workqueue: disable irq while manipulating PENDING
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
3270476a 186 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 187
25511a47 188 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
189} ____cacheline_aligned_in_smp;
190
1da177e4 191/*
502ca9d8 192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
1da177e4
LT
195 */
196struct cpu_workqueue_struct {
bd7bdd43 197 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 198 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
1e19ffc6 203 int nr_active; /* L: nr of active works */
a0a1a5fd 204 int max_active; /* L: max active works */
1e19ffc6 205 struct list_head delayed_works; /* L: delayed works */
0f900049 206};
1da177e4 207
73f53c4a
TH
208/*
209 * Structure used to wait for workqueue flush.
210 */
211struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215};
216
f2e005aa
TH
217/*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221#ifdef CONFIG_SMP
222typedef cpumask_var_t mayday_mask_t;
223#define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 227#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
228#define free_mayday_mask(mask) free_cpumask_var((mask))
229#else
230typedef unsigned long mayday_mask_t;
231#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234#define alloc_mayday_mask(maskp, gfp) true
235#define free_mayday_mask(mask) do { } while (0)
236#endif
1da177e4
LT
237
238/*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242struct workqueue_struct {
9c5a2ba7 243 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
4690c4ab 249 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
f2e005aa 259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
260 struct worker *rescuer; /* I: rescue worker */
261
9c5a2ba7 262 int nr_drainers; /* W: drain in progress */
dcd989cb 263 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
b196be89 267 char name[]; /* I: workqueue name */
1da177e4
LT
268};
269
d320c038
TH
270struct workqueue_struct *system_wq __read_mostly;
271struct workqueue_struct *system_long_wq __read_mostly;
272struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 273struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 274struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 275struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
276EXPORT_SYMBOL_GPL(system_wq);
277EXPORT_SYMBOL_GPL(system_long_wq);
278EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 279EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 280EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 281EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 282
97bd2347
TH
283#define CREATE_TRACE_POINTS
284#include <trace/events/workqueue.h>
285
4ce62e9e 286#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 289
db7bccf4
TH
290#define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
f3421797
TH
294static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296{
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307}
308
309static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311{
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313}
314
09884951
TH
315/*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
f3421797
TH
328#define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333#define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338#define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
dc186ad7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345static struct debug_obj_descr work_debug_descr;
346
99777288
SG
347static void *work_debug_hint(void *addr)
348{
349 return ((struct work_struct *) addr)->func;
350}
351
dc186ad7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356static int work_fixup_init(void *addr, enum debug_obj_state state)
357{
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375static int work_fixup_activate(void *addr, enum debug_obj_state state)
376{
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
22df02bb 387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401}
402
403/*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407static int work_fixup_free(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
99777288 423 .debug_hint = work_debug_hint,
dc186ad7
TG
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427};
428
429static inline void debug_work_activate(struct work_struct *work)
430{
431 debug_object_activate(work, &work_debug_descr);
432}
433
434static inline void debug_work_deactivate(struct work_struct *work)
435{
436 debug_object_deactivate(work, &work_debug_descr);
437}
438
439void __init_work(struct work_struct *work, int onstack)
440{
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445}
446EXPORT_SYMBOL_GPL(__init_work);
447
448void destroy_work_on_stack(struct work_struct *work)
449{
450 debug_object_free(work, &work_debug_descr);
451}
452EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454#else
455static inline void debug_work_activate(struct work_struct *work) { }
456static inline void debug_work_deactivate(struct work_struct *work) { }
457#endif
458
95402b38
GS
459/* Serializes the accesses to the list of workqueues. */
460static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 461static LIST_HEAD(workqueues);
a0a1a5fd 462static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 463
e22bee78
TH
464/*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
8b03ae3c 469static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 470static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 471
f3421797
TH
472/*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
478static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480};
f3421797 481
c34056a3 482static int worker_thread(void *__worker);
1da177e4 483
3270476a
TH
484static int worker_pool_pri(struct worker_pool *pool)
485{
486 return pool - pool->gcwq->pools;
487}
488
8b03ae3c
TH
489static struct global_cwq *get_gcwq(unsigned int cpu)
490{
f3421797
TH
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
8b03ae3c
TH
495}
496
63d95a91 497static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 498{
63d95a91 499 int cpu = pool->gcwq->cpu;
3270476a 500 int idx = worker_pool_pri(pool);
63d95a91 501
f3421797 502 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 503 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 504 else
4ce62e9e 505 return &unbound_pool_nr_running[idx];
e22bee78
TH
506}
507
1537663f
TH
508static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
b1f4ec17 510{
f3421797 511 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 512 if (likely(cpu < nr_cpu_ids))
f3421797 513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
e120153d
TH
536 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
537 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
538 * cleared and the work data contains the cpu number it was last on.
7a22ad75 539 *
8930caba
TH
540 * set_work_cwq(), set_work_cpu_and_clear_pending() and clear_work_data()
541 * can be used to set the cwq, cpu or clear work->data. These functions
542 * should only be called while the work is owned - ie. while the PENDING
543 * bit is set.
7a22ad75
TH
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
14441960 549 */
7a22ad75
TH
550static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
365970a1 552{
4594bf15 553 BUG_ON(!work_pending(work));
7a22ad75
TH
554 atomic_long_set(&work->data, data | flags | work_static(work));
555}
365970a1 556
7a22ad75
TH
557static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560{
561 set_work_data(work, (unsigned long)cwq,
e120153d 562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
563}
564
8930caba
TH
565static void set_work_cpu_and_clear_pending(struct work_struct *work,
566 unsigned int cpu)
7a22ad75 567{
8930caba 568 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, 0);
7a22ad75 569}
f756d5e2 570
7a22ad75 571static void clear_work_data(struct work_struct *work)
1da177e4 572{
7a22ad75 573 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
574}
575
7a22ad75 576static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 577{
e120153d 578 unsigned long data = atomic_long_read(&work->data);
7a22ad75 579
e120153d
TH
580 if (data & WORK_STRUCT_CWQ)
581 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
582 else
583 return NULL;
4d707b9f
ON
584}
585
7a22ad75 586static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
589 unsigned int cpu;
590
e120153d
TH
591 if (data & WORK_STRUCT_CWQ)
592 return ((struct cpu_workqueue_struct *)
bd7bdd43 593 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75
TH
594
595 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 596 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
597 return NULL;
598
f3421797 599 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 600 return get_gcwq(cpu);
b1f4ec17
ON
601}
602
e22bee78 603/*
3270476a
TH
604 * Policy functions. These define the policies on how the global worker
605 * pools are managed. Unless noted otherwise, these functions assume that
606 * they're being called with gcwq->lock held.
e22bee78
TH
607 */
608
63d95a91 609static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 610{
3270476a 611 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
612}
613
4594bf15 614/*
e22bee78
TH
615 * Need to wake up a worker? Called from anything but currently
616 * running workers.
974271c4
TH
617 *
618 * Note that, because unbound workers never contribute to nr_running, this
619 * function will always return %true for unbound gcwq as long as the
620 * worklist isn't empty.
4594bf15 621 */
63d95a91 622static bool need_more_worker(struct worker_pool *pool)
365970a1 623{
63d95a91 624 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 625}
4594bf15 626
e22bee78 627/* Can I start working? Called from busy but !running workers. */
63d95a91 628static bool may_start_working(struct worker_pool *pool)
e22bee78 629{
63d95a91 630 return pool->nr_idle;
e22bee78
TH
631}
632
633/* Do I need to keep working? Called from currently running workers. */
63d95a91 634static bool keep_working(struct worker_pool *pool)
e22bee78 635{
63d95a91 636 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 637
3270476a 638 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
639}
640
641/* Do we need a new worker? Called from manager. */
63d95a91 642static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 643{
63d95a91 644 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 645}
365970a1 646
e22bee78 647/* Do I need to be the manager? */
63d95a91 648static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 649{
63d95a91 650 return need_to_create_worker(pool) ||
11ebea50 651 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
652}
653
654/* Do we have too many workers and should some go away? */
63d95a91 655static bool too_many_workers(struct worker_pool *pool)
e22bee78 656{
60373152 657 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
658 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
659 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
660
661 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
662}
663
4d707b9f 664/*
e22bee78
TH
665 * Wake up functions.
666 */
667
7e11629d 668/* Return the first worker. Safe with preemption disabled */
63d95a91 669static struct worker *first_worker(struct worker_pool *pool)
7e11629d 670{
63d95a91 671 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
672 return NULL;
673
63d95a91 674 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
675}
676
677/**
678 * wake_up_worker - wake up an idle worker
63d95a91 679 * @pool: worker pool to wake worker from
7e11629d 680 *
63d95a91 681 * Wake up the first idle worker of @pool.
7e11629d
TH
682 *
683 * CONTEXT:
684 * spin_lock_irq(gcwq->lock).
685 */
63d95a91 686static void wake_up_worker(struct worker_pool *pool)
7e11629d 687{
63d95a91 688 struct worker *worker = first_worker(pool);
7e11629d
TH
689
690 if (likely(worker))
691 wake_up_process(worker->task);
692}
693
d302f017 694/**
e22bee78
TH
695 * wq_worker_waking_up - a worker is waking up
696 * @task: task waking up
697 * @cpu: CPU @task is waking up to
698 *
699 * This function is called during try_to_wake_up() when a worker is
700 * being awoken.
701 *
702 * CONTEXT:
703 * spin_lock_irq(rq->lock)
704 */
705void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
706{
707 struct worker *worker = kthread_data(task);
708
2d64672e 709 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 710 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
711}
712
713/**
714 * wq_worker_sleeping - a worker is going to sleep
715 * @task: task going to sleep
716 * @cpu: CPU in question, must be the current CPU number
717 *
718 * This function is called during schedule() when a busy worker is
719 * going to sleep. Worker on the same cpu can be woken up by
720 * returning pointer to its task.
721 *
722 * CONTEXT:
723 * spin_lock_irq(rq->lock)
724 *
725 * RETURNS:
726 * Worker task on @cpu to wake up, %NULL if none.
727 */
728struct task_struct *wq_worker_sleeping(struct task_struct *task,
729 unsigned int cpu)
730{
731 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 732 struct worker_pool *pool = worker->pool;
63d95a91 733 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 734
2d64672e 735 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
736 return NULL;
737
738 /* this can only happen on the local cpu */
739 BUG_ON(cpu != raw_smp_processor_id());
740
741 /*
742 * The counterpart of the following dec_and_test, implied mb,
743 * worklist not empty test sequence is in insert_work().
744 * Please read comment there.
745 *
628c78e7
TH
746 * NOT_RUNNING is clear. This means that we're bound to and
747 * running on the local cpu w/ rq lock held and preemption
748 * disabled, which in turn means that none else could be
749 * manipulating idle_list, so dereferencing idle_list without gcwq
750 * lock is safe.
e22bee78 751 */
bd7bdd43 752 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 753 to_wakeup = first_worker(pool);
e22bee78
TH
754 return to_wakeup ? to_wakeup->task : NULL;
755}
756
757/**
758 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 759 * @worker: self
d302f017
TH
760 * @flags: flags to set
761 * @wakeup: wakeup an idle worker if necessary
762 *
e22bee78
TH
763 * Set @flags in @worker->flags and adjust nr_running accordingly. If
764 * nr_running becomes zero and @wakeup is %true, an idle worker is
765 * woken up.
d302f017 766 *
cb444766
TH
767 * CONTEXT:
768 * spin_lock_irq(gcwq->lock)
d302f017
TH
769 */
770static inline void worker_set_flags(struct worker *worker, unsigned int flags,
771 bool wakeup)
772{
bd7bdd43 773 struct worker_pool *pool = worker->pool;
e22bee78 774
cb444766
TH
775 WARN_ON_ONCE(worker->task != current);
776
e22bee78
TH
777 /*
778 * If transitioning into NOT_RUNNING, adjust nr_running and
779 * wake up an idle worker as necessary if requested by
780 * @wakeup.
781 */
782 if ((flags & WORKER_NOT_RUNNING) &&
783 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 784 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
785
786 if (wakeup) {
787 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 788 !list_empty(&pool->worklist))
63d95a91 789 wake_up_worker(pool);
e22bee78
TH
790 } else
791 atomic_dec(nr_running);
792 }
793
d302f017
TH
794 worker->flags |= flags;
795}
796
797/**
e22bee78 798 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 799 * @worker: self
d302f017
TH
800 * @flags: flags to clear
801 *
e22bee78 802 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 803 *
cb444766
TH
804 * CONTEXT:
805 * spin_lock_irq(gcwq->lock)
d302f017
TH
806 */
807static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
808{
63d95a91 809 struct worker_pool *pool = worker->pool;
e22bee78
TH
810 unsigned int oflags = worker->flags;
811
cb444766
TH
812 WARN_ON_ONCE(worker->task != current);
813
d302f017 814 worker->flags &= ~flags;
e22bee78 815
42c025f3
TH
816 /*
817 * If transitioning out of NOT_RUNNING, increment nr_running. Note
818 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
819 * of multiple flags, not a single flag.
820 */
e22bee78
TH
821 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
822 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 823 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
824}
825
c8e55f36
TH
826/**
827 * busy_worker_head - return the busy hash head for a work
828 * @gcwq: gcwq of interest
829 * @work: work to be hashed
830 *
831 * Return hash head of @gcwq for @work.
832 *
833 * CONTEXT:
834 * spin_lock_irq(gcwq->lock).
835 *
836 * RETURNS:
837 * Pointer to the hash head.
838 */
839static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
840 struct work_struct *work)
841{
842 const int base_shift = ilog2(sizeof(struct work_struct));
843 unsigned long v = (unsigned long)work;
844
845 /* simple shift and fold hash, do we need something better? */
846 v >>= base_shift;
847 v += v >> BUSY_WORKER_HASH_ORDER;
848 v &= BUSY_WORKER_HASH_MASK;
849
850 return &gcwq->busy_hash[v];
851}
852
8cca0eea
TH
853/**
854 * __find_worker_executing_work - find worker which is executing a work
855 * @gcwq: gcwq of interest
856 * @bwh: hash head as returned by busy_worker_head()
857 * @work: work to find worker for
858 *
859 * Find a worker which is executing @work on @gcwq. @bwh should be
860 * the hash head obtained by calling busy_worker_head() with the same
861 * work.
