workqueue: Replace usage of init_name with dev_set_name()
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 300
e2dca7ad 301static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 302static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 303
ef557180
MG
304/* PL: allowable cpus for unbound wqs and work items */
305static cpumask_var_t wq_unbound_cpumask;
306
307/* CPU where unbound work was last round robin scheduled from this CPU */
308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 309
f303fccb
TH
310/*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316static bool wq_debug_force_rr_cpu = true;
317#else
318static bool wq_debug_force_rr_cpu = false;
319#endif
320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
7d19c5ce
TH
322/* the per-cpu worker pools */
323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
324 cpu_worker_pools);
325
68e13a67 326static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 327
68e13a67 328/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
329static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
330
c5aa87bb 331/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
332static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
333
8a2b7538
TH
334/* I: attributes used when instantiating ordered pools on demand */
335static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
336
d320c038 337struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 338EXPORT_SYMBOL(system_wq);
044c782c 339struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 340EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 341struct workqueue_struct *system_long_wq __read_mostly;
d320c038 342EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 343struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 344EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 345struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 346EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
347struct workqueue_struct *system_power_efficient_wq __read_mostly;
348EXPORT_SYMBOL_GPL(system_power_efficient_wq);
349struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
350EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 351
7d19c5ce 352static int worker_thread(void *__worker);
6ba94429 353static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 354
97bd2347
TH
355#define CREATE_TRACE_POINTS
356#include <trace/events/workqueue.h>
357
68e13a67 358#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
359 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
360 !lockdep_is_held(&wq_pool_mutex), \
361 "sched RCU or wq_pool_mutex should be held")
5bcab335 362
b09f4fd3 363#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
364 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
365 !lockdep_is_held(&wq->mutex), \
366 "sched RCU or wq->mutex should be held")
76af4d93 367
5b95e1af 368#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
369 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
372 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 373
f02ae73a
TH
374#define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 377 (pool)++)
4ce62e9e 378
17116969
TH
379/**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
611c92a0 382 * @pi: integer used for iteration
fa1b54e6 383 *
68e13a67
LJ
384 * This must be called either with wq_pool_mutex held or sched RCU read
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
17116969 390 */
611c92a0
TH
391#define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 394 else
17116969 395
822d8405
TH
396/**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
822d8405
TH
399 * @pool: worker_pool to iterate workers of
400 *
92f9c5c4 401 * This must be called with @pool->attach_mutex.
822d8405
TH
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
da028469
LJ
406#define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 408 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
409 else
410
49e3cf44
TH
411/**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
76af4d93 415 *
b09f4fd3 416 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
49e3cf44
TH
422 */
423#define for_each_pwq(pwq, wq) \
76af4d93 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 425 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 426 else
f3421797 427
dc186ad7
TG
428#ifdef CONFIG_DEBUG_OBJECTS_WORK
429
430static struct debug_obj_descr work_debug_descr;
431
99777288
SG
432static void *work_debug_hint(void *addr)
433{
434 return ((struct work_struct *) addr)->func;
435}
436
dc186ad7
TG
437/*
438 * fixup_init is called when:
439 * - an active object is initialized
440 */
441static int work_fixup_init(void *addr, enum debug_obj_state state)
442{
443 struct work_struct *work = addr;
444
445 switch (state) {
446 case ODEBUG_STATE_ACTIVE:
447 cancel_work_sync(work);
448 debug_object_init(work, &work_debug_descr);
449 return 1;
450 default:
451 return 0;
452 }
453}
454
455/*
456 * fixup_activate is called when:
457 * - an active object is activated
458 * - an unknown object is activated (might be a statically initialized object)
459 */
460static int work_fixup_activate(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465
466 case ODEBUG_STATE_NOTAVAILABLE:
467 /*
468 * This is not really a fixup. The work struct was
469 * statically initialized. We just make sure that it
470 * is tracked in the object tracker.
471 */
22df02bb 472 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
473 debug_object_init(work, &work_debug_descr);
474 debug_object_activate(work, &work_debug_descr);
475 return 0;
476 }
477 WARN_ON_ONCE(1);
478 return 0;
479
480 case ODEBUG_STATE_ACTIVE:
481 WARN_ON(1);
482
483 default:
484 return 0;
485 }
486}
487
488/*
489 * fixup_free is called when:
490 * - an active object is freed
491 */
492static int work_fixup_free(void *addr, enum debug_obj_state state)
493{
494 struct work_struct *work = addr;
495
496 switch (state) {
497 case ODEBUG_STATE_ACTIVE:
498 cancel_work_sync(work);
499 debug_object_free(work, &work_debug_descr);
500 return 1;
501 default:
502 return 0;
503 }
504}
505
506static struct debug_obj_descr work_debug_descr = {
507 .name = "work_struct",
99777288 508 .debug_hint = work_debug_hint,
dc186ad7
TG
509 .fixup_init = work_fixup_init,
510 .fixup_activate = work_fixup_activate,
511 .fixup_free = work_fixup_free,
512};
513
514static inline void debug_work_activate(struct work_struct *work)
515{
516 debug_object_activate(work, &work_debug_descr);
517}
518
519static inline void debug_work_deactivate(struct work_struct *work)
520{
521 debug_object_deactivate(work, &work_debug_descr);
522}
523
524void __init_work(struct work_struct *work, int onstack)
525{
526 if (onstack)
527 debug_object_init_on_stack(work, &work_debug_descr);
528 else
529 debug_object_init(work, &work_debug_descr);
530}
531EXPORT_SYMBOL_GPL(__init_work);
532
533void destroy_work_on_stack(struct work_struct *work)
534{
535 debug_object_free(work, &work_debug_descr);
536}
537EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538
ea2e64f2
TG
539void destroy_delayed_work_on_stack(struct delayed_work *work)
540{
541 destroy_timer_on_stack(&work->timer);
542 debug_object_free(&work->work, &work_debug_descr);
543}
544EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545
dc186ad7
TG
546#else
547static inline void debug_work_activate(struct work_struct *work) { }
548static inline void debug_work_deactivate(struct work_struct *work) { }
549#endif
550
4e8b22bd
LB
551/**
552 * worker_pool_assign_id - allocate ID and assing it to @pool
553 * @pool: the pool pointer of interest
554 *
555 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556 * successfully, -errno on failure.
557 */
9daf9e67
TH
558static int worker_pool_assign_id(struct worker_pool *pool)
559{
560 int ret;
561
68e13a67 562 lockdep_assert_held(&wq_pool_mutex);
5bcab335 563
4e8b22bd
LB
564 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
565 GFP_KERNEL);
229641a6 566 if (ret >= 0) {
e68035fb 567 pool->id = ret;
229641a6
TH
568 return 0;
569 }
fa1b54e6 570 return ret;
7c3eed5c
TH
571}
572
df2d5ae4
TH
573/**
574 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575 * @wq: the target workqueue
576 * @node: the node ID
577 *
5b95e1af
LJ
578 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
579 * read locked.
df2d5ae4
TH
580 * If the pwq needs to be used beyond the locking in effect, the caller is
581 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
582 *
583 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
584 */
585static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
586 int node)
587{
5b95e1af 588 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
589
590 /*
591 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
592 * delayed item is pending. The plan is to keep CPU -> NODE
593 * mapping valid and stable across CPU on/offlines. Once that
594 * happens, this workaround can be removed.
595 */
596 if (unlikely(node == NUMA_NO_NODE))
597 return wq->dfl_pwq;
598
df2d5ae4
TH
599 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
600}
601
73f53c4a
TH
602static unsigned int work_color_to_flags(int color)
603{
604 return color << WORK_STRUCT_COLOR_SHIFT;
605}
606
607static int get_work_color(struct work_struct *work)
608{
609 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
610 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
611}
612
613static int work_next_color(int color)
614{
615 return (color + 1) % WORK_NR_COLORS;
616}
1da177e4 617
14441960 618/*
112202d9
TH
619 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
620 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 621 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 622 *
112202d9
TH
623 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
624 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
625 * work->data. These functions should only be called while the work is
626 * owned - ie. while the PENDING bit is set.
7a22ad75 627 *
112202d9 628 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 629 * corresponding to a work. Pool is available once the work has been
112202d9 630 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 631 * available only while the work item is queued.
7a22ad75 632 *
bbb68dfa
TH
633 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
634 * canceled. While being canceled, a work item may have its PENDING set
635 * but stay off timer and worklist for arbitrarily long and nobody should
636 * try to steal the PENDING bit.
14441960 637 */
7a22ad75
TH
638static inline void set_work_data(struct work_struct *work, unsigned long data,
639 unsigned long flags)
365970a1 640{
6183c009 641 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
642 atomic_long_set(&work->data, data | flags | work_static(work));
643}
365970a1 644
112202d9 645static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
646 unsigned long extra_flags)
647{
112202d9
TH
648 set_work_data(work, (unsigned long)pwq,
649 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
650}
651
4468a00f
LJ
652static void set_work_pool_and_keep_pending(struct work_struct *work,
653 int pool_id)
654{
655 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
656 WORK_STRUCT_PENDING);
657}
658
7c3eed5c
TH
659static void set_work_pool_and_clear_pending(struct work_struct *work,
660 int pool_id)
7a22ad75 661{
23657bb1
TH
662 /*
663 * The following wmb is paired with the implied mb in
664 * test_and_set_bit(PENDING) and ensures all updates to @work made
665 * here are visible to and precede any updates by the next PENDING
666 * owner.
667 */
668 smp_wmb();
7c3eed5c 669 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 670}
f756d5e2 671
7a22ad75 672static void clear_work_data(struct work_struct *work)
1da177e4 673{
7c3eed5c
TH
674 smp_wmb(); /* see set_work_pool_and_clear_pending() */
675 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
676}
677
112202d9 678static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 679{
e120153d 680 unsigned long data = atomic_long_read(&work->data);
7a22ad75 681
112202d9 682 if (data & WORK_STRUCT_PWQ)
e120153d
TH
683 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
684 else
685 return NULL;
4d707b9f
ON
686}
687
7c3eed5c
TH
688/**
689 * get_work_pool - return the worker_pool a given work was associated with
690 * @work: the work item of interest
691 *
68e13a67
LJ
692 * Pools are created and destroyed under wq_pool_mutex, and allows read
693 * access under sched-RCU read lock. As such, this function should be
694 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
695 *
696 * All fields of the returned pool are accessible as long as the above
697 * mentioned locking is in effect. If the returned pool needs to be used
698 * beyond the critical section, the caller is responsible for ensuring the
699 * returned pool is and stays online.
d185af30
YB
700 *
701 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
702 */
703static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 704{
e120153d 705 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 706 int pool_id;
7a22ad75 707
68e13a67 708 assert_rcu_or_pool_mutex();
fa1b54e6 709
112202d9
TH
710 if (data & WORK_STRUCT_PWQ)
711 return ((struct pool_workqueue *)
7c3eed5c 712 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 713
7c3eed5c
TH
714 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
715 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
716 return NULL;
717
fa1b54e6 718 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
719}
720
721/**
722 * get_work_pool_id - return the worker pool ID a given work is associated with
723 * @work: the work item of interest
724 *
d185af30 725 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
726 * %WORK_OFFQ_POOL_NONE if none.
727 */
728static int get_work_pool_id(struct work_struct *work)
729{
54d5b7d0
LJ
730 unsigned long data = atomic_long_read(&work->data);
731
112202d9
TH
732 if (data & WORK_STRUCT_PWQ)
733 return ((struct pool_workqueue *)
54d5b7d0 734 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 735
54d5b7d0 736 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
737}
738
bbb68dfa
TH
739static void mark_work_canceling(struct work_struct *work)
740{
7c3eed5c 741 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 742
7c3eed5c
TH
743 pool_id <<= WORK_OFFQ_POOL_SHIFT;
744 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
745}
746
747static bool work_is_canceling(struct work_struct *work)
748{
749 unsigned long data = atomic_long_read(&work->data);
750
112202d9 751 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
752}
753
e22bee78 754/*
3270476a
TH
755 * Policy functions. These define the policies on how the global worker
756 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 757 * they're being called with pool->lock held.
e22bee78
TH
758 */
759
63d95a91 760static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 761{
e19e397a 762 return !atomic_read(&pool->nr_running);
a848e3b6
ON
763}
764
4594bf15 765/*
e22bee78
TH
766 * Need to wake up a worker? Called from anything but currently
767 * running workers.
974271c4
TH
768 *
769 * Note that, because unbound workers never contribute to nr_running, this
706026c2 770 * function will always return %true for unbound pools as long as the
974271c4 771 * worklist isn't empty.
4594bf15 772 */
63d95a91 773static bool need_more_worker(struct worker_pool *pool)
365970a1 774{
63d95a91 775 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 776}
4594bf15 777
e22bee78 778/* Can I start working? Called from busy but !running workers. */
63d95a91 779static bool may_start_working(struct worker_pool *pool)
e22bee78 780{
63d95a91 781 return pool->nr_idle;
e22bee78
TH
782}
783
784/* Do I need to keep working? Called from currently running workers. */
63d95a91 785static bool keep_working(struct worker_pool *pool)
e22bee78 786{
e19e397a
TH
787 return !list_empty(&pool->worklist) &&
788 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
789}
790
791/* Do we need a new worker? Called from manager. */
63d95a91 792static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 793{
63d95a91 794 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 795}
365970a1 796
e22bee78 797/* Do we have too many workers and should some go away? */
63d95a91 798static bool too_many_workers(struct worker_pool *pool)
e22bee78 799{
34a06bd6 800 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
801 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
802 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
803
804 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
805}
806
4d707b9f 807/*
e22bee78
TH
808 * Wake up functions.
809 */
810
1037de36
LJ
811/* Return the first idle worker. Safe with preemption disabled */
812static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 813{
63d95a91 814 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
815 return NULL;
816
63d95a91 817 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
818}
819
820/**
821 * wake_up_worker - wake up an idle worker
63d95a91 822 * @pool: worker pool to wake worker from
7e11629d 823 *
63d95a91 824 * Wake up the first idle worker of @pool.
7e11629d
TH
825 *
826 * CONTEXT:
d565ed63 827 * spin_lock_irq(pool->lock).
7e11629d 828 */
63d95a91 829static void wake_up_worker(struct worker_pool *pool)
7e11629d 830{
1037de36 831 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
832
833 if (likely(worker))
834 wake_up_process(worker->task);
835}
836
d302f017 837/**
e22bee78
TH
838 * wq_worker_waking_up - a worker is waking up
839 * @task: task waking up
840 * @cpu: CPU @task is waking up to
841 *
842 * This function is called during try_to_wake_up() when a worker is
843 * being awoken.
844 *
845 * CONTEXT:
846 * spin_lock_irq(rq->lock)
847 */
d84ff051 848void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
849{
850 struct worker *worker = kthread_data(task);
851
36576000 852 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 853 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 854 atomic_inc(&worker->pool->nr_running);
36576000 855 }
e22bee78
TH
856}
857
858/**
859 * wq_worker_sleeping - a worker is going to sleep
860 * @task: task going to sleep
861 * @cpu: CPU in question, must be the current CPU number
862 *
863 * This function is called during schedule() when a busy worker is
864 * going to sleep. Worker on the same cpu can be woken up by
865 * returning pointer to its task.
866 *
867 * CONTEXT:
868 * spin_lock_irq(rq->lock)
869 *
d185af30 870 * Return:
e22bee78
TH
871 * Worker task on @cpu to wake up, %NULL if none.
872 */
d84ff051 873struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
874{
875 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 876 struct worker_pool *pool;
e22bee78 877
111c225a
TH
878 /*
879 * Rescuers, which may not have all the fields set up like normal
880 * workers, also reach here, let's not access anything before
881 * checking NOT_RUNNING.
882 */
2d64672e 883 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
884 return NULL;
885
111c225a 886 pool = worker->pool;
111c225a 887
e22bee78 888 /* this can only happen on the local cpu */
92b69f50 889 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 890 return NULL;
e22bee78
TH
891
892 /*
893 * The counterpart of the following dec_and_test, implied mb,
894 * worklist not empty test sequence is in insert_work().
895 * Please read comment there.
896 *
628c78e7
TH
897 * NOT_RUNNING is clear. This means that we're bound to and
898 * running on the local cpu w/ rq lock held and preemption
899 * disabled, which in turn means that none else could be
d565ed63 900 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 901 * lock is safe.
e22bee78 902 */
e19e397a
TH
903 if (atomic_dec_and_test(&pool->nr_running) &&
904 !list_empty(&pool->worklist))
1037de36 905 to_wakeup = first_idle_worker(pool);
e22bee78
TH
906 return to_wakeup ? to_wakeup->task : NULL;
907}
908
909/**
910 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 911 * @worker: self
d302f017 912 * @flags: flags to set
d302f017 913 *
228f1d00 914 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 915 *
cb444766 916 * CONTEXT:
d565ed63 917 * spin_lock_irq(pool->lock)
d302f017 918 */
228f1d00 919static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 920{
bd7bdd43 921 struct worker_pool *pool = worker->pool;
e22bee78 922
cb444766
TH
923 WARN_ON_ONCE(worker->task != current);
924
228f1d00 925 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
926 if ((flags & WORKER_NOT_RUNNING) &&
927 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 928 atomic_dec(&pool->nr_running);
e22bee78
TH
929 }
930
d302f017
TH
931 worker->flags |= flags;
932}
933
934/**
e22bee78 935 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 936 * @worker: self
d302f017
TH
937 * @flags: flags to clear
938 *
e22bee78 939 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 940 *
cb444766 941 * CONTEXT:
d565ed63 942 * spin_lock_irq(pool->lock)
d302f017
TH
943 */
944static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
945{
63d95a91 946 struct worker_pool *pool = worker->pool;
e22bee78
TH
947 unsigned int oflags = worker->flags;
948
cb444766
TH
949 WARN_ON_ONCE(worker->task != current);
950
d302f017 951 worker->flags &= ~flags;
e22bee78 952
42c025f3
TH
953 /*
954 * If transitioning out of NOT_RUNNING, increment nr_running. Note
955 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
956 * of multiple flags, not a single flag.
957 */
e22bee78
TH
958 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
959 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 960 atomic_inc(&pool->nr_running);
d302f017
TH
961}
962
8cca0eea
TH
963/**
964 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 965 * @pool: pool of interest
8cca0eea
TH
966 * @work: work to find worker for
967 *
c9e7cf27
TH
968 * Find a worker which is executing @work on @pool by searching
969 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
970 * to match, its current execution should match the address of @work and
971 * its work function. This is to avoid unwanted dependency between
972 * unrelated work executions through a work item being recycled while still
973 * being executed.
974 *
975 * This is a bit tricky. A work item may be freed once its execution
976 * starts and nothing prevents the freed area from being recycled for
977 * another work item. If the same work item address ends up being reused
978 * before the original execution finishes, workqueue will identify the
979 * recycled work item as currently executing and make it wait until the
980 * current execution finishes, introducing an unwanted dependency.
981 *
c5aa87bb
TH
982 * This function checks the work item address and work function to avoid
983 * false positives. Note that this isn't complete as one may construct a
984 * work function which can introduce dependency onto itself through a
985 * recycled work item. Well, if somebody wants to shoot oneself in the
986 * foot that badly, there's only so much we can do, and if such deadlock
987 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
988 *
989 * CONTEXT:
d565ed63 990 * spin_lock_irq(pool->lock).
8cca0eea 991 *
d185af30
YB
992 * Return:
993 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 994 * otherwise.
4d707b9f 995 */
c9e7cf27 996static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 997 struct work_struct *work)
4d707b9f 998{
42f8570f 999 struct worker *worker;
42f8570f 1000
b67bfe0d 1001 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1002 (unsigned long)work)
1003 if (worker->current_work == work &&
1004 worker->current_func == work->func)
42f8570f
SL
1005 return worker;
1006
1007 return NULL;
4d707b9f
ON
1008}
1009
bf4ede01
TH
1010/**
1011 * move_linked_works - move linked works to a list
1012 * @work: start of series of works to be scheduled
1013 * @head: target list to append @work to
402dd89d 1014 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1015 *
1016 * Schedule linked works starting from @work to @head. Work series to
1017 * be scheduled starts at @work and includes any consecutive work with
1018 * WORK_STRUCT_LINKED set in its predecessor.
1019 *
1020 * If @nextp is not NULL, it's updated to point to the next work of
1021 * the last scheduled work. This allows move_linked_works() to be
1022 * nested inside outer list_for_each_entry_safe().
1023 *
1024 * CONTEXT:
d565ed63 1025 * spin_lock_irq(pool->lock).
bf4ede01
TH
1026 */
1027static void move_linked_works(struct work_struct *work, struct list_head *head,
1028 struct work_struct **nextp)
1029{
1030 struct work_struct *n;
1031
1032 /*
1033 * Linked worklist will always end before the end of the list,
1034 * use NULL for list head.
1035 */
1036 list_for_each_entry_safe_from(work, n, NULL, entry) {
1037 list_move_tail(&work->entry, head);
1038 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1039 break;
1040 }
1041
1042 /*
1043 * If we're already inside safe list traversal and have moved
1044 * multiple works to the scheduled queue, the next position
1045 * needs to be updated.
1046 */
1047 if (nextp)
1048 *nextp = n;
1049}
1050
8864b4e5
TH
1051/**
1052 * get_pwq - get an extra reference on the specified pool_workqueue
1053 * @pwq: pool_workqueue to get
1054 *
1055 * Obtain an extra reference on @pwq. The caller should guarantee that
1056 * @pwq has positive refcnt and be holding the matching pool->lock.
