workqueue: destroy worker directly in the idle timeout handler
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36 74 /* worker flags */
c8e55f36
TH
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 77 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 81
a9ab775b
TH
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 84
e34cdddb 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 86
29c91e99 87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 89
e22bee78
TH
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
3233cdbd
TH
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
e22bee78
TH
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
101 * all cpus. Give -20.
102 */
103 RESCUER_NICE_LEVEL = -20,
3270476a 104 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
105
106 WQ_NAME_LEN = 24,
c8e55f36 107};
1da177e4
LT
108
109/*
4690c4ab
TH
110 * Structure fields follow one of the following exclusion rules.
111 *
e41e704b
TH
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
4690c4ab 114 *
e22bee78
TH
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
d565ed63 118 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 119 *
d565ed63
TH
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 124 *
9625ab17 125 * M: pool->manager_mutex protected.
822d8405 126 *
68e13a67 127 * PL: wq_pool_mutex protected.
5bcab335 128 *
68e13a67 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 130 *
3c25a55d
LJ
131 * WQ: wq->mutex protected.
132 *
b5927605 133 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
134 *
135 * MD: wq_mayday_lock protected.
1da177e4 136 */
1da177e4 137
2eaebdb3 138/* struct worker is defined in workqueue_internal.h */
c34056a3 139
bd7bdd43 140struct worker_pool {
d565ed63 141 spinlock_t lock; /* the pool lock */
d84ff051 142 int cpu; /* I: the associated cpu */
f3f90ad4 143 int node; /* I: the associated node ID */
9daf9e67 144 int id; /* I: pool ID */
11ebea50 145 unsigned int flags; /* X: flags */
bd7bdd43
TH
146
147 struct list_head worklist; /* L: list of pending works */
148 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
149
150 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
151 int nr_idle; /* L: currently idle ones */
152
153 struct list_head idle_list; /* X: list of idle workers */
154 struct timer_list idle_timer; /* L: worker idle timeout */
155 struct timer_list mayday_timer; /* L: SOS timer for workers */
156
c5aa87bb 157 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
159 /* L: hash of busy workers */
160
bc3a1afc 161 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 162 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 163 struct mutex manager_mutex; /* manager exclusion */
9625ab17 164 struct idr worker_idr; /* M: worker IDs and iteration */
60f5a4bc 165 struct completion *detach_completion; /* all workers detached */
e19e397a 166
7a4e344c 167 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
168 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
169 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 170
e19e397a
TH
171 /*
172 * The current concurrency level. As it's likely to be accessed
173 * from other CPUs during try_to_wake_up(), put it in a separate
174 * cacheline.
175 */
176 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
177
178 /*
179 * Destruction of pool is sched-RCU protected to allow dereferences
180 * from get_work_pool().
181 */
182 struct rcu_head rcu;
8b03ae3c
TH
183} ____cacheline_aligned_in_smp;
184
1da177e4 185/*
112202d9
TH
186 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
187 * of work_struct->data are used for flags and the remaining high bits
188 * point to the pwq; thus, pwqs need to be aligned at two's power of the
189 * number of flag bits.
1da177e4 190 */
112202d9 191struct pool_workqueue {
bd7bdd43 192 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 193 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
194 int work_color; /* L: current color */
195 int flush_color; /* L: flushing color */
8864b4e5 196 int refcnt; /* L: reference count */
73f53c4a
TH
197 int nr_in_flight[WORK_NR_COLORS];
198 /* L: nr of in_flight works */
1e19ffc6 199 int nr_active; /* L: nr of active works */
a0a1a5fd 200 int max_active; /* L: max active works */
1e19ffc6 201 struct list_head delayed_works; /* L: delayed works */
3c25a55d 202 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 203 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
204
205 /*
206 * Release of unbound pwq is punted to system_wq. See put_pwq()
207 * and pwq_unbound_release_workfn() for details. pool_workqueue
208 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 209 * determined without grabbing wq->mutex.
8864b4e5
TH
210 */
211 struct work_struct unbound_release_work;
212 struct rcu_head rcu;
e904e6c2 213} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 214
73f53c4a
TH
215/*
216 * Structure used to wait for workqueue flush.
217 */
218struct wq_flusher {
3c25a55d
LJ
219 struct list_head list; /* WQ: list of flushers */
220 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
221 struct completion done; /* flush completion */
222};
223
226223ab
TH
224struct wq_device;
225
1da177e4 226/*
c5aa87bb
TH
227 * The externally visible workqueue. It relays the issued work items to
228 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
229 */
230struct workqueue_struct {
3c25a55d 231 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 232 struct list_head list; /* PL: list of all workqueues */
73f53c4a 233
3c25a55d
LJ
234 struct mutex mutex; /* protects this wq */
235 int work_color; /* WQ: current work color */
236 int flush_color; /* WQ: current flush color */
112202d9 237 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
238 struct wq_flusher *first_flusher; /* WQ: first flusher */
239 struct list_head flusher_queue; /* WQ: flush waiters */
240 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 241
2e109a28 242 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
243 struct worker *rescuer; /* I: rescue worker */
244
87fc741e 245 int nr_drainers; /* WQ: drain in progress */
a357fc03 246 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 247
6029a918 248 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 249 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 250
226223ab
TH
251#ifdef CONFIG_SYSFS
252 struct wq_device *wq_dev; /* I: for sysfs interface */
253#endif
4e6045f1 254#ifdef CONFIG_LOCKDEP
4690c4ab 255 struct lockdep_map lockdep_map;
4e6045f1 256#endif
ecf6881f 257 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
258
259 /* hot fields used during command issue, aligned to cacheline */
260 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
261 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 262 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
263};
264
e904e6c2
TH
265static struct kmem_cache *pwq_cache;
266
bce90380
TH
267static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
268static cpumask_var_t *wq_numa_possible_cpumask;
269 /* possible CPUs of each node */
270
d55262c4
TH
271static bool wq_disable_numa;
272module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273
cee22a15
VK
274/* see the comment above the definition of WQ_POWER_EFFICIENT */
275#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
276static bool wq_power_efficient = true;
277#else
278static bool wq_power_efficient;
279#endif
280
281module_param_named(power_efficient, wq_power_efficient, bool, 0444);
282
bce90380
TH
283static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
284
4c16bd32
TH
285/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
286static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
287
68e13a67 288static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 289static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 290
68e13a67
LJ
291static LIST_HEAD(workqueues); /* PL: list of all workqueues */
292static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
293
294/* the per-cpu worker pools */
295static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
296 cpu_worker_pools);
297
68e13a67 298static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 299
68e13a67 300/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
301static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
302
c5aa87bb 303/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
304static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
305
8a2b7538
TH
306/* I: attributes used when instantiating ordered pools on demand */
307static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
308
d320c038 309struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 310EXPORT_SYMBOL(system_wq);
044c782c 311struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 312EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 313struct workqueue_struct *system_long_wq __read_mostly;
d320c038 314EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 315struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 316EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 317struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 318EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
319struct workqueue_struct *system_power_efficient_wq __read_mostly;
320EXPORT_SYMBOL_GPL(system_power_efficient_wq);
321struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
322EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 323
7d19c5ce
TH
324static int worker_thread(void *__worker);
325static void copy_workqueue_attrs(struct workqueue_attrs *to,
326 const struct workqueue_attrs *from);
327
97bd2347
TH
328#define CREATE_TRACE_POINTS
329#include <trace/events/workqueue.h>
330
68e13a67 331#define assert_rcu_or_pool_mutex() \
5bcab335 332 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
333 lockdep_is_held(&wq_pool_mutex), \
334 "sched RCU or wq_pool_mutex should be held")
5bcab335 335
b09f4fd3 336#define assert_rcu_or_wq_mutex(wq) \
76af4d93 337 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 338 lockdep_is_held(&wq->mutex), \
b09f4fd3 339 "sched RCU or wq->mutex should be held")
76af4d93 340
f02ae73a
TH
341#define for_each_cpu_worker_pool(pool, cpu) \
342 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
343 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 344 (pool)++)
4ce62e9e 345
17116969
TH
346/**
347 * for_each_pool - iterate through all worker_pools in the system
348 * @pool: iteration cursor
611c92a0 349 * @pi: integer used for iteration
fa1b54e6 350 *
68e13a67
LJ
351 * This must be called either with wq_pool_mutex held or sched RCU read
352 * locked. If the pool needs to be used beyond the locking in effect, the
353 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
354 *
355 * The if/else clause exists only for the lockdep assertion and can be
356 * ignored.
17116969 357 */
611c92a0
TH
358#define for_each_pool(pool, pi) \
359 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 360 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 361 else
17116969 362
822d8405
TH
363/**
364 * for_each_pool_worker - iterate through all workers of a worker_pool
365 * @worker: iteration cursor
366 * @wi: integer used for iteration
367 * @pool: worker_pool to iterate workers of
368 *
9625ab17 369 * This must be called with @pool->manager_mutex.
822d8405
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
374#define for_each_pool_worker(worker, wi, pool) \
375 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
9625ab17 376 if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
822d8405
TH
377 else
378
49e3cf44
TH
379/**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
76af4d93 383 *
b09f4fd3 384 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
49e3cf44
TH
390 */
391#define for_each_pwq(pwq, wq) \
76af4d93 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 394 else
f3421797 395
dc186ad7
TG
396#ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398static struct debug_obj_descr work_debug_descr;
399
99777288
SG
400static void *work_debug_hint(void *addr)
401{
402 return ((struct work_struct *) addr)->func;
403}
404
dc186ad7
TG
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409static int work_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int work_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
22df02bb 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454}
455
456/*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460static int work_fixup_free(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472}
473
474static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
99777288 476 .debug_hint = work_debug_hint,
dc186ad7
TG
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480};
481
482static inline void debug_work_activate(struct work_struct *work)
483{
484 debug_object_activate(work, &work_debug_descr);
485}
486
487static inline void debug_work_deactivate(struct work_struct *work)
488{
489 debug_object_deactivate(work, &work_debug_descr);
490}
491
492void __init_work(struct work_struct *work, int onstack)
493{
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(__init_work);
500
501void destroy_work_on_stack(struct work_struct *work)
502{
503 debug_object_free(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
ea2e64f2
TG
507void destroy_delayed_work_on_stack(struct delayed_work *work)
508{
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
dc186ad7
TG
514#else
515static inline void debug_work_activate(struct work_struct *work) { }
516static inline void debug_work_deactivate(struct work_struct *work) { }
517#endif
518
4e8b22bd
LB
519/**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
9daf9e67
TH
526static int worker_pool_assign_id(struct worker_pool *pool)
527{
528 int ret;
529
68e13a67 530 lockdep_assert_held(&wq_pool_mutex);
5bcab335 531
4e8b22bd
LB
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
229641a6 534 if (ret >= 0) {
e68035fb 535 pool->id = ret;
229641a6
TH
536 return 0;
537 }
fa1b54e6 538 return ret;
7c3eed5c
TH
539}
540
df2d5ae4
TH
541/**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
549 *
550 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
551 */
552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554{
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557}
558
73f53c4a
TH
559static unsigned int work_color_to_flags(int color)
560{
561 return color << WORK_STRUCT_COLOR_SHIFT;
562}
563
564static int get_work_color(struct work_struct *work)
565{
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568}
569
570static int work_next_color(int color)
571{
572 return (color + 1) % WORK_NR_COLORS;
573}
1da177e4 574
14441960 575/*
112202d9
TH
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 578 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 579 *
112202d9
TH
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
7a22ad75 584 *
112202d9 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 586 * corresponding to a work. Pool is available once the work has been
112202d9 587 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 588 * available only while the work item is queued.
7a22ad75 589 *
bbb68dfa
TH
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
14441960 594 */
7a22ad75
TH
595static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
365970a1 597{
6183c009 598 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
599 atomic_long_set(&work->data, data | flags | work_static(work));
600}
365970a1 601
112202d9 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
603 unsigned long extra_flags)
604{
112202d9
TH
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
607}
608
4468a00f
LJ
609static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611{
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614}
615
7c3eed5c
TH
616static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
7a22ad75 618{
23657bb1
TH
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
7c3eed5c 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 627}
f756d5e2 628
7a22ad75 629static void clear_work_data(struct work_struct *work)
1da177e4 630{
7c3eed5c
TH
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
633}
634
112202d9 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 636{
e120153d 637 unsigned long data = atomic_long_read(&work->data);
7a22ad75 638
112202d9 639 if (data & WORK_STRUCT_PWQ)
e120153d
TH
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
4d707b9f
ON
643}
644
7c3eed5c
TH
645/**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
68e13a67
LJ
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
d185af30
YB
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
659 */
660static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 663 int pool_id;
7a22ad75 664
68e13a67 665 assert_rcu_or_pool_mutex();
fa1b54e6 666
112202d9
TH
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
7c3eed5c 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 670
7c3eed5c
TH
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
673 return NULL;
674
fa1b54e6 675 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
676}
677
678/**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
d185af30 682 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685static int get_work_pool_id(struct work_struct *work)
686{
54d5b7d0
LJ
687 unsigned long data = atomic_long_read(&work->data);
688
112202d9
TH
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
54d5b7d0 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 692
54d5b7d0 693 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
694}
695
bbb68dfa
TH
696static void mark_work_canceling(struct work_struct *work)
697{
7c3eed5c 698 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 699
7c3eed5c
TH
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
702}
703
704static bool work_is_canceling(struct work_struct *work)
705{
706 unsigned long data = atomic_long_read(&work->data);
707
112202d9 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
709}
710
e22bee78 711/*
3270476a
TH
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 714 * they're being called with pool->lock held.
e22bee78
TH
715 */
716
63d95a91 717static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 718{
e19e397a 719 return !atomic_read(&pool->nr_running);
a848e3b6
ON
720}
721
4594bf15 722/*
e22bee78
TH
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
974271c4
TH
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
706026c2 727 * function will always return %true for unbound pools as long as the
974271c4 728 * worklist isn't empty.
4594bf15 729 */
63d95a91 730static bool need_more_worker(struct worker_pool *pool)
365970a1 731{
63d95a91 732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 733}
4594bf15 734
e22bee78 735/* Can I start working? Called from busy but !running workers. */
63d95a91 736static bool may_start_working(struct worker_pool *pool)
e22bee78 737{
63d95a91 738 return pool->nr_idle;
e22bee78
TH
739}
740
741/* Do I need to keep working? Called from currently running workers. */
63d95a91 742static bool keep_working(struct worker_pool *pool)
e22bee78 743{
e19e397a
TH
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
746}
747
748/* Do we need a new worker? Called from manager. */
63d95a91 749static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 750{
63d95a91 751 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 752}
365970a1 753
e22bee78 754/* Do we have too many workers and should some go away? */
63d95a91 755static bool too_many_workers(struct worker_pool *pool)
e22bee78 756{
34a06bd6 757 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 760
ea1abd61
LJ
761 /*
762 * nr_idle and idle_list may disagree if idle rebinding is in
763 * progress. Never return %true if idle_list is empty.
764 */
765 if (list_empty(&pool->idle_list))
766 return false;
767
e22bee78 768 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
769}
770
4d707b9f 771/*
e22bee78
TH
772 * Wake up functions.
773 */
774
7e11629d 775/* Return the first worker. Safe with preemption disabled */
63d95a91 776static struct worker *first_worker(struct worker_pool *pool)
7e11629d 777{
63d95a91 778 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
779 return NULL;
780
63d95a91 781 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
782}
783
784/**
785 * wake_up_worker - wake up an idle worker
63d95a91 786 * @pool: worker pool to wake worker from
7e11629d 787 *
63d95a91 788 * Wake up the first idle worker of @pool.
7e11629d
TH
789 *
790 * CONTEXT:
d565ed63 791 * spin_lock_irq(pool->lock).
7e11629d 792 */
63d95a91 793static void wake_up_worker(struct worker_pool *pool)
7e11629d 794{
63d95a91 795 struct worker *worker = first_worker(pool);
7e11629d
TH
796
797 if (likely(worker))
798 wake_up_process(worker->task);
799}
800
d302f017 801/**
e22bee78
TH
802 * wq_worker_waking_up - a worker is waking up
803 * @task: task waking up
804 * @cpu: CPU @task is waking up to
805 *
806 * This function is called during try_to_wake_up() when a worker is
807 * being awoken.
808 *
809 * CONTEXT:
810 * spin_lock_irq(rq->lock)
811 */
d84ff051 812void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
813{
814 struct worker *worker = kthread_data(task);
815
36576000 816 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 817 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 818 atomic_inc(&worker->pool->nr_running);
36576000 819 }
e22bee78
TH
820}
821
822/**
823 * wq_worker_sleeping - a worker is going to sleep
824 * @task: task going to sleep
825 * @cpu: CPU in question, must be the current CPU number
826 *
827 * This function is called during schedule() when a busy worker is
828 * going to sleep. Worker on the same cpu can be woken up by
829 * returning pointer to its task.
830 *
831 * CONTEXT:
832 * spin_lock_irq(rq->lock)
833 *
d185af30 834 * Return:
e22bee78
TH
835 * Worker task on @cpu to wake up, %NULL if none.
836 */
d84ff051 837struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
838{
839 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 840 struct worker_pool *pool;
e22bee78 841
111c225a
TH
842 /*
843 * Rescuers, which may not have all the fields set up like normal
844 * workers, also reach here, let's not access anything before
845 * checking NOT_RUNNING.
846 */
2d64672e 847 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
848 return NULL;
849
111c225a 850 pool = worker->pool;
111c225a 851
e22bee78 852 /* this can only happen on the local cpu */
6183c009
TH
853 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
854 return NULL;
e22bee78
TH
855
856 /*
857 * The counterpart of the following dec_and_test, implied mb,
858 * worklist not empty test sequence is in insert_work().
859 * Please read comment there.
860 *
628c78e7
TH
861 * NOT_RUNNING is clear. This means that we're bound to and
862 * running on the local cpu w/ rq lock held and preemption
863 * disabled, which in turn means that none else could be
d565ed63 864 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 865 * lock is safe.
e22bee78 866 */
e19e397a
TH
867 if (atomic_dec_and_test(&pool->nr_running) &&
868 !list_empty(&pool->worklist))
63d95a91 869 to_wakeup = first_worker(pool);
e22bee78
TH
870 return to_wakeup ? to_wakeup->task : NULL;
871}
872
873/**
874 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 875 * @worker: self
d302f017
TH
876 * @flags: flags to set
877 * @wakeup: wakeup an idle worker if necessary
878 *
e22bee78
TH
879 * Set @flags in @worker->flags and adjust nr_running accordingly. If
880 * nr_running becomes zero and @wakeup is %true, an idle worker is
881 * woken up.
d302f017 882 *
cb444766 883 * CONTEXT:
d565ed63 884 * spin_lock_irq(pool->lock)
d302f017
TH
885 */
886static inline void worker_set_flags(struct worker *worker, unsigned int flags,
887 bool wakeup)
888{
bd7bdd43 889 struct worker_pool *pool = worker->pool;
e22bee78 890
cb444766
TH
891 WARN_ON_ONCE(worker->task != current);
892
e22bee78
TH
893 /*
894 * If transitioning into NOT_RUNNING, adjust nr_running and
895 * wake up an idle worker as necessary if requested by
896 * @wakeup.
897 */
898 if ((flags & WORKER_NOT_RUNNING) &&
899 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 900 if (wakeup) {
e19e397a 901 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 902 !list_empty(&pool->worklist))
63d95a91 903 wake_up_worker(pool);
e22bee78 904 } else
e19e397a 905 atomic_dec(&pool->nr_running);
e22bee78
TH
906 }
907
d302f017
TH
908 worker->flags |= flags;
909}
910
911/**
e22bee78 912 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 913 * @worker: self
d302f017
TH
914 * @flags: flags to clear
915 *
e22bee78 916 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 917 *
cb444766 918 * CONTEXT:
d565ed63 919 * spin_lock_irq(pool->lock)
d302f017
TH
920 */
921static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
922{
63d95a91 923 struct worker_pool *pool = worker->pool;
e22bee78
TH
924 unsigned int oflags = worker->flags;
925
cb444766
TH
926 WARN_ON_ONCE(worker->task != current);
927
d302f017 928 worker->flags &= ~flags;
e22bee78 929
42c025f3
TH
930 /*
931 * If transitioning out of NOT_RUNNING, increment nr_running. Note
932 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
933 * of multiple flags, not a single flag.