862 *
863 * CONTEXT:
864 * spin_lock_irq(gcwq->lock).
865 *
866 * RETURNS:
867 * Pointer to worker which is executing @work if found, NULL
868 * otherwise.
869 */
870static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
871 struct hlist_head *bwh,
872 struct work_struct *work)
873{
874 struct worker *worker;
875 struct hlist_node *tmp;
876
877 hlist_for_each_entry(worker, tmp, bwh, hentry)
878 if (worker->current_work == work)
879 return worker;
880 return NULL;
881}
882
883/**
884 * find_worker_executing_work - find worker which is executing a work
885 * @gcwq: gcwq of interest
886 * @work: work to find worker for
887 *
888 * Find a worker which is executing @work on @gcwq. This function is
889 * identical to __find_worker_executing_work() except that this
890 * function calculates @bwh itself.
891 *
892 * CONTEXT:
893 * spin_lock_irq(gcwq->lock).
894 *
895 * RETURNS:
896 * Pointer to worker which is executing @work if found, NULL
897 * otherwise.
4d707b9f 898 */
8cca0eea
TH
899static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
900 struct work_struct *work)
4d707b9f 901{
8cca0eea
TH
902 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
903 work);
4d707b9f
ON
904}
905
4690c4ab 906/**
7e11629d 907 * insert_work - insert a work into gcwq
4690c4ab
TH
908 * @cwq: cwq @work belongs to
909 * @work: work to insert
910 * @head: insertion point
911 * @extra_flags: extra WORK_STRUCT_* flags to set
912 *
7e11629d
TH
913 * Insert @work which belongs to @cwq into @gcwq after @head.
914 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
915 *
916 * CONTEXT:
8b03ae3c 917 * spin_lock_irq(gcwq->lock).
4690c4ab 918 */
b89deed3 919static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
920 struct work_struct *work, struct list_head *head,
921 unsigned int extra_flags)
b89deed3 922{
63d95a91 923 struct worker_pool *pool = cwq->pool;
e22bee78 924
4690c4ab 925 /* we own @work, set data and link */
7a22ad75 926 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 927
6e84d644
ON
928 /*
929 * Ensure that we get the right work->data if we see the
930 * result of list_add() below, see try_to_grab_pending().
931 */
932 smp_wmb();
4690c4ab 933
1a4d9b0a 934 list_add_tail(&work->entry, head);
e22bee78
TH
935
936 /*
937 * Ensure either worker_sched_deactivated() sees the above
938 * list_add_tail() or we see zero nr_running to avoid workers
939 * lying around lazily while there are works to be processed.
940 */
941 smp_mb();
942
63d95a91
TH
943 if (__need_more_worker(pool))
944 wake_up_worker(pool);
b89deed3
ON
945}
946
c8efcc25
TH
947/*
948 * Test whether @work is being queued from another work executing on the
949 * same workqueue. This is rather expensive and should only be used from
950 * cold paths.
951 */
952static bool is_chained_work(struct workqueue_struct *wq)
953{
954 unsigned long flags;
955 unsigned int cpu;
956
957 for_each_gcwq_cpu(cpu) {
958 struct global_cwq *gcwq = get_gcwq(cpu);
959 struct worker *worker;
960 struct hlist_node *pos;
961 int i;
962
963 spin_lock_irqsave(&gcwq->lock, flags);
964 for_each_busy_worker(worker, i, pos, gcwq) {
965 if (worker->task != current)
966 continue;
967 spin_unlock_irqrestore(&gcwq->lock, flags);
968 /*
969 * I'm @worker, no locking necessary. See if @work
970 * is headed to the same workqueue.
971 */
972 return worker->current_cwq->wq == wq;
973 }
974 spin_unlock_irqrestore(&gcwq->lock, flags);
975 }
976 return false;
977}
978
4690c4ab 979static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
980 struct work_struct *work)
981{
502ca9d8
TH
982 struct global_cwq *gcwq;
983 struct cpu_workqueue_struct *cwq;
1e19ffc6 984 struct list_head *worklist;
8a2e8e5d 985 unsigned int work_flags;
8930caba
TH
986
987 /*
988 * While a work item is PENDING && off queue, a task trying to
989 * steal the PENDING will busy-loop waiting for it to either get
990 * queued or lose PENDING. Grabbing PENDING and queueing should
991 * happen with IRQ disabled.
992 */
993 WARN_ON_ONCE(!irqs_disabled());
1da177e4 994
dc186ad7 995 debug_work_activate(work);
1e19ffc6 996
c8efcc25 997 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 998 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 999 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1000 return;
1001
c7fc77f7
TH
1002 /* determine gcwq to use */
1003 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1004 struct global_cwq *last_gcwq;
1005
c7fc77f7
TH
1006 if (unlikely(cpu == WORK_CPU_UNBOUND))
1007 cpu = raw_smp_processor_id();
1008
18aa9eff
TH
1009 /*
1010 * It's multi cpu. If @wq is non-reentrant and @work
1011 * was previously on a different cpu, it might still
1012 * be running there, in which case the work needs to
1013 * be queued on that cpu to guarantee non-reentrance.
1014 */
502ca9d8 1015 gcwq = get_gcwq(cpu);
18aa9eff
TH
1016 if (wq->flags & WQ_NON_REENTRANT &&
1017 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1018 struct worker *worker;
1019
8930caba 1020 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1021
1022 worker = find_worker_executing_work(last_gcwq, work);
1023
1024 if (worker && worker->current_cwq->wq == wq)
1025 gcwq = last_gcwq;
1026 else {
1027 /* meh... not running there, queue here */
8930caba
TH
1028 spin_unlock(&last_gcwq->lock);
1029 spin_lock(&gcwq->lock);
18aa9eff 1030 }
8930caba
TH
1031 } else {
1032 spin_lock(&gcwq->lock);
1033 }
f3421797
TH
1034 } else {
1035 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1036 spin_lock(&gcwq->lock);
502ca9d8
TH
1037 }
1038
1039 /* gcwq determined, get cwq and queue */
1040 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1041 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1042
f5b2552b 1043 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1044 spin_unlock(&gcwq->lock);
f5b2552b
DC
1045 return;
1046 }
1e19ffc6 1047
73f53c4a 1048 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1049 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1050
1051 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1052 trace_workqueue_activate_work(work);
1e19ffc6 1053 cwq->nr_active++;
3270476a 1054 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1055 } else {
1056 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1057 worklist = &cwq->delayed_works;
8a2e8e5d 1058 }
1e19ffc6 1059
8a2e8e5d 1060 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1061
8930caba 1062 spin_unlock(&gcwq->lock);
1da177e4
LT
1063}
1064
c1a220e7
ZR
1065/**
1066 * queue_work_on - queue work on specific cpu
1067 * @cpu: CPU number to execute work on
1068 * @wq: workqueue to use
1069 * @work: work to queue
1070 *
d4283e93 1071 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1072 *
1073 * We queue the work to a specific CPU, the caller must ensure it
1074 * can't go away.
1075 */
d4283e93
TH
1076bool queue_work_on(int cpu, struct workqueue_struct *wq,
1077 struct work_struct *work)
c1a220e7 1078{
d4283e93 1079 bool ret = false;
8930caba
TH
1080 unsigned long flags;
1081
1082 local_irq_save(flags);
c1a220e7 1083
22df02bb 1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1085 __queue_work(cpu, wq, work);
d4283e93 1086 ret = true;
c1a220e7 1087 }
8930caba
TH
1088
1089 local_irq_restore(flags);
c1a220e7
ZR
1090 return ret;
1091}
1092EXPORT_SYMBOL_GPL(queue_work_on);
1093
0fcb78c2 1094/**
0a13c00e 1095 * queue_work - queue work on a workqueue
0fcb78c2 1096 * @wq: workqueue to use
0a13c00e 1097 * @work: work to queue
0fcb78c2 1098 *
d4283e93 1099 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1100 *
1101 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1102 * it can be processed by another CPU.
0fcb78c2 1103 */
d4283e93 1104bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1105{
d4283e93 1106 bool ret;
1da177e4 1107
0a13c00e
TH
1108 ret = queue_work_on(get_cpu(), wq, work);
1109 put_cpu();
1110
1111 return ret;
1112}
1113EXPORT_SYMBOL_GPL(queue_work);
1114
1115static void delayed_work_timer_fn(unsigned long __data)
1116{
1117 struct delayed_work *dwork = (struct delayed_work *)__data;
1118 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1119
8930caba 1120 local_irq_disable();
0a13c00e 1121 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
8930caba 1122 local_irq_enable();
1da177e4
LT
1123}
1124
0fcb78c2
REB
1125/**
1126 * queue_delayed_work_on - queue work on specific CPU after delay
1127 * @cpu: CPU number to execute work on
1128 * @wq: workqueue to use
af9997e4 1129 * @dwork: work to queue
0fcb78c2
REB
1130 * @delay: number of jiffies to wait before queueing
1131 *
d4283e93 1132 * Returns %false if @work was already on a queue, %true otherwise.
0fcb78c2 1133 */
d4283e93
TH
1134bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1135 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1136{
52bad64d
DH
1137 struct timer_list *timer = &dwork->timer;
1138 struct work_struct *work = &dwork->work;
d4283e93 1139 bool ret = false;
8930caba
TH
1140 unsigned long flags;
1141
1142 /* read the comment in __queue_work() */
1143 local_irq_save(flags);
7a6bc1cd 1144
22df02bb 1145 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1146 unsigned int lcpu;
7a22ad75 1147
7a6bc1cd
VP
1148 BUG_ON(timer_pending(timer));
1149 BUG_ON(!list_empty(&work->entry));
1150
8a3e77cc
AL
1151 timer_stats_timer_set_start_info(&dwork->timer);
1152
7a22ad75
TH
1153 /*
1154 * This stores cwq for the moment, for the timer_fn.
1155 * Note that the work's gcwq is preserved to allow
1156 * reentrance detection for delayed works.
1157 */
c7fc77f7
TH
1158 if (!(wq->flags & WQ_UNBOUND)) {
1159 struct global_cwq *gcwq = get_work_gcwq(work);
1160
1161 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1162 lcpu = gcwq->cpu;
1163 else
1164 lcpu = raw_smp_processor_id();
1165 } else
1166 lcpu = WORK_CPU_UNBOUND;
1167
7a22ad75 1168 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1169
7a6bc1cd 1170 timer->expires = jiffies + delay;
52bad64d 1171 timer->data = (unsigned long)dwork;
7a6bc1cd 1172 timer->function = delayed_work_timer_fn;
63bc0362
ON
1173
1174 if (unlikely(cpu >= 0))
1175 add_timer_on(timer, cpu);
1176 else
1177 add_timer(timer);
d4283e93 1178 ret = true;
7a6bc1cd 1179 }
8930caba
TH
1180
1181 local_irq_restore(flags);
7a6bc1cd
VP
1182 return ret;
1183}
ae90dd5d 1184EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1185
0a13c00e
TH
1186/**
1187 * queue_delayed_work - queue work on a workqueue after delay
1188 * @wq: workqueue to use
1189 * @dwork: delayable work to queue
1190 * @delay: number of jiffies to wait before queueing
1191 *
d4283e93 1192 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e 1193 */
d4283e93 1194bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1195 struct delayed_work *dwork, unsigned long delay)
1196{
1197 if (delay == 0)
1198 return queue_work(wq, &dwork->work);
1199
1200 return queue_delayed_work_on(-1, wq, dwork, delay);
1201}
1202EXPORT_SYMBOL_GPL(queue_delayed_work);
1203
c8e55f36
TH
1204/**
1205 * worker_enter_idle - enter idle state
1206 * @worker: worker which is entering idle state
1207 *
1208 * @worker is entering idle state. Update stats and idle timer if
1209 * necessary.
1210 *
1211 * LOCKING:
1212 * spin_lock_irq(gcwq->lock).
1213 */
1214static void worker_enter_idle(struct worker *worker)
1da177e4 1215{
bd7bdd43
TH
1216 struct worker_pool *pool = worker->pool;
1217 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1218
1219 BUG_ON(worker->flags & WORKER_IDLE);
1220 BUG_ON(!list_empty(&worker->entry) &&
1221 (worker->hentry.next || worker->hentry.pprev));
1222
cb444766
TH
1223 /* can't use worker_set_flags(), also called from start_worker() */
1224 worker->flags |= WORKER_IDLE;
bd7bdd43 1225 pool->nr_idle++;
e22bee78 1226 worker->last_active = jiffies;
c8e55f36
TH
1227
1228 /* idle_list is LIFO */
bd7bdd43 1229 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1230
628c78e7
TH
1231 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1232 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1233
544ecf31 1234 /*
628c78e7
TH
1235 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1236 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1237 * nr_running, the warning may trigger spuriously. Check iff
1238 * unbind is not in progress.
544ecf31 1239 */
628c78e7 1240 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1241 pool->nr_workers == pool->nr_idle &&
63d95a91 1242 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1243}
1244
1245/**
1246 * worker_leave_idle - leave idle state
1247 * @worker: worker which is leaving idle state
1248 *
1249 * @worker is leaving idle state. Update stats.
1250 *
1251 * LOCKING:
1252 * spin_lock_irq(gcwq->lock).
1253 */
1254static void worker_leave_idle(struct worker *worker)
1255{
bd7bdd43 1256 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1257
1258 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1259 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1260 pool->nr_idle--;
c8e55f36
TH
1261 list_del_init(&worker->entry);
1262}
1263
e22bee78
TH
1264/**
1265 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1266 * @worker: self
1267 *
1268 * Works which are scheduled while the cpu is online must at least be
1269 * scheduled to a worker which is bound to the cpu so that if they are
1270 * flushed from cpu callbacks while cpu is going down, they are
1271 * guaranteed to execute on the cpu.