1057 */
1058static void get_pwq(struct pool_workqueue *pwq)
1059{
1060 lockdep_assert_held(&pwq->pool->lock);
1061 WARN_ON_ONCE(pwq->refcnt <= 0);
1062 pwq->refcnt++;
1063}
1064
1065/**
1066 * put_pwq - put a pool_workqueue reference
1067 * @pwq: pool_workqueue to put
1068 *
1069 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1070 * destruction. The caller should be holding the matching pool->lock.
1071 */
1072static void put_pwq(struct pool_workqueue *pwq)
1073{
1074 lockdep_assert_held(&pwq->pool->lock);
1075 if (likely(--pwq->refcnt))
1076 return;
1077 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1078 return;
1079 /*
1080 * @pwq can't be released under pool->lock, bounce to
1081 * pwq_unbound_release_workfn(). This never recurses on the same
1082 * pool->lock as this path is taken only for unbound workqueues and
1083 * the release work item is scheduled on a per-cpu workqueue. To
1084 * avoid lockdep warning, unbound pool->locks are given lockdep
1085 * subclass of 1 in get_unbound_pool().
1086 */
1087 schedule_work(&pwq->unbound_release_work);
1088}
1089
dce90d47
TH
1090/**
1091 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1092 * @pwq: pool_workqueue to put (can be %NULL)
1093 *
1094 * put_pwq() with locking. This function also allows %NULL @pwq.
1095 */
1096static void put_pwq_unlocked(struct pool_workqueue *pwq)
1097{
1098 if (pwq) {
1099 /*
1100 * As both pwqs and pools are sched-RCU protected, the
1101 * following lock operations are safe.
1102 */
1103 spin_lock_irq(&pwq->pool->lock);
1104 put_pwq(pwq);
1105 spin_unlock_irq(&pwq->pool->lock);
1106 }
1107}
1108
112202d9 1109static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1110{
112202d9 1111 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1112
1113 trace_workqueue_activate_work(work);
82607adc
TH
1114 if (list_empty(&pwq->pool->worklist))
1115 pwq->pool->watchdog_ts = jiffies;
112202d9 1116 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1117 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1118 pwq->nr_active++;
bf4ede01
TH
1119}
1120
112202d9 1121static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1122{
112202d9 1123 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1124 struct work_struct, entry);
1125
112202d9 1126 pwq_activate_delayed_work(work);
3aa62497
LJ
1127}
1128
bf4ede01 1129/**
112202d9
TH
1130 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1131 * @pwq: pwq of interest
bf4ede01 1132 * @color: color of work which left the queue
bf4ede01
TH
1133 *
1134 * A work either has completed or is removed from pending queue,
112202d9 1135 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1136 *
1137 * CONTEXT:
d565ed63 1138 * spin_lock_irq(pool->lock).
bf4ede01 1139 */
112202d9 1140static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1141{
8864b4e5 1142 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1143 if (color == WORK_NO_COLOR)
8864b4e5 1144 goto out_put;
bf4ede01 1145
112202d9 1146 pwq->nr_in_flight[color]--;
bf4ede01 1147
112202d9
TH
1148 pwq->nr_active--;
1149 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1150 /* one down, submit a delayed one */
112202d9
TH
1151 if (pwq->nr_active < pwq->max_active)
1152 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1153 }
1154
1155 /* is flush in progress and are we at the flushing tip? */
112202d9 1156 if (likely(pwq->flush_color != color))
8864b4e5 1157 goto out_put;
bf4ede01
TH
1158
1159 /* are there still in-flight works? */
112202d9 1160 if (pwq->nr_in_flight[color])
8864b4e5 1161 goto out_put;
bf4ede01 1162
112202d9
TH
1163 /* this pwq is done, clear flush_color */
1164 pwq->flush_color = -1;
bf4ede01
TH
1165
1166 /*
112202d9 1167 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1168 * will handle the rest.
1169 */
112202d9
TH
1170 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1171 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1172out_put:
1173 put_pwq(pwq);
bf4ede01
TH
1174}
1175
36e227d2 1176/**
bbb68dfa 1177 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1178 * @work: work item to steal
1179 * @is_dwork: @work is a delayed_work
bbb68dfa 1180 * @flags: place to store irq state
36e227d2
TH
1181 *
1182 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1183 * stable state - idle, on timer or on worklist.
36e227d2 1184 *
d185af30 1185 * Return:
36e227d2
TH
1186 * 1 if @work was pending and we successfully stole PENDING
1187 * 0 if @work was idle and we claimed PENDING
1188 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1189 * -ENOENT if someone else is canceling @work, this state may persist
1190 * for arbitrarily long
36e227d2 1191 *
d185af30 1192 * Note:
bbb68dfa 1193 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1194 * interrupted while holding PENDING and @work off queue, irq must be
1195 * disabled on entry. This, combined with delayed_work->timer being
1196 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1197 *
1198 * On successful return, >= 0, irq is disabled and the caller is
1199 * responsible for releasing it using local_irq_restore(*@flags).
1200 *
e0aecdd8 1201 * This function is safe to call from any context including IRQ handler.
bf4ede01 1202 */
bbb68dfa
TH
1203static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1204 unsigned long *flags)
bf4ede01 1205{
d565ed63 1206 struct worker_pool *pool;
112202d9 1207 struct pool_workqueue *pwq;
bf4ede01 1208
bbb68dfa
TH
1209 local_irq_save(*flags);
1210
36e227d2
TH
1211 /* try to steal the timer if it exists */
1212 if (is_dwork) {
1213 struct delayed_work *dwork = to_delayed_work(work);
1214
e0aecdd8
TH
1215 /*
1216 * dwork->timer is irqsafe. If del_timer() fails, it's
1217 * guaranteed that the timer is not queued anywhere and not
1218 * running on the local CPU.
1219 */
36e227d2
TH
1220 if (likely(del_timer(&dwork->timer)))
1221 return 1;
1222 }
1223
1224 /* try to claim PENDING the normal way */
bf4ede01
TH
1225 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1226 return 0;
1227
1228 /*
1229 * The queueing is in progress, or it is already queued. Try to
1230 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1231 */
d565ed63
TH
1232 pool = get_work_pool(work);
1233 if (!pool)
bbb68dfa 1234 goto fail;
bf4ede01 1235
d565ed63 1236 spin_lock(&pool->lock);
0b3dae68 1237 /*
112202d9
TH
1238 * work->data is guaranteed to point to pwq only while the work
1239 * item is queued on pwq->wq, and both updating work->data to point
1240 * to pwq on queueing and to pool on dequeueing are done under
1241 * pwq->pool->lock. This in turn guarantees that, if work->data
1242 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1243 * item is currently queued on that pool.
1244 */
112202d9
TH
1245 pwq = get_work_pwq(work);
1246 if (pwq && pwq->pool == pool) {
16062836
TH
1247 debug_work_deactivate(work);
1248
1249 /*
1250 * A delayed work item cannot be grabbed directly because
1251 * it might have linked NO_COLOR work items which, if left
112202d9 1252 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1253 * management later on and cause stall. Make sure the work
1254 * item is activated before grabbing.
1255 */
1256 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1257 pwq_activate_delayed_work(work);
16062836
TH
1258
1259 list_del_init(&work->entry);
9c34a704 1260 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1261
112202d9 1262 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1263 set_work_pool_and_keep_pending(work, pool->id);
1264
1265 spin_unlock(&pool->lock);
1266 return 1;
bf4ede01 1267 }
d565ed63 1268 spin_unlock(&pool->lock);
bbb68dfa
TH
1269fail:
1270 local_irq_restore(*flags);
1271 if (work_is_canceling(work))
1272 return -ENOENT;
1273 cpu_relax();
36e227d2 1274 return -EAGAIN;
bf4ede01
TH
1275}
1276
4690c4ab 1277/**
706026c2 1278 * insert_work - insert a work into a pool
112202d9 1279 * @pwq: pwq @work belongs to
4690c4ab
TH
1280 * @work: work to insert
1281 * @head: insertion point
1282 * @extra_flags: extra WORK_STRUCT_* flags to set
1283 *
112202d9 1284 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1285 * work_struct flags.
4690c4ab
TH
1286 *
1287 * CONTEXT:
d565ed63 1288 * spin_lock_irq(pool->lock).
4690c4ab 1289 */
112202d9
TH
1290static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1291 struct list_head *head, unsigned int extra_flags)
b89deed3 1292{
112202d9 1293 struct worker_pool *pool = pwq->pool;
e22bee78 1294
4690c4ab 1295 /* we own @work, set data and link */
112202d9 1296 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1297 list_add_tail(&work->entry, head);
8864b4e5 1298 get_pwq(pwq);
e22bee78
TH
1299
1300 /*
c5aa87bb
TH
1301 * Ensure either wq_worker_sleeping() sees the above
1302 * list_add_tail() or we see zero nr_running to avoid workers lying
1303 * around lazily while there are works to be processed.
e22bee78
TH
1304 */
1305 smp_mb();
1306
63d95a91
TH
1307 if (__need_more_worker(pool))
1308 wake_up_worker(pool);
b89deed3
ON
1309}
1310
c8efcc25
TH
1311/*
1312 * Test whether @work is being queued from another work executing on the
8d03ecfe 1313 * same workqueue.
c8efcc25
TH
1314 */
1315static bool is_chained_work(struct workqueue_struct *wq)
1316{
8d03ecfe
TH
1317 struct worker *worker;
1318
1319 worker = current_wq_worker();
1320 /*
1321 * Return %true iff I'm a worker execuing a work item on @wq. If
1322 * I'm @worker, it's safe to dereference it without locking.
1323 */
112202d9 1324 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1325}
1326
ef557180
MG
1327/*
1328 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1329 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1330 * avoid perturbing sensitive tasks.
1331 */
1332static int wq_select_unbound_cpu(int cpu)
1333{
f303fccb 1334 static bool printed_dbg_warning;
ef557180
MG
1335 int new_cpu;
1336
f303fccb
TH
1337 if (likely(!wq_debug_force_rr_cpu)) {
1338 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1339 return cpu;
1340 } else if (!printed_dbg_warning) {
1341 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1342 printed_dbg_warning = true;
1343 }
1344
ef557180
MG
1345 if (cpumask_empty(wq_unbound_cpumask))
1346 return cpu;
1347
1348 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1349 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1350 if (unlikely(new_cpu >= nr_cpu_ids)) {
1351 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1352 if (unlikely(new_cpu >= nr_cpu_ids))
1353 return cpu;
1354 }
1355 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1356
1357 return new_cpu;
1358}
1359
d84ff051 1360static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1361 struct work_struct *work)
1362{
112202d9 1363 struct pool_workqueue *pwq;
c9178087 1364 struct worker_pool *last_pool;
1e19ffc6 1365 struct list_head *worklist;
8a2e8e5d 1366 unsigned int work_flags;
b75cac93 1367 unsigned int req_cpu = cpu;
8930caba
TH
1368
1369 /*
1370 * While a work item is PENDING && off queue, a task trying to
1371 * steal the PENDING will busy-loop waiting for it to either get
1372 * queued or lose PENDING. Grabbing PENDING and queueing should
1373 * happen with IRQ disabled.
1374 */
1375 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1376
dc186ad7 1377 debug_work_activate(work);
1e19ffc6 1378
9ef28a73 1379 /* if draining, only works from the same workqueue are allowed */
618b01eb 1380 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1381 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1382 return;
9e8cd2f5 1383retry:
df2d5ae4 1384 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1385 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1386
c9178087 1387 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1388 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1389 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1390 else
1391 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1392
c9178087
TH
1393 /*
1394 * If @work was previously on a different pool, it might still be
1395 * running there, in which case the work needs to be queued on that
1396 * pool to guarantee non-reentrancy.
1397 */
1398 last_pool = get_work_pool(work);
1399 if (last_pool && last_pool != pwq->pool) {
1400 struct worker *worker;
18aa9eff 1401
c9178087 1402 spin_lock(&last_pool->lock);
18aa9eff 1403
c9178087 1404 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1405
c9178087
TH
1406 if (worker && worker->current_pwq->wq == wq) {
1407 pwq = worker->current_pwq;
8930caba 1408 } else {
c9178087
TH
1409 /* meh... not running there, queue here */
1410 spin_unlock(&last_pool->lock);
112202d9 1411 spin_lock(&pwq->pool->lock);
8930caba 1412 }
f3421797 1413 } else {
112202d9 1414 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1415 }
1416
9e8cd2f5
TH
1417 /*
1418 * pwq is determined and locked. For unbound pools, we could have
1419 * raced with pwq release and it could already be dead. If its
1420 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1421 * without another pwq replacing it in the numa_pwq_tbl or while
1422 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1423 * make forward-progress.
1424 */
1425 if (unlikely(!pwq->refcnt)) {
1426 if (wq->flags & WQ_UNBOUND) {
1427 spin_unlock(&pwq->pool->lock);
1428 cpu_relax();
1429 goto retry;
1430 }
1431 /* oops */
1432 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1433 wq->name, cpu);
1434 }
1435
112202d9
TH
1436 /* pwq determined, queue */
1437 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1438
f5b2552b 1439 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1440 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1441 return;
1442 }
1e19ffc6 1443
112202d9
TH
1444 pwq->nr_in_flight[pwq->work_color]++;
1445 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1446
112202d9 1447 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1448 trace_workqueue_activate_work(work);
112202d9
TH
1449 pwq->nr_active++;
1450 worklist = &pwq->pool->worklist;
82607adc
TH
1451 if (list_empty(worklist))
1452 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1453 } else {
1454 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1455 worklist = &pwq->delayed_works;
8a2e8e5d 1456 }
1e19ffc6 1457
112202d9 1458 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1459
112202d9 1460 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1461}
1462
0fcb78c2 1463/**
c1a220e7
ZR
1464 * queue_work_on - queue work on specific cpu
1465 * @cpu: CPU number to execute work on
0fcb78c2
REB
1466 * @wq: workqueue to use
1467 * @work: work to queue
1468 *
c1a220e7
ZR
1469 * We queue the work to a specific CPU, the caller must ensure it
1470 * can't go away.
d185af30
YB
1471 *
1472 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1473 */
d4283e93
TH
1474bool queue_work_on(int cpu, struct workqueue_struct *wq,
1475 struct work_struct *work)
1da177e4 1476{
d4283e93 1477 bool ret = false;
8930caba 1478 unsigned long flags;
ef1ca236 1479
8930caba 1480 local_irq_save(flags);
c1a220e7 1481
22df02bb 1482 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1483 __queue_work(cpu, wq, work);
d4283e93 1484 ret = true;
c1a220e7 1485 }
ef1ca236 1486
8930caba 1487 local_irq_restore(flags);
1da177e4
LT
1488 return ret;
1489}
ad7b1f84 1490EXPORT_SYMBOL(queue_work_on);
1da177e4 1491
d8e794df 1492void delayed_work_timer_fn(unsigned long __data)
1da177e4 1493{
52bad64d 1494 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1495
e0aecdd8 1496 /* should have been called from irqsafe timer with irq already off */
60c057bc 1497 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1498}
1438ade5 1499EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1500
7beb2edf
TH
1501static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1502 struct delayed_work *dwork, unsigned long delay)
1da177e4 1503{
7beb2edf
TH
1504 struct timer_list *timer = &dwork->timer;
1505 struct work_struct *work = &dwork->work;
7beb2edf
TH
1506
1507 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1508 timer->data != (unsigned long)dwork);
fc4b514f
TH
1509 WARN_ON_ONCE(timer_pending(timer));
1510 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1511
8852aac2
TH
1512 /*
1513 * If @delay is 0, queue @dwork->work immediately. This is for
1514 * both optimization and correctness. The earliest @timer can
1515 * expire is on the closest next tick and delayed_work users depend
1516 * on that there's no such delay when @delay is 0.
1517 */
1518 if (!delay) {
1519 __queue_work(cpu, wq, &dwork->work);
1520 return;
1521 }
1522
7beb2edf 1523 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1524
60c057bc 1525 dwork->wq = wq;
1265057f 1526 dwork->cpu = cpu;
7beb2edf
TH
1527 timer->expires = jiffies + delay;
1528
041bd12e
TH
1529 if (unlikely(cpu != WORK_CPU_UNBOUND))
1530 add_timer_on(timer, cpu);
1531 else
1532 add_timer(timer);
1da177e4
LT
1533}
1534
0fcb78c2
REB
1535/**
1536 * queue_delayed_work_on - queue work on specific CPU after delay
1537 * @cpu: CPU number to execute work on
1538 * @wq: workqueue to use
af9997e4 1539 * @dwork: work to queue
0fcb78c2
REB
1540 * @delay: number of jiffies to wait before queueing
1541 *
d185af30 1542 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1543 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1544 * execution.
0fcb78c2 1545 */
d4283e93
TH
1546bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1547 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1548{
52bad64d 1549 struct work_struct *work = &dwork->work;
d4283e93 1550 bool ret = false;
8930caba 1551 unsigned long flags;
7a6bc1cd 1552
8930caba
TH
1553 /* read the comment in __queue_work() */
1554 local_irq_save(flags);
7a6bc1cd 1555
22df02bb 1556 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1557 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1558 ret = true;
7a6bc1cd 1559 }
8a3e77cc 1560
8930caba 1561 local_irq_restore(flags);
7a6bc1cd
VP
1562 return ret;
1563}
ad7b1f84 1564EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1565
8376fe22
TH
1566/**
1567 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1568 * @cpu: CPU number to execute work on
1569 * @wq: workqueue to use
1570 * @dwork: work to queue
1571 * @delay: number of jiffies to wait before queueing
1572 *
1573 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1574 * modify @dwork's timer so that it expires after @delay. If @delay is
1575 * zero, @work is guaranteed to be scheduled immediately regardless of its
1576 * current state.
1577 *
d185af30 1578 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1579 * pending and its timer was modified.
1580 *
e0aecdd8 1581 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1582 * See try_to_grab_pending() for details.
1583 */
1584bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1585 struct delayed_work *dwork, unsigned long delay)
1586{
1587 unsigned long flags;
1588 int ret;
c7fc77f7 1589
8376fe22
TH
1590 do {
1591 ret = try_to_grab_pending(&dwork->work, true, &flags);
1592 } while (unlikely(ret == -EAGAIN));
63bc0362 1593
8376fe22
TH
1594 if (likely(ret >= 0)) {
1595 __queue_delayed_work(cpu, wq, dwork, delay);
1596 local_irq_restore(flags);
7a6bc1cd 1597 }
8376fe22
TH
1598
1599 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1600 return ret;
1601}
8376fe22
TH
1602EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1603
c8e55f36
TH
1604/**
1605 * worker_enter_idle - enter idle state
1606 * @worker: worker which is entering idle state
1607 *
1608 * @worker is entering idle state. Update stats and idle timer if
1609 * necessary.
1610 *
1611 * LOCKING:
d565ed63 1612 * spin_lock_irq(pool->lock).
c8e55f36
TH
1613 */
1614static void worker_enter_idle(struct worker *worker)
1da177e4 1615{
bd7bdd43 1616 struct worker_pool *pool = worker->pool;
c8e55f36 1617
6183c009
TH
1618 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1619 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1620 (worker->hentry.next || worker->hentry.pprev)))
1621 return;
c8e55f36 1622
051e1850 1623 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1624 worker->flags |= WORKER_IDLE;
bd7bdd43 1625 pool->nr_idle++;
e22bee78 1626 worker->last_active = jiffies;
c8e55f36
TH
1627
1628 /* idle_list is LIFO */
bd7bdd43 1629 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1630
628c78e7
TH
1631 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1632 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1633
544ecf31 1634 /*
706026c2 1635 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1636 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1637 * nr_running, the warning may trigger spuriously. Check iff
1638 * unbind is not in progress.
544ecf31 1639 */
24647570 1640 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1641 pool->nr_workers == pool->nr_idle &&
e19e397a 1642 atomic_read(&pool->nr_running));
c8e55f36
TH
1643}
1644
1645/**
1646 * worker_leave_idle - leave idle state
1647 * @worker: worker which is leaving idle state
1648 *
1649 * @worker is leaving idle state. Update stats.
1650 *
1651 * LOCKING:
d565ed63 1652 * spin_lock_irq(pool->lock).
c8e55f36
TH
1653 */
1654static void worker_leave_idle(struct worker *worker)
1655{
bd7bdd43 1656 struct worker_pool *pool = worker->pool;
c8e55f36 1657
6183c009
TH
1658 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1659 return;
d302f017 1660 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1661 pool->nr_idle--;
c8e55f36
TH
1662 list_del_init(&worker->entry);
1663}
1664
f7537df5 1665static struct worker *alloc_worker(int node)
c34056a3
TH
1666{
1667 struct worker *worker;
1668
f7537df5 1669 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1670 if (worker) {
1671 INIT_LIST_HEAD(&worker->entry);
affee4b2 1672 INIT_LIST_HEAD(&worker->scheduled);
da028469 1673 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1674 /* on creation a worker is in !idle && prep state */
1675 worker->flags = WORKER_PREP;
c8e55f36 1676 }
c34056a3
TH
1677 return worker;
1678}
1679
4736cbf7
LJ
1680/**
1681 * worker_attach_to_pool() - attach a worker to a pool
1682 * @worker: worker to be attached
1683 * @pool: the target pool
1684 *
1685 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1686 * cpu-binding of @worker are kept coordinated with the pool across
1687 * cpu-[un]hotplugs.
