workqueue: remove @wakeup from worker_set_flags()
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
b5927605 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
133 *
134 * MD: wq_mayday_lock protected.
1da177e4 135 */
1da177e4 136
2eaebdb3 137/* struct worker is defined in workqueue_internal.h */
c34056a3 138
bd7bdd43 139struct worker_pool {
d565ed63 140 spinlock_t lock; /* the pool lock */
d84ff051 141 int cpu; /* I: the associated cpu */
f3f90ad4 142 int node; /* I: the associated node ID */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
92f9c5c4
LJ
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
60f5a4bc 164 struct completion *detach_completion; /* all workers detached */
e19e397a 165
7cda9aae 166 struct ida worker_ida; /* worker IDs for task name */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
8a2b7538
TH
307/* I: attributes used when instantiating ordered pools on demand */
308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
d320c038 310struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 311EXPORT_SYMBOL(system_wq);
044c782c 312struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 313EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 314struct workqueue_struct *system_long_wq __read_mostly;
d320c038 315EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 316struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 317EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 318struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 319EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
320struct workqueue_struct *system_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 324
7d19c5ce
TH
325static int worker_thread(void *__worker);
326static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
97bd2347
TH
329#define CREATE_TRACE_POINTS
330#include <trace/events/workqueue.h>
331
68e13a67 332#define assert_rcu_or_pool_mutex() \
5bcab335 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
5bcab335 336
b09f4fd3 337#define assert_rcu_or_wq_mutex(wq) \
76af4d93 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 339 lockdep_is_held(&wq->mutex), \
b09f4fd3 340 "sched RCU or wq->mutex should be held")
76af4d93 341
f02ae73a
TH
342#define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 345 (pool)++)
4ce62e9e 346
17116969
TH
347/**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
611c92a0 350 * @pi: integer used for iteration
fa1b54e6 351 *
68e13a67
LJ
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
17116969 358 */
611c92a0
TH
359#define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 362 else
17116969 363
822d8405
TH
364/**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
822d8405
TH
367 * @pool: worker_pool to iterate workers of
368 *
92f9c5c4 369 * This must be called with @pool->attach_mutex.
822d8405
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
da028469
LJ
374#define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
377 else
378
49e3cf44
TH
379/**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
76af4d93 383 *
b09f4fd3 384 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
49e3cf44
TH
390 */
391#define for_each_pwq(pwq, wq) \
76af4d93 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 394 else
f3421797 395
dc186ad7
TG
396#ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398static struct debug_obj_descr work_debug_descr;
399
99777288
SG
400static void *work_debug_hint(void *addr)
401{
402 return ((struct work_struct *) addr)->func;
403}
404
dc186ad7
TG
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409static int work_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int work_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
22df02bb 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454}
455
456/*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460static int work_fixup_free(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472}
473
474static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
99777288 476 .debug_hint = work_debug_hint,
dc186ad7
TG
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480};
481
482static inline void debug_work_activate(struct work_struct *work)
483{
484 debug_object_activate(work, &work_debug_descr);
485}
486
487static inline void debug_work_deactivate(struct work_struct *work)
488{
489 debug_object_deactivate(work, &work_debug_descr);
490}
491
492void __init_work(struct work_struct *work, int onstack)
493{
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(__init_work);
500
501void destroy_work_on_stack(struct work_struct *work)
502{
503 debug_object_free(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
ea2e64f2
TG
507void destroy_delayed_work_on_stack(struct delayed_work *work)
508{
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
dc186ad7
TG
514#else
515static inline void debug_work_activate(struct work_struct *work) { }
516static inline void debug_work_deactivate(struct work_struct *work) { }
517#endif
518
4e8b22bd
LB
519/**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
9daf9e67
TH
526static int worker_pool_assign_id(struct worker_pool *pool)
527{
528 int ret;
529
68e13a67 530 lockdep_assert_held(&wq_pool_mutex);
5bcab335 531
4e8b22bd
LB
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
229641a6 534 if (ret >= 0) {
e68035fb 535 pool->id = ret;
229641a6
TH
536 return 0;
537 }
fa1b54e6 538 return ret;
7c3eed5c
TH
539}
540
df2d5ae4
TH
541/**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
549 *
550 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
551 */
552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554{
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557}
558
73f53c4a
TH
559static unsigned int work_color_to_flags(int color)
560{
561 return color << WORK_STRUCT_COLOR_SHIFT;
562}
563
564static int get_work_color(struct work_struct *work)
565{
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568}
569
570static int work_next_color(int color)
571{
572 return (color + 1) % WORK_NR_COLORS;
573}
1da177e4 574
14441960 575/*
112202d9
TH
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 578 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 579 *
112202d9
TH
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
7a22ad75 584 *
112202d9 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 586 * corresponding to a work. Pool is available once the work has been
112202d9 587 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 588 * available only while the work item is queued.
7a22ad75 589 *
bbb68dfa
TH
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
14441960 594 */
7a22ad75
TH
595static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
365970a1 597{
6183c009 598 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
599 atomic_long_set(&work->data, data | flags | work_static(work));
600}
365970a1 601
112202d9 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
603 unsigned long extra_flags)
604{
112202d9
TH
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
607}
608
4468a00f
LJ
609static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611{
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614}
615
7c3eed5c
TH
616static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
7a22ad75 618{
23657bb1
TH
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
7c3eed5c 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 627}
f756d5e2 628
7a22ad75 629static void clear_work_data(struct work_struct *work)
1da177e4 630{
7c3eed5c
TH
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
633}
634
112202d9 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 636{
e120153d 637 unsigned long data = atomic_long_read(&work->data);
7a22ad75 638
112202d9 639 if (data & WORK_STRUCT_PWQ)
e120153d
TH
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
4d707b9f
ON
643}
644
7c3eed5c
TH
645/**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
68e13a67
LJ
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
d185af30
YB
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
659 */
660static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 663 int pool_id;
7a22ad75 664
68e13a67 665 assert_rcu_or_pool_mutex();
fa1b54e6 666
112202d9
TH
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
7c3eed5c 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 670
7c3eed5c
TH
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
673 return NULL;
674
fa1b54e6 675 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
676}
677
678/**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
d185af30 682 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685static int get_work_pool_id(struct work_struct *work)
686{
54d5b7d0
LJ
687 unsigned long data = atomic_long_read(&work->data);
688
112202d9
TH
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
54d5b7d0 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 692
54d5b7d0 693 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
694}
695
bbb68dfa
TH
696static void mark_work_canceling(struct work_struct *work)
697{
7c3eed5c 698 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 699
7c3eed5c
TH
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
702}
703
704static bool work_is_canceling(struct work_struct *work)
705{
706 unsigned long data = atomic_long_read(&work->data);
707
112202d9 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
709}
710
e22bee78 711/*
3270476a
TH
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 714 * they're being called with pool->lock held.
e22bee78
TH
715 */
716
63d95a91 717static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 718{
e19e397a 719 return !atomic_read(&pool->nr_running);
a848e3b6
ON
720}
721
4594bf15 722/*
e22bee78
TH
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
974271c4
TH
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
706026c2 727 * function will always return %true for unbound pools as long as the
974271c4 728 * worklist isn't empty.
4594bf15 729 */
63d95a91 730static bool need_more_worker(struct worker_pool *pool)
365970a1 731{
63d95a91 732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 733}
4594bf15 734
e22bee78 735/* Can I start working? Called from busy but !running workers. */
63d95a91 736static bool may_start_working(struct worker_pool *pool)
e22bee78 737{
63d95a91 738 return pool->nr_idle;
e22bee78
TH
739}
740
741/* Do I need to keep working? Called from currently running workers. */
63d95a91 742static bool keep_working(struct worker_pool *pool)
e22bee78 743{
e19e397a
TH
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
746}
747
748/* Do we need a new worker? Called from manager. */
63d95a91 749static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 750{
63d95a91 751 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 752}
365970a1 753
e22bee78 754/* Do we have too many workers and should some go away? */
63d95a91 755static bool too_many_workers(struct worker_pool *pool)
e22bee78 756{
34a06bd6 757 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
760
761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
762}
763
4d707b9f 764/*
e22bee78
TH
765 * Wake up functions.
766 */
767
1037de36
LJ
768/* Return the first idle worker. Safe with preemption disabled */
769static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 770{
63d95a91 771 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
772 return NULL;
773
63d95a91 774 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
775}
776
777/**
778 * wake_up_worker - wake up an idle worker
63d95a91 779 * @pool: worker pool to wake worker from
7e11629d 780 *
63d95a91 781 * Wake up the first idle worker of @pool.
7e11629d
TH
782 *
783 * CONTEXT:
d565ed63 784 * spin_lock_irq(pool->lock).
7e11629d 785 */
63d95a91 786static void wake_up_worker(struct worker_pool *pool)
7e11629d 787{
1037de36 788 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792}
793
d302f017 794/**
e22bee78
TH
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
d84ff051 805void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
806{
807 struct worker *worker = kthread_data(task);
808
36576000 809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 810 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 811 atomic_inc(&worker->pool->nr_running);
36576000 812 }
e22bee78
TH
813}
814
815/**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
d185af30 827 * Return:
e22bee78
TH
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
d84ff051 830struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
831{
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 833 struct worker_pool *pool;
e22bee78 834
111c225a
TH
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
2d64672e 840 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
841 return NULL;
842
111c225a 843 pool = worker->pool;
111c225a 844
e22bee78 845 /* this can only happen on the local cpu */
92b69f50 846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 847 return NULL;
e22bee78
TH
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
628c78e7
TH
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
d565ed63 857 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 858 * lock is safe.
e22bee78 859 */
e19e397a
TH
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
1037de36 862 to_wakeup = first_idle_worker(pool);
e22bee78
TH
863 return to_wakeup ? to_wakeup->task : NULL;
864}
865
866/**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 868 * @worker: self
d302f017 869 * @flags: flags to set
d302f017 870 *
228f1d00 871 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 872 *
cb444766 873 * CONTEXT:
d565ed63 874 * spin_lock_irq(pool->lock)
d302f017 875 */
228f1d00 876static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 877{
bd7bdd43 878 struct worker_pool *pool = worker->pool;
e22bee78 879
cb444766
TH
880 WARN_ON_ONCE(worker->task != current);
881
228f1d00 882 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
883 if ((flags & WORKER_NOT_RUNNING) &&
884 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 885 atomic_dec(&pool->nr_running);
e22bee78
TH
886 }
887
d302f017
TH
888 worker->flags |= flags;
889}
890
891/**
e22bee78 892 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 893 * @worker: self
d302f017
TH
894 * @flags: flags to clear
895 *
e22bee78 896 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 897 *
cb444766 898 * CONTEXT:
d565ed63 899 * spin_lock_irq(pool->lock)
d302f017
TH
900 */
901static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
902{
63d95a91 903 struct worker_pool *pool = worker->pool;
e22bee78
TH
904 unsigned int oflags = worker->flags;
905
cb444766
TH
906 WARN_ON_ONCE(worker->task != current);
907
d302f017 908 worker->flags &= ~flags;
e22bee78 909
42c025f3
TH
910 /*
911 * If transitioning out of NOT_RUNNING, increment nr_running. Note
912 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
913 * of multiple flags, not a single flag.
914 */
e22bee78
TH
915 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
916 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 917 atomic_inc(&pool->nr_running);
d302f017
TH
918}
919
8cca0eea
TH
920/**
921 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 922 * @pool: pool of interest
8cca0eea
TH
923 * @work: work to find worker for
924 *
c9e7cf27
TH
925 * Find a worker which is executing @work on @pool by searching
926 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
927 * to match, its current execution should match the address of @work and
928 * its work function. This is to avoid unwanted dependency between
929 * unrelated work executions through a work item being recycled while still
930 * being executed.
931 *
932 * This is a bit tricky. A work item may be freed once its execution
933 * starts and nothing prevents the freed area from being recycled for
934 * another work item. If the same work item address ends up being reused
935 * before the original execution finishes, workqueue will identify the
936 * recycled work item as currently executing and make it wait until the
937 * current execution finishes, introducing an unwanted dependency.
938 *
c5aa87bb
TH
939 * This function checks the work item address and work function to avoid
940 * false positives. Note that this isn't complete as one may construct a
941 * work function which can introduce dependency onto itself through a
942 * recycled work item. Well, if somebody wants to shoot oneself in the
943 * foot that badly, there's only so much we can do, and if such deadlock
944 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
945 *
946 * CONTEXT:
d565ed63 947 * spin_lock_irq(pool->lock).
8cca0eea 948 *
d185af30
YB
949 * Return:
950 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 951 * otherwise.
4d707b9f 952 */
c9e7cf27 953static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 954 struct work_struct *work)
4d707b9f 955{
42f8570f 956 struct worker *worker;
42f8570f 957
b67bfe0d 958 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
959 (unsigned long)work)
960 if (worker->current_work == work &&
961 worker->current_func == work->func)
42f8570f
SL
962 return worker;
963
964 return NULL;
4d707b9f
ON
965}
966
bf4ede01
TH
967/**
968 * move_linked_works - move linked works to a list
969 * @work: start of series of works to be scheduled
970 * @head: target list to append @work to
971 * @nextp: out paramter for nested worklist walking
972 *
973 * Schedule linked works starting from @work to @head. Work series to
974 * be scheduled starts at @work and includes any consecutive work with
975 * WORK_STRUCT_LINKED set in its predecessor.
976 *
977 * If @nextp is not NULL, it's updated to point to the next work of
978 * the last scheduled work. This allows move_linked_works() to be
979 * nested inside outer list_for_each_entry_safe().
980 *
981 * CONTEXT:
d565ed63 982 * spin_lock_irq(pool->lock).
bf4ede01
TH
983 */
984static void move_linked_works(struct work_struct *work, struct list_head *head,
985 struct work_struct **nextp)
986{
987 struct work_struct *n;
988
989 /*
990 * Linked worklist will always end before the end of the list,
991 * use NULL for list head.
992 */
993 list_for_each_entry_safe_from(work, n, NULL, entry) {
994 list_move_tail(&work->entry, head);
995 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
996 break;
997 }
998
999 /*
1000 * If we're already inside safe list traversal and have moved
1001 * multiple works to the scheduled queue, the next position
1002 * needs to be updated.
1003 */
1004 if (nextp)
1005 *nextp = n;
1006}
1007
8864b4e5
TH
1008/**
1009 * get_pwq - get an extra reference on the specified pool_workqueue
1010 * @pwq: pool_workqueue to get
1011 *
1012 * Obtain an extra reference on @pwq. The caller should guarantee that
1013 * @pwq has positive refcnt and be holding the matching pool->lock.
1014 */
1015static void get_pwq(struct pool_workqueue *pwq)
1016{
1017 lockdep_assert_held(&pwq->pool->lock);
1018 WARN_ON_ONCE(pwq->refcnt <= 0);
1019 pwq->refcnt++;
1020}
1021
1022/**
1023 * put_pwq - put a pool_workqueue reference
1024 * @pwq: pool_workqueue to put
1025 *
1026 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1027 * destruction. The caller should be holding the matching pool->lock.
1028 */
1029static void put_pwq(struct pool_workqueue *pwq)
1030{
1031 lockdep_assert_held(&pwq->pool->lock);
1032 if (likely(--pwq->refcnt))
1033 return;
1034 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1035 return;
1036 /*
1037 * @pwq can't be released under pool->lock, bounce to
1038 * pwq_unbound_release_workfn(). This never recurses on the same
1039 * pool->lock as this path is taken only for unbound workqueues and
1040 * the release work item is scheduled on a per-cpu workqueue. To
1041 * avoid lockdep warning, unbound pool->locks are given lockdep
1042 * subclass of 1 in get_unbound_pool().
1043 */
1044 schedule_work(&pwq->unbound_release_work);
1045}
1046
dce90d47
TH
1047/**
1048 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1049 * @pwq: pool_workqueue to put (can be %NULL)
1050 *
1051 * put_pwq() with locking. This function also allows %NULL @pwq.
1052 */
1053static void put_pwq_unlocked(struct pool_workqueue *pwq)
1054{
1055 if (pwq) {
1056 /*
1057 * As both pwqs and pools are sched-RCU protected, the
1058 * following lock operations are safe.
1059 */
1060 spin_lock_irq(&pwq->pool->lock);
1061 put_pwq(pwq);
1062 spin_unlock_irq(&pwq->pool->lock);
1063 }
1064}
1065
112202d9 1066static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1067{
112202d9 1068 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1069
1070 trace_workqueue_activate_work(work);
112202d9 1071 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1072 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1073 pwq->nr_active++;
bf4ede01
TH
1074}
1075
112202d9 1076static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1077{
112202d9 1078 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1079 struct work_struct, entry);
1080
112202d9 1081 pwq_activate_delayed_work(work);
3aa62497
LJ
1082}
1083
bf4ede01 1084/**
112202d9
TH
1085 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1086 * @pwq: pwq of interest
bf4ede01 1087 * @color: color of work which left the queue
bf4ede01
TH
1088 *
1089 * A work either has completed or is removed from pending queue,
112202d9 1090 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1091 *
1092 * CONTEXT:
d565ed63 1093 * spin_lock_irq(pool->lock).
bf4ede01 1094 */
112202d9 1095static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1096{
8864b4e5 1097 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1098 if (color == WORK_NO_COLOR)
8864b4e5 1099 goto out_put;
bf4ede01 1100
112202d9 1101 pwq->nr_in_flight[color]--;
bf4ede01 1102
112202d9
TH
1103 pwq->nr_active--;
1104 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1105 /* one down, submit a delayed one */
112202d9
TH
1106 if (pwq->nr_active < pwq->max_active)
1107 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1108 }
1109
1110 /* is flush in progress and are we at the flushing tip? */
112202d9 1111 if (likely(pwq->flush_color != color))
8864b4e5 1112 goto out_put;
bf4ede01
TH
1113
1114 /* are there still in-flight works? */
112202d9 1115 if (pwq->nr_in_flight[color])
8864b4e5 1116 goto out_put;
bf4ede01 1117
112202d9
TH
1118 /* this pwq is done, clear flush_color */
1119 pwq->flush_color = -1;
bf4ede01
TH
1120
1121 /*
112202d9 1122 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1123 * will handle the rest.