934 */
e22bee78
TH
935 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
936 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 937 atomic_inc(&pool->nr_running);
d302f017
TH
938}
939
8cca0eea
TH
940/**
941 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 942 * @pool: pool of interest
8cca0eea
TH
943 * @work: work to find worker for
944 *
c9e7cf27
TH
945 * Find a worker which is executing @work on @pool by searching
946 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
947 * to match, its current execution should match the address of @work and
948 * its work function. This is to avoid unwanted dependency between
949 * unrelated work executions through a work item being recycled while still
950 * being executed.
951 *
952 * This is a bit tricky. A work item may be freed once its execution
953 * starts and nothing prevents the freed area from being recycled for
954 * another work item. If the same work item address ends up being reused
955 * before the original execution finishes, workqueue will identify the
956 * recycled work item as currently executing and make it wait until the
957 * current execution finishes, introducing an unwanted dependency.
958 *
c5aa87bb
TH
959 * This function checks the work item address and work function to avoid
960 * false positives. Note that this isn't complete as one may construct a
961 * work function which can introduce dependency onto itself through a
962 * recycled work item. Well, if somebody wants to shoot oneself in the
963 * foot that badly, there's only so much we can do, and if such deadlock
964 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
965 *
966 * CONTEXT:
d565ed63 967 * spin_lock_irq(pool->lock).
8cca0eea 968 *
d185af30
YB
969 * Return:
970 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 971 * otherwise.
4d707b9f 972 */
c9e7cf27 973static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 974 struct work_struct *work)
4d707b9f 975{
42f8570f 976 struct worker *worker;
42f8570f 977
b67bfe0d 978 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
979 (unsigned long)work)
980 if (worker->current_work == work &&
981 worker->current_func == work->func)
42f8570f
SL
982 return worker;
983
984 return NULL;
4d707b9f
ON
985}
986
bf4ede01
TH
987/**
988 * move_linked_works - move linked works to a list
989 * @work: start of series of works to be scheduled
990 * @head: target list to append @work to
991 * @nextp: out paramter for nested worklist walking
992 *
993 * Schedule linked works starting from @work to @head. Work series to
994 * be scheduled starts at @work and includes any consecutive work with
995 * WORK_STRUCT_LINKED set in its predecessor.
996 *
997 * If @nextp is not NULL, it's updated to point to the next work of
998 * the last scheduled work. This allows move_linked_works() to be
999 * nested inside outer list_for_each_entry_safe().
1000 *
1001 * CONTEXT:
d565ed63 1002 * spin_lock_irq(pool->lock).
bf4ede01
TH
1003 */
1004static void move_linked_works(struct work_struct *work, struct list_head *head,
1005 struct work_struct **nextp)
1006{
1007 struct work_struct *n;
1008
1009 /*
1010 * Linked worklist will always end before the end of the list,
1011 * use NULL for list head.
1012 */
1013 list_for_each_entry_safe_from(work, n, NULL, entry) {
1014 list_move_tail(&work->entry, head);
1015 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1016 break;
1017 }
1018
1019 /*
1020 * If we're already inside safe list traversal and have moved
1021 * multiple works to the scheduled queue, the next position
1022 * needs to be updated.
1023 */
1024 if (nextp)
1025 *nextp = n;
1026}
1027
8864b4e5
TH
1028/**
1029 * get_pwq - get an extra reference on the specified pool_workqueue
1030 * @pwq: pool_workqueue to get
1031 *
1032 * Obtain an extra reference on @pwq. The caller should guarantee that
1033 * @pwq has positive refcnt and be holding the matching pool->lock.
1034 */
1035static void get_pwq(struct pool_workqueue *pwq)
1036{
1037 lockdep_assert_held(&pwq->pool->lock);
1038 WARN_ON_ONCE(pwq->refcnt <= 0);
1039 pwq->refcnt++;
1040}
1041
1042/**
1043 * put_pwq - put a pool_workqueue reference
1044 * @pwq: pool_workqueue to put
1045 *
1046 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1047 * destruction. The caller should be holding the matching pool->lock.
1048 */
1049static void put_pwq(struct pool_workqueue *pwq)
1050{
1051 lockdep_assert_held(&pwq->pool->lock);
1052 if (likely(--pwq->refcnt))
1053 return;
1054 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1055 return;
1056 /*
1057 * @pwq can't be released under pool->lock, bounce to
1058 * pwq_unbound_release_workfn(). This never recurses on the same
1059 * pool->lock as this path is taken only for unbound workqueues and
1060 * the release work item is scheduled on a per-cpu workqueue. To
1061 * avoid lockdep warning, unbound pool->locks are given lockdep
1062 * subclass of 1 in get_unbound_pool().
1063 */
1064 schedule_work(&pwq->unbound_release_work);
1065}
1066
dce90d47
TH
1067/**
1068 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1069 * @pwq: pool_workqueue to put (can be %NULL)
1070 *
1071 * put_pwq() with locking. This function also allows %NULL @pwq.
1072 */
1073static void put_pwq_unlocked(struct pool_workqueue *pwq)
1074{
1075 if (pwq) {
1076 /*
1077 * As both pwqs and pools are sched-RCU protected, the
1078 * following lock operations are safe.
1079 */
1080 spin_lock_irq(&pwq->pool->lock);
1081 put_pwq(pwq);
1082 spin_unlock_irq(&pwq->pool->lock);
1083 }
1084}
1085
112202d9 1086static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1087{
112202d9 1088 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1089
1090 trace_workqueue_activate_work(work);
112202d9 1091 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1092 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1093 pwq->nr_active++;
bf4ede01
TH
1094}
1095
112202d9 1096static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1097{
112202d9 1098 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1099 struct work_struct, entry);
1100
112202d9 1101 pwq_activate_delayed_work(work);
3aa62497
LJ
1102}
1103
bf4ede01 1104/**
112202d9
TH
1105 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1106 * @pwq: pwq of interest
bf4ede01 1107 * @color: color of work which left the queue
bf4ede01
TH
1108 *
1109 * A work either has completed or is removed from pending queue,
112202d9 1110 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1111 *
1112 * CONTEXT:
d565ed63 1113 * spin_lock_irq(pool->lock).
bf4ede01 1114 */
112202d9 1115static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1116{
8864b4e5 1117 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1118 if (color == WORK_NO_COLOR)
8864b4e5 1119 goto out_put;
bf4ede01 1120
112202d9 1121 pwq->nr_in_flight[color]--;
bf4ede01 1122
112202d9
TH
1123 pwq->nr_active--;
1124 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1125 /* one down, submit a delayed one */
112202d9
TH
1126 if (pwq->nr_active < pwq->max_active)
1127 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1128 }
1129
1130 /* is flush in progress and are we at the flushing tip? */
112202d9 1131 if (likely(pwq->flush_color != color))
8864b4e5 1132 goto out_put;
bf4ede01
TH
1133
1134 /* are there still in-flight works? */
112202d9 1135 if (pwq->nr_in_flight[color])
8864b4e5 1136 goto out_put;
bf4ede01 1137
112202d9
TH
1138 /* this pwq is done, clear flush_color */
1139 pwq->flush_color = -1;
bf4ede01
TH
1140
1141 /*
112202d9 1142 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1143 * will handle the rest.
1144 */
112202d9
TH
1145 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1146 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1147out_put:
1148 put_pwq(pwq);
bf4ede01
TH
1149}
1150
36e227d2 1151/**
bbb68dfa 1152 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1153 * @work: work item to steal
1154 * @is_dwork: @work is a delayed_work
bbb68dfa 1155 * @flags: place to store irq state
36e227d2
TH
1156 *
1157 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1158 * stable state - idle, on timer or on worklist.
36e227d2 1159 *
d185af30 1160 * Return:
36e227d2
TH
1161 * 1 if @work was pending and we successfully stole PENDING
1162 * 0 if @work was idle and we claimed PENDING
1163 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1164 * -ENOENT if someone else is canceling @work, this state may persist
1165 * for arbitrarily long
36e227d2 1166 *
d185af30 1167 * Note:
bbb68dfa 1168 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1169 * interrupted while holding PENDING and @work off queue, irq must be
1170 * disabled on entry. This, combined with delayed_work->timer being
1171 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1172 *
1173 * On successful return, >= 0, irq is disabled and the caller is
1174 * responsible for releasing it using local_irq_restore(*@flags).
1175 *
e0aecdd8 1176 * This function is safe to call from any context including IRQ handler.
bf4ede01 1177 */
bbb68dfa
TH
1178static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1179 unsigned long *flags)
bf4ede01 1180{
d565ed63 1181 struct worker_pool *pool;
112202d9 1182 struct pool_workqueue *pwq;
bf4ede01 1183
bbb68dfa
TH
1184 local_irq_save(*flags);
1185
36e227d2
TH
1186 /* try to steal the timer if it exists */
1187 if (is_dwork) {
1188 struct delayed_work *dwork = to_delayed_work(work);
1189
e0aecdd8
TH
1190 /*
1191 * dwork->timer is irqsafe. If del_timer() fails, it's
1192 * guaranteed that the timer is not queued anywhere and not
1193 * running on the local CPU.
1194 */
36e227d2
TH
1195 if (likely(del_timer(&dwork->timer)))
1196 return 1;
1197 }
1198
1199 /* try to claim PENDING the normal way */
bf4ede01
TH
1200 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1201 return 0;
1202
1203 /*
1204 * The queueing is in progress, or it is already queued. Try to
1205 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1206 */
d565ed63
TH
1207 pool = get_work_pool(work);
1208 if (!pool)
bbb68dfa 1209 goto fail;
bf4ede01 1210
d565ed63 1211 spin_lock(&pool->lock);
0b3dae68 1212 /*
112202d9
TH
1213 * work->data is guaranteed to point to pwq only while the work
1214 * item is queued on pwq->wq, and both updating work->data to point
1215 * to pwq on queueing and to pool on dequeueing are done under
1216 * pwq->pool->lock. This in turn guarantees that, if work->data
1217 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1218 * item is currently queued on that pool.
1219 */
112202d9
TH
1220 pwq = get_work_pwq(work);
1221 if (pwq && pwq->pool == pool) {
16062836
TH
1222 debug_work_deactivate(work);
1223
1224 /*
1225 * A delayed work item cannot be grabbed directly because
1226 * it might have linked NO_COLOR work items which, if left
112202d9 1227 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1228 * management later on and cause stall. Make sure the work
1229 * item is activated before grabbing.
1230 */
1231 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1232 pwq_activate_delayed_work(work);
16062836
TH
1233
1234 list_del_init(&work->entry);
112202d9 1235 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1236
112202d9 1237 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1238 set_work_pool_and_keep_pending(work, pool->id);
1239
1240 spin_unlock(&pool->lock);
1241 return 1;
bf4ede01 1242 }
d565ed63 1243 spin_unlock(&pool->lock);
bbb68dfa
TH
1244fail:
1245 local_irq_restore(*flags);
1246 if (work_is_canceling(work))
1247 return -ENOENT;
1248 cpu_relax();
36e227d2 1249 return -EAGAIN;
bf4ede01
TH
1250}
1251
4690c4ab 1252/**
706026c2 1253 * insert_work - insert a work into a pool
112202d9 1254 * @pwq: pwq @work belongs to
4690c4ab
TH
1255 * @work: work to insert
1256 * @head: insertion point
1257 * @extra_flags: extra WORK_STRUCT_* flags to set
1258 *
112202d9 1259 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1260 * work_struct flags.
4690c4ab
TH
1261 *
1262 * CONTEXT:
d565ed63 1263 * spin_lock_irq(pool->lock).
4690c4ab 1264 */
112202d9
TH
1265static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1266 struct list_head *head, unsigned int extra_flags)
b89deed3 1267{
112202d9 1268 struct worker_pool *pool = pwq->pool;
e22bee78 1269
4690c4ab 1270 /* we own @work, set data and link */
112202d9 1271 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1272 list_add_tail(&work->entry, head);
8864b4e5 1273 get_pwq(pwq);
e22bee78
TH
1274
1275 /*
c5aa87bb
TH
1276 * Ensure either wq_worker_sleeping() sees the above
1277 * list_add_tail() or we see zero nr_running to avoid workers lying
1278 * around lazily while there are works to be processed.
e22bee78
TH
1279 */
1280 smp_mb();
1281
63d95a91
TH
1282 if (__need_more_worker(pool))
1283 wake_up_worker(pool);
b89deed3
ON
1284}
1285
c8efcc25
TH
1286/*
1287 * Test whether @work is being queued from another work executing on the
8d03ecfe 1288 * same workqueue.
c8efcc25
TH
1289 */
1290static bool is_chained_work(struct workqueue_struct *wq)
1291{
8d03ecfe
TH
1292 struct worker *worker;
1293
1294 worker = current_wq_worker();
1295 /*
1296 * Return %true iff I'm a worker execuing a work item on @wq. If
1297 * I'm @worker, it's safe to dereference it without locking.
1298 */
112202d9 1299 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1300}
1301
d84ff051 1302static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1303 struct work_struct *work)
1304{
112202d9 1305 struct pool_workqueue *pwq;
c9178087 1306 struct worker_pool *last_pool;
1e19ffc6 1307 struct list_head *worklist;
8a2e8e5d 1308 unsigned int work_flags;
b75cac93 1309 unsigned int req_cpu = cpu;
8930caba
TH
1310
1311 /*
1312 * While a work item is PENDING && off queue, a task trying to
1313 * steal the PENDING will busy-loop waiting for it to either get
1314 * queued or lose PENDING. Grabbing PENDING and queueing should
1315 * happen with IRQ disabled.
1316 */
1317 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1318
dc186ad7 1319 debug_work_activate(work);
1e19ffc6 1320
9ef28a73 1321 /* if draining, only works from the same workqueue are allowed */
618b01eb 1322 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1323 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1324 return;
9e8cd2f5 1325retry:
df2d5ae4
TH
1326 if (req_cpu == WORK_CPU_UNBOUND)
1327 cpu = raw_smp_processor_id();
1328
c9178087 1329 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1330 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1331 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1332 else
1333 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1334
c9178087
TH
1335 /*
1336 * If @work was previously on a different pool, it might still be
1337 * running there, in which case the work needs to be queued on that
1338 * pool to guarantee non-reentrancy.
1339 */
1340 last_pool = get_work_pool(work);
1341 if (last_pool && last_pool != pwq->pool) {
1342 struct worker *worker;
18aa9eff 1343
c9178087 1344 spin_lock(&last_pool->lock);
18aa9eff 1345
c9178087 1346 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1347
c9178087
TH
1348 if (worker && worker->current_pwq->wq == wq) {
1349 pwq = worker->current_pwq;
8930caba 1350 } else {
c9178087
TH
1351 /* meh... not running there, queue here */
1352 spin_unlock(&last_pool->lock);
112202d9 1353 spin_lock(&pwq->pool->lock);
8930caba 1354 }
f3421797 1355 } else {
112202d9 1356 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1357 }
1358
9e8cd2f5
TH
1359 /*
1360 * pwq is determined and locked. For unbound pools, we could have
1361 * raced with pwq release and it could already be dead. If its
1362 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1363 * without another pwq replacing it in the numa_pwq_tbl or while
1364 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1365 * make forward-progress.
1366 */
1367 if (unlikely(!pwq->refcnt)) {
1368 if (wq->flags & WQ_UNBOUND) {
1369 spin_unlock(&pwq->pool->lock);
1370 cpu_relax();
1371 goto retry;
1372 }
1373 /* oops */
1374 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1375 wq->name, cpu);
1376 }
1377
112202d9
TH
1378 /* pwq determined, queue */
1379 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1380
f5b2552b 1381 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1382 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1383 return;
1384 }
1e19ffc6 1385
112202d9
TH
1386 pwq->nr_in_flight[pwq->work_color]++;
1387 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1388
112202d9 1389 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1390 trace_workqueue_activate_work(work);
112202d9
TH
1391 pwq->nr_active++;
1392 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1393 } else {
1394 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1395 worklist = &pwq->delayed_works;
8a2e8e5d 1396 }
1e19ffc6 1397
112202d9 1398 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1399
112202d9 1400 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1401}
1402
0fcb78c2 1403/**
c1a220e7
ZR
1404 * queue_work_on - queue work on specific cpu
1405 * @cpu: CPU number to execute work on
0fcb78c2
REB
1406 * @wq: workqueue to use
1407 * @work: work to queue
1408 *
c1a220e7
ZR
1409 * We queue the work to a specific CPU, the caller must ensure it
1410 * can't go away.
d185af30
YB
1411 *
1412 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1413 */
d4283e93
TH
1414bool queue_work_on(int cpu, struct workqueue_struct *wq,
1415 struct work_struct *work)
1da177e4 1416{
d4283e93 1417 bool ret = false;
8930caba 1418 unsigned long flags;
ef1ca236 1419
8930caba 1420 local_irq_save(flags);
c1a220e7 1421
22df02bb 1422 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1423 __queue_work(cpu, wq, work);
d4283e93 1424 ret = true;
c1a220e7 1425 }
ef1ca236 1426
8930caba 1427 local_irq_restore(flags);
1da177e4
LT
1428 return ret;
1429}
ad7b1f84 1430EXPORT_SYMBOL(queue_work_on);
1da177e4 1431
d8e794df 1432void delayed_work_timer_fn(unsigned long __data)
1da177e4 1433{
52bad64d 1434 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1435
e0aecdd8 1436 /* should have been called from irqsafe timer with irq already off */
60c057bc 1437 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1438}
1438ade5 1439EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1440
7beb2edf
TH
1441static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1442 struct delayed_work *dwork, unsigned long delay)
1da177e4 1443{
7beb2edf
TH
1444 struct timer_list *timer = &dwork->timer;
1445 struct work_struct *work = &dwork->work;
7beb2edf
TH
1446
1447 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1448 timer->data != (unsigned long)dwork);
fc4b514f
TH
1449 WARN_ON_ONCE(timer_pending(timer));
1450 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1451
8852aac2
TH
1452 /*
1453 * If @delay is 0, queue @dwork->work immediately. This is for
1454 * both optimization and correctness. The earliest @timer can
1455 * expire is on the closest next tick and delayed_work users depend
1456 * on that there's no such delay when @delay is 0.
1457 */
1458 if (!delay) {
1459 __queue_work(cpu, wq, &dwork->work);
1460 return;
1461 }
1462
7beb2edf 1463 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1464
60c057bc 1465 dwork->wq = wq;
1265057f 1466 dwork->cpu = cpu;
7beb2edf
TH
1467 timer->expires = jiffies + delay;
1468
1469 if (unlikely(cpu != WORK_CPU_UNBOUND))
1470 add_timer_on(timer, cpu);
1471 else
1472 add_timer(timer);
1da177e4
LT
1473}
1474
0fcb78c2
REB
1475/**
1476 * queue_delayed_work_on - queue work on specific CPU after delay
1477 * @cpu: CPU number to execute work on
1478 * @wq: workqueue to use
af9997e4 1479 * @dwork: work to queue
0fcb78c2
REB
1480 * @delay: number of jiffies to wait before queueing
1481 *
d185af30 1482 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1483 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1484 * execution.
