workqueue: Create low-level unbound workqueues cpumask
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
b5927605 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
133 *
134 * MD: wq_mayday_lock protected.
1da177e4 135 */
1da177e4 136
2eaebdb3 137/* struct worker is defined in workqueue_internal.h */
c34056a3 138
bd7bdd43 139struct worker_pool {
d565ed63 140 spinlock_t lock; /* the pool lock */
d84ff051 141 int cpu; /* I: the associated cpu */
f3f90ad4 142 int node; /* I: the associated node ID */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
2607d7a6 162 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
163 struct mutex attach_mutex; /* attach/detach exclusion */
164 struct list_head workers; /* A: attached workers */
60f5a4bc 165 struct completion *detach_completion; /* all workers detached */
e19e397a 166
7cda9aae 167 struct ida worker_ida; /* worker IDs for task name */
e19e397a 168
7a4e344c 169 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 172
e19e397a
TH
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
8b03ae3c
TH
185} ____cacheline_aligned_in_smp;
186
1da177e4 187/*
112202d9
TH
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
1da177e4 192 */
112202d9 193struct pool_workqueue {
bd7bdd43 194 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 195 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
8864b4e5 198 int refcnt; /* L: reference count */
73f53c4a
TH
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
3c25a55d 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 205 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 211 * determined without grabbing wq->mutex.
8864b4e5
TH
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
e904e6c2 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 216
73f53c4a
TH
217/*
218 * Structure used to wait for workqueue flush.
219 */
220struct wq_flusher {
3c25a55d
LJ
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
223 struct completion done; /* flush completion */
224};
225
226223ab
TH
226struct wq_device;
227
1da177e4 228/*
c5aa87bb
TH
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
231 */
232struct workqueue_struct {
3c25a55d 233 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 234 struct list_head list; /* PR: list of all workqueues */
73f53c4a 235
3c25a55d
LJ
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
112202d9 239 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 243
2e109a28 244 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
245 struct worker *rescuer; /* I: rescue worker */
246
87fc741e 247 int nr_drainers; /* WQ: drain in progress */
a357fc03 248 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 249
6029a918 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 252
226223ab
TH
253#ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255#endif
4e6045f1 256#ifdef CONFIG_LOCKDEP
4690c4ab 257 struct lockdep_map lockdep_map;
4e6045f1 258#endif
ecf6881f 259 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 260
e2dca7ad
TH
261 /*
262 * Destruction of workqueue_struct is sched-RCU protected to allow
263 * walking the workqueues list without grabbing wq_pool_mutex.
264 * This is used to dump all workqueues from sysrq.
265 */
266 struct rcu_head rcu;
267
2728fd2f
TH
268 /* hot fields used during command issue, aligned to cacheline */
269 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
270 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 271 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
272};
273
e904e6c2
TH
274static struct kmem_cache *pwq_cache;
275
bce90380
TH
276static cpumask_var_t *wq_numa_possible_cpumask;
277 /* possible CPUs of each node */
278
d55262c4
TH
279static bool wq_disable_numa;
280module_param_named(disable_numa, wq_disable_numa, bool, 0444);
281
cee22a15
VK
282/* see the comment above the definition of WQ_POWER_EFFICIENT */
283#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
284static bool wq_power_efficient = true;
285#else
286static bool wq_power_efficient;
287#endif
288
289module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
bce90380
TH
291static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
292
4c16bd32
TH
293/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
295
68e13a67 296static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 297static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 298
e2dca7ad 299static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 300static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 301
b05a7928
FW
302static cpumask_var_t wq_unbound_cpumask;
303
7d19c5ce
TH
304/* the per-cpu worker pools */
305static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
306 cpu_worker_pools);
307
68e13a67 308static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 309
68e13a67 310/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
311static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
312
c5aa87bb 313/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
314static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
315
8a2b7538
TH
316/* I: attributes used when instantiating ordered pools on demand */
317static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
318
d320c038 319struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 320EXPORT_SYMBOL(system_wq);
044c782c 321struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 322EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 323struct workqueue_struct *system_long_wq __read_mostly;
d320c038 324EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 325struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 326EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 327struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 328EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
329struct workqueue_struct *system_power_efficient_wq __read_mostly;
330EXPORT_SYMBOL_GPL(system_power_efficient_wq);
331struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
332EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 333
7d19c5ce
TH
334static int worker_thread(void *__worker);
335static void copy_workqueue_attrs(struct workqueue_attrs *to,
336 const struct workqueue_attrs *from);
6ba94429 337static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 338
97bd2347
TH
339#define CREATE_TRACE_POINTS
340#include <trace/events/workqueue.h>
341
68e13a67 342#define assert_rcu_or_pool_mutex() \
5bcab335 343 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
344 lockdep_is_held(&wq_pool_mutex), \
345 "sched RCU or wq_pool_mutex should be held")
5bcab335 346
b09f4fd3 347#define assert_rcu_or_wq_mutex(wq) \
76af4d93 348 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 349 lockdep_is_held(&wq->mutex), \
b09f4fd3 350 "sched RCU or wq->mutex should be held")
76af4d93 351
f02ae73a
TH
352#define for_each_cpu_worker_pool(pool, cpu) \
353 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
354 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 355 (pool)++)
4ce62e9e 356
17116969
TH
357/**
358 * for_each_pool - iterate through all worker_pools in the system
359 * @pool: iteration cursor
611c92a0 360 * @pi: integer used for iteration
fa1b54e6 361 *
68e13a67
LJ
362 * This must be called either with wq_pool_mutex held or sched RCU read
363 * locked. If the pool needs to be used beyond the locking in effect, the
364 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
365 *
366 * The if/else clause exists only for the lockdep assertion and can be
367 * ignored.