1124 */
112202d9
TH
1125 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1126 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1127out_put:
1128 put_pwq(pwq);
bf4ede01
TH
1129}
1130
36e227d2 1131/**
bbb68dfa 1132 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1133 * @work: work item to steal
1134 * @is_dwork: @work is a delayed_work
bbb68dfa 1135 * @flags: place to store irq state
36e227d2
TH
1136 *
1137 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1138 * stable state - idle, on timer or on worklist.
36e227d2 1139 *
d185af30 1140 * Return:
36e227d2
TH
1141 * 1 if @work was pending and we successfully stole PENDING
1142 * 0 if @work was idle and we claimed PENDING
1143 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1144 * -ENOENT if someone else is canceling @work, this state may persist
1145 * for arbitrarily long
36e227d2 1146 *
d185af30 1147 * Note:
bbb68dfa 1148 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1149 * interrupted while holding PENDING and @work off queue, irq must be
1150 * disabled on entry. This, combined with delayed_work->timer being
1151 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1152 *
1153 * On successful return, >= 0, irq is disabled and the caller is
1154 * responsible for releasing it using local_irq_restore(*@flags).
1155 *
e0aecdd8 1156 * This function is safe to call from any context including IRQ handler.
bf4ede01 1157 */
bbb68dfa
TH
1158static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1159 unsigned long *flags)
bf4ede01 1160{
d565ed63 1161 struct worker_pool *pool;
112202d9 1162 struct pool_workqueue *pwq;
bf4ede01 1163
bbb68dfa
TH
1164 local_irq_save(*flags);
1165
36e227d2
TH
1166 /* try to steal the timer if it exists */
1167 if (is_dwork) {
1168 struct delayed_work *dwork = to_delayed_work(work);
1169
e0aecdd8
TH
1170 /*
1171 * dwork->timer is irqsafe. If del_timer() fails, it's
1172 * guaranteed that the timer is not queued anywhere and not
1173 * running on the local CPU.
1174 */
36e227d2
TH
1175 if (likely(del_timer(&dwork->timer)))
1176 return 1;
1177 }
1178
1179 /* try to claim PENDING the normal way */
bf4ede01
TH
1180 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1181 return 0;
1182
1183 /*
1184 * The queueing is in progress, or it is already queued. Try to
1185 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1186 */
d565ed63
TH
1187 pool = get_work_pool(work);
1188 if (!pool)
bbb68dfa 1189 goto fail;
bf4ede01 1190
d565ed63 1191 spin_lock(&pool->lock);
0b3dae68 1192 /*
112202d9
TH
1193 * work->data is guaranteed to point to pwq only while the work
1194 * item is queued on pwq->wq, and both updating work->data to point
1195 * to pwq on queueing and to pool on dequeueing are done under
1196 * pwq->pool->lock. This in turn guarantees that, if work->data
1197 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1198 * item is currently queued on that pool.
1199 */
112202d9
TH
1200 pwq = get_work_pwq(work);
1201 if (pwq && pwq->pool == pool) {
16062836
TH
1202 debug_work_deactivate(work);
1203
1204 /*
1205 * A delayed work item cannot be grabbed directly because
1206 * it might have linked NO_COLOR work items which, if left
112202d9 1207 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1208 * management later on and cause stall. Make sure the work
1209 * item is activated before grabbing.
1210 */
1211 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1212 pwq_activate_delayed_work(work);
16062836
TH
1213
1214 list_del_init(&work->entry);
9c34a704 1215 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1216
112202d9 1217 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1218 set_work_pool_and_keep_pending(work, pool->id);
1219
1220 spin_unlock(&pool->lock);
1221 return 1;
bf4ede01 1222 }
d565ed63 1223 spin_unlock(&pool->lock);
bbb68dfa
TH
1224fail:
1225 local_irq_restore(*flags);
1226 if (work_is_canceling(work))
1227 return -ENOENT;
1228 cpu_relax();
36e227d2 1229 return -EAGAIN;
bf4ede01
TH
1230}
1231
4690c4ab 1232/**
706026c2 1233 * insert_work - insert a work into a pool
112202d9 1234 * @pwq: pwq @work belongs to
4690c4ab
TH
1235 * @work: work to insert
1236 * @head: insertion point
1237 * @extra_flags: extra WORK_STRUCT_* flags to set
1238 *
112202d9 1239 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1240 * work_struct flags.
4690c4ab
TH
1241 *
1242 * CONTEXT:
d565ed63 1243 * spin_lock_irq(pool->lock).
4690c4ab 1244 */
112202d9
TH
1245static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1246 struct list_head *head, unsigned int extra_flags)
b89deed3 1247{
112202d9 1248 struct worker_pool *pool = pwq->pool;
e22bee78 1249
4690c4ab 1250 /* we own @work, set data and link */
112202d9 1251 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1252 list_add_tail(&work->entry, head);
8864b4e5 1253 get_pwq(pwq);
e22bee78
TH
1254
1255 /*
c5aa87bb
TH
1256 * Ensure either wq_worker_sleeping() sees the above
1257 * list_add_tail() or we see zero nr_running to avoid workers lying
1258 * around lazily while there are works to be processed.
e22bee78
TH
1259 */
1260 smp_mb();
1261
63d95a91
TH
1262 if (__need_more_worker(pool))
1263 wake_up_worker(pool);
b89deed3
ON
1264}
1265
c8efcc25
TH
1266/*
1267 * Test whether @work is being queued from another work executing on the
8d03ecfe 1268 * same workqueue.
c8efcc25
TH
1269 */
1270static bool is_chained_work(struct workqueue_struct *wq)
1271{
8d03ecfe
TH
1272 struct worker *worker;
1273
1274 worker = current_wq_worker();
1275 /*
1276 * Return %true iff I'm a worker execuing a work item on @wq. If
1277 * I'm @worker, it's safe to dereference it without locking.
1278 */
112202d9 1279 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1280}
1281
d84ff051 1282static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1283 struct work_struct *work)
1284{
112202d9 1285 struct pool_workqueue *pwq;
c9178087 1286 struct worker_pool *last_pool;
1e19ffc6 1287 struct list_head *worklist;
8a2e8e5d 1288 unsigned int work_flags;
b75cac93 1289 unsigned int req_cpu = cpu;
8930caba
TH
1290
1291 /*
1292 * While a work item is PENDING && off queue, a task trying to
1293 * steal the PENDING will busy-loop waiting for it to either get
1294 * queued or lose PENDING. Grabbing PENDING and queueing should
1295 * happen with IRQ disabled.
1296 */
1297 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1298
dc186ad7 1299 debug_work_activate(work);
1e19ffc6 1300
9ef28a73 1301 /* if draining, only works from the same workqueue are allowed */
618b01eb 1302 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1303 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1304 return;
9e8cd2f5 1305retry:
df2d5ae4
TH
1306 if (req_cpu == WORK_CPU_UNBOUND)
1307 cpu = raw_smp_processor_id();
1308
c9178087 1309 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1310 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1311 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1312 else
1313 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1314
c9178087
TH
1315 /*
1316 * If @work was previously on a different pool, it might still be
1317 * running there, in which case the work needs to be queued on that
1318 * pool to guarantee non-reentrancy.
1319 */
1320 last_pool = get_work_pool(work);
1321 if (last_pool && last_pool != pwq->pool) {
1322 struct worker *worker;
18aa9eff 1323
c9178087 1324 spin_lock(&last_pool->lock);
18aa9eff 1325
c9178087 1326 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1327
c9178087
TH
1328 if (worker && worker->current_pwq->wq == wq) {
1329 pwq = worker->current_pwq;
8930caba 1330 } else {
c9178087
TH
1331 /* meh... not running there, queue here */
1332 spin_unlock(&last_pool->lock);
112202d9 1333 spin_lock(&pwq->pool->lock);
8930caba 1334 }
f3421797 1335 } else {
112202d9 1336 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1337 }
1338
9e8cd2f5
TH
1339 /*
1340 * pwq is determined and locked. For unbound pools, we could have
1341 * raced with pwq release and it could already be dead. If its
1342 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1343 * without another pwq replacing it in the numa_pwq_tbl or while
1344 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1345 * make forward-progress.
1346 */
1347 if (unlikely(!pwq->refcnt)) {
1348 if (wq->flags & WQ_UNBOUND) {
1349 spin_unlock(&pwq->pool->lock);
1350 cpu_relax();
1351 goto retry;
1352 }
1353 /* oops */
1354 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1355 wq->name, cpu);
1356 }
1357
112202d9
TH
1358 /* pwq determined, queue */
1359 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1360
f5b2552b 1361 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1362 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1363 return;
1364 }
1e19ffc6 1365
112202d9
TH
1366 pwq->nr_in_flight[pwq->work_color]++;
1367 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1368
112202d9 1369 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1370 trace_workqueue_activate_work(work);
112202d9
TH
1371 pwq->nr_active++;
1372 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1373 } else {
1374 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1375 worklist = &pwq->delayed_works;
8a2e8e5d 1376 }
1e19ffc6 1377
112202d9 1378 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1379
112202d9 1380 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1381}
1382
0fcb78c2 1383/**
c1a220e7
ZR
1384 * queue_work_on - queue work on specific cpu
1385 * @cpu: CPU number to execute work on
0fcb78c2
REB
1386 * @wq: workqueue to use
1387 * @work: work to queue
1388 *
c1a220e7
ZR
1389 * We queue the work to a specific CPU, the caller must ensure it
1390 * can't go away.
d185af30
YB
1391 *
1392 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1393 */
d4283e93
TH
1394bool queue_work_on(int cpu, struct workqueue_struct *wq,
1395 struct work_struct *work)
1da177e4 1396{
d4283e93 1397 bool ret = false;
8930caba 1398 unsigned long flags;
ef1ca236 1399
8930caba 1400 local_irq_save(flags);
c1a220e7 1401
22df02bb 1402 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1403 __queue_work(cpu, wq, work);
d4283e93 1404 ret = true;
c1a220e7 1405 }
ef1ca236 1406
8930caba 1407 local_irq_restore(flags);
1da177e4
LT
1408 return ret;
1409}
ad7b1f84 1410EXPORT_SYMBOL(queue_work_on);
1da177e4 1411
d8e794df 1412void delayed_work_timer_fn(unsigned long __data)
1da177e4 1413{
52bad64d 1414 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1415
e0aecdd8 1416 /* should have been called from irqsafe timer with irq already off */
60c057bc 1417 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1418}
1438ade5 1419EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1420
7beb2edf
TH
1421static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1422 struct delayed_work *dwork, unsigned long delay)
1da177e4 1423{
7beb2edf
TH
1424 struct timer_list *timer = &dwork->timer;
1425 struct work_struct *work = &dwork->work;
7beb2edf
TH
1426
1427 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1428 timer->data != (unsigned long)dwork);
fc4b514f
TH
1429 WARN_ON_ONCE(timer_pending(timer));
1430 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1431
8852aac2
TH
1432 /*
1433 * If @delay is 0, queue @dwork->work immediately. This is for
1434 * both optimization and correctness. The earliest @timer can
1435 * expire is on the closest next tick and delayed_work users depend
1436 * on that there's no such delay when @delay is 0.
1437 */
1438 if (!delay) {
1439 __queue_work(cpu, wq, &dwork->work);
1440 return;
1441 }
1442
7beb2edf 1443 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1444
60c057bc 1445 dwork->wq = wq;
1265057f 1446 dwork->cpu = cpu;
7beb2edf
TH
1447 timer->expires = jiffies + delay;
1448
1449 if (unlikely(cpu != WORK_CPU_UNBOUND))
1450 add_timer_on(timer, cpu);
1451 else
1452 add_timer(timer);
1da177e4
LT
1453}
1454
0fcb78c2
REB
1455/**
1456 * queue_delayed_work_on - queue work on specific CPU after delay
1457 * @cpu: CPU number to execute work on
1458 * @wq: workqueue to use
af9997e4 1459 * @dwork: work to queue
0fcb78c2
REB
1460 * @delay: number of jiffies to wait before queueing
1461 *
d185af30 1462 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1463 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1464 * execution.
0fcb78c2 1465 */
d4283e93
TH
1466bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1467 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1468{
52bad64d 1469 struct work_struct *work = &dwork->work;
d4283e93 1470 bool ret = false;
8930caba 1471 unsigned long flags;
7a6bc1cd 1472
8930caba
TH
1473 /* read the comment in __queue_work() */
1474 local_irq_save(flags);
7a6bc1cd 1475
22df02bb 1476 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1477 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1478 ret = true;
7a6bc1cd 1479 }
8a3e77cc 1480
8930caba 1481 local_irq_restore(flags);
7a6bc1cd
VP
1482 return ret;
1483}
ad7b1f84 1484EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1485
8376fe22
TH
1486/**
1487 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1488 * @cpu: CPU number to execute work on
1489 * @wq: workqueue to use
1490 * @dwork: work to queue
1491 * @delay: number of jiffies to wait before queueing
1492 *
1493 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1494 * modify @dwork's timer so that it expires after @delay. If @delay is
1495 * zero, @work is guaranteed to be scheduled immediately regardless of its
1496 * current state.
1497 *
d185af30 1498 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1499 * pending and its timer was modified.
1500 *
e0aecdd8 1501 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1502 * See try_to_grab_pending() for details.
1503 */
1504bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1506{
1507 unsigned long flags;
1508 int ret;
c7fc77f7 1509
8376fe22
TH
1510 do {
1511 ret = try_to_grab_pending(&dwork->work, true, &flags);
1512 } while (unlikely(ret == -EAGAIN));
63bc0362 1513
8376fe22
TH
1514 if (likely(ret >= 0)) {
1515 __queue_delayed_work(cpu, wq, dwork, delay);
1516 local_irq_restore(flags);
7a6bc1cd 1517 }
8376fe22
TH
1518
1519 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1520 return ret;
1521}
8376fe22
TH
1522EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1523
c8e55f36
TH
1524/**
1525 * worker_enter_idle - enter idle state
1526 * @worker: worker which is entering idle state
1527 *
1528 * @worker is entering idle state. Update stats and idle timer if
1529 * necessary.
1530 *
1531 * LOCKING:
d565ed63 1532 * spin_lock_irq(pool->lock).
c8e55f36
TH
1533 */
1534static void worker_enter_idle(struct worker *worker)
1da177e4 1535{
bd7bdd43 1536 struct worker_pool *pool = worker->pool;
c8e55f36 1537
6183c009
TH
1538 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1539 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1540 (worker->hentry.next || worker->hentry.pprev)))
1541 return;
c8e55f36 1542
cb444766
TH
1543 /* can't use worker_set_flags(), also called from start_worker() */
1544 worker->flags |= WORKER_IDLE;
bd7bdd43 1545 pool->nr_idle++;
e22bee78 1546 worker->last_active = jiffies;
c8e55f36
TH
1547
1548 /* idle_list is LIFO */
bd7bdd43 1549 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1550
628c78e7
TH
1551 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1552 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1553
544ecf31 1554 /*
706026c2 1555 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1556 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1557 * nr_running, the warning may trigger spuriously. Check iff
1558 * unbind is not in progress.
544ecf31 1559 */
24647570 1560 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1561 pool->nr_workers == pool->nr_idle &&
e19e397a 1562 atomic_read(&pool->nr_running));
c8e55f36
TH
1563}
1564
1565/**
1566 * worker_leave_idle - leave idle state
1567 * @worker: worker which is leaving idle state
1568 *
1569 * @worker is leaving idle state. Update stats.
1570 *
1571 * LOCKING:
d565ed63 1572 * spin_lock_irq(pool->lock).
c8e55f36
TH
1573 */
1574static void worker_leave_idle(struct worker *worker)
1575{
bd7bdd43 1576 struct worker_pool *pool = worker->pool;
c8e55f36 1577
6183c009
TH
1578 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1579 return;
d302f017 1580 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1581 pool->nr_idle--;
c8e55f36
TH
1582 list_del_init(&worker->entry);
1583}
1584
f7537df5 1585static struct worker *alloc_worker(int node)
c34056a3
TH
1586{
1587 struct worker *worker;
1588
f7537df5 1589 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1590 if (worker) {
1591 INIT_LIST_HEAD(&worker->entry);
affee4b2 1592 INIT_LIST_HEAD(&worker->scheduled);
da028469 1593 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1594 /* on creation a worker is in !idle && prep state */
1595 worker->flags = WORKER_PREP;
c8e55f36 1596 }
c34056a3
TH
1597 return worker;
1598}
1599
4736cbf7
LJ
1600/**
1601 * worker_attach_to_pool() - attach a worker to a pool
1602 * @worker: worker to be attached
1603 * @pool: the target pool
1604 *
1605 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1606 * cpu-binding of @worker are kept coordinated with the pool across
1607 * cpu-[un]hotplugs.
1608 */
1609static void worker_attach_to_pool(struct worker *worker,
1610 struct worker_pool *pool)
1611{
1612 mutex_lock(&pool->attach_mutex);
1613
1614 /*
1615 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1616 * online CPUs. It'll be re-applied when any of the CPUs come up.
1617 */
1618 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1619
1620 /*
1621 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1622 * stable across this function. See the comments above the
1623 * flag definition for details.
1624 */
1625 if (pool->flags & POOL_DISASSOCIATED)
1626 worker->flags |= WORKER_UNBOUND;
1627
1628 list_add_tail(&worker->node, &pool->workers);
1629
1630 mutex_unlock(&pool->attach_mutex);
1631}
1632
60f5a4bc
LJ
1633/**
1634 * worker_detach_from_pool() - detach a worker from its pool
1635 * @worker: worker which is attached to its pool
1636 * @pool: the pool @worker is attached to
1637 *
4736cbf7
LJ
1638 * Undo the attaching which had been done in worker_attach_to_pool(). The
1639 * caller worker shouldn't access to the pool after detached except it has
1640 * other reference to the pool.
60f5a4bc
LJ
1641 */
1642static void worker_detach_from_pool(struct worker *worker,
1643 struct worker_pool *pool)
1644{
1645 struct completion *detach_completion = NULL;
1646
92f9c5c4 1647 mutex_lock(&pool->attach_mutex);
da028469
LJ
1648 list_del(&worker->node);
1649 if (list_empty(&pool->workers))
60f5a4bc 1650 detach_completion = pool->detach_completion;
92f9c5c4 1651 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1652
b62c0751
LJ
1653 /* clear leftover flags without pool->lock after it is detached */
1654 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1655
60f5a4bc
LJ
1656 if (detach_completion)
1657 complete(detach_completion);
1658}
1659
c34056a3
TH
1660/**
1661 * create_worker - create a new workqueue worker
63d95a91 1662 * @pool: pool the new worker will belong to
c34056a3 1663 *
73eb7fe7
LJ
1664 * Create a new worker which is attached to @pool. The new worker must be
1665 * started by start_worker().
c34056a3
TH
1666 *
1667 * CONTEXT:
1668 * Might sleep. Does GFP_KERNEL allocations.