1688 */
1689static void worker_attach_to_pool(struct worker *worker,
1690 struct worker_pool *pool)
1691{
1692 mutex_lock(&pool->attach_mutex);
1693
1694 /*
1695 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1696 * online CPUs. It'll be re-applied when any of the CPUs come up.
1697 */
1698 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1699
1700 /*
1701 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1702 * stable across this function. See the comments above the
1703 * flag definition for details.
1704 */
1705 if (pool->flags & POOL_DISASSOCIATED)
1706 worker->flags |= WORKER_UNBOUND;
1707
1708 list_add_tail(&worker->node, &pool->workers);
1709
1710 mutex_unlock(&pool->attach_mutex);
1711}
1712
60f5a4bc
LJ
1713/**
1714 * worker_detach_from_pool() - detach a worker from its pool
1715 * @worker: worker which is attached to its pool
1716 * @pool: the pool @worker is attached to
1717 *
4736cbf7
LJ
1718 * Undo the attaching which had been done in worker_attach_to_pool(). The
1719 * caller worker shouldn't access to the pool after detached except it has
1720 * other reference to the pool.
60f5a4bc
LJ
1721 */
1722static void worker_detach_from_pool(struct worker *worker,
1723 struct worker_pool *pool)
1724{
1725 struct completion *detach_completion = NULL;
1726
92f9c5c4 1727 mutex_lock(&pool->attach_mutex);
da028469
LJ
1728 list_del(&worker->node);
1729 if (list_empty(&pool->workers))
60f5a4bc 1730 detach_completion = pool->detach_completion;
92f9c5c4 1731 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1732
b62c0751
LJ
1733 /* clear leftover flags without pool->lock after it is detached */
1734 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1735
60f5a4bc
LJ
1736 if (detach_completion)
1737 complete(detach_completion);
1738}
1739
c34056a3
TH
1740/**
1741 * create_worker - create a new workqueue worker
63d95a91 1742 * @pool: pool the new worker will belong to
c34056a3 1743 *
051e1850 1744 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1745 *
1746 * CONTEXT:
1747 * Might sleep. Does GFP_KERNEL allocations.
1748 *
d185af30 1749 * Return:
c34056a3
TH
1750 * Pointer to the newly created worker.
1751 */
bc2ae0f5 1752static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1753{
c34056a3 1754 struct worker *worker = NULL;
f3421797 1755 int id = -1;
e3c916a4 1756 char id_buf[16];
c34056a3 1757
7cda9aae
LJ
1758 /* ID is needed to determine kthread name */
1759 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1760 if (id < 0)
1761 goto fail;
c34056a3 1762
f7537df5 1763 worker = alloc_worker(pool->node);
c34056a3
TH
1764 if (!worker)
1765 goto fail;
1766
bd7bdd43 1767 worker->pool = pool;
c34056a3
TH
1768 worker->id = id;
1769
29c91e99 1770 if (pool->cpu >= 0)
e3c916a4
TH
1771 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1772 pool->attrs->nice < 0 ? "H" : "");
f3421797 1773 else
e3c916a4
TH
1774 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1775
f3f90ad4 1776 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1777 "kworker/%s", id_buf);
c34056a3
TH
1778 if (IS_ERR(worker->task))
1779 goto fail;
1780
91151228 1781 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1782 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1783
da028469 1784 /* successful, attach the worker to the pool */
4736cbf7 1785 worker_attach_to_pool(worker, pool);
822d8405 1786
051e1850
LJ
1787 /* start the newly created worker */
1788 spin_lock_irq(&pool->lock);
1789 worker->pool->nr_workers++;
1790 worker_enter_idle(worker);
1791 wake_up_process(worker->task);
1792 spin_unlock_irq(&pool->lock);
1793
c34056a3 1794 return worker;
822d8405 1795
c34056a3 1796fail:
9625ab17 1797 if (id >= 0)
7cda9aae 1798 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1799 kfree(worker);
1800 return NULL;
1801}
1802
c34056a3
TH
1803/**
1804 * destroy_worker - destroy a workqueue worker
1805 * @worker: worker to be destroyed
1806 *
73eb7fe7
LJ
1807 * Destroy @worker and adjust @pool stats accordingly. The worker should
1808 * be idle.
c8e55f36
TH
1809 *
1810 * CONTEXT:
60f5a4bc 1811 * spin_lock_irq(pool->lock).
c34056a3
TH
1812 */
1813static void destroy_worker(struct worker *worker)
1814{
bd7bdd43 1815 struct worker_pool *pool = worker->pool;
c34056a3 1816
cd549687
TH
1817 lockdep_assert_held(&pool->lock);
1818
c34056a3 1819 /* sanity check frenzy */
6183c009 1820 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1821 WARN_ON(!list_empty(&worker->scheduled)) ||
1822 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1823 return;
c34056a3 1824
73eb7fe7
LJ
1825 pool->nr_workers--;
1826 pool->nr_idle--;
5bdfff96 1827
c8e55f36 1828 list_del_init(&worker->entry);
cb444766 1829 worker->flags |= WORKER_DIE;
60f5a4bc 1830 wake_up_process(worker->task);
c34056a3
TH
1831}
1832
63d95a91 1833static void idle_worker_timeout(unsigned long __pool)
e22bee78 1834{
63d95a91 1835 struct worker_pool *pool = (void *)__pool;
e22bee78 1836
d565ed63 1837 spin_lock_irq(&pool->lock);
e22bee78 1838
3347fc9f 1839 while (too_many_workers(pool)) {
e22bee78
TH
1840 struct worker *worker;
1841 unsigned long expires;
1842
1843 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1844 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1845 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1846
3347fc9f 1847 if (time_before(jiffies, expires)) {
63d95a91 1848 mod_timer(&pool->idle_timer, expires);
3347fc9f 1849 break;
d5abe669 1850 }
3347fc9f
LJ
1851
1852 destroy_worker(worker);
e22bee78
TH
1853 }
1854
d565ed63 1855 spin_unlock_irq(&pool->lock);
e22bee78 1856}
d5abe669 1857
493a1724 1858static void send_mayday(struct work_struct *work)
e22bee78 1859{
112202d9
TH
1860 struct pool_workqueue *pwq = get_work_pwq(work);
1861 struct workqueue_struct *wq = pwq->wq;
493a1724 1862
2e109a28 1863 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1864
493008a8 1865 if (!wq->rescuer)
493a1724 1866 return;
e22bee78
TH
1867
1868 /* mayday mayday mayday */
493a1724 1869 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1870 /*
1871 * If @pwq is for an unbound wq, its base ref may be put at
1872 * any time due to an attribute change. Pin @pwq until the
1873 * rescuer is done with it.
1874 */
1875 get_pwq(pwq);
493a1724 1876 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1877 wake_up_process(wq->rescuer->task);
493a1724 1878 }
e22bee78
TH
1879}
1880
706026c2 1881static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1882{
63d95a91 1883 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1884 struct work_struct *work;
1885
b2d82909
TH
1886 spin_lock_irq(&pool->lock);
1887 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1888
63d95a91 1889 if (need_to_create_worker(pool)) {
e22bee78
TH
1890 /*
1891 * We've been trying to create a new worker but
1892 * haven't been successful. We might be hitting an
1893 * allocation deadlock. Send distress signals to
1894 * rescuers.
1895 */
63d95a91 1896 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1897 send_mayday(work);
1da177e4 1898 }
e22bee78 1899
b2d82909
TH
1900 spin_unlock(&wq_mayday_lock);
1901 spin_unlock_irq(&pool->lock);
e22bee78 1902
63d95a91 1903 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1904}
1905
e22bee78
TH
1906/**
1907 * maybe_create_worker - create a new worker if necessary
63d95a91 1908 * @pool: pool to create a new worker for
e22bee78 1909 *
63d95a91 1910 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1911 * have at least one idle worker on return from this function. If
1912 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1913 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1914 * possible allocation deadlock.
1915 *
c5aa87bb
TH
1916 * On return, need_to_create_worker() is guaranteed to be %false and
1917 * may_start_working() %true.
e22bee78
TH
1918 *
1919 * LOCKING:
d565ed63 1920 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1921 * multiple times. Does GFP_KERNEL allocations. Called only from
1922 * manager.
e22bee78 1923 */
29187a9e 1924static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1925__releases(&pool->lock)
1926__acquires(&pool->lock)
1da177e4 1927{
e22bee78 1928restart:
d565ed63 1929 spin_unlock_irq(&pool->lock);
9f9c2364 1930
e22bee78 1931 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1932 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1933
1934 while (true) {
051e1850 1935 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1936 break;
1da177e4 1937
e212f361 1938 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1939
63d95a91 1940 if (!need_to_create_worker(pool))
e22bee78
TH
1941 break;
1942 }
1943
63d95a91 1944 del_timer_sync(&pool->mayday_timer);
d565ed63 1945 spin_lock_irq(&pool->lock);
051e1850
LJ
1946 /*
1947 * This is necessary even after a new worker was just successfully
1948 * created as @pool->lock was dropped and the new worker might have
1949 * already become busy.
1950 */
63d95a91 1951 if (need_to_create_worker(pool))
e22bee78 1952 goto restart;
e22bee78
TH
1953}
1954
73f53c4a 1955/**
e22bee78
TH
1956 * manage_workers - manage worker pool
1957 * @worker: self
73f53c4a 1958 *
706026c2 1959 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1960 * to. At any given time, there can be only zero or one manager per
706026c2 1961 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1962 *
1963 * The caller can safely start processing works on false return. On
1964 * true return, it's guaranteed that need_to_create_worker() is false
1965 * and may_start_working() is true.
73f53c4a
TH
1966 *
1967 * CONTEXT:
d565ed63 1968 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1969 * multiple times. Does GFP_KERNEL allocations.
1970 *
d185af30 1971 * Return:
29187a9e
TH
1972 * %false if the pool doesn't need management and the caller can safely
1973 * start processing works, %true if management function was performed and
1974 * the conditions that the caller verified before calling the function may
1975 * no longer be true.
73f53c4a 1976 */
e22bee78 1977static bool manage_workers(struct worker *worker)
73f53c4a 1978{
63d95a91 1979 struct worker_pool *pool = worker->pool;
73f53c4a 1980
bc3a1afc 1981 /*
bc3a1afc
TH
1982 * Anyone who successfully grabs manager_arb wins the arbitration
1983 * and becomes the manager. mutex_trylock() on pool->manager_arb
1984 * failure while holding pool->lock reliably indicates that someone
1985 * else is managing the pool and the worker which failed trylock
1986 * can proceed to executing work items. This means that anyone
1987 * grabbing manager_arb is responsible for actually performing
1988 * manager duties. If manager_arb is grabbed and released without
1989 * actual management, the pool may stall indefinitely.
bc3a1afc 1990 */
34a06bd6 1991 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1992 return false;
2607d7a6 1993 pool->manager = worker;
1e19ffc6 1994
29187a9e 1995 maybe_create_worker(pool);
e22bee78 1996
2607d7a6 1997 pool->manager = NULL;
34a06bd6 1998 mutex_unlock(&pool->manager_arb);
29187a9e 1999 return true;
73f53c4a
TH
2000}
2001
a62428c0
TH
2002/**
2003 * process_one_work - process single work
c34056a3 2004 * @worker: self
a62428c0
TH
2005 * @work: work to process
2006 *
2007 * Process @work. This function contains all the logics necessary to
2008 * process a single work including synchronization against and
2009 * interaction with other workers on the same cpu, queueing and
2010 * flushing. As long as context requirement is met, any worker can
2011 * call this function to process a work.
2012 *
2013 * CONTEXT:
d565ed63 2014 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2015 */
c34056a3 2016static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2017__releases(&pool->lock)
2018__acquires(&pool->lock)
a62428c0 2019{
112202d9 2020 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2021 struct worker_pool *pool = worker->pool;
112202d9 2022 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2023 int work_color;
7e11629d 2024 struct worker *collision;
a62428c0
TH
2025#ifdef CONFIG_LOCKDEP
2026 /*
2027 * It is permissible to free the struct work_struct from
2028 * inside the function that is called from it, this we need to
2029 * take into account for lockdep too. To avoid bogus "held
2030 * lock freed" warnings as well as problems when looking into
2031 * work->lockdep_map, make a copy and use that here.
2032 */
4d82a1de
PZ
2033 struct lockdep_map lockdep_map;
2034
2035 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2036#endif
807407c0 2037 /* ensure we're on the correct CPU */
85327af6 2038 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2039 raw_smp_processor_id() != pool->cpu);
25511a47 2040
7e11629d
TH
2041 /*
2042 * A single work shouldn't be executed concurrently by
2043 * multiple workers on a single cpu. Check whether anyone is
2044 * already processing the work. If so, defer the work to the
2045 * currently executing one.
2046 */
c9e7cf27 2047 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2048 if (unlikely(collision)) {
2049 move_linked_works(work, &collision->scheduled, NULL);
2050 return;
2051 }
2052
8930caba 2053 /* claim and dequeue */
a62428c0 2054 debug_work_deactivate(work);
c9e7cf27 2055 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2056 worker->current_work = work;
a2c1c57b 2057 worker->current_func = work->func;
112202d9 2058 worker->current_pwq = pwq;
73f53c4a 2059 work_color = get_work_color(work);
7a22ad75 2060
a62428c0
TH
2061 list_del_init(&work->entry);
2062
fb0e7beb 2063 /*
228f1d00
LJ
2064 * CPU intensive works don't participate in concurrency management.
2065 * They're the scheduler's responsibility. This takes @worker out
2066 * of concurrency management and the next code block will chain
2067 * execution of the pending work items.
fb0e7beb
TH
2068 */
2069 if (unlikely(cpu_intensive))
228f1d00 2070 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2071
974271c4 2072 /*
a489a03e
LJ
2073 * Wake up another worker if necessary. The condition is always
2074 * false for normal per-cpu workers since nr_running would always
2075 * be >= 1 at this point. This is used to chain execution of the
2076 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2077 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2078 */
a489a03e 2079 if (need_more_worker(pool))
63d95a91 2080 wake_up_worker(pool);
974271c4 2081
8930caba 2082 /*
7c3eed5c 2083 * Record the last pool and clear PENDING which should be the last
d565ed63 2084 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2085 * PENDING and queued state changes happen together while IRQ is
2086 * disabled.
8930caba 2087 */
7c3eed5c 2088 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2089
d565ed63 2090 spin_unlock_irq(&pool->lock);
a62428c0 2091
112202d9 2092 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2093 lock_map_acquire(&lockdep_map);
e36c886a 2094 trace_workqueue_execute_start(work);
a2c1c57b 2095 worker->current_func(work);
e36c886a
AV
2096 /*
2097 * While we must be careful to not use "work" after this, the trace
2098 * point will only record its address.
2099 */
2100 trace_workqueue_execute_end(work);
a62428c0 2101 lock_map_release(&lockdep_map);
112202d9 2102 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2103
2104 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2105 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2106 " last function: %pf\n",
a2c1c57b
TH
2107 current->comm, preempt_count(), task_pid_nr(current),
2108 worker->current_func);
a62428c0
TH
2109 debug_show_held_locks(current);
2110 dump_stack();
2111 }
2112
b22ce278
TH
2113 /*
2114 * The following prevents a kworker from hogging CPU on !PREEMPT
2115 * kernels, where a requeueing work item waiting for something to
2116 * happen could deadlock with stop_machine as such work item could
2117 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2118 * stop_machine. At the same time, report a quiescent RCU state so
2119 * the same condition doesn't freeze RCU.
b22ce278 2120 */
3e28e377 2121 cond_resched_rcu_qs();
b22ce278 2122
d565ed63 2123 spin_lock_irq(&pool->lock);
a62428c0 2124
fb0e7beb
TH
2125 /* clear cpu intensive status */
2126 if (unlikely(cpu_intensive))
2127 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2128
a62428c0 2129 /* we're done with it, release */
42f8570f 2130 hash_del(&worker->hentry);
c34056a3 2131 worker->current_work = NULL;
a2c1c57b 2132 worker->current_func = NULL;
112202d9 2133 worker->current_pwq = NULL;
3d1cb205 2134 worker->desc_valid = false;
112202d9 2135 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2136}
2137
affee4b2
TH
2138/**
2139 * process_scheduled_works - process scheduled works
2140 * @worker: self
2141 *
2142 * Process all scheduled works. Please note that the scheduled list
2143 * may change while processing a work, so this function repeatedly
2144 * fetches a work from the top and executes it.
2145 *
2146 * CONTEXT:
d565ed63 2147 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2148 * multiple times.
2149 */
2150static void process_scheduled_works(struct worker *worker)
1da177e4 2151{
affee4b2
TH
2152 while (!list_empty(&worker->scheduled)) {
2153 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2154 struct work_struct, entry);
c34056a3 2155 process_one_work(worker, work);
1da177e4 2156 }
1da177e4
LT
2157}
2158
4690c4ab
TH
2159/**
2160 * worker_thread - the worker thread function
c34056a3 2161 * @__worker: self
4690c4ab 2162 *
c5aa87bb
TH
2163 * The worker thread function. All workers belong to a worker_pool -
2164 * either a per-cpu one or dynamic unbound one. These workers process all
2165 * work items regardless of their specific target workqueue. The only
2166 * exception is work items which belong to workqueues with a rescuer which
2167 * will be explained in rescuer_thread().
d185af30
YB
2168 *
2169 * Return: 0
4690c4ab 2170 */
c34056a3 2171static int worker_thread(void *__worker)
1da177e4 2172{
c34056a3 2173 struct worker *worker = __worker;
bd7bdd43 2174 struct worker_pool *pool = worker->pool;
1da177e4 2175
e22bee78
TH
2176 /* tell the scheduler that this is a workqueue worker */
2177 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2178woke_up:
d565ed63 2179 spin_lock_irq(&pool->lock);
1da177e4 2180
a9ab775b
TH
2181 /* am I supposed to die? */
2182 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2183 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2184 WARN_ON_ONCE(!list_empty(&worker->entry));
2185 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2186
2187 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2188 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2189 worker_detach_from_pool(worker, pool);
2190 kfree(worker);
a9ab775b 2191 return 0;
c8e55f36 2192 }
affee4b2 2193
c8e55f36 2194 worker_leave_idle(worker);
db7bccf4 2195recheck:
e22bee78 2196 /* no more worker necessary? */
63d95a91 2197 if (!need_more_worker(pool))
e22bee78
TH
2198 goto sleep;
2199
2200 /* do we need to manage? */
63d95a91 2201 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2202 goto recheck;
2203
c8e55f36
TH
2204 /*
2205 * ->scheduled list can only be filled while a worker is
2206 * preparing to process a work or actually processing it.
2207 * Make sure nobody diddled with it while I was sleeping.
2208 */
6183c009 2209 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2210
e22bee78 2211 /*
a9ab775b
TH
2212 * Finish PREP stage. We're guaranteed to have at least one idle
2213 * worker or that someone else has already assumed the manager
2214 * role. This is where @worker starts participating in concurrency
2215 * management if applicable and concurrency management is restored
2216 * after being rebound. See rebind_workers() for details.
e22bee78 2217 */
a9ab775b 2218 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2219
2220 do {
c8e55f36 2221 struct work_struct *work =
bd7bdd43 2222 list_first_entry(&pool->worklist,
c8e55f36
TH
2223 struct work_struct, entry);
2224
82607adc
TH
2225 pool->watchdog_ts = jiffies;
2226
c8e55f36
TH
2227 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2228 /* optimization path, not strictly necessary */
2229 process_one_work(worker, work);
2230 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2231 process_scheduled_works(worker);
c8e55f36
TH
2232 } else {
2233 move_linked_works(work, &worker->scheduled, NULL);
2234 process_scheduled_works(worker);
affee4b2 2235 }
63d95a91 2236 } while (keep_working(pool));
e22bee78 2237
228f1d00 2238 worker_set_flags(worker, WORKER_PREP);
d313dd85 2239sleep:
c8e55f36 2240 /*
d565ed63
TH
2241 * pool->lock is held and there's no work to process and no need to
2242 * manage, sleep. Workers are woken up only while holding
2243 * pool->lock or from local cpu, so setting the current state
2244 * before releasing pool->lock is enough to prevent losing any
2245 * event.
c8e55f36
TH
2246 */
2247 worker_enter_idle(worker);
2248 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2249 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2250 schedule();
2251 goto woke_up;
1da177e4
LT
2252}
2253
e22bee78
TH
2254/**
2255 * rescuer_thread - the rescuer thread function
111c225a 2256 * @__rescuer: self
e22bee78
TH
2257 *
2258 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2259 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2260 *
706026c2 2261 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2262 * worker which uses GFP_KERNEL allocation which has slight chance of
2263 * developing into deadlock if some works currently on the same queue
2264 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2265 * the problem rescuer solves.
2266 *
706026c2
TH
2267 * When such condition is possible, the pool summons rescuers of all
2268 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2269 * those works so that forward progress can be guaranteed.
2270 *
2271 * This should happen rarely.
d185af30
YB
2272 *
2273 * Return: 0
e22bee78 2274 */
111c225a 2275static int rescuer_thread(void *__rescuer)
e22bee78 2276{
111c225a
TH
2277 struct worker *rescuer = __rescuer;
2278 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2279 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2280 bool should_stop;
e22bee78
TH
2281
2282 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2283
2284 /*
2285 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2286 * doesn't participate in concurrency management.