0fcb78c2 1485 */
d4283e93
TH
1486bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1487 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1488{
52bad64d 1489 struct work_struct *work = &dwork->work;
d4283e93 1490 bool ret = false;
8930caba 1491 unsigned long flags;
7a6bc1cd 1492
8930caba
TH
1493 /* read the comment in __queue_work() */
1494 local_irq_save(flags);
7a6bc1cd 1495
22df02bb 1496 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1497 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1498 ret = true;
7a6bc1cd 1499 }
8a3e77cc 1500
8930caba 1501 local_irq_restore(flags);
7a6bc1cd
VP
1502 return ret;
1503}
ad7b1f84 1504EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1505
8376fe22
TH
1506/**
1507 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1508 * @cpu: CPU number to execute work on
1509 * @wq: workqueue to use
1510 * @dwork: work to queue
1511 * @delay: number of jiffies to wait before queueing
1512 *
1513 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1514 * modify @dwork's timer so that it expires after @delay. If @delay is
1515 * zero, @work is guaranteed to be scheduled immediately regardless of its
1516 * current state.
1517 *
d185af30 1518 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1519 * pending and its timer was modified.
1520 *
e0aecdd8 1521 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1522 * See try_to_grab_pending() for details.
1523 */
1524bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1525 struct delayed_work *dwork, unsigned long delay)
1526{
1527 unsigned long flags;
1528 int ret;
c7fc77f7 1529
8376fe22
TH
1530 do {
1531 ret = try_to_grab_pending(&dwork->work, true, &flags);
1532 } while (unlikely(ret == -EAGAIN));
63bc0362 1533
8376fe22
TH
1534 if (likely(ret >= 0)) {
1535 __queue_delayed_work(cpu, wq, dwork, delay);
1536 local_irq_restore(flags);
7a6bc1cd 1537 }
8376fe22
TH
1538
1539 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1540 return ret;
1541}
8376fe22
TH
1542EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1543
c8e55f36
TH
1544/**
1545 * worker_enter_idle - enter idle state
1546 * @worker: worker which is entering idle state
1547 *
1548 * @worker is entering idle state. Update stats and idle timer if
1549 * necessary.
1550 *
1551 * LOCKING:
d565ed63 1552 * spin_lock_irq(pool->lock).
c8e55f36
TH
1553 */
1554static void worker_enter_idle(struct worker *worker)
1da177e4 1555{
bd7bdd43 1556 struct worker_pool *pool = worker->pool;
c8e55f36 1557
6183c009
TH
1558 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1559 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1560 (worker->hentry.next || worker->hentry.pprev)))
1561 return;
c8e55f36 1562
cb444766
TH
1563 /* can't use worker_set_flags(), also called from start_worker() */
1564 worker->flags |= WORKER_IDLE;
bd7bdd43 1565 pool->nr_idle++;
e22bee78 1566 worker->last_active = jiffies;
c8e55f36
TH
1567
1568 /* idle_list is LIFO */
bd7bdd43 1569 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1570
628c78e7
TH
1571 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1572 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1573
544ecf31 1574 /*
706026c2 1575 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1576 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1577 * nr_running, the warning may trigger spuriously. Check iff
1578 * unbind is not in progress.
544ecf31 1579 */
24647570 1580 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1581 pool->nr_workers == pool->nr_idle &&
e19e397a 1582 atomic_read(&pool->nr_running));
c8e55f36
TH
1583}
1584
1585/**
1586 * worker_leave_idle - leave idle state
1587 * @worker: worker which is leaving idle state
1588 *
1589 * @worker is leaving idle state. Update stats.
1590 *
1591 * LOCKING:
d565ed63 1592 * spin_lock_irq(pool->lock).
c8e55f36
TH
1593 */
1594static void worker_leave_idle(struct worker *worker)
1595{
bd7bdd43 1596 struct worker_pool *pool = worker->pool;
c8e55f36 1597
6183c009
TH
1598 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1599 return;
d302f017 1600 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1601 pool->nr_idle--;
c8e55f36
TH
1602 list_del_init(&worker->entry);
1603}
1604
e22bee78 1605/**
f36dc67b
LJ
1606 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1607 * @pool: target worker_pool
1608 *
1609 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1610 *
1611 * Works which are scheduled while the cpu is online must at least be
1612 * scheduled to a worker which is bound to the cpu so that if they are
1613 * flushed from cpu callbacks while cpu is going down, they are
1614 * guaranteed to execute on the cpu.
1615 *
f5faa077 1616 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1617 * themselves to the target cpu and may race with cpu going down or
1618 * coming online. kthread_bind() can't be used because it may put the
1619 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1620 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1621 * [dis]associated in the meantime.
1622 *
706026c2 1623 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1624 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1625 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1626 * enters idle state or fetches works without dropping lock, it can
1627 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1628 *
1629 * CONTEXT:
d565ed63 1630 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1631 * held.
1632 *
d185af30 1633 * Return:
706026c2 1634 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1635 * bound), %false if offline.
1636 */
f36dc67b 1637static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1638__acquires(&pool->lock)
e22bee78 1639{
e22bee78 1640 while (true) {
4e6045f1 1641 /*
e22bee78
TH
1642 * The following call may fail, succeed or succeed
1643 * without actually migrating the task to the cpu if
1644 * it races with cpu hotunplug operation. Verify
24647570 1645 * against POOL_DISASSOCIATED.
4e6045f1 1646 */
24647570 1647 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1648 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1649
d565ed63 1650 spin_lock_irq(&pool->lock);
24647570 1651 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1652 return false;
f5faa077 1653 if (task_cpu(current) == pool->cpu &&
7a4e344c 1654 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1655 return true;
d565ed63 1656 spin_unlock_irq(&pool->lock);
e22bee78 1657
5035b20f
TH
1658 /*
1659 * We've raced with CPU hot[un]plug. Give it a breather
1660 * and retry migration. cond_resched() is required here;
1661 * otherwise, we might deadlock against cpu_stop trying to
1662 * bring down the CPU on non-preemptive kernel.
1663 */
e22bee78 1664 cpu_relax();
5035b20f 1665 cond_resched();
e22bee78
TH
1666 }
1667}
1668
c34056a3
TH
1669static struct worker *alloc_worker(void)
1670{
1671 struct worker *worker;
1672
1673 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1674 if (worker) {
1675 INIT_LIST_HEAD(&worker->entry);
affee4b2 1676 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1677 /* on creation a worker is in !idle && prep state */
1678 worker->flags = WORKER_PREP;
c8e55f36 1679 }
c34056a3
TH
1680 return worker;
1681}
1682
60f5a4bc
LJ
1683/**
1684 * worker_detach_from_pool() - detach a worker from its pool
1685 * @worker: worker which is attached to its pool
1686 * @pool: the pool @worker is attached to
1687 *
1688 * Undo the attaching which had been done in create_worker(). The caller
1689 * worker shouldn't access to the pool after detached except it has other
1690 * reference to the pool.
1691 */
1692static void worker_detach_from_pool(struct worker *worker,
1693 struct worker_pool *pool)
1694{
1695 struct completion *detach_completion = NULL;
1696
1697 mutex_lock(&pool->manager_mutex);
1698 idr_remove(&pool->worker_idr, worker->id);
1699 if (idr_is_empty(&pool->worker_idr))
1700 detach_completion = pool->detach_completion;
1701 mutex_unlock(&pool->manager_mutex);
1702
1703 if (detach_completion)
1704 complete(detach_completion);
1705}
1706
c34056a3
TH
1707/**
1708 * create_worker - create a new workqueue worker
63d95a91 1709 * @pool: pool the new worker will belong to
c34056a3 1710 *
73eb7fe7
LJ
1711 * Create a new worker which is attached to @pool. The new worker must be
1712 * started by start_worker().
c34056a3
TH
1713 *
1714 * CONTEXT:
1715 * Might sleep. Does GFP_KERNEL allocations.
1716 *
d185af30 1717 * Return:
c34056a3
TH
1718 * Pointer to the newly created worker.
1719 */
bc2ae0f5 1720static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1721{
c34056a3 1722 struct worker *worker = NULL;
f3421797 1723 int id = -1;
e3c916a4 1724 char id_buf[16];
c34056a3 1725
cd549687
TH
1726 lockdep_assert_held(&pool->manager_mutex);
1727
822d8405
TH
1728 /*
1729 * ID is needed to determine kthread name. Allocate ID first
1730 * without installing the pointer.
1731 */
9625ab17 1732 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
822d8405
TH
1733 if (id < 0)
1734 goto fail;
c34056a3
TH
1735
1736 worker = alloc_worker();
1737 if (!worker)
1738 goto fail;
1739
bd7bdd43 1740 worker->pool = pool;
c34056a3
TH
1741 worker->id = id;
1742
29c91e99 1743 if (pool->cpu >= 0)
e3c916a4
TH
1744 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1745 pool->attrs->nice < 0 ? "H" : "");
f3421797 1746 else
e3c916a4
TH
1747 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1748
f3f90ad4 1749 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1750 "kworker/%s", id_buf);
c34056a3
TH
1751 if (IS_ERR(worker->task))
1752 goto fail;
1753
91151228
ON
1754 set_user_nice(worker->task, pool->attrs->nice);
1755
1756 /* prevent userland from meddling with cpumask of workqueue workers */
1757 worker->task->flags |= PF_NO_SETAFFINITY;
1758
c5aa87bb
TH
1759 /*
1760 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1761 * online CPUs. It'll be re-applied when any of the CPUs come up.
1762 */
7a4e344c 1763 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1764
7a4e344c
TH
1765 /*
1766 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1767 * remains stable across this function. See the comments above the
1768 * flag definition for details.
1769 */
1770 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1771 worker->flags |= WORKER_UNBOUND;
c34056a3 1772
822d8405 1773 /* successful, commit the pointer to idr */
822d8405 1774 idr_replace(&pool->worker_idr, worker, worker->id);
822d8405 1775
c34056a3 1776 return worker;
822d8405 1777
c34056a3 1778fail:
9625ab17 1779 if (id >= 0)
822d8405 1780 idr_remove(&pool->worker_idr, id);
c34056a3
TH
1781 kfree(worker);
1782 return NULL;
1783}
1784
1785/**
1786 * start_worker - start a newly created worker
1787 * @worker: worker to start
1788 *
706026c2 1789 * Make the pool aware of @worker and start it.
c34056a3
TH
1790 *
1791 * CONTEXT:
d565ed63 1792 * spin_lock_irq(pool->lock).
c34056a3
TH
1793 */
1794static void start_worker(struct worker *worker)
1795{
bd7bdd43 1796 worker->pool->nr_workers++;
c8e55f36 1797 worker_enter_idle(worker);
c34056a3
TH
1798 wake_up_process(worker->task);
1799}
1800
ebf44d16
TH
1801/**
1802 * create_and_start_worker - create and start a worker for a pool
1803 * @pool: the target pool
1804 *
cd549687 1805 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1806 *
1807 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1808 */
1809static int create_and_start_worker(struct worker_pool *pool)
1810{
1811 struct worker *worker;
1812
cd549687
TH
1813 mutex_lock(&pool->manager_mutex);
1814
ebf44d16
TH
1815 worker = create_worker(pool);
1816 if (worker) {
1817 spin_lock_irq(&pool->lock);
1818 start_worker(worker);
1819 spin_unlock_irq(&pool->lock);
1820 }
1821
cd549687
TH
1822 mutex_unlock(&pool->manager_mutex);
1823
ebf44d16
TH
1824 return worker ? 0 : -ENOMEM;
1825}
1826
c34056a3
TH
1827/**
1828 * destroy_worker - destroy a workqueue worker
1829 * @worker: worker to be destroyed
1830 *
73eb7fe7
LJ
1831 * Destroy @worker and adjust @pool stats accordingly. The worker should
1832 * be idle.
c8e55f36
TH
1833 *
1834 * CONTEXT:
60f5a4bc 1835 * spin_lock_irq(pool->lock).
c34056a3
TH
1836 */
1837static void destroy_worker(struct worker *worker)
1838{
bd7bdd43 1839 struct worker_pool *pool = worker->pool;
c34056a3 1840
cd549687
TH
1841 lockdep_assert_held(&pool->lock);
1842
c34056a3 1843 /* sanity check frenzy */
6183c009 1844 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1845 WARN_ON(!list_empty(&worker->scheduled)) ||
1846 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1847 return;
c34056a3 1848
73eb7fe7
LJ
1849 pool->nr_workers--;
1850 pool->nr_idle--;
c8e55f36
TH
1851
1852 list_del_init(&worker->entry);
cb444766 1853 worker->flags |= WORKER_DIE;
60f5a4bc 1854 wake_up_process(worker->task);
c34056a3
TH
1855}
1856
63d95a91 1857static void idle_worker_timeout(unsigned long __pool)
e22bee78 1858{
63d95a91 1859 struct worker_pool *pool = (void *)__pool;
e22bee78 1860
d565ed63 1861 spin_lock_irq(&pool->lock);
e22bee78 1862
3347fc9f 1863 while (too_many_workers(pool)) {
e22bee78
TH
1864 struct worker *worker;
1865 unsigned long expires;
1866
1867 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1868 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1869 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1870
3347fc9f 1871 if (time_before(jiffies, expires)) {
63d95a91 1872 mod_timer(&pool->idle_timer, expires);
3347fc9f 1873 break;
d5abe669 1874 }
3347fc9f
LJ
1875
1876 destroy_worker(worker);
e22bee78
TH
1877 }
1878
d565ed63 1879 spin_unlock_irq(&pool->lock);
e22bee78 1880}
d5abe669 1881
493a1724 1882static void send_mayday(struct work_struct *work)
e22bee78 1883{
112202d9
TH
1884 struct pool_workqueue *pwq = get_work_pwq(work);
1885 struct workqueue_struct *wq = pwq->wq;
493a1724 1886
2e109a28 1887 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1888
493008a8 1889 if (!wq->rescuer)
493a1724 1890 return;
e22bee78
TH
1891
1892 /* mayday mayday mayday */
493a1724 1893 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1894 /*
1895 * If @pwq is for an unbound wq, its base ref may be put at
1896 * any time due to an attribute change. Pin @pwq until the
1897 * rescuer is done with it.
1898 */
1899 get_pwq(pwq);
493a1724 1900 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1901 wake_up_process(wq->rescuer->task);
493a1724 1902 }
e22bee78
TH
1903}
1904
706026c2 1905static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1906{
63d95a91 1907 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1908 struct work_struct *work;
1909
2e109a28 1910 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1911 spin_lock(&pool->lock);
e22bee78 1912
63d95a91 1913 if (need_to_create_worker(pool)) {
e22bee78
TH
1914 /*
1915 * We've been trying to create a new worker but
1916 * haven't been successful. We might be hitting an
1917 * allocation deadlock. Send distress signals to
1918 * rescuers.
1919 */
63d95a91 1920 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1921 send_mayday(work);
1da177e4 1922 }
e22bee78 1923
493a1724 1924 spin_unlock(&pool->lock);
2e109a28 1925 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1926
63d95a91 1927 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1928}
1929
e22bee78
TH
1930/**
1931 * maybe_create_worker - create a new worker if necessary
63d95a91 1932 * @pool: pool to create a new worker for
e22bee78 1933 *
63d95a91 1934 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1935 * have at least one idle worker on return from this function. If
1936 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1937 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1938 * possible allocation deadlock.
1939 *
c5aa87bb
TH
1940 * On return, need_to_create_worker() is guaranteed to be %false and
1941 * may_start_working() %true.
e22bee78
TH
1942 *
1943 * LOCKING:
d565ed63 1944 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1945 * multiple times. Does GFP_KERNEL allocations. Called only from
1946 * manager.
1947 *
d185af30 1948 * Return:
c5aa87bb 1949 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1950 * otherwise.
1951 */
63d95a91 1952static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1953__releases(&pool->lock)
1954__acquires(&pool->lock)
1da177e4 1955{
63d95a91 1956 if (!need_to_create_worker(pool))
e22bee78
TH
1957 return false;
1958restart:
d565ed63 1959 spin_unlock_irq(&pool->lock);
9f9c2364 1960
e22bee78 1961 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1963
1964 while (true) {
1965 struct worker *worker;
1966
bc2ae0f5 1967 worker = create_worker(pool);
e22bee78 1968 if (worker) {
63d95a91 1969 del_timer_sync(&pool->mayday_timer);
d565ed63 1970 spin_lock_irq(&pool->lock);
e22bee78 1971 start_worker(worker);
6183c009
TH
1972 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1973 goto restart;
e22bee78
TH
1974 return true;
1975 }
1976
63d95a91 1977 if (!need_to_create_worker(pool))
e22bee78 1978 break;
1da177e4 1979
e22bee78
TH
1980 __set_current_state(TASK_INTERRUPTIBLE);
1981 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1982
63d95a91 1983 if (!need_to_create_worker(pool))
e22bee78
TH
1984 break;
1985 }
1986
63d95a91 1987 del_timer_sync(&pool->mayday_timer);
d565ed63 1988 spin_lock_irq(&pool->lock);
63d95a91 1989 if (need_to_create_worker(pool))
e22bee78
TH
1990 goto restart;
1991 return true;
1992}
1993
73f53c4a 1994/**
e22bee78
TH
1995 * manage_workers - manage worker pool
1996 * @worker: self
73f53c4a 1997 *
706026c2 1998 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1999 * to. At any given time, there can be only zero or one manager per
706026c2 2000 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2001 *
2002 * The caller can safely start processing works on false return. On
2003 * true return, it's guaranteed that need_to_create_worker() is false
2004 * and may_start_working() is true.
73f53c4a
TH
2005 *
2006 * CONTEXT:
d565ed63 2007 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2008 * multiple times. Does GFP_KERNEL allocations.
2009 *
d185af30 2010 * Return:
2d498db9
L
2011 * %false if the pool don't need management and the caller can safely start
2012 * processing works, %true indicates that the function released pool->lock
2013 * and reacquired it to perform some management function and that the
2014 * conditions that the caller verified while holding the lock before
2015 * calling the function might no longer be true.
73f53c4a 2016 */
e22bee78 2017static bool manage_workers(struct worker *worker)
73f53c4a 2018{
63d95a91 2019 struct worker_pool *pool = worker->pool;
e22bee78 2020 bool ret = false;
73f53c4a 2021
bc3a1afc
TH
2022 /*
2023 * Managership is governed by two mutexes - manager_arb and
2024 * manager_mutex. manager_arb handles arbitration of manager role.
2025 * Anyone who successfully grabs manager_arb wins the arbitration
2026 * and becomes the manager. mutex_trylock() on pool->manager_arb
2027 * failure while holding pool->lock reliably indicates that someone
2028 * else is managing the pool and the worker which failed trylock
2029 * can proceed to executing work items. This means that anyone
2030 * grabbing manager_arb is responsible for actually performing
2031 * manager duties. If manager_arb is grabbed and released without
2032 * actual management, the pool may stall indefinitely.
2033 *
2034 * manager_mutex is used for exclusion of actual management
2035 * operations. The holder of manager_mutex can be sure that none
2036 * of management operations, including creation and destruction of
2037 * workers, won't take place until the mutex is released. Because
2038 * manager_mutex doesn't interfere with manager role arbitration,
2039 * it is guaranteed that the pool's management, while may be
2040 * delayed, won't be disturbed by someone else grabbing
2041 * manager_mutex.
2042 */
34a06bd6 2043 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2044 return ret;
1e19ffc6 2045
ee378aa4 2046 /*
bc3a1afc
TH
2047 * With manager arbitration won, manager_mutex would be free in
2048 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2049 */
bc3a1afc 2050 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2051 spin_unlock_irq(&pool->lock);
bc3a1afc 2052 mutex_lock(&pool->manager_mutex);
8f174b11 2053 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2054 ret = true;
2055 }
73f53c4a 2056
63d95a91 2057 ret |= maybe_create_worker(pool);
e22bee78 2058
bc3a1afc 2059 mutex_unlock(&pool->manager_mutex);
34a06bd6 2060 mutex_unlock(&pool->manager_arb);
e22bee78 2061 return ret;
73f53c4a
TH
2062}
2063
a62428c0
TH
2064/**
2065 * process_one_work - process single work
c34056a3 2066 * @worker: self
a62428c0
TH
2067 * @work: work to process
2068 *
2069 * Process @work. This function contains all the logics necessary to
2070 * process a single work including synchronization against and
2071 * interaction with other workers on the same cpu, queueing and
2072 * flushing. As long as context requirement is met, any worker can
2073 * call this function to process a work.