1272 *
1273 * This function is to be used by rogue workers and rescuers to bind
1274 * themselves to the target cpu and may race with cpu going down or
1275 * coming online. kthread_bind() can't be used because it may put the
1276 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1277 * verbatim as it's best effort and blocking and gcwq may be
1278 * [dis]associated in the meantime.
1279 *
f2d5a0ee
TH
1280 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1281 * binding against %GCWQ_DISASSOCIATED which is set during
1282 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1283 * enters idle state or fetches works without dropping lock, it can
1284 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1285 *
1286 * CONTEXT:
1287 * Might sleep. Called without any lock but returns with gcwq->lock
1288 * held.
1289 *
1290 * RETURNS:
1291 * %true if the associated gcwq is online (@worker is successfully
1292 * bound), %false if offline.
1293 */
1294static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1295__acquires(&gcwq->lock)
e22bee78 1296{
bd7bdd43 1297 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1298 struct task_struct *task = worker->task;
1299
1300 while (true) {
4e6045f1 1301 /*
e22bee78
TH
1302 * The following call may fail, succeed or succeed
1303 * without actually migrating the task to the cpu if
1304 * it races with cpu hotunplug operation. Verify
1305 * against GCWQ_DISASSOCIATED.
4e6045f1 1306 */
f3421797
TH
1307 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1308 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1309
1310 spin_lock_irq(&gcwq->lock);
1311 if (gcwq->flags & GCWQ_DISASSOCIATED)
1312 return false;
1313 if (task_cpu(task) == gcwq->cpu &&
1314 cpumask_equal(&current->cpus_allowed,
1315 get_cpu_mask(gcwq->cpu)))
1316 return true;
1317 spin_unlock_irq(&gcwq->lock);
1318
5035b20f
TH
1319 /*
1320 * We've raced with CPU hot[un]plug. Give it a breather
1321 * and retry migration. cond_resched() is required here;
1322 * otherwise, we might deadlock against cpu_stop trying to
1323 * bring down the CPU on non-preemptive kernel.
1324 */
e22bee78 1325 cpu_relax();
5035b20f 1326 cond_resched();
e22bee78
TH
1327 }
1328}
1329
25511a47
TH
1330struct idle_rebind {
1331 int cnt; /* # workers to be rebound */
1332 struct completion done; /* all workers rebound */
1333};
1334
1335/*
1336 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1337 * happen synchronously for idle workers. worker_thread() will test
1338 * %WORKER_REBIND before leaving idle and call this function.
1339 */
1340static void idle_worker_rebind(struct worker *worker)
1341{
1342 struct global_cwq *gcwq = worker->pool->gcwq;
1343
1344 /* CPU must be online at this point */
1345 WARN_ON(!worker_maybe_bind_and_lock(worker));
1346 if (!--worker->idle_rebind->cnt)
1347 complete(&worker->idle_rebind->done);
1348 spin_unlock_irq(&worker->pool->gcwq->lock);
1349
1350 /* we did our part, wait for rebind_workers() to finish up */
1351 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1352}
1353
e22bee78 1354/*
25511a47 1355 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1356 * the associated cpu which is coming back online. This is scheduled by
1357 * cpu up but can race with other cpu hotplug operations and may be
1358 * executed twice without intervening cpu down.
e22bee78 1359 */
25511a47 1360static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1361{
1362 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1363 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1364
1365 if (worker_maybe_bind_and_lock(worker))
1366 worker_clr_flags(worker, WORKER_REBIND);
1367
1368 spin_unlock_irq(&gcwq->lock);
1369}
1370
25511a47
TH
1371/**
1372 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1373 * @gcwq: gcwq of interest
1374 *
1375 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1376 * is different for idle and busy ones.
1377 *
1378 * The idle ones should be rebound synchronously and idle rebinding should
1379 * be complete before any worker starts executing work items with
1380 * concurrency management enabled; otherwise, scheduler may oops trying to
1381 * wake up non-local idle worker from wq_worker_sleeping().
1382 *
1383 * This is achieved by repeatedly requesting rebinding until all idle
1384 * workers are known to have been rebound under @gcwq->lock and holding all
1385 * idle workers from becoming busy until idle rebinding is complete.
1386 *
1387 * Once idle workers are rebound, busy workers can be rebound as they
1388 * finish executing their current work items. Queueing the rebind work at
1389 * the head of their scheduled lists is enough. Note that nr_running will
1390 * be properbly bumped as busy workers rebind.
1391 *
1392 * On return, all workers are guaranteed to either be bound or have rebind
1393 * work item scheduled.
1394 */
1395static void rebind_workers(struct global_cwq *gcwq)
1396 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1397{
1398 struct idle_rebind idle_rebind;
1399 struct worker_pool *pool;
1400 struct worker *worker;
1401 struct hlist_node *pos;
1402 int i;
1403
1404 lockdep_assert_held(&gcwq->lock);
1405
1406 for_each_worker_pool(pool, gcwq)
1407 lockdep_assert_held(&pool->manager_mutex);
1408
1409 /*
1410 * Rebind idle workers. Interlocked both ways. We wait for
1411 * workers to rebind via @idle_rebind.done. Workers will wait for
1412 * us to finish up by watching %WORKER_REBIND.
1413 */
1414 init_completion(&idle_rebind.done);
1415retry:
1416 idle_rebind.cnt = 1;
1417 INIT_COMPLETION(idle_rebind.done);
1418
1419 /* set REBIND and kick idle ones, we'll wait for these later */
1420 for_each_worker_pool(pool, gcwq) {
1421 list_for_each_entry(worker, &pool->idle_list, entry) {
1422 if (worker->flags & WORKER_REBIND)
1423 continue;
1424
1425 /* morph UNBOUND to REBIND */
1426 worker->flags &= ~WORKER_UNBOUND;
1427 worker->flags |= WORKER_REBIND;
1428
1429 idle_rebind.cnt++;
1430 worker->idle_rebind = &idle_rebind;
1431
1432 /* worker_thread() will call idle_worker_rebind() */
1433 wake_up_process(worker->task);
1434 }
1435 }
1436
1437 if (--idle_rebind.cnt) {
1438 spin_unlock_irq(&gcwq->lock);
1439 wait_for_completion(&idle_rebind.done);
1440 spin_lock_irq(&gcwq->lock);
1441 /* busy ones might have become idle while waiting, retry */
1442 goto retry;
1443 }
1444
1445 /*
1446 * All idle workers are rebound and waiting for %WORKER_REBIND to
1447 * be cleared inside idle_worker_rebind(). Clear and release.
1448 * Clearing %WORKER_REBIND from this foreign context is safe
1449 * because these workers are still guaranteed to be idle.
1450 */
1451 for_each_worker_pool(pool, gcwq)
1452 list_for_each_entry(worker, &pool->idle_list, entry)
1453 worker->flags &= ~WORKER_REBIND;
1454
1455 wake_up_all(&gcwq->rebind_hold);
1456
1457 /* rebind busy workers */
1458 for_each_busy_worker(worker, i, pos, gcwq) {
1459 struct work_struct *rebind_work = &worker->rebind_work;
1460
1461 /* morph UNBOUND to REBIND */
1462 worker->flags &= ~WORKER_UNBOUND;
1463 worker->flags |= WORKER_REBIND;
1464
1465 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1466 work_data_bits(rebind_work)))
1467 continue;
1468
1469 /* wq doesn't matter, use the default one */
1470 debug_work_activate(rebind_work);
1471 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1472 worker->scheduled.next,
1473 work_color_to_flags(WORK_NO_COLOR));
1474 }
1475}
1476
c34056a3
TH
1477static struct worker *alloc_worker(void)
1478{
1479 struct worker *worker;
1480
1481 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1482 if (worker) {
1483 INIT_LIST_HEAD(&worker->entry);
affee4b2 1484 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1485 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1486 /* on creation a worker is in !idle && prep state */
1487 worker->flags = WORKER_PREP;
c8e55f36 1488 }
c34056a3
TH
1489 return worker;
1490}
1491
1492/**
1493 * create_worker - create a new workqueue worker
63d95a91 1494 * @pool: pool the new worker will belong to
c34056a3 1495 *
63d95a91 1496 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1497 * can be started by calling start_worker() or destroyed using
1498 * destroy_worker().
1499 *
1500 * CONTEXT:
1501 * Might sleep. Does GFP_KERNEL allocations.
1502 *
1503 * RETURNS:
1504 * Pointer to the newly created worker.
1505 */
bc2ae0f5 1506static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1507{
63d95a91 1508 struct global_cwq *gcwq = pool->gcwq;
3270476a 1509 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1510 struct worker *worker = NULL;
f3421797 1511 int id = -1;
c34056a3 1512
8b03ae3c 1513 spin_lock_irq(&gcwq->lock);
bd7bdd43 1514 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1515 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1516 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1517 goto fail;
8b03ae3c 1518 spin_lock_irq(&gcwq->lock);
c34056a3 1519 }
8b03ae3c 1520 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1521
1522 worker = alloc_worker();
1523 if (!worker)
1524 goto fail;
1525
bd7bdd43 1526 worker->pool = pool;
c34056a3
TH
1527 worker->id = id;
1528
bc2ae0f5 1529 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1530 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1531 worker, cpu_to_node(gcwq->cpu),
1532 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1533 else
1534 worker->task = kthread_create(worker_thread, worker,
3270476a 1535 "kworker/u:%d%s", id, pri);
c34056a3
TH
1536 if (IS_ERR(worker->task))
1537 goto fail;
1538
3270476a
TH
1539 if (worker_pool_pri(pool))
1540 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1541
db7bccf4 1542 /*
bc2ae0f5
TH
1543 * Determine CPU binding of the new worker depending on
1544 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1545 * flag remains stable across this function. See the comments
1546 * above the flag definition for details.
1547 *
1548 * As an unbound worker may later become a regular one if CPU comes
1549 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1550 */
bc2ae0f5 1551 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1552 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1553 } else {
db7bccf4 1554 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1555 worker->flags |= WORKER_UNBOUND;
f3421797 1556 }
c34056a3
TH
1557
1558 return worker;
1559fail:
1560 if (id >= 0) {
8b03ae3c 1561 spin_lock_irq(&gcwq->lock);
bd7bdd43 1562 ida_remove(&pool->worker_ida, id);
8b03ae3c 1563 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1564 }
1565 kfree(worker);
1566 return NULL;
1567}
1568
1569/**
1570 * start_worker - start a newly created worker
1571 * @worker: worker to start
1572 *
c8e55f36 1573 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1574 *
1575 * CONTEXT:
8b03ae3c 1576 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1577 */
1578static void start_worker(struct worker *worker)
1579{
cb444766 1580 worker->flags |= WORKER_STARTED;
bd7bdd43 1581 worker->pool->nr_workers++;
c8e55f36 1582 worker_enter_idle(worker);
c34056a3
TH
1583 wake_up_process(worker->task);
1584}
1585
1586/**
1587 * destroy_worker - destroy a workqueue worker
1588 * @worker: worker to be destroyed
1589 *
c8e55f36
TH
1590 * Destroy @worker and adjust @gcwq stats accordingly.
1591 *
1592 * CONTEXT:
1593 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1594 */
1595static void destroy_worker(struct worker *worker)
1596{
bd7bdd43
TH
1597 struct worker_pool *pool = worker->pool;
1598 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1599 int id = worker->id;
1600
1601 /* sanity check frenzy */
1602 BUG_ON(worker->current_work);
affee4b2 1603 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1604
c8e55f36 1605 if (worker->flags & WORKER_STARTED)
bd7bdd43 1606 pool->nr_workers--;
c8e55f36 1607 if (worker->flags & WORKER_IDLE)
bd7bdd43 1608 pool->nr_idle--;
c8e55f36
TH
1609
1610 list_del_init(&worker->entry);
cb444766 1611 worker->flags |= WORKER_DIE;
c8e55f36
TH
1612
1613 spin_unlock_irq(&gcwq->lock);
1614
c34056a3
TH
1615 kthread_stop(worker->task);
1616 kfree(worker);
1617
8b03ae3c 1618 spin_lock_irq(&gcwq->lock);
bd7bdd43 1619 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1620}
1621
63d95a91 1622static void idle_worker_timeout(unsigned long __pool)
e22bee78 1623{
63d95a91
TH
1624 struct worker_pool *pool = (void *)__pool;
1625 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1626
1627 spin_lock_irq(&gcwq->lock);
1628
63d95a91 1629 if (too_many_workers(pool)) {
e22bee78
TH
1630 struct worker *worker;
1631 unsigned long expires;
1632
1633 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1634 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1635 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1636
1637 if (time_before(jiffies, expires))
63d95a91 1638 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1639 else {
1640 /* it's been idle for too long, wake up manager */
11ebea50 1641 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1642 wake_up_worker(pool);
d5abe669 1643 }
e22bee78
TH
1644 }
1645
1646 spin_unlock_irq(&gcwq->lock);
1647}
d5abe669 1648
e22bee78
TH
1649static bool send_mayday(struct work_struct *work)
1650{
1651 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1652 struct workqueue_struct *wq = cwq->wq;
f3421797 1653 unsigned int cpu;
e22bee78
TH
1654
1655 if (!(wq->flags & WQ_RESCUER))
1656 return false;
1657
1658 /* mayday mayday mayday */
bd7bdd43 1659 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1660 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1661 if (cpu == WORK_CPU_UNBOUND)
1662 cpu = 0;
f2e005aa 1663 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1664 wake_up_process(wq->rescuer->task);
1665 return true;
1666}
1667
63d95a91 1668static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1669{
63d95a91
TH
1670 struct worker_pool *pool = (void *)__pool;
1671 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1672 struct work_struct *work;
1673
1674 spin_lock_irq(&gcwq->lock);
1675
63d95a91 1676 if (need_to_create_worker(pool)) {
e22bee78
TH
1677 /*
1678 * We've been trying to create a new worker but
1679 * haven't been successful. We might be hitting an
1680 * allocation deadlock. Send distress signals to
1681 * rescuers.