2287 */
2288 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2289repeat:
2290 set_current_state(TASK_INTERRUPTIBLE);
2291
4d595b86
LJ
2292 /*
2293 * By the time the rescuer is requested to stop, the workqueue
2294 * shouldn't have any work pending, but @wq->maydays may still have
2295 * pwq(s) queued. This can happen by non-rescuer workers consuming
2296 * all the work items before the rescuer got to them. Go through
2297 * @wq->maydays processing before acting on should_stop so that the
2298 * list is always empty on exit.
2299 */
2300 should_stop = kthread_should_stop();
e22bee78 2301
493a1724 2302 /* see whether any pwq is asking for help */
2e109a28 2303 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2304
2305 while (!list_empty(&wq->maydays)) {
2306 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2307 struct pool_workqueue, mayday_node);
112202d9 2308 struct worker_pool *pool = pwq->pool;
e22bee78 2309 struct work_struct *work, *n;
82607adc 2310 bool first = true;
e22bee78
TH
2311
2312 __set_current_state(TASK_RUNNING);
493a1724
TH
2313 list_del_init(&pwq->mayday_node);
2314
2e109a28 2315 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2316
51697d39
LJ
2317 worker_attach_to_pool(rescuer, pool);
2318
2319 spin_lock_irq(&pool->lock);
b3104104 2320 rescuer->pool = pool;
e22bee78
TH
2321
2322 /*
2323 * Slurp in all works issued via this workqueue and
2324 * process'em.
2325 */
0479c8c5 2326 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2327 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2328 if (get_work_pwq(work) == pwq) {
2329 if (first)
2330 pool->watchdog_ts = jiffies;
e22bee78 2331 move_linked_works(work, scheduled, &n);
82607adc
TH
2332 }
2333 first = false;
2334 }
e22bee78 2335
008847f6
N
2336 if (!list_empty(scheduled)) {
2337 process_scheduled_works(rescuer);
2338
2339 /*
2340 * The above execution of rescued work items could
2341 * have created more to rescue through
2342 * pwq_activate_first_delayed() or chained
2343 * queueing. Let's put @pwq back on mayday list so
2344 * that such back-to-back work items, which may be
2345 * being used to relieve memory pressure, don't
2346 * incur MAYDAY_INTERVAL delay inbetween.
2347 */
2348 if (need_to_create_worker(pool)) {
2349 spin_lock(&wq_mayday_lock);
2350 get_pwq(pwq);
2351 list_move_tail(&pwq->mayday_node, &wq->maydays);
2352 spin_unlock(&wq_mayday_lock);
2353 }
2354 }
7576958a 2355
77668c8b
LJ
2356 /*
2357 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2358 * go away while we're still attached to it.
77668c8b
LJ
2359 */
2360 put_pwq(pwq);
2361
7576958a 2362 /*
d8ca83e6 2363 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2364 * regular worker; otherwise, we end up with 0 concurrency
2365 * and stalling the execution.
2366 */
d8ca83e6 2367 if (need_more_worker(pool))
63d95a91 2368 wake_up_worker(pool);
7576958a 2369
b3104104 2370 rescuer->pool = NULL;
13b1d625
LJ
2371 spin_unlock_irq(&pool->lock);
2372
2373 worker_detach_from_pool(rescuer, pool);
2374
2375 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2376 }
2377
2e109a28 2378 spin_unlock_irq(&wq_mayday_lock);
493a1724 2379
4d595b86
LJ
2380 if (should_stop) {
2381 __set_current_state(TASK_RUNNING);
2382 rescuer->task->flags &= ~PF_WQ_WORKER;
2383 return 0;
2384 }
2385
111c225a
TH
2386 /* rescuers should never participate in concurrency management */
2387 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2388 schedule();
2389 goto repeat;
1da177e4
LT
2390}
2391
fca839c0
TH
2392/**
2393 * check_flush_dependency - check for flush dependency sanity
2394 * @target_wq: workqueue being flushed
2395 * @target_work: work item being flushed (NULL for workqueue flushes)
2396 *
2397 * %current is trying to flush the whole @target_wq or @target_work on it.
2398 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2399 * reclaiming memory or running on a workqueue which doesn't have
2400 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2401 * a deadlock.
2402 */
2403static void check_flush_dependency(struct workqueue_struct *target_wq,
2404 struct work_struct *target_work)
2405{
2406 work_func_t target_func = target_work ? target_work->func : NULL;
2407 struct worker *worker;
2408
2409 if (target_wq->flags & WQ_MEM_RECLAIM)
2410 return;
2411
2412 worker = current_wq_worker();
2413
2414 WARN_ONCE(current->flags & PF_MEMALLOC,
2415 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2416 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2417 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2418 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2419 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2420 worker->current_pwq->wq->name, worker->current_func,
2421 target_wq->name, target_func);
2422}
2423
fc2e4d70
ON
2424struct wq_barrier {
2425 struct work_struct work;
2426 struct completion done;
2607d7a6 2427 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2428};
2429
2430static void wq_barrier_func(struct work_struct *work)
2431{
2432 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2433 complete(&barr->done);
2434}
2435
4690c4ab
TH
2436/**
2437 * insert_wq_barrier - insert a barrier work
112202d9 2438 * @pwq: pwq to insert barrier into
4690c4ab 2439 * @barr: wq_barrier to insert
affee4b2
TH
2440 * @target: target work to attach @barr to
2441 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2442 *
affee4b2
TH
2443 * @barr is linked to @target such that @barr is completed only after
2444 * @target finishes execution. Please note that the ordering
2445 * guarantee is observed only with respect to @target and on the local
2446 * cpu.
2447 *
2448 * Currently, a queued barrier can't be canceled. This is because
2449 * try_to_grab_pending() can't determine whether the work to be
2450 * grabbed is at the head of the queue and thus can't clear LINKED
2451 * flag of the previous work while there must be a valid next work
2452 * after a work with LINKED flag set.
2453 *
2454 * Note that when @worker is non-NULL, @target may be modified
112202d9 2455 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2456 *
2457 * CONTEXT:
d565ed63 2458 * spin_lock_irq(pool->lock).
4690c4ab 2459 */
112202d9 2460static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2461 struct wq_barrier *barr,
2462 struct work_struct *target, struct worker *worker)
fc2e4d70 2463{
affee4b2
TH
2464 struct list_head *head;
2465 unsigned int linked = 0;
2466
dc186ad7 2467 /*
d565ed63 2468 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2469 * as we know for sure that this will not trigger any of the
2470 * checks and call back into the fixup functions where we
2471 * might deadlock.
2472 */
ca1cab37 2473 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2474 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2475 init_completion(&barr->done);
2607d7a6 2476 barr->task = current;
83c22520 2477
affee4b2
TH
2478 /*
2479 * If @target is currently being executed, schedule the
2480 * barrier to the worker; otherwise, put it after @target.
2481 */
2482 if (worker)
2483 head = worker->scheduled.next;
2484 else {
2485 unsigned long *bits = work_data_bits(target);
2486
2487 head = target->entry.next;
2488 /* there can already be other linked works, inherit and set */
2489 linked = *bits & WORK_STRUCT_LINKED;
2490 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2491 }
2492
dc186ad7 2493 debug_work_activate(&barr->work);
112202d9 2494 insert_work(pwq, &barr->work, head,
affee4b2 2495 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2496}
2497
73f53c4a 2498/**
112202d9 2499 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2500 * @wq: workqueue being flushed
2501 * @flush_color: new flush color, < 0 for no-op
2502 * @work_color: new work color, < 0 for no-op
2503 *
112202d9 2504 * Prepare pwqs for workqueue flushing.
73f53c4a 2505 *
112202d9
TH
2506 * If @flush_color is non-negative, flush_color on all pwqs should be
2507 * -1. If no pwq has in-flight commands at the specified color, all
2508 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2509 * has in flight commands, its pwq->flush_color is set to
2510 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2511 * wakeup logic is armed and %true is returned.
2512 *
2513 * The caller should have initialized @wq->first_flusher prior to
2514 * calling this function with non-negative @flush_color. If
2515 * @flush_color is negative, no flush color update is done and %false
2516 * is returned.
2517 *
112202d9 2518 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2519 * work_color which is previous to @work_color and all will be
2520 * advanced to @work_color.
2521 *
2522 * CONTEXT:
3c25a55d 2523 * mutex_lock(wq->mutex).
73f53c4a 2524 *
d185af30 2525 * Return:
73f53c4a
TH
2526 * %true if @flush_color >= 0 and there's something to flush. %false
2527 * otherwise.
2528 */
112202d9 2529static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2530 int flush_color, int work_color)
1da177e4 2531{
73f53c4a 2532 bool wait = false;
49e3cf44 2533 struct pool_workqueue *pwq;
1da177e4 2534
73f53c4a 2535 if (flush_color >= 0) {
6183c009 2536 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2537 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2538 }
2355b70f 2539
49e3cf44 2540 for_each_pwq(pwq, wq) {
112202d9 2541 struct worker_pool *pool = pwq->pool;
fc2e4d70 2542
b09f4fd3 2543 spin_lock_irq(&pool->lock);
83c22520 2544
73f53c4a 2545 if (flush_color >= 0) {
6183c009 2546 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2547
112202d9
TH
2548 if (pwq->nr_in_flight[flush_color]) {
2549 pwq->flush_color = flush_color;
2550 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2551 wait = true;
2552 }
2553 }
1da177e4 2554
73f53c4a 2555 if (work_color >= 0) {
6183c009 2556 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2557 pwq->work_color = work_color;
73f53c4a 2558 }
1da177e4 2559
b09f4fd3 2560 spin_unlock_irq(&pool->lock);
1da177e4 2561 }
2355b70f 2562
112202d9 2563 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2564 complete(&wq->first_flusher->done);
14441960 2565
73f53c4a 2566 return wait;
1da177e4
LT
2567}
2568
0fcb78c2 2569/**
1da177e4 2570 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2571 * @wq: workqueue to flush
1da177e4 2572 *
c5aa87bb
TH
2573 * This function sleeps until all work items which were queued on entry
2574 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2575 */
7ad5b3a5 2576void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2577{
73f53c4a
TH
2578 struct wq_flusher this_flusher = {
2579 .list = LIST_HEAD_INIT(this_flusher.list),
2580 .flush_color = -1,
2581 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2582 };
2583 int next_color;
1da177e4 2584
3295f0ef
IM
2585 lock_map_acquire(&wq->lockdep_map);
2586 lock_map_release(&wq->lockdep_map);
73f53c4a 2587
3c25a55d 2588 mutex_lock(&wq->mutex);
73f53c4a
TH
2589
2590 /*
2591 * Start-to-wait phase
2592 */
2593 next_color = work_next_color(wq->work_color);
2594
2595 if (next_color != wq->flush_color) {
2596 /*
2597 * Color space is not full. The current work_color
2598 * becomes our flush_color and work_color is advanced
2599 * by one.
2600 */
6183c009 2601 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2602 this_flusher.flush_color = wq->work_color;
2603 wq->work_color = next_color;
2604
2605 if (!wq->first_flusher) {
2606 /* no flush in progress, become the first flusher */
6183c009 2607 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2608
2609 wq->first_flusher = &this_flusher;
2610
112202d9 2611 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2612 wq->work_color)) {
2613 /* nothing to flush, done */
2614 wq->flush_color = next_color;
2615 wq->first_flusher = NULL;
2616 goto out_unlock;
2617 }
2618 } else {
2619 /* wait in queue */
6183c009 2620 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2621 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2622 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2623 }
2624 } else {
2625 /*
2626 * Oops, color space is full, wait on overflow queue.
2627 * The next flush completion will assign us
2628 * flush_color and transfer to flusher_queue.
2629 */
2630 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2631 }
2632
fca839c0
TH
2633 check_flush_dependency(wq, NULL);
2634
3c25a55d 2635 mutex_unlock(&wq->mutex);
73f53c4a
TH
2636
2637 wait_for_completion(&this_flusher.done);
2638
2639 /*
2640 * Wake-up-and-cascade phase
2641 *
2642 * First flushers are responsible for cascading flushes and
2643 * handling overflow. Non-first flushers can simply return.
2644 */
2645 if (wq->first_flusher != &this_flusher)
2646 return;
2647
3c25a55d 2648 mutex_lock(&wq->mutex);
73f53c4a 2649
4ce48b37
TH
2650 /* we might have raced, check again with mutex held */
2651 if (wq->first_flusher != &this_flusher)
2652 goto out_unlock;
2653
73f53c4a
TH
2654 wq->first_flusher = NULL;
2655
6183c009
TH
2656 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2657 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2658
2659 while (true) {
2660 struct wq_flusher *next, *tmp;
2661
2662 /* complete all the flushers sharing the current flush color */
2663 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2664 if (next->flush_color != wq->flush_color)
2665 break;
2666 list_del_init(&next->list);
2667 complete(&next->done);
2668 }
2669
6183c009
TH
2670 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2671 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2672
2673 /* this flush_color is finished, advance by one */
2674 wq->flush_color = work_next_color(wq->flush_color);
2675
2676 /* one color has been freed, handle overflow queue */
2677 if (!list_empty(&wq->flusher_overflow)) {
2678 /*
2679 * Assign the same color to all overflowed
2680 * flushers, advance work_color and append to
2681 * flusher_queue. This is the start-to-wait
2682 * phase for these overflowed flushers.
2683 */
2684 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2685 tmp->flush_color = wq->work_color;
2686
2687 wq->work_color = work_next_color(wq->work_color);
2688
2689 list_splice_tail_init(&wq->flusher_overflow,
2690 &wq->flusher_queue);
112202d9 2691 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2692 }
2693
2694 if (list_empty(&wq->flusher_queue)) {
6183c009 2695 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2696 break;
2697 }
2698
2699 /*
2700 * Need to flush more colors. Make the next flusher
112202d9 2701 * the new first flusher and arm pwqs.
73f53c4a 2702 */
6183c009
TH
2703 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2704 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2705
2706 list_del_init(&next->list);
2707 wq->first_flusher = next;
2708
112202d9 2709 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2710 break;
2711
2712 /*
2713 * Meh... this color is already done, clear first
2714 * flusher and repeat cascading.
2715 */
2716 wq->first_flusher = NULL;
2717 }
2718
2719out_unlock:
3c25a55d 2720 mutex_unlock(&wq->mutex);
1da177e4 2721}
1dadafa8 2722EXPORT_SYMBOL(flush_workqueue);
1da177e4 2723
9c5a2ba7
TH
2724/**
2725 * drain_workqueue - drain a workqueue
2726 * @wq: workqueue to drain
2727 *
2728 * Wait until the workqueue becomes empty. While draining is in progress,
2729 * only chain queueing is allowed. IOW, only currently pending or running
2730 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2731 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2732 * by the depth of chaining and should be relatively short. Whine if it
2733 * takes too long.
2734 */
2735void drain_workqueue(struct workqueue_struct *wq)
2736{
2737 unsigned int flush_cnt = 0;
49e3cf44 2738 struct pool_workqueue *pwq;
9c5a2ba7
TH
2739
2740 /*
2741 * __queue_work() needs to test whether there are drainers, is much
2742 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2743 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2744 */
87fc741e 2745 mutex_lock(&wq->mutex);
9c5a2ba7 2746 if (!wq->nr_drainers++)
618b01eb 2747 wq->flags |= __WQ_DRAINING;
87fc741e 2748 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2749reflush:
2750 flush_workqueue(wq);
2751
b09f4fd3 2752 mutex_lock(&wq->mutex);
76af4d93 2753
49e3cf44 2754 for_each_pwq(pwq, wq) {
fa2563e4 2755 bool drained;
9c5a2ba7 2756
b09f4fd3 2757 spin_lock_irq(&pwq->pool->lock);
112202d9 2758 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2759 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2760
2761 if (drained)
9c5a2ba7
TH
2762 continue;
2763
2764 if (++flush_cnt == 10 ||
2765 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2766 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2767 wq->name, flush_cnt);
76af4d93 2768
b09f4fd3 2769 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2770 goto reflush;
2771 }
2772
9c5a2ba7 2773 if (!--wq->nr_drainers)
618b01eb 2774 wq->flags &= ~__WQ_DRAINING;
87fc741e 2775 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2776}
2777EXPORT_SYMBOL_GPL(drain_workqueue);
2778
606a5020 2779static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2780{
affee4b2 2781 struct worker *worker = NULL;
c9e7cf27 2782 struct worker_pool *pool;
112202d9 2783 struct pool_workqueue *pwq;
db700897
ON
2784
2785 might_sleep();
fa1b54e6
TH
2786
2787 local_irq_disable();
c9e7cf27 2788 pool = get_work_pool(work);
fa1b54e6
TH
2789 if (!pool) {
2790 local_irq_enable();
baf59022 2791 return false;
fa1b54e6 2792 }
db700897 2793
fa1b54e6 2794 spin_lock(&pool->lock);
0b3dae68 2795 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2796 pwq = get_work_pwq(work);
2797 if (pwq) {
2798 if (unlikely(pwq->pool != pool))
4690c4ab 2799 goto already_gone;
606a5020 2800 } else {
c9e7cf27 2801 worker = find_worker_executing_work(pool, work);
affee4b2 2802 if (!worker)
4690c4ab 2803 goto already_gone;
112202d9 2804 pwq = worker->current_pwq;
606a5020 2805 }
db700897 2806
fca839c0
TH
2807 check_flush_dependency(pwq->wq, work);
2808
112202d9 2809 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2810 spin_unlock_irq(&pool->lock);
7a22ad75 2811
e159489b
TH
2812 /*
2813 * If @max_active is 1 or rescuer is in use, flushing another work
2814 * item on the same workqueue may lead to deadlock. Make sure the
2815 * flusher is not running on the same workqueue by verifying write
2816 * access.
2817 */
493008a8 2818 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2819 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2820 else
112202d9
TH
2821 lock_map_acquire_read(&pwq->wq->lockdep_map);
2822 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2823
401a8d04 2824 return true;
4690c4ab 2825already_gone:
d565ed63 2826 spin_unlock_irq(&pool->lock);
401a8d04 2827 return false;
db700897 2828}
baf59022
TH
2829
2830/**
2831 * flush_work - wait for a work to finish executing the last queueing instance
2832 * @work: the work to flush
2833 *
606a5020
TH
2834 * Wait until @work has finished execution. @work is guaranteed to be idle
2835 * on return if it hasn't been requeued since flush started.
baf59022 2836 *
d185af30 2837 * Return:
baf59022
TH
2838 * %true if flush_work() waited for the work to finish execution,
2839 * %false if it was already idle.
2840 */
2841bool flush_work(struct work_struct *work)
2842{
12997d1a
BH
2843 struct wq_barrier barr;
2844
0976dfc1
SB
2845 lock_map_acquire(&work->lockdep_map);
2846 lock_map_release(&work->lockdep_map);
2847
12997d1a
BH
2848 if (start_flush_work(work, &barr)) {
2849 wait_for_completion(&barr.done);
2850 destroy_work_on_stack(&barr.work);
2851 return true;
2852 } else {
2853 return false;
2854 }
6e84d644 2855}
606a5020 2856EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2857
8603e1b3
TH
2858struct cwt_wait {
2859 wait_queue_t wait;
2860 struct work_struct *work;
2861};
2862
2863static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2864{
2865 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2866
2867 if (cwait->work != key)
2868 return 0;
2869 return autoremove_wake_function(wait, mode, sync, key);
2870}
2871
36e227d2 2872static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2873{
8603e1b3 2874 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2875 unsigned long flags;
1f1f642e
ON
2876 int ret;
2877
2878 do {
bbb68dfa
TH
2879 ret = try_to_grab_pending(work, is_dwork, &flags);
2880 /*
8603e1b3
TH
2881 * If someone else is already canceling, wait for it to
2882 * finish. flush_work() doesn't work for PREEMPT_NONE
2883 * because we may get scheduled between @work's completion
2884 * and the other canceling task resuming and clearing
2885 * CANCELING - flush_work() will return false immediately
2886 * as @work is no longer busy, try_to_grab_pending() will
2887 * return -ENOENT as @work is still being canceled and the
2888 * other canceling task won't be able to clear CANCELING as
2889 * we're hogging the CPU.
2890 *
2891 * Let's wait for completion using a waitqueue. As this
2892 * may lead to the thundering herd problem, use a custom
2893 * wake function which matches @work along with exclusive
2894 * wait and wakeup.
bbb68dfa 2895 */
8603e1b3
TH
2896 if (unlikely(ret == -ENOENT)) {
2897 struct cwt_wait cwait;
2898
2899 init_wait(&cwait.wait);
2900 cwait.wait.func = cwt_wakefn;
2901 cwait.work = work;
2902
2903 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2904 TASK_UNINTERRUPTIBLE);
2905 if (work_is_canceling(work))
2906 schedule();
2907 finish_wait(&cancel_waitq, &cwait.wait);
2908 }
1f1f642e
ON
2909 } while (unlikely(ret < 0));
2910
bbb68dfa
TH
2911 /* tell other tasks trying to grab @work to back off */
2912 mark_work_canceling(work);
2913 local_irq_restore(flags);
2914
606a5020 2915 flush_work(work);
7a22ad75 2916 clear_work_data(work);
8603e1b3
TH
2917
2918 /*
2919 * Paired with prepare_to_wait() above so that either
2920 * waitqueue_active() is visible here or !work_is_canceling() is
2921 * visible there.