1669 *
d185af30 1670 * Return:
c34056a3
TH
1671 * Pointer to the newly created worker.
1672 */
bc2ae0f5 1673static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1674{
c34056a3 1675 struct worker *worker = NULL;
f3421797 1676 int id = -1;
e3c916a4 1677 char id_buf[16];
c34056a3 1678
7cda9aae
LJ
1679 /* ID is needed to determine kthread name */
1680 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1681 if (id < 0)
1682 goto fail;
c34056a3 1683
f7537df5 1684 worker = alloc_worker(pool->node);
c34056a3
TH
1685 if (!worker)
1686 goto fail;
1687
bd7bdd43 1688 worker->pool = pool;
c34056a3
TH
1689 worker->id = id;
1690
29c91e99 1691 if (pool->cpu >= 0)
e3c916a4
TH
1692 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1693 pool->attrs->nice < 0 ? "H" : "");
f3421797 1694 else
e3c916a4
TH
1695 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1696
f3f90ad4 1697 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1698 "kworker/%s", id_buf);
c34056a3
TH
1699 if (IS_ERR(worker->task))
1700 goto fail;
1701
91151228
ON
1702 set_user_nice(worker->task, pool->attrs->nice);
1703
1704 /* prevent userland from meddling with cpumask of workqueue workers */
1705 worker->task->flags |= PF_NO_SETAFFINITY;
1706
da028469 1707 /* successful, attach the worker to the pool */
4736cbf7 1708 worker_attach_to_pool(worker, pool);
822d8405 1709
c34056a3 1710 return worker;
822d8405 1711
c34056a3 1712fail:
9625ab17 1713 if (id >= 0)
7cda9aae 1714 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1715 kfree(worker);
1716 return NULL;
1717}
1718
1719/**
1720 * start_worker - start a newly created worker
1721 * @worker: worker to start
1722 *
706026c2 1723 * Make the pool aware of @worker and start it.
c34056a3
TH
1724 *
1725 * CONTEXT:
d565ed63 1726 * spin_lock_irq(pool->lock).
c34056a3
TH
1727 */
1728static void start_worker(struct worker *worker)
1729{
bd7bdd43 1730 worker->pool->nr_workers++;
c8e55f36 1731 worker_enter_idle(worker);
c34056a3
TH
1732 wake_up_process(worker->task);
1733}
1734
ebf44d16
TH
1735/**
1736 * create_and_start_worker - create and start a worker for a pool
1737 * @pool: the target pool
1738 *
cd549687 1739 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1740 *
1741 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1742 */
1743static int create_and_start_worker(struct worker_pool *pool)
1744{
1745 struct worker *worker;
1746
1747 worker = create_worker(pool);
1748 if (worker) {
1749 spin_lock_irq(&pool->lock);
1750 start_worker(worker);
1751 spin_unlock_irq(&pool->lock);
1752 }
1753
1754 return worker ? 0 : -ENOMEM;
1755}
1756
c34056a3
TH
1757/**
1758 * destroy_worker - destroy a workqueue worker
1759 * @worker: worker to be destroyed
1760 *
73eb7fe7
LJ
1761 * Destroy @worker and adjust @pool stats accordingly. The worker should
1762 * be idle.
c8e55f36
TH
1763 *
1764 * CONTEXT:
60f5a4bc 1765 * spin_lock_irq(pool->lock).
c34056a3
TH
1766 */
1767static void destroy_worker(struct worker *worker)
1768{
bd7bdd43 1769 struct worker_pool *pool = worker->pool;
c34056a3 1770
cd549687
TH
1771 lockdep_assert_held(&pool->lock);
1772
c34056a3 1773 /* sanity check frenzy */
6183c009 1774 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1775 WARN_ON(!list_empty(&worker->scheduled)) ||
1776 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1777 return;
c34056a3 1778
73eb7fe7
LJ
1779 pool->nr_workers--;
1780 pool->nr_idle--;
5bdfff96 1781
c8e55f36 1782 list_del_init(&worker->entry);
cb444766 1783 worker->flags |= WORKER_DIE;
60f5a4bc 1784 wake_up_process(worker->task);
c34056a3
TH
1785}
1786
63d95a91 1787static void idle_worker_timeout(unsigned long __pool)
e22bee78 1788{
63d95a91 1789 struct worker_pool *pool = (void *)__pool;
e22bee78 1790
d565ed63 1791 spin_lock_irq(&pool->lock);
e22bee78 1792
3347fc9f 1793 while (too_many_workers(pool)) {
e22bee78
TH
1794 struct worker *worker;
1795 unsigned long expires;
1796
1797 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1798 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1799 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1800
3347fc9f 1801 if (time_before(jiffies, expires)) {
63d95a91 1802 mod_timer(&pool->idle_timer, expires);
3347fc9f 1803 break;
d5abe669 1804 }
3347fc9f
LJ
1805
1806 destroy_worker(worker);
e22bee78
TH
1807 }
1808
d565ed63 1809 spin_unlock_irq(&pool->lock);
e22bee78 1810}
d5abe669 1811
493a1724 1812static void send_mayday(struct work_struct *work)
e22bee78 1813{
112202d9
TH
1814 struct pool_workqueue *pwq = get_work_pwq(work);
1815 struct workqueue_struct *wq = pwq->wq;
493a1724 1816
2e109a28 1817 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1818
493008a8 1819 if (!wq->rescuer)
493a1724 1820 return;
e22bee78
TH
1821
1822 /* mayday mayday mayday */
493a1724 1823 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1824 /*
1825 * If @pwq is for an unbound wq, its base ref may be put at
1826 * any time due to an attribute change. Pin @pwq until the
1827 * rescuer is done with it.
1828 */
1829 get_pwq(pwq);
493a1724 1830 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1831 wake_up_process(wq->rescuer->task);
493a1724 1832 }
e22bee78
TH
1833}
1834
706026c2 1835static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1836{
63d95a91 1837 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1838 struct work_struct *work;
1839
2e109a28 1840 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1841 spin_lock(&pool->lock);
e22bee78 1842
63d95a91 1843 if (need_to_create_worker(pool)) {
e22bee78
TH
1844 /*
1845 * We've been trying to create a new worker but
1846 * haven't been successful. We might be hitting an
1847 * allocation deadlock. Send distress signals to
1848 * rescuers.
1849 */
63d95a91 1850 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1851 send_mayday(work);
1da177e4 1852 }
e22bee78 1853
493a1724 1854 spin_unlock(&pool->lock);
2e109a28 1855 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1856
63d95a91 1857 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1858}
1859
e22bee78
TH
1860/**
1861 * maybe_create_worker - create a new worker if necessary
63d95a91 1862 * @pool: pool to create a new worker for
e22bee78 1863 *
63d95a91 1864 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1865 * have at least one idle worker on return from this function. If
1866 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1867 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1868 * possible allocation deadlock.
1869 *
c5aa87bb
TH
1870 * On return, need_to_create_worker() is guaranteed to be %false and
1871 * may_start_working() %true.
e22bee78
TH
1872 *
1873 * LOCKING:
d565ed63 1874 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1875 * multiple times. Does GFP_KERNEL allocations. Called only from
1876 * manager.
1877 *
d185af30 1878 * Return:
c5aa87bb 1879 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1880 * otherwise.
1881 */
63d95a91 1882static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1883__releases(&pool->lock)
1884__acquires(&pool->lock)
1da177e4 1885{
63d95a91 1886 if (!need_to_create_worker(pool))
e22bee78
TH
1887 return false;
1888restart:
d565ed63 1889 spin_unlock_irq(&pool->lock);
9f9c2364 1890
e22bee78 1891 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1892 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1893
1894 while (true) {
1895 struct worker *worker;
1896
bc2ae0f5 1897 worker = create_worker(pool);
e22bee78 1898 if (worker) {
63d95a91 1899 del_timer_sync(&pool->mayday_timer);
d565ed63 1900 spin_lock_irq(&pool->lock);
e22bee78 1901 start_worker(worker);
6183c009
TH
1902 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1903 goto restart;
e22bee78
TH
1904 return true;
1905 }
1906
63d95a91 1907 if (!need_to_create_worker(pool))
e22bee78 1908 break;
1da177e4 1909
e212f361 1910 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1911
63d95a91 1912 if (!need_to_create_worker(pool))
e22bee78
TH
1913 break;
1914 }
1915
63d95a91 1916 del_timer_sync(&pool->mayday_timer);
d565ed63 1917 spin_lock_irq(&pool->lock);
63d95a91 1918 if (need_to_create_worker(pool))
e22bee78
TH
1919 goto restart;
1920 return true;
1921}
1922
73f53c4a 1923/**
e22bee78
TH
1924 * manage_workers - manage worker pool
1925 * @worker: self
73f53c4a 1926 *
706026c2 1927 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1928 * to. At any given time, there can be only zero or one manager per
706026c2 1929 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1930 *
1931 * The caller can safely start processing works on false return. On
1932 * true return, it's guaranteed that need_to_create_worker() is false
1933 * and may_start_working() is true.
73f53c4a
TH
1934 *
1935 * CONTEXT:
d565ed63 1936 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1937 * multiple times. Does GFP_KERNEL allocations.
1938 *
d185af30 1939 * Return:
2d498db9
L
1940 * %false if the pool don't need management and the caller can safely start
1941 * processing works, %true indicates that the function released pool->lock
1942 * and reacquired it to perform some management function and that the
1943 * conditions that the caller verified while holding the lock before
1944 * calling the function might no longer be true.
73f53c4a 1945 */
e22bee78 1946static bool manage_workers(struct worker *worker)
73f53c4a 1947{
63d95a91 1948 struct worker_pool *pool = worker->pool;
e22bee78 1949 bool ret = false;
73f53c4a 1950
bc3a1afc 1951 /*
bc3a1afc
TH
1952 * Anyone who successfully grabs manager_arb wins the arbitration
1953 * and becomes the manager. mutex_trylock() on pool->manager_arb
1954 * failure while holding pool->lock reliably indicates that someone
1955 * else is managing the pool and the worker which failed trylock
1956 * can proceed to executing work items. This means that anyone
1957 * grabbing manager_arb is responsible for actually performing
1958 * manager duties. If manager_arb is grabbed and released without
1959 * actual management, the pool may stall indefinitely.
bc3a1afc 1960 */
34a06bd6 1961 if (!mutex_trylock(&pool->manager_arb))
e22bee78 1962 return ret;
1e19ffc6 1963
63d95a91 1964 ret |= maybe_create_worker(pool);
e22bee78 1965
34a06bd6 1966 mutex_unlock(&pool->manager_arb);
e22bee78 1967 return ret;
73f53c4a
TH
1968}
1969
a62428c0
TH
1970/**
1971 * process_one_work - process single work
c34056a3 1972 * @worker: self
a62428c0
TH
1973 * @work: work to process
1974 *
1975 * Process @work. This function contains all the logics necessary to
1976 * process a single work including synchronization against and
1977 * interaction with other workers on the same cpu, queueing and
1978 * flushing. As long as context requirement is met, any worker can
1979 * call this function to process a work.
1980 *
1981 * CONTEXT:
d565ed63 1982 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1983 */
c34056a3 1984static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1985__releases(&pool->lock)
1986__acquires(&pool->lock)
a62428c0 1987{
112202d9 1988 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1989 struct worker_pool *pool = worker->pool;
112202d9 1990 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1991 int work_color;
7e11629d 1992 struct worker *collision;
a62428c0
TH
1993#ifdef CONFIG_LOCKDEP
1994 /*
1995 * It is permissible to free the struct work_struct from
1996 * inside the function that is called from it, this we need to
1997 * take into account for lockdep too. To avoid bogus "held
1998 * lock freed" warnings as well as problems when looking into
1999 * work->lockdep_map, make a copy and use that here.
2000 */
4d82a1de
PZ
2001 struct lockdep_map lockdep_map;
2002
2003 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2004#endif
85327af6 2005 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2006 raw_smp_processor_id() != pool->cpu);
25511a47 2007
7e11629d
TH
2008 /*
2009 * A single work shouldn't be executed concurrently by
2010 * multiple workers on a single cpu. Check whether anyone is
2011 * already processing the work. If so, defer the work to the
2012 * currently executing one.
2013 */
c9e7cf27 2014 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2015 if (unlikely(collision)) {
2016 move_linked_works(work, &collision->scheduled, NULL);
2017 return;
2018 }
2019
8930caba 2020 /* claim and dequeue */
a62428c0 2021 debug_work_deactivate(work);
c9e7cf27 2022 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2023 worker->current_work = work;
a2c1c57b 2024 worker->current_func = work->func;
112202d9 2025 worker->current_pwq = pwq;
73f53c4a 2026 work_color = get_work_color(work);
7a22ad75 2027
a62428c0
TH
2028 list_del_init(&work->entry);
2029
fb0e7beb 2030 /*
228f1d00
LJ
2031 * CPU intensive works don't participate in concurrency management.
2032 * They're the scheduler's responsibility. This takes @worker out
2033 * of concurrency management and the next code block will chain
2034 * execution of the pending work items.
fb0e7beb
TH
2035 */
2036 if (unlikely(cpu_intensive))
228f1d00 2037 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2038
974271c4 2039 /*
a489a03e
LJ
2040 * Wake up another worker if necessary. The condition is always
2041 * false for normal per-cpu workers since nr_running would always
2042 * be >= 1 at this point. This is used to chain execution of the
2043 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2044 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2045 */
a489a03e 2046 if (need_more_worker(pool))
63d95a91 2047 wake_up_worker(pool);
974271c4 2048
8930caba 2049 /*
7c3eed5c 2050 * Record the last pool and clear PENDING which should be the last
d565ed63 2051 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2052 * PENDING and queued state changes happen together while IRQ is
2053 * disabled.
8930caba 2054 */
7c3eed5c 2055 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2056
d565ed63 2057 spin_unlock_irq(&pool->lock);
a62428c0 2058
112202d9 2059 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2060 lock_map_acquire(&lockdep_map);
e36c886a 2061 trace_workqueue_execute_start(work);
a2c1c57b 2062 worker->current_func(work);
e36c886a
AV
2063 /*
2064 * While we must be careful to not use "work" after this, the trace
2065 * point will only record its address.
2066 */
2067 trace_workqueue_execute_end(work);
a62428c0 2068 lock_map_release(&lockdep_map);
112202d9 2069 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2070
2071 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2072 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2073 " last function: %pf\n",
a2c1c57b
TH
2074 current->comm, preempt_count(), task_pid_nr(current),
2075 worker->current_func);
a62428c0
TH
2076 debug_show_held_locks(current);
2077 dump_stack();
2078 }
2079
b22ce278
TH
2080 /*
2081 * The following prevents a kworker from hogging CPU on !PREEMPT
2082 * kernels, where a requeueing work item waiting for something to
2083 * happen could deadlock with stop_machine as such work item could
2084 * indefinitely requeue itself while all other CPUs are trapped in
2085 * stop_machine.
2086 */
2087 cond_resched();
2088
d565ed63 2089 spin_lock_irq(&pool->lock);
a62428c0 2090
fb0e7beb
TH
2091 /* clear cpu intensive status */
2092 if (unlikely(cpu_intensive))
2093 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2094
a62428c0 2095 /* we're done with it, release */
42f8570f 2096 hash_del(&worker->hentry);
c34056a3 2097 worker->current_work = NULL;
a2c1c57b 2098 worker->current_func = NULL;
112202d9 2099 worker->current_pwq = NULL;
3d1cb205 2100 worker->desc_valid = false;
112202d9 2101 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2102}
2103
affee4b2
TH
2104/**
2105 * process_scheduled_works - process scheduled works
2106 * @worker: self
2107 *
2108 * Process all scheduled works. Please note that the scheduled list
2109 * may change while processing a work, so this function repeatedly
2110 * fetches a work from the top and executes it.
2111 *
2112 * CONTEXT:
d565ed63 2113 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2114 * multiple times.
2115 */
2116static void process_scheduled_works(struct worker *worker)
1da177e4 2117{
affee4b2
TH
2118 while (!list_empty(&worker->scheduled)) {
2119 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2120 struct work_struct, entry);
c34056a3 2121 process_one_work(worker, work);
1da177e4 2122 }
1da177e4
LT
2123}
2124
4690c4ab
TH
2125/**
2126 * worker_thread - the worker thread function
c34056a3 2127 * @__worker: self
4690c4ab 2128 *
c5aa87bb
TH
2129 * The worker thread function. All workers belong to a worker_pool -
2130 * either a per-cpu one or dynamic unbound one. These workers process all
2131 * work items regardless of their specific target workqueue. The only
2132 * exception is work items which belong to workqueues with a rescuer which
2133 * will be explained in rescuer_thread().
d185af30
YB
2134 *
2135 * Return: 0
4690c4ab 2136 */
c34056a3 2137static int worker_thread(void *__worker)
1da177e4 2138{
c34056a3 2139 struct worker *worker = __worker;
bd7bdd43 2140 struct worker_pool *pool = worker->pool;
1da177e4 2141
e22bee78
TH
2142 /* tell the scheduler that this is a workqueue worker */
2143 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2144woke_up:
d565ed63 2145 spin_lock_irq(&pool->lock);
1da177e4 2146
a9ab775b
TH
2147 /* am I supposed to die? */
2148 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2149 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2150 WARN_ON_ONCE(!list_empty(&worker->entry));
2151 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2152
2153 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2154 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2155 worker_detach_from_pool(worker, pool);
2156 kfree(worker);
a9ab775b 2157 return 0;
c8e55f36 2158 }
affee4b2 2159
c8e55f36 2160 worker_leave_idle(worker);
db7bccf4 2161recheck:
e22bee78 2162 /* no more worker necessary? */
63d95a91 2163 if (!need_more_worker(pool))
e22bee78
TH
2164 goto sleep;
2165
2166 /* do we need to manage? */
63d95a91 2167 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2168 goto recheck;
2169
c8e55f36
TH
2170 /*
2171 * ->scheduled list can only be filled while a worker is
2172 * preparing to process a work or actually processing it.