1682 */
63d95a91 1683 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1684 send_mayday(work);
1da177e4 1685 }
e22bee78
TH
1686
1687 spin_unlock_irq(&gcwq->lock);
1688
63d95a91 1689 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1690}
1691
e22bee78
TH
1692/**
1693 * maybe_create_worker - create a new worker if necessary
63d95a91 1694 * @pool: pool to create a new worker for
e22bee78 1695 *
63d95a91 1696 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1697 * have at least one idle worker on return from this function. If
1698 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1699 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1700 * possible allocation deadlock.
1701 *
1702 * On return, need_to_create_worker() is guaranteed to be false and
1703 * may_start_working() true.
1704 *
1705 * LOCKING:
1706 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1707 * multiple times. Does GFP_KERNEL allocations. Called only from
1708 * manager.
1709 *
1710 * RETURNS:
1711 * false if no action was taken and gcwq->lock stayed locked, true
1712 * otherwise.
1713 */
63d95a91 1714static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1715__releases(&gcwq->lock)
1716__acquires(&gcwq->lock)
1da177e4 1717{
63d95a91
TH
1718 struct global_cwq *gcwq = pool->gcwq;
1719
1720 if (!need_to_create_worker(pool))
e22bee78
TH
1721 return false;
1722restart:
9f9c2364
TH
1723 spin_unlock_irq(&gcwq->lock);
1724
e22bee78 1725 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1726 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1727
1728 while (true) {
1729 struct worker *worker;
1730
bc2ae0f5 1731 worker = create_worker(pool);
e22bee78 1732 if (worker) {
63d95a91 1733 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1734 spin_lock_irq(&gcwq->lock);
1735 start_worker(worker);
63d95a91 1736 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1737 return true;
1738 }
1739
63d95a91 1740 if (!need_to_create_worker(pool))
e22bee78 1741 break;
1da177e4 1742
e22bee78
TH
1743 __set_current_state(TASK_INTERRUPTIBLE);
1744 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1745
63d95a91 1746 if (!need_to_create_worker(pool))
e22bee78
TH
1747 break;
1748 }
1749
63d95a91 1750 del_timer_sync(&pool->mayday_timer);
e22bee78 1751 spin_lock_irq(&gcwq->lock);
63d95a91 1752 if (need_to_create_worker(pool))
e22bee78
TH
1753 goto restart;
1754 return true;
1755}
1756
1757/**
1758 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1759 * @pool: pool to destroy workers for
e22bee78 1760 *
63d95a91 1761 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1762 * IDLE_WORKER_TIMEOUT.
1763 *
1764 * LOCKING:
1765 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1766 * multiple times. Called only from manager.
1767 *
1768 * RETURNS:
1769 * false if no action was taken and gcwq->lock stayed locked, true
1770 * otherwise.
1771 */
63d95a91 1772static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1773{
1774 bool ret = false;
1da177e4 1775
63d95a91 1776 while (too_many_workers(pool)) {
e22bee78
TH
1777 struct worker *worker;
1778 unsigned long expires;
3af24433 1779
63d95a91 1780 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1781 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1782
e22bee78 1783 if (time_before(jiffies, expires)) {
63d95a91 1784 mod_timer(&pool->idle_timer, expires);
3af24433 1785 break;
e22bee78 1786 }
1da177e4 1787
e22bee78
TH
1788 destroy_worker(worker);
1789 ret = true;
1da177e4 1790 }
3af24433 1791
e22bee78
TH
1792 return ret;
1793}
1794
1795/**
1796 * manage_workers - manage worker pool
1797 * @worker: self
1798 *
1799 * Assume the manager role and manage gcwq worker pool @worker belongs
1800 * to. At any given time, there can be only zero or one manager per
1801 * gcwq. The exclusion is handled automatically by this function.
1802 *
1803 * The caller can safely start processing works on false return. On
1804 * true return, it's guaranteed that need_to_create_worker() is false
1805 * and may_start_working() is true.
1806 *
1807 * CONTEXT:
1808 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1809 * multiple times. Does GFP_KERNEL allocations.
1810 *
1811 * RETURNS:
1812 * false if no action was taken and gcwq->lock stayed locked, true if
1813 * some action was taken.
1814 */
1815static bool manage_workers(struct worker *worker)
1816{
63d95a91 1817 struct worker_pool *pool = worker->pool;
e22bee78
TH
1818 bool ret = false;
1819
60373152 1820 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
1821 return ret;
1822
11ebea50 1823 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
1824
1825 /*
1826 * Destroy and then create so that may_start_working() is true
1827 * on return.
1828 */
63d95a91
TH
1829 ret |= maybe_destroy_workers(pool);
1830 ret |= maybe_create_worker(pool);
e22bee78 1831
60373152 1832 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
1833 return ret;
1834}
1835
affee4b2
TH
1836/**
1837 * move_linked_works - move linked works to a list
1838 * @work: start of series of works to be scheduled
1839 * @head: target list to append @work to
1840 * @nextp: out paramter for nested worklist walking
1841 *
1842 * Schedule linked works starting from @work to @head. Work series to
1843 * be scheduled starts at @work and includes any consecutive work with
1844 * WORK_STRUCT_LINKED set in its predecessor.
1845 *
1846 * If @nextp is not NULL, it's updated to point to the next work of
1847 * the last scheduled work. This allows move_linked_works() to be
1848 * nested inside outer list_for_each_entry_safe().
1849 *
1850 * CONTEXT:
8b03ae3c 1851 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1852 */
1853static void move_linked_works(struct work_struct *work, struct list_head *head,
1854 struct work_struct **nextp)
1855{
1856 struct work_struct *n;
1857
1858 /*
1859 * Linked worklist will always end before the end of the list,
1860 * use NULL for list head.
1861 */
1862 list_for_each_entry_safe_from(work, n, NULL, entry) {
1863 list_move_tail(&work->entry, head);
1864 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1865 break;
1866 }
1867
1868 /*
1869 * If we're already inside safe list traversal and have moved
1870 * multiple works to the scheduled queue, the next position
1871 * needs to be updated.
1872 */
1873 if (nextp)
1874 *nextp = n;
1875}
1876
1e19ffc6
TH
1877static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1878{
1879 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1880 struct work_struct, entry);
1881
cdadf009 1882 trace_workqueue_activate_work(work);
3270476a 1883 move_linked_works(work, &cwq->pool->worklist, NULL);
8a2e8e5d 1884 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1885 cwq->nr_active++;
1886}
1887
73f53c4a
TH
1888/**
1889 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1890 * @cwq: cwq of interest
1891 * @color: color of work which left the queue
8a2e8e5d 1892 * @delayed: for a delayed work
73f53c4a
TH
1893 *
1894 * A work either has completed or is removed from pending queue,
1895 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1896 *
1897 * CONTEXT:
8b03ae3c 1898 * spin_lock_irq(gcwq->lock).
73f53c4a 1899 */
8a2e8e5d
TH
1900static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1901 bool delayed)
73f53c4a
TH
1902{
1903 /* ignore uncolored works */
1904 if (color == WORK_NO_COLOR)
1905 return;
1906
1907 cwq->nr_in_flight[color]--;
1e19ffc6 1908
8a2e8e5d
TH
1909 if (!delayed) {
1910 cwq->nr_active--;
1911 if (!list_empty(&cwq->delayed_works)) {
1912 /* one down, submit a delayed one */
1913 if (cwq->nr_active < cwq->max_active)
1914 cwq_activate_first_delayed(cwq);
1915 }
502ca9d8 1916 }
73f53c4a
TH
1917
1918 /* is flush in progress and are we at the flushing tip? */
1919 if (likely(cwq->flush_color != color))
1920 return;
1921
1922 /* are there still in-flight works? */
1923 if (cwq->nr_in_flight[color])
1924 return;
1925
1926 /* this cwq is done, clear flush_color */
1927 cwq->flush_color = -1;
1928
1929 /*
1930 * If this was the last cwq, wake up the first flusher. It
1931 * will handle the rest.
1932 */
1933 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1934 complete(&cwq->wq->first_flusher->done);
1935}
1936
a62428c0
TH
1937/**
1938 * process_one_work - process single work
c34056a3 1939 * @worker: self
a62428c0
TH
1940 * @work: work to process
1941 *
1942 * Process @work. This function contains all the logics necessary to
1943 * process a single work including synchronization against and
1944 * interaction with other workers on the same cpu, queueing and
1945 * flushing. As long as context requirement is met, any worker can
1946 * call this function to process a work.
1947 *
1948 * CONTEXT:
8b03ae3c 1949 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1950 */
c34056a3 1951static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1952__releases(&gcwq->lock)
1953__acquires(&gcwq->lock)
a62428c0 1954{
7e11629d 1955 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
1956 struct worker_pool *pool = worker->pool;
1957 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 1958 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1959 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1960 work_func_t f = work->func;
73f53c4a 1961 int work_color;
7e11629d 1962 struct worker *collision;
a62428c0
TH
1963#ifdef CONFIG_LOCKDEP
1964 /*
1965 * It is permissible to free the struct work_struct from
1966 * inside the function that is called from it, this we need to
1967 * take into account for lockdep too. To avoid bogus "held
1968 * lock freed" warnings as well as problems when looking into
1969 * work->lockdep_map, make a copy and use that here.
1970 */
4d82a1de
PZ
1971 struct lockdep_map lockdep_map;
1972
1973 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1974#endif
6fec10a1
TH
1975 /*
1976 * Ensure we're on the correct CPU. DISASSOCIATED test is
1977 * necessary to avoid spurious warnings from rescuers servicing the
1978 * unbound or a disassociated gcwq.
1979 */
25511a47 1980 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 1981 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
1982 raw_smp_processor_id() != gcwq->cpu);
1983
7e11629d
TH
1984 /*
1985 * A single work shouldn't be executed concurrently by
1986 * multiple workers on a single cpu. Check whether anyone is
1987 * already processing the work. If so, defer the work to the
1988 * currently executing one.
1989 */
1990 collision = __find_worker_executing_work(gcwq, bwh, work);
1991 if (unlikely(collision)) {
1992 move_linked_works(work, &collision->scheduled, NULL);
1993 return;
1994 }
1995
8930caba 1996 /* claim and dequeue */
a62428c0 1997 debug_work_deactivate(work);
c8e55f36 1998 hlist_add_head(&worker->hentry, bwh);
c34056a3 1999 worker->current_work = work;
8cca0eea 2000 worker->current_cwq = cwq;
73f53c4a 2001 work_color = get_work_color(work);
7a22ad75 2002
a62428c0
TH
2003 list_del_init(&work->entry);
2004
fb0e7beb
TH
2005 /*
2006 * CPU intensive works don't participate in concurrency
2007 * management. They're the scheduler's responsibility.
2008 */
2009 if (unlikely(cpu_intensive))
2010 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2011
974271c4
TH
2012 /*
2013 * Unbound gcwq isn't concurrency managed and work items should be
2014 * executed ASAP. Wake up another worker if necessary.
2015 */
63d95a91
TH
2016 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2017 wake_up_worker(pool);
974271c4 2018
8930caba
TH
2019 /*
2020 * Record the last CPU and clear PENDING. The following wmb is
2021 * paired with the implied mb in test_and_set_bit(PENDING) and
2022 * ensures all updates to @work made here are visible to and
2023 * precede any updates by the next PENDING owner. Also, clear
2024 * PENDING inside @gcwq->lock so that PENDING and queued state
2025 * changes happen together while IRQ is disabled.
2026 */
2027 smp_wmb();
2028 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2029
8930caba 2030 spin_unlock_irq(&gcwq->lock);
959d1af8 2031
e159489b 2032 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2033 lock_map_acquire(&lockdep_map);
e36c886a 2034 trace_workqueue_execute_start(work);
a62428c0 2035 f(work);
e36c886a
AV
2036 /*
2037 * While we must be careful to not use "work" after this, the trace
2038 * point will only record its address.
2039 */
2040 trace_workqueue_execute_end(work);
a62428c0
TH
2041 lock_map_release(&lockdep_map);
2042 lock_map_release(&cwq->wq->lockdep_map);
2043
2044 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2045 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2046 "%s/0x%08x/%d\n",
2047 current->comm, preempt_count(), task_pid_nr(current));
2048 printk(KERN_ERR " last function: ");
2049 print_symbol("%s\n", (unsigned long)f);
2050 debug_show_held_locks(current);
2051 dump_stack();
2052 }
2053
8b03ae3c 2054 spin_lock_irq(&gcwq->lock);
a62428c0 2055
fb0e7beb
TH
2056 /* clear cpu intensive status */
2057 if (unlikely(cpu_intensive))
2058 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2059
a62428c0 2060 /* we're done with it, release */
c8e55f36 2061 hlist_del_init(&worker->hentry);
c34056a3 2062 worker->current_work = NULL;
8cca0eea 2063 worker->current_cwq = NULL;
8a2e8e5d 2064 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2065}
2066
affee4b2
TH
2067/**
2068 * process_scheduled_works - process scheduled works
2069 * @worker: self
2070 *
2071 * Process all scheduled works. Please note that the scheduled list
2072 * may change while processing a work, so this function repeatedly
2073 * fetches a work from the top and executes it.
2074 *
2075 * CONTEXT:
8b03ae3c 2076 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2077 * multiple times.
2078 */
2079static void process_scheduled_works(struct worker *worker)
1da177e4 2080{
affee4b2
TH
2081 while (!list_empty(&worker->scheduled)) {
2082 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2083 struct work_struct, entry);
c34056a3 2084 process_one_work(worker, work);
1da177e4 2085 }
1da177e4
LT
2086}
2087
4690c4ab
TH
2088/**
2089 * worker_thread - the worker thread function
c34056a3 2090 * @__worker: self
4690c4ab 2091 *
e22bee78
TH
2092 * The gcwq worker thread function. There's a single dynamic pool of
2093 * these per each cpu. These workers process all works regardless of
2094 * their specific target workqueue. The only exception is works which
2095 * belong to workqueues with a rescuer which will be explained in
2096 * rescuer_thread().