2922 */
2923 smp_mb();
2924 if (waitqueue_active(&cancel_waitq))
2925 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2926
1f1f642e
ON
2927 return ret;
2928}
2929
6e84d644 2930/**
401a8d04
TH
2931 * cancel_work_sync - cancel a work and wait for it to finish
2932 * @work: the work to cancel
6e84d644 2933 *
401a8d04
TH
2934 * Cancel @work and wait for its execution to finish. This function
2935 * can be used even if the work re-queues itself or migrates to
2936 * another workqueue. On return from this function, @work is
2937 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2938 *
401a8d04
TH
2939 * cancel_work_sync(&delayed_work->work) must not be used for
2940 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2941 *
401a8d04 2942 * The caller must ensure that the workqueue on which @work was last
6e84d644 2943 * queued can't be destroyed before this function returns.
401a8d04 2944 *
d185af30 2945 * Return:
401a8d04 2946 * %true if @work was pending, %false otherwise.
6e84d644 2947 */
401a8d04 2948bool cancel_work_sync(struct work_struct *work)
6e84d644 2949{
36e227d2 2950 return __cancel_work_timer(work, false);
b89deed3 2951}
28e53bdd 2952EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2953
6e84d644 2954/**
401a8d04
TH
2955 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2956 * @dwork: the delayed work to flush
6e84d644 2957 *
401a8d04
TH
2958 * Delayed timer is cancelled and the pending work is queued for
2959 * immediate execution. Like flush_work(), this function only
2960 * considers the last queueing instance of @dwork.
1f1f642e 2961 *
d185af30 2962 * Return:
401a8d04
TH
2963 * %true if flush_work() waited for the work to finish execution,
2964 * %false if it was already idle.
6e84d644 2965 */
401a8d04
TH
2966bool flush_delayed_work(struct delayed_work *dwork)
2967{
8930caba 2968 local_irq_disable();
401a8d04 2969 if (del_timer_sync(&dwork->timer))
60c057bc 2970 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2971 local_irq_enable();
401a8d04
TH
2972 return flush_work(&dwork->work);
2973}
2974EXPORT_SYMBOL(flush_delayed_work);
2975
09383498 2976/**
57b30ae7
TH
2977 * cancel_delayed_work - cancel a delayed work
2978 * @dwork: delayed_work to cancel
09383498 2979 *
d185af30
YB
2980 * Kill off a pending delayed_work.
2981 *
2982 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2983 * pending.
2984 *
2985 * Note:
2986 * The work callback function may still be running on return, unless
2987 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2988 * use cancel_delayed_work_sync() to wait on it.
09383498 2989 *
57b30ae7 2990 * This function is safe to call from any context including IRQ handler.
09383498 2991 */
57b30ae7 2992bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2993{
57b30ae7
TH
2994 unsigned long flags;
2995 int ret;
2996
2997 do {
2998 ret = try_to_grab_pending(&dwork->work, true, &flags);
2999 } while (unlikely(ret == -EAGAIN));
3000
3001 if (unlikely(ret < 0))
3002 return false;
3003
7c3eed5c
TH
3004 set_work_pool_and_clear_pending(&dwork->work,
3005 get_work_pool_id(&dwork->work));
57b30ae7 3006 local_irq_restore(flags);
c0158ca6 3007 return ret;
09383498 3008}
57b30ae7 3009EXPORT_SYMBOL(cancel_delayed_work);
09383498 3010
401a8d04
TH
3011/**
3012 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3013 * @dwork: the delayed work cancel
3014 *
3015 * This is cancel_work_sync() for delayed works.
3016 *
d185af30 3017 * Return:
401a8d04
TH
3018 * %true if @dwork was pending, %false otherwise.
3019 */
3020bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3021{
36e227d2 3022 return __cancel_work_timer(&dwork->work, true);
6e84d644 3023}
f5a421a4 3024EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3025
b6136773 3026/**
31ddd871 3027 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3028 * @func: the function to call
b6136773 3029 *
31ddd871
TH
3030 * schedule_on_each_cpu() executes @func on each online CPU using the
3031 * system workqueue and blocks until all CPUs have completed.
b6136773 3032 * schedule_on_each_cpu() is very slow.
31ddd871 3033 *
d185af30 3034 * Return:
31ddd871 3035 * 0 on success, -errno on failure.
b6136773 3036 */
65f27f38 3037int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3038{
3039 int cpu;
38f51568 3040 struct work_struct __percpu *works;
15316ba8 3041
b6136773
AM
3042 works = alloc_percpu(struct work_struct);
3043 if (!works)
15316ba8 3044 return -ENOMEM;
b6136773 3045
93981800
TH
3046 get_online_cpus();
3047
15316ba8 3048 for_each_online_cpu(cpu) {
9bfb1839
IM
3049 struct work_struct *work = per_cpu_ptr(works, cpu);
3050
3051 INIT_WORK(work, func);
b71ab8c2 3052 schedule_work_on(cpu, work);
65a64464 3053 }
93981800
TH
3054
3055 for_each_online_cpu(cpu)
3056 flush_work(per_cpu_ptr(works, cpu));
3057
95402b38 3058 put_online_cpus();
b6136773 3059 free_percpu(works);
15316ba8
CL
3060 return 0;
3061}
3062
1fa44eca
JB
3063/**
3064 * execute_in_process_context - reliably execute the routine with user context
3065 * @fn: the function to execute
1fa44eca
JB
3066 * @ew: guaranteed storage for the execute work structure (must
3067 * be available when the work executes)
3068 *
3069 * Executes the function immediately if process context is available,
3070 * otherwise schedules the function for delayed execution.
3071 *
d185af30 3072 * Return: 0 - function was executed
1fa44eca
JB
3073 * 1 - function was scheduled for execution
3074 */
65f27f38 3075int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3076{
3077 if (!in_interrupt()) {
65f27f38 3078 fn(&ew->work);
1fa44eca
JB
3079 return 0;
3080 }
3081
65f27f38 3082 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3083 schedule_work(&ew->work);
3084
3085 return 1;
3086}
3087EXPORT_SYMBOL_GPL(execute_in_process_context);
3088
6ba94429
FW
3089/**
3090 * free_workqueue_attrs - free a workqueue_attrs
3091 * @attrs: workqueue_attrs to free
226223ab 3092 *
6ba94429 3093 * Undo alloc_workqueue_attrs().
226223ab 3094 */
6ba94429 3095void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3096{
6ba94429
FW
3097 if (attrs) {
3098 free_cpumask_var(attrs->cpumask);
3099 kfree(attrs);
3100 }
226223ab
TH
3101}
3102
6ba94429
FW
3103/**
3104 * alloc_workqueue_attrs - allocate a workqueue_attrs
3105 * @gfp_mask: allocation mask to use
3106 *
3107 * Allocate a new workqueue_attrs, initialize with default settings and
3108 * return it.
3109 *
3110 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3111 */
3112struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3113{
6ba94429 3114 struct workqueue_attrs *attrs;
226223ab 3115
6ba94429
FW
3116 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3117 if (!attrs)
3118 goto fail;
3119 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3120 goto fail;
3121
3122 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3123 return attrs;
3124fail:
3125 free_workqueue_attrs(attrs);
3126 return NULL;
226223ab
TH
3127}
3128
6ba94429
FW
3129static void copy_workqueue_attrs(struct workqueue_attrs *to,
3130 const struct workqueue_attrs *from)
226223ab 3131{
6ba94429
FW
3132 to->nice = from->nice;
3133 cpumask_copy(to->cpumask, from->cpumask);
3134 /*
3135 * Unlike hash and equality test, this function doesn't ignore
3136 * ->no_numa as it is used for both pool and wq attrs. Instead,
3137 * get_unbound_pool() explicitly clears ->no_numa after copying.
3138 */
3139 to->no_numa = from->no_numa;
226223ab
TH
3140}
3141
6ba94429
FW
3142/* hash value of the content of @attr */
3143static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3144{
6ba94429 3145 u32 hash = 0;
226223ab 3146
6ba94429
FW
3147 hash = jhash_1word(attrs->nice, hash);
3148 hash = jhash(cpumask_bits(attrs->cpumask),
3149 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3150 return hash;
226223ab 3151}
226223ab 3152
6ba94429
FW
3153/* content equality test */
3154static bool wqattrs_equal(const struct workqueue_attrs *a,
3155 const struct workqueue_attrs *b)
226223ab 3156{
6ba94429
FW
3157 if (a->nice != b->nice)
3158 return false;
3159 if (!cpumask_equal(a->cpumask, b->cpumask))
3160 return false;
3161 return true;
226223ab
TH
3162}
3163
6ba94429
FW
3164/**
3165 * init_worker_pool - initialize a newly zalloc'd worker_pool
3166 * @pool: worker_pool to initialize
3167 *
402dd89d 3168 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3169 *
3170 * Return: 0 on success, -errno on failure. Even on failure, all fields
3171 * inside @pool proper are initialized and put_unbound_pool() can be called
3172 * on @pool safely to release it.
3173 */
3174static int init_worker_pool(struct worker_pool *pool)
226223ab 3175{
6ba94429
FW
3176 spin_lock_init(&pool->lock);
3177 pool->id = -1;
3178 pool->cpu = -1;
3179 pool->node = NUMA_NO_NODE;
3180 pool->flags |= POOL_DISASSOCIATED;
82607adc 3181 pool->watchdog_ts = jiffies;
6ba94429
FW
3182 INIT_LIST_HEAD(&pool->worklist);
3183 INIT_LIST_HEAD(&pool->idle_list);
3184 hash_init(pool->busy_hash);
226223ab 3185
6ba94429
FW
3186 init_timer_deferrable(&pool->idle_timer);
3187 pool->idle_timer.function = idle_worker_timeout;
3188 pool->idle_timer.data = (unsigned long)pool;
226223ab 3189
6ba94429
FW
3190 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3191 (unsigned long)pool);
226223ab 3192
6ba94429
FW
3193 mutex_init(&pool->manager_arb);
3194 mutex_init(&pool->attach_mutex);
3195 INIT_LIST_HEAD(&pool->workers);
226223ab 3196
6ba94429
FW
3197 ida_init(&pool->worker_ida);
3198 INIT_HLIST_NODE(&pool->hash_node);
3199 pool->refcnt = 1;
226223ab 3200
6ba94429
FW
3201 /* shouldn't fail above this point */
3202 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3203 if (!pool->attrs)
3204 return -ENOMEM;
3205 return 0;
226223ab
TH
3206}
3207
6ba94429 3208static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3209{
6ba94429
FW
3210 struct workqueue_struct *wq =
3211 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3212
6ba94429
FW
3213 if (!(wq->flags & WQ_UNBOUND))
3214 free_percpu(wq->cpu_pwqs);
226223ab 3215 else
6ba94429 3216 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3217
6ba94429
FW
3218 kfree(wq->rescuer);
3219 kfree(wq);
226223ab
TH
3220}
3221
6ba94429 3222static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3223{
6ba94429 3224 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3225
6ba94429
FW
3226 ida_destroy(&pool->worker_ida);
3227 free_workqueue_attrs(pool->attrs);
3228 kfree(pool);
226223ab
TH
3229}
3230
6ba94429
FW
3231/**
3232 * put_unbound_pool - put a worker_pool
3233 * @pool: worker_pool to put
3234 *
3235 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3236 * safe manner. get_unbound_pool() calls this function on its failure path
3237 * and this function should be able to release pools which went through,
3238 * successfully or not, init_worker_pool().
3239 *
3240 * Should be called with wq_pool_mutex held.
3241 */
3242static void put_unbound_pool(struct worker_pool *pool)
226223ab 3243{
6ba94429
FW
3244 DECLARE_COMPLETION_ONSTACK(detach_completion);
3245 struct worker *worker;
226223ab 3246
6ba94429 3247 lockdep_assert_held(&wq_pool_mutex);
226223ab 3248
6ba94429
FW
3249 if (--pool->refcnt)
3250 return;
226223ab 3251
6ba94429
FW
3252 /* sanity checks */
3253 if (WARN_ON(!(pool->cpu < 0)) ||
3254 WARN_ON(!list_empty(&pool->worklist)))
3255 return;
226223ab 3256
6ba94429
FW
3257 /* release id and unhash */
3258 if (pool->id >= 0)
3259 idr_remove(&worker_pool_idr, pool->id);
3260 hash_del(&pool->hash_node);
d55262c4 3261
6ba94429
FW
3262 /*
3263 * Become the manager and destroy all workers. Grabbing
3264 * manager_arb prevents @pool's workers from blocking on
3265 * attach_mutex.
3266 */
3267 mutex_lock(&pool->manager_arb);
d55262c4 3268
6ba94429
FW
3269 spin_lock_irq(&pool->lock);
3270 while ((worker = first_idle_worker(pool)))
3271 destroy_worker(worker);
3272 WARN_ON(pool->nr_workers || pool->nr_idle);
3273 spin_unlock_irq(&pool->lock);
d55262c4 3274
6ba94429
FW
3275 mutex_lock(&pool->attach_mutex);
3276 if (!list_empty(&pool->workers))
3277 pool->detach_completion = &detach_completion;
3278 mutex_unlock(&pool->attach_mutex);
226223ab 3279
6ba94429
FW
3280 if (pool->detach_completion)
3281 wait_for_completion(pool->detach_completion);
226223ab 3282
6ba94429 3283 mutex_unlock(&pool->manager_arb);
226223ab 3284
6ba94429
FW
3285 /* shut down the timers */
3286 del_timer_sync(&pool->idle_timer);
3287 del_timer_sync(&pool->mayday_timer);
226223ab 3288
6ba94429
FW
3289 /* sched-RCU protected to allow dereferences from get_work_pool() */
3290 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3291}
3292
3293/**
6ba94429
FW
3294 * get_unbound_pool - get a worker_pool with the specified attributes
3295 * @attrs: the attributes of the worker_pool to get
226223ab 3296 *
6ba94429
FW
3297 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3298 * reference count and return it. If there already is a matching
3299 * worker_pool, it will be used; otherwise, this function attempts to
3300 * create a new one.
226223ab 3301 *
6ba94429 3302 * Should be called with wq_pool_mutex held.
226223ab 3303 *
6ba94429
FW
3304 * Return: On success, a worker_pool with the same attributes as @attrs.
3305 * On failure, %NULL.
226223ab 3306 */
6ba94429 3307static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3308{
6ba94429
FW
3309 u32 hash = wqattrs_hash(attrs);
3310 struct worker_pool *pool;
3311 int node;
e2273584 3312 int target_node = NUMA_NO_NODE;
226223ab 3313
6ba94429 3314 lockdep_assert_held(&wq_pool_mutex);
226223ab 3315
6ba94429
FW
3316 /* do we already have a matching pool? */
3317 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3318 if (wqattrs_equal(pool->attrs, attrs)) {
3319 pool->refcnt++;
3320 return pool;
3321 }
3322 }
226223ab 3323
e2273584
XP
3324 /* if cpumask is contained inside a NUMA node, we belong to that node */
3325 if (wq_numa_enabled) {
3326 for_each_node(node) {
3327 if (cpumask_subset(attrs->cpumask,
3328 wq_numa_possible_cpumask[node])) {
3329 target_node = node;
3330 break;
3331 }
3332 }
3333 }
3334
6ba94429 3335 /* nope, create a new one */
e2273584 3336 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3337 if (!pool || init_worker_pool(pool) < 0)
3338 goto fail;
3339
3340 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3341 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3342 pool->node = target_node;
226223ab
TH
3343
3344 /*
6ba94429
FW
3345 * no_numa isn't a worker_pool attribute, always clear it. See
3346 * 'struct workqueue_attrs' comments for detail.
226223ab 3347 */
6ba94429 3348 pool->attrs->no_numa = false;
226223ab 3349
6ba94429
FW
3350 if (worker_pool_assign_id(pool) < 0)
3351 goto fail;
226223ab 3352
6ba94429
FW
3353 /* create and start the initial worker */
3354 if (!create_worker(pool))
3355 goto fail;
226223ab 3356
6ba94429
FW
3357 /* install */
3358 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3359
6ba94429
FW
3360 return pool;
3361fail:
3362 if (pool)
3363 put_unbound_pool(pool);
3364 return NULL;
226223ab 3365}
226223ab 3366
6ba94429 3367static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3368{
6ba94429
FW
3369 kmem_cache_free(pwq_cache,
3370 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3371}
3372
6ba94429
FW
3373/*
3374 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3375 * and needs to be destroyed.
7a4e344c 3376 */
6ba94429 3377static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3378{
6ba94429
FW
3379 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3380 unbound_release_work);
3381 struct workqueue_struct *wq = pwq->wq;
3382 struct worker_pool *pool = pwq->pool;
3383 bool is_last;
7a4e344c 3384
6ba94429
FW
3385 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3386 return;
7a4e344c 3387
6ba94429
FW
3388 mutex_lock(&wq->mutex);
3389 list_del_rcu(&pwq->pwqs_node);
3390 is_last = list_empty(&wq->pwqs);
3391 mutex_unlock(&wq->mutex);
3392
3393 mutex_lock(&wq_pool_mutex);
3394 put_unbound_pool(pool);
3395 mutex_unlock(&wq_pool_mutex);
3396
3397 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3398
2865a8fb 3399 /*
6ba94429
FW
3400 * If we're the last pwq going away, @wq is already dead and no one
3401 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3402 */
6ba94429
FW
3403 if (is_last)
3404 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3405}
3406
7a4e344c 3407/**
6ba94429
FW
3408 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3409 * @pwq: target pool_workqueue
d185af30 3410 *
6ba94429
FW
3411 * If @pwq isn't freezing, set @pwq->max_active to the associated
3412 * workqueue's saved_max_active and activate delayed work items
3413 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3414 */
6ba94429 3415static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3416{
6ba94429
FW
3417 struct workqueue_struct *wq = pwq->wq;
3418 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3419
6ba94429
FW
3420 /* for @wq->saved_max_active */
3421 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3422
6ba94429
FW
3423 /* fast exit for non-freezable wqs */
3424 if (!freezable && pwq->max_active == wq->saved_max_active)
3425 return;
7a4e344c 3426
6ba94429 3427 spin_lock_irq(&pwq->pool->lock);
29c91e99 3428
6ba94429
FW
3429 /*
3430 * During [un]freezing, the caller is responsible for ensuring that
3431 * this function is called at least once after @workqueue_freezing
3432 * is updated and visible.
3433 */
3434 if (!freezable || !workqueue_freezing) {
3435 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3436
6ba94429
FW
3437 while (!list_empty(&pwq->delayed_works) &&
3438 pwq->nr_active < pwq->max_active)
3439 pwq_activate_first_delayed(pwq);
e2dca7ad 3440
6ba94429
FW
3441 /*
3442 * Need to kick a worker after thawed or an unbound wq's
3443 * max_active is bumped. It's a slow path. Do it always.
3444 */
3445 wake_up_worker(pwq->pool);
3446 } else {
3447 pwq->max_active = 0;
3448 }
e2dca7ad 3449
6ba94429 3450 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3451}
3452
6ba94429
FW
3453/* initialize newly alloced @pwq which is associated with @wq and @pool */
3454static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3455 struct worker_pool *pool)
29c91e99 3456{
6ba94429 3457 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3458
6ba94429
FW
3459 memset(pwq, 0, sizeof(*pwq));
3460
3461 pwq->pool = pool;
3462 pwq->wq = wq;
3463 pwq->flush_color = -1;
3464 pwq->refcnt = 1;
3465 INIT_LIST_HEAD(&pwq->delayed_works);
3466 INIT_LIST_HEAD(&pwq->pwqs_node);
3467 INIT_LIST_HEAD(&pwq->mayday_node);
3468 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3469}
3470
6ba94429
FW
3471/* sync @pwq with the current state of its associated wq and link it */
3472static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3473{
6ba94429 3474 struct workqueue_struct *wq = pwq->wq;
29c91e99 3475
6ba94429 3476 lockdep_assert_held(&wq->mutex);
a892cacc 3477
6ba94429
FW
3478 /* may be called multiple times, ignore if already linked */
3479 if (!list_empty(&pwq->pwqs_node))
29c91e99 3480 return;
29c91e99 3481
6ba94429
FW
3482 /* set the matching work_color */
3483 pwq->work_color = wq->work_color;
29c91e99 3484
6ba94429
FW
3485 /* sync max_active to the current setting */
3486 pwq_adjust_max_active(pwq);
29c91e99 3487
6ba94429
FW
3488 /* link in @pwq */
3489 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3490}
29c91e99 3491
6ba94429
FW
3492/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3493static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3494 const struct workqueue_attrs *attrs)
3495{
3496 struct worker_pool *pool;
3497 struct pool_workqueue *pwq;
60f5a4bc 3498
6ba94429 3499 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3500
6ba94429
FW
3501 pool = get_unbound_pool(attrs);
3502 if (!pool)
3503 return NULL;
60f5a4bc 3504
6ba94429
FW
3505 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3506 if (!pwq) {
3507 put_unbound_pool(pool);
3508 return NULL;
3509 }
29c91e99 3510
6ba94429
FW
3511 init_pwq(pwq, wq, pool);
3512 return pwq;
3513}
29c91e99 3514
29c91e99 3515/**
30186c6f 3516 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3517 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3518 * @node: the target NUMA node
3519 * @cpu_going_down: if >= 0, the CPU to consider as offline
3520 * @cpumask: outarg, the resulting cpumask
29c91e99 3521 *
6ba94429
FW
3522 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3523 * @cpu_going_down is >= 0, that cpu is considered offline during
3524 * calculation. The result is stored in @cpumask.
a892cacc 3525 *
6ba94429
FW
3526 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3527 * enabled and @node has online CPUs requested by @attrs, the returned
3528 * cpumask is the intersection of the possible CPUs of @node and
3529 * @attrs->cpumask.
d185af30 3530 *
6ba94429
FW
3531 * The caller is responsible for ensuring that the cpumask of @node stays
3532 * stable.