2173 * Make sure nobody diddled with it while I was sleeping.
2174 */
6183c009 2175 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2176
e22bee78 2177 /*
a9ab775b
TH
2178 * Finish PREP stage. We're guaranteed to have at least one idle
2179 * worker or that someone else has already assumed the manager
2180 * role. This is where @worker starts participating in concurrency
2181 * management if applicable and concurrency management is restored
2182 * after being rebound. See rebind_workers() for details.
e22bee78 2183 */
a9ab775b 2184 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2185
2186 do {
c8e55f36 2187 struct work_struct *work =
bd7bdd43 2188 list_first_entry(&pool->worklist,
c8e55f36
TH
2189 struct work_struct, entry);
2190
2191 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2192 /* optimization path, not strictly necessary */
2193 process_one_work(worker, work);
2194 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2195 process_scheduled_works(worker);
c8e55f36
TH
2196 } else {
2197 move_linked_works(work, &worker->scheduled, NULL);
2198 process_scheduled_works(worker);
affee4b2 2199 }
63d95a91 2200 } while (keep_working(pool));
e22bee78 2201
228f1d00 2202 worker_set_flags(worker, WORKER_PREP);
d313dd85 2203sleep:
c8e55f36 2204 /*
d565ed63
TH
2205 * pool->lock is held and there's no work to process and no need to
2206 * manage, sleep. Workers are woken up only while holding
2207 * pool->lock or from local cpu, so setting the current state
2208 * before releasing pool->lock is enough to prevent losing any
2209 * event.
c8e55f36
TH
2210 */
2211 worker_enter_idle(worker);
2212 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2213 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2214 schedule();
2215 goto woke_up;
1da177e4
LT
2216}
2217
e22bee78
TH
2218/**
2219 * rescuer_thread - the rescuer thread function
111c225a 2220 * @__rescuer: self
e22bee78
TH
2221 *
2222 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2223 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2224 *
706026c2 2225 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2226 * worker which uses GFP_KERNEL allocation which has slight chance of
2227 * developing into deadlock if some works currently on the same queue
2228 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2229 * the problem rescuer solves.
2230 *
706026c2
TH
2231 * When such condition is possible, the pool summons rescuers of all
2232 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2233 * those works so that forward progress can be guaranteed.
2234 *
2235 * This should happen rarely.
d185af30
YB
2236 *
2237 * Return: 0
e22bee78 2238 */
111c225a 2239static int rescuer_thread(void *__rescuer)
e22bee78 2240{
111c225a
TH
2241 struct worker *rescuer = __rescuer;
2242 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2243 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2244 bool should_stop;
e22bee78
TH
2245
2246 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2247
2248 /*
2249 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2250 * doesn't participate in concurrency management.
2251 */
2252 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2253repeat:
2254 set_current_state(TASK_INTERRUPTIBLE);
2255
4d595b86
LJ
2256 /*
2257 * By the time the rescuer is requested to stop, the workqueue
2258 * shouldn't have any work pending, but @wq->maydays may still have
2259 * pwq(s) queued. This can happen by non-rescuer workers consuming
2260 * all the work items before the rescuer got to them. Go through
2261 * @wq->maydays processing before acting on should_stop so that the
2262 * list is always empty on exit.
2263 */
2264 should_stop = kthread_should_stop();
e22bee78 2265
493a1724 2266 /* see whether any pwq is asking for help */
2e109a28 2267 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2268
2269 while (!list_empty(&wq->maydays)) {
2270 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2271 struct pool_workqueue, mayday_node);
112202d9 2272 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2273 struct work_struct *work, *n;
2274
2275 __set_current_state(TASK_RUNNING);
493a1724
TH
2276 list_del_init(&pwq->mayday_node);
2277
2e109a28 2278 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2279
51697d39
LJ
2280 worker_attach_to_pool(rescuer, pool);
2281
2282 spin_lock_irq(&pool->lock);
b3104104 2283 rescuer->pool = pool;
e22bee78
TH
2284
2285 /*
2286 * Slurp in all works issued via this workqueue and
2287 * process'em.
2288 */
6183c009 2289 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2290 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2291 if (get_work_pwq(work) == pwq)
e22bee78
TH
2292 move_linked_works(work, scheduled, &n);
2293
2294 process_scheduled_works(rescuer);
51697d39
LJ
2295 spin_unlock_irq(&pool->lock);
2296
2297 worker_detach_from_pool(rescuer, pool);
2298
2299 spin_lock_irq(&pool->lock);
7576958a 2300
77668c8b
LJ
2301 /*
2302 * Put the reference grabbed by send_mayday(). @pool won't
2303 * go away while we're holding its lock.
2304 */
2305 put_pwq(pwq);
2306
7576958a 2307 /*
d8ca83e6 2308 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2309 * regular worker; otherwise, we end up with 0 concurrency
2310 * and stalling the execution.
2311 */
d8ca83e6 2312 if (need_more_worker(pool))
63d95a91 2313 wake_up_worker(pool);
7576958a 2314
b3104104 2315 rescuer->pool = NULL;
493a1724 2316 spin_unlock(&pool->lock);
2e109a28 2317 spin_lock(&wq_mayday_lock);
e22bee78
TH
2318 }
2319
2e109a28 2320 spin_unlock_irq(&wq_mayday_lock);
493a1724 2321
4d595b86
LJ
2322 if (should_stop) {
2323 __set_current_state(TASK_RUNNING);
2324 rescuer->task->flags &= ~PF_WQ_WORKER;
2325 return 0;
2326 }
2327
111c225a
TH
2328 /* rescuers should never participate in concurrency management */
2329 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2330 schedule();
2331 goto repeat;
1da177e4
LT
2332}
2333
fc2e4d70
ON
2334struct wq_barrier {
2335 struct work_struct work;
2336 struct completion done;
2337};
2338
2339static void wq_barrier_func(struct work_struct *work)
2340{
2341 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2342 complete(&barr->done);
2343}
2344
4690c4ab
TH
2345/**
2346 * insert_wq_barrier - insert a barrier work
112202d9 2347 * @pwq: pwq to insert barrier into
4690c4ab 2348 * @barr: wq_barrier to insert
affee4b2
TH
2349 * @target: target work to attach @barr to
2350 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2351 *
affee4b2
TH
2352 * @barr is linked to @target such that @barr is completed only after
2353 * @target finishes execution. Please note that the ordering
2354 * guarantee is observed only with respect to @target and on the local
2355 * cpu.
2356 *
2357 * Currently, a queued barrier can't be canceled. This is because
2358 * try_to_grab_pending() can't determine whether the work to be
2359 * grabbed is at the head of the queue and thus can't clear LINKED
2360 * flag of the previous work while there must be a valid next work
2361 * after a work with LINKED flag set.
2362 *
2363 * Note that when @worker is non-NULL, @target may be modified
112202d9 2364 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2365 *
2366 * CONTEXT:
d565ed63 2367 * spin_lock_irq(pool->lock).
4690c4ab 2368 */
112202d9 2369static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2370 struct wq_barrier *barr,
2371 struct work_struct *target, struct worker *worker)
fc2e4d70 2372{
affee4b2
TH
2373 struct list_head *head;
2374 unsigned int linked = 0;
2375
dc186ad7 2376 /*
d565ed63 2377 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2378 * as we know for sure that this will not trigger any of the
2379 * checks and call back into the fixup functions where we
2380 * might deadlock.
2381 */
ca1cab37 2382 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2383 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2384 init_completion(&barr->done);
83c22520 2385
affee4b2
TH
2386 /*
2387 * If @target is currently being executed, schedule the
2388 * barrier to the worker; otherwise, put it after @target.
2389 */
2390 if (worker)
2391 head = worker->scheduled.next;
2392 else {
2393 unsigned long *bits = work_data_bits(target);
2394
2395 head = target->entry.next;
2396 /* there can already be other linked works, inherit and set */
2397 linked = *bits & WORK_STRUCT_LINKED;
2398 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2399 }
2400
dc186ad7 2401 debug_work_activate(&barr->work);
112202d9 2402 insert_work(pwq, &barr->work, head,
affee4b2 2403 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2404}
2405
73f53c4a 2406/**
112202d9 2407 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2408 * @wq: workqueue being flushed
2409 * @flush_color: new flush color, < 0 for no-op
2410 * @work_color: new work color, < 0 for no-op
2411 *
112202d9 2412 * Prepare pwqs for workqueue flushing.
73f53c4a 2413 *
112202d9
TH
2414 * If @flush_color is non-negative, flush_color on all pwqs should be
2415 * -1. If no pwq has in-flight commands at the specified color, all
2416 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2417 * has in flight commands, its pwq->flush_color is set to
2418 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2419 * wakeup logic is armed and %true is returned.
2420 *
2421 * The caller should have initialized @wq->first_flusher prior to
2422 * calling this function with non-negative @flush_color. If
2423 * @flush_color is negative, no flush color update is done and %false
2424 * is returned.
2425 *
112202d9 2426 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2427 * work_color which is previous to @work_color and all will be
2428 * advanced to @work_color.
2429 *
2430 * CONTEXT:
3c25a55d 2431 * mutex_lock(wq->mutex).
73f53c4a 2432 *
d185af30 2433 * Return:
73f53c4a
TH
2434 * %true if @flush_color >= 0 and there's something to flush. %false
2435 * otherwise.
2436 */
112202d9 2437static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2438 int flush_color, int work_color)
1da177e4 2439{
73f53c4a 2440 bool wait = false;
49e3cf44 2441 struct pool_workqueue *pwq;
1da177e4 2442
73f53c4a 2443 if (flush_color >= 0) {
6183c009 2444 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2445 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2446 }
2355b70f 2447
49e3cf44 2448 for_each_pwq(pwq, wq) {
112202d9 2449 struct worker_pool *pool = pwq->pool;
fc2e4d70 2450
b09f4fd3 2451 spin_lock_irq(&pool->lock);
83c22520 2452
73f53c4a 2453 if (flush_color >= 0) {
6183c009 2454 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2455
112202d9
TH
2456 if (pwq->nr_in_flight[flush_color]) {
2457 pwq->flush_color = flush_color;
2458 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2459 wait = true;
2460 }
2461 }
1da177e4 2462
73f53c4a 2463 if (work_color >= 0) {
6183c009 2464 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2465 pwq->work_color = work_color;
73f53c4a 2466 }
1da177e4 2467
b09f4fd3 2468 spin_unlock_irq(&pool->lock);
1da177e4 2469 }
2355b70f 2470
112202d9 2471 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2472 complete(&wq->first_flusher->done);
14441960 2473
73f53c4a 2474 return wait;
1da177e4
LT
2475}
2476
0fcb78c2 2477/**
1da177e4 2478 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2479 * @wq: workqueue to flush
1da177e4 2480 *
c5aa87bb
TH
2481 * This function sleeps until all work items which were queued on entry
2482 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2483 */
7ad5b3a5 2484void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2485{
73f53c4a
TH
2486 struct wq_flusher this_flusher = {
2487 .list = LIST_HEAD_INIT(this_flusher.list),
2488 .flush_color = -1,
2489 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2490 };
2491 int next_color;
1da177e4 2492
3295f0ef
IM
2493 lock_map_acquire(&wq->lockdep_map);
2494 lock_map_release(&wq->lockdep_map);
73f53c4a 2495
3c25a55d 2496 mutex_lock(&wq->mutex);
73f53c4a
TH
2497
2498 /*
2499 * Start-to-wait phase
2500 */
2501 next_color = work_next_color(wq->work_color);
2502
2503 if (next_color != wq->flush_color) {
2504 /*
2505 * Color space is not full. The current work_color
2506 * becomes our flush_color and work_color is advanced
2507 * by one.
2508 */
6183c009 2509 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2510 this_flusher.flush_color = wq->work_color;
2511 wq->work_color = next_color;
2512
2513 if (!wq->first_flusher) {
2514 /* no flush in progress, become the first flusher */
6183c009 2515 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2516
2517 wq->first_flusher = &this_flusher;
2518
112202d9 2519 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2520 wq->work_color)) {
2521 /* nothing to flush, done */
2522 wq->flush_color = next_color;
2523 wq->first_flusher = NULL;
2524 goto out_unlock;
2525 }
2526 } else {
2527 /* wait in queue */
6183c009 2528 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2529 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2530 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2531 }
2532 } else {
2533 /*
2534 * Oops, color space is full, wait on overflow queue.
2535 * The next flush completion will assign us
2536 * flush_color and transfer to flusher_queue.
2537 */
2538 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2539 }
2540
3c25a55d 2541 mutex_unlock(&wq->mutex);
73f53c4a
TH
2542
2543 wait_for_completion(&this_flusher.done);
2544
2545 /*
2546 * Wake-up-and-cascade phase
2547 *
2548 * First flushers are responsible for cascading flushes and
2549 * handling overflow. Non-first flushers can simply return.
2550 */
2551 if (wq->first_flusher != &this_flusher)
2552 return;
2553
3c25a55d 2554 mutex_lock(&wq->mutex);
73f53c4a 2555
4ce48b37
TH
2556 /* we might have raced, check again with mutex held */
2557 if (wq->first_flusher != &this_flusher)
2558 goto out_unlock;
2559
73f53c4a
TH
2560 wq->first_flusher = NULL;
2561
6183c009
TH
2562 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2563 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2564
2565 while (true) {
2566 struct wq_flusher *next, *tmp;
2567
2568 /* complete all the flushers sharing the current flush color */
2569 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2570 if (next->flush_color != wq->flush_color)
2571 break;
2572 list_del_init(&next->list);
2573 complete(&next->done);
2574 }
2575
6183c009
TH
2576 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2577 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2578
2579 /* this flush_color is finished, advance by one */
2580 wq->flush_color = work_next_color(wq->flush_color);
2581
2582 /* one color has been freed, handle overflow queue */
2583 if (!list_empty(&wq->flusher_overflow)) {
2584 /*
2585 * Assign the same color to all overflowed
2586 * flushers, advance work_color and append to
2587 * flusher_queue. This is the start-to-wait
2588 * phase for these overflowed flushers.
2589 */
2590 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2591 tmp->flush_color = wq->work_color;
2592
2593 wq->work_color = work_next_color(wq->work_color);
2594
2595 list_splice_tail_init(&wq->flusher_overflow,
2596 &wq->flusher_queue);
112202d9 2597 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2598 }
2599
2600 if (list_empty(&wq->flusher_queue)) {
6183c009 2601 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2602 break;
2603 }
2604
2605 /*
2606 * Need to flush more colors. Make the next flusher
112202d9 2607 * the new first flusher and arm pwqs.
73f53c4a 2608 */
6183c009
TH
2609 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2610 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2611
2612 list_del_init(&next->list);
2613 wq->first_flusher = next;
2614
112202d9 2615 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2616 break;
2617
2618 /*
2619 * Meh... this color is already done, clear first
2620 * flusher and repeat cascading.
2621 */
2622 wq->first_flusher = NULL;
2623 }
2624
2625out_unlock:
3c25a55d 2626 mutex_unlock(&wq->mutex);
1da177e4 2627}
ae90dd5d 2628EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2629
9c5a2ba7
TH
2630/**
2631 * drain_workqueue - drain a workqueue
2632 * @wq: workqueue to drain
2633 *
2634 * Wait until the workqueue becomes empty. While draining is in progress,
2635 * only chain queueing is allowed. IOW, only currently pending or running
2636 * work items on @wq can queue further work items on it. @wq is flushed
2637 * repeatedly until it becomes empty. The number of flushing is detemined
2638 * by the depth of chaining and should be relatively short. Whine if it
2639 * takes too long.
2640 */
2641void drain_workqueue(struct workqueue_struct *wq)
2642{
2643 unsigned int flush_cnt = 0;
49e3cf44 2644 struct pool_workqueue *pwq;
9c5a2ba7
TH
2645
2646 /*
2647 * __queue_work() needs to test whether there are drainers, is much
2648 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2649 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2650 */
87fc741e 2651 mutex_lock(&wq->mutex);
9c5a2ba7 2652 if (!wq->nr_drainers++)
618b01eb 2653 wq->flags |= __WQ_DRAINING;
87fc741e 2654 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2655reflush:
2656 flush_workqueue(wq);
2657
b09f4fd3 2658 mutex_lock(&wq->mutex);
76af4d93 2659
49e3cf44 2660 for_each_pwq(pwq, wq) {
fa2563e4 2661 bool drained;
9c5a2ba7 2662
b09f4fd3 2663 spin_lock_irq(&pwq->pool->lock);
112202d9 2664 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2665 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2666
2667 if (drained)
9c5a2ba7
TH
2668 continue;
2669
2670 if (++flush_cnt == 10 ||
2671 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2672 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2673 wq->name, flush_cnt);
76af4d93 2674
b09f4fd3 2675 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2676 goto reflush;
2677 }
2678
9c5a2ba7 2679 if (!--wq->nr_drainers)
618b01eb 2680 wq->flags &= ~__WQ_DRAINING;
87fc741e 2681 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2682}
2683EXPORT_SYMBOL_GPL(drain_workqueue);
2684
606a5020 2685static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2686{
affee4b2 2687 struct worker *worker = NULL;
c9e7cf27 2688 struct worker_pool *pool;
112202d9 2689 struct pool_workqueue *pwq;
db700897
ON
2690
2691 might_sleep();
fa1b54e6
TH
2692
2693 local_irq_disable();
c9e7cf27 2694 pool = get_work_pool(work);
fa1b54e6
TH
2695 if (!pool) {
2696 local_irq_enable();
baf59022 2697 return false;
fa1b54e6 2698 }
db700897 2699
fa1b54e6 2700 spin_lock(&pool->lock);
0b3dae68 2701 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2702 pwq = get_work_pwq(work);
2703 if (pwq) {
2704 if (unlikely(pwq->pool != pool))
4690c4ab 2705 goto already_gone;
606a5020 2706 } else {
c9e7cf27 2707 worker = find_worker_executing_work(pool, work);
affee4b2 2708 if (!worker)
4690c4ab 2709 goto already_gone;
112202d9 2710 pwq = worker->current_pwq;
606a5020 2711 }
db700897 2712
112202d9 2713 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2714 spin_unlock_irq(&pool->lock);
7a22ad75 2715
e159489b
TH
2716 /*
2717 * If @max_active is 1 or rescuer is in use, flushing another work
2718 * item on the same workqueue may lead to deadlock. Make sure the
2719 * flusher is not running on the same workqueue by verifying write
2720 * access.
