */
76aac0e9 1442 return current_gid();
1da177e4
LT
1443}
1444
dbf040d9 1445SYSCALL_DEFINE0(getegid)
1da177e4
LT
1446{
1447 /* Only we change this so SMP safe */
76aac0e9 1448 return current_egid();
1da177e4
LT
1449}
1450
1451#endif
1452
1453static void process_timeout(unsigned long __data)
1454{
36c8b586 1455 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1456}
1457
1458/**
1459 * schedule_timeout - sleep until timeout
1460 * @timeout: timeout value in jiffies
1461 *
1462 * Make the current task sleep until @timeout jiffies have
1463 * elapsed. The routine will return immediately unless
1464 * the current task state has been set (see set_current_state()).
1465 *
1466 * You can set the task state as follows -
1467 *
1468 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1469 * pass before the routine returns. The routine will return 0
1470 *
1471 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1472 * delivered to the current task. In this case the remaining time
1473 * in jiffies will be returned, or 0 if the timer expired in time
1474 *
1475 * The current task state is guaranteed to be TASK_RUNNING when this
1476 * routine returns.
1477 *
1478 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1479 * the CPU away without a bound on the timeout. In this case the return
1480 * value will be %MAX_SCHEDULE_TIMEOUT.
1481 *
1482 * In all cases the return value is guaranteed to be non-negative.
1483 */
7ad5b3a5 1484signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1485{
1486 struct timer_list timer;
1487 unsigned long expire;
1488
1489 switch (timeout)
1490 {
1491 case MAX_SCHEDULE_TIMEOUT:
1492 /*
1493 * These two special cases are useful to be comfortable
1494 * in the caller. Nothing more. We could take
1495 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1496 * but I' d like to return a valid offset (>=0) to allow
1497 * the caller to do everything it want with the retval.
1498 */
1499 schedule();
1500 goto out;
1501 default:
1502 /*
1503 * Another bit of PARANOID. Note that the retval will be
1504 * 0 since no piece of kernel is supposed to do a check
1505 * for a negative retval of schedule_timeout() (since it
1506 * should never happens anyway). You just have the printk()
1507 * that will tell you if something is gone wrong and where.
1508 */
5b149bcc 1509 if (timeout < 0) {
1da177e4 1510 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1511 "value %lx\n", timeout);
1512 dump_stack();
1da177e4
LT
1513 current->state = TASK_RUNNING;
1514 goto out;
1515 }
1516 }
1517
1518 expire = timeout + jiffies;
1519
c6f3a97f 1520 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1521 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1522 schedule();
1523 del_singleshot_timer_sync(&timer);
1524
c6f3a97f
TG
1525 /* Remove the timer from the object tracker */
1526 destroy_timer_on_stack(&timer);
1527
1da177e4
LT
1528 timeout = expire - jiffies;
1529
1530 out:
1531 return timeout < 0 ? 0 : timeout;
1532}
1da177e4
LT
1533EXPORT_SYMBOL(schedule_timeout);
1534
8a1c1757
AM
1535/*
1536 * We can use __set_current_state() here because schedule_timeout() calls
1537 * schedule() unconditionally.
1538 */
64ed93a2
NA
1539signed long __sched schedule_timeout_interruptible(signed long timeout)
1540{
a5a0d52c
AM
1541 __set_current_state(TASK_INTERRUPTIBLE);
1542 return schedule_timeout(timeout);
64ed93a2
NA
1543}
1544EXPORT_SYMBOL(schedule_timeout_interruptible);
1545
294d5cc2
MW
1546signed long __sched schedule_timeout_killable(signed long timeout)
1547{
1548 __set_current_state(TASK_KILLABLE);
1549 return schedule_timeout(timeout);
1550}
1551EXPORT_SYMBOL(schedule_timeout_killable);
1552
64ed93a2
NA
1553signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1554{
a5a0d52c
AM
1555 __set_current_state(TASK_UNINTERRUPTIBLE);
1556 return schedule_timeout(timeout);
64ed93a2
NA
1557}
1558EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1559
1da177e4 1560/* Thread ID - the internal kernel "pid" */
58fd3aa2 1561SYSCALL_DEFINE0(gettid)
1da177e4 1562{
b488893a 1563 return task_pid_vnr(current);
1da177e4
LT
1564}
1565
2aae4a10 1566/**
d4d23add 1567 * do_sysinfo - fill in sysinfo struct
2aae4a10 1568 * @info: pointer to buffer to fill
6819457d 1569 */
d4d23add 1570int do_sysinfo(struct sysinfo *info)
1da177e4 1571{
1da177e4
LT
1572 unsigned long mem_total, sav_total;
1573 unsigned int mem_unit, bitcount;
2d02494f 1574 struct timespec tp;
1da177e4 1575
d4d23add 1576 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1577
2d02494f
TG
1578 ktime_get_ts(&tp);
1579 monotonic_to_bootbased(&tp);
1580 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1581
2d02494f 1582 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1583
2d02494f 1584 info->procs = nr_threads;
1da177e4 1585
d4d23add
KM
1586 si_meminfo(info);
1587 si_swapinfo(info);
1da177e4
LT
1588
1589 /*
1590 * If the sum of all the available memory (i.e. ram + swap)
1591 * is less than can be stored in a 32 bit unsigned long then
1592 * we can be binary compatible with 2.2.x kernels. If not,
1593 * well, in that case 2.2.x was broken anyways...