2074 *
2075 * CONTEXT:
d565ed63 2076 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2077 */
c34056a3 2078static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2079__releases(&pool->lock)
2080__acquires(&pool->lock)
a62428c0 2081{
112202d9 2082 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2083 struct worker_pool *pool = worker->pool;
112202d9 2084 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2085 int work_color;
7e11629d 2086 struct worker *collision;
a62428c0
TH
2087#ifdef CONFIG_LOCKDEP
2088 /*
2089 * It is permissible to free the struct work_struct from
2090 * inside the function that is called from it, this we need to
2091 * take into account for lockdep too. To avoid bogus "held
2092 * lock freed" warnings as well as problems when looking into
2093 * work->lockdep_map, make a copy and use that here.
2094 */
4d82a1de
PZ
2095 struct lockdep_map lockdep_map;
2096
2097 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2098#endif
6fec10a1
TH
2099 /*
2100 * Ensure we're on the correct CPU. DISASSOCIATED test is
2101 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2102 * unbound or a disassociated pool.
6fec10a1 2103 */
5f7dabfd 2104 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2105 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2106 raw_smp_processor_id() != pool->cpu);
25511a47 2107
7e11629d
TH
2108 /*
2109 * A single work shouldn't be executed concurrently by
2110 * multiple workers on a single cpu. Check whether anyone is
2111 * already processing the work. If so, defer the work to the
2112 * currently executing one.
2113 */
c9e7cf27 2114 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2115 if (unlikely(collision)) {
2116 move_linked_works(work, &collision->scheduled, NULL);
2117 return;
2118 }
2119
8930caba 2120 /* claim and dequeue */
a62428c0 2121 debug_work_deactivate(work);
c9e7cf27 2122 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2123 worker->current_work = work;
a2c1c57b 2124 worker->current_func = work->func;
112202d9 2125 worker->current_pwq = pwq;
73f53c4a 2126 work_color = get_work_color(work);
7a22ad75 2127
a62428c0
TH
2128 list_del_init(&work->entry);
2129
fb0e7beb
TH
2130 /*
2131 * CPU intensive works don't participate in concurrency
2132 * management. They're the scheduler's responsibility.
2133 */
2134 if (unlikely(cpu_intensive))
2135 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2136
974271c4 2137 /*
d565ed63 2138 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2139 * executed ASAP. Wake up another worker if necessary.
2140 */
63d95a91
TH
2141 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2142 wake_up_worker(pool);
974271c4 2143
8930caba 2144 /*
7c3eed5c 2145 * Record the last pool and clear PENDING which should be the last
d565ed63 2146 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2147 * PENDING and queued state changes happen together while IRQ is
2148 * disabled.
8930caba 2149 */
7c3eed5c 2150 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2151
d565ed63 2152 spin_unlock_irq(&pool->lock);
a62428c0 2153
112202d9 2154 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2155 lock_map_acquire(&lockdep_map);
e36c886a 2156 trace_workqueue_execute_start(work);
a2c1c57b 2157 worker->current_func(work);
e36c886a
AV
2158 /*
2159 * While we must be careful to not use "work" after this, the trace
2160 * point will only record its address.
2161 */
2162 trace_workqueue_execute_end(work);
a62428c0 2163 lock_map_release(&lockdep_map);
112202d9 2164 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2165
2166 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2167 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2168 " last function: %pf\n",
a2c1c57b
TH
2169 current->comm, preempt_count(), task_pid_nr(current),
2170 worker->current_func);
a62428c0
TH
2171 debug_show_held_locks(current);
2172 dump_stack();
2173 }
2174
b22ce278
TH
2175 /*
2176 * The following prevents a kworker from hogging CPU on !PREEMPT
2177 * kernels, where a requeueing work item waiting for something to
2178 * happen could deadlock with stop_machine as such work item could
2179 * indefinitely requeue itself while all other CPUs are trapped in
2180 * stop_machine.
2181 */
2182 cond_resched();
2183
d565ed63 2184 spin_lock_irq(&pool->lock);
a62428c0 2185
fb0e7beb
TH
2186 /* clear cpu intensive status */
2187 if (unlikely(cpu_intensive))
2188 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2189
a62428c0 2190 /* we're done with it, release */
42f8570f 2191 hash_del(&worker->hentry);
c34056a3 2192 worker->current_work = NULL;
a2c1c57b 2193 worker->current_func = NULL;
112202d9 2194 worker->current_pwq = NULL;
3d1cb205 2195 worker->desc_valid = false;
112202d9 2196 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2197}
2198
affee4b2
TH
2199/**
2200 * process_scheduled_works - process scheduled works
2201 * @worker: self
2202 *
2203 * Process all scheduled works. Please note that the scheduled list
2204 * may change while processing a work, so this function repeatedly
2205 * fetches a work from the top and executes it.
2206 *
2207 * CONTEXT:
d565ed63 2208 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2209 * multiple times.
2210 */
2211static void process_scheduled_works(struct worker *worker)
1da177e4 2212{
affee4b2
TH
2213 while (!list_empty(&worker->scheduled)) {
2214 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2215 struct work_struct, entry);
c34056a3 2216 process_one_work(worker, work);
1da177e4 2217 }
1da177e4
LT
2218}
2219
4690c4ab
TH
2220/**
2221 * worker_thread - the worker thread function
c34056a3 2222 * @__worker: self
4690c4ab 2223 *
c5aa87bb
TH
2224 * The worker thread function. All workers belong to a worker_pool -
2225 * either a per-cpu one or dynamic unbound one. These workers process all
2226 * work items regardless of their specific target workqueue. The only
2227 * exception is work items which belong to workqueues with a rescuer which
2228 * will be explained in rescuer_thread().
d185af30
YB
2229 *
2230 * Return: 0
4690c4ab 2231 */
c34056a3 2232static int worker_thread(void *__worker)
1da177e4 2233{
c34056a3 2234 struct worker *worker = __worker;
bd7bdd43 2235 struct worker_pool *pool = worker->pool;
1da177e4 2236
e22bee78
TH
2237 /* tell the scheduler that this is a workqueue worker */
2238 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2239woke_up:
d565ed63 2240 spin_lock_irq(&pool->lock);
1da177e4 2241
a9ab775b
TH
2242 /* am I supposed to die? */
2243 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2244 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2245 WARN_ON_ONCE(!list_empty(&worker->entry));
2246 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2247
2248 set_task_comm(worker->task, "kworker/dying");
2249 worker_detach_from_pool(worker, pool);
2250 kfree(worker);
a9ab775b 2251 return 0;
c8e55f36 2252 }
affee4b2 2253
c8e55f36 2254 worker_leave_idle(worker);
db7bccf4 2255recheck:
e22bee78 2256 /* no more worker necessary? */
63d95a91 2257 if (!need_more_worker(pool))
e22bee78
TH
2258 goto sleep;
2259
2260 /* do we need to manage? */
63d95a91 2261 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2262 goto recheck;
2263
c8e55f36
TH
2264 /*
2265 * ->scheduled list can only be filled while a worker is
2266 * preparing to process a work or actually processing it.
2267 * Make sure nobody diddled with it while I was sleeping.
2268 */
6183c009 2269 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2270
e22bee78 2271 /*
a9ab775b
TH
2272 * Finish PREP stage. We're guaranteed to have at least one idle
2273 * worker or that someone else has already assumed the manager
2274 * role. This is where @worker starts participating in concurrency
2275 * management if applicable and concurrency management is restored
2276 * after being rebound. See rebind_workers() for details.
e22bee78 2277 */
a9ab775b 2278 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2279
2280 do {
c8e55f36 2281 struct work_struct *work =
bd7bdd43 2282 list_first_entry(&pool->worklist,
c8e55f36
TH
2283 struct work_struct, entry);
2284
2285 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2286 /* optimization path, not strictly necessary */
2287 process_one_work(worker, work);
2288 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2289 process_scheduled_works(worker);
c8e55f36
TH
2290 } else {
2291 move_linked_works(work, &worker->scheduled, NULL);
2292 process_scheduled_works(worker);
affee4b2 2293 }
63d95a91 2294 } while (keep_working(pool));
e22bee78
TH
2295
2296 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2297sleep:
c8e55f36 2298 /*
d565ed63
TH
2299 * pool->lock is held and there's no work to process and no need to
2300 * manage, sleep. Workers are woken up only while holding
2301 * pool->lock or from local cpu, so setting the current state
2302 * before releasing pool->lock is enough to prevent losing any
2303 * event.
c8e55f36
TH
2304 */
2305 worker_enter_idle(worker);
2306 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2307 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2308 schedule();
2309 goto woke_up;
1da177e4
LT
2310}
2311
e22bee78
TH
2312/**
2313 * rescuer_thread - the rescuer thread function
111c225a 2314 * @__rescuer: self
e22bee78
TH
2315 *
2316 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2317 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2318 *
706026c2 2319 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2320 * worker which uses GFP_KERNEL allocation which has slight chance of
2321 * developing into deadlock if some works currently on the same queue
2322 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2323 * the problem rescuer solves.
2324 *
706026c2
TH
2325 * When such condition is possible, the pool summons rescuers of all
2326 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2327 * those works so that forward progress can be guaranteed.
2328 *
2329 * This should happen rarely.
d185af30
YB
2330 *
2331 * Return: 0
e22bee78 2332 */
111c225a 2333static int rescuer_thread(void *__rescuer)
e22bee78 2334{
111c225a
TH
2335 struct worker *rescuer = __rescuer;
2336 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2337 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2338 bool should_stop;
e22bee78
TH
2339
2340 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2341
2342 /*
2343 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2344 * doesn't participate in concurrency management.
2345 */
2346 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2347repeat:
2348 set_current_state(TASK_INTERRUPTIBLE);
2349
4d595b86
LJ
2350 /*
2351 * By the time the rescuer is requested to stop, the workqueue
2352 * shouldn't have any work pending, but @wq->maydays may still have
2353 * pwq(s) queued. This can happen by non-rescuer workers consuming
2354 * all the work items before the rescuer got to them. Go through
2355 * @wq->maydays processing before acting on should_stop so that the
2356 * list is always empty on exit.
2357 */
2358 should_stop = kthread_should_stop();
e22bee78 2359
493a1724 2360 /* see whether any pwq is asking for help */
2e109a28 2361 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2362
2363 while (!list_empty(&wq->maydays)) {
2364 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2365 struct pool_workqueue, mayday_node);
112202d9 2366 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2367 struct work_struct *work, *n;
2368
2369 __set_current_state(TASK_RUNNING);
493a1724
TH
2370 list_del_init(&pwq->mayday_node);
2371
2e109a28 2372 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2373
2374 /* migrate to the target cpu if possible */
f36dc67b 2375 worker_maybe_bind_and_lock(pool);
b3104104 2376 rescuer->pool = pool;
e22bee78
TH
2377
2378 /*
2379 * Slurp in all works issued via this workqueue and
2380 * process'em.
2381 */
6183c009 2382 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2383 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2384 if (get_work_pwq(work) == pwq)
e22bee78
TH
2385 move_linked_works(work, scheduled, &n);
2386
2387 process_scheduled_works(rescuer);
7576958a 2388
77668c8b
LJ
2389 /*
2390 * Put the reference grabbed by send_mayday(). @pool won't
2391 * go away while we're holding its lock.
2392 */
2393 put_pwq(pwq);
2394
7576958a 2395 /*
d565ed63 2396 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2397 * regular worker; otherwise, we end up with 0 concurrency
2398 * and stalling the execution.
2399 */
63d95a91
TH
2400 if (keep_working(pool))
2401 wake_up_worker(pool);
7576958a 2402
b3104104 2403 rescuer->pool = NULL;
493a1724 2404 spin_unlock(&pool->lock);
2e109a28 2405 spin_lock(&wq_mayday_lock);
e22bee78
TH
2406 }
2407
2e109a28 2408 spin_unlock_irq(&wq_mayday_lock);
493a1724 2409
4d595b86
LJ
2410 if (should_stop) {
2411 __set_current_state(TASK_RUNNING);
2412 rescuer->task->flags &= ~PF_WQ_WORKER;
2413 return 0;
2414 }
2415
111c225a
TH
2416 /* rescuers should never participate in concurrency management */
2417 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2418 schedule();
2419 goto repeat;
1da177e4
LT
2420}
2421
fc2e4d70
ON
2422struct wq_barrier {
2423 struct work_struct work;
2424 struct completion done;
2425};
2426
2427static void wq_barrier_func(struct work_struct *work)
2428{
2429 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2430 complete(&barr->done);
2431}
2432
4690c4ab
TH
2433/**
2434 * insert_wq_barrier - insert a barrier work
112202d9 2435 * @pwq: pwq to insert barrier into
4690c4ab 2436 * @barr: wq_barrier to insert
affee4b2
TH
2437 * @target: target work to attach @barr to
2438 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2439 *
affee4b2
TH
2440 * @barr is linked to @target such that @barr is completed only after
2441 * @target finishes execution. Please note that the ordering
2442 * guarantee is observed only with respect to @target and on the local
2443 * cpu.
2444 *
2445 * Currently, a queued barrier can't be canceled. This is because
2446 * try_to_grab_pending() can't determine whether the work to be
2447 * grabbed is at the head of the queue and thus can't clear LINKED
2448 * flag of the previous work while there must be a valid next work
2449 * after a work with LINKED flag set.
2450 *
2451 * Note that when @worker is non-NULL, @target may be modified
112202d9 2452 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2453 *
2454 * CONTEXT:
d565ed63 2455 * spin_lock_irq(pool->lock).
4690c4ab 2456 */
112202d9 2457static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2458 struct wq_barrier *barr,
2459 struct work_struct *target, struct worker *worker)
fc2e4d70 2460{
affee4b2
TH
2461 struct list_head *head;
2462 unsigned int linked = 0;
2463
dc186ad7 2464 /*
d565ed63 2465 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2466 * as we know for sure that this will not trigger any of the
2467 * checks and call back into the fixup functions where we
2468 * might deadlock.
2469 */
ca1cab37 2470 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2471 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2472 init_completion(&barr->done);
83c22520 2473
affee4b2
TH
2474 /*
2475 * If @target is currently being executed, schedule the
2476 * barrier to the worker; otherwise, put it after @target.
2477 */
2478 if (worker)
2479 head = worker->scheduled.next;
2480 else {
2481 unsigned long *bits = work_data_bits(target);
2482
2483 head = target->entry.next;
2484 /* there can already be other linked works, inherit and set */
2485 linked = *bits & WORK_STRUCT_LINKED;
2486 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2487 }
2488
dc186ad7 2489 debug_work_activate(&barr->work);
112202d9 2490 insert_work(pwq, &barr->work, head,
affee4b2 2491 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2492}
2493
73f53c4a 2494/**
112202d9 2495 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2496 * @wq: workqueue being flushed
2497 * @flush_color: new flush color, < 0 for no-op
2498 * @work_color: new work color, < 0 for no-op
2499 *
112202d9 2500 * Prepare pwqs for workqueue flushing.
73f53c4a 2501 *
112202d9
TH
2502 * If @flush_color is non-negative, flush_color on all pwqs should be
2503 * -1. If no pwq has in-flight commands at the specified color, all
2504 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2505 * has in flight commands, its pwq->flush_color is set to
2506 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2507 * wakeup logic is armed and %true is returned.
2508 *
2509 * The caller should have initialized @wq->first_flusher prior to
2510 * calling this function with non-negative @flush_color. If
2511 * @flush_color is negative, no flush color update is done and %false
2512 * is returned.
2513 *
112202d9 2514 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2515 * work_color which is previous to @work_color and all will be
2516 * advanced to @work_color.
2517 *
2518 * CONTEXT:
3c25a55d 2519 * mutex_lock(wq->mutex).
73f53c4a 2520 *
d185af30 2521 * Return:
73f53c4a
TH
2522 * %true if @flush_color >= 0 and there's something to flush. %false
2523 * otherwise.
2524 */
112202d9 2525static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2526 int flush_color, int work_color)
1da177e4 2527{
73f53c4a 2528 bool wait = false;
49e3cf44 2529 struct pool_workqueue *pwq;
1da177e4 2530
73f53c4a 2531 if (flush_color >= 0) {
6183c009 2532 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2533 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2534 }
2355b70f 2535
49e3cf44 2536 for_each_pwq(pwq, wq) {
112202d9 2537 struct worker_pool *pool = pwq->pool;
fc2e4d70 2538
b09f4fd3 2539 spin_lock_irq(&pool->lock);
83c22520 2540
73f53c4a 2541 if (flush_color >= 0) {
6183c009 2542 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2543
112202d9
TH
2544 if (pwq->nr_in_flight[flush_color]) {
2545 pwq->flush_color = flush_color;
2546 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2547 wait = true;
2548 }
2549 }
1da177e4 2550
73f53c4a 2551 if (work_color >= 0) {
6183c009 2552 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2553 pwq->work_color = work_color;
73f53c4a 2554 }
1da177e4 2555
b09f4fd3 2556 spin_unlock_irq(&pool->lock);
1da177e4 2557 }
2355b70f 2558
112202d9 2559 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2560 complete(&wq->first_flusher->done);
14441960 2561
73f53c4a 2562 return wait;
1da177e4
LT
2563}
2564
0fcb78c2 2565/**
1da177e4 2566 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2567 * @wq: workqueue to flush
1da177e4 2568 *
c5aa87bb
TH
2569 * This function sleeps until all work items which were queued on entry
2570 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2571 */
7ad5b3a5 2572void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2573{
73f53c4a
TH
2574 struct wq_flusher this_flusher = {
2575 .list = LIST_HEAD_INIT(this_flusher.list),
2576 .flush_color = -1,
2577 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2578 };
2579 int next_color;
1da177e4 2580
3295f0ef
IM
2581 lock_map_acquire(&wq->lockdep_map);
2582 lock_map_release(&wq->lockdep_map);
73f53c4a 2583
3c25a55d 2584 mutex_lock(&wq->mutex);
73f53c4a
TH
2585
2586 /*
2587 * Start-to-wait phase
2588 */
2589 next_color = work_next_color(wq->work_color);
2590
2591 if (next_color != wq->flush_color) {
2592 /*
2593 * Color space is not full. The current work_color
2594 * becomes our flush_color and work_color is advanced
2595 * by one.
2596 */
6183c009 2597 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2598 this_flusher.flush_color = wq->work_color;
2599 wq->work_color = next_color;
2600
2601 if (!wq->first_flusher) {
2602 /* no flush in progress, become the first flusher */
6183c009 2603 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2604
2605 wq->first_flusher = &this_flusher;
2606
112202d9 2607 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2608 wq->work_color)) {
2609 /* nothing to flush, done */
2610 wq->flush_color = next_color;
2611 wq->first_flusher = NULL;
2612 goto out_unlock;
2613 }
2614 } else {
2615 /* wait in queue */
6183c009 2616 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2617 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2618 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2619 }
2620 } else {
2621 /*
2622 * Oops, color space is full, wait on overflow queue.
2623 * The next flush completion will assign us
2624 * flush_color and transfer to flusher_queue.
2625 */
2626 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2627 }
2628
3c25a55d 2629 mutex_unlock(&wq->mutex);
73f53c4a
TH
2630
2631 wait_for_completion(&this_flusher.done);
2632
2633 /*
2634 * Wake-up-and-cascade phase
2635 *
2636 * First flushers are responsible for cascading flushes and
2637 * handling overflow. Non-first flushers can simply return.