2721 */
493008a8 2722 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2723 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2724 else
112202d9
TH
2725 lock_map_acquire_read(&pwq->wq->lockdep_map);
2726 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2727
401a8d04 2728 return true;
4690c4ab 2729already_gone:
d565ed63 2730 spin_unlock_irq(&pool->lock);
401a8d04 2731 return false;
db700897 2732}
baf59022
TH
2733
2734/**
2735 * flush_work - wait for a work to finish executing the last queueing instance
2736 * @work: the work to flush
2737 *
606a5020
TH
2738 * Wait until @work has finished execution. @work is guaranteed to be idle
2739 * on return if it hasn't been requeued since flush started.
baf59022 2740 *
d185af30 2741 * Return:
baf59022
TH
2742 * %true if flush_work() waited for the work to finish execution,
2743 * %false if it was already idle.
2744 */
2745bool flush_work(struct work_struct *work)
2746{
12997d1a
BH
2747 struct wq_barrier barr;
2748
0976dfc1
SB
2749 lock_map_acquire(&work->lockdep_map);
2750 lock_map_release(&work->lockdep_map);
2751
12997d1a
BH
2752 if (start_flush_work(work, &barr)) {
2753 wait_for_completion(&barr.done);
2754 destroy_work_on_stack(&barr.work);
2755 return true;
2756 } else {
2757 return false;
2758 }
6e84d644 2759}
606a5020 2760EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2761
36e227d2 2762static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2763{
bbb68dfa 2764 unsigned long flags;
1f1f642e
ON
2765 int ret;
2766
2767 do {
bbb68dfa
TH
2768 ret = try_to_grab_pending(work, is_dwork, &flags);
2769 /*
2770 * If someone else is canceling, wait for the same event it
2771 * would be waiting for before retrying.
2772 */
2773 if (unlikely(ret == -ENOENT))
606a5020 2774 flush_work(work);
1f1f642e
ON
2775 } while (unlikely(ret < 0));
2776
bbb68dfa
TH
2777 /* tell other tasks trying to grab @work to back off */
2778 mark_work_canceling(work);
2779 local_irq_restore(flags);
2780
606a5020 2781 flush_work(work);
7a22ad75 2782 clear_work_data(work);
1f1f642e
ON
2783 return ret;
2784}
2785
6e84d644 2786/**
401a8d04
TH
2787 * cancel_work_sync - cancel a work and wait for it to finish
2788 * @work: the work to cancel
6e84d644 2789 *
401a8d04
TH
2790 * Cancel @work and wait for its execution to finish. This function
2791 * can be used even if the work re-queues itself or migrates to
2792 * another workqueue. On return from this function, @work is
2793 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2794 *
401a8d04
TH
2795 * cancel_work_sync(&delayed_work->work) must not be used for
2796 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2797 *
401a8d04 2798 * The caller must ensure that the workqueue on which @work was last
6e84d644 2799 * queued can't be destroyed before this function returns.
401a8d04 2800 *
d185af30 2801 * Return:
401a8d04 2802 * %true if @work was pending, %false otherwise.
6e84d644 2803 */
401a8d04 2804bool cancel_work_sync(struct work_struct *work)
6e84d644 2805{
36e227d2 2806 return __cancel_work_timer(work, false);
b89deed3 2807}
28e53bdd 2808EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2809
6e84d644 2810/**
401a8d04
TH
2811 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2812 * @dwork: the delayed work to flush
6e84d644 2813 *
401a8d04
TH
2814 * Delayed timer is cancelled and the pending work is queued for
2815 * immediate execution. Like flush_work(), this function only
2816 * considers the last queueing instance of @dwork.
1f1f642e 2817 *
d185af30 2818 * Return:
401a8d04
TH
2819 * %true if flush_work() waited for the work to finish execution,
2820 * %false if it was already idle.
6e84d644 2821 */
401a8d04
TH
2822bool flush_delayed_work(struct delayed_work *dwork)
2823{
8930caba 2824 local_irq_disable();
401a8d04 2825 if (del_timer_sync(&dwork->timer))
60c057bc 2826 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2827 local_irq_enable();
401a8d04
TH
2828 return flush_work(&dwork->work);
2829}
2830EXPORT_SYMBOL(flush_delayed_work);
2831
09383498 2832/**
57b30ae7
TH
2833 * cancel_delayed_work - cancel a delayed work
2834 * @dwork: delayed_work to cancel
09383498 2835 *
d185af30
YB
2836 * Kill off a pending delayed_work.
2837 *
2838 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2839 * pending.
2840 *
2841 * Note:
2842 * The work callback function may still be running on return, unless
2843 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2844 * use cancel_delayed_work_sync() to wait on it.
09383498 2845 *
57b30ae7 2846 * This function is safe to call from any context including IRQ handler.
09383498 2847 */
57b30ae7 2848bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2849{
57b30ae7
TH
2850 unsigned long flags;
2851 int ret;
2852
2853 do {
2854 ret = try_to_grab_pending(&dwork->work, true, &flags);
2855 } while (unlikely(ret == -EAGAIN));
2856
2857 if (unlikely(ret < 0))
2858 return false;
2859
7c3eed5c
TH
2860 set_work_pool_and_clear_pending(&dwork->work,
2861 get_work_pool_id(&dwork->work));
57b30ae7 2862 local_irq_restore(flags);
c0158ca6 2863 return ret;
09383498 2864}
57b30ae7 2865EXPORT_SYMBOL(cancel_delayed_work);
09383498 2866
401a8d04
TH
2867/**
2868 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2869 * @dwork: the delayed work cancel
2870 *
2871 * This is cancel_work_sync() for delayed works.
2872 *
d185af30 2873 * Return:
401a8d04
TH
2874 * %true if @dwork was pending, %false otherwise.
2875 */
2876bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2877{
36e227d2 2878 return __cancel_work_timer(&dwork->work, true);
6e84d644 2879}
f5a421a4 2880EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2881
b6136773 2882/**
31ddd871 2883 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2884 * @func: the function to call
b6136773 2885 *
31ddd871
TH
2886 * schedule_on_each_cpu() executes @func on each online CPU using the
2887 * system workqueue and blocks until all CPUs have completed.
b6136773 2888 * schedule_on_each_cpu() is very slow.
31ddd871 2889 *
d185af30 2890 * Return:
31ddd871 2891 * 0 on success, -errno on failure.
b6136773 2892 */
65f27f38 2893int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2894{
2895 int cpu;
38f51568 2896 struct work_struct __percpu *works;
15316ba8 2897
b6136773
AM
2898 works = alloc_percpu(struct work_struct);
2899 if (!works)
15316ba8 2900 return -ENOMEM;
b6136773 2901
93981800
TH
2902 get_online_cpus();
2903
15316ba8 2904 for_each_online_cpu(cpu) {
9bfb1839
IM
2905 struct work_struct *work = per_cpu_ptr(works, cpu);
2906
2907 INIT_WORK(work, func);
b71ab8c2 2908 schedule_work_on(cpu, work);
65a64464 2909 }
93981800
TH
2910
2911 for_each_online_cpu(cpu)
2912 flush_work(per_cpu_ptr(works, cpu));
2913
95402b38 2914 put_online_cpus();
b6136773 2915 free_percpu(works);
15316ba8
CL
2916 return 0;
2917}
2918
eef6a7d5
AS
2919/**
2920 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2921 *
2922 * Forces execution of the kernel-global workqueue and blocks until its
2923 * completion.
2924 *
2925 * Think twice before calling this function! It's very easy to get into
2926 * trouble if you don't take great care. Either of the following situations
2927 * will lead to deadlock:
2928 *
2929 * One of the work items currently on the workqueue needs to acquire
2930 * a lock held by your code or its caller.
2931 *
2932 * Your code is running in the context of a work routine.
2933 *
2934 * They will be detected by lockdep when they occur, but the first might not
2935 * occur very often. It depends on what work items are on the workqueue and
2936 * what locks they need, which you have no control over.
2937 *
2938 * In most situations flushing the entire workqueue is overkill; you merely
2939 * need to know that a particular work item isn't queued and isn't running.
2940 * In such cases you should use cancel_delayed_work_sync() or
2941 * cancel_work_sync() instead.
2942 */
1da177e4
LT
2943void flush_scheduled_work(void)
2944{
d320c038 2945 flush_workqueue(system_wq);
1da177e4 2946}
ae90dd5d 2947EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2948
1fa44eca
JB
2949/**
2950 * execute_in_process_context - reliably execute the routine with user context
2951 * @fn: the function to execute
1fa44eca
JB
2952 * @ew: guaranteed storage for the execute work structure (must
2953 * be available when the work executes)
2954 *
2955 * Executes the function immediately if process context is available,
2956 * otherwise schedules the function for delayed execution.
2957 *
d185af30 2958 * Return: 0 - function was executed
1fa44eca
JB
2959 * 1 - function was scheduled for execution
2960 */
65f27f38 2961int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2962{
2963 if (!in_interrupt()) {
65f27f38 2964 fn(&ew->work);
1fa44eca
JB
2965 return 0;
2966 }
2967
65f27f38 2968 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2969 schedule_work(&ew->work);
2970
2971 return 1;
2972}
2973EXPORT_SYMBOL_GPL(execute_in_process_context);
2974
226223ab
TH
2975#ifdef CONFIG_SYSFS
2976/*
2977 * Workqueues with WQ_SYSFS flag set is visible to userland via
2978 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2979 * following attributes.
2980 *
2981 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2982 * max_active RW int : maximum number of in-flight work items
2983 *
2984 * Unbound workqueues have the following extra attributes.
2985 *
2986 * id RO int : the associated pool ID
2987 * nice RW int : nice value of the workers
2988 * cpumask RW mask : bitmask of allowed CPUs for the workers
2989 */
2990struct wq_device {
2991 struct workqueue_struct *wq;
2992 struct device dev;
2993};
2994
2995static struct workqueue_struct *dev_to_wq(struct device *dev)
2996{
2997 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
2998
2999 return wq_dev->wq;
3000}
3001
1a6661da
GKH
3002static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3003 char *buf)
226223ab
TH
3004{
3005 struct workqueue_struct *wq = dev_to_wq(dev);
3006
3007 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3008}
1a6661da 3009static DEVICE_ATTR_RO(per_cpu);
226223ab 3010
1a6661da
GKH
3011static ssize_t max_active_show(struct device *dev,
3012 struct device_attribute *attr, char *buf)
226223ab
TH
3013{
3014 struct workqueue_struct *wq = dev_to_wq(dev);
3015
3016 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3017}
3018
1a6661da
GKH
3019static ssize_t max_active_store(struct device *dev,
3020 struct device_attribute *attr, const char *buf,
3021 size_t count)
226223ab
TH
3022{
3023 struct workqueue_struct *wq = dev_to_wq(dev);
3024 int val;
3025
3026 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3027 return -EINVAL;
3028
3029 workqueue_set_max_active(wq, val);
3030 return count;
3031}
1a6661da 3032static DEVICE_ATTR_RW(max_active);
226223ab 3033
1a6661da
GKH
3034static struct attribute *wq_sysfs_attrs[] = {
3035 &dev_attr_per_cpu.attr,
3036 &dev_attr_max_active.attr,
3037 NULL,
226223ab 3038};
1a6661da 3039ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3040
d55262c4
TH
3041static ssize_t wq_pool_ids_show(struct device *dev,
3042 struct device_attribute *attr, char *buf)
226223ab
TH
3043{
3044 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3045 const char *delim = "";
3046 int node, written = 0;
226223ab
TH
3047
3048 rcu_read_lock_sched();
d55262c4
TH
3049 for_each_node(node) {
3050 written += scnprintf(buf + written, PAGE_SIZE - written,
3051 "%s%d:%d", delim, node,
3052 unbound_pwq_by_node(wq, node)->pool->id);
3053 delim = " ";
3054 }
3055 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3056 rcu_read_unlock_sched();
3057
3058 return written;
3059}
3060
3061static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3062 char *buf)
3063{
3064 struct workqueue_struct *wq = dev_to_wq(dev);
3065 int written;
3066
6029a918
TH
3067 mutex_lock(&wq->mutex);
3068 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3069 mutex_unlock(&wq->mutex);
226223ab
TH
3070
3071 return written;
3072}
3073
3074/* prepare workqueue_attrs for sysfs store operations */
3075static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3076{
3077 struct workqueue_attrs *attrs;
3078
3079 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3080 if (!attrs)
3081 return NULL;
3082
6029a918
TH
3083 mutex_lock(&wq->mutex);
3084 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3085 mutex_unlock(&wq->mutex);
226223ab
TH
3086 return attrs;
3087}
3088
3089static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3090 const char *buf, size_t count)
3091{
3092 struct workqueue_struct *wq = dev_to_wq(dev);
3093 struct workqueue_attrs *attrs;
3094 int ret;
3095
3096 attrs = wq_sysfs_prep_attrs(wq);
3097 if (!attrs)
3098 return -ENOMEM;
3099
3100 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3101 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3102 ret = apply_workqueue_attrs(wq, attrs);
3103 else
3104 ret = -EINVAL;
3105
3106 free_workqueue_attrs(attrs);
3107 return ret ?: count;
3108}
3109
3110static ssize_t wq_cpumask_show(struct device *dev,
3111 struct device_attribute *attr, char *buf)
3112{
3113 struct workqueue_struct *wq = dev_to_wq(dev);
3114 int written;
3115
6029a918
TH
3116 mutex_lock(&wq->mutex);
3117 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3118 mutex_unlock(&wq->mutex);
226223ab
TH
3119
3120 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3121 return written;
3122}
3123
3124static ssize_t wq_cpumask_store(struct device *dev,
3125 struct device_attribute *attr,
3126 const char *buf, size_t count)
3127{
3128 struct workqueue_struct *wq = dev_to_wq(dev);
3129 struct workqueue_attrs *attrs;
3130 int ret;
3131
3132 attrs = wq_sysfs_prep_attrs(wq);
3133 if (!attrs)
3134 return -ENOMEM;
3135
3136 ret = cpumask_parse(buf, attrs->cpumask);
3137 if (!ret)
3138 ret = apply_workqueue_attrs(wq, attrs);
3139
3140 free_workqueue_attrs(attrs);
3141 return ret ?: count;
3142}
3143
d55262c4
TH
3144static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3145 char *buf)
3146{
3147 struct workqueue_struct *wq = dev_to_wq(dev);
3148 int written;
3149
3150 mutex_lock(&wq->mutex);
3151 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3152 !wq->unbound_attrs->no_numa);
3153 mutex_unlock(&wq->mutex);
3154
3155 return written;
3156}
3157
3158static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3159 const char *buf, size_t count)
3160{
3161 struct workqueue_struct *wq = dev_to_wq(dev);
3162 struct workqueue_attrs *attrs;
3163 int v, ret;
3164
3165 attrs = wq_sysfs_prep_attrs(wq);
3166 if (!attrs)
3167 return -ENOMEM;
3168
3169 ret = -EINVAL;
3170 if (sscanf(buf, "%d", &v) == 1) {
3171 attrs->no_numa = !v;
3172 ret = apply_workqueue_attrs(wq, attrs);
3173 }
3174
3175 free_workqueue_attrs(attrs);
3176 return ret ?: count;
3177}
3178
226223ab 3179static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3180 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3181 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3182 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3183 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3184 __ATTR_NULL,
3185};
3186
3187static struct bus_type wq_subsys = {
3188 .name = "workqueue",
1a6661da 3189 .dev_groups = wq_sysfs_groups,
226223ab
TH
3190};
3191
3192static int __init wq_sysfs_init(void)
3193{
3194 return subsys_virtual_register(&wq_subsys, NULL);
3195}
3196core_initcall(wq_sysfs_init);
3197
3198static void wq_device_release(struct device *dev)
3199{
3200 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3201
3202 kfree(wq_dev);
3203}
3204
3205/**
3206 * workqueue_sysfs_register - make a workqueue visible in sysfs
3207 * @wq: the workqueue to register
3208 *
3209 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3210 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3211 * which is the preferred method.
3212 *
3213 * Workqueue user should use this function directly iff it wants to apply
3214 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3215 * apply_workqueue_attrs() may race against userland updating the
3216 * attributes.
3217 *
d185af30 3218 * Return: 0 on success, -errno on failure.
226223ab
TH
3219 */
3220int workqueue_sysfs_register(struct workqueue_struct *wq)
3221{
3222 struct wq_device *wq_dev;
3223 int ret;
3224
3225 /*
3226 * Adjusting max_active or creating new pwqs by applyting
3227 * attributes breaks ordering guarantee. Disallow exposing ordered
3228 * workqueues.
3229 */
3230 if (WARN_ON(wq->flags & __WQ_ORDERED))
3231 return -EINVAL;
3232
3233 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3234 if (!wq_dev)
3235 return -ENOMEM;
3236
3237 wq_dev->wq = wq;
3238 wq_dev->dev.bus = &wq_subsys;
3239 wq_dev->dev.init_name = wq->name;
3240 wq_dev->dev.release = wq_device_release;
3241
3242 /*
3243 * unbound_attrs are created separately. Suppress uevent until
3244 * everything is ready.
3245 */
3246 dev_set_uevent_suppress(&wq_dev->dev, true);
3247
3248 ret = device_register(&wq_dev->dev);
3249 if (ret) {
3250 kfree(wq_dev);
3251 wq->wq_dev = NULL;
3252 return ret;
3253 }
3254
3255 if (wq->flags & WQ_UNBOUND) {
3256 struct device_attribute *attr;
3257
3258 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3259 ret = device_create_file(&wq_dev->dev, attr);
3260 if (ret) {
3261 device_unregister(&wq_dev->dev);
3262 wq->wq_dev = NULL;
3263 return ret;
3264 }
3265 }
3266 }
3267
3268 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3269 return 0;
3270}
3271
3272/**
3273 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3274 * @wq: the workqueue to unregister
3275 *
3276 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3277 */
3278static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3279{
3280 struct wq_device *wq_dev = wq->wq_dev;
3281
3282 if (!wq->wq_dev)
3283 return;
3284
3285 wq->wq_dev = NULL;
3286 device_unregister(&wq_dev->dev);
3287}
3288#else /* CONFIG_SYSFS */
3289static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3290#endif /* CONFIG_SYSFS */
3291
7a4e344c
TH
3292/**
3293 * free_workqueue_attrs - free a workqueue_attrs
3294 * @attrs: workqueue_attrs to free
3295 *
3296 * Undo alloc_workqueue_attrs().