4690c4ab 2097 */
c34056a3 2098static int worker_thread(void *__worker)
1da177e4 2099{
c34056a3 2100 struct worker *worker = __worker;
bd7bdd43
TH
2101 struct worker_pool *pool = worker->pool;
2102 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2103
e22bee78
TH
2104 /* tell the scheduler that this is a workqueue worker */
2105 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2106woke_up:
c8e55f36 2107 spin_lock_irq(&gcwq->lock);
1da177e4 2108
25511a47
TH
2109 /*
2110 * DIE can be set only while idle and REBIND set while busy has
2111 * @worker->rebind_work scheduled. Checking here is enough.
2112 */
2113 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2114 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2115
2116 if (worker->flags & WORKER_DIE) {
2117 worker->task->flags &= ~PF_WQ_WORKER;
2118 return 0;
2119 }
2120
2121 idle_worker_rebind(worker);
2122 goto woke_up;
c8e55f36 2123 }
affee4b2 2124
c8e55f36 2125 worker_leave_idle(worker);
db7bccf4 2126recheck:
e22bee78 2127 /* no more worker necessary? */
63d95a91 2128 if (!need_more_worker(pool))
e22bee78
TH
2129 goto sleep;
2130
2131 /* do we need to manage? */
63d95a91 2132 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2133 goto recheck;
2134
c8e55f36
TH
2135 /*
2136 * ->scheduled list can only be filled while a worker is
2137 * preparing to process a work or actually processing it.
2138 * Make sure nobody diddled with it while I was sleeping.
2139 */
2140 BUG_ON(!list_empty(&worker->scheduled));
2141
e22bee78
TH
2142 /*
2143 * When control reaches this point, we're guaranteed to have
2144 * at least one idle worker or that someone else has already
2145 * assumed the manager role.
2146 */
2147 worker_clr_flags(worker, WORKER_PREP);
2148
2149 do {
c8e55f36 2150 struct work_struct *work =
bd7bdd43 2151 list_first_entry(&pool->worklist,
c8e55f36
TH
2152 struct work_struct, entry);
2153
2154 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2155 /* optimization path, not strictly necessary */
2156 process_one_work(worker, work);
2157 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2158 process_scheduled_works(worker);
c8e55f36
TH
2159 } else {
2160 move_linked_works(work, &worker->scheduled, NULL);
2161 process_scheduled_works(worker);
affee4b2 2162 }
63d95a91 2163 } while (keep_working(pool));
e22bee78
TH
2164
2165 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2166sleep:
63d95a91 2167 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2168 goto recheck;
d313dd85 2169
c8e55f36 2170 /*
e22bee78
TH
2171 * gcwq->lock is held and there's no work to process and no
2172 * need to manage, sleep. Workers are woken up only while
2173 * holding gcwq->lock or from local cpu, so setting the
2174 * current state before releasing gcwq->lock is enough to
2175 * prevent losing any event.
c8e55f36
TH
2176 */
2177 worker_enter_idle(worker);
2178 __set_current_state(TASK_INTERRUPTIBLE);
2179 spin_unlock_irq(&gcwq->lock);
2180 schedule();
2181 goto woke_up;
1da177e4
LT
2182}
2183
e22bee78
TH
2184/**
2185 * rescuer_thread - the rescuer thread function
2186 * @__wq: the associated workqueue
2187 *
2188 * Workqueue rescuer thread function. There's one rescuer for each
2189 * workqueue which has WQ_RESCUER set.
2190 *
2191 * Regular work processing on a gcwq may block trying to create a new
2192 * worker which uses GFP_KERNEL allocation which has slight chance of
2193 * developing into deadlock if some works currently on the same queue
2194 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2195 * the problem rescuer solves.
2196 *
2197 * When such condition is possible, the gcwq summons rescuers of all
2198 * workqueues which have works queued on the gcwq and let them process
2199 * those works so that forward progress can be guaranteed.
2200 *
2201 * This should happen rarely.
2202 */
2203static int rescuer_thread(void *__wq)
2204{
2205 struct workqueue_struct *wq = __wq;
2206 struct worker *rescuer = wq->rescuer;
2207 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2208 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2209 unsigned int cpu;
2210
2211 set_user_nice(current, RESCUER_NICE_LEVEL);
2212repeat:
2213 set_current_state(TASK_INTERRUPTIBLE);
2214
2215 if (kthread_should_stop())
2216 return 0;
2217
f3421797
TH
2218 /*
2219 * See whether any cpu is asking for help. Unbounded
2220 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2221 */
f2e005aa 2222 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2223 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2224 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2225 struct worker_pool *pool = cwq->pool;
2226 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2227 struct work_struct *work, *n;
2228
2229 __set_current_state(TASK_RUNNING);
f2e005aa 2230 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2231
2232 /* migrate to the target cpu if possible */
bd7bdd43 2233 rescuer->pool = pool;
e22bee78
TH
2234 worker_maybe_bind_and_lock(rescuer);
2235
2236 /*
2237 * Slurp in all works issued via this workqueue and
2238 * process'em.
2239 */
2240 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2241 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2242 if (get_work_cwq(work) == cwq)
2243 move_linked_works(work, scheduled, &n);
2244
2245 process_scheduled_works(rescuer);
7576958a
TH
2246
2247 /*
2248 * Leave this gcwq. If keep_working() is %true, notify a
2249 * regular worker; otherwise, we end up with 0 concurrency
2250 * and stalling the execution.
2251 */
63d95a91
TH
2252 if (keep_working(pool))
2253 wake_up_worker(pool);
7576958a 2254
e22bee78
TH
2255 spin_unlock_irq(&gcwq->lock);
2256 }
2257
2258 schedule();
2259 goto repeat;
1da177e4
LT
2260}
2261
fc2e4d70
ON
2262struct wq_barrier {
2263 struct work_struct work;
2264 struct completion done;
2265};
2266
2267static void wq_barrier_func(struct work_struct *work)
2268{
2269 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2270 complete(&barr->done);
2271}
2272
4690c4ab
TH
2273/**
2274 * insert_wq_barrier - insert a barrier work
2275 * @cwq: cwq to insert barrier into
2276 * @barr: wq_barrier to insert
affee4b2
TH
2277 * @target: target work to attach @barr to
2278 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2279 *
affee4b2
TH
2280 * @barr is linked to @target such that @barr is completed only after
2281 * @target finishes execution. Please note that the ordering
2282 * guarantee is observed only with respect to @target and on the local
2283 * cpu.
2284 *
2285 * Currently, a queued barrier can't be canceled. This is because
2286 * try_to_grab_pending() can't determine whether the work to be
2287 * grabbed is at the head of the queue and thus can't clear LINKED
2288 * flag of the previous work while there must be a valid next work
2289 * after a work with LINKED flag set.
2290 *
2291 * Note that when @worker is non-NULL, @target may be modified
2292 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2293 *
2294 * CONTEXT:
8b03ae3c 2295 * spin_lock_irq(gcwq->lock).
4690c4ab 2296 */
83c22520 2297static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2298 struct wq_barrier *barr,
2299 struct work_struct *target, struct worker *worker)
fc2e4d70 2300{
affee4b2
TH
2301 struct list_head *head;
2302 unsigned int linked = 0;
2303
dc186ad7 2304 /*
8b03ae3c 2305 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2306 * as we know for sure that this will not trigger any of the
2307 * checks and call back into the fixup functions where we
2308 * might deadlock.
2309 */
ca1cab37 2310 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2311 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2312 init_completion(&barr->done);
83c22520 2313
affee4b2
TH
2314 /*
2315 * If @target is currently being executed, schedule the
2316 * barrier to the worker; otherwise, put it after @target.
2317 */
2318 if (worker)
2319 head = worker->scheduled.next;
2320 else {
2321 unsigned long *bits = work_data_bits(target);
2322
2323 head = target->entry.next;
2324 /* there can already be other linked works, inherit and set */
2325 linked = *bits & WORK_STRUCT_LINKED;
2326 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2327 }
2328
dc186ad7 2329 debug_work_activate(&barr->work);
affee4b2
TH
2330 insert_work(cwq, &barr->work, head,
2331 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2332}
2333
73f53c4a
TH
2334/**
2335 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2336 * @wq: workqueue being flushed
2337 * @flush_color: new flush color, < 0 for no-op
2338 * @work_color: new work color, < 0 for no-op
2339 *
2340 * Prepare cwqs for workqueue flushing.
2341 *
2342 * If @flush_color is non-negative, flush_color on all cwqs should be
2343 * -1. If no cwq has in-flight commands at the specified color, all
2344 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2345 * has in flight commands, its cwq->flush_color is set to
2346 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2347 * wakeup logic is armed and %true is returned.
2348 *
2349 * The caller should have initialized @wq->first_flusher prior to
2350 * calling this function with non-negative @flush_color. If
2351 * @flush_color is negative, no flush color update is done and %false
2352 * is returned.
2353 *
2354 * If @work_color is non-negative, all cwqs should have the same
2355 * work_color which is previous to @work_color and all will be
2356 * advanced to @work_color.
2357 *
2358 * CONTEXT:
2359 * mutex_lock(wq->flush_mutex).
2360 *
2361 * RETURNS:
2362 * %true if @flush_color >= 0 and there's something to flush. %false
2363 * otherwise.
2364 */
2365static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2366 int flush_color, int work_color)
1da177e4 2367{
73f53c4a
TH
2368 bool wait = false;
2369 unsigned int cpu;
1da177e4 2370
73f53c4a
TH
2371 if (flush_color >= 0) {
2372 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2373 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2374 }
2355b70f 2375
f3421797 2376 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2377 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2378 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2379
8b03ae3c 2380 spin_lock_irq(&gcwq->lock);
83c22520 2381
73f53c4a
TH
2382 if (flush_color >= 0) {
2383 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2384
73f53c4a
TH
2385 if (cwq->nr_in_flight[flush_color]) {
2386 cwq->flush_color = flush_color;
2387 atomic_inc(&wq->nr_cwqs_to_flush);
2388 wait = true;
2389 }
2390 }
1da177e4 2391
73f53c4a
TH
2392 if (work_color >= 0) {
2393 BUG_ON(work_color != work_next_color(cwq->work_color));
2394 cwq->work_color = work_color;
2395 }
1da177e4 2396
8b03ae3c 2397 spin_unlock_irq(&gcwq->lock);
1da177e4 2398 }
2355b70f 2399
73f53c4a
TH
2400 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2401 complete(&wq->first_flusher->done);
14441960 2402
73f53c4a 2403 return wait;
1da177e4
LT
2404}
2405
0fcb78c2 2406/**
1da177e4 2407 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2408 * @wq: workqueue to flush
1da177e4
LT
2409 *
2410 * Forces execution of the workqueue and blocks until its completion.
2411 * This is typically used in driver shutdown handlers.
2412 *
fc2e4d70
ON
2413 * We sleep until all works which were queued on entry have been handled,
2414 * but we are not livelocked by new incoming ones.
1da177e4 2415 */
7ad5b3a5 2416void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2417{
73f53c4a
TH
2418 struct wq_flusher this_flusher = {
2419 .list = LIST_HEAD_INIT(this_flusher.list),
2420 .flush_color = -1,
2421 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2422 };
2423 int next_color;
1da177e4 2424
3295f0ef
IM
2425 lock_map_acquire(&wq->lockdep_map);
2426 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2427
2428 mutex_lock(&wq->flush_mutex);
2429
2430 /*
2431 * Start-to-wait phase
2432 */
2433 next_color = work_next_color(wq->work_color);
2434
2435 if (next_color != wq->flush_color) {
2436 /*
2437 * Color space is not full. The current work_color
2438 * becomes our flush_color and work_color is advanced
2439 * by one.
2440 */
2441 BUG_ON(!list_empty(&wq->flusher_overflow));
2442 this_flusher.flush_color = wq->work_color;
2443 wq->work_color = next_color;
2444
2445 if (!wq->first_flusher) {
2446 /* no flush in progress, become the first flusher */
2447 BUG_ON(wq->flush_color != this_flusher.flush_color);
2448
2449 wq->first_flusher = &this_flusher;
2450
2451 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2452 wq->work_color)) {
2453 /* nothing to flush, done */
2454 wq->flush_color = next_color;
2455 wq->first_flusher = NULL;
2456 goto out_unlock;
2457 }
2458 } else {
2459 /* wait in queue */
2460 BUG_ON(wq->flush_color == this_flusher.flush_color);
2461 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2462 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2463 }
2464 } else {
2465 /*
2466 * Oops, color space is full, wait on overflow queue.
2467 * The next flush completion will assign us
2468 * flush_color and transfer to flusher_queue.
2469 */
2470 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2471 }
2472
2473 mutex_unlock(&wq->flush_mutex);
2474
2475 wait_for_completion(&this_flusher.done);
2476
2477 /*
2478 * Wake-up-and-cascade phase
2479 *
2480 * First flushers are responsible for cascading flushes and
2481 * handling overflow. Non-first flushers can simply return.
2482 */
2483 if (wq->first_flusher != &this_flusher)
2484 return;
2485
2486 mutex_lock(&wq->flush_mutex);
2487
4ce48b37
TH
2488 /* we might have raced, check again with mutex held */
2489 if (wq->first_flusher != &this_flusher)
2490 goto out_unlock;
2491
73f53c4a
TH
2492 wq->first_flusher = NULL;
2493
2494 BUG_ON(!list_empty(&this_flusher.list));
2495 BUG_ON(wq->flush_color != this_flusher.flush_color);
2496
2497 while (true) {
2498 struct wq_flusher *next, *tmp;
2499
2500 /* complete all the flushers sharing the current flush color */
2501 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2502 if (next->flush_color != wq->flush_color)
2503 break;
2504 list_del_init(&next->list);
2505 complete(&next->done);
2506 }
2507
2508 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2509 wq->flush_color != work_next_color(wq->work_color));
2510
2511 /* this flush_color is finished, advance by one */
2512 wq->flush_color = work_next_color(wq->flush_color);
2513
2514 /* one color has been freed, handle overflow queue */
2515 if (!list_empty(&wq->flusher_overflow)) {
2516 /*
2517 * Assign the same color to all overflowed
2518 * flushers, advance work_color and append to
2519 * flusher_queue. This is the start-to-wait
2520 * phase for these overflowed flushers.