3533 *
3534 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3535 * %false if equal.
29c91e99 3536 */
6ba94429
FW
3537static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3538 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3539{
6ba94429
FW
3540 if (!wq_numa_enabled || attrs->no_numa)
3541 goto use_dfl;
29c91e99 3542
6ba94429
FW
3543 /* does @node have any online CPUs @attrs wants? */
3544 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3545 if (cpu_going_down >= 0)
3546 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3547
6ba94429
FW
3548 if (cpumask_empty(cpumask))
3549 goto use_dfl;
4c16bd32
TH
3550
3551 /* yeap, return possible CPUs in @node that @attrs wants */
3552 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3553 return !cpumask_equal(cpumask, attrs->cpumask);
3554
3555use_dfl:
3556 cpumask_copy(cpumask, attrs->cpumask);
3557 return false;
3558}
3559
1befcf30
TH
3560/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3561static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3562 int node,
3563 struct pool_workqueue *pwq)
3564{
3565 struct pool_workqueue *old_pwq;
3566
5b95e1af 3567 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3568 lockdep_assert_held(&wq->mutex);
3569
3570 /* link_pwq() can handle duplicate calls */
3571 link_pwq(pwq);
3572
3573 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3574 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3575 return old_pwq;
3576}
3577
2d5f0764
LJ
3578/* context to store the prepared attrs & pwqs before applying */
3579struct apply_wqattrs_ctx {
3580 struct workqueue_struct *wq; /* target workqueue */
3581 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3582 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3583 struct pool_workqueue *dfl_pwq;
3584 struct pool_workqueue *pwq_tbl[];
3585};
3586
3587/* free the resources after success or abort */
3588static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3589{
3590 if (ctx) {
3591 int node;
3592
3593 for_each_node(node)
3594 put_pwq_unlocked(ctx->pwq_tbl[node]);
3595 put_pwq_unlocked(ctx->dfl_pwq);
3596
3597 free_workqueue_attrs(ctx->attrs);
3598
3599 kfree(ctx);
3600 }
3601}
3602
3603/* allocate the attrs and pwqs for later installation */
3604static struct apply_wqattrs_ctx *
3605apply_wqattrs_prepare(struct workqueue_struct *wq,
3606 const struct workqueue_attrs *attrs)
9e8cd2f5 3607{
2d5f0764 3608 struct apply_wqattrs_ctx *ctx;
4c16bd32 3609 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3610 int node;
9e8cd2f5 3611
2d5f0764 3612 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3613
2d5f0764
LJ
3614 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3615 GFP_KERNEL);
8719dcea 3616
13e2e556 3617 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3618 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3619 if (!ctx || !new_attrs || !tmp_attrs)
3620 goto out_free;
13e2e556 3621
042f7df1
LJ
3622 /*
3623 * Calculate the attrs of the default pwq.
3624 * If the user configured cpumask doesn't overlap with the
3625 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3626 */
13e2e556 3627 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3628 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3629 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3630 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3631
4c16bd32
TH
3632 /*
3633 * We may create multiple pwqs with differing cpumasks. Make a
3634 * copy of @new_attrs which will be modified and used to obtain
3635 * pools.
3636 */
3637 copy_workqueue_attrs(tmp_attrs, new_attrs);
3638
4c16bd32
TH
3639 /*
3640 * If something goes wrong during CPU up/down, we'll fall back to
3641 * the default pwq covering whole @attrs->cpumask. Always create
3642 * it even if we don't use it immediately.
3643 */
2d5f0764
LJ
3644 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3645 if (!ctx->dfl_pwq)
3646 goto out_free;
4c16bd32
TH
3647
3648 for_each_node(node) {
042f7df1 3649 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3650 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3651 if (!ctx->pwq_tbl[node])
3652 goto out_free;
4c16bd32 3653 } else {
2d5f0764
LJ
3654 ctx->dfl_pwq->refcnt++;
3655 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3656 }
3657 }
3658
042f7df1
LJ
3659 /* save the user configured attrs and sanitize it. */
3660 copy_workqueue_attrs(new_attrs, attrs);
3661 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3662 ctx->attrs = new_attrs;
042f7df1 3663
2d5f0764
LJ
3664 ctx->wq = wq;
3665 free_workqueue_attrs(tmp_attrs);
3666 return ctx;
3667
3668out_free:
3669 free_workqueue_attrs(tmp_attrs);
3670 free_workqueue_attrs(new_attrs);
3671 apply_wqattrs_cleanup(ctx);
3672 return NULL;
3673}
3674
3675/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3676static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3677{
3678 int node;
9e8cd2f5 3679
4c16bd32 3680 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3681 mutex_lock(&ctx->wq->mutex);
a892cacc 3682
2d5f0764 3683 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3684
3685 /* save the previous pwq and install the new one */
f147f29e 3686 for_each_node(node)
2d5f0764
LJ
3687 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3688 ctx->pwq_tbl[node]);
4c16bd32
TH
3689
3690 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3691 link_pwq(ctx->dfl_pwq);
3692 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3693
2d5f0764
LJ
3694 mutex_unlock(&ctx->wq->mutex);
3695}
9e8cd2f5 3696
a0111cf6
LJ
3697static void apply_wqattrs_lock(void)
3698{
3699 /* CPUs should stay stable across pwq creations and installations */
3700 get_online_cpus();
3701 mutex_lock(&wq_pool_mutex);
3702}
3703
3704static void apply_wqattrs_unlock(void)
3705{
3706 mutex_unlock(&wq_pool_mutex);
3707 put_online_cpus();
3708}
3709
3710static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3711 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3712{
3713 struct apply_wqattrs_ctx *ctx;
4c16bd32 3714
2d5f0764
LJ
3715 /* only unbound workqueues can change attributes */
3716 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3717 return -EINVAL;
13e2e556 3718
2d5f0764
LJ
3719 /* creating multiple pwqs breaks ordering guarantee */
3720 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3721 return -EINVAL;
3722
2d5f0764 3723 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3724 if (!ctx)
3725 return -ENOMEM;
2d5f0764
LJ
3726
3727 /* the ctx has been prepared successfully, let's commit it */
6201171e 3728 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3729 apply_wqattrs_cleanup(ctx);
3730
6201171e 3731 return 0;
9e8cd2f5
TH
3732}
3733
a0111cf6
LJ
3734/**
3735 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3736 * @wq: the target workqueue
3737 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3738 *
3739 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3740 * machines, this function maps a separate pwq to each NUMA node with
3741 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3742 * NUMA node it was issued on. Older pwqs are released as in-flight work
3743 * items finish. Note that a work item which repeatedly requeues itself
3744 * back-to-back will stay on its current pwq.
3745 *
3746 * Performs GFP_KERNEL allocations.
3747 *
3748 * Return: 0 on success and -errno on failure.
3749 */
3750int apply_workqueue_attrs(struct workqueue_struct *wq,
3751 const struct workqueue_attrs *attrs)
3752{
3753 int ret;
3754
3755 apply_wqattrs_lock();
3756 ret = apply_workqueue_attrs_locked(wq, attrs);
3757 apply_wqattrs_unlock();
3758
3759 return ret;
3760}
3761
4c16bd32
TH
3762/**
3763 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3764 * @wq: the target workqueue
3765 * @cpu: the CPU coming up or going down
3766 * @online: whether @cpu is coming up or going down
3767 *
3768 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3769 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3770 * @wq accordingly.
3771 *
3772 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3773 * falls back to @wq->dfl_pwq which may not be optimal but is always
3774 * correct.
3775 *
3776 * Note that when the last allowed CPU of a NUMA node goes offline for a
3777 * workqueue with a cpumask spanning multiple nodes, the workers which were
3778 * already executing the work items for the workqueue will lose their CPU
3779 * affinity and may execute on any CPU. This is similar to how per-cpu
3780 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3781 * affinity, it's the user's responsibility to flush the work item from
3782 * CPU_DOWN_PREPARE.
3783 */
3784static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3785 bool online)
3786{
3787 int node = cpu_to_node(cpu);
3788 int cpu_off = online ? -1 : cpu;
3789 struct pool_workqueue *old_pwq = NULL, *pwq;
3790 struct workqueue_attrs *target_attrs;
3791 cpumask_t *cpumask;
3792
3793 lockdep_assert_held(&wq_pool_mutex);
3794
f7142ed4
LJ
3795 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3796 wq->unbound_attrs->no_numa)
4c16bd32
TH
3797 return;
3798
3799 /*
3800 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3801 * Let's use a preallocated one. The following buf is protected by
3802 * CPU hotplug exclusion.
3803 */
3804 target_attrs = wq_update_unbound_numa_attrs_buf;
3805 cpumask = target_attrs->cpumask;
3806
4c16bd32
TH
3807 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3808 pwq = unbound_pwq_by_node(wq, node);
3809
3810 /*
3811 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3812 * different from the default pwq's, we need to compare it to @pwq's
3813 * and create a new one if they don't match. If the target cpumask
3814 * equals the default pwq's, the default pwq should be used.
4c16bd32 3815 */
042f7df1 3816 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3817 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3818 return;
4c16bd32 3819 } else {
534a3fbb 3820 goto use_dfl_pwq;
4c16bd32
TH
3821 }
3822
4c16bd32
TH
3823 /* create a new pwq */
3824 pwq = alloc_unbound_pwq(wq, target_attrs);
3825 if (!pwq) {
2d916033
FF
3826 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3827 wq->name);
77f300b1 3828 goto use_dfl_pwq;
4c16bd32
TH
3829 }
3830
f7142ed4 3831 /* Install the new pwq. */
4c16bd32
TH
3832 mutex_lock(&wq->mutex);
3833 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3834 goto out_unlock;
3835
3836use_dfl_pwq:
f7142ed4 3837 mutex_lock(&wq->mutex);
4c16bd32
TH
3838 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3839 get_pwq(wq->dfl_pwq);
3840 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3841 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3842out_unlock:
3843 mutex_unlock(&wq->mutex);
3844 put_pwq_unlocked(old_pwq);
3845}
3846
30cdf249 3847static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3848{
49e3cf44 3849 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3850 int cpu, ret;
30cdf249
TH
3851
3852 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3853 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3854 if (!wq->cpu_pwqs)
30cdf249
TH
3855 return -ENOMEM;
3856
3857 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3858 struct pool_workqueue *pwq =
3859 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3860 struct worker_pool *cpu_pools =
f02ae73a 3861 per_cpu(cpu_worker_pools, cpu);
f3421797 3862
f147f29e
TH
3863 init_pwq(pwq, wq, &cpu_pools[highpri]);
3864
3865 mutex_lock(&wq->mutex);
1befcf30 3866 link_pwq(pwq);
f147f29e 3867 mutex_unlock(&wq->mutex);
30cdf249 3868 }
9e8cd2f5 3869 return 0;
8a2b7538
TH
3870 } else if (wq->flags & __WQ_ORDERED) {
3871 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3872 /* there should only be single pwq for ordering guarantee */
3873 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3874 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3875 "ordering guarantee broken for workqueue %s\n", wq->name);
3876 return ret;
30cdf249 3877 } else {
9e8cd2f5 3878 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3879 }
0f900049
TH
3880}
3881
f3421797
TH
3882static int wq_clamp_max_active(int max_active, unsigned int flags,
3883 const char *name)
b71ab8c2 3884{
f3421797
TH
3885 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3886
3887 if (max_active < 1 || max_active > lim)
044c782c
VI
3888 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3889 max_active, name, 1, lim);
b71ab8c2 3890
f3421797 3891 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3892}
3893
b196be89 3894struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3895 unsigned int flags,
3896 int max_active,
3897 struct lock_class_key *key,
b196be89 3898 const char *lock_name, ...)
1da177e4 3899{
df2d5ae4 3900 size_t tbl_size = 0;
ecf6881f 3901 va_list args;
1da177e4 3902 struct workqueue_struct *wq;
49e3cf44 3903 struct pool_workqueue *pwq;
b196be89 3904
cee22a15
VK
3905 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3906 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3907 flags |= WQ_UNBOUND;
3908
ecf6881f 3909 /* allocate wq and format name */
df2d5ae4 3910 if (flags & WQ_UNBOUND)
ddcb57e2 3911 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3912
3913 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3914 if (!wq)
d2c1d404 3915 return NULL;
b196be89 3916
6029a918
TH
3917 if (flags & WQ_UNBOUND) {
3918 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3919 if (!wq->unbound_attrs)
3920 goto err_free_wq;
3921 }
3922
ecf6881f
TH
3923 va_start(args, lock_name);
3924 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3925 va_end(args);
1da177e4 3926
d320c038 3927 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3928 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3929
b196be89 3930 /* init wq */
97e37d7b 3931 wq->flags = flags;
a0a1a5fd 3932 wq->saved_max_active = max_active;
3c25a55d 3933 mutex_init(&wq->mutex);
112202d9 3934 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3935 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3936 INIT_LIST_HEAD(&wq->flusher_queue);
3937 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3938 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3939
eb13ba87 3940 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3941 INIT_LIST_HEAD(&wq->list);
3af24433 3942
30cdf249 3943 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3944 goto err_free_wq;
1537663f 3945
493008a8
TH
3946 /*
3947 * Workqueues which may be used during memory reclaim should
3948 * have a rescuer to guarantee forward progress.
3949 */
3950 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3951 struct worker *rescuer;
3952
f7537df5 3953 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3954 if (!rescuer)
d2c1d404 3955 goto err_destroy;
e22bee78 3956
111c225a
TH
3957 rescuer->rescue_wq = wq;
3958 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3959 wq->name);
d2c1d404
TH
3960 if (IS_ERR(rescuer->task)) {
3961 kfree(rescuer);
3962 goto err_destroy;
3963 }
e22bee78 3964
d2c1d404 3965 wq->rescuer = rescuer;
25834c73 3966 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3967 wake_up_process(rescuer->task);
3af24433
ON
3968 }
3969
226223ab
TH
3970 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3971 goto err_destroy;
3972
a0a1a5fd 3973 /*
68e13a67
LJ
3974 * wq_pool_mutex protects global freeze state and workqueues list.
3975 * Grab it, adjust max_active and add the new @wq to workqueues
3976 * list.
a0a1a5fd 3977 */
68e13a67 3978 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3979
a357fc03 3980 mutex_lock(&wq->mutex);
699ce097
TH
3981 for_each_pwq(pwq, wq)
3982 pwq_adjust_max_active(pwq);
a357fc03 3983 mutex_unlock(&wq->mutex);
a0a1a5fd 3984
e2dca7ad 3985 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3986
68e13a67 3987 mutex_unlock(&wq_pool_mutex);
1537663f 3988
3af24433 3989 return wq;
d2c1d404
TH
3990
3991err_free_wq:
6029a918 3992 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3993 kfree(wq);
3994 return NULL;
3995err_destroy:
3996 destroy_workqueue(wq);
4690c4ab 3997 return NULL;
3af24433 3998}
d320c038 3999EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4000
3af24433
ON
4001/**
4002 * destroy_workqueue - safely terminate a workqueue
4003 * @wq: target workqueue
4004 *
4005 * Safely destroy a workqueue. All work currently pending will be done first.
4006 */
4007void destroy_workqueue(struct workqueue_struct *wq)
4008{
49e3cf44 4009 struct pool_workqueue *pwq;
4c16bd32 4010 int node;
3af24433 4011
9c5a2ba7
TH
4012 /* drain it before proceeding with destruction */
4013 drain_workqueue(wq);
c8efcc25 4014
6183c009 4015 /* sanity checks */
b09f4fd3 4016 mutex_lock(&wq->mutex);
49e3cf44 4017 for_each_pwq(pwq, wq) {
6183c009
TH
4018 int i;
4019
76af4d93
TH
4020 for (i = 0; i < WORK_NR_COLORS; i++) {
4021 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4022 mutex_unlock(&wq->mutex);
6183c009 4023 return;
76af4d93
TH
4024 }
4025 }
4026
5c529597 4027 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4028 WARN_ON(pwq->nr_active) ||
76af4d93 4029 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4030 mutex_unlock(&wq->mutex);
6183c009 4031 return;
76af4d93 4032 }
6183c009 4033 }
b09f4fd3 4034 mutex_unlock(&wq->mutex);
6183c009 4035
a0a1a5fd
TH
4036 /*
4037 * wq list is used to freeze wq, remove from list after
4038 * flushing is complete in case freeze races us.
4039 */
68e13a67 4040 mutex_lock(&wq_pool_mutex);
e2dca7ad 4041 list_del_rcu(&wq->list);
68e13a67 4042 mutex_unlock(&wq_pool_mutex);
3af24433 4043
226223ab
TH
4044 workqueue_sysfs_unregister(wq);
4045
e2dca7ad 4046 if (wq->rescuer)
e22bee78 4047 kthread_stop(wq->rescuer->task);
e22bee78 4048
8864b4e5
TH
4049 if (!(wq->flags & WQ_UNBOUND)) {
4050 /*
4051 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4052 * schedule RCU free.
8864b4e5 4053 */
e2dca7ad 4054 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4055 } else {
4056 /*
4057 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4058 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4059 * @wq will be freed when the last pwq is released.
8864b4e5 4060 */
4c16bd32
TH
4061 for_each_node(node) {
4062 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4063 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4064 put_pwq_unlocked(pwq);
4065 }
4066
4067 /*
4068 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4069 * put. Don't access it afterwards.
4070 */
4071 pwq = wq->dfl_pwq;
4072 wq->dfl_pwq = NULL;
dce90d47 4073 put_pwq_unlocked(pwq);
29c91e99 4074 }
3af24433
ON
4075}
4076EXPORT_SYMBOL_GPL(destroy_workqueue);
4077
dcd989cb
TH
4078/**
4079 * workqueue_set_max_active - adjust max_active of a workqueue
4080 * @wq: target workqueue
4081 * @max_active: new max_active value.
4082 *
4083 * Set max_active of @wq to @max_active.
4084 *
4085 * CONTEXT:
4086 * Don't call from IRQ context.
4087 */
4088void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4089{
49e3cf44 4090 struct pool_workqueue *pwq;
dcd989cb 4091
8719dcea
TH
4092 /* disallow meddling with max_active for ordered workqueues */
4093 if (WARN_ON(wq->flags & __WQ_ORDERED))
4094 return;
4095
f3421797 4096 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4097
a357fc03 4098 mutex_lock(&wq->mutex);
dcd989cb
TH
4099
4100 wq->saved_max_active = max_active;
4101
699ce097
TH
4102 for_each_pwq(pwq, wq)
4103 pwq_adjust_max_active(pwq);
93981800 4104
a357fc03 4105 mutex_unlock(&wq->mutex);
15316ba8 4106}
dcd989cb 4107EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4108
e6267616
TH
4109/**
4110 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4111 *
4112 * Determine whether %current is a workqueue rescuer. Can be used from
4113 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4114 *
4115 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4116 */
4117bool current_is_workqueue_rescuer(void)
4118{
4119 struct worker *worker = current_wq_worker();
4120
6a092dfd 4121 return worker && worker->rescue_wq;
e6267616
TH
4122}
4123
eef6a7d5 4124/**
dcd989cb
TH
4125 * workqueue_congested - test whether a workqueue is congested
4126 * @cpu: CPU in question
4127 * @wq: target workqueue
eef6a7d5 4128 *
dcd989cb
TH
4129 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4130 * no synchronization around this function and the test result is
4131 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4132 *
d3251859
TH
4133 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4134 * Note that both per-cpu and unbound workqueues may be associated with
4135 * multiple pool_workqueues which have separate congested states. A
4136 * workqueue being congested on one CPU doesn't mean the workqueue is also
4137 * contested on other CPUs / NUMA nodes.
4138 *
d185af30 4139 * Return:
dcd989cb 4140 * %true if congested, %false otherwise.
eef6a7d5 4141 */
d84ff051 4142bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4143{
7fb98ea7 4144 struct pool_workqueue *pwq;
76af4d93
TH
4145 bool ret;
4146
88109453 4147 rcu_read_lock_sched();
7fb98ea7 4148
d3251859
TH
4149 if (cpu == WORK_CPU_UNBOUND)
4150 cpu = smp_processor_id();
4151
7fb98ea7
TH
4152 if (!(wq->flags & WQ_UNBOUND))
4153 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4154 else
df2d5ae4 4155 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4156
76af4d93 4157 ret = !list_empty(&pwq->delayed_works);
88109453 4158 rcu_read_unlock_sched();
76af4d93
TH
4159
4160 return ret;
1da177e4 4161}
dcd989cb 4162EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4163
dcd989cb
TH
4164/**
4165 * work_busy - test whether a work is currently pending or running
4166 * @work: the work to be tested
4167 *
4168 * Test whether @work is currently pending or running. There is no
4169 * synchronization around this function and the test result is
4170 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4171 *
d185af30 4172 * Return:
dcd989cb
TH
4173 * OR'd bitmask of WORK_BUSY_* bits.