3297 */
3298void free_workqueue_attrs(struct workqueue_attrs *attrs)
3299{
3300 if (attrs) {
3301 free_cpumask_var(attrs->cpumask);
3302 kfree(attrs);
3303 }
3304}
3305
3306/**
3307 * alloc_workqueue_attrs - allocate a workqueue_attrs
3308 * @gfp_mask: allocation mask to use
3309 *
3310 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3311 * return it.
3312 *
3313 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3314 */
3315struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3316{
3317 struct workqueue_attrs *attrs;
3318
3319 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3320 if (!attrs)
3321 goto fail;
3322 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3323 goto fail;
3324
13e2e556 3325 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3326 return attrs;
3327fail:
3328 free_workqueue_attrs(attrs);
3329 return NULL;
3330}
3331
29c91e99
TH
3332static void copy_workqueue_attrs(struct workqueue_attrs *to,
3333 const struct workqueue_attrs *from)
3334{
3335 to->nice = from->nice;
3336 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3337 /*
3338 * Unlike hash and equality test, this function doesn't ignore
3339 * ->no_numa as it is used for both pool and wq attrs. Instead,
3340 * get_unbound_pool() explicitly clears ->no_numa after copying.
3341 */
3342 to->no_numa = from->no_numa;
29c91e99
TH
3343}
3344
29c91e99
TH
3345/* hash value of the content of @attr */
3346static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3347{
3348 u32 hash = 0;
3349
3350 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3351 hash = jhash(cpumask_bits(attrs->cpumask),
3352 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3353 return hash;
3354}
3355
3356/* content equality test */
3357static bool wqattrs_equal(const struct workqueue_attrs *a,
3358 const struct workqueue_attrs *b)
3359{
3360 if (a->nice != b->nice)
3361 return false;
3362 if (!cpumask_equal(a->cpumask, b->cpumask))
3363 return false;
3364 return true;
3365}
3366
7a4e344c
TH
3367/**
3368 * init_worker_pool - initialize a newly zalloc'd worker_pool
3369 * @pool: worker_pool to initialize
3370 *
3371 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3372 *
3373 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3374 * inside @pool proper are initialized and put_unbound_pool() can be called
3375 * on @pool safely to release it.
7a4e344c
TH
3376 */
3377static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3378{
3379 spin_lock_init(&pool->lock);
29c91e99
TH
3380 pool->id = -1;
3381 pool->cpu = -1;
f3f90ad4 3382 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3383 pool->flags |= POOL_DISASSOCIATED;
3384 INIT_LIST_HEAD(&pool->worklist);
3385 INIT_LIST_HEAD(&pool->idle_list);
3386 hash_init(pool->busy_hash);
3387
3388 init_timer_deferrable(&pool->idle_timer);
3389 pool->idle_timer.function = idle_worker_timeout;
3390 pool->idle_timer.data = (unsigned long)pool;
3391
3392 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3393 (unsigned long)pool);
3394
3395 mutex_init(&pool->manager_arb);
92f9c5c4 3396 mutex_init(&pool->attach_mutex);
da028469 3397 INIT_LIST_HEAD(&pool->workers);
7a4e344c 3398
7cda9aae 3399 ida_init(&pool->worker_ida);
29c91e99
TH
3400 INIT_HLIST_NODE(&pool->hash_node);
3401 pool->refcnt = 1;
3402
3403 /* shouldn't fail above this point */
7a4e344c
TH
3404 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3405 if (!pool->attrs)
3406 return -ENOMEM;
3407 return 0;
4e1a1f9a
TH
3408}
3409
29c91e99
TH
3410static void rcu_free_pool(struct rcu_head *rcu)
3411{
3412 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3413
7cda9aae 3414 ida_destroy(&pool->worker_ida);
29c91e99
TH
3415 free_workqueue_attrs(pool->attrs);
3416 kfree(pool);
3417}
3418
3419/**
3420 * put_unbound_pool - put a worker_pool
3421 * @pool: worker_pool to put
3422 *
3423 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3424 * safe manner. get_unbound_pool() calls this function on its failure path
3425 * and this function should be able to release pools which went through,
3426 * successfully or not, init_worker_pool().
a892cacc
TH
3427 *
3428 * Should be called with wq_pool_mutex held.
29c91e99
TH
3429 */
3430static void put_unbound_pool(struct worker_pool *pool)
3431{
60f5a4bc 3432 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3433 struct worker *worker;
3434
a892cacc
TH
3435 lockdep_assert_held(&wq_pool_mutex);
3436
3437 if (--pool->refcnt)
29c91e99 3438 return;
29c91e99
TH
3439
3440 /* sanity checks */
61d0fbb4 3441 if (WARN_ON(!(pool->cpu < 0)) ||
a892cacc 3442 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3443 return;
29c91e99
TH
3444
3445 /* release id and unhash */
3446 if (pool->id >= 0)
3447 idr_remove(&worker_pool_idr, pool->id);
3448 hash_del(&pool->hash_node);
3449
c5aa87bb
TH
3450 /*
3451 * Become the manager and destroy all workers. Grabbing
3452 * manager_arb prevents @pool's workers from blocking on
92f9c5c4 3453 * attach_mutex.
c5aa87bb 3454 */
29c91e99 3455 mutex_lock(&pool->manager_arb);
29c91e99 3456
60f5a4bc 3457 spin_lock_irq(&pool->lock);
1037de36 3458 while ((worker = first_idle_worker(pool)))
29c91e99
TH
3459 destroy_worker(worker);
3460 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3461 spin_unlock_irq(&pool->lock);
60f5a4bc 3462
92f9c5c4 3463 mutex_lock(&pool->attach_mutex);
da028469 3464 if (!list_empty(&pool->workers))
60f5a4bc 3465 pool->detach_completion = &detach_completion;
92f9c5c4 3466 mutex_unlock(&pool->attach_mutex);
60f5a4bc
LJ
3467
3468 if (pool->detach_completion)
3469 wait_for_completion(pool->detach_completion);
3470
29c91e99
TH
3471 mutex_unlock(&pool->manager_arb);
3472
3473 /* shut down the timers */
3474 del_timer_sync(&pool->idle_timer);
3475 del_timer_sync(&pool->mayday_timer);
3476
3477 /* sched-RCU protected to allow dereferences from get_work_pool() */
3478 call_rcu_sched(&pool->rcu, rcu_free_pool);
3479}
3480
3481/**
3482 * get_unbound_pool - get a worker_pool with the specified attributes
3483 * @attrs: the attributes of the worker_pool to get
3484 *
3485 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3486 * reference count and return it. If there already is a matching
3487 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3488 * create a new one.
a892cacc
TH
3489 *
3490 * Should be called with wq_pool_mutex held.
d185af30
YB
3491 *
3492 * Return: On success, a worker_pool with the same attributes as @attrs.
3493 * On failure, %NULL.
29c91e99
TH
3494 */
3495static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3496{
29c91e99
TH
3497 u32 hash = wqattrs_hash(attrs);
3498 struct worker_pool *pool;
f3f90ad4 3499 int node;
29c91e99 3500
a892cacc 3501 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3502
3503 /* do we already have a matching pool? */
29c91e99
TH
3504 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3505 if (wqattrs_equal(pool->attrs, attrs)) {
3506 pool->refcnt++;
3507 goto out_unlock;
3508 }
3509 }
29c91e99
TH
3510
3511 /* nope, create a new one */
3512 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3513 if (!pool || init_worker_pool(pool) < 0)
3514 goto fail;
3515
8864b4e5 3516 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3517 copy_workqueue_attrs(pool->attrs, attrs);
3518
2865a8fb
SL
3519 /*
3520 * no_numa isn't a worker_pool attribute, always clear it. See
3521 * 'struct workqueue_attrs' comments for detail.
3522 */
3523 pool->attrs->no_numa = false;
3524
f3f90ad4
TH
3525 /* if cpumask is contained inside a NUMA node, we belong to that node */
3526 if (wq_numa_enabled) {
3527 for_each_node(node) {
3528 if (cpumask_subset(pool->attrs->cpumask,
3529 wq_numa_possible_cpumask[node])) {
3530 pool->node = node;
3531 break;
3532 }
3533 }
3534 }
3535
29c91e99
TH
3536 if (worker_pool_assign_id(pool) < 0)
3537 goto fail;
3538
3539 /* create and start the initial worker */
ebf44d16 3540 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3541 goto fail;
3542
29c91e99 3543 /* install */
29c91e99
TH
3544 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3545out_unlock:
29c91e99
TH
3546 return pool;
3547fail:
29c91e99
TH
3548 if (pool)
3549 put_unbound_pool(pool);
3550 return NULL;
3551}
3552
8864b4e5
TH
3553static void rcu_free_pwq(struct rcu_head *rcu)
3554{
3555 kmem_cache_free(pwq_cache,
3556 container_of(rcu, struct pool_workqueue, rcu));
3557}
3558
3559/*
3560 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3561 * and needs to be destroyed.
3562 */
3563static void pwq_unbound_release_workfn(struct work_struct *work)
3564{
3565 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3566 unbound_release_work);
3567 struct workqueue_struct *wq = pwq->wq;
3568 struct worker_pool *pool = pwq->pool;
bc0caf09 3569 bool is_last;
8864b4e5
TH
3570
3571 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3572 return;
3573
75ccf595 3574 /*
3c25a55d 3575 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3576 * necessary on release but do it anyway. It's easier to verify
3577 * and consistent with the linking path.
3578 */
3c25a55d 3579 mutex_lock(&wq->mutex);
8864b4e5 3580 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3581 is_last = list_empty(&wq->pwqs);
3c25a55d 3582 mutex_unlock(&wq->mutex);
8864b4e5 3583
a892cacc 3584 mutex_lock(&wq_pool_mutex);
8864b4e5 3585 put_unbound_pool(pool);
a892cacc
TH
3586 mutex_unlock(&wq_pool_mutex);
3587
8864b4e5
TH
3588 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3589
3590 /*
3591 * If we're the last pwq going away, @wq is already dead and no one
3592 * is gonna access it anymore. Free it.
3593 */
6029a918
TH
3594 if (is_last) {
3595 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3596 kfree(wq);
6029a918 3597 }
8864b4e5
TH
3598}
3599
0fbd95aa 3600/**
699ce097 3601 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3602 * @pwq: target pool_workqueue
0fbd95aa 3603 *
699ce097
TH
3604 * If @pwq isn't freezing, set @pwq->max_active to the associated
3605 * workqueue's saved_max_active and activate delayed work items
3606 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3607 */
699ce097 3608static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3609{
699ce097
TH
3610 struct workqueue_struct *wq = pwq->wq;
3611 bool freezable = wq->flags & WQ_FREEZABLE;
3612
3613 /* for @wq->saved_max_active */
a357fc03 3614 lockdep_assert_held(&wq->mutex);
699ce097
TH
3615
3616 /* fast exit for non-freezable wqs */
3617 if (!freezable && pwq->max_active == wq->saved_max_active)
3618 return;
3619
a357fc03 3620 spin_lock_irq(&pwq->pool->lock);
699ce097 3621
74b414ea
LJ
3622 /*
3623 * During [un]freezing, the caller is responsible for ensuring that
3624 * this function is called at least once after @workqueue_freezing
3625 * is updated and visible.
3626 */
3627 if (!freezable || !workqueue_freezing) {
699ce097 3628 pwq->max_active = wq->saved_max_active;
0fbd95aa 3629
699ce097
TH
3630 while (!list_empty(&pwq->delayed_works) &&
3631 pwq->nr_active < pwq->max_active)
3632 pwq_activate_first_delayed(pwq);
951a078a
LJ
3633
3634 /*
3635 * Need to kick a worker after thawed or an unbound wq's
3636 * max_active is bumped. It's a slow path. Do it always.
3637 */
3638 wake_up_worker(pwq->pool);
699ce097
TH
3639 } else {
3640 pwq->max_active = 0;
3641 }
3642
a357fc03 3643 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3644}
3645
e50aba9a 3646/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3647static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3648 struct worker_pool *pool)
d2c1d404
TH
3649{
3650 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3651
e50aba9a
TH
3652 memset(pwq, 0, sizeof(*pwq));
3653
d2c1d404
TH
3654 pwq->pool = pool;
3655 pwq->wq = wq;
3656 pwq->flush_color = -1;
8864b4e5 3657 pwq->refcnt = 1;
d2c1d404 3658 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3659 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3660 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3661 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3662}
d2c1d404 3663
f147f29e 3664/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3665static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3666{
3667 struct workqueue_struct *wq = pwq->wq;
3668
3669 lockdep_assert_held(&wq->mutex);
75ccf595 3670
1befcf30
TH
3671 /* may be called multiple times, ignore if already linked */
3672 if (!list_empty(&pwq->pwqs_node))
3673 return;
3674
983ca25e
TH
3675 /*
3676 * Set the matching work_color. This is synchronized with
3c25a55d 3677 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3678 */
75ccf595 3679 pwq->work_color = wq->work_color;
983ca25e
TH
3680
3681 /* sync max_active to the current setting */
3682 pwq_adjust_max_active(pwq);
3683
3684 /* link in @pwq */
9e8cd2f5 3685 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3686}
a357fc03 3687
f147f29e
TH
3688/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3689static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3690 const struct workqueue_attrs *attrs)
3691{
3692 struct worker_pool *pool;
3693 struct pool_workqueue *pwq;
3694
3695 lockdep_assert_held(&wq_pool_mutex);
3696
3697 pool = get_unbound_pool(attrs);
3698 if (!pool)
3699 return NULL;
3700
e50aba9a 3701 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3702 if (!pwq) {
3703 put_unbound_pool(pool);
3704 return NULL;
df2d5ae4 3705 }
6029a918 3706
f147f29e
TH
3707 init_pwq(pwq, wq, pool);
3708 return pwq;
d2c1d404
TH
3709}
3710
4c16bd32
TH
3711/* undo alloc_unbound_pwq(), used only in the error path */
3712static void free_unbound_pwq(struct pool_workqueue *pwq)
3713{
3714 lockdep_assert_held(&wq_pool_mutex);
3715
3716 if (pwq) {
3717 put_unbound_pool(pwq->pool);
cece95df 3718 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3719 }
3720}
3721
3722/**
3723 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3724 * @attrs: the wq_attrs of interest
3725 * @node: the target NUMA node
3726 * @cpu_going_down: if >= 0, the CPU to consider as offline
3727 * @cpumask: outarg, the resulting cpumask
3728 *
3729 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3730 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3731 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3732 *
3733 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3734 * enabled and @node has online CPUs requested by @attrs, the returned
3735 * cpumask is the intersection of the possible CPUs of @node and
3736 * @attrs->cpumask.
3737 *
3738 * The caller is responsible for ensuring that the cpumask of @node stays
3739 * stable.
d185af30
YB
3740 *
3741 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3742 * %false if equal.
4c16bd32
TH
3743 */
3744static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3745 int cpu_going_down, cpumask_t *cpumask)
3746{
d55262c4 3747 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3748 goto use_dfl;
3749
3750 /* does @node have any online CPUs @attrs wants? */
3751 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3752 if (cpu_going_down >= 0)
3753 cpumask_clear_cpu(cpu_going_down, cpumask);
3754
3755 if (cpumask_empty(cpumask))
3756 goto use_dfl;
3757
3758 /* yeap, return possible CPUs in @node that @attrs wants */
3759 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3760 return !cpumask_equal(cpumask, attrs->cpumask);
3761
3762use_dfl:
3763 cpumask_copy(cpumask, attrs->cpumask);
3764 return false;
3765}
3766
1befcf30
TH
3767/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3768static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3769 int node,
3770 struct pool_workqueue *pwq)
3771{
3772 struct pool_workqueue *old_pwq;
3773
3774 lockdep_assert_held(&wq->mutex);
3775
3776 /* link_pwq() can handle duplicate calls */
3777 link_pwq(pwq);
3778
3779 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3780 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3781 return old_pwq;
3782}
3783
9e8cd2f5
TH
3784/**
3785 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3786 * @wq: the target workqueue
3787 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3788 *
4c16bd32
TH
3789 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3790 * machines, this function maps a separate pwq to each NUMA node with
3791 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3792 * NUMA node it was issued on. Older pwqs are released as in-flight work
3793 * items finish. Note that a work item which repeatedly requeues itself
3794 * back-to-back will stay on its current pwq.
9e8cd2f5 3795 *
d185af30
YB
3796 * Performs GFP_KERNEL allocations.
3797 *
3798 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3799 */
3800int apply_workqueue_attrs(struct workqueue_struct *wq,
3801 const struct workqueue_attrs *attrs)
3802{
4c16bd32
TH
3803 struct workqueue_attrs *new_attrs, *tmp_attrs;
3804 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3805 int node, ret;
9e8cd2f5 3806
8719dcea 3807 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3808 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3809 return -EINVAL;
3810
8719dcea
TH
3811 /* creating multiple pwqs breaks ordering guarantee */
3812 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3813 return -EINVAL;
3814
4c16bd32 3815 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3816 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3817 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3818 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3819 goto enomem;
3820
4c16bd32 3821 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3822 copy_workqueue_attrs(new_attrs, attrs);
3823 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3824
4c16bd32
TH
3825 /*
3826 * We may create multiple pwqs with differing cpumasks. Make a
3827 * copy of @new_attrs which will be modified and used to obtain
3828 * pools.
3829 */
3830 copy_workqueue_attrs(tmp_attrs, new_attrs);
3831
3832 /*
3833 * CPUs should stay stable across pwq creations and installations.
3834 * Pin CPUs, determine the target cpumask for each node and create
3835 * pwqs accordingly.
3836 */
3837 get_online_cpus();
3838
a892cacc 3839 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3840
3841 /*
3842 * If something goes wrong during CPU up/down, we'll fall back to
3843 * the default pwq covering whole @attrs->cpumask. Always create
3844 * it even if we don't use it immediately.