2521 */
2522 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2523 tmp->flush_color = wq->work_color;
2524
2525 wq->work_color = work_next_color(wq->work_color);
2526
2527 list_splice_tail_init(&wq->flusher_overflow,
2528 &wq->flusher_queue);
2529 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2530 }
2531
2532 if (list_empty(&wq->flusher_queue)) {
2533 BUG_ON(wq->flush_color != wq->work_color);
2534 break;
2535 }
2536
2537 /*
2538 * Need to flush more colors. Make the next flusher
2539 * the new first flusher and arm cwqs.
2540 */
2541 BUG_ON(wq->flush_color == wq->work_color);
2542 BUG_ON(wq->flush_color != next->flush_color);
2543
2544 list_del_init(&next->list);
2545 wq->first_flusher = next;
2546
2547 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2548 break;
2549
2550 /*
2551 * Meh... this color is already done, clear first
2552 * flusher and repeat cascading.
2553 */
2554 wq->first_flusher = NULL;
2555 }
2556
2557out_unlock:
2558 mutex_unlock(&wq->flush_mutex);
1da177e4 2559}
ae90dd5d 2560EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2561
9c5a2ba7
TH
2562/**
2563 * drain_workqueue - drain a workqueue
2564 * @wq: workqueue to drain
2565 *
2566 * Wait until the workqueue becomes empty. While draining is in progress,
2567 * only chain queueing is allowed. IOW, only currently pending or running
2568 * work items on @wq can queue further work items on it. @wq is flushed
2569 * repeatedly until it becomes empty. The number of flushing is detemined
2570 * by the depth of chaining and should be relatively short. Whine if it
2571 * takes too long.
2572 */
2573void drain_workqueue(struct workqueue_struct *wq)
2574{
2575 unsigned int flush_cnt = 0;
2576 unsigned int cpu;
2577
2578 /*
2579 * __queue_work() needs to test whether there are drainers, is much
2580 * hotter than drain_workqueue() and already looks at @wq->flags.
2581 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2582 */
2583 spin_lock(&workqueue_lock);
2584 if (!wq->nr_drainers++)
2585 wq->flags |= WQ_DRAINING;
2586 spin_unlock(&workqueue_lock);
2587reflush:
2588 flush_workqueue(wq);
2589
2590 for_each_cwq_cpu(cpu, wq) {
2591 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2592 bool drained;
9c5a2ba7 2593
bd7bdd43 2594 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2595 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2596 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2597
2598 if (drained)
9c5a2ba7
TH
2599 continue;
2600
2601 if (++flush_cnt == 10 ||
2602 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2603 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2604 wq->name, flush_cnt);
2605 goto reflush;
2606 }
2607
2608 spin_lock(&workqueue_lock);
2609 if (!--wq->nr_drainers)
2610 wq->flags &= ~WQ_DRAINING;
2611 spin_unlock(&workqueue_lock);
2612}
2613EXPORT_SYMBOL_GPL(drain_workqueue);
2614
baf59022
TH
2615static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2616 bool wait_executing)
db700897 2617{
affee4b2 2618 struct worker *worker = NULL;
8b03ae3c 2619 struct global_cwq *gcwq;
db700897 2620 struct cpu_workqueue_struct *cwq;
db700897
ON
2621
2622 might_sleep();
7a22ad75
TH
2623 gcwq = get_work_gcwq(work);
2624 if (!gcwq)
baf59022 2625 return false;
db700897 2626
8b03ae3c 2627 spin_lock_irq(&gcwq->lock);
db700897
ON
2628 if (!list_empty(&work->entry)) {
2629 /*
2630 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2631 * If it was re-queued to a different gcwq under us, we
2632 * are not going to wait.
db700897
ON
2633 */
2634 smp_rmb();
7a22ad75 2635 cwq = get_work_cwq(work);
bd7bdd43 2636 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2637 goto already_gone;
baf59022 2638 } else if (wait_executing) {
7a22ad75 2639 worker = find_worker_executing_work(gcwq, work);
affee4b2 2640 if (!worker)
4690c4ab 2641 goto already_gone;
7a22ad75 2642 cwq = worker->current_cwq;
baf59022
TH
2643 } else
2644 goto already_gone;
db700897 2645
baf59022 2646 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2647 spin_unlock_irq(&gcwq->lock);
7a22ad75 2648
e159489b
TH
2649 /*
2650 * If @max_active is 1 or rescuer is in use, flushing another work
2651 * item on the same workqueue may lead to deadlock. Make sure the
2652 * flusher is not running on the same workqueue by verifying write
2653 * access.
2654 */
2655 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2656 lock_map_acquire(&cwq->wq->lockdep_map);
2657 else
2658 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2659 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2660
401a8d04 2661 return true;
4690c4ab 2662already_gone:
8b03ae3c 2663 spin_unlock_irq(&gcwq->lock);
401a8d04 2664 return false;
db700897 2665}
baf59022
TH
2666
2667/**
2668 * flush_work - wait for a work to finish executing the last queueing instance
2669 * @work: the work to flush
2670 *
2671 * Wait until @work has finished execution. This function considers
2672 * only the last queueing instance of @work. If @work has been
2673 * enqueued across different CPUs on a non-reentrant workqueue or on
2674 * multiple workqueues, @work might still be executing on return on
2675 * some of the CPUs from earlier queueing.
2676 *
2677 * If @work was queued only on a non-reentrant, ordered or unbound
2678 * workqueue, @work is guaranteed to be idle on return if it hasn't
2679 * been requeued since flush started.
2680 *
2681 * RETURNS:
2682 * %true if flush_work() waited for the work to finish execution,
2683 * %false if it was already idle.
2684 */
2685bool flush_work(struct work_struct *work)
2686{
2687 struct wq_barrier barr;
2688
0976dfc1
SB
2689 lock_map_acquire(&work->lockdep_map);
2690 lock_map_release(&work->lockdep_map);
2691
baf59022
TH
2692 if (start_flush_work(work, &barr, true)) {
2693 wait_for_completion(&barr.done);
2694 destroy_work_on_stack(&barr.work);
2695 return true;
2696 } else
2697 return false;
2698}
db700897
ON
2699EXPORT_SYMBOL_GPL(flush_work);
2700
401a8d04
TH
2701static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2702{
2703 struct wq_barrier barr;
2704 struct worker *worker;
2705
2706 spin_lock_irq(&gcwq->lock);
2707
2708 worker = find_worker_executing_work(gcwq, work);
2709 if (unlikely(worker))
2710 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2711
2712 spin_unlock_irq(&gcwq->lock);
2713
2714 if (unlikely(worker)) {
2715 wait_for_completion(&barr.done);
2716 destroy_work_on_stack(&barr.work);
2717 return true;
2718 } else
2719 return false;
2720}
2721
2722static bool wait_on_work(struct work_struct *work)
2723{
2724 bool ret = false;
2725 int cpu;
2726
2727 might_sleep();
2728
2729 lock_map_acquire(&work->lockdep_map);
2730 lock_map_release(&work->lockdep_map);
2731
2732 for_each_gcwq_cpu(cpu)
2733 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2734 return ret;
2735}
2736
09383498
TH
2737/**
2738 * flush_work_sync - wait until a work has finished execution
2739 * @work: the work to flush
2740 *
2741 * Wait until @work has finished execution. On return, it's
2742 * guaranteed that all queueing instances of @work which happened
2743 * before this function is called are finished. In other words, if
2744 * @work hasn't been requeued since this function was called, @work is
2745 * guaranteed to be idle on return.
2746 *
2747 * RETURNS:
2748 * %true if flush_work_sync() waited for the work to finish execution,
2749 * %false if it was already idle.
2750 */
2751bool flush_work_sync(struct work_struct *work)
2752{
2753 struct wq_barrier barr;
2754 bool pending, waited;
2755
2756 /* we'll wait for executions separately, queue barr only if pending */
2757 pending = start_flush_work(work, &barr, false);
2758
2759 /* wait for executions to finish */
2760 waited = wait_on_work(work);
2761
2762 /* wait for the pending one */
2763 if (pending) {
2764 wait_for_completion(&barr.done);
2765 destroy_work_on_stack(&barr.work);
2766 }
2767
2768 return pending || waited;
2769}
2770EXPORT_SYMBOL_GPL(flush_work_sync);
2771
6e84d644 2772/*
1f1f642e 2773 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2774 * so this work can't be re-armed in any way.
2775 */
2776static int try_to_grab_pending(struct work_struct *work)
2777{
8b03ae3c 2778 struct global_cwq *gcwq;
1f1f642e 2779 int ret = -1;
6e84d644 2780
22df02bb 2781 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2782 return 0;
6e84d644
ON
2783
2784 /*
2785 * The queueing is in progress, or it is already queued. Try to
2786 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2787 */
7a22ad75
TH
2788 gcwq = get_work_gcwq(work);
2789 if (!gcwq)
6e84d644
ON
2790 return ret;
2791
8b03ae3c 2792 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2793 if (!list_empty(&work->entry)) {
2794 /*
7a22ad75 2795 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2796 * In that case we must see the new value after rmb(), see
2797 * insert_work()->wmb().
2798 */
2799 smp_rmb();
7a22ad75 2800 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2801 debug_work_deactivate(work);
6e84d644 2802 list_del_init(&work->entry);
7a22ad75 2803 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2804 get_work_color(work),
2805 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2806 ret = 1;
2807 }
2808 }
8b03ae3c 2809 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2810
2811 return ret;
2812}
2813
401a8d04 2814static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2815 struct timer_list* timer)
2816{
2817 int ret;
2818
2819 do {
2820 ret = (timer && likely(del_timer(timer)));
2821 if (!ret)
2822 ret = try_to_grab_pending(work);
2823 wait_on_work(work);
2824 } while (unlikely(ret < 0));
2825
7a22ad75 2826 clear_work_data(work);
1f1f642e
ON
2827 return ret;
2828}
2829
6e84d644 2830/**
401a8d04
TH
2831 * cancel_work_sync - cancel a work and wait for it to finish
2832 * @work: the work to cancel
6e84d644 2833 *
401a8d04
TH
2834 * Cancel @work and wait for its execution to finish. This function
2835 * can be used even if the work re-queues itself or migrates to
2836 * another workqueue. On return from this function, @work is
2837 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2838 *
401a8d04
TH
2839 * cancel_work_sync(&delayed_work->work) must not be used for
2840 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2841 *
401a8d04 2842 * The caller must ensure that the workqueue on which @work was last
6e84d644 2843 * queued can't be destroyed before this function returns.
401a8d04
TH
2844 *
2845 * RETURNS:
2846 * %true if @work was pending, %false otherwise.
6e84d644 2847 */
401a8d04 2848bool cancel_work_sync(struct work_struct *work)
6e84d644 2849{
1f1f642e 2850 return __cancel_work_timer(work, NULL);
b89deed3 2851}
28e53bdd 2852EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2853
6e84d644 2854/**
401a8d04
TH
2855 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2856 * @dwork: the delayed work to flush
6e84d644 2857 *
401a8d04
TH
2858 * Delayed timer is cancelled and the pending work is queued for
2859 * immediate execution. Like flush_work(), this function only
2860 * considers the last queueing instance of @dwork.
1f1f642e 2861 *
401a8d04
TH
2862 * RETURNS:
2863 * %true if flush_work() waited for the work to finish execution,
2864 * %false if it was already idle.
6e84d644 2865 */
401a8d04
TH
2866bool flush_delayed_work(struct delayed_work *dwork)
2867{
8930caba 2868 local_irq_disable();
401a8d04
TH
2869 if (del_timer_sync(&dwork->timer))
2870 __queue_work(raw_smp_processor_id(),
2871 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2872 local_irq_enable();
401a8d04
TH
2873 return flush_work(&dwork->work);
2874}
2875EXPORT_SYMBOL(flush_delayed_work);
2876
09383498
TH
2877/**
2878 * flush_delayed_work_sync - wait for a dwork to finish
2879 * @dwork: the delayed work to flush
2880 *
2881 * Delayed timer is cancelled and the pending work is queued for
2882 * execution immediately. Other than timer handling, its behavior
2883 * is identical to flush_work_sync().
2884 *
2885 * RETURNS:
2886 * %true if flush_work_sync() waited for the work to finish execution,
2887 * %false if it was already idle.
2888 */
2889bool flush_delayed_work_sync(struct delayed_work *dwork)
2890{
8930caba 2891 local_irq_disable();
09383498
TH
2892 if (del_timer_sync(&dwork->timer))
2893 __queue_work(raw_smp_processor_id(),
2894 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2895 local_irq_enable();
09383498
TH
2896 return flush_work_sync(&dwork->work);
2897}
2898EXPORT_SYMBOL(flush_delayed_work_sync);
2899
401a8d04
TH
2900/**
2901 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2902 * @dwork: the delayed work cancel
2903 *
2904 * This is cancel_work_sync() for delayed works.
2905 *
2906 * RETURNS:
2907 * %true if @dwork was pending, %false otherwise.
2908 */
2909bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2910{
1f1f642e 2911 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2912}
f5a421a4 2913EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2914
d4283e93 2915/**
0a13c00e
TH
2916 * schedule_work_on - put work task on a specific cpu
2917 * @cpu: cpu to put the work task on
2918 * @work: job to be done
2919 *
2920 * This puts a job on a specific cpu
2921 */
d4283e93 2922bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
2923{
2924 return queue_work_on(cpu, system_wq, work);
2925}
2926EXPORT_SYMBOL(schedule_work_on);
2927
0fcb78c2
REB
2928/**
2929 * schedule_work - put work task in global workqueue
2930 * @work: job to be done
2931 *
d4283e93
TH
2932 * Returns %false if @work was already on the kernel-global workqueue and
2933 * %true otherwise.
5b0f437d
BVA
2934 *
2935 * This puts a job in the kernel-global workqueue if it was not already
2936 * queued and leaves it in the same position on the kernel-global
2937 * workqueue otherwise.