4174 */
4175unsigned int work_busy(struct work_struct *work)
1da177e4 4176{
fa1b54e6 4177 struct worker_pool *pool;
dcd989cb
TH
4178 unsigned long flags;
4179 unsigned int ret = 0;
1da177e4 4180
dcd989cb
TH
4181 if (work_pending(work))
4182 ret |= WORK_BUSY_PENDING;
1da177e4 4183
fa1b54e6
TH
4184 local_irq_save(flags);
4185 pool = get_work_pool(work);
038366c5 4186 if (pool) {
fa1b54e6 4187 spin_lock(&pool->lock);
038366c5
LJ
4188 if (find_worker_executing_work(pool, work))
4189 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4190 spin_unlock(&pool->lock);
038366c5 4191 }
fa1b54e6 4192 local_irq_restore(flags);
1da177e4 4193
dcd989cb 4194 return ret;
1da177e4 4195}
dcd989cb 4196EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4197
3d1cb205
TH
4198/**
4199 * set_worker_desc - set description for the current work item
4200 * @fmt: printf-style format string
4201 * @...: arguments for the format string
4202 *
4203 * This function can be called by a running work function to describe what
4204 * the work item is about. If the worker task gets dumped, this
4205 * information will be printed out together to help debugging. The
4206 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4207 */
4208void set_worker_desc(const char *fmt, ...)
4209{
4210 struct worker *worker = current_wq_worker();
4211 va_list args;
4212
4213 if (worker) {
4214 va_start(args, fmt);
4215 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4216 va_end(args);
4217 worker->desc_valid = true;
4218 }
4219}
4220
4221/**
4222 * print_worker_info - print out worker information and description
4223 * @log_lvl: the log level to use when printing
4224 * @task: target task
4225 *
4226 * If @task is a worker and currently executing a work item, print out the
4227 * name of the workqueue being serviced and worker description set with
4228 * set_worker_desc() by the currently executing work item.
4229 *
4230 * This function can be safely called on any task as long as the
4231 * task_struct itself is accessible. While safe, this function isn't
4232 * synchronized and may print out mixups or garbages of limited length.
4233 */
4234void print_worker_info(const char *log_lvl, struct task_struct *task)
4235{
4236 work_func_t *fn = NULL;
4237 char name[WQ_NAME_LEN] = { };
4238 char desc[WORKER_DESC_LEN] = { };
4239 struct pool_workqueue *pwq = NULL;
4240 struct workqueue_struct *wq = NULL;
4241 bool desc_valid = false;
4242 struct worker *worker;
4243
4244 if (!(task->flags & PF_WQ_WORKER))
4245 return;
4246
4247 /*
4248 * This function is called without any synchronization and @task
4249 * could be in any state. Be careful with dereferences.
4250 */
4251 worker = probe_kthread_data(task);
4252
4253 /*
4254 * Carefully copy the associated workqueue's workfn and name. Keep
4255 * the original last '\0' in case the original contains garbage.
4256 */
4257 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4258 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4259 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4260 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4261
4262 /* copy worker description */
4263 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4264 if (desc_valid)
4265 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4266
4267 if (fn || name[0] || desc[0]) {
4268 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4269 if (desc[0])
4270 pr_cont(" (%s)", desc);
4271 pr_cont("\n");
4272 }
4273}
4274
3494fc30
TH
4275static void pr_cont_pool_info(struct worker_pool *pool)
4276{
4277 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4278 if (pool->node != NUMA_NO_NODE)
4279 pr_cont(" node=%d", pool->node);
4280 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4281}
4282
4283static void pr_cont_work(bool comma, struct work_struct *work)
4284{
4285 if (work->func == wq_barrier_func) {
4286 struct wq_barrier *barr;
4287
4288 barr = container_of(work, struct wq_barrier, work);
4289
4290 pr_cont("%s BAR(%d)", comma ? "," : "",
4291 task_pid_nr(barr->task));
4292 } else {
4293 pr_cont("%s %pf", comma ? "," : "", work->func);
4294 }
4295}
4296
4297static void show_pwq(struct pool_workqueue *pwq)
4298{
4299 struct worker_pool *pool = pwq->pool;
4300 struct work_struct *work;
4301 struct worker *worker;
4302 bool has_in_flight = false, has_pending = false;
4303 int bkt;
4304
4305 pr_info(" pwq %d:", pool->id);
4306 pr_cont_pool_info(pool);
4307
4308 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4309 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4310
4311 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4312 if (worker->current_pwq == pwq) {
4313 has_in_flight = true;
4314 break;
4315 }
4316 }
4317 if (has_in_flight) {
4318 bool comma = false;
4319
4320 pr_info(" in-flight:");
4321 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4322 if (worker->current_pwq != pwq)
4323 continue;
4324
4325 pr_cont("%s %d%s:%pf", comma ? "," : "",
4326 task_pid_nr(worker->task),
4327 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4328 worker->current_func);
4329 list_for_each_entry(work, &worker->scheduled, entry)
4330 pr_cont_work(false, work);
4331 comma = true;
4332 }
4333 pr_cont("\n");
4334 }
4335
4336 list_for_each_entry(work, &pool->worklist, entry) {
4337 if (get_work_pwq(work) == pwq) {
4338 has_pending = true;
4339 break;
4340 }
4341 }
4342 if (has_pending) {
4343 bool comma = false;
4344
4345 pr_info(" pending:");
4346 list_for_each_entry(work, &pool->worklist, entry) {
4347 if (get_work_pwq(work) != pwq)
4348 continue;
4349
4350 pr_cont_work(comma, work);
4351 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4352 }
4353 pr_cont("\n");
4354 }
4355
4356 if (!list_empty(&pwq->delayed_works)) {
4357 bool comma = false;
4358
4359 pr_info(" delayed:");
4360 list_for_each_entry(work, &pwq->delayed_works, entry) {
4361 pr_cont_work(comma, work);
4362 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4363 }
4364 pr_cont("\n");
4365 }
4366}
4367
4368/**
4369 * show_workqueue_state - dump workqueue state
4370 *
4371 * Called from a sysrq handler and prints out all busy workqueues and
4372 * pools.
4373 */
4374void show_workqueue_state(void)
4375{
4376 struct workqueue_struct *wq;
4377 struct worker_pool *pool;
4378 unsigned long flags;
4379 int pi;
4380
4381 rcu_read_lock_sched();
4382
4383 pr_info("Showing busy workqueues and worker pools:\n");
4384
4385 list_for_each_entry_rcu(wq, &workqueues, list) {
4386 struct pool_workqueue *pwq;
4387 bool idle = true;
4388
4389 for_each_pwq(pwq, wq) {
4390 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4391 idle = false;
4392 break;
4393 }
4394 }
4395 if (idle)
4396 continue;
4397
4398 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4399
4400 for_each_pwq(pwq, wq) {
4401 spin_lock_irqsave(&pwq->pool->lock, flags);
4402 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4403 show_pwq(pwq);
4404 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4405 }
4406 }
4407
4408 for_each_pool(pool, pi) {
4409 struct worker *worker;
4410 bool first = true;
4411
4412 spin_lock_irqsave(&pool->lock, flags);
4413 if (pool->nr_workers == pool->nr_idle)
4414 goto next_pool;
4415
4416 pr_info("pool %d:", pool->id);
4417 pr_cont_pool_info(pool);
82607adc
TH
4418 pr_cont(" hung=%us workers=%d",
4419 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4420 pool->nr_workers);
3494fc30
TH
4421 if (pool->manager)
4422 pr_cont(" manager: %d",
4423 task_pid_nr(pool->manager->task));
4424 list_for_each_entry(worker, &pool->idle_list, entry) {
4425 pr_cont(" %s%d", first ? "idle: " : "",
4426 task_pid_nr(worker->task));
4427 first = false;
4428 }
4429 pr_cont("\n");
4430 next_pool:
4431 spin_unlock_irqrestore(&pool->lock, flags);
4432 }
4433
4434 rcu_read_unlock_sched();
4435}
4436
db7bccf4
TH
4437/*
4438 * CPU hotplug.
4439 *
e22bee78 4440 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4441 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4442 * pool which make migrating pending and scheduled works very
e22bee78 4443 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4444 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4445 * blocked draining impractical.
4446 *
24647570 4447 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4448 * running as an unbound one and allowing it to be reattached later if the
4449 * cpu comes back online.
db7bccf4 4450 */
1da177e4 4451
706026c2 4452static void wq_unbind_fn(struct work_struct *work)
3af24433 4453{
38db41d9 4454 int cpu = smp_processor_id();
4ce62e9e 4455 struct worker_pool *pool;
db7bccf4 4456 struct worker *worker;
3af24433 4457
f02ae73a 4458 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4459 mutex_lock(&pool->attach_mutex);
94cf58bb 4460 spin_lock_irq(&pool->lock);
3af24433 4461
94cf58bb 4462 /*
92f9c5c4 4463 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4464 * unbound and set DISASSOCIATED. Before this, all workers
4465 * except for the ones which are still executing works from
4466 * before the last CPU down must be on the cpu. After
4467 * this, they may become diasporas.
4468 */
da028469 4469 for_each_pool_worker(worker, pool)
c9e7cf27 4470 worker->flags |= WORKER_UNBOUND;
06ba38a9 4471
24647570 4472 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4473
94cf58bb 4474 spin_unlock_irq(&pool->lock);
92f9c5c4 4475 mutex_unlock(&pool->attach_mutex);
628c78e7 4476
eb283428
LJ
4477 /*
4478 * Call schedule() so that we cross rq->lock and thus can
4479 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4480 * This is necessary as scheduler callbacks may be invoked
4481 * from other cpus.
4482 */
4483 schedule();
06ba38a9 4484
eb283428
LJ
4485 /*
4486 * Sched callbacks are disabled now. Zap nr_running.
4487 * After this, nr_running stays zero and need_more_worker()
4488 * and keep_working() are always true as long as the
4489 * worklist is not empty. This pool now behaves as an
4490 * unbound (in terms of concurrency management) pool which
4491 * are served by workers tied to the pool.
4492 */
e19e397a 4493 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4494
4495 /*
4496 * With concurrency management just turned off, a busy
4497 * worker blocking could lead to lengthy stalls. Kick off
4498 * unbound chain execution of currently pending work items.
4499 */
4500 spin_lock_irq(&pool->lock);
4501 wake_up_worker(pool);
4502 spin_unlock_irq(&pool->lock);
4503 }
3af24433 4504}
3af24433 4505
bd7c089e
TH
4506/**
4507 * rebind_workers - rebind all workers of a pool to the associated CPU
4508 * @pool: pool of interest
4509 *
a9ab775b 4510 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4511 */
4512static void rebind_workers(struct worker_pool *pool)
4513{
a9ab775b 4514 struct worker *worker;
bd7c089e 4515
92f9c5c4 4516 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4517
a9ab775b
TH
4518 /*
4519 * Restore CPU affinity of all workers. As all idle workers should
4520 * be on the run-queue of the associated CPU before any local
402dd89d 4521 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4522 * of all workers first and then clear UNBOUND. As we're called
4523 * from CPU_ONLINE, the following shouldn't fail.
4524 */
da028469 4525 for_each_pool_worker(worker, pool)
a9ab775b
TH
4526 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4527 pool->attrs->cpumask) < 0);
bd7c089e 4528
a9ab775b 4529 spin_lock_irq(&pool->lock);
3de5e884 4530 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4531
da028469 4532 for_each_pool_worker(worker, pool) {
a9ab775b 4533 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4534
4535 /*
a9ab775b
TH
4536 * A bound idle worker should actually be on the runqueue
4537 * of the associated CPU for local wake-ups targeting it to
4538 * work. Kick all idle workers so that they migrate to the
4539 * associated CPU. Doing this in the same loop as
4540 * replacing UNBOUND with REBOUND is safe as no worker will
4541 * be bound before @pool->lock is released.
bd7c089e 4542 */
a9ab775b
TH
4543 if (worker_flags & WORKER_IDLE)
4544 wake_up_process(worker->task);
bd7c089e 4545
a9ab775b
TH
4546 /*
4547 * We want to clear UNBOUND but can't directly call
4548 * worker_clr_flags() or adjust nr_running. Atomically
4549 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4550 * @worker will clear REBOUND using worker_clr_flags() when
4551 * it initiates the next execution cycle thus restoring
4552 * concurrency management. Note that when or whether
4553 * @worker clears REBOUND doesn't affect correctness.
4554 *
4555 * ACCESS_ONCE() is necessary because @worker->flags may be
4556 * tested without holding any lock in
4557 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4558 * fail incorrectly leading to premature concurrency
4559 * management operations.
4560 */
4561 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4562 worker_flags |= WORKER_REBOUND;
4563 worker_flags &= ~WORKER_UNBOUND;
4564 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4565 }
a9ab775b
TH
4566
4567 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4568}
4569
7dbc725e
TH
4570/**
4571 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4572 * @pool: unbound pool of interest
4573 * @cpu: the CPU which is coming up
4574 *
4575 * An unbound pool may end up with a cpumask which doesn't have any online
4576 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4577 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4578 * online CPU before, cpus_allowed of all its workers should be restored.
4579 */
4580static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4581{
4582 static cpumask_t cpumask;
4583 struct worker *worker;
7dbc725e 4584
92f9c5c4 4585 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4586
4587 /* is @cpu allowed for @pool? */
4588 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4589 return;
4590
4591 /* is @cpu the only online CPU? */
4592 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4593 if (cpumask_weight(&cpumask) != 1)
4594 return;
4595
4596 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4597 for_each_pool_worker(worker, pool)
7dbc725e
TH
4598 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4599 pool->attrs->cpumask) < 0);
4600}
4601
8db25e78
TH
4602/*
4603 * Workqueues should be brought up before normal priority CPU notifiers.
4604 * This will be registered high priority CPU notifier.
4605 */
0db0628d 4606static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4607 unsigned long action,
4608 void *hcpu)
3af24433 4609{
d84ff051 4610 int cpu = (unsigned long)hcpu;
4ce62e9e 4611 struct worker_pool *pool;
4c16bd32 4612 struct workqueue_struct *wq;
7dbc725e 4613 int pi;
3ce63377 4614
8db25e78 4615 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4616 case CPU_UP_PREPARE:
f02ae73a 4617 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4618 if (pool->nr_workers)
4619 continue;
051e1850 4620 if (!create_worker(pool))
3ce63377 4621 return NOTIFY_BAD;
3af24433 4622 }
8db25e78 4623 break;
3af24433 4624
db7bccf4
TH
4625 case CPU_DOWN_FAILED:
4626 case CPU_ONLINE:
68e13a67 4627 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4628
4629 for_each_pool(pool, pi) {
92f9c5c4 4630 mutex_lock(&pool->attach_mutex);
94cf58bb 4631
f05b558d 4632 if (pool->cpu == cpu)
7dbc725e 4633 rebind_workers(pool);
f05b558d 4634 else if (pool->cpu < 0)
7dbc725e 4635 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4636
6ba94429
FW
4637 mutex_unlock(&pool->attach_mutex);
4638 }
4639
4640 /* update NUMA affinity of unbound workqueues */
4641 list_for_each_entry(wq, &workqueues, list)
4642 wq_update_unbound_numa(wq, cpu, true);
4643
4644 mutex_unlock(&wq_pool_mutex);
4645 break;
4646 }
4647 return NOTIFY_OK;
4648}
4649
4650/*
4651 * Workqueues should be brought down after normal priority CPU notifiers.
4652 * This will be registered as low priority CPU notifier.
4653 */
4654static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4655 unsigned long action,
4656 void *hcpu)
4657{
4658 int cpu = (unsigned long)hcpu;
4659 struct work_struct unbind_work;
4660 struct workqueue_struct *wq;
4661
4662 switch (action & ~CPU_TASKS_FROZEN) {
4663 case CPU_DOWN_PREPARE:
4664 /* unbinding per-cpu workers should happen on the local CPU */
4665 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4666 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4667
4668 /* update NUMA affinity of unbound workqueues */
4669 mutex_lock(&wq_pool_mutex);
4670 list_for_each_entry(wq, &workqueues, list)
4671 wq_update_unbound_numa(wq, cpu, false);
4672 mutex_unlock(&wq_pool_mutex);
4673
4674 /* wait for per-cpu unbinding to finish */
4675 flush_work(&unbind_work);
4676 destroy_work_on_stack(&unbind_work);
4677 break;
4678 }
4679 return NOTIFY_OK;
4680}
4681
4682#ifdef CONFIG_SMP
4683
4684struct work_for_cpu {
4685 struct work_struct work;
4686 long (*fn)(void *);
4687 void *arg;
4688 long ret;
4689};
4690
4691static void work_for_cpu_fn(struct work_struct *work)
4692{
4693 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4694
4695 wfc->ret = wfc->fn(wfc->arg);
4696}
4697
4698/**
4699 * work_on_cpu - run a function in user context on a particular cpu
4700 * @cpu: the cpu to run on
4701 * @fn: the function to run
4702 * @arg: the function arg
4703 *
4704 * It is up to the caller to ensure that the cpu doesn't go offline.
4705 * The caller must not hold any locks which would prevent @fn from completing.
4706 *
4707 * Return: The value @fn returns.
4708 */
4709long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4710{
4711 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4712
4713 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4714 schedule_work_on(cpu, &wfc.work);
4715 flush_work(&wfc.work);
4716 destroy_work_on_stack(&wfc.work);
4717 return wfc.ret;
4718}
4719EXPORT_SYMBOL_GPL(work_on_cpu);
4720#endif /* CONFIG_SMP */
4721
4722#ifdef CONFIG_FREEZER
4723
4724/**
4725 * freeze_workqueues_begin - begin freezing workqueues
4726 *
4727 * Start freezing workqueues. After this function returns, all freezable
4728 * workqueues will queue new works to their delayed_works list instead of
4729 * pool->worklist.
4730 *
4731 * CONTEXT:
4732 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4733 */
4734void freeze_workqueues_begin(void)
4735{
4736 struct workqueue_struct *wq;
4737 struct pool_workqueue *pwq;
4738
4739 mutex_lock(&wq_pool_mutex);
4740
4741 WARN_ON_ONCE(workqueue_freezing);
4742 workqueue_freezing = true;
4743
4744 list_for_each_entry(wq, &workqueues, list) {
4745 mutex_lock(&wq->mutex);
4746 for_each_pwq(pwq, wq)
4747 pwq_adjust_max_active(pwq);
4748 mutex_unlock(&wq->mutex);
4749 }
4750
4751 mutex_unlock(&wq_pool_mutex);
4752}
4753
4754/**
4755 * freeze_workqueues_busy - are freezable workqueues still busy?
4756 *
4757 * Check whether freezing is complete. This function must be called
4758 * between freeze_workqueues_begin() and thaw_workqueues().
4759 *
4760 * CONTEXT:
4761 * Grabs and releases wq_pool_mutex.
4762 *
4763 * Return:
4764 * %true if some freezable workqueues are still busy. %false if freezing
4765 * is complete.
4766 */
4767bool freeze_workqueues_busy(void)
4768{
4769 bool busy = false;
4770 struct workqueue_struct *wq;
4771 struct pool_workqueue *pwq;
4772
4773 mutex_lock(&wq_pool_mutex);
4774
4775 WARN_ON_ONCE(!workqueue_freezing);
4776
4777 list_for_each_entry(wq, &workqueues, list) {
4778 if (!(wq->flags & WQ_FREEZABLE))
4779 continue;
4780 /*
4781 * nr_active is monotonically decreasing. It's safe
4782 * to peek without lock.
4783 */
4784 rcu_read_lock_sched();
4785 for_each_pwq(pwq, wq) {
4786 WARN_ON_ONCE(pwq->nr_active < 0);
4787 if (pwq->nr_active) {
4788 busy = true;
4789 rcu_read_unlock_sched();
4790 goto out_unlock;
4791 }
4792 }
4793 rcu_read_unlock_sched();
4794 }
4795out_unlock:
4796 mutex_unlock(&wq_pool_mutex);
4797 return busy;
4798}
4799
4800/**
4801 * thaw_workqueues - thaw workqueues
4802 *
4803 * Thaw workqueues. Normal queueing is restored and all collected
4804 * frozen works are transferred to their respective pool worklists.
4805 *
4806 * CONTEXT:
4807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4808 */
4809void thaw_workqueues(void)
4810{
4811 struct workqueue_struct *wq;
4812 struct pool_workqueue *pwq;
4813
4814 mutex_lock(&wq_pool_mutex);
4815
4816 if (!workqueue_freezing)
4817 goto out_unlock;
4818
4819 workqueue_freezing = false;
4820
4821 /* restore max_active and repopulate worklist */
4822 list_for_each_entry(wq, &workqueues, list) {
4823 mutex_lock(&wq->mutex);
4824 for_each_pwq(pwq, wq)
4825 pwq_adjust_max_active(pwq);
4826 mutex_unlock(&wq->mutex);
4827 }
4828
4829out_unlock:
4830 mutex_unlock(&wq_pool_mutex);
4831}
4832#endif /* CONFIG_FREEZER */
4833
042f7df1
LJ
4834static int workqueue_apply_unbound_cpumask(void)
4835{
4836 LIST_HEAD(ctxs);
4837 int ret = 0;
4838 struct workqueue_struct *wq;
4839 struct apply_wqattrs_ctx *ctx, *n;
4840
4841 lockdep_assert_held(&wq_pool_mutex);
4842
4843 list_for_each_entry(wq, &workqueues, list) {
4844 if (!(wq->flags & WQ_UNBOUND))
4845 continue;
4846 /* creating multiple pwqs breaks ordering guarantee */
4847 if (wq->flags & __WQ_ORDERED)
4848 continue;
4849
4850 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4851 if (!ctx) {
4852 ret = -ENOMEM;
4853 break;
4854 }
4855
4856 list_add_tail(&ctx->list, &ctxs);
4857 }
4858
4859 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4860 if (!ret)
4861 apply_wqattrs_commit(ctx);
4862 apply_wqattrs_cleanup(ctx);
4863 }
4864
4865 return ret;
4866}
4867
4868/**
4869 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4870 * @cpumask: the cpumask to set
4871 *
4872 * The low-level workqueues cpumask is a global cpumask that limits
4873 * the affinity of all unbound workqueues. This function check the @cpumask
4874 * and apply it to all unbound workqueues and updates all pwqs of them.