3845 */
3846 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3847 if (!dfl_pwq)
3848 goto enomem_pwq;
3849
3850 for_each_node(node) {
3851 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3852 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3853 if (!pwq_tbl[node])
3854 goto enomem_pwq;
3855 } else {
3856 dfl_pwq->refcnt++;
3857 pwq_tbl[node] = dfl_pwq;
3858 }
3859 }
3860
f147f29e 3861 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3862
4c16bd32 3863 /* all pwqs have been created successfully, let's install'em */
f147f29e 3864 mutex_lock(&wq->mutex);
a892cacc 3865
f147f29e 3866 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3867
3868 /* save the previous pwq and install the new one */
f147f29e 3869 for_each_node(node)
4c16bd32
TH
3870 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3871
3872 /* @dfl_pwq might not have been used, ensure it's linked */
3873 link_pwq(dfl_pwq);
3874 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3875
3876 mutex_unlock(&wq->mutex);
9e8cd2f5 3877
4c16bd32
TH
3878 /* put the old pwqs */
3879 for_each_node(node)
3880 put_pwq_unlocked(pwq_tbl[node]);
3881 put_pwq_unlocked(dfl_pwq);
3882
3883 put_online_cpus();
4862125b
TH
3884 ret = 0;
3885 /* fall through */
3886out_free:
4c16bd32 3887 free_workqueue_attrs(tmp_attrs);
4862125b 3888 free_workqueue_attrs(new_attrs);
4c16bd32 3889 kfree(pwq_tbl);
4862125b 3890 return ret;
13e2e556 3891
4c16bd32
TH
3892enomem_pwq:
3893 free_unbound_pwq(dfl_pwq);
3894 for_each_node(node)
3895 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3896 free_unbound_pwq(pwq_tbl[node]);
3897 mutex_unlock(&wq_pool_mutex);
3898 put_online_cpus();
13e2e556 3899enomem:
4862125b
TH
3900 ret = -ENOMEM;
3901 goto out_free;
9e8cd2f5
TH
3902}
3903
4c16bd32
TH
3904/**
3905 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3906 * @wq: the target workqueue
3907 * @cpu: the CPU coming up or going down
3908 * @online: whether @cpu is coming up or going down
3909 *
3910 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3911 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3912 * @wq accordingly.
3913 *
3914 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3915 * falls back to @wq->dfl_pwq which may not be optimal but is always
3916 * correct.
3917 *
3918 * Note that when the last allowed CPU of a NUMA node goes offline for a
3919 * workqueue with a cpumask spanning multiple nodes, the workers which were
3920 * already executing the work items for the workqueue will lose their CPU
3921 * affinity and may execute on any CPU. This is similar to how per-cpu
3922 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3923 * affinity, it's the user's responsibility to flush the work item from
3924 * CPU_DOWN_PREPARE.
3925 */
3926static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3927 bool online)
3928{
3929 int node = cpu_to_node(cpu);
3930 int cpu_off = online ? -1 : cpu;
3931 struct pool_workqueue *old_pwq = NULL, *pwq;
3932 struct workqueue_attrs *target_attrs;
3933 cpumask_t *cpumask;
3934
3935 lockdep_assert_held(&wq_pool_mutex);
3936
3937 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3938 return;
3939
3940 /*
3941 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3942 * Let's use a preallocated one. The following buf is protected by
3943 * CPU hotplug exclusion.
3944 */
3945 target_attrs = wq_update_unbound_numa_attrs_buf;
3946 cpumask = target_attrs->cpumask;
3947
3948 mutex_lock(&wq->mutex);
d55262c4
TH
3949 if (wq->unbound_attrs->no_numa)
3950 goto out_unlock;
4c16bd32
TH
3951
3952 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3953 pwq = unbound_pwq_by_node(wq, node);
3954
3955 /*
3956 * Let's determine what needs to be done. If the target cpumask is
3957 * different from wq's, we need to compare it to @pwq's and create
3958 * a new one if they don't match. If the target cpumask equals
534a3fbb 3959 * wq's, the default pwq should be used.
4c16bd32
TH
3960 */
3961 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3962 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3963 goto out_unlock;
3964 } else {
534a3fbb 3965 goto use_dfl_pwq;
4c16bd32
TH
3966 }
3967
3968 mutex_unlock(&wq->mutex);
3969
3970 /* create a new pwq */
3971 pwq = alloc_unbound_pwq(wq, target_attrs);
3972 if (!pwq) {
2d916033
FF
3973 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3974 wq->name);
77f300b1
DY
3975 mutex_lock(&wq->mutex);
3976 goto use_dfl_pwq;
4c16bd32
TH
3977 }
3978
3979 /*
3980 * Install the new pwq. As this function is called only from CPU
3981 * hotplug callbacks and applying a new attrs is wrapped with
3982 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3983 * inbetween.
3984 */
3985 mutex_lock(&wq->mutex);
3986 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3987 goto out_unlock;
3988
3989use_dfl_pwq:
3990 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3991 get_pwq(wq->dfl_pwq);
3992 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3993 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3994out_unlock:
3995 mutex_unlock(&wq->mutex);
3996 put_pwq_unlocked(old_pwq);
3997}
3998
30cdf249 3999static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4000{
49e3cf44 4001 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4002 int cpu, ret;
30cdf249
TH
4003
4004 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4005 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4006 if (!wq->cpu_pwqs)
30cdf249
TH
4007 return -ENOMEM;
4008
4009 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4010 struct pool_workqueue *pwq =
4011 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4012 struct worker_pool *cpu_pools =
f02ae73a 4013 per_cpu(cpu_worker_pools, cpu);
f3421797 4014
f147f29e
TH
4015 init_pwq(pwq, wq, &cpu_pools[highpri]);
4016
4017 mutex_lock(&wq->mutex);
1befcf30 4018 link_pwq(pwq);
f147f29e 4019 mutex_unlock(&wq->mutex);
30cdf249 4020 }
9e8cd2f5 4021 return 0;
8a2b7538
TH
4022 } else if (wq->flags & __WQ_ORDERED) {
4023 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4024 /* there should only be single pwq for ordering guarantee */
4025 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4026 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4027 "ordering guarantee broken for workqueue %s\n", wq->name);
4028 return ret;
30cdf249 4029 } else {
9e8cd2f5 4030 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4031 }
0f900049
TH
4032}
4033
f3421797
TH
4034static int wq_clamp_max_active(int max_active, unsigned int flags,
4035 const char *name)
b71ab8c2 4036{
f3421797
TH
4037 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4038
4039 if (max_active < 1 || max_active > lim)
044c782c
VI
4040 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4041 max_active, name, 1, lim);
b71ab8c2 4042
f3421797 4043 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4044}
4045
b196be89 4046struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4047 unsigned int flags,
4048 int max_active,
4049 struct lock_class_key *key,
b196be89 4050 const char *lock_name, ...)
1da177e4 4051{
df2d5ae4 4052 size_t tbl_size = 0;
ecf6881f 4053 va_list args;
1da177e4 4054 struct workqueue_struct *wq;
49e3cf44 4055 struct pool_workqueue *pwq;
b196be89 4056
cee22a15
VK
4057 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4058 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4059 flags |= WQ_UNBOUND;
4060
ecf6881f 4061 /* allocate wq and format name */
df2d5ae4
TH
4062 if (flags & WQ_UNBOUND)
4063 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4064
4065 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4066 if (!wq)
d2c1d404 4067 return NULL;
b196be89 4068
6029a918
TH
4069 if (flags & WQ_UNBOUND) {
4070 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4071 if (!wq->unbound_attrs)
4072 goto err_free_wq;
4073 }
4074
ecf6881f
TH
4075 va_start(args, lock_name);
4076 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4077 va_end(args);
1da177e4 4078
d320c038 4079 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4080 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4081
b196be89 4082 /* init wq */
97e37d7b 4083 wq->flags = flags;
a0a1a5fd 4084 wq->saved_max_active = max_active;
3c25a55d 4085 mutex_init(&wq->mutex);
112202d9 4086 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4087 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4088 INIT_LIST_HEAD(&wq->flusher_queue);
4089 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4090 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4091
eb13ba87 4092 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4093 INIT_LIST_HEAD(&wq->list);
3af24433 4094
30cdf249 4095 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4096 goto err_free_wq;
1537663f 4097
493008a8
TH
4098 /*
4099 * Workqueues which may be used during memory reclaim should
4100 * have a rescuer to guarantee forward progress.
4101 */
4102 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4103 struct worker *rescuer;
4104
f7537df5 4105 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4106 if (!rescuer)
d2c1d404 4107 goto err_destroy;
e22bee78 4108
111c225a
TH
4109 rescuer->rescue_wq = wq;
4110 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4111 wq->name);
d2c1d404
TH
4112 if (IS_ERR(rescuer->task)) {
4113 kfree(rescuer);
4114 goto err_destroy;
4115 }
e22bee78 4116
d2c1d404 4117 wq->rescuer = rescuer;
14a40ffc 4118 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4119 wake_up_process(rescuer->task);
3af24433
ON
4120 }
4121
226223ab
TH
4122 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4123 goto err_destroy;
4124
a0a1a5fd 4125 /*
68e13a67
LJ
4126 * wq_pool_mutex protects global freeze state and workqueues list.
4127 * Grab it, adjust max_active and add the new @wq to workqueues
4128 * list.
a0a1a5fd 4129 */
68e13a67 4130 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4131
a357fc03 4132 mutex_lock(&wq->mutex);
699ce097
TH
4133 for_each_pwq(pwq, wq)
4134 pwq_adjust_max_active(pwq);
a357fc03 4135 mutex_unlock(&wq->mutex);
a0a1a5fd 4136
1537663f 4137 list_add(&wq->list, &workqueues);
a0a1a5fd 4138
68e13a67 4139 mutex_unlock(&wq_pool_mutex);
1537663f 4140
3af24433 4141 return wq;
d2c1d404
TH
4142
4143err_free_wq:
6029a918 4144 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4145 kfree(wq);
4146 return NULL;
4147err_destroy:
4148 destroy_workqueue(wq);
4690c4ab 4149 return NULL;
3af24433 4150}
d320c038 4151EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4152
3af24433
ON
4153/**
4154 * destroy_workqueue - safely terminate a workqueue
4155 * @wq: target workqueue
4156 *
4157 * Safely destroy a workqueue. All work currently pending will be done first.
4158 */
4159void destroy_workqueue(struct workqueue_struct *wq)
4160{
49e3cf44 4161 struct pool_workqueue *pwq;
4c16bd32 4162 int node;
3af24433 4163
9c5a2ba7
TH
4164 /* drain it before proceeding with destruction */
4165 drain_workqueue(wq);
c8efcc25 4166
6183c009 4167 /* sanity checks */
b09f4fd3 4168 mutex_lock(&wq->mutex);
49e3cf44 4169 for_each_pwq(pwq, wq) {
6183c009
TH
4170 int i;
4171
76af4d93
TH
4172 for (i = 0; i < WORK_NR_COLORS; i++) {
4173 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4174 mutex_unlock(&wq->mutex);
6183c009 4175 return;
76af4d93
TH
4176 }
4177 }
4178
5c529597 4179 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4180 WARN_ON(pwq->nr_active) ||
76af4d93 4181 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4182 mutex_unlock(&wq->mutex);
6183c009 4183 return;
76af4d93 4184 }
6183c009 4185 }
b09f4fd3 4186 mutex_unlock(&wq->mutex);
6183c009 4187
a0a1a5fd
TH
4188 /*
4189 * wq list is used to freeze wq, remove from list after
4190 * flushing is complete in case freeze races us.
4191 */
68e13a67 4192 mutex_lock(&wq_pool_mutex);
d2c1d404 4193 list_del_init(&wq->list);
68e13a67 4194 mutex_unlock(&wq_pool_mutex);
3af24433 4195
226223ab
TH
4196 workqueue_sysfs_unregister(wq);
4197
493008a8 4198 if (wq->rescuer) {
e22bee78 4199 kthread_stop(wq->rescuer->task);
8d9df9f0 4200 kfree(wq->rescuer);
493008a8 4201 wq->rescuer = NULL;
e22bee78
TH
4202 }
4203
8864b4e5
TH
4204 if (!(wq->flags & WQ_UNBOUND)) {
4205 /*
4206 * The base ref is never dropped on per-cpu pwqs. Directly
4207 * free the pwqs and wq.
4208 */
4209 free_percpu(wq->cpu_pwqs);
4210 kfree(wq);
4211 } else {
4212 /*
4213 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4214 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4215 * @wq will be freed when the last pwq is released.
8864b4e5 4216 */
4c16bd32
TH
4217 for_each_node(node) {
4218 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4219 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4220 put_pwq_unlocked(pwq);
4221 }
4222
4223 /*
4224 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4225 * put. Don't access it afterwards.
4226 */
4227 pwq = wq->dfl_pwq;
4228 wq->dfl_pwq = NULL;
dce90d47 4229 put_pwq_unlocked(pwq);
29c91e99 4230 }
3af24433
ON
4231}
4232EXPORT_SYMBOL_GPL(destroy_workqueue);
4233
dcd989cb
TH
4234/**
4235 * workqueue_set_max_active - adjust max_active of a workqueue
4236 * @wq: target workqueue
4237 * @max_active: new max_active value.
4238 *
4239 * Set max_active of @wq to @max_active.
4240 *
4241 * CONTEXT:
4242 * Don't call from IRQ context.
4243 */
4244void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4245{
49e3cf44 4246 struct pool_workqueue *pwq;
dcd989cb 4247
8719dcea
TH
4248 /* disallow meddling with max_active for ordered workqueues */
4249 if (WARN_ON(wq->flags & __WQ_ORDERED))
4250 return;
4251
f3421797 4252 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4253
a357fc03 4254 mutex_lock(&wq->mutex);
dcd989cb
TH
4255
4256 wq->saved_max_active = max_active;
4257
699ce097
TH
4258 for_each_pwq(pwq, wq)
4259 pwq_adjust_max_active(pwq);
93981800 4260
a357fc03 4261 mutex_unlock(&wq->mutex);
15316ba8 4262}
dcd989cb 4263EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4264
e6267616
TH
4265/**
4266 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4267 *
4268 * Determine whether %current is a workqueue rescuer. Can be used from
4269 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4270 *
4271 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4272 */
4273bool current_is_workqueue_rescuer(void)
4274{
4275 struct worker *worker = current_wq_worker();
4276
6a092dfd 4277 return worker && worker->rescue_wq;
e6267616
TH
4278}
4279
eef6a7d5 4280/**
dcd989cb
TH
4281 * workqueue_congested - test whether a workqueue is congested
4282 * @cpu: CPU in question
4283 * @wq: target workqueue
eef6a7d5 4284 *
dcd989cb
TH
4285 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4286 * no synchronization around this function and the test result is
4287 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4288 *
d3251859
TH
4289 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4290 * Note that both per-cpu and unbound workqueues may be associated with
4291 * multiple pool_workqueues which have separate congested states. A
4292 * workqueue being congested on one CPU doesn't mean the workqueue is also
4293 * contested on other CPUs / NUMA nodes.
4294 *
d185af30 4295 * Return:
dcd989cb 4296 * %true if congested, %false otherwise.
eef6a7d5 4297 */
d84ff051 4298bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4299{
7fb98ea7 4300 struct pool_workqueue *pwq;
76af4d93
TH
4301 bool ret;
4302
88109453 4303 rcu_read_lock_sched();
7fb98ea7 4304
d3251859
TH
4305 if (cpu == WORK_CPU_UNBOUND)
4306 cpu = smp_processor_id();
4307
7fb98ea7
TH
4308 if (!(wq->flags & WQ_UNBOUND))
4309 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4310 else
df2d5ae4 4311 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4312
76af4d93 4313 ret = !list_empty(&pwq->delayed_works);
88109453 4314 rcu_read_unlock_sched();
76af4d93
TH
4315
4316 return ret;
1da177e4 4317}
dcd989cb 4318EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4319
dcd989cb
TH
4320/**
4321 * work_busy - test whether a work is currently pending or running
4322 * @work: the work to be tested
4323 *
4324 * Test whether @work is currently pending or running. There is no
4325 * synchronization around this function and the test result is
4326 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4327 *
d185af30 4328 * Return:
dcd989cb
TH
4329 * OR'd bitmask of WORK_BUSY_* bits.
4330 */
4331unsigned int work_busy(struct work_struct *work)
1da177e4 4332{
fa1b54e6 4333 struct worker_pool *pool;
dcd989cb
TH
4334 unsigned long flags;
4335 unsigned int ret = 0;
1da177e4 4336
dcd989cb
TH
4337 if (work_pending(work))
4338 ret |= WORK_BUSY_PENDING;
1da177e4 4339
fa1b54e6
TH
4340 local_irq_save(flags);
4341 pool = get_work_pool(work);
038366c5 4342 if (pool) {
fa1b54e6 4343 spin_lock(&pool->lock);
038366c5
LJ
4344 if (find_worker_executing_work(pool, work))
4345 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4346 spin_unlock(&pool->lock);
038366c5 4347 }
fa1b54e6 4348 local_irq_restore(flags);
1da177e4 4349
dcd989cb 4350 return ret;
1da177e4 4351}
dcd989cb 4352EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4353
3d1cb205
TH
4354/**
4355 * set_worker_desc - set description for the current work item
4356 * @fmt: printf-style format string
4357 * @...: arguments for the format string
4358 *
4359 * This function can be called by a running work function to describe what
4360 * the work item is about. If the worker task gets dumped, this
4361 * information will be printed out together to help debugging. The
4362 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4363 */
4364void set_worker_desc(const char *fmt, ...)
4365{
4366 struct worker *worker = current_wq_worker();
4367 va_list args;
4368
4369 if (worker) {
4370 va_start(args, fmt);
4371 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4372 va_end(args);
4373 worker->desc_valid = true;
4374 }
4375}
4376
4377/**
4378 * print_worker_info - print out worker information and description
4379 * @log_lvl: the log level to use when printing
4380 * @task: target task
4381 *
4382 * If @task is a worker and currently executing a work item, print out the
4383 * name of the workqueue being serviced and worker description set with
4384 * set_worker_desc() by the currently executing work item.
4385 *
4386 * This function can be safely called on any task as long as the
4387 * task_struct itself is accessible. While safe, this function isn't
4388 * synchronized and may print out mixups or garbages of limited length.
4389 */
4390void print_worker_info(const char *log_lvl, struct task_struct *task)
4391{
4392 work_func_t *fn = NULL;
4393 char name[WQ_NAME_LEN] = { };
4394 char desc[WORKER_DESC_LEN] = { };
4395 struct pool_workqueue *pwq = NULL;
4396 struct workqueue_struct *wq = NULL;
4397 bool desc_valid = false;
4398 struct worker *worker;
4399
4400 if (!(task->flags & PF_WQ_WORKER))
4401 return;
4402
4403 /*
4404 * This function is called without any synchronization and @task
4405 * could be in any state. Be careful with dereferences.