2638 */
2639 if (wq->first_flusher != &this_flusher)
2640 return;
2641
3c25a55d 2642 mutex_lock(&wq->mutex);
73f53c4a 2643
4ce48b37
TH
2644 /* we might have raced, check again with mutex held */
2645 if (wq->first_flusher != &this_flusher)
2646 goto out_unlock;
2647
73f53c4a
TH
2648 wq->first_flusher = NULL;
2649
6183c009
TH
2650 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2651 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2652
2653 while (true) {
2654 struct wq_flusher *next, *tmp;
2655
2656 /* complete all the flushers sharing the current flush color */
2657 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2658 if (next->flush_color != wq->flush_color)
2659 break;
2660 list_del_init(&next->list);
2661 complete(&next->done);
2662 }
2663
6183c009
TH
2664 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2665 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2666
2667 /* this flush_color is finished, advance by one */
2668 wq->flush_color = work_next_color(wq->flush_color);
2669
2670 /* one color has been freed, handle overflow queue */
2671 if (!list_empty(&wq->flusher_overflow)) {
2672 /*
2673 * Assign the same color to all overflowed
2674 * flushers, advance work_color and append to
2675 * flusher_queue. This is the start-to-wait
2676 * phase for these overflowed flushers.
2677 */
2678 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2679 tmp->flush_color = wq->work_color;
2680
2681 wq->work_color = work_next_color(wq->work_color);
2682
2683 list_splice_tail_init(&wq->flusher_overflow,
2684 &wq->flusher_queue);
112202d9 2685 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2686 }
2687
2688 if (list_empty(&wq->flusher_queue)) {
6183c009 2689 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2690 break;
2691 }
2692
2693 /*
2694 * Need to flush more colors. Make the next flusher
112202d9 2695 * the new first flusher and arm pwqs.
73f53c4a 2696 */
6183c009
TH
2697 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2698 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2699
2700 list_del_init(&next->list);
2701 wq->first_flusher = next;
2702
112202d9 2703 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2704 break;
2705
2706 /*
2707 * Meh... this color is already done, clear first
2708 * flusher and repeat cascading.
2709 */
2710 wq->first_flusher = NULL;
2711 }
2712
2713out_unlock:
3c25a55d 2714 mutex_unlock(&wq->mutex);
1da177e4 2715}
ae90dd5d 2716EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2717
9c5a2ba7
TH
2718/**
2719 * drain_workqueue - drain a workqueue
2720 * @wq: workqueue to drain
2721 *
2722 * Wait until the workqueue becomes empty. While draining is in progress,
2723 * only chain queueing is allowed. IOW, only currently pending or running
2724 * work items on @wq can queue further work items on it. @wq is flushed
2725 * repeatedly until it becomes empty. The number of flushing is detemined
2726 * by the depth of chaining and should be relatively short. Whine if it
2727 * takes too long.
2728 */
2729void drain_workqueue(struct workqueue_struct *wq)
2730{
2731 unsigned int flush_cnt = 0;
49e3cf44 2732 struct pool_workqueue *pwq;
9c5a2ba7
TH
2733
2734 /*
2735 * __queue_work() needs to test whether there are drainers, is much
2736 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2737 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2738 */
87fc741e 2739 mutex_lock(&wq->mutex);
9c5a2ba7 2740 if (!wq->nr_drainers++)
618b01eb 2741 wq->flags |= __WQ_DRAINING;
87fc741e 2742 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2743reflush:
2744 flush_workqueue(wq);
2745
b09f4fd3 2746 mutex_lock(&wq->mutex);
76af4d93 2747
49e3cf44 2748 for_each_pwq(pwq, wq) {
fa2563e4 2749 bool drained;
9c5a2ba7 2750
b09f4fd3 2751 spin_lock_irq(&pwq->pool->lock);
112202d9 2752 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2753 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2754
2755 if (drained)
9c5a2ba7
TH
2756 continue;
2757
2758 if (++flush_cnt == 10 ||
2759 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2760 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2761 wq->name, flush_cnt);
76af4d93 2762
b09f4fd3 2763 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2764 goto reflush;
2765 }
2766
9c5a2ba7 2767 if (!--wq->nr_drainers)
618b01eb 2768 wq->flags &= ~__WQ_DRAINING;
87fc741e 2769 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2770}
2771EXPORT_SYMBOL_GPL(drain_workqueue);
2772
606a5020 2773static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2774{
affee4b2 2775 struct worker *worker = NULL;
c9e7cf27 2776 struct worker_pool *pool;
112202d9 2777 struct pool_workqueue *pwq;
db700897
ON
2778
2779 might_sleep();
fa1b54e6
TH
2780
2781 local_irq_disable();
c9e7cf27 2782 pool = get_work_pool(work);
fa1b54e6
TH
2783 if (!pool) {
2784 local_irq_enable();
baf59022 2785 return false;
fa1b54e6 2786 }
db700897 2787
fa1b54e6 2788 spin_lock(&pool->lock);
0b3dae68 2789 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2790 pwq = get_work_pwq(work);
2791 if (pwq) {
2792 if (unlikely(pwq->pool != pool))
4690c4ab 2793 goto already_gone;
606a5020 2794 } else {
c9e7cf27 2795 worker = find_worker_executing_work(pool, work);
affee4b2 2796 if (!worker)
4690c4ab 2797 goto already_gone;
112202d9 2798 pwq = worker->current_pwq;
606a5020 2799 }
db700897 2800
112202d9 2801 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2802 spin_unlock_irq(&pool->lock);
7a22ad75 2803
e159489b
TH
2804 /*
2805 * If @max_active is 1 or rescuer is in use, flushing another work
2806 * item on the same workqueue may lead to deadlock. Make sure the
2807 * flusher is not running on the same workqueue by verifying write
2808 * access.
2809 */
493008a8 2810 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2811 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2812 else
112202d9
TH
2813 lock_map_acquire_read(&pwq->wq->lockdep_map);
2814 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2815
401a8d04 2816 return true;
4690c4ab 2817already_gone:
d565ed63 2818 spin_unlock_irq(&pool->lock);
401a8d04 2819 return false;
db700897 2820}
baf59022
TH
2821
2822/**
2823 * flush_work - wait for a work to finish executing the last queueing instance
2824 * @work: the work to flush
2825 *
606a5020
TH
2826 * Wait until @work has finished execution. @work is guaranteed to be idle
2827 * on return if it hasn't been requeued since flush started.
baf59022 2828 *
d185af30 2829 * Return:
baf59022
TH
2830 * %true if flush_work() waited for the work to finish execution,
2831 * %false if it was already idle.
2832 */
2833bool flush_work(struct work_struct *work)
2834{
12997d1a
BH
2835 struct wq_barrier barr;
2836
0976dfc1
SB
2837 lock_map_acquire(&work->lockdep_map);
2838 lock_map_release(&work->lockdep_map);
2839
12997d1a
BH
2840 if (start_flush_work(work, &barr)) {
2841 wait_for_completion(&barr.done);
2842 destroy_work_on_stack(&barr.work);
2843 return true;
2844 } else {
2845 return false;
2846 }
6e84d644 2847}
606a5020 2848EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2849
36e227d2 2850static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2851{
bbb68dfa 2852 unsigned long flags;
1f1f642e
ON
2853 int ret;
2854
2855 do {
bbb68dfa
TH
2856 ret = try_to_grab_pending(work, is_dwork, &flags);
2857 /*
2858 * If someone else is canceling, wait for the same event it
2859 * would be waiting for before retrying.
2860 */
2861 if (unlikely(ret == -ENOENT))
606a5020 2862 flush_work(work);
1f1f642e
ON
2863 } while (unlikely(ret < 0));
2864
bbb68dfa
TH
2865 /* tell other tasks trying to grab @work to back off */
2866 mark_work_canceling(work);
2867 local_irq_restore(flags);
2868
606a5020 2869 flush_work(work);
7a22ad75 2870 clear_work_data(work);
1f1f642e
ON
2871 return ret;
2872}
2873
6e84d644 2874/**
401a8d04
TH
2875 * cancel_work_sync - cancel a work and wait for it to finish
2876 * @work: the work to cancel
6e84d644 2877 *
401a8d04
TH
2878 * Cancel @work and wait for its execution to finish. This function
2879 * can be used even if the work re-queues itself or migrates to
2880 * another workqueue. On return from this function, @work is
2881 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2882 *
401a8d04
TH
2883 * cancel_work_sync(&delayed_work->work) must not be used for
2884 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2885 *
401a8d04 2886 * The caller must ensure that the workqueue on which @work was last
6e84d644 2887 * queued can't be destroyed before this function returns.
401a8d04 2888 *
d185af30 2889 * Return:
401a8d04 2890 * %true if @work was pending, %false otherwise.
6e84d644 2891 */
401a8d04 2892bool cancel_work_sync(struct work_struct *work)
6e84d644 2893{
36e227d2 2894 return __cancel_work_timer(work, false);
b89deed3 2895}
28e53bdd 2896EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2897
6e84d644 2898/**
401a8d04
TH
2899 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2900 * @dwork: the delayed work to flush
6e84d644 2901 *
401a8d04
TH
2902 * Delayed timer is cancelled and the pending work is queued for
2903 * immediate execution. Like flush_work(), this function only
2904 * considers the last queueing instance of @dwork.
1f1f642e 2905 *
d185af30 2906 * Return:
401a8d04
TH
2907 * %true if flush_work() waited for the work to finish execution,
2908 * %false if it was already idle.
6e84d644 2909 */
401a8d04
TH
2910bool flush_delayed_work(struct delayed_work *dwork)
2911{
8930caba 2912 local_irq_disable();
401a8d04 2913 if (del_timer_sync(&dwork->timer))
60c057bc 2914 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2915 local_irq_enable();
401a8d04
TH
2916 return flush_work(&dwork->work);
2917}
2918EXPORT_SYMBOL(flush_delayed_work);
2919
09383498 2920/**
57b30ae7
TH
2921 * cancel_delayed_work - cancel a delayed work
2922 * @dwork: delayed_work to cancel
09383498 2923 *
d185af30
YB
2924 * Kill off a pending delayed_work.
2925 *
2926 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2927 * pending.
2928 *
2929 * Note:
2930 * The work callback function may still be running on return, unless
2931 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2932 * use cancel_delayed_work_sync() to wait on it.
09383498 2933 *
57b30ae7 2934 * This function is safe to call from any context including IRQ handler.
09383498 2935 */
57b30ae7 2936bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2937{
57b30ae7
TH
2938 unsigned long flags;
2939 int ret;
2940
2941 do {
2942 ret = try_to_grab_pending(&dwork->work, true, &flags);
2943 } while (unlikely(ret == -EAGAIN));
2944
2945 if (unlikely(ret < 0))
2946 return false;
2947
7c3eed5c
TH
2948 set_work_pool_and_clear_pending(&dwork->work,
2949 get_work_pool_id(&dwork->work));
57b30ae7 2950 local_irq_restore(flags);
c0158ca6 2951 return ret;
09383498 2952}
57b30ae7 2953EXPORT_SYMBOL(cancel_delayed_work);
09383498 2954
401a8d04
TH
2955/**
2956 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2957 * @dwork: the delayed work cancel
2958 *
2959 * This is cancel_work_sync() for delayed works.
2960 *
d185af30 2961 * Return:
401a8d04
TH
2962 * %true if @dwork was pending, %false otherwise.
2963 */
2964bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2965{
36e227d2 2966 return __cancel_work_timer(&dwork->work, true);
6e84d644 2967}
f5a421a4 2968EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2969
b6136773 2970/**
31ddd871 2971 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2972 * @func: the function to call
b6136773 2973 *
31ddd871
TH
2974 * schedule_on_each_cpu() executes @func on each online CPU using the
2975 * system workqueue and blocks until all CPUs have completed.
b6136773 2976 * schedule_on_each_cpu() is very slow.
31ddd871 2977 *
d185af30 2978 * Return:
31ddd871 2979 * 0 on success, -errno on failure.
b6136773 2980 */
65f27f38 2981int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2982{
2983 int cpu;
38f51568 2984 struct work_struct __percpu *works;
15316ba8 2985
b6136773
AM
2986 works = alloc_percpu(struct work_struct);
2987 if (!works)
15316ba8 2988 return -ENOMEM;
b6136773 2989
93981800
TH
2990 get_online_cpus();
2991
15316ba8 2992 for_each_online_cpu(cpu) {
9bfb1839
IM
2993 struct work_struct *work = per_cpu_ptr(works, cpu);
2994
2995 INIT_WORK(work, func);
b71ab8c2 2996 schedule_work_on(cpu, work);
65a64464 2997 }
93981800
TH
2998
2999 for_each_online_cpu(cpu)
3000 flush_work(per_cpu_ptr(works, cpu));
3001
95402b38 3002 put_online_cpus();
b6136773 3003 free_percpu(works);
15316ba8
CL
3004 return 0;
3005}
3006
eef6a7d5
AS
3007/**
3008 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3009 *
3010 * Forces execution of the kernel-global workqueue and blocks until its
3011 * completion.
3012 *
3013 * Think twice before calling this function! It's very easy to get into
3014 * trouble if you don't take great care. Either of the following situations
3015 * will lead to deadlock:
3016 *
3017 * One of the work items currently on the workqueue needs to acquire
3018 * a lock held by your code or its caller.
3019 *
3020 * Your code is running in the context of a work routine.
3021 *
3022 * They will be detected by lockdep when they occur, but the first might not
3023 * occur very often. It depends on what work items are on the workqueue and
3024 * what locks they need, which you have no control over.
3025 *
3026 * In most situations flushing the entire workqueue is overkill; you merely
3027 * need to know that a particular work item isn't queued and isn't running.
3028 * In such cases you should use cancel_delayed_work_sync() or
3029 * cancel_work_sync() instead.
3030 */
1da177e4
LT
3031void flush_scheduled_work(void)
3032{
d320c038 3033 flush_workqueue(system_wq);
1da177e4 3034}
ae90dd5d 3035EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3036
1fa44eca
JB
3037/**
3038 * execute_in_process_context - reliably execute the routine with user context
3039 * @fn: the function to execute
1fa44eca
JB
3040 * @ew: guaranteed storage for the execute work structure (must
3041 * be available when the work executes)
3042 *
3043 * Executes the function immediately if process context is available,
3044 * otherwise schedules the function for delayed execution.
3045 *
d185af30 3046 * Return: 0 - function was executed
1fa44eca
JB
3047 * 1 - function was scheduled for execution
3048 */
65f27f38 3049int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3050{
3051 if (!in_interrupt()) {
65f27f38 3052 fn(&ew->work);
1fa44eca
JB
3053 return 0;
3054 }
3055
65f27f38 3056 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3057 schedule_work(&ew->work);
3058
3059 return 1;
3060}
3061EXPORT_SYMBOL_GPL(execute_in_process_context);
3062
226223ab
TH
3063#ifdef CONFIG_SYSFS
3064/*
3065 * Workqueues with WQ_SYSFS flag set is visible to userland via
3066 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3067 * following attributes.
3068 *
3069 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3070 * max_active RW int : maximum number of in-flight work items
3071 *
3072 * Unbound workqueues have the following extra attributes.
3073 *
3074 * id RO int : the associated pool ID
3075 * nice RW int : nice value of the workers
3076 * cpumask RW mask : bitmask of allowed CPUs for the workers
3077 */
3078struct wq_device {
3079 struct workqueue_struct *wq;
3080 struct device dev;
3081};
3082
3083static struct workqueue_struct *dev_to_wq(struct device *dev)
3084{
3085 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3086
3087 return wq_dev->wq;
3088}
3089
1a6661da
GKH
3090static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3091 char *buf)
226223ab
TH
3092{
3093 struct workqueue_struct *wq = dev_to_wq(dev);
3094
3095 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3096}
1a6661da 3097static DEVICE_ATTR_RO(per_cpu);
226223ab 3098
1a6661da
GKH
3099static ssize_t max_active_show(struct device *dev,
3100 struct device_attribute *attr, char *buf)
226223ab
TH
3101{
3102 struct workqueue_struct *wq = dev_to_wq(dev);
3103
3104 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3105}
3106
1a6661da
GKH
3107static ssize_t max_active_store(struct device *dev,
3108 struct device_attribute *attr, const char *buf,
3109 size_t count)
226223ab
TH
3110{
3111 struct workqueue_struct *wq = dev_to_wq(dev);
3112 int val;
3113
3114 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3115 return -EINVAL;
3116
3117 workqueue_set_max_active(wq, val);
3118 return count;
3119}
1a6661da 3120static DEVICE_ATTR_RW(max_active);
226223ab 3121
1a6661da
GKH
3122static struct attribute *wq_sysfs_attrs[] = {
3123 &dev_attr_per_cpu.attr,
3124 &dev_attr_max_active.attr,
3125 NULL,
226223ab 3126};
1a6661da 3127ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3128
d55262c4
TH
3129static ssize_t wq_pool_ids_show(struct device *dev,
3130 struct device_attribute *attr, char *buf)
226223ab
TH
3131{
3132 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3133 const char *delim = "";
3134 int node, written = 0;
226223ab
TH
3135
3136 rcu_read_lock_sched();
d55262c4
TH
3137 for_each_node(node) {
3138 written += scnprintf(buf + written, PAGE_SIZE - written,
3139 "%s%d:%d", delim, node,
3140 unbound_pwq_by_node(wq, node)->pool->id);
3141 delim = " ";
3142 }
3143 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3144 rcu_read_unlock_sched();
3145
3146 return written;
3147}
3148
3149static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3150 char *buf)
3151{
3152 struct workqueue_struct *wq = dev_to_wq(dev);
3153 int written;
3154
6029a918
TH
3155 mutex_lock(&wq->mutex);
3156 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3157 mutex_unlock(&wq->mutex);
226223ab
TH
3158
3159 return written;
3160}
3161
3162/* prepare workqueue_attrs for sysfs store operations */
3163static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3164{
3165 struct workqueue_attrs *attrs;
3166
3167 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3168 if (!attrs)
3169 return NULL;
3170
6029a918
TH
3171 mutex_lock(&wq->mutex);
3172 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3173 mutex_unlock(&wq->mutex);
226223ab
TH
3174 return attrs;
3175}
3176
3177static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3178 const char *buf, size_t count)
3179{
3180 struct workqueue_struct *wq = dev_to_wq(dev);
3181 struct workqueue_attrs *attrs;
3182 int ret;
3183
3184 attrs = wq_sysfs_prep_attrs(wq);
3185 if (!attrs)
3186 return -ENOMEM;
3187
3188 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3189 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3190 ret = apply_workqueue_attrs(wq, attrs);
3191 else
3192 ret = -EINVAL;
3193
3194 free_workqueue_attrs(attrs);
3195 return ret ?: count;
3196}
3197
3198static ssize_t wq_cpumask_show(struct device *dev,
3199 struct device_attribute *attr, char *buf)
3200{
3201 struct workqueue_struct *wq = dev_to_wq(dev);
3202 int written;
3203
6029a918
TH
3204 mutex_lock(&wq->mutex);
3205 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3206 mutex_unlock(&wq->mutex);
226223ab
TH
3207
3208 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3209 return written;
3210}
3211
3212static ssize_t wq_cpumask_store(struct device *dev,
3213 struct device_attribute *attr,
3214 const char *buf, size_t count)
3215{
3216 struct workqueue_struct *wq = dev_to_wq(dev);
3217 struct workqueue_attrs *attrs;
3218 int ret;
3219
3220 attrs = wq_sysfs_prep_attrs(wq);
3221 if (!attrs)
3222 return -ENOMEM;
3223
3224 ret = cpumask_parse(buf, attrs->cpumask);
3225 if (!ret)
3226 ret = apply_workqueue_attrs(wq, attrs);
3227
3228 free_workqueue_attrs(attrs);
3229 return ret ?: count;
3230}
3231
d55262c4
TH
3232static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3233 char *buf)
3234{
3235 struct workqueue_struct *wq = dev_to_wq(dev);
3236 int written;
3237
3238 mutex_lock(&wq->mutex);
3239 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3240 !wq->unbound_attrs->no_numa);
3241 mutex_unlock(&wq->mutex);
3242
3243 return written;
3244}
3245
3246static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3247 const char *buf, size_t count)
3248{
3249 struct workqueue_struct *wq = dev_to_wq(dev);
3250 struct workqueue_attrs *attrs;
3251 int v, ret;
3252
3253 attrs = wq_sysfs_prep_attrs(wq);
3254 if (!attrs)
3255 return -ENOMEM;
3256
3257 ret = -EINVAL;
3258 if (sscanf(buf, "%d", &v) == 1) {
3259 attrs->no_numa = !v;
3260 ret = apply_workqueue_attrs(wq, attrs);
3261 }
3262
3263 free_workqueue_attrs(attrs);
3264 return ret ?: count;
3265}
3266
226223ab 3267static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3268 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3269 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3270 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3271 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3272 __ATTR_NULL,
3273};
3274
3275static struct bus_type wq_subsys = {
3276 .name = "workqueue",
1a6661da 3277 .dev_groups = wq_sysfs_groups,
226223ab
TH
3278};
3279
3280static int __init wq_sysfs_init(void)
3281{
3282 return subsys_virtual_register(&wq_subsys, NULL);
3283}
3284core_initcall(wq_sysfs_init);
3285
3286static void wq_device_release(struct device *dev)
3287{
3288 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3289
3290 kfree(wq_dev);
3291}
3292
3293/**
3294 * workqueue_sysfs_register - make a workqueue visible in sysfs
3295 * @wq: the workqueue to register
3296 *
3297 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3298 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3299 * which is the preferred method.