17116969 368 */
611c92a0
TH
369#define for_each_pool(pool, pi) \
370 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 371 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 372 else
17116969 373
822d8405
TH
374/**
375 * for_each_pool_worker - iterate through all workers of a worker_pool
376 * @worker: iteration cursor
822d8405
TH
377 * @pool: worker_pool to iterate workers of
378 *
92f9c5c4 379 * This must be called with @pool->attach_mutex.
822d8405
TH
380 *
381 * The if/else clause exists only for the lockdep assertion and can be
382 * ignored.
383 */
da028469
LJ
384#define for_each_pool_worker(worker, pool) \
385 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 386 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
387 else
388
49e3cf44
TH
389/**
390 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
391 * @pwq: iteration cursor
392 * @wq: the target workqueue
76af4d93 393 *
b09f4fd3 394 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
395 * If the pwq needs to be used beyond the locking in effect, the caller is
396 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
397 *
398 * The if/else clause exists only for the lockdep assertion and can be
399 * ignored.
49e3cf44
TH
400 */
401#define for_each_pwq(pwq, wq) \
76af4d93 402 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 403 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 404 else
f3421797 405
dc186ad7
TG
406#ifdef CONFIG_DEBUG_OBJECTS_WORK
407
408static struct debug_obj_descr work_debug_descr;
409
99777288
SG
410static void *work_debug_hint(void *addr)
411{
412 return ((struct work_struct *) addr)->func;
413}
414
dc186ad7
TG
415/*
416 * fixup_init is called when:
417 * - an active object is initialized
418 */
419static int work_fixup_init(void *addr, enum debug_obj_state state)
420{
421 struct work_struct *work = addr;
422
423 switch (state) {
424 case ODEBUG_STATE_ACTIVE:
425 cancel_work_sync(work);
426 debug_object_init(work, &work_debug_descr);
427 return 1;
428 default:
429 return 0;
430 }
431}
432
433/*
434 * fixup_activate is called when:
435 * - an active object is activated
436 * - an unknown object is activated (might be a statically initialized object)
437 */
438static int work_fixup_activate(void *addr, enum debug_obj_state state)
439{
440 struct work_struct *work = addr;
441
442 switch (state) {
443
444 case ODEBUG_STATE_NOTAVAILABLE:
445 /*
446 * This is not really a fixup. The work struct was
447 * statically initialized. We just make sure that it
448 * is tracked in the object tracker.
449 */
22df02bb 450 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
451 debug_object_init(work, &work_debug_descr);
452 debug_object_activate(work, &work_debug_descr);
453 return 0;
454 }
455 WARN_ON_ONCE(1);
456 return 0;
457
458 case ODEBUG_STATE_ACTIVE:
459 WARN_ON(1);
460
461 default:
462 return 0;
463 }
464}
465
466/*
467 * fixup_free is called when:
468 * - an active object is freed
469 */
470static int work_fixup_free(void *addr, enum debug_obj_state state)
471{
472 struct work_struct *work = addr;
473
474 switch (state) {
475 case ODEBUG_STATE_ACTIVE:
476 cancel_work_sync(work);
477 debug_object_free(work, &work_debug_descr);
478 return 1;
479 default:
480 return 0;
481 }
482}
483
484static struct debug_obj_descr work_debug_descr = {
485 .name = "work_struct",
99777288 486 .debug_hint = work_debug_hint,
dc186ad7
TG
487 .fixup_init = work_fixup_init,
488 .fixup_activate = work_fixup_activate,
489 .fixup_free = work_fixup_free,
490};
491
492static inline void debug_work_activate(struct work_struct *work)
493{
494 debug_object_activate(work, &work_debug_descr);
495}
496
497static inline void debug_work_deactivate(struct work_struct *work)
498{
499 debug_object_deactivate(work, &work_debug_descr);
500}
501
502void __init_work(struct work_struct *work, int onstack)
503{
504 if (onstack)
505 debug_object_init_on_stack(work, &work_debug_descr);
506 else
507 debug_object_init(work, &work_debug_descr);
508}
509EXPORT_SYMBOL_GPL(__init_work);
510
511void destroy_work_on_stack(struct work_struct *work)
512{
513 debug_object_free(work, &work_debug_descr);
514}
515EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516
ea2e64f2
TG
517void destroy_delayed_work_on_stack(struct delayed_work *work)
518{
519 destroy_timer_on_stack(&work->timer);
520 debug_object_free(&work->work, &work_debug_descr);
521}
522EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523
dc186ad7
TG
524#else
525static inline void debug_work_activate(struct work_struct *work) { }
526static inline void debug_work_deactivate(struct work_struct *work) { }
527#endif
528
4e8b22bd
LB
529/**
530 * worker_pool_assign_id - allocate ID and assing it to @pool
531 * @pool: the pool pointer of interest
532 *
533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534 * successfully, -errno on failure.