0fcb78c2 2938 */
d4283e93 2939bool schedule_work(struct work_struct *work)
1da177e4 2940{
d320c038 2941 return queue_work(system_wq, work);
1da177e4 2942}
ae90dd5d 2943EXPORT_SYMBOL(schedule_work);
1da177e4 2944
0a13c00e
TH
2945/**
2946 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2947 * @cpu: cpu to use
2948 * @dwork: job to be done
2949 * @delay: number of jiffies to wait
c1a220e7 2950 *
0a13c00e
TH
2951 * After waiting for a given time this puts a job in the kernel-global
2952 * workqueue on the specified CPU.
c1a220e7 2953 */
d4283e93
TH
2954bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2955 unsigned long delay)
c1a220e7 2956{
0a13c00e 2957 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 2958}
0a13c00e 2959EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 2960
0fcb78c2
REB
2961/**
2962 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2963 * @dwork: job to be done
2964 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2965 *
2966 * After waiting for a given time this puts a job in the kernel-global
2967 * workqueue.
2968 */
d4283e93 2969bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2970{
d320c038 2971 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2972}
ae90dd5d 2973EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2974
b6136773 2975/**
31ddd871 2976 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2977 * @func: the function to call
b6136773 2978 *
31ddd871
TH
2979 * schedule_on_each_cpu() executes @func on each online CPU using the
2980 * system workqueue and blocks until all CPUs have completed.
b6136773 2981 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2982 *
2983 * RETURNS:
2984 * 0 on success, -errno on failure.
b6136773 2985 */
65f27f38 2986int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2987{
2988 int cpu;
38f51568 2989 struct work_struct __percpu *works;
15316ba8 2990
b6136773
AM
2991 works = alloc_percpu(struct work_struct);
2992 if (!works)
15316ba8 2993 return -ENOMEM;
b6136773 2994
93981800
TH
2995 get_online_cpus();
2996
15316ba8 2997 for_each_online_cpu(cpu) {
9bfb1839
IM
2998 struct work_struct *work = per_cpu_ptr(works, cpu);
2999
3000 INIT_WORK(work, func);
b71ab8c2 3001 schedule_work_on(cpu, work);
65a64464 3002 }
93981800
TH
3003
3004 for_each_online_cpu(cpu)
3005 flush_work(per_cpu_ptr(works, cpu));
3006
95402b38 3007 put_online_cpus();
b6136773 3008 free_percpu(works);
15316ba8
CL
3009 return 0;
3010}
3011
eef6a7d5
AS
3012/**
3013 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3014 *
3015 * Forces execution of the kernel-global workqueue and blocks until its
3016 * completion.
3017 *
3018 * Think twice before calling this function! It's very easy to get into
3019 * trouble if you don't take great care. Either of the following situations
3020 * will lead to deadlock:
3021 *
3022 * One of the work items currently on the workqueue needs to acquire
3023 * a lock held by your code or its caller.
3024 *
3025 * Your code is running in the context of a work routine.
3026 *
3027 * They will be detected by lockdep when they occur, but the first might not
3028 * occur very often. It depends on what work items are on the workqueue and
3029 * what locks they need, which you have no control over.
3030 *
3031 * In most situations flushing the entire workqueue is overkill; you merely
3032 * need to know that a particular work item isn't queued and isn't running.
3033 * In such cases you should use cancel_delayed_work_sync() or
3034 * cancel_work_sync() instead.
3035 */
1da177e4
LT
3036void flush_scheduled_work(void)
3037{
d320c038 3038 flush_workqueue(system_wq);
1da177e4 3039}
ae90dd5d 3040EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3041
1fa44eca
JB
3042/**
3043 * execute_in_process_context - reliably execute the routine with user context
3044 * @fn: the function to execute
1fa44eca
JB
3045 * @ew: guaranteed storage for the execute work structure (must
3046 * be available when the work executes)
3047 *
3048 * Executes the function immediately if process context is available,
3049 * otherwise schedules the function for delayed execution.
3050 *
3051 * Returns: 0 - function was executed
3052 * 1 - function was scheduled for execution
3053 */
65f27f38 3054int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3055{
3056 if (!in_interrupt()) {
65f27f38 3057 fn(&ew->work);
1fa44eca
JB
3058 return 0;
3059 }
3060
65f27f38 3061 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3062 schedule_work(&ew->work);
3063
3064 return 1;
3065}
3066EXPORT_SYMBOL_GPL(execute_in_process_context);
3067
1da177e4
LT
3068int keventd_up(void)
3069{
d320c038 3070 return system_wq != NULL;
1da177e4
LT
3071}
3072
bdbc5dd7 3073static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3074{
65a64464 3075 /*
0f900049
TH
3076 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3077 * Make sure that the alignment isn't lower than that of
3078 * unsigned long long.
65a64464 3079 */
0f900049
TH
3080 const size_t size = sizeof(struct cpu_workqueue_struct);
3081 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3082 __alignof__(unsigned long long));
65a64464 3083
e06ffa1e 3084 if (!(wq->flags & WQ_UNBOUND))
f3421797 3085 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3086 else {
f3421797
TH
3087 void *ptr;
3088
3089 /*
3090 * Allocate enough room to align cwq and put an extra
3091 * pointer at the end pointing back to the originally
3092 * allocated pointer which will be used for free.
3093 */
3094 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3095 if (ptr) {
3096 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3097 *(void **)(wq->cpu_wq.single + 1) = ptr;
3098 }
bdbc5dd7 3099 }
f3421797 3100
0415b00d 3101 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3102 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3103 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3104}
3105
bdbc5dd7 3106static void free_cwqs(struct workqueue_struct *wq)
0f900049 3107{
e06ffa1e 3108 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3109 free_percpu(wq->cpu_wq.pcpu);
3110 else if (wq->cpu_wq.single) {
3111 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3112 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3113 }
0f900049
TH
3114}
3115
f3421797
TH
3116static int wq_clamp_max_active(int max_active, unsigned int flags,
3117 const char *name)
b71ab8c2 3118{
f3421797
TH
3119 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3120
3121 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3122 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3123 "is out of range, clamping between %d and %d\n",
f3421797 3124 max_active, name, 1, lim);
b71ab8c2 3125
f3421797 3126 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3127}
3128
b196be89 3129struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3130 unsigned int flags,
3131 int max_active,
3132 struct lock_class_key *key,
b196be89 3133 const char *lock_name, ...)
1da177e4 3134{
b196be89 3135 va_list args, args1;
1da177e4 3136 struct workqueue_struct *wq;
c34056a3 3137 unsigned int cpu;
b196be89
TH
3138 size_t namelen;
3139
3140 /* determine namelen, allocate wq and format name */
3141 va_start(args, lock_name);
3142 va_copy(args1, args);
3143 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3144
3145 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3146 if (!wq)
3147 goto err;
3148
3149 vsnprintf(wq->name, namelen, fmt, args1);
3150 va_end(args);
3151 va_end(args1);
1da177e4 3152
6370a6ad
TH
3153 /*
3154 * Workqueues which may be used during memory reclaim should
3155 * have a rescuer to guarantee forward progress.
3156 */
3157 if (flags & WQ_MEM_RECLAIM)
3158 flags |= WQ_RESCUER;
3159
d320c038 3160 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3161 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3162
b196be89 3163 /* init wq */
97e37d7b 3164 wq->flags = flags;
a0a1a5fd 3165 wq->saved_max_active = max_active;
73f53c4a
TH
3166 mutex_init(&wq->flush_mutex);
3167 atomic_set(&wq->nr_cwqs_to_flush, 0);
3168 INIT_LIST_HEAD(&wq->flusher_queue);
3169 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3170
eb13ba87 3171 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3172 INIT_LIST_HEAD(&wq->list);
3af24433 3173
bdbc5dd7
TH
3174 if (alloc_cwqs(wq) < 0)
3175 goto err;
3176
f3421797 3177 for_each_cwq_cpu(cpu, wq) {
1537663f 3178 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3179 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3180 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3181
0f900049 3182 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3183 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3184 cwq->wq = wq;
73f53c4a 3185 cwq->flush_color = -1;
1e19ffc6 3186 cwq->max_active = max_active;
1e19ffc6 3187 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3188 }
1537663f 3189
e22bee78
TH
3190 if (flags & WQ_RESCUER) {
3191 struct worker *rescuer;
3192
f2e005aa 3193 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3194 goto err;
3195
3196 wq->rescuer = rescuer = alloc_worker();
3197 if (!rescuer)
3198 goto err;
3199
b196be89
TH
3200 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3201 wq->name);
e22bee78
TH
3202 if (IS_ERR(rescuer->task))
3203 goto err;
3204
e22bee78
TH
3205 rescuer->task->flags |= PF_THREAD_BOUND;
3206 wake_up_process(rescuer->task);
3af24433
ON
3207 }
3208
a0a1a5fd
TH
3209 /*
3210 * workqueue_lock protects global freeze state and workqueues
3211 * list. Grab it, set max_active accordingly and add the new
3212 * workqueue to workqueues list.
3213 */
1537663f 3214 spin_lock(&workqueue_lock);
a0a1a5fd 3215
58a69cb4 3216 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3217 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3218 get_cwq(cpu, wq)->max_active = 0;
3219
1537663f 3220 list_add(&wq->list, &workqueues);
a0a1a5fd 3221
1537663f
TH
3222 spin_unlock(&workqueue_lock);
3223
3af24433 3224 return wq;
4690c4ab
TH
3225err:
3226 if (wq) {
bdbc5dd7 3227 free_cwqs(wq);
f2e005aa 3228 free_mayday_mask(wq->mayday_mask);
e22bee78 3229 kfree(wq->rescuer);
4690c4ab
TH
3230 kfree(wq);
3231 }
3232 return NULL;
3af24433 3233}
d320c038 3234EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3235
3af24433
ON
3236/**
3237 * destroy_workqueue - safely terminate a workqueue
3238 * @wq: target workqueue
3239 *
3240 * Safely destroy a workqueue. All work currently pending will be done first.
3241 */
3242void destroy_workqueue(struct workqueue_struct *wq)
3243{
c8e55f36 3244 unsigned int cpu;
3af24433 3245
9c5a2ba7
TH
3246 /* drain it before proceeding with destruction */
3247 drain_workqueue(wq);
c8efcc25 3248
a0a1a5fd
TH
3249 /*
3250 * wq list is used to freeze wq, remove from list after
3251 * flushing is complete in case freeze races us.
3252 */
95402b38 3253 spin_lock(&workqueue_lock);
b1f4ec17 3254 list_del(&wq->list);
95402b38 3255 spin_unlock(&workqueue_lock);
3af24433 3256
e22bee78 3257 /* sanity check */
f3421797 3258 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3259 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3260 int i;
3261
73f53c4a
TH
3262 for (i = 0; i < WORK_NR_COLORS; i++)
3263 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3264 BUG_ON(cwq->nr_active);
3265 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3266 }
9b41ea72 3267
e22bee78
TH
3268 if (wq->flags & WQ_RESCUER) {
3269 kthread_stop(wq->rescuer->task);
f2e005aa 3270 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3271 kfree(wq->rescuer);
e22bee78
TH
3272 }
3273
bdbc5dd7 3274 free_cwqs(wq);
3af24433
ON
3275 kfree(wq);
3276}
3277EXPORT_SYMBOL_GPL(destroy_workqueue);
3278
dcd989cb
TH
3279/**
3280 * workqueue_set_max_active - adjust max_active of a workqueue
3281 * @wq: target workqueue
3282 * @max_active: new max_active value.
3283 *
3284 * Set max_active of @wq to @max_active.
3285 *
3286 * CONTEXT:
3287 * Don't call from IRQ context.
3288 */
3289void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3290{
3291 unsigned int cpu;
3292
f3421797 3293 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3294
3295 spin_lock(&workqueue_lock);
3296
3297 wq->saved_max_active = max_active;
3298
f3421797 3299 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3300 struct global_cwq *gcwq = get_gcwq(cpu);
3301
3302 spin_lock_irq(&gcwq->lock);
3303
58a69cb4 3304 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3305 !(gcwq->flags & GCWQ_FREEZING))
3306 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3307
dcd989cb 3308 spin_unlock_irq(&gcwq->lock);
65a64464 3309 }
93981800 3310
dcd989cb 3311 spin_unlock(&workqueue_lock);
15316ba8 3312}
dcd989cb 3313EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3314
eef6a7d5 3315/**
dcd989cb
TH
3316 * workqueue_congested - test whether a workqueue is congested
3317 * @cpu: CPU in question
3318 * @wq: target workqueue
eef6a7d5 3319 *
dcd989cb
TH
3320 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3321 * no synchronization around this function and the test result is
3322 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3323 *
dcd989cb
TH
3324 * RETURNS:
3325 * %true if congested, %false otherwise.
eef6a7d5 3326 */
dcd989cb 3327bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3328{
dcd989cb
TH
3329 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3330
3331 return !list_empty(&cwq->delayed_works);
1da177e4 3332}
dcd989cb 3333EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3334
1fa44eca 3335/**
dcd989cb
TH
3336 * work_cpu - return the last known associated cpu for @work
3337 * @work: the work of interest
1fa44eca 3338 *
dcd989cb 3339 * RETURNS:
bdbc5dd7 3340 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3341 */
dcd989cb 3342unsigned int work_cpu(struct work_struct *work)
1fa44eca 3343{
dcd989cb 3344 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3345
bdbc5dd7 3346 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3347}
dcd989cb 3348EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3349
dcd989cb
TH
3350/**
3351 * work_busy - test whether a work is currently pending or running
3352 * @work: the work to be tested
3353 *
3354 * Test whether @work is currently pending or running. There is no
3355 * synchronization around this function and the test result is
3356 * unreliable and only useful as advisory hints or for debugging.
3357 * Especially for reentrant wqs, the pending state might hide the
3358 * running state.
3359 *
3360 * RETURNS:
3361 * OR'd bitmask of WORK_BUSY_* bits.
3362 */
3363unsigned int work_busy(struct work_struct *work)
1da177e4 3364{
dcd989cb
TH
3365 struct global_cwq *gcwq = get_work_gcwq(work);
3366 unsigned long flags;
3367 unsigned int ret = 0;
1da177e4 3368
dcd989cb
TH
3369 if (!gcwq)
3370 return false;
1da177e4 3371
dcd989cb 3372 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3373
dcd989cb
TH
3374 if (work_pending(work))
3375 ret |= WORK_BUSY_PENDING;
3376 if (find_worker_executing_work(gcwq, work))
3377 ret |= WORK_BUSY_RUNNING;
1da177e4 3378
dcd989cb 3379 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3380
dcd989cb 3381 return ret;
1da177e4 3382}
dcd989cb 3383EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3384
db7bccf4
TH
3385/*
3386 * CPU hotplug.