3300 *
3301 * Workqueue user should use this function directly iff it wants to apply
3302 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3303 * apply_workqueue_attrs() may race against userland updating the
3304 * attributes.
3305 *
d185af30 3306 * Return: 0 on success, -errno on failure.
226223ab
TH
3307 */
3308int workqueue_sysfs_register(struct workqueue_struct *wq)
3309{
3310 struct wq_device *wq_dev;
3311 int ret;
3312
3313 /*
3314 * Adjusting max_active or creating new pwqs by applyting
3315 * attributes breaks ordering guarantee. Disallow exposing ordered
3316 * workqueues.
3317 */
3318 if (WARN_ON(wq->flags & __WQ_ORDERED))
3319 return -EINVAL;
3320
3321 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3322 if (!wq_dev)
3323 return -ENOMEM;
3324
3325 wq_dev->wq = wq;
3326 wq_dev->dev.bus = &wq_subsys;
3327 wq_dev->dev.init_name = wq->name;
3328 wq_dev->dev.release = wq_device_release;
3329
3330 /*
3331 * unbound_attrs are created separately. Suppress uevent until
3332 * everything is ready.
3333 */
3334 dev_set_uevent_suppress(&wq_dev->dev, true);
3335
3336 ret = device_register(&wq_dev->dev);
3337 if (ret) {
3338 kfree(wq_dev);
3339 wq->wq_dev = NULL;
3340 return ret;
3341 }
3342
3343 if (wq->flags & WQ_UNBOUND) {
3344 struct device_attribute *attr;
3345
3346 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3347 ret = device_create_file(&wq_dev->dev, attr);
3348 if (ret) {
3349 device_unregister(&wq_dev->dev);
3350 wq->wq_dev = NULL;
3351 return ret;
3352 }
3353 }
3354 }
3355
3356 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3357 return 0;
3358}
3359
3360/**
3361 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3362 * @wq: the workqueue to unregister
3363 *
3364 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3365 */
3366static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3367{
3368 struct wq_device *wq_dev = wq->wq_dev;
3369
3370 if (!wq->wq_dev)
3371 return;
3372
3373 wq->wq_dev = NULL;
3374 device_unregister(&wq_dev->dev);
3375}
3376#else /* CONFIG_SYSFS */
3377static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3378#endif /* CONFIG_SYSFS */
3379
7a4e344c
TH
3380/**
3381 * free_workqueue_attrs - free a workqueue_attrs
3382 * @attrs: workqueue_attrs to free
3383 *
3384 * Undo alloc_workqueue_attrs().
3385 */
3386void free_workqueue_attrs(struct workqueue_attrs *attrs)
3387{
3388 if (attrs) {
3389 free_cpumask_var(attrs->cpumask);
3390 kfree(attrs);
3391 }
3392}
3393
3394/**
3395 * alloc_workqueue_attrs - allocate a workqueue_attrs
3396 * @gfp_mask: allocation mask to use
3397 *
3398 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3399 * return it.
3400 *
3401 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3402 */
3403struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3404{
3405 struct workqueue_attrs *attrs;
3406
3407 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3408 if (!attrs)
3409 goto fail;
3410 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3411 goto fail;
3412
13e2e556 3413 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3414 return attrs;
3415fail:
3416 free_workqueue_attrs(attrs);
3417 return NULL;
3418}
3419
29c91e99
TH
3420static void copy_workqueue_attrs(struct workqueue_attrs *to,
3421 const struct workqueue_attrs *from)
3422{
3423 to->nice = from->nice;
3424 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3425 /*
3426 * Unlike hash and equality test, this function doesn't ignore
3427 * ->no_numa as it is used for both pool and wq attrs. Instead,
3428 * get_unbound_pool() explicitly clears ->no_numa after copying.
3429 */
3430 to->no_numa = from->no_numa;
29c91e99
TH
3431}
3432
29c91e99
TH
3433/* hash value of the content of @attr */
3434static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3435{
3436 u32 hash = 0;
3437
3438 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3439 hash = jhash(cpumask_bits(attrs->cpumask),
3440 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3441 return hash;
3442}
3443
3444/* content equality test */
3445static bool wqattrs_equal(const struct workqueue_attrs *a,
3446 const struct workqueue_attrs *b)
3447{
3448 if (a->nice != b->nice)
3449 return false;
3450 if (!cpumask_equal(a->cpumask, b->cpumask))
3451 return false;
3452 return true;
3453}
3454
7a4e344c
TH
3455/**
3456 * init_worker_pool - initialize a newly zalloc'd worker_pool
3457 * @pool: worker_pool to initialize
3458 *
3459 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3460 *
3461 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3462 * inside @pool proper are initialized and put_unbound_pool() can be called
3463 * on @pool safely to release it.
7a4e344c
TH
3464 */
3465static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3466{
3467 spin_lock_init(&pool->lock);
29c91e99
TH
3468 pool->id = -1;
3469 pool->cpu = -1;
f3f90ad4 3470 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3471 pool->flags |= POOL_DISASSOCIATED;
3472 INIT_LIST_HEAD(&pool->worklist);
3473 INIT_LIST_HEAD(&pool->idle_list);
3474 hash_init(pool->busy_hash);
3475
3476 init_timer_deferrable(&pool->idle_timer);
3477 pool->idle_timer.function = idle_worker_timeout;
3478 pool->idle_timer.data = (unsigned long)pool;
3479
3480 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3481 (unsigned long)pool);
3482
3483 mutex_init(&pool->manager_arb);
bc3a1afc 3484 mutex_init(&pool->manager_mutex);
822d8405 3485 idr_init(&pool->worker_idr);
7a4e344c 3486
29c91e99
TH
3487 INIT_HLIST_NODE(&pool->hash_node);
3488 pool->refcnt = 1;
3489
3490 /* shouldn't fail above this point */
7a4e344c
TH
3491 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3492 if (!pool->attrs)
3493 return -ENOMEM;
3494 return 0;
4e1a1f9a
TH
3495}
3496
29c91e99
TH
3497static void rcu_free_pool(struct rcu_head *rcu)
3498{
3499 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3500
822d8405 3501 idr_destroy(&pool->worker_idr);
29c91e99
TH
3502 free_workqueue_attrs(pool->attrs);
3503 kfree(pool);
3504}
3505
3506/**
3507 * put_unbound_pool - put a worker_pool
3508 * @pool: worker_pool to put
3509 *
3510 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3511 * safe manner. get_unbound_pool() calls this function on its failure path
3512 * and this function should be able to release pools which went through,
3513 * successfully or not, init_worker_pool().
a892cacc
TH
3514 *
3515 * Should be called with wq_pool_mutex held.
29c91e99
TH
3516 */
3517static void put_unbound_pool(struct worker_pool *pool)
3518{
60f5a4bc 3519 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3520 struct worker *worker;
3521
a892cacc
TH
3522 lockdep_assert_held(&wq_pool_mutex);
3523
3524 if (--pool->refcnt)
29c91e99 3525 return;
29c91e99
TH
3526
3527 /* sanity checks */
3528 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3529 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3530 return;
29c91e99
TH
3531
3532 /* release id and unhash */
3533 if (pool->id >= 0)
3534 idr_remove(&worker_pool_idr, pool->id);
3535 hash_del(&pool->hash_node);
3536
c5aa87bb
TH
3537 /*
3538 * Become the manager and destroy all workers. Grabbing
3539 * manager_arb prevents @pool's workers from blocking on
3540 * manager_mutex.
3541 */
29c91e99 3542 mutex_lock(&pool->manager_arb);
29c91e99 3543
60f5a4bc 3544 spin_lock_irq(&pool->lock);
29c91e99
TH
3545 while ((worker = first_worker(pool)))
3546 destroy_worker(worker);
3547 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3548 spin_unlock_irq(&pool->lock);
60f5a4bc
LJ
3549
3550 mutex_lock(&pool->manager_mutex);
3551 if (!idr_is_empty(&pool->worker_idr))
3552 pool->detach_completion = &detach_completion;
cd549687 3553 mutex_unlock(&pool->manager_mutex);
60f5a4bc
LJ
3554
3555 if (pool->detach_completion)
3556 wait_for_completion(pool->detach_completion);
3557
29c91e99
TH
3558 mutex_unlock(&pool->manager_arb);
3559
3560 /* shut down the timers */
3561 del_timer_sync(&pool->idle_timer);
3562 del_timer_sync(&pool->mayday_timer);
3563
3564 /* sched-RCU protected to allow dereferences from get_work_pool() */
3565 call_rcu_sched(&pool->rcu, rcu_free_pool);
3566}
3567
3568/**
3569 * get_unbound_pool - get a worker_pool with the specified attributes
3570 * @attrs: the attributes of the worker_pool to get
3571 *
3572 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3573 * reference count and return it. If there already is a matching
3574 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3575 * create a new one.
a892cacc
TH
3576 *
3577 * Should be called with wq_pool_mutex held.
d185af30
YB
3578 *
3579 * Return: On success, a worker_pool with the same attributes as @attrs.
3580 * On failure, %NULL.
29c91e99
TH
3581 */
3582static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3583{
29c91e99
TH
3584 u32 hash = wqattrs_hash(attrs);
3585 struct worker_pool *pool;
f3f90ad4 3586 int node;
29c91e99 3587
a892cacc 3588 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3589
3590 /* do we already have a matching pool? */
29c91e99
TH
3591 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3592 if (wqattrs_equal(pool->attrs, attrs)) {
3593 pool->refcnt++;
3594 goto out_unlock;
3595 }
3596 }
29c91e99
TH
3597
3598 /* nope, create a new one */
3599 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3600 if (!pool || init_worker_pool(pool) < 0)
3601 goto fail;
3602
12ee4fc6
LJ
3603 if (workqueue_freezing)
3604 pool->flags |= POOL_FREEZING;
3605
8864b4e5 3606 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3607 copy_workqueue_attrs(pool->attrs, attrs);
3608
2865a8fb
SL
3609 /*
3610 * no_numa isn't a worker_pool attribute, always clear it. See
3611 * 'struct workqueue_attrs' comments for detail.
3612 */
3613 pool->attrs->no_numa = false;
3614
f3f90ad4
TH
3615 /* if cpumask is contained inside a NUMA node, we belong to that node */
3616 if (wq_numa_enabled) {
3617 for_each_node(node) {
3618 if (cpumask_subset(pool->attrs->cpumask,
3619 wq_numa_possible_cpumask[node])) {
3620 pool->node = node;
3621 break;
3622 }
3623 }
3624 }
3625
29c91e99
TH
3626 if (worker_pool_assign_id(pool) < 0)
3627 goto fail;
3628
3629 /* create and start the initial worker */
ebf44d16 3630 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3631 goto fail;
3632
29c91e99 3633 /* install */
29c91e99
TH
3634 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3635out_unlock:
29c91e99
TH
3636 return pool;
3637fail:
29c91e99
TH
3638 if (pool)
3639 put_unbound_pool(pool);
3640 return NULL;
3641}
3642
8864b4e5
TH
3643static void rcu_free_pwq(struct rcu_head *rcu)
3644{
3645 kmem_cache_free(pwq_cache,
3646 container_of(rcu, struct pool_workqueue, rcu));
3647}
3648
3649/*
3650 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3651 * and needs to be destroyed.
3652 */
3653static void pwq_unbound_release_workfn(struct work_struct *work)
3654{
3655 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3656 unbound_release_work);
3657 struct workqueue_struct *wq = pwq->wq;
3658 struct worker_pool *pool = pwq->pool;
bc0caf09 3659 bool is_last;
8864b4e5
TH
3660
3661 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3662 return;
3663
75ccf595 3664 /*
3c25a55d 3665 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3666 * necessary on release but do it anyway. It's easier to verify
3667 * and consistent with the linking path.
3668 */
3c25a55d 3669 mutex_lock(&wq->mutex);
8864b4e5 3670 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3671 is_last = list_empty(&wq->pwqs);
3c25a55d 3672 mutex_unlock(&wq->mutex);
8864b4e5 3673
a892cacc 3674 mutex_lock(&wq_pool_mutex);
8864b4e5 3675 put_unbound_pool(pool);
a892cacc
TH
3676 mutex_unlock(&wq_pool_mutex);
3677
8864b4e5
TH
3678 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3679
3680 /*
3681 * If we're the last pwq going away, @wq is already dead and no one
3682 * is gonna access it anymore. Free it.
3683 */
6029a918
TH
3684 if (is_last) {
3685 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3686 kfree(wq);
6029a918 3687 }
8864b4e5
TH
3688}
3689
0fbd95aa 3690/**
699ce097 3691 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3692 * @pwq: target pool_workqueue
0fbd95aa 3693 *
699ce097
TH
3694 * If @pwq isn't freezing, set @pwq->max_active to the associated
3695 * workqueue's saved_max_active and activate delayed work items
3696 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3697 */
699ce097 3698static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3699{
699ce097
TH
3700 struct workqueue_struct *wq = pwq->wq;
3701 bool freezable = wq->flags & WQ_FREEZABLE;
3702
3703 /* for @wq->saved_max_active */
a357fc03 3704 lockdep_assert_held(&wq->mutex);
699ce097
TH
3705
3706 /* fast exit for non-freezable wqs */
3707 if (!freezable && pwq->max_active == wq->saved_max_active)
3708 return;
3709
a357fc03 3710 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3711
3712 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3713 pwq->max_active = wq->saved_max_active;
0fbd95aa 3714
699ce097
TH
3715 while (!list_empty(&pwq->delayed_works) &&
3716 pwq->nr_active < pwq->max_active)
3717 pwq_activate_first_delayed(pwq);
951a078a
LJ
3718
3719 /*
3720 * Need to kick a worker after thawed or an unbound wq's
3721 * max_active is bumped. It's a slow path. Do it always.
3722 */
3723 wake_up_worker(pwq->pool);
699ce097
TH
3724 } else {
3725 pwq->max_active = 0;
3726 }
3727
a357fc03 3728 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3729}
3730
e50aba9a 3731/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3732static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3733 struct worker_pool *pool)
d2c1d404
TH
3734{
3735 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3736
e50aba9a
TH
3737 memset(pwq, 0, sizeof(*pwq));
3738
d2c1d404
TH
3739 pwq->pool = pool;
3740 pwq->wq = wq;
3741 pwq->flush_color = -1;
8864b4e5 3742 pwq->refcnt = 1;
d2c1d404 3743 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3744 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3745 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3746 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3747}
d2c1d404 3748
f147f29e 3749/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3750static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3751{
3752 struct workqueue_struct *wq = pwq->wq;
3753
3754 lockdep_assert_held(&wq->mutex);
75ccf595 3755
1befcf30
TH
3756 /* may be called multiple times, ignore if already linked */
3757 if (!list_empty(&pwq->pwqs_node))
3758 return;
3759
983ca25e
TH
3760 /*
3761 * Set the matching work_color. This is synchronized with
3c25a55d 3762 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3763 */
75ccf595 3764 pwq->work_color = wq->work_color;
983ca25e
TH
3765
3766 /* sync max_active to the current setting */
3767 pwq_adjust_max_active(pwq);
3768
3769 /* link in @pwq */
9e8cd2f5 3770 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3771}
a357fc03 3772
f147f29e
TH
3773/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3774static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3775 const struct workqueue_attrs *attrs)
3776{
3777 struct worker_pool *pool;
3778 struct pool_workqueue *pwq;
3779
3780 lockdep_assert_held(&wq_pool_mutex);
3781
3782 pool = get_unbound_pool(attrs);
3783 if (!pool)
3784 return NULL;
3785
e50aba9a 3786 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3787 if (!pwq) {
3788 put_unbound_pool(pool);
3789 return NULL;
df2d5ae4 3790 }
6029a918 3791
f147f29e
TH
3792 init_pwq(pwq, wq, pool);
3793 return pwq;
d2c1d404
TH
3794}
3795
4c16bd32
TH
3796/* undo alloc_unbound_pwq(), used only in the error path */
3797static void free_unbound_pwq(struct pool_workqueue *pwq)
3798{
3799 lockdep_assert_held(&wq_pool_mutex);
3800
3801 if (pwq) {
3802 put_unbound_pool(pwq->pool);
cece95df 3803 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3804 }
3805}
3806
3807/**
3808 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3809 * @attrs: the wq_attrs of interest
3810 * @node: the target NUMA node
3811 * @cpu_going_down: if >= 0, the CPU to consider as offline
3812 * @cpumask: outarg, the resulting cpumask
3813 *
3814 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3815 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3816 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3817 *
3818 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3819 * enabled and @node has online CPUs requested by @attrs, the returned
3820 * cpumask is the intersection of the possible CPUs of @node and
3821 * @attrs->cpumask.
3822 *
3823 * The caller is responsible for ensuring that the cpumask of @node stays
3824 * stable.
d185af30
YB
3825 *
3826 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3827 * %false if equal.
4c16bd32
TH
3828 */
3829static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3830 int cpu_going_down, cpumask_t *cpumask)
3831{
d55262c4 3832 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3833 goto use_dfl;
3834
3835 /* does @node have any online CPUs @attrs wants? */
3836 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3837 if (cpu_going_down >= 0)
3838 cpumask_clear_cpu(cpu_going_down, cpumask);
3839
3840 if (cpumask_empty(cpumask))
3841 goto use_dfl;
3842
3843 /* yeap, return possible CPUs in @node that @attrs wants */
3844 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3845 return !cpumask_equal(cpumask, attrs->cpumask);
3846
3847use_dfl:
3848 cpumask_copy(cpumask, attrs->cpumask);
3849 return false;
3850}
3851
1befcf30
TH
3852/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3853static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3854 int node,
3855 struct pool_workqueue *pwq)
3856{
3857 struct pool_workqueue *old_pwq;
3858
3859 lockdep_assert_held(&wq->mutex);
3860
3861 /* link_pwq() can handle duplicate calls */
3862 link_pwq(pwq);
3863
3864 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3865 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3866 return old_pwq;
3867}
3868
9e8cd2f5
TH
3869/**
3870 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3871 * @wq: the target workqueue
3872 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3873 *
4c16bd32
TH
3874 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3875 * machines, this function maps a separate pwq to each NUMA node with
3876 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3877 * NUMA node it was issued on. Older pwqs are released as in-flight work
3878 * items finish. Note that a work item which repeatedly requeues itself
3879 * back-to-back will stay on its current pwq.