535 */
9daf9e67
TH
536static int worker_pool_assign_id(struct worker_pool *pool)
537{
538 int ret;
539
68e13a67 540 lockdep_assert_held(&wq_pool_mutex);
5bcab335 541
4e8b22bd
LB
542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 GFP_KERNEL);
229641a6 544 if (ret >= 0) {
e68035fb 545 pool->id = ret;
229641a6
TH
546 return 0;
547 }
fa1b54e6 548 return ret;
7c3eed5c
TH
549}
550
df2d5ae4
TH
551/**
552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553 * @wq: the target workqueue
554 * @node: the node ID
555 *
556 * This must be called either with pwq_lock held or sched RCU read locked.
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
559 *
560 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
561 */
562static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564{
565 assert_rcu_or_wq_mutex(wq);
566 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
567}
568
73f53c4a
TH
569static unsigned int work_color_to_flags(int color)
570{
571 return color << WORK_STRUCT_COLOR_SHIFT;
572}
573
574static int get_work_color(struct work_struct *work)
575{
576 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
577 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
578}
579
580static int work_next_color(int color)
581{
582 return (color + 1) % WORK_NR_COLORS;
583}
1da177e4 584
14441960 585/*
112202d9
TH
586 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
587 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 588 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 589 *
112202d9
TH
590 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
591 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
592 * work->data. These functions should only be called while the work is
593 * owned - ie. while the PENDING bit is set.
7a22ad75 594 *
112202d9 595 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 596 * corresponding to a work. Pool is available once the work has been
112202d9 597 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 598 * available only while the work item is queued.
7a22ad75 599 *
bbb68dfa
TH
600 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
601 * canceled. While being canceled, a work item may have its PENDING set
602 * but stay off timer and worklist for arbitrarily long and nobody should
603 * try to steal the PENDING bit.
14441960 604 */
7a22ad75
TH
605static inline void set_work_data(struct work_struct *work, unsigned long data,
606 unsigned long flags)
365970a1 607{
6183c009 608 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
609 atomic_long_set(&work->data, data | flags | work_static(work));
610}
365970a1 611
112202d9 612static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
613 unsigned long extra_flags)
614{
112202d9
TH
615 set_work_data(work, (unsigned long)pwq,
616 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
617}
618
4468a00f
LJ
619static void set_work_pool_and_keep_pending(struct work_struct *work,
620 int pool_id)
621{
622 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
623 WORK_STRUCT_PENDING);
624}
625
7c3eed5c
TH
626static void set_work_pool_and_clear_pending(struct work_struct *work,
627 int pool_id)
7a22ad75 628{
23657bb1
TH
629 /*
630 * The following wmb is paired with the implied mb in
631 * test_and_set_bit(PENDING) and ensures all updates to @work made
632 * here are visible to and precede any updates by the next PENDING
633 * owner.
634 */
635 smp_wmb();
7c3eed5c 636 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 637}
f756d5e2 638
7a22ad75 639static void clear_work_data(struct work_struct *work)
1da177e4 640{
7c3eed5c
TH
641 smp_wmb(); /* see set_work_pool_and_clear_pending() */
642 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
643}
644
112202d9 645static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 646{
e120153d 647 unsigned long data = atomic_long_read(&work->data);
7a22ad75 648
112202d9 649 if (data & WORK_STRUCT_PWQ)
e120153d
TH
650 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
651 else
652 return NULL;
4d707b9f
ON
653}
654
7c3eed5c
TH
655/**
656 * get_work_pool - return the worker_pool a given work was associated with
657 * @work: the work item of interest
658 *
68e13a67
LJ
659 * Pools are created and destroyed under wq_pool_mutex, and allows read
660 * access under sched-RCU read lock. As such, this function should be
661 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
662 *
663 * All fields of the returned pool are accessible as long as the above
664 * mentioned locking is in effect. If the returned pool needs to be used
665 * beyond the critical section, the caller is responsible for ensuring the
666 * returned pool is and stays online.