4406 */
4407 worker = probe_kthread_data(task);
4408
4409 /*
4410 * Carefully copy the associated workqueue's workfn and name. Keep
4411 * the original last '\0' in case the original contains garbage.
4412 */
4413 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4414 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4415 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4416 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4417
4418 /* copy worker description */
4419 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4420 if (desc_valid)
4421 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4422
4423 if (fn || name[0] || desc[0]) {
4424 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4425 if (desc[0])
4426 pr_cont(" (%s)", desc);
4427 pr_cont("\n");
4428 }
4429}
4430
db7bccf4
TH
4431/*
4432 * CPU hotplug.
4433 *
e22bee78 4434 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4435 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4436 * pool which make migrating pending and scheduled works very
e22bee78 4437 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4438 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4439 * blocked draining impractical.
4440 *
24647570 4441 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4442 * running as an unbound one and allowing it to be reattached later if the
4443 * cpu comes back online.
db7bccf4 4444 */
1da177e4 4445
706026c2 4446static void wq_unbind_fn(struct work_struct *work)
3af24433 4447{
38db41d9 4448 int cpu = smp_processor_id();
4ce62e9e 4449 struct worker_pool *pool;
db7bccf4 4450 struct worker *worker;
3af24433 4451
f02ae73a 4452 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4453 mutex_lock(&pool->attach_mutex);
94cf58bb 4454 spin_lock_irq(&pool->lock);
3af24433 4455
94cf58bb 4456 /*
92f9c5c4 4457 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4458 * unbound and set DISASSOCIATED. Before this, all workers
4459 * except for the ones which are still executing works from
4460 * before the last CPU down must be on the cpu. After
4461 * this, they may become diasporas.
4462 */
da028469 4463 for_each_pool_worker(worker, pool)
c9e7cf27 4464 worker->flags |= WORKER_UNBOUND;
06ba38a9 4465
24647570 4466 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4467
94cf58bb 4468 spin_unlock_irq(&pool->lock);
92f9c5c4 4469 mutex_unlock(&pool->attach_mutex);
628c78e7 4470
eb283428
LJ
4471 /*
4472 * Call schedule() so that we cross rq->lock and thus can
4473 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4474 * This is necessary as scheduler callbacks may be invoked
4475 * from other cpus.
4476 */
4477 schedule();
06ba38a9 4478
eb283428
LJ
4479 /*
4480 * Sched callbacks are disabled now. Zap nr_running.
4481 * After this, nr_running stays zero and need_more_worker()
4482 * and keep_working() are always true as long as the
4483 * worklist is not empty. This pool now behaves as an
4484 * unbound (in terms of concurrency management) pool which
4485 * are served by workers tied to the pool.
4486 */
e19e397a 4487 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4488
4489 /*
4490 * With concurrency management just turned off, a busy
4491 * worker blocking could lead to lengthy stalls. Kick off
4492 * unbound chain execution of currently pending work items.
4493 */
4494 spin_lock_irq(&pool->lock);
4495 wake_up_worker(pool);
4496 spin_unlock_irq(&pool->lock);
4497 }
3af24433 4498}
3af24433 4499
bd7c089e
TH
4500/**
4501 * rebind_workers - rebind all workers of a pool to the associated CPU
4502 * @pool: pool of interest
4503 *
a9ab775b 4504 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4505 */
4506static void rebind_workers(struct worker_pool *pool)
4507{
a9ab775b 4508 struct worker *worker;
bd7c089e 4509
92f9c5c4 4510 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4511
a9ab775b
TH
4512 /*
4513 * Restore CPU affinity of all workers. As all idle workers should
4514 * be on the run-queue of the associated CPU before any local
4515 * wake-ups for concurrency management happen, restore CPU affinty
4516 * of all workers first and then clear UNBOUND. As we're called
4517 * from CPU_ONLINE, the following shouldn't fail.
4518 */
da028469 4519 for_each_pool_worker(worker, pool)
a9ab775b
TH
4520 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4521 pool->attrs->cpumask) < 0);
bd7c089e 4522
a9ab775b 4523 spin_lock_irq(&pool->lock);
3de5e884 4524 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4525
da028469 4526 for_each_pool_worker(worker, pool) {
a9ab775b 4527 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4528
4529 /*
a9ab775b
TH
4530 * A bound idle worker should actually be on the runqueue
4531 * of the associated CPU for local wake-ups targeting it to
4532 * work. Kick all idle workers so that they migrate to the
4533 * associated CPU. Doing this in the same loop as
4534 * replacing UNBOUND with REBOUND is safe as no worker will
4535 * be bound before @pool->lock is released.
bd7c089e 4536 */
a9ab775b
TH
4537 if (worker_flags & WORKER_IDLE)
4538 wake_up_process(worker->task);
bd7c089e 4539
a9ab775b
TH
4540 /*
4541 * We want to clear UNBOUND but can't directly call
4542 * worker_clr_flags() or adjust nr_running. Atomically
4543 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4544 * @worker will clear REBOUND using worker_clr_flags() when
4545 * it initiates the next execution cycle thus restoring
4546 * concurrency management. Note that when or whether
4547 * @worker clears REBOUND doesn't affect correctness.
4548 *
4549 * ACCESS_ONCE() is necessary because @worker->flags may be
4550 * tested without holding any lock in
4551 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4552 * fail incorrectly leading to premature concurrency
4553 * management operations.
4554 */
4555 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4556 worker_flags |= WORKER_REBOUND;
4557 worker_flags &= ~WORKER_UNBOUND;
4558 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4559 }
a9ab775b
TH
4560
4561 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4562}
4563
7dbc725e
TH
4564/**
4565 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4566 * @pool: unbound pool of interest
4567 * @cpu: the CPU which is coming up
4568 *
4569 * An unbound pool may end up with a cpumask which doesn't have any online
4570 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4571 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4572 * online CPU before, cpus_allowed of all its workers should be restored.
4573 */
4574static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4575{
4576 static cpumask_t cpumask;
4577 struct worker *worker;
7dbc725e 4578
92f9c5c4 4579 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4580
4581 /* is @cpu allowed for @pool? */
4582 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4583 return;
4584
4585 /* is @cpu the only online CPU? */
4586 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4587 if (cpumask_weight(&cpumask) != 1)
4588 return;
4589
4590 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4591 for_each_pool_worker(worker, pool)
7dbc725e
TH
4592 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4593 pool->attrs->cpumask) < 0);
4594}
4595
8db25e78
TH
4596/*
4597 * Workqueues should be brought up before normal priority CPU notifiers.
4598 * This will be registered high priority CPU notifier.
4599 */
0db0628d 4600static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4601 unsigned long action,
4602 void *hcpu)
3af24433 4603{
d84ff051 4604 int cpu = (unsigned long)hcpu;
4ce62e9e 4605 struct worker_pool *pool;
4c16bd32 4606 struct workqueue_struct *wq;
7dbc725e 4607 int pi;
3ce63377 4608
8db25e78 4609 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4610 case CPU_UP_PREPARE:
f02ae73a 4611 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4612 if (pool->nr_workers)
4613 continue;
ebf44d16 4614 if (create_and_start_worker(pool) < 0)
3ce63377 4615 return NOTIFY_BAD;
3af24433 4616 }
8db25e78 4617 break;
3af24433 4618
db7bccf4
TH
4619 case CPU_DOWN_FAILED:
4620 case CPU_ONLINE:
68e13a67 4621 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4622
4623 for_each_pool(pool, pi) {
92f9c5c4 4624 mutex_lock(&pool->attach_mutex);
94cf58bb 4625
7dbc725e 4626 if (pool->cpu == cpu) {
7dbc725e
TH
4627 rebind_workers(pool);
4628 } else if (pool->cpu < 0) {
4629 restore_unbound_workers_cpumask(pool, cpu);
4630 }
94cf58bb 4631
92f9c5c4 4632 mutex_unlock(&pool->attach_mutex);
94cf58bb 4633 }
7dbc725e 4634
4c16bd32
TH
4635 /* update NUMA affinity of unbound workqueues */
4636 list_for_each_entry(wq, &workqueues, list)
4637 wq_update_unbound_numa(wq, cpu, true);
4638
68e13a67 4639 mutex_unlock(&wq_pool_mutex);
db7bccf4 4640 break;
00dfcaf7 4641 }
65758202
TH
4642 return NOTIFY_OK;
4643}
4644
4645/*
4646 * Workqueues should be brought down after normal priority CPU notifiers.
4647 * This will be registered as low priority CPU notifier.
4648 */
0db0628d 4649static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4650 unsigned long action,
4651 void *hcpu)
4652{
d84ff051 4653 int cpu = (unsigned long)hcpu;
8db25e78 4654 struct work_struct unbind_work;
4c16bd32 4655 struct workqueue_struct *wq;
8db25e78 4656
65758202
TH
4657 switch (action & ~CPU_TASKS_FROZEN) {
4658 case CPU_DOWN_PREPARE:
4c16bd32 4659 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4660 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4661 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4662
4663 /* update NUMA affinity of unbound workqueues */
4664 mutex_lock(&wq_pool_mutex);
4665 list_for_each_entry(wq, &workqueues, list)
4666 wq_update_unbound_numa(wq, cpu, false);
4667 mutex_unlock(&wq_pool_mutex);
4668
4669 /* wait for per-cpu unbinding to finish */
8db25e78 4670 flush_work(&unbind_work);
440a1136 4671 destroy_work_on_stack(&unbind_work);
8db25e78 4672 break;
65758202
TH
4673 }
4674 return NOTIFY_OK;
4675}
4676
2d3854a3 4677#ifdef CONFIG_SMP
8ccad40d 4678
2d3854a3 4679struct work_for_cpu {
ed48ece2 4680 struct work_struct work;
2d3854a3
RR
4681 long (*fn)(void *);
4682 void *arg;
4683 long ret;
4684};
4685
ed48ece2 4686static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4687{
ed48ece2
TH
4688 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4689
2d3854a3
RR
4690 wfc->ret = wfc->fn(wfc->arg);
4691}
4692
4693/**
4694 * work_on_cpu - run a function in user context on a particular cpu
4695 * @cpu: the cpu to run on
4696 * @fn: the function to run
4697 * @arg: the function arg
4698 *
31ad9081 4699 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4700 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4701 *
4702 * Return: The value @fn returns.
2d3854a3 4703 */
d84ff051 4704long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4705{
ed48ece2 4706 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4707
ed48ece2
TH
4708 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4709 schedule_work_on(cpu, &wfc.work);
12997d1a 4710 flush_work(&wfc.work);
440a1136 4711 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4712 return wfc.ret;
4713}
4714EXPORT_SYMBOL_GPL(work_on_cpu);
4715#endif /* CONFIG_SMP */
4716
a0a1a5fd
TH
4717#ifdef CONFIG_FREEZER
4718
4719/**
4720 * freeze_workqueues_begin - begin freezing workqueues
4721 *
58a69cb4 4722 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4723 * workqueues will queue new works to their delayed_works list instead of
706026c2 4724 * pool->worklist.
a0a1a5fd
TH
4725 *
4726 * CONTEXT:
a357fc03 4727 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4728 */
4729void freeze_workqueues_begin(void)
4730{
24b8a847
TH
4731 struct workqueue_struct *wq;
4732 struct pool_workqueue *pwq;
a0a1a5fd 4733
68e13a67 4734 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4735
6183c009 4736 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4737 workqueue_freezing = true;
4738
24b8a847 4739 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4740 mutex_lock(&wq->mutex);
699ce097
TH
4741 for_each_pwq(pwq, wq)
4742 pwq_adjust_max_active(pwq);
a357fc03 4743 mutex_unlock(&wq->mutex);
a0a1a5fd 4744 }
5bcab335 4745
68e13a67 4746 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4747}
4748
4749/**
58a69cb4 4750 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4751 *
4752 * Check whether freezing is complete. This function must be called
4753 * between freeze_workqueues_begin() and thaw_workqueues().
4754 *
4755 * CONTEXT:
68e13a67 4756 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4757 *
d185af30 4758 * Return:
58a69cb4
TH
4759 * %true if some freezable workqueues are still busy. %false if freezing
4760 * is complete.
a0a1a5fd
TH
4761 */
4762bool freeze_workqueues_busy(void)
4763{
a0a1a5fd 4764 bool busy = false;
24b8a847
TH
4765 struct workqueue_struct *wq;
4766 struct pool_workqueue *pwq;
a0a1a5fd 4767
68e13a67 4768 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4769
6183c009 4770 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4771
24b8a847
TH
4772 list_for_each_entry(wq, &workqueues, list) {
4773 if (!(wq->flags & WQ_FREEZABLE))
4774 continue;
a0a1a5fd
TH
4775 /*
4776 * nr_active is monotonically decreasing. It's safe
4777 * to peek without lock.
4778 */
88109453 4779 rcu_read_lock_sched();
24b8a847 4780 for_each_pwq(pwq, wq) {
6183c009 4781 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4782 if (pwq->nr_active) {
a0a1a5fd 4783 busy = true;
88109453 4784 rcu_read_unlock_sched();
a0a1a5fd
TH
4785 goto out_unlock;
4786 }
4787 }
88109453 4788 rcu_read_unlock_sched();
a0a1a5fd
TH
4789 }
4790out_unlock:
68e13a67 4791 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4792 return busy;
4793}
4794
4795/**
4796 * thaw_workqueues - thaw workqueues
4797 *
4798 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4799 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4800 *
4801 * CONTEXT:
a357fc03 4802 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4803 */
4804void thaw_workqueues(void)
4805{
24b8a847
TH
4806 struct workqueue_struct *wq;
4807 struct pool_workqueue *pwq;
a0a1a5fd 4808
68e13a67 4809 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4810
4811 if (!workqueue_freezing)
4812 goto out_unlock;
4813
74b414ea 4814 workqueue_freezing = false;
8b03ae3c 4815
24b8a847
TH
4816 /* restore max_active and repopulate worklist */
4817 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4818 mutex_lock(&wq->mutex);
699ce097
TH
4819 for_each_pwq(pwq, wq)
4820 pwq_adjust_max_active(pwq);
a357fc03 4821 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4822 }
4823
a0a1a5fd 4824out_unlock:
68e13a67 4825 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4826}
4827#endif /* CONFIG_FREEZER */
4828
bce90380
TH
4829static void __init wq_numa_init(void)
4830{
4831 cpumask_var_t *tbl;
4832 int node, cpu;
4833
4834 /* determine NUMA pwq table len - highest node id + 1 */
4835 for_each_node(node)
4836 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4837
4838 if (num_possible_nodes() <= 1)
4839 return;
4840
d55262c4
TH
4841 if (wq_disable_numa) {
4842 pr_info("workqueue: NUMA affinity support disabled\n");
4843 return;
4844 }
4845
4c16bd32
TH
4846 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4847 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4848
bce90380
TH
4849 /*
4850 * We want masks of possible CPUs of each node which isn't readily
4851 * available. Build one from cpu_to_node() which should have been
4852 * fully initialized by now.
4853 */
4854 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4855 BUG_ON(!tbl);
4856
4857 for_each_node(node)
1be0c25d
TH
4858 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4859 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4860
4861 for_each_possible_cpu(cpu) {
4862 node = cpu_to_node(cpu);
4863 if (WARN_ON(node == NUMA_NO_NODE)) {
4864 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4865 /* happens iff arch is bonkers, let's just proceed */
4866 return;
4867 }
4868 cpumask_set_cpu(cpu, tbl[node]);
4869 }
4870
4871 wq_numa_possible_cpumask = tbl;
4872 wq_numa_enabled = true;
4873}
4874
6ee0578b 4875static int __init init_workqueues(void)
1da177e4 4876{
7a4e344c
TH
4877 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4878 int i, cpu;
c34056a3 4879
e904e6c2
TH
4880 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4881
4882 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4883
65758202 4884 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4885 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4886
bce90380
TH
4887 wq_numa_init();
4888
706026c2 4889 /* initialize CPU pools */
29c91e99 4890 for_each_possible_cpu(cpu) {
4ce62e9e 4891 struct worker_pool *pool;
8b03ae3c 4892
7a4e344c 4893 i = 0;
f02ae73a 4894 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4895 BUG_ON(init_worker_pool(pool));
ec22ca5e 4896 pool->cpu = cpu;
29c91e99 4897 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4898 pool->attrs->nice = std_nice[i++];
f3f90ad4 4899 pool->node = cpu_to_node(cpu);
7a4e344c 4900
9daf9e67 4901 /* alloc pool ID */
68e13a67 4902 mutex_lock(&wq_pool_mutex);
9daf9e67 4903 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4904 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4905 }
8b03ae3c
TH
4906 }
4907
e22bee78 4908 /* create the initial worker */
29c91e99 4909 for_each_online_cpu(cpu) {
4ce62e9e 4910 struct worker_pool *pool;
e22bee78 4911
f02ae73a 4912 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4913 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4914 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4915 }
e22bee78
TH
4916 }
4917
8a2b7538 4918 /* create default unbound and ordered wq attrs */
29c91e99
TH
4919 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4920 struct workqueue_attrs *attrs;
4921
4922 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4923 attrs->nice = std_nice[i];
29c91e99 4924 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
4925
4926 /*
4927 * An ordered wq should have only one pwq as ordering is
4928 * guaranteed by max_active which is enforced by pwqs.
4929 * Turn off NUMA so that dfl_pwq is used for all nodes.
4930 */
4931 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4932 attrs->nice = std_nice[i];
4933 attrs->no_numa = true;
4934 ordered_wq_attrs[i] = attrs;
29c91e99
TH
4935 }
4936
d320c038 4937 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4938 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4939 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4940 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4941 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4942 system_freezable_wq = alloc_workqueue("events_freezable",
4943 WQ_FREEZABLE, 0);
0668106c
VK
4944 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4945 WQ_POWER_EFFICIENT, 0);
4946 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4947 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4948 0);
1aabe902 4949 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
4950 !system_unbound_wq || !system_freezable_wq ||
4951 !system_power_efficient_wq ||
4952 !system_freezable_power_efficient_wq);
6ee0578b 4953 return 0;
1da177e4 4954}
6ee0578b 4955early_initcall(init_workqueues);
This page took 1.031912 seconds and 5 git commands to generate.