1594 *
1595 * -Erik Andersen <andersee@debian.org>
1596 */
1597
d4d23add
KM
1598 mem_total = info->totalram + info->totalswap;
1599 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1600 goto out;
1601 bitcount = 0;
d4d23add 1602 mem_unit = info->mem_unit;
1da177e4
LT
1603 while (mem_unit > 1) {
1604 bitcount++;
1605 mem_unit >>= 1;
1606 sav_total = mem_total;
1607 mem_total <<= 1;
1608 if (mem_total < sav_total)
1609 goto out;
1610 }
1611
1612 /*
1613 * If mem_total did not overflow, multiply all memory values by
d4d23add 1614 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1615 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1616 * kernels...
1617 */
1618
d4d23add
KM
1619 info->mem_unit = 1;
1620 info->totalram <<= bitcount;
1621 info->freeram <<= bitcount;
1622 info->sharedram <<= bitcount;
1623 info->bufferram <<= bitcount;
1624 info->totalswap <<= bitcount;
1625 info->freeswap <<= bitcount;
1626 info->totalhigh <<= bitcount;
1627 info->freehigh <<= bitcount;
1628
1629out:
1630 return 0;
1631}
1632
1e7bfb21 1633SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1634{
1635 struct sysinfo val;
1636
1637 do_sysinfo(&val);
1da177e4 1638
1da177e4
LT
1639 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1640 return -EFAULT;
1641
1642 return 0;
1643}
1644
b4be6258 1645static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1646{
1647 int j;
a6fa8e5a 1648 struct tvec_base *base;
b4be6258 1649 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1650
ba6edfcd 1651 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1652 static char boot_done;
1653
a4a6198b 1654 if (boot_done) {
ba6edfcd
AM
1655 /*
1656 * The APs use this path later in boot
1657 */
94f6030c
CL
1658 base = kmalloc_node(sizeof(*base),
1659 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1660 cpu_to_node(cpu));
1661 if (!base)
1662 return -ENOMEM;
6e453a67
VP
1663
1664 /* Make sure that tvec_base is 2 byte aligned */
1665 if (tbase_get_deferrable(base)) {
1666 WARN_ON(1);
1667 kfree(base);
1668 return -ENOMEM;
1669 }
ba6edfcd 1670 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1671 } else {
ba6edfcd
AM
1672 /*
1673 * This is for the boot CPU - we use compile-time
1674 * static initialisation because per-cpu memory isn't
1675 * ready yet and because the memory allocators are not
1676 * initialised either.
1677 */
a4a6198b 1678 boot_done = 1;
ba6edfcd 1679 base = &boot_tvec_bases;
a4a6198b 1680 }
ba6edfcd
AM
1681 tvec_base_done[cpu] = 1;
1682 } else {
1683 base = per_cpu(tvec_bases, cpu);
a4a6198b 1684 }
ba6edfcd 1685
3691c519 1686 spin_lock_init(&base->lock);
d730e882 1687
1da177e4
LT
1688 for (j = 0; j < TVN_SIZE; j++) {
1689 INIT_LIST_HEAD(base->tv5.vec + j);
1690 INIT_LIST_HEAD(base->tv4.vec + j);
1691 INIT_LIST_HEAD(base->tv3.vec + j);
1692 INIT_LIST_HEAD(base->tv2.vec + j);
1693 }
1694 for (j = 0; j < TVR_SIZE; j++)
1695 INIT_LIST_HEAD(base->tv1.vec + j);
1696
1697 base->timer_jiffies = jiffies;
97fd9ed4 1698 base->next_timer = base->timer_jiffies;
a4a6198b 1699 return 0;
1da177e4
LT
1700}
1701
1702#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1703static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1704{
1705 struct timer_list *timer;
1706
1707 while (!list_empty(head)) {
b5e61818 1708 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1709 detach_timer(timer, 0);
6e453a67 1710 timer_set_base(timer, new_base);
97fd9ed4
MS
1711 if (time_before(timer->expires, new_base->next_timer) &&
1712 !tbase_get_deferrable(timer->base))
1713 new_base->next_timer = timer->expires;
1da177e4 1714 internal_add_timer(new_base, timer);
1da177e4 1715 }
1da177e4
LT
1716}
1717
48ccf3da 1718static void __cpuinit migrate_timers(int cpu)
1da177e4 1719{
a6fa8e5a
PM
1720 struct tvec_base *old_base;
1721 struct tvec_base *new_base;
1da177e4
LT
1722 int i;
1723
1724 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1725 old_base = per_cpu(tvec_bases, cpu);
1726 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1727 /*
1728 * The caller is globally serialized and nobody else
1729 * takes two locks at once, deadlock is not possible.