d185af30
YB
667 *
668 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
669 */
670static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 671{
e120153d 672 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 673 int pool_id;
7a22ad75 674
68e13a67 675 assert_rcu_or_pool_mutex();
fa1b54e6 676
112202d9
TH
677 if (data & WORK_STRUCT_PWQ)
678 return ((struct pool_workqueue *)
7c3eed5c 679 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 680
7c3eed5c
TH
681 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
682 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
683 return NULL;
684
fa1b54e6 685 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
686}
687
688/**
689 * get_work_pool_id - return the worker pool ID a given work is associated with
690 * @work: the work item of interest
691 *
d185af30 692 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
693 * %WORK_OFFQ_POOL_NONE if none.
694 */
695static int get_work_pool_id(struct work_struct *work)
696{
54d5b7d0
LJ
697 unsigned long data = atomic_long_read(&work->data);
698
112202d9
TH
699 if (data & WORK_STRUCT_PWQ)
700 return ((struct pool_workqueue *)
54d5b7d0 701 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 702
54d5b7d0 703 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
704}
705
bbb68dfa
TH
706static void mark_work_canceling(struct work_struct *work)
707{
7c3eed5c 708 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 709
7c3eed5c
TH
710 pool_id <<= WORK_OFFQ_POOL_SHIFT;
711 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
712}
713
714static bool work_is_canceling(struct work_struct *work)
715{
716 unsigned long data = atomic_long_read(&work->data);
717
112202d9 718 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
719}
720
e22bee78 721/*
3270476a
TH
722 * Policy functions. These define the policies on how the global worker
723 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 724 * they're being called with pool->lock held.
e22bee78
TH
725 */
726
63d95a91 727static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 728{
e19e397a 729 return !atomic_read(&pool->nr_running);
a848e3b6
ON
730}
731
4594bf15 732/*
e22bee78
TH
733 * Need to wake up a worker? Called from anything but currently
734 * running workers.
974271c4
TH
735 *
736 * Note that, because unbound workers never contribute to nr_running, this
706026c2 737 * function will always return %true for unbound pools as long as the
974271c4 738 * worklist isn't empty.
4594bf15 739 */
63d95a91 740static bool need_more_worker(struct worker_pool *pool)
365970a1 741{
63d95a91 742 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 743}
4594bf15 744
e22bee78 745/* Can I start working? Called from busy but !running workers. */
63d95a91 746static bool may_start_working(struct worker_pool *pool)
e22bee78 747{
63d95a91 748 return pool->nr_idle;
e22bee78
TH
749}
750
751/* Do I need to keep working? Called from currently running workers. */
63d95a91 752static bool keep_working(struct worker_pool *pool)
e22bee78 753{
e19e397a
TH
754 return !list_empty(&pool->worklist) &&
755 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
756}
757
758/* Do we need a new worker? Called from manager. */
63d95a91 759static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 760{
63d95a91 761 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 762}
365970a1 763
e22bee78 764/* Do we have too many workers and should some go away? */
63d95a91 765static bool too_many_workers(struct worker_pool *pool)
e22bee78 766{
34a06bd6 767 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
768 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
769 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
770
771 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
772}
773
4d707b9f 774/*
e22bee78
TH
775 * Wake up functions.
776 */
777
1037de36
LJ
778/* Return the first idle worker. Safe with preemption disabled */
779static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 780{
63d95a91 781 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
782 return NULL;
783
63d95a91 784 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
785}
786
787/**
788 * wake_up_worker - wake up an idle worker
63d95a91 789 * @pool: worker pool to wake worker from
7e11629d 790 *
63d95a91 791 * Wake up the first idle worker of @pool.
7e11629d
TH
792 *
793 * CONTEXT:
d565ed63 794 * spin_lock_irq(pool->lock).
7e11629d 795 */
63d95a91 796static void wake_up_worker(struct worker_pool *pool)
7e11629d 797{
1037de36 798 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
799
800 if (likely(worker))
801 wake_up_process(worker->task);
802}
803
d302f017 804/**
e22bee78
TH
805 * wq_worker_waking_up - a worker is waking up
806 * @task: task waking up
807 * @cpu: CPU @task is waking up to
808 *
809 * This function is called during try_to_wake_up() when a worker is
810 * being awoken.