9e8cd2f5 3880 *
d185af30
YB
3881 * Performs GFP_KERNEL allocations.
3882 *
3883 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3884 */
3885int apply_workqueue_attrs(struct workqueue_struct *wq,
3886 const struct workqueue_attrs *attrs)
3887{
4c16bd32
TH
3888 struct workqueue_attrs *new_attrs, *tmp_attrs;
3889 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3890 int node, ret;
9e8cd2f5 3891
8719dcea 3892 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3893 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3894 return -EINVAL;
3895
8719dcea
TH
3896 /* creating multiple pwqs breaks ordering guarantee */
3897 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3898 return -EINVAL;
3899
4c16bd32 3900 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3901 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3902 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3903 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3904 goto enomem;
3905
4c16bd32 3906 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3907 copy_workqueue_attrs(new_attrs, attrs);
3908 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3909
4c16bd32
TH
3910 /*
3911 * We may create multiple pwqs with differing cpumasks. Make a
3912 * copy of @new_attrs which will be modified and used to obtain
3913 * pools.
3914 */
3915 copy_workqueue_attrs(tmp_attrs, new_attrs);
3916
3917 /*
3918 * CPUs should stay stable across pwq creations and installations.
3919 * Pin CPUs, determine the target cpumask for each node and create
3920 * pwqs accordingly.
3921 */
3922 get_online_cpus();
3923
a892cacc 3924 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3925
3926 /*
3927 * If something goes wrong during CPU up/down, we'll fall back to
3928 * the default pwq covering whole @attrs->cpumask. Always create
3929 * it even if we don't use it immediately.
3930 */
3931 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3932 if (!dfl_pwq)
3933 goto enomem_pwq;
3934
3935 for_each_node(node) {
3936 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3937 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3938 if (!pwq_tbl[node])
3939 goto enomem_pwq;
3940 } else {
3941 dfl_pwq->refcnt++;
3942 pwq_tbl[node] = dfl_pwq;
3943 }
3944 }
3945
f147f29e 3946 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3947
4c16bd32 3948 /* all pwqs have been created successfully, let's install'em */
f147f29e 3949 mutex_lock(&wq->mutex);
a892cacc 3950
f147f29e 3951 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3952
3953 /* save the previous pwq and install the new one */
f147f29e 3954 for_each_node(node)
4c16bd32
TH
3955 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3956
3957 /* @dfl_pwq might not have been used, ensure it's linked */
3958 link_pwq(dfl_pwq);
3959 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3960
3961 mutex_unlock(&wq->mutex);
9e8cd2f5 3962
4c16bd32
TH
3963 /* put the old pwqs */
3964 for_each_node(node)
3965 put_pwq_unlocked(pwq_tbl[node]);
3966 put_pwq_unlocked(dfl_pwq);
3967
3968 put_online_cpus();
4862125b
TH
3969 ret = 0;
3970 /* fall through */
3971out_free:
4c16bd32 3972 free_workqueue_attrs(tmp_attrs);
4862125b 3973 free_workqueue_attrs(new_attrs);
4c16bd32 3974 kfree(pwq_tbl);
4862125b 3975 return ret;
13e2e556 3976
4c16bd32
TH
3977enomem_pwq:
3978 free_unbound_pwq(dfl_pwq);
3979 for_each_node(node)
3980 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3981 free_unbound_pwq(pwq_tbl[node]);
3982 mutex_unlock(&wq_pool_mutex);
3983 put_online_cpus();
13e2e556 3984enomem:
4862125b
TH
3985 ret = -ENOMEM;
3986 goto out_free;
9e8cd2f5
TH
3987}
3988
4c16bd32
TH
3989/**
3990 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3991 * @wq: the target workqueue
3992 * @cpu: the CPU coming up or going down
3993 * @online: whether @cpu is coming up or going down
3994 *
3995 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3996 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3997 * @wq accordingly.
3998 *
3999 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4000 * falls back to @wq->dfl_pwq which may not be optimal but is always
4001 * correct.
4002 *
4003 * Note that when the last allowed CPU of a NUMA node goes offline for a
4004 * workqueue with a cpumask spanning multiple nodes, the workers which were
4005 * already executing the work items for the workqueue will lose their CPU
4006 * affinity and may execute on any CPU. This is similar to how per-cpu
4007 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4008 * affinity, it's the user's responsibility to flush the work item from
4009 * CPU_DOWN_PREPARE.
4010 */
4011static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4012 bool online)
4013{
4014 int node = cpu_to_node(cpu);
4015 int cpu_off = online ? -1 : cpu;
4016 struct pool_workqueue *old_pwq = NULL, *pwq;
4017 struct workqueue_attrs *target_attrs;
4018 cpumask_t *cpumask;
4019
4020 lockdep_assert_held(&wq_pool_mutex);
4021
4022 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4023 return;
4024
4025 /*
4026 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4027 * Let's use a preallocated one. The following buf is protected by
4028 * CPU hotplug exclusion.
4029 */
4030 target_attrs = wq_update_unbound_numa_attrs_buf;
4031 cpumask = target_attrs->cpumask;
4032
4033 mutex_lock(&wq->mutex);
d55262c4
TH
4034 if (wq->unbound_attrs->no_numa)
4035 goto out_unlock;
4c16bd32
TH
4036
4037 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4038 pwq = unbound_pwq_by_node(wq, node);
4039
4040 /*
4041 * Let's determine what needs to be done. If the target cpumask is
4042 * different from wq's, we need to compare it to @pwq's and create
4043 * a new one if they don't match. If the target cpumask equals
534a3fbb 4044 * wq's, the default pwq should be used.
4c16bd32
TH
4045 */
4046 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4047 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4048 goto out_unlock;
4049 } else {
534a3fbb 4050 goto use_dfl_pwq;
4c16bd32
TH
4051 }
4052
4053 mutex_unlock(&wq->mutex);
4054
4055 /* create a new pwq */
4056 pwq = alloc_unbound_pwq(wq, target_attrs);
4057 if (!pwq) {
2d916033
FF
4058 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4059 wq->name);
77f300b1
DY
4060 mutex_lock(&wq->mutex);
4061 goto use_dfl_pwq;
4c16bd32
TH
4062 }
4063
4064 /*
4065 * Install the new pwq. As this function is called only from CPU
4066 * hotplug callbacks and applying a new attrs is wrapped with
4067 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4068 * inbetween.
4069 */
4070 mutex_lock(&wq->mutex);
4071 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4072 goto out_unlock;
4073
4074use_dfl_pwq:
4075 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4076 get_pwq(wq->dfl_pwq);
4077 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4078 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4079out_unlock:
4080 mutex_unlock(&wq->mutex);
4081 put_pwq_unlocked(old_pwq);
4082}
4083
30cdf249 4084static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4085{
49e3cf44 4086 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4087 int cpu, ret;
30cdf249
TH
4088
4089 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4090 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4091 if (!wq->cpu_pwqs)
30cdf249
TH
4092 return -ENOMEM;
4093
4094 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4095 struct pool_workqueue *pwq =
4096 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4097 struct worker_pool *cpu_pools =
f02ae73a 4098 per_cpu(cpu_worker_pools, cpu);
f3421797 4099
f147f29e
TH
4100 init_pwq(pwq, wq, &cpu_pools[highpri]);
4101
4102 mutex_lock(&wq->mutex);
1befcf30 4103 link_pwq(pwq);
f147f29e 4104 mutex_unlock(&wq->mutex);
30cdf249 4105 }
9e8cd2f5 4106 return 0;
8a2b7538
TH
4107 } else if (wq->flags & __WQ_ORDERED) {
4108 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4109 /* there should only be single pwq for ordering guarantee */
4110 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4111 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4112 "ordering guarantee broken for workqueue %s\n", wq->name);
4113 return ret;
30cdf249 4114 } else {
9e8cd2f5 4115 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4116 }
0f900049
TH
4117}
4118
f3421797
TH
4119static int wq_clamp_max_active(int max_active, unsigned int flags,
4120 const char *name)
b71ab8c2 4121{
f3421797
TH
4122 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4123
4124 if (max_active < 1 || max_active > lim)
044c782c
VI
4125 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4126 max_active, name, 1, lim);
b71ab8c2 4127
f3421797 4128 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4129}
4130
b196be89 4131struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4132 unsigned int flags,
4133 int max_active,
4134 struct lock_class_key *key,
b196be89 4135 const char *lock_name, ...)
1da177e4 4136{
df2d5ae4 4137 size_t tbl_size = 0;
ecf6881f 4138 va_list args;
1da177e4 4139 struct workqueue_struct *wq;
49e3cf44 4140 struct pool_workqueue *pwq;
b196be89 4141
cee22a15
VK
4142 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4143 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4144 flags |= WQ_UNBOUND;
4145
ecf6881f 4146 /* allocate wq and format name */
df2d5ae4
TH
4147 if (flags & WQ_UNBOUND)
4148 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4149
4150 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4151 if (!wq)
d2c1d404 4152 return NULL;
b196be89 4153
6029a918
TH
4154 if (flags & WQ_UNBOUND) {
4155 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4156 if (!wq->unbound_attrs)
4157 goto err_free_wq;
4158 }
4159
ecf6881f
TH
4160 va_start(args, lock_name);
4161 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4162 va_end(args);
1da177e4 4163
d320c038 4164 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4165 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4166
b196be89 4167 /* init wq */
97e37d7b 4168 wq->flags = flags;
a0a1a5fd 4169 wq->saved_max_active = max_active;
3c25a55d 4170 mutex_init(&wq->mutex);
112202d9 4171 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4172 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4173 INIT_LIST_HEAD(&wq->flusher_queue);
4174 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4175 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4176
eb13ba87 4177 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4178 INIT_LIST_HEAD(&wq->list);
3af24433 4179
30cdf249 4180 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4181 goto err_free_wq;
1537663f 4182
493008a8
TH
4183 /*
4184 * Workqueues which may be used during memory reclaim should
4185 * have a rescuer to guarantee forward progress.
4186 */
4187 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4188 struct worker *rescuer;
4189
d2c1d404 4190 rescuer = alloc_worker();
e22bee78 4191 if (!rescuer)
d2c1d404 4192 goto err_destroy;
e22bee78 4193
111c225a
TH
4194 rescuer->rescue_wq = wq;
4195 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4196 wq->name);
d2c1d404
TH
4197 if (IS_ERR(rescuer->task)) {
4198 kfree(rescuer);
4199 goto err_destroy;
4200 }
e22bee78 4201
d2c1d404 4202 wq->rescuer = rescuer;
14a40ffc 4203 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4204 wake_up_process(rescuer->task);
3af24433
ON
4205 }
4206
226223ab
TH
4207 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4208 goto err_destroy;
4209
a0a1a5fd 4210 /*
68e13a67
LJ
4211 * wq_pool_mutex protects global freeze state and workqueues list.
4212 * Grab it, adjust max_active and add the new @wq to workqueues
4213 * list.
a0a1a5fd 4214 */
68e13a67 4215 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4216
a357fc03 4217 mutex_lock(&wq->mutex);
699ce097
TH
4218 for_each_pwq(pwq, wq)
4219 pwq_adjust_max_active(pwq);
a357fc03 4220 mutex_unlock(&wq->mutex);
a0a1a5fd 4221
1537663f 4222 list_add(&wq->list, &workqueues);
a0a1a5fd 4223
68e13a67 4224 mutex_unlock(&wq_pool_mutex);
1537663f 4225
3af24433 4226 return wq;
d2c1d404
TH
4227
4228err_free_wq:
6029a918 4229 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4230 kfree(wq);
4231 return NULL;
4232err_destroy:
4233 destroy_workqueue(wq);
4690c4ab 4234 return NULL;
3af24433 4235}
d320c038 4236EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4237
3af24433
ON
4238/**
4239 * destroy_workqueue - safely terminate a workqueue
4240 * @wq: target workqueue
4241 *
4242 * Safely destroy a workqueue. All work currently pending will be done first.
4243 */
4244void destroy_workqueue(struct workqueue_struct *wq)
4245{
49e3cf44 4246 struct pool_workqueue *pwq;
4c16bd32 4247 int node;
3af24433 4248
9c5a2ba7
TH
4249 /* drain it before proceeding with destruction */
4250 drain_workqueue(wq);
c8efcc25 4251
6183c009 4252 /* sanity checks */
b09f4fd3 4253 mutex_lock(&wq->mutex);
49e3cf44 4254 for_each_pwq(pwq, wq) {
6183c009
TH
4255 int i;
4256
76af4d93
TH
4257 for (i = 0; i < WORK_NR_COLORS; i++) {
4258 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4259 mutex_unlock(&wq->mutex);
6183c009 4260 return;
76af4d93
TH
4261 }
4262 }
4263
5c529597 4264 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4265 WARN_ON(pwq->nr_active) ||
76af4d93 4266 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4267 mutex_unlock(&wq->mutex);
6183c009 4268 return;
76af4d93 4269 }
6183c009 4270 }
b09f4fd3 4271 mutex_unlock(&wq->mutex);
6183c009 4272
a0a1a5fd
TH
4273 /*
4274 * wq list is used to freeze wq, remove from list after
4275 * flushing is complete in case freeze races us.
4276 */
68e13a67 4277 mutex_lock(&wq_pool_mutex);
d2c1d404 4278 list_del_init(&wq->list);
68e13a67 4279 mutex_unlock(&wq_pool_mutex);
3af24433 4280
226223ab
TH
4281 workqueue_sysfs_unregister(wq);
4282
493008a8 4283 if (wq->rescuer) {
e22bee78 4284 kthread_stop(wq->rescuer->task);
8d9df9f0 4285 kfree(wq->rescuer);
493008a8 4286 wq->rescuer = NULL;
e22bee78
TH
4287 }
4288
8864b4e5
TH
4289 if (!(wq->flags & WQ_UNBOUND)) {
4290 /*
4291 * The base ref is never dropped on per-cpu pwqs. Directly
4292 * free the pwqs and wq.
4293 */
4294 free_percpu(wq->cpu_pwqs);
4295 kfree(wq);
4296 } else {
4297 /*
4298 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4299 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4300 * @wq will be freed when the last pwq is released.
8864b4e5 4301 */
4c16bd32
TH
4302 for_each_node(node) {
4303 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4304 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4305 put_pwq_unlocked(pwq);
4306 }
4307
4308 /*
4309 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4310 * put. Don't access it afterwards.
4311 */
4312 pwq = wq->dfl_pwq;
4313 wq->dfl_pwq = NULL;
dce90d47 4314 put_pwq_unlocked(pwq);
29c91e99 4315 }
3af24433
ON
4316}
4317EXPORT_SYMBOL_GPL(destroy_workqueue);
4318
dcd989cb
TH
4319/**
4320 * workqueue_set_max_active - adjust max_active of a workqueue
4321 * @wq: target workqueue
4322 * @max_active: new max_active value.
4323 *
4324 * Set max_active of @wq to @max_active.
4325 *
4326 * CONTEXT:
4327 * Don't call from IRQ context.
4328 */
4329void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4330{
49e3cf44 4331 struct pool_workqueue *pwq;
dcd989cb 4332
8719dcea
TH
4333 /* disallow meddling with max_active for ordered workqueues */
4334 if (WARN_ON(wq->flags & __WQ_ORDERED))
4335 return;
4336
f3421797 4337 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4338
a357fc03 4339 mutex_lock(&wq->mutex);
dcd989cb
TH
4340
4341 wq->saved_max_active = max_active;
4342
699ce097
TH
4343 for_each_pwq(pwq, wq)
4344 pwq_adjust_max_active(pwq);
93981800 4345
a357fc03 4346 mutex_unlock(&wq->mutex);
15316ba8 4347}
dcd989cb 4348EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4349
e6267616
TH
4350/**
4351 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4352 *
4353 * Determine whether %current is a workqueue rescuer. Can be used from
4354 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4355 *
4356 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4357 */
4358bool current_is_workqueue_rescuer(void)
4359{
4360 struct worker *worker = current_wq_worker();
4361
6a092dfd 4362 return worker && worker->rescue_wq;
e6267616
TH
4363}
4364
eef6a7d5 4365/**
dcd989cb
TH
4366 * workqueue_congested - test whether a workqueue is congested
4367 * @cpu: CPU in question
4368 * @wq: target workqueue
eef6a7d5 4369 *
dcd989cb
TH
4370 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4371 * no synchronization around this function and the test result is
4372 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4373 *
d3251859
TH
4374 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4375 * Note that both per-cpu and unbound workqueues may be associated with
4376 * multiple pool_workqueues which have separate congested states. A
4377 * workqueue being congested on one CPU doesn't mean the workqueue is also
4378 * contested on other CPUs / NUMA nodes.
4379 *
d185af30 4380 * Return:
dcd989cb 4381 * %true if congested, %false otherwise.
eef6a7d5 4382 */
d84ff051 4383bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4384{
7fb98ea7 4385 struct pool_workqueue *pwq;
76af4d93
TH
4386 bool ret;
4387
88109453 4388 rcu_read_lock_sched();
7fb98ea7 4389
d3251859
TH
4390 if (cpu == WORK_CPU_UNBOUND)
4391 cpu = smp_processor_id();
4392
7fb98ea7
TH
4393 if (!(wq->flags & WQ_UNBOUND))
4394 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4395 else
df2d5ae4 4396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4397
76af4d93 4398 ret = !list_empty(&pwq->delayed_works);
88109453 4399 rcu_read_unlock_sched();
76af4d93
TH
4400
4401 return ret;
1da177e4 4402}
dcd989cb 4403EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4404
dcd989cb
TH
4405/**
4406 * work_busy - test whether a work is currently pending or running
4407 * @work: the work to be tested
4408 *
4409 * Test whether @work is currently pending or running. There is no
4410 * synchronization around this function and the test result is
4411 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4412 *
d185af30 4413 * Return:
dcd989cb
TH
4414 * OR'd bitmask of WORK_BUSY_* bits.
4415 */
4416unsigned int work_busy(struct work_struct *work)
1da177e4 4417{
fa1b54e6 4418 struct worker_pool *pool;
dcd989cb
TH
4419 unsigned long flags;
4420 unsigned int ret = 0;
1da177e4 4421
dcd989cb
TH
4422 if (work_pending(work))
4423 ret |= WORK_BUSY_PENDING;
1da177e4 4424
fa1b54e6
TH
4425 local_irq_save(flags);
4426 pool = get_work_pool(work);
038366c5 4427 if (pool) {
fa1b54e6 4428 spin_lock(&pool->lock);
038366c5
LJ
4429 if (find_worker_executing_work(pool, work))
4430 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4431 spin_unlock(&pool->lock);
038366c5 4432 }
fa1b54e6 4433 local_irq_restore(flags);
1da177e4 4434
dcd989cb 4435 return ret;
1da177e4 4436}
dcd989cb 4437EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4438
3d1cb205
TH
4439/**
4440 * set_worker_desc - set description for the current work item
4441 * @fmt: printf-style format string
4442 * @...: arguments for the format string
4443 *
4444 * This function can be called by a running work function to describe what
4445 * the work item is about. If the worker task gets dumped, this
4446 * information will be printed out together to help debugging. The
4447 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4448 */
4449void set_worker_desc(const char *fmt, ...)
4450{
4451 struct worker *worker = current_wq_worker();
4452 va_list args;
4453
4454 if (worker) {
4455 va_start(args, fmt);
4456 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4457 va_end(args);
4458 worker->desc_valid = true;
4459 }
4460}
4461
4462/**
4463 * print_worker_info - print out worker information and description
4464 * @log_lvl: the log level to use when printing
4465 * @task: target task
4466 *
4467 * If @task is a worker and currently executing a work item, print out the
4468 * name of the workqueue being serviced and worker description set with
4469 * set_worker_desc() by the currently executing work item.
4470 *
4471 * This function can be safely called on any task as long as the
4472 * task_struct itself is accessible. While safe, this function isn't
4473 * synchronized and may print out mixups or garbages of limited length.