1730 */
1731 spin_lock_irq(&new_base->lock);
0d180406 1732 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1733
1734 BUG_ON(old_base->running_timer);
1da177e4 1735
1da177e4 1736 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1737 migrate_timer_list(new_base, old_base->tv1.vec + i);
1738 for (i = 0; i < TVN_SIZE; i++) {
1739 migrate_timer_list(new_base, old_base->tv2.vec + i);
1740 migrate_timer_list(new_base, old_base->tv3.vec + i);
1741 migrate_timer_list(new_base, old_base->tv4.vec + i);
1742 migrate_timer_list(new_base, old_base->tv5.vec + i);
1743 }
1744
0d180406 1745 spin_unlock(&old_base->lock);
d82f0b0f 1746 spin_unlock_irq(&new_base->lock);
1da177e4 1747 put_cpu_var(tvec_bases);
1da177e4
LT
1748}
1749#endif /* CONFIG_HOTPLUG_CPU */
1750
8c78f307 1751static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1752 unsigned long action, void *hcpu)
1753{
1754 long cpu = (long)hcpu;
80b5184c
AM
1755 int err;
1756
1da177e4
LT
1757 switch(action) {
1758 case CPU_UP_PREPARE:
8bb78442 1759 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1760 err = init_timers_cpu(cpu);
1761 if (err < 0)
1762 return notifier_from_errno(err);
1da177e4
LT
1763 break;
1764#ifdef CONFIG_HOTPLUG_CPU
1765 case CPU_DEAD:
8bb78442 1766 case CPU_DEAD_FROZEN:
1da177e4
LT
1767 migrate_timers(cpu);
1768 break;
1769#endif
1770 default:
1771 break;
1772 }
1773 return NOTIFY_OK;
1774}
1775
8c78f307 1776static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1777 .notifier_call = timer_cpu_notify,
1778};
1779
1780
1781void __init init_timers(void)
1782{
07dccf33 1783 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1784 (void *)(long)smp_processor_id());
07dccf33 1785
82f67cd9
IM
1786 init_timer_stats();
1787
9e506f7a 1788 BUG_ON(err != NOTIFY_OK);
1da177e4 1789 register_cpu_notifier(&timers_nb);
962cf36c 1790 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1791}
1792
1da177e4
LT
1793/**
1794 * msleep - sleep safely even with waitqueue interruptions
1795 * @msecs: Time in milliseconds to sleep for
1796 */
1797void msleep(unsigned int msecs)
1798{
1799 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1800
75bcc8c5
NA
1801 while (timeout)
1802 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1803}
1804
1805EXPORT_SYMBOL(msleep);
1806
1807/**
96ec3efd 1808 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1809 * @msecs: Time in milliseconds to sleep for
1810 */
1811unsigned long msleep_interruptible(unsigned int msecs)
1812{
1813 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1814
75bcc8c5
NA
1815 while (timeout && !signal_pending(current))
1816 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1817 return jiffies_to_msecs(timeout);
1818}
1819
1820EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1821
1822static int __sched do_usleep_range(unsigned long min, unsigned long max)
1823{
1824 ktime_t kmin;
1825 unsigned long delta;
1826
1827 kmin = ktime_set(0, min * NSEC_PER_USEC);
1828 delta = (max - min) * NSEC_PER_USEC;
1829 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1830}
1831
1832/**
1833 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1834 * @min: Minimum time in usecs to sleep
1835 * @max: Maximum time in usecs to sleep
1836 */
1837void usleep_range(unsigned long min, unsigned long max)
1838{
1839 __set_current_state(TASK_UNINTERRUPTIBLE);
1840 do_usleep_range(min, max);
1841}
1842EXPORT_SYMBOL(usleep_range);
This page took 0.705772 seconds and 5 git commands to generate.