811 *
812 * CONTEXT:
813 * spin_lock_irq(rq->lock)
814 */
d84ff051 815void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
816{
817 struct worker *worker = kthread_data(task);
818
36576000 819 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 820 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 821 atomic_inc(&worker->pool->nr_running);
36576000 822 }
e22bee78
TH
823}
824
825/**
826 * wq_worker_sleeping - a worker is going to sleep
827 * @task: task going to sleep
828 * @cpu: CPU in question, must be the current CPU number
829 *
830 * This function is called during schedule() when a busy worker is
831 * going to sleep. Worker on the same cpu can be woken up by
832 * returning pointer to its task.
833 *
834 * CONTEXT:
835 * spin_lock_irq(rq->lock)
836 *
d185af30 837 * Return:
e22bee78
TH
838 * Worker task on @cpu to wake up, %NULL if none.
839 */
d84ff051 840struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
841{
842 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 843 struct worker_pool *pool;
e22bee78 844
111c225a
TH
845 /*
846 * Rescuers, which may not have all the fields set up like normal
847 * workers, also reach here, let's not access anything before
848 * checking NOT_RUNNING.
849 */
2d64672e 850 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
851 return NULL;
852
111c225a 853 pool = worker->pool;
111c225a 854
e22bee78 855 /* this can only happen on the local cpu */
92b69f50 856 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 857 return NULL;
e22bee78
TH
858
859 /*
860 * The counterpart of the following dec_and_test, implied mb,
861 * worklist not empty test sequence is in insert_work().
862 * Please read comment there.
863 *
628c78e7
TH
864 * NOT_RUNNING is clear. This means that we're bound to and
865 * running on the local cpu w/ rq lock held and preemption
866 * disabled, which in turn means that none else could be
d565ed63 867 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 868 * lock is safe.
e22bee78 869 */
e19e397a
TH
870 if (atomic_dec_and_test(&pool->nr_running) &&
871 !list_empty(&pool->worklist))
1037de36 872 to_wakeup = first_idle_worker(pool);
e22bee78
TH
873 return to_wakeup ? to_wakeup->task : NULL;
874}
875
876/**
877 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 878 * @worker: self
d302f017 879 * @flags: flags to set
d302f017 880 *
228f1d00 881 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 882 *
cb444766 883 * CONTEXT:
d565ed63 884 * spin_lock_irq(pool->lock)
d302f017 885 */
228f1d00 886static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 887{
bd7bdd43 888 struct worker_pool *pool = worker->pool;
e22bee78 889
cb444766
TH
890 WARN_ON_ONCE(worker->task != current);
891
228f1d00 892 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
893 if ((flags & WORKER_NOT_RUNNING) &&
894 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 895 atomic_dec(&pool->nr_running);
e22bee78
TH
896 }
897
d302f017
TH
898 worker->flags |= flags;
899}
900
901/**
e22bee78 902 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 903 * @worker: self
d302f017
TH
904 * @flags: flags to clear
905 *
e22bee78 906 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 907 *
cb444766 908 * CONTEXT:
d565ed63 909 * spin_lock_irq(pool->lock)
d302f017
TH
910 */
911static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
912{
63d95a91 913 struct worker_pool *pool = worker->pool;
e22bee78
TH
914 unsigned int oflags = worker->flags;
915
cb444766
TH
916 WARN_ON_ONCE(worker->task != current);
917
d302f017 918 worker->flags &= ~flags;
e22bee78 919
42c025f3
TH
920 /*
921 * If transitioning out of NOT_RUNNING, increment nr_running. Note
922 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
923 * of multiple flags, not a single flag.
924 */
e22bee78
TH
925 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
926 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 927 atomic_inc(&pool->nr_running);
d302f017
TH
928}
929
8cca0eea
TH
930/**
931 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 932 * @pool: pool of interest
8cca0eea
TH
933 * @work: work to find worker for
934 *
c9e7cf27
TH
935 * Find a worker which is executing @work on @pool by searching
936 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
937 * to match, its current execution should match the address of @work and
938 * its work function. This is to avoid unwanted dependency between
939 * unrelated work executions through a work item being recycled while still
940 * being executed.
941 *
942 * This is a bit tricky. A work item may be freed once its execution
943 * starts and nothing prevents the freed area from being recycled for
944 * another work item. If the same work item address ends up being reused
945 * before the original execution finishes, workqueue will identify the
946 * recycled work item as currently executing and make it wait until the
947 * current execution finishes, introducing an unwanted dependency.
948 *
c5aa87bb
TH
949 * This function checks the work item address and work function to avoid
950 * false positives. Note that this isn't complete as one may construct a
951 * work function which can introduce dependency onto itself through a
952 * recycled work item. Well, if somebody wants to shoot oneself in the
953 * foot that badly, there's only so much we can do, and if such deadlock
954 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
955 *
956 * CONTEXT:
d565ed63 957 * spin_lock_irq(pool->lock).
8cca0eea 958 *
d185af30
YB
959 * Return:
960 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 961 * otherwise.