4474 */
4475void print_worker_info(const char *log_lvl, struct task_struct *task)
4476{
4477 work_func_t *fn = NULL;
4478 char name[WQ_NAME_LEN] = { };
4479 char desc[WORKER_DESC_LEN] = { };
4480 struct pool_workqueue *pwq = NULL;
4481 struct workqueue_struct *wq = NULL;
4482 bool desc_valid = false;
4483 struct worker *worker;
4484
4485 if (!(task->flags & PF_WQ_WORKER))
4486 return;
4487
4488 /*
4489 * This function is called without any synchronization and @task
4490 * could be in any state. Be careful with dereferences.
4491 */
4492 worker = probe_kthread_data(task);
4493
4494 /*
4495 * Carefully copy the associated workqueue's workfn and name. Keep
4496 * the original last '\0' in case the original contains garbage.
4497 */
4498 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4499 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4500 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4501 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4502
4503 /* copy worker description */
4504 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4505 if (desc_valid)
4506 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4507
4508 if (fn || name[0] || desc[0]) {
2d916033 4509 pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
3d1cb205
TH
4510 if (desc[0])
4511 pr_cont(" (%s)", desc);
4512 pr_cont("\n");
4513 }
4514}
4515
db7bccf4
TH
4516/*
4517 * CPU hotplug.
4518 *
e22bee78 4519 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4520 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4521 * pool which make migrating pending and scheduled works very
e22bee78 4522 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4523 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4524 * blocked draining impractical.
4525 *
24647570 4526 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4527 * running as an unbound one and allowing it to be reattached later if the
4528 * cpu comes back online.
db7bccf4 4529 */
1da177e4 4530
706026c2 4531static void wq_unbind_fn(struct work_struct *work)
3af24433 4532{
38db41d9 4533 int cpu = smp_processor_id();
4ce62e9e 4534 struct worker_pool *pool;
db7bccf4 4535 struct worker *worker;
a9ab775b 4536 int wi;
3af24433 4537
f02ae73a 4538 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4539 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4540
bc3a1afc 4541 mutex_lock(&pool->manager_mutex);
94cf58bb 4542 spin_lock_irq(&pool->lock);
3af24433 4543
94cf58bb 4544 /*
bc3a1afc 4545 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4546 * unbound and set DISASSOCIATED. Before this, all workers
4547 * except for the ones which are still executing works from
4548 * before the last CPU down must be on the cpu. After
4549 * this, they may become diasporas.
4550 */
a9ab775b 4551 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4552 worker->flags |= WORKER_UNBOUND;
06ba38a9 4553
24647570 4554 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4555
94cf58bb 4556 spin_unlock_irq(&pool->lock);
bc3a1afc 4557 mutex_unlock(&pool->manager_mutex);
628c78e7 4558
eb283428
LJ
4559 /*
4560 * Call schedule() so that we cross rq->lock and thus can
4561 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4562 * This is necessary as scheduler callbacks may be invoked
4563 * from other cpus.
4564 */
4565 schedule();
06ba38a9 4566
eb283428
LJ
4567 /*
4568 * Sched callbacks are disabled now. Zap nr_running.
4569 * After this, nr_running stays zero and need_more_worker()
4570 * and keep_working() are always true as long as the
4571 * worklist is not empty. This pool now behaves as an
4572 * unbound (in terms of concurrency management) pool which
4573 * are served by workers tied to the pool.
4574 */
e19e397a 4575 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4576
4577 /*
4578 * With concurrency management just turned off, a busy
4579 * worker blocking could lead to lengthy stalls. Kick off
4580 * unbound chain execution of currently pending work items.
4581 */
4582 spin_lock_irq(&pool->lock);
4583 wake_up_worker(pool);
4584 spin_unlock_irq(&pool->lock);
4585 }
3af24433 4586}
3af24433 4587
bd7c089e
TH
4588/**
4589 * rebind_workers - rebind all workers of a pool to the associated CPU
4590 * @pool: pool of interest
4591 *
a9ab775b 4592 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4593 */
4594static void rebind_workers(struct worker_pool *pool)
4595{
a9ab775b
TH
4596 struct worker *worker;
4597 int wi;
bd7c089e
TH
4598
4599 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4600
a9ab775b
TH
4601 /*
4602 * Restore CPU affinity of all workers. As all idle workers should
4603 * be on the run-queue of the associated CPU before any local
4604 * wake-ups for concurrency management happen, restore CPU affinty
4605 * of all workers first and then clear UNBOUND. As we're called
4606 * from CPU_ONLINE, the following shouldn't fail.
4607 */
4608 for_each_pool_worker(worker, wi, pool)
4609 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4610 pool->attrs->cpumask) < 0);
bd7c089e 4611
a9ab775b 4612 spin_lock_irq(&pool->lock);
bd7c089e 4613
a9ab775b
TH
4614 for_each_pool_worker(worker, wi, pool) {
4615 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4616
4617 /*
a9ab775b
TH
4618 * A bound idle worker should actually be on the runqueue
4619 * of the associated CPU for local wake-ups targeting it to
4620 * work. Kick all idle workers so that they migrate to the
4621 * associated CPU. Doing this in the same loop as
4622 * replacing UNBOUND with REBOUND is safe as no worker will
4623 * be bound before @pool->lock is released.
bd7c089e 4624 */
a9ab775b
TH
4625 if (worker_flags & WORKER_IDLE)
4626 wake_up_process(worker->task);
bd7c089e 4627
a9ab775b
TH
4628 /*
4629 * We want to clear UNBOUND but can't directly call
4630 * worker_clr_flags() or adjust nr_running. Atomically
4631 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4632 * @worker will clear REBOUND using worker_clr_flags() when
4633 * it initiates the next execution cycle thus restoring
4634 * concurrency management. Note that when or whether
4635 * @worker clears REBOUND doesn't affect correctness.
4636 *
4637 * ACCESS_ONCE() is necessary because @worker->flags may be
4638 * tested without holding any lock in
4639 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4640 * fail incorrectly leading to premature concurrency
4641 * management operations.
4642 */
4643 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4644 worker_flags |= WORKER_REBOUND;
4645 worker_flags &= ~WORKER_UNBOUND;
4646 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4647 }
a9ab775b
TH
4648
4649 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4650}
4651
7dbc725e
TH
4652/**
4653 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4654 * @pool: unbound pool of interest
4655 * @cpu: the CPU which is coming up
4656 *
4657 * An unbound pool may end up with a cpumask which doesn't have any online
4658 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4659 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4660 * online CPU before, cpus_allowed of all its workers should be restored.
4661 */
4662static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4663{
4664 static cpumask_t cpumask;
4665 struct worker *worker;
4666 int wi;
4667
4668 lockdep_assert_held(&pool->manager_mutex);
4669
4670 /* is @cpu allowed for @pool? */
4671 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4672 return;
4673
4674 /* is @cpu the only online CPU? */
4675 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4676 if (cpumask_weight(&cpumask) != 1)
4677 return;
4678
4679 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4680 for_each_pool_worker(worker, wi, pool)
4681 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4682 pool->attrs->cpumask) < 0);
4683}
4684
8db25e78
TH
4685/*
4686 * Workqueues should be brought up before normal priority CPU notifiers.
4687 * This will be registered high priority CPU notifier.
4688 */
0db0628d 4689static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4690 unsigned long action,
4691 void *hcpu)
3af24433 4692{
d84ff051 4693 int cpu = (unsigned long)hcpu;
4ce62e9e 4694 struct worker_pool *pool;
4c16bd32 4695 struct workqueue_struct *wq;
7dbc725e 4696 int pi;
3ce63377 4697
8db25e78 4698 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4699 case CPU_UP_PREPARE:
f02ae73a 4700 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4701 if (pool->nr_workers)
4702 continue;
ebf44d16 4703 if (create_and_start_worker(pool) < 0)
3ce63377 4704 return NOTIFY_BAD;
3af24433 4705 }
8db25e78 4706 break;
3af24433 4707
db7bccf4
TH
4708 case CPU_DOWN_FAILED:
4709 case CPU_ONLINE:
68e13a67 4710 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4711
4712 for_each_pool(pool, pi) {
bc3a1afc 4713 mutex_lock(&pool->manager_mutex);
94cf58bb 4714
7dbc725e
TH
4715 if (pool->cpu == cpu) {
4716 spin_lock_irq(&pool->lock);
4717 pool->flags &= ~POOL_DISASSOCIATED;
4718 spin_unlock_irq(&pool->lock);
a9ab775b 4719
7dbc725e
TH
4720 rebind_workers(pool);
4721 } else if (pool->cpu < 0) {
4722 restore_unbound_workers_cpumask(pool, cpu);
4723 }
94cf58bb 4724
bc3a1afc 4725 mutex_unlock(&pool->manager_mutex);
94cf58bb 4726 }
7dbc725e 4727
4c16bd32
TH
4728 /* update NUMA affinity of unbound workqueues */
4729 list_for_each_entry(wq, &workqueues, list)
4730 wq_update_unbound_numa(wq, cpu, true);
4731
68e13a67 4732 mutex_unlock(&wq_pool_mutex);
db7bccf4 4733 break;
00dfcaf7 4734 }
65758202
TH
4735 return NOTIFY_OK;
4736}
4737
4738/*
4739 * Workqueues should be brought down after normal priority CPU notifiers.
4740 * This will be registered as low priority CPU notifier.
4741 */
0db0628d 4742static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4743 unsigned long action,
4744 void *hcpu)
4745{
d84ff051 4746 int cpu = (unsigned long)hcpu;
8db25e78 4747 struct work_struct unbind_work;
4c16bd32 4748 struct workqueue_struct *wq;
8db25e78 4749
65758202
TH
4750 switch (action & ~CPU_TASKS_FROZEN) {
4751 case CPU_DOWN_PREPARE:
4c16bd32 4752 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4753 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4754 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4755
4756 /* update NUMA affinity of unbound workqueues */
4757 mutex_lock(&wq_pool_mutex);
4758 list_for_each_entry(wq, &workqueues, list)
4759 wq_update_unbound_numa(wq, cpu, false);
4760 mutex_unlock(&wq_pool_mutex);
4761
4762 /* wait for per-cpu unbinding to finish */
8db25e78 4763 flush_work(&unbind_work);
440a1136 4764 destroy_work_on_stack(&unbind_work);
8db25e78 4765 break;
65758202
TH
4766 }
4767 return NOTIFY_OK;
4768}
4769
2d3854a3 4770#ifdef CONFIG_SMP
8ccad40d 4771
2d3854a3 4772struct work_for_cpu {
ed48ece2 4773 struct work_struct work;
2d3854a3
RR
4774 long (*fn)(void *);
4775 void *arg;
4776 long ret;
4777};
4778
ed48ece2 4779static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4780{
ed48ece2
TH
4781 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4782
2d3854a3
RR
4783 wfc->ret = wfc->fn(wfc->arg);
4784}
4785
4786/**
4787 * work_on_cpu - run a function in user context on a particular cpu
4788 * @cpu: the cpu to run on
4789 * @fn: the function to run
4790 * @arg: the function arg
4791 *
31ad9081 4792 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4793 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4794 *
4795 * Return: The value @fn returns.
2d3854a3 4796 */
d84ff051 4797long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4798{
ed48ece2 4799 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4800
ed48ece2
TH
4801 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4802 schedule_work_on(cpu, &wfc.work);
12997d1a 4803 flush_work(&wfc.work);
440a1136 4804 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4805 return wfc.ret;
4806}
4807EXPORT_SYMBOL_GPL(work_on_cpu);
4808#endif /* CONFIG_SMP */
4809
a0a1a5fd
TH
4810#ifdef CONFIG_FREEZER
4811
4812/**
4813 * freeze_workqueues_begin - begin freezing workqueues
4814 *
58a69cb4 4815 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4816 * workqueues will queue new works to their delayed_works list instead of
706026c2 4817 * pool->worklist.
a0a1a5fd
TH
4818 *
4819 * CONTEXT:
a357fc03 4820 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4821 */
4822void freeze_workqueues_begin(void)
4823{
17116969 4824 struct worker_pool *pool;
24b8a847
TH
4825 struct workqueue_struct *wq;
4826 struct pool_workqueue *pwq;
611c92a0 4827 int pi;
a0a1a5fd 4828
68e13a67 4829 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4830
6183c009 4831 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4832 workqueue_freezing = true;
4833
24b8a847 4834 /* set FREEZING */
611c92a0 4835 for_each_pool(pool, pi) {
5bcab335 4836 spin_lock_irq(&pool->lock);
17116969
TH
4837 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4838 pool->flags |= POOL_FREEZING;
5bcab335 4839 spin_unlock_irq(&pool->lock);
24b8a847 4840 }
a0a1a5fd 4841
24b8a847 4842 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4843 mutex_lock(&wq->mutex);
699ce097
TH
4844 for_each_pwq(pwq, wq)
4845 pwq_adjust_max_active(pwq);
a357fc03 4846 mutex_unlock(&wq->mutex);
a0a1a5fd 4847 }
5bcab335 4848
68e13a67 4849 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4850}
4851
4852/**
58a69cb4 4853 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4854 *
4855 * Check whether freezing is complete. This function must be called
4856 * between freeze_workqueues_begin() and thaw_workqueues().
4857 *
4858 * CONTEXT:
68e13a67 4859 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4860 *
d185af30 4861 * Return:
58a69cb4
TH
4862 * %true if some freezable workqueues are still busy. %false if freezing
4863 * is complete.
a0a1a5fd
TH
4864 */
4865bool freeze_workqueues_busy(void)
4866{
a0a1a5fd 4867 bool busy = false;
24b8a847
TH
4868 struct workqueue_struct *wq;
4869 struct pool_workqueue *pwq;
a0a1a5fd 4870
68e13a67 4871 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4872
6183c009 4873 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4874
24b8a847
TH
4875 list_for_each_entry(wq, &workqueues, list) {
4876 if (!(wq->flags & WQ_FREEZABLE))
4877 continue;
a0a1a5fd
TH
4878 /*
4879 * nr_active is monotonically decreasing. It's safe
4880 * to peek without lock.
4881 */
88109453 4882 rcu_read_lock_sched();
24b8a847 4883 for_each_pwq(pwq, wq) {
6183c009 4884 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4885 if (pwq->nr_active) {
a0a1a5fd 4886 busy = true;
88109453 4887 rcu_read_unlock_sched();
a0a1a5fd
TH
4888 goto out_unlock;
4889 }
4890 }
88109453 4891 rcu_read_unlock_sched();
a0a1a5fd
TH
4892 }
4893out_unlock:
68e13a67 4894 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4895 return busy;
4896}
4897
4898/**
4899 * thaw_workqueues - thaw workqueues
4900 *
4901 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4902 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4903 *
4904 * CONTEXT:
a357fc03 4905 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4906 */
4907void thaw_workqueues(void)
4908{
24b8a847
TH
4909 struct workqueue_struct *wq;
4910 struct pool_workqueue *pwq;
4911 struct worker_pool *pool;
611c92a0 4912 int pi;
a0a1a5fd 4913
68e13a67 4914 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4915
4916 if (!workqueue_freezing)
4917 goto out_unlock;
4918
24b8a847 4919 /* clear FREEZING */
611c92a0 4920 for_each_pool(pool, pi) {
5bcab335 4921 spin_lock_irq(&pool->lock);
24b8a847
TH
4922 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4923 pool->flags &= ~POOL_FREEZING;
5bcab335 4924 spin_unlock_irq(&pool->lock);
24b8a847 4925 }
8b03ae3c 4926
24b8a847
TH
4927 /* restore max_active and repopulate worklist */
4928 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4929 mutex_lock(&wq->mutex);
699ce097
TH
4930 for_each_pwq(pwq, wq)
4931 pwq_adjust_max_active(pwq);
a357fc03 4932 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4933 }
4934
4935 workqueue_freezing = false;
4936out_unlock:
68e13a67 4937 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4938}
4939#endif /* CONFIG_FREEZER */
4940
bce90380
TH
4941static void __init wq_numa_init(void)
4942{
4943 cpumask_var_t *tbl;
4944 int node, cpu;
4945
4946 /* determine NUMA pwq table len - highest node id + 1 */
4947 for_each_node(node)
4948 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4949
4950 if (num_possible_nodes() <= 1)
4951 return;
4952
d55262c4
TH
4953 if (wq_disable_numa) {
4954 pr_info("workqueue: NUMA affinity support disabled\n");
4955 return;
4956 }
4957
4c16bd32
TH
4958 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4959 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4960
bce90380
TH
4961 /*
4962 * We want masks of possible CPUs of each node which isn't readily
4963 * available. Build one from cpu_to_node() which should have been
4964 * fully initialized by now.
4965 */
4966 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4967 BUG_ON(!tbl);
4968
4969 for_each_node(node)
1be0c25d
TH
4970 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4971 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4972
4973 for_each_possible_cpu(cpu) {
4974 node = cpu_to_node(cpu);
4975 if (WARN_ON(node == NUMA_NO_NODE)) {
4976 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4977 /* happens iff arch is bonkers, let's just proceed */
4978 return;
4979 }
4980 cpumask_set_cpu(cpu, tbl[node]);
4981 }
4982
4983 wq_numa_possible_cpumask = tbl;
4984 wq_numa_enabled = true;
4985}
4986
6ee0578b 4987static int __init init_workqueues(void)
1da177e4 4988{
7a4e344c
TH
4989 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4990 int i, cpu;
c34056a3 4991
e904e6c2
TH
4992 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4993
4994 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4995
65758202 4996 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4997 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4998
bce90380
TH
4999 wq_numa_init();
5000
706026c2 5001 /* initialize CPU pools */
29c91e99 5002 for_each_possible_cpu(cpu) {
4ce62e9e 5003 struct worker_pool *pool;
8b03ae3c 5004
7a4e344c 5005 i = 0;
f02ae73a 5006 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5007 BUG_ON(init_worker_pool(pool));
ec22ca5e 5008 pool->cpu = cpu;
29c91e99 5009 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5010 pool->attrs->nice = std_nice[i++];
f3f90ad4 5011 pool->node = cpu_to_node(cpu);
7a4e344c 5012
9daf9e67 5013 /* alloc pool ID */
68e13a67 5014 mutex_lock(&wq_pool_mutex);
9daf9e67 5015 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5016 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5017 }
8b03ae3c
TH
5018 }
5019
e22bee78 5020 /* create the initial worker */
29c91e99 5021 for_each_online_cpu(cpu) {
4ce62e9e 5022 struct worker_pool *pool;
e22bee78 5023
f02ae73a 5024 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5025 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5026 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5027 }
e22bee78
TH
5028 }
5029
8a2b7538 5030 /* create default unbound and ordered wq attrs */
29c91e99
TH
5031 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5032 struct workqueue_attrs *attrs;
5033
5034 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5035 attrs->nice = std_nice[i];
29c91e99 5036 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5037
5038 /*
5039 * An ordered wq should have only one pwq as ordering is
5040 * guaranteed by max_active which is enforced by pwqs.
5041 * Turn off NUMA so that dfl_pwq is used for all nodes.
5042 */
5043 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5044 attrs->nice = std_nice[i];
5045 attrs->no_numa = true;
5046 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5047 }
5048
d320c038 5049 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5050 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5051 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5052 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5053 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5054 system_freezable_wq = alloc_workqueue("events_freezable",
5055 WQ_FREEZABLE, 0);
0668106c
VK
5056 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5057 WQ_POWER_EFFICIENT, 0);
5058 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5059 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5060 0);
1aabe902 5061 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5062 !system_unbound_wq || !system_freezable_wq ||
5063 !system_power_efficient_wq ||
5064 !system_freezable_power_efficient_wq);
6ee0578b 5065 return 0;
1da177e4 5066}
6ee0578b 5067early_initcall(init_workqueues);
This page took 1.017264 seconds and 5 git commands to generate.