4875 *
4876 * Retun: 0 - Success
4877 * -EINVAL - Invalid @cpumask
4878 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4879 */
4880int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4881{
4882 int ret = -EINVAL;
4883 cpumask_var_t saved_cpumask;
4884
4885 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4886 return -ENOMEM;
4887
042f7df1
LJ
4888 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4889 if (!cpumask_empty(cpumask)) {
a0111cf6 4890 apply_wqattrs_lock();
042f7df1
LJ
4891
4892 /* save the old wq_unbound_cpumask. */
4893 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4894
4895 /* update wq_unbound_cpumask at first and apply it to wqs. */
4896 cpumask_copy(wq_unbound_cpumask, cpumask);
4897 ret = workqueue_apply_unbound_cpumask();
4898
4899 /* restore the wq_unbound_cpumask when failed. */
4900 if (ret < 0)
4901 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4902
a0111cf6 4903 apply_wqattrs_unlock();
042f7df1 4904 }
042f7df1
LJ
4905
4906 free_cpumask_var(saved_cpumask);
4907 return ret;
4908}
4909
6ba94429
FW
4910#ifdef CONFIG_SYSFS
4911/*
4912 * Workqueues with WQ_SYSFS flag set is visible to userland via
4913 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4914 * following attributes.
4915 *
4916 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4917 * max_active RW int : maximum number of in-flight work items
4918 *
4919 * Unbound workqueues have the following extra attributes.
4920 *
4921 * id RO int : the associated pool ID
4922 * nice RW int : nice value of the workers
4923 * cpumask RW mask : bitmask of allowed CPUs for the workers
4924 */
4925struct wq_device {
4926 struct workqueue_struct *wq;
4927 struct device dev;
4928};
4929
4930static struct workqueue_struct *dev_to_wq(struct device *dev)
4931{
4932 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4933
4934 return wq_dev->wq;
4935}
4936
4937static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4938 char *buf)
4939{
4940 struct workqueue_struct *wq = dev_to_wq(dev);
4941
4942 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4943}
4944static DEVICE_ATTR_RO(per_cpu);
4945
4946static ssize_t max_active_show(struct device *dev,
4947 struct device_attribute *attr, char *buf)
4948{
4949 struct workqueue_struct *wq = dev_to_wq(dev);
4950
4951 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4952}
4953
4954static ssize_t max_active_store(struct device *dev,
4955 struct device_attribute *attr, const char *buf,
4956 size_t count)
4957{
4958 struct workqueue_struct *wq = dev_to_wq(dev);
4959 int val;
4960
4961 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4962 return -EINVAL;
4963
4964 workqueue_set_max_active(wq, val);
4965 return count;
4966}
4967static DEVICE_ATTR_RW(max_active);
4968
4969static struct attribute *wq_sysfs_attrs[] = {
4970 &dev_attr_per_cpu.attr,
4971 &dev_attr_max_active.attr,
4972 NULL,
4973};
4974ATTRIBUTE_GROUPS(wq_sysfs);
4975
4976static ssize_t wq_pool_ids_show(struct device *dev,
4977 struct device_attribute *attr, char *buf)
4978{
4979 struct workqueue_struct *wq = dev_to_wq(dev);
4980 const char *delim = "";
4981 int node, written = 0;
4982
4983 rcu_read_lock_sched();
4984 for_each_node(node) {
4985 written += scnprintf(buf + written, PAGE_SIZE - written,
4986 "%s%d:%d", delim, node,
4987 unbound_pwq_by_node(wq, node)->pool->id);
4988 delim = " ";
4989 }
4990 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4991 rcu_read_unlock_sched();
4992
4993 return written;
4994}
4995
4996static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4997 char *buf)
4998{
4999 struct workqueue_struct *wq = dev_to_wq(dev);
5000 int written;
5001
5002 mutex_lock(&wq->mutex);
5003 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5004 mutex_unlock(&wq->mutex);
5005
5006 return written;
5007}
5008
5009/* prepare workqueue_attrs for sysfs store operations */
5010static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5011{
5012 struct workqueue_attrs *attrs;
5013
899a94fe
LJ
5014 lockdep_assert_held(&wq_pool_mutex);
5015
6ba94429
FW
5016 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5017 if (!attrs)
5018 return NULL;
5019
6ba94429 5020 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5021 return attrs;
5022}
5023
5024static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5025 const char *buf, size_t count)
5026{
5027 struct workqueue_struct *wq = dev_to_wq(dev);
5028 struct workqueue_attrs *attrs;
d4d3e257
LJ
5029 int ret = -ENOMEM;
5030
5031 apply_wqattrs_lock();
6ba94429
FW
5032
5033 attrs = wq_sysfs_prep_attrs(wq);
5034 if (!attrs)
d4d3e257 5035 goto out_unlock;
6ba94429
FW
5036
5037 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5038 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5039 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5040 else
5041 ret = -EINVAL;
5042
d4d3e257
LJ
5043out_unlock:
5044 apply_wqattrs_unlock();
6ba94429
FW
5045 free_workqueue_attrs(attrs);
5046 return ret ?: count;
5047}
5048
5049static ssize_t wq_cpumask_show(struct device *dev,
5050 struct device_attribute *attr, char *buf)
5051{
5052 struct workqueue_struct *wq = dev_to_wq(dev);
5053 int written;
5054
5055 mutex_lock(&wq->mutex);
5056 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5057 cpumask_pr_args(wq->unbound_attrs->cpumask));
5058 mutex_unlock(&wq->mutex);
5059 return written;
5060}
5061
5062static ssize_t wq_cpumask_store(struct device *dev,
5063 struct device_attribute *attr,
5064 const char *buf, size_t count)
5065{
5066 struct workqueue_struct *wq = dev_to_wq(dev);
5067 struct workqueue_attrs *attrs;
d4d3e257
LJ
5068 int ret = -ENOMEM;
5069
5070 apply_wqattrs_lock();
6ba94429
FW
5071
5072 attrs = wq_sysfs_prep_attrs(wq);
5073 if (!attrs)
d4d3e257 5074 goto out_unlock;
6ba94429
FW
5075
5076 ret = cpumask_parse(buf, attrs->cpumask);
5077 if (!ret)
d4d3e257 5078 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5079
d4d3e257
LJ
5080out_unlock:
5081 apply_wqattrs_unlock();
6ba94429
FW
5082 free_workqueue_attrs(attrs);
5083 return ret ?: count;
5084}
5085
5086static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5087 char *buf)
5088{
5089 struct workqueue_struct *wq = dev_to_wq(dev);
5090 int written;
7dbc725e 5091
6ba94429
FW
5092 mutex_lock(&wq->mutex);
5093 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5094 !wq->unbound_attrs->no_numa);
5095 mutex_unlock(&wq->mutex);
4c16bd32 5096
6ba94429 5097 return written;
65758202
TH
5098}
5099
6ba94429
FW
5100static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5101 const char *buf, size_t count)
65758202 5102{
6ba94429
FW
5103 struct workqueue_struct *wq = dev_to_wq(dev);
5104 struct workqueue_attrs *attrs;
d4d3e257
LJ
5105 int v, ret = -ENOMEM;
5106
5107 apply_wqattrs_lock();
4c16bd32 5108
6ba94429
FW
5109 attrs = wq_sysfs_prep_attrs(wq);
5110 if (!attrs)
d4d3e257 5111 goto out_unlock;
4c16bd32 5112
6ba94429
FW
5113 ret = -EINVAL;
5114 if (sscanf(buf, "%d", &v) == 1) {
5115 attrs->no_numa = !v;
d4d3e257 5116 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5117 }
6ba94429 5118
d4d3e257
LJ
5119out_unlock:
5120 apply_wqattrs_unlock();
6ba94429
FW
5121 free_workqueue_attrs(attrs);
5122 return ret ?: count;
65758202
TH
5123}
5124
6ba94429
FW
5125static struct device_attribute wq_sysfs_unbound_attrs[] = {
5126 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5127 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5128 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5129 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5130 __ATTR_NULL,
5131};
8ccad40d 5132
6ba94429
FW
5133static struct bus_type wq_subsys = {
5134 .name = "workqueue",
5135 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5136};
5137
b05a7928
FW
5138static ssize_t wq_unbound_cpumask_show(struct device *dev,
5139 struct device_attribute *attr, char *buf)
5140{
5141 int written;
5142
042f7df1 5143 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5144 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5145 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5146 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5147
5148 return written;
5149}
5150
042f7df1
LJ
5151static ssize_t wq_unbound_cpumask_store(struct device *dev,
5152 struct device_attribute *attr, const char *buf, size_t count)
5153{
5154 cpumask_var_t cpumask;
5155 int ret;
5156
5157 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5158 return -ENOMEM;
5159
5160 ret = cpumask_parse(buf, cpumask);
5161 if (!ret)
5162 ret = workqueue_set_unbound_cpumask(cpumask);
5163
5164 free_cpumask_var(cpumask);
5165 return ret ? ret : count;
5166}
5167
b05a7928 5168static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5169 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5170 wq_unbound_cpumask_store);
b05a7928 5171
6ba94429 5172static int __init wq_sysfs_init(void)
2d3854a3 5173{
b05a7928
FW
5174 int err;
5175
5176 err = subsys_virtual_register(&wq_subsys, NULL);
5177 if (err)
5178 return err;
5179
5180 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5181}
6ba94429 5182core_initcall(wq_sysfs_init);
2d3854a3 5183
6ba94429 5184static void wq_device_release(struct device *dev)
2d3854a3 5185{
6ba94429 5186 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5187
6ba94429 5188 kfree(wq_dev);
2d3854a3 5189}
a0a1a5fd
TH
5190
5191/**
6ba94429
FW
5192 * workqueue_sysfs_register - make a workqueue visible in sysfs
5193 * @wq: the workqueue to register
a0a1a5fd 5194 *
6ba94429
FW
5195 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5196 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5197 * which is the preferred method.
a0a1a5fd 5198 *
6ba94429
FW
5199 * Workqueue user should use this function directly iff it wants to apply
5200 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5201 * apply_workqueue_attrs() may race against userland updating the
5202 * attributes.
5203 *
5204 * Return: 0 on success, -errno on failure.
a0a1a5fd 5205 */
6ba94429 5206int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5207{
6ba94429
FW
5208 struct wq_device *wq_dev;
5209 int ret;
a0a1a5fd 5210
6ba94429 5211 /*
402dd89d 5212 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5213 * attributes breaks ordering guarantee. Disallow exposing ordered
5214 * workqueues.
5215 */
5216 if (WARN_ON(wq->flags & __WQ_ORDERED))
5217 return -EINVAL;
a0a1a5fd 5218
6ba94429
FW
5219 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5220 if (!wq_dev)
5221 return -ENOMEM;
5bcab335 5222
6ba94429
FW
5223 wq_dev->wq = wq;
5224 wq_dev->dev.bus = &wq_subsys;
6ba94429 5225 wq_dev->dev.release = wq_device_release;
23217b44 5226 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5227
6ba94429
FW
5228 /*
5229 * unbound_attrs are created separately. Suppress uevent until
5230 * everything is ready.
5231 */
5232 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5233
6ba94429
FW
5234 ret = device_register(&wq_dev->dev);
5235 if (ret) {
5236 kfree(wq_dev);
5237 wq->wq_dev = NULL;
5238 return ret;
5239 }
a0a1a5fd 5240
6ba94429
FW
5241 if (wq->flags & WQ_UNBOUND) {
5242 struct device_attribute *attr;
a0a1a5fd 5243
6ba94429
FW
5244 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5245 ret = device_create_file(&wq_dev->dev, attr);
5246 if (ret) {
5247 device_unregister(&wq_dev->dev);
5248 wq->wq_dev = NULL;
5249 return ret;
a0a1a5fd
TH
5250 }
5251 }
5252 }
6ba94429
FW
5253
5254 dev_set_uevent_suppress(&wq_dev->dev, false);
5255 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5256 return 0;
a0a1a5fd
TH
5257}
5258
5259/**
6ba94429
FW
5260 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5261 * @wq: the workqueue to unregister
a0a1a5fd 5262 *
6ba94429 5263 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5264 */
6ba94429 5265static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5266{
6ba94429 5267 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5268
6ba94429
FW
5269 if (!wq->wq_dev)
5270 return;
a0a1a5fd 5271
6ba94429
FW
5272 wq->wq_dev = NULL;
5273 device_unregister(&wq_dev->dev);
a0a1a5fd 5274}
6ba94429
FW
5275#else /* CONFIG_SYSFS */
5276static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5277#endif /* CONFIG_SYSFS */
a0a1a5fd 5278
82607adc
TH
5279/*
5280 * Workqueue watchdog.
5281 *
5282 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5283 * flush dependency, a concurrency managed work item which stays RUNNING
5284 * indefinitely. Workqueue stalls can be very difficult to debug as the
5285 * usual warning mechanisms don't trigger and internal workqueue state is
5286 * largely opaque.
5287 *
5288 * Workqueue watchdog monitors all worker pools periodically and dumps
5289 * state if some pools failed to make forward progress for a while where
5290 * forward progress is defined as the first item on ->worklist changing.
5291 *
5292 * This mechanism is controlled through the kernel parameter
5293 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5294 * corresponding sysfs parameter file.
5295 */
5296#ifdef CONFIG_WQ_WATCHDOG
5297
5298static void wq_watchdog_timer_fn(unsigned long data);
5299
5300static unsigned long wq_watchdog_thresh = 30;
5301static struct timer_list wq_watchdog_timer =
5302 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5303
5304static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5305static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5306
5307static void wq_watchdog_reset_touched(void)
5308{
5309 int cpu;
5310
5311 wq_watchdog_touched = jiffies;
5312 for_each_possible_cpu(cpu)
5313 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5314}
5315
5316static void wq_watchdog_timer_fn(unsigned long data)
5317{
5318 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5319 bool lockup_detected = false;
5320 struct worker_pool *pool;
5321 int pi;
5322
5323 if (!thresh)
5324 return;
5325
5326 rcu_read_lock();
5327
5328 for_each_pool(pool, pi) {
5329 unsigned long pool_ts, touched, ts;
5330
5331 if (list_empty(&pool->worklist))
5332 continue;
5333
5334 /* get the latest of pool and touched timestamps */
5335 pool_ts = READ_ONCE(pool->watchdog_ts);
5336 touched = READ_ONCE(wq_watchdog_touched);
5337
5338 if (time_after(pool_ts, touched))
5339 ts = pool_ts;
5340 else
5341 ts = touched;
5342
5343 if (pool->cpu >= 0) {
5344 unsigned long cpu_touched =
5345 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5346 pool->cpu));
5347 if (time_after(cpu_touched, ts))
5348 ts = cpu_touched;
5349 }
5350
5351 /* did we stall? */
5352 if (time_after(jiffies, ts + thresh)) {
5353 lockup_detected = true;
5354 pr_emerg("BUG: workqueue lockup - pool");
5355 pr_cont_pool_info(pool);
5356 pr_cont(" stuck for %us!\n",
5357 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5358 }
5359 }
5360
5361 rcu_read_unlock();
5362
5363 if (lockup_detected)
5364 show_workqueue_state();
5365
5366 wq_watchdog_reset_touched();
5367 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5368}
5369
5370void wq_watchdog_touch(int cpu)
5371{
5372 if (cpu >= 0)
5373 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5374 else
5375 wq_watchdog_touched = jiffies;
5376}
5377
5378static void wq_watchdog_set_thresh(unsigned long thresh)
5379{
5380 wq_watchdog_thresh = 0;
5381 del_timer_sync(&wq_watchdog_timer);
5382
5383 if (thresh) {
5384 wq_watchdog_thresh = thresh;
5385 wq_watchdog_reset_touched();
5386 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5387 }
5388}
5389
5390static int wq_watchdog_param_set_thresh(const char *val,
5391 const struct kernel_param *kp)
5392{
5393 unsigned long thresh;
5394 int ret;
5395
5396 ret = kstrtoul(val, 0, &thresh);
5397 if (ret)
5398 return ret;
5399
5400 if (system_wq)
5401 wq_watchdog_set_thresh(thresh);
5402 else
5403 wq_watchdog_thresh = thresh;
5404
5405 return 0;
5406}
5407
5408static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5409 .set = wq_watchdog_param_set_thresh,
5410 .get = param_get_ulong,
5411};
5412
5413module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5414 0644);
5415
5416static void wq_watchdog_init(void)
5417{
5418 wq_watchdog_set_thresh(wq_watchdog_thresh);
5419}
5420
5421#else /* CONFIG_WQ_WATCHDOG */
5422
5423static inline void wq_watchdog_init(void) { }
5424
5425#endif /* CONFIG_WQ_WATCHDOG */
5426
bce90380
TH
5427static void __init wq_numa_init(void)
5428{
5429 cpumask_var_t *tbl;
5430 int node, cpu;
5431
bce90380
TH
5432 if (num_possible_nodes() <= 1)
5433 return;
5434
d55262c4
TH
5435 if (wq_disable_numa) {
5436 pr_info("workqueue: NUMA affinity support disabled\n");
5437 return;
5438 }
5439
4c16bd32
TH
5440 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5441 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5442
bce90380
TH
5443 /*
5444 * We want masks of possible CPUs of each node which isn't readily
5445 * available. Build one from cpu_to_node() which should have been
5446 * fully initialized by now.
5447 */
ddcb57e2 5448 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5449 BUG_ON(!tbl);
5450
5451 for_each_node(node)
5a6024f1 5452 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5453 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5454
5455 for_each_possible_cpu(cpu) {
5456 node = cpu_to_node(cpu);
5457 if (WARN_ON(node == NUMA_NO_NODE)) {
5458 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5459 /* happens iff arch is bonkers, let's just proceed */
5460 return;
5461 }
5462 cpumask_set_cpu(cpu, tbl[node]);
5463 }
5464
5465 wq_numa_possible_cpumask = tbl;
5466 wq_numa_enabled = true;
5467}
5468
6ee0578b 5469static int __init init_workqueues(void)
1da177e4 5470{
7a4e344c
TH
5471 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5472 int i, cpu;
c34056a3 5473
e904e6c2
TH
5474 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5475
b05a7928
FW
5476 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5477 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5478
e904e6c2
TH
5479 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5480
65758202 5481 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5482 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5483
bce90380
TH
5484 wq_numa_init();
5485
706026c2 5486 /* initialize CPU pools */
29c91e99 5487 for_each_possible_cpu(cpu) {
4ce62e9e 5488 struct worker_pool *pool;
8b03ae3c 5489
7a4e344c 5490 i = 0;
f02ae73a 5491 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5492 BUG_ON(init_worker_pool(pool));
ec22ca5e 5493 pool->cpu = cpu;
29c91e99 5494 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5495 pool->attrs->nice = std_nice[i++];
f3f90ad4 5496 pool->node = cpu_to_node(cpu);
7a4e344c 5497
9daf9e67 5498 /* alloc pool ID */
68e13a67 5499 mutex_lock(&wq_pool_mutex);
9daf9e67 5500 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5501 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5502 }
8b03ae3c
TH
5503 }
5504
e22bee78 5505 /* create the initial worker */
29c91e99 5506 for_each_online_cpu(cpu) {
4ce62e9e 5507 struct worker_pool *pool;
e22bee78 5508
f02ae73a 5509 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5510 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5511 BUG_ON(!create_worker(pool));
4ce62e9e 5512 }
e22bee78
TH
5513 }
5514
8a2b7538 5515 /* create default unbound and ordered wq attrs */
29c91e99
TH
5516 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5517 struct workqueue_attrs *attrs;
5518
5519 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5520 attrs->nice = std_nice[i];
29c91e99 5521 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5522
5523 /*
5524 * An ordered wq should have only one pwq as ordering is
5525 * guaranteed by max_active which is enforced by pwqs.
5526 * Turn off NUMA so that dfl_pwq is used for all nodes.
5527 */
5528 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5529 attrs->nice = std_nice[i];
5530 attrs->no_numa = true;
5531 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5532 }
5533
d320c038 5534 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5535 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5536 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5537 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5538 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5539 system_freezable_wq = alloc_workqueue("events_freezable",
5540 WQ_FREEZABLE, 0);
0668106c
VK
5541 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5542 WQ_POWER_EFFICIENT, 0);
5543 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5544 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5545 0);
1aabe902 5546 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5547 !system_unbound_wq || !system_freezable_wq ||
5548 !system_power_efficient_wq ||
5549 !system_freezable_power_efficient_wq);
82607adc
TH
5550
5551 wq_watchdog_init();
5552
6ee0578b 5553 return 0;
1da177e4 5554}
6ee0578b 5555early_initcall(init_workqueues);
This page took 1.114539 seconds and 5 git commands to generate.