4d707b9f 962 */
c9e7cf27 963static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 964 struct work_struct *work)
4d707b9f 965{
42f8570f 966 struct worker *worker;
42f8570f 967
b67bfe0d 968 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
969 (unsigned long)work)
970 if (worker->current_work == work &&
971 worker->current_func == work->func)
42f8570f
SL
972 return worker;
973
974 return NULL;
4d707b9f
ON
975}
976
bf4ede01
TH
977/**
978 * move_linked_works - move linked works to a list
979 * @work: start of series of works to be scheduled
980 * @head: target list to append @work to
981 * @nextp: out paramter for nested worklist walking
982 *
983 * Schedule linked works starting from @work to @head. Work series to
984 * be scheduled starts at @work and includes any consecutive work with
985 * WORK_STRUCT_LINKED set in its predecessor.
986 *
987 * If @nextp is not NULL, it's updated to point to the next work of
988 * the last scheduled work. This allows move_linked_works() to be
989 * nested inside outer list_for_each_entry_safe().
990 *
991 * CONTEXT:
d565ed63 992 * spin_lock_irq(pool->lock).
bf4ede01
TH
993 */
994static void move_linked_works(struct work_struct *work, struct list_head *head,
995 struct work_struct **nextp)
996{
997 struct work_struct *n;
998
999 /*
1000 * Linked worklist will always end before the end of the list,
1001 * use NULL for list head.
1002 */
1003 list_for_each_entry_safe_from(work, n, NULL, entry) {
1004 list_move_tail(&work->entry, head);
1005 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1006 break;
1007 }
1008
1009 /*
1010 * If we're already inside safe list traversal and have moved
1011 * multiple works to the scheduled queue, the next position
1012 * needs to be updated.
1013 */
1014 if (nextp)
1015 *nextp = n;
1016}
1017
8864b4e5
TH
1018/**
1019 * get_pwq - get an extra reference on the specified pool_workqueue
1020 * @pwq: pool_workqueue to get
1021 *
1022 * Obtain an extra reference on @pwq. The caller should guarantee that
1023 * @pwq has positive refcnt and be holding the matching pool->lock.
1024 */
1025static void get_pwq(struct pool_workqueue *pwq)
1026{
1027 lockdep_assert_held(&pwq->pool->lock);
1028 WARN_ON_ONCE(pwq->refcnt <= 0);
1029 pwq->refcnt++;
1030}
1031
1032/**
1033 * put_pwq - put a pool_workqueue reference
1034 * @pwq: pool_workqueue to put
1035 *
1036 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1037 * destruction. The caller should be holding the matching pool->lock.
1038 */
1039static void put_pwq(struct pool_workqueue *pwq)
1040{
1041 lockdep_assert_held(&pwq->pool->lock);
1042 if (likely(--pwq->refcnt))
1043 return;
1044 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1045 return;
1046 /*
1047 * @pwq can't be released under pool->lock, bounce to
1048 * pwq_unbound_release_workfn(). This never recurses on the same
1049 * pool->lock as this path is taken only for unbound workqueues and
1050 * the release work item is scheduled on a per-cpu workqueue. To
1051 * avoid lockdep warning, unbound pool->locks are given lockdep
1052 * subclass of 1 in get_unbound_pool().
1053 */
1054 schedule_work(&pwq->unbound_release_work);
1055}
1056
dce90d47
TH
1057/**
1058 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1059 * @pwq: pool_workqueue to put (can be %NULL)
1060 *
1061 * put_pwq() with locking. This function also allows %NULL @pwq.
1062 */
1063static void put_pwq_unlocked(struct pool_workqueue *pwq)
1064{
1065 if (pwq) {
1066 /*
1067 * As both pwqs and pools are sched-RCU protected, the
1068 * following lock operations are safe.
1069 */
1070 spin_lock_irq(&pwq->pool->lock);
1071 put_pwq(pwq);
1072 spin_unlock_irq(&pwq->pool->lock);
1073 }
1074}
1075
112202d9 1076static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1077{
112202d9 1078 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1079
1080 trace_workqueue_activate_work(work);
112202d9 1081 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1082 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1083 pwq->nr_active++;
bf4ede01
TH
1084}
1085
112202d9 1086static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1087{
112202d9 1088 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1089 struct work_struct, entry);
1090
112202d9 1091 pwq_activate_delayed_work(work);
3aa62497
LJ
1092}
1093
bf4ede01 1094/**
112202d9
TH
1095 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1096 * @pwq: pwq of interest
bf4ede01 1097 * @color: color of work which left the queue
bf4ede01
TH
1098 *
1099 * A work either has completed or is removed from pending queue,
112202d9 1100 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1101 *
1102 * CONTEXT:
d565ed63 1103 * spin_lock_irq(pool->lock).