3387 *
e22bee78
TH
3388 * There are two challenges in supporting CPU hotplug. Firstly, there
3389 * are a lot of assumptions on strong associations among work, cwq and
3390 * gcwq which make migrating pending and scheduled works very
3391 * difficult to implement without impacting hot paths. Secondly,
3392 * gcwqs serve mix of short, long and very long running works making
3393 * blocked draining impractical.
3394 *
628c78e7
TH
3395 * This is solved by allowing a gcwq to be disassociated from the CPU
3396 * running as an unbound one and allowing it to be reattached later if the
3397 * cpu comes back online.
db7bccf4 3398 */
1da177e4 3399
60373152 3400/* claim manager positions of all pools */
8db25e78 3401static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3402{
3403 struct worker_pool *pool;
3404
3405 for_each_worker_pool(pool, gcwq)
3406 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3407 spin_lock_irq(&gcwq->lock);
60373152
TH
3408}
3409
3410/* release manager positions */
8db25e78 3411static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3412{
3413 struct worker_pool *pool;
3414
8db25e78 3415 spin_unlock_irq(&gcwq->lock);
60373152
TH
3416 for_each_worker_pool(pool, gcwq)
3417 mutex_unlock(&pool->manager_mutex);
3418}
3419
628c78e7 3420static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3421{
628c78e7 3422 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3423 struct worker_pool *pool;
db7bccf4
TH
3424 struct worker *worker;
3425 struct hlist_node *pos;
3426 int i;
3af24433 3427
db7bccf4
TH
3428 BUG_ON(gcwq->cpu != smp_processor_id());
3429
8db25e78 3430 gcwq_claim_management_and_lock(gcwq);
3af24433 3431
f2d5a0ee
TH
3432 /*
3433 * We've claimed all manager positions. Make all workers unbound
3434 * and set DISASSOCIATED. Before this, all workers except for the
3435 * ones which are still executing works from before the last CPU
3436 * down must be on the cpu. After this, they may become diasporas.
3437 */
60373152 3438 for_each_worker_pool(pool, gcwq)
4ce62e9e 3439 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3440 worker->flags |= WORKER_UNBOUND;
3af24433 3441
db7bccf4 3442 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3443 worker->flags |= WORKER_UNBOUND;
06ba38a9 3444
f2d5a0ee
TH
3445 gcwq->flags |= GCWQ_DISASSOCIATED;
3446
8db25e78 3447 gcwq_release_management_and_unlock(gcwq);
628c78e7 3448
e22bee78 3449 /*
403c821d 3450 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3451 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3452 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3453 */
e22bee78 3454 schedule();
06ba38a9 3455
e22bee78 3456 /*
628c78e7
TH
3457 * Sched callbacks are disabled now. Zap nr_running. After this,
3458 * nr_running stays zero and need_more_worker() and keep_working()
3459 * are always true as long as the worklist is not empty. @gcwq now
3460 * behaves as unbound (in terms of concurrency management) gcwq
3461 * which is served by workers tied to the CPU.
3462 *
3463 * On return from this function, the current worker would trigger
3464 * unbound chain execution of pending work items if other workers
3465 * didn't already.
e22bee78 3466 */
4ce62e9e
TH
3467 for_each_worker_pool(pool, gcwq)
3468 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3469}
3af24433 3470
8db25e78
TH
3471/*
3472 * Workqueues should be brought up before normal priority CPU notifiers.
3473 * This will be registered high priority CPU notifier.
3474 */
3475static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3476 unsigned long action,
3477 void *hcpu)
3af24433
ON
3478{
3479 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3480 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3481 struct worker_pool *pool;
3ce63377 3482
8db25e78 3483 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3484 case CPU_UP_PREPARE:
4ce62e9e 3485 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3486 struct worker *worker;
3487
3488 if (pool->nr_workers)
3489 continue;
3490
3491 worker = create_worker(pool);
3492 if (!worker)
3493 return NOTIFY_BAD;
3494
3495 spin_lock_irq(&gcwq->lock);
3496 start_worker(worker);
3497 spin_unlock_irq(&gcwq->lock);
3af24433 3498 }
8db25e78 3499 break;
3af24433 3500
db7bccf4
TH
3501 case CPU_DOWN_FAILED:
3502 case CPU_ONLINE:
8db25e78 3503 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3504 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3505 rebind_workers(gcwq);
8db25e78 3506 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3507 break;
00dfcaf7 3508 }
65758202
TH
3509 return NOTIFY_OK;
3510}
3511
3512/*
3513 * Workqueues should be brought down after normal priority CPU notifiers.
3514 * This will be registered as low priority CPU notifier.
3515 */
3516static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3517 unsigned long action,
3518 void *hcpu)
3519{
8db25e78
TH
3520 unsigned int cpu = (unsigned long)hcpu;
3521 struct work_struct unbind_work;
3522
65758202
TH
3523 switch (action & ~CPU_TASKS_FROZEN) {
3524 case CPU_DOWN_PREPARE:
8db25e78
TH
3525 /* unbinding should happen on the local CPU */
3526 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3527 schedule_work_on(cpu, &unbind_work);
3528 flush_work(&unbind_work);
3529 break;
65758202
TH
3530 }
3531 return NOTIFY_OK;
3532}
3533
2d3854a3 3534#ifdef CONFIG_SMP
8ccad40d 3535
2d3854a3 3536struct work_for_cpu {
6b44003e 3537 struct completion completion;
2d3854a3
RR
3538 long (*fn)(void *);
3539 void *arg;
3540 long ret;
3541};
3542
6b44003e 3543static int do_work_for_cpu(void *_wfc)
2d3854a3 3544{
6b44003e 3545 struct work_for_cpu *wfc = _wfc;
2d3854a3 3546 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3547 complete(&wfc->completion);
3548 return 0;
2d3854a3
RR
3549}
3550
3551/**
3552 * work_on_cpu - run a function in user context on a particular cpu
3553 * @cpu: the cpu to run on
3554 * @fn: the function to run
3555 * @arg: the function arg
3556 *
31ad9081
RR
3557 * This will return the value @fn returns.
3558 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3559 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3560 */
3561long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3562{
6b44003e
AM
3563 struct task_struct *sub_thread;
3564 struct work_for_cpu wfc = {
3565 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3566 .fn = fn,
3567 .arg = arg,
3568 };
3569
3570 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3571 if (IS_ERR(sub_thread))
3572 return PTR_ERR(sub_thread);
3573 kthread_bind(sub_thread, cpu);
3574 wake_up_process(sub_thread);
3575 wait_for_completion(&wfc.completion);
2d3854a3
RR
3576 return wfc.ret;
3577}
3578EXPORT_SYMBOL_GPL(work_on_cpu);
3579#endif /* CONFIG_SMP */
3580
a0a1a5fd
TH
3581#ifdef CONFIG_FREEZER
3582
3583/**
3584 * freeze_workqueues_begin - begin freezing workqueues
3585 *
58a69cb4
TH
3586 * Start freezing workqueues. After this function returns, all freezable
3587 * workqueues will queue new works to their frozen_works list instead of
3588 * gcwq->worklist.
a0a1a5fd
TH
3589 *
3590 * CONTEXT:
8b03ae3c 3591 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3592 */
3593void freeze_workqueues_begin(void)
3594{
a0a1a5fd
TH
3595 unsigned int cpu;
3596
3597 spin_lock(&workqueue_lock);
3598
3599 BUG_ON(workqueue_freezing);
3600 workqueue_freezing = true;
3601
f3421797 3602 for_each_gcwq_cpu(cpu) {
8b03ae3c 3603 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3604 struct workqueue_struct *wq;
8b03ae3c
TH
3605
3606 spin_lock_irq(&gcwq->lock);
3607
db7bccf4
TH
3608 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3609 gcwq->flags |= GCWQ_FREEZING;
3610
a0a1a5fd
TH
3611 list_for_each_entry(wq, &workqueues, list) {
3612 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3613
58a69cb4 3614 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3615 cwq->max_active = 0;
a0a1a5fd 3616 }
8b03ae3c
TH
3617
3618 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3619 }
3620
3621 spin_unlock(&workqueue_lock);
3622}
3623
3624/**
58a69cb4 3625 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3626 *
3627 * Check whether freezing is complete. This function must be called
3628 * between freeze_workqueues_begin() and thaw_workqueues().
3629 *
3630 * CONTEXT:
3631 * Grabs and releases workqueue_lock.
3632 *
3633 * RETURNS:
58a69cb4
TH
3634 * %true if some freezable workqueues are still busy. %false if freezing
3635 * is complete.
a0a1a5fd
TH
3636 */
3637bool freeze_workqueues_busy(void)
3638{
a0a1a5fd
TH
3639 unsigned int cpu;
3640 bool busy = false;
3641
3642 spin_lock(&workqueue_lock);
3643
3644 BUG_ON(!workqueue_freezing);
3645
f3421797 3646 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3647 struct workqueue_struct *wq;
a0a1a5fd
TH
3648 /*
3649 * nr_active is monotonically decreasing. It's safe
3650 * to peek without lock.
3651 */
3652 list_for_each_entry(wq, &workqueues, list) {
3653 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3654
58a69cb4 3655 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3656 continue;
3657
3658 BUG_ON(cwq->nr_active < 0);
3659 if (cwq->nr_active) {
3660 busy = true;
3661 goto out_unlock;
3662 }
3663 }
3664 }
3665out_unlock:
3666 spin_unlock(&workqueue_lock);
3667 return busy;
3668}
3669
3670/**
3671 * thaw_workqueues - thaw workqueues
3672 *
3673 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3674 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3675 *
3676 * CONTEXT:
8b03ae3c 3677 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3678 */
3679void thaw_workqueues(void)
3680{
a0a1a5fd
TH
3681 unsigned int cpu;
3682
3683 spin_lock(&workqueue_lock);
3684
3685 if (!workqueue_freezing)
3686 goto out_unlock;
3687
f3421797 3688 for_each_gcwq_cpu(cpu) {
8b03ae3c 3689 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3690 struct worker_pool *pool;
bdbc5dd7 3691 struct workqueue_struct *wq;
8b03ae3c
TH
3692
3693 spin_lock_irq(&gcwq->lock);
3694
db7bccf4
TH
3695 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3696 gcwq->flags &= ~GCWQ_FREEZING;
3697
a0a1a5fd
TH
3698 list_for_each_entry(wq, &workqueues, list) {
3699 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3700
58a69cb4 3701 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3702 continue;
3703
a0a1a5fd
TH
3704 /* restore max_active and repopulate worklist */
3705 cwq->max_active = wq->saved_max_active;
3706
3707 while (!list_empty(&cwq->delayed_works) &&
3708 cwq->nr_active < cwq->max_active)
3709 cwq_activate_first_delayed(cwq);
a0a1a5fd 3710 }
8b03ae3c 3711
4ce62e9e
TH
3712 for_each_worker_pool(pool, gcwq)
3713 wake_up_worker(pool);
e22bee78 3714
8b03ae3c 3715 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3716 }
3717
3718 workqueue_freezing = false;
3719out_unlock:
3720 spin_unlock(&workqueue_lock);
3721}
3722#endif /* CONFIG_FREEZER */
3723
6ee0578b 3724static int __init init_workqueues(void)
1da177e4 3725{
c34056a3 3726 unsigned int cpu;
c8e55f36 3727 int i;
c34056a3 3728
65758202
TH
3729 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3730 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3731
3732 /* initialize gcwqs */
f3421797 3733 for_each_gcwq_cpu(cpu) {
8b03ae3c 3734 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3735 struct worker_pool *pool;
8b03ae3c
TH
3736
3737 spin_lock_init(&gcwq->lock);
3738 gcwq->cpu = cpu;
477a3c33 3739 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3740
c8e55f36
TH
3741 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3742 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3743
4ce62e9e
TH
3744 for_each_worker_pool(pool, gcwq) {
3745 pool->gcwq = gcwq;
3746 INIT_LIST_HEAD(&pool->worklist);
3747 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3748
4ce62e9e
TH
3749 init_timer_deferrable(&pool->idle_timer);
3750 pool->idle_timer.function = idle_worker_timeout;
3751 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3752
4ce62e9e
TH
3753 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3754 (unsigned long)pool);
3755
60373152 3756 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3757 ida_init(&pool->worker_ida);
3758 }
db7bccf4 3759
25511a47 3760 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3761 }
3762
e22bee78 3763 /* create the initial worker */
f3421797 3764 for_each_online_gcwq_cpu(cpu) {
e22bee78 3765 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3766 struct worker_pool *pool;
e22bee78 3767
477a3c33
TH
3768 if (cpu != WORK_CPU_UNBOUND)
3769 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3770
3771 for_each_worker_pool(pool, gcwq) {
3772 struct worker *worker;
3773
bc2ae0f5 3774 worker = create_worker(pool);
4ce62e9e
TH
3775 BUG_ON(!worker);
3776 spin_lock_irq(&gcwq->lock);
3777 start_worker(worker);
3778 spin_unlock_irq(&gcwq->lock);
3779 }
e22bee78
TH
3780 }
3781
d320c038
TH
3782 system_wq = alloc_workqueue("events", 0, 0);
3783 system_long_wq = alloc_workqueue("events_long", 0, 0);
3784 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3785 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3786 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3787 system_freezable_wq = alloc_workqueue("events_freezable",
3788 WQ_FREEZABLE, 0);
62d3c543
AS
3789 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3790 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3791 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3792 !system_unbound_wq || !system_freezable_wq ||
3793 !system_nrt_freezable_wq);
6ee0578b 3794 return 0;
1da177e4 3795}
6ee0578b 3796early_initcall(init_workqueues);
This page took 0.814496 seconds and 5 git commands to generate.