bf4ede01 1104 */
112202d9 1105static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1106{
8864b4e5 1107 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1108 if (color == WORK_NO_COLOR)
8864b4e5 1109 goto out_put;
bf4ede01 1110
112202d9 1111 pwq->nr_in_flight[color]--;
bf4ede01 1112
112202d9
TH
1113 pwq->nr_active--;
1114 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1115 /* one down, submit a delayed one */
112202d9
TH
1116 if (pwq->nr_active < pwq->max_active)
1117 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1118 }
1119
1120 /* is flush in progress and are we at the flushing tip? */
112202d9 1121 if (likely(pwq->flush_color != color))
8864b4e5 1122 goto out_put;
bf4ede01
TH
1123
1124 /* are there still in-flight works? */
112202d9 1125 if (pwq->nr_in_flight[color])
8864b4e5 1126 goto out_put;
bf4ede01 1127
112202d9
TH
1128 /* this pwq is done, clear flush_color */
1129 pwq->flush_color = -1;
bf4ede01
TH
1130
1131 /*
112202d9 1132 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1133 * will handle the rest.
1134 */
112202d9
TH
1135 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1136 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1137out_put:
1138 put_pwq(pwq);
bf4ede01
TH
1139}
1140
36e227d2 1141/**
bbb68dfa 1142 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1143 * @work: work item to steal
1144 * @is_dwork: @work is a delayed_work
bbb68dfa 1145 * @flags: place to store irq state
36e227d2
TH
1146 *
1147 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1148 * stable state - idle, on timer or on worklist.
36e227d2 1149 *
d185af30 1150 * Return:
36e227d2
TH
1151 * 1 if @work was pending and we successfully stole PENDING
1152 * 0 if @work was idle and we claimed PENDING
1153 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1154 * -ENOENT if someone else is canceling @work, this state may persist
1155 * for arbitrarily long
36e227d2 1156 *
d185af30 1157 * Note:
bbb68dfa 1158 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1159 * interrupted while holding PENDING and @work off queue, irq must be
1160 * disabled on entry. This, combined with delayed_work->timer being
1161 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1162 *
1163 * On successful return, >= 0, irq is disabled and the caller is
1164 * responsible for releasing it using local_irq_restore(*@flags).
1165 *
e0aecdd8 1166 * This function is safe to call from any context including IRQ handler.
bf4ede01 1167 */
bbb68dfa
TH
1168static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1169 unsigned long *flags)
bf4ede01 1170{
d565ed63 1171 struct worker_pool *pool;
112202d9 1172 struct pool_workqueue *pwq;
bf4ede01 1173
bbb68dfa
TH
1174 local_irq_save(*flags);
1175
36e227d2
TH
1176 /* try to steal the timer if it exists */
1177 if (is_dwork) {
1178 struct delayed_work *dwork = to_delayed_work(work);
1179
e0aecdd8
TH
1180 /*
1181 * dwork->timer is irqsafe. If del_timer() fails, it's
1182 * guaranteed that the timer is not queued anywhere and not
1183 * running on the local CPU.
1184 */
36e227d2
TH
1185 if (likely(del_timer(&dwork->timer)))
1186 return 1;
1187 }
1188
1189 /* try to claim PENDING the normal way */
bf4ede01
TH
1190 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1191 return 0;
1192
1193 /*
1194 * The queueing is in progress, or it is already queued. Try to
1195 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1196 */
d565ed63
TH
1197 pool = get_work_pool(work);
1198 if (!pool)
bbb68dfa 1199 goto fail;
bf4ede01 1200
d565ed63 1201 spin_lock(&pool->lock);
0b3dae68 1202 /*
112202d9
TH
1203 * work->data is guaranteed to point to pwq only while the work
1204 * item is queued on pwq->wq, and both updating work->data to point
1205 * to pwq on queueing and to pool on dequeueing are done under
1206 * pwq->pool->lock. This in turn guarantees that, if work->data
1207 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1208 * item is currently queued on that pool.
1209 */
112202d9
TH
1210 pwq = get_work_pwq(work);
1211 if (pwq && pwq->pool == pool) {
16062836
TH
1212 debug_work_deactivate(work);
1213
1214 /*
1215 * A delayed work item cannot be grabbed directly because
1216 * it might have linked NO_COLOR work items which, if left
112202d9 1217 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1218 * management later on and cause stall. Make sure the work
1219 * item is activated before grabbing.
1220 */
1221 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1222 pwq_activate_delayed_work(work);
16062836
TH
1223
1224 list_del_init(&work->entry);
9c34a704 1225 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1226
112202d9 1227 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1228 set_work_pool_and_keep_pending(work, pool->id);
1229
1230 spin_unlock(&pool->lock);
1231 return 1;
bf4ede01 1232 }
d565ed63 1233 spin_unlock(&pool->lock);
bbb68dfa
TH
1234fail:
1235 local_irq_restore(*flags);
1236 if (work_is_canceling(work))
1237 return -ENOENT;
1238 cpu_relax();
36e227d2 1239 return -EAGAIN;
bf4ede01
TH
1240}
1241
4690c4ab 1242/**
706026c2 1243 * insert_work - insert a work into a pool
112202d9 1244 * @pwq: pwq @work belongs to
4690c4ab
TH
1245 * @work: work to insert
1246 * @head: insertion point
1247 * @extra_flags: extra WORK_STRUCT_* flags to set
1248 *
112202d9 1249 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1250 * work_struct flags.
4690c4ab
TH
1251 *
1252 * CONTEXT:
d565ed63 1253 * spin_lock_irq(pool->lock).
4690c4ab 1254 */
112202d9
TH
1255static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1256 struct list_head *head, unsigned int extra_flags)
b89deed3 1257{
112202d9 1258 struct worker_pool *pool = pwq->pool;
e22bee78 1259
4690c4ab 1260 /* we own @work, set data and link */
112202d9 1261 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1262 list_add_tail(&work->entry, head);
8864b4e5 1263 get_pwq(pwq);
e22bee78
TH
1264
1265 /*
c5aa87bb
TH
1266 * Ensure either wq_worker_sleeping() sees the above
1267 * list_add_tail() or we see zero nr_running to avoid workers lying
1268 * around lazily while there are works to be processed.
e22bee78
TH
1269 */
1270 smp_mb();
1271
63d95a91
TH
1272 if (__need_more_worker(pool))
1273 wake_up_worker(pool);
b89deed3
ON
1274}
1275
c8efcc25
TH
1276/*
1277 * Test whether @work is being queued from another work executing on the
8d03ecfe 1278 * same workqueue.
c8efcc25
TH
1279 */
1280static bool is_chained_work(struct workqueue_struct *wq)
1281{
8d03ecfe
TH
1282 struct worker *worker;
1283
1284 worker = current_wq_worker();
1285 /*
1286 * Return %true iff I'm a worker execuing a work item on @wq. If
1287 * I'm @worker, it's safe to dereference it without locking.
1288 */
112202d9 1289 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1290}
1291
d84ff051 1292static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1293 struct work_struct *work)
1294{
112202d9 1295 struct pool_workqueue *pwq;
c9178087 1296 struct worker_pool *last_pool;
1e19ffc6 1297 struct list_head *worklist;
8a2e8e5d 1298 unsigned int work_flags;
b75cac93 1299 unsigned int req_cpu = cpu;
8930caba
TH
1300
1301 /*
1302 * While a work item is PENDING && off queue, a task trying to
1303 * steal the PENDING will busy-loop waiting for it to either get
1304 * queued or lose PENDING. Grabbing PENDING and queueing should
1305 * happen with IRQ disabled.
1306 */
1307 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1308
dc186ad7 1309 debug_work_activate(work);
1e19ffc6 1310
9ef28a73 1311 /* if draining, only works from the same workqueue are allowed */
618b01eb 1312 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1313 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1314 return;
9e8cd2f5 1315retry:
df2d5ae4
TH
1316 if (req_cpu == WORK_CPU_UNBOUND)
1317 cpu = raw_smp_processor_id();
1318
c9178087 1319 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1320 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1321 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1322 else
1323 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1324
c9178087
TH
1325 /*
1326 * If @work was previously on a different pool, it might still be
1327 * running there, in which case the work needs to be queued on that
1328 * pool to guarantee non-reentrancy.
1329 */
1330 last_pool = get_work_pool(work);
1331 if (last_pool && last_pool != pwq->pool) {
1332 struct worker *worker;
18aa9eff 1333
c9178087 1334 spin_lock(&last_pool->lock);
18aa9eff 1335
c9178087 1336 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1337
c9178087
TH
1338 if (worker && worker->current_pwq->wq == wq) {
1339 pwq = worker->current_pwq;
8930caba 1340 } else {
c9178087
TH
1341 /* meh... not running there, queue here */
1342 spin_unlock(&last_pool->lock);
112202d9 1343 spin_lock(&pwq->pool->lock);
8930caba 1344 }
f3421797 1345 } else {
112202d9 1346 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1347 }
1348
9e8cd2f5
TH
1349 /*
1350 * pwq is determined and locked. For unbound pools, we could have
1351 * raced with pwq release and it could already be dead. If its
1352 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1353 * without another pwq replacing it in the numa_pwq_tbl or while
1354 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1355 * make forward-progress.
1356 */
1357 if (unlikely(!pwq->refcnt)) {
1358 if (wq->flags & WQ_UNBOUND) {
1359 spin_unlock(&pwq->pool->lock);
1360 cpu_relax();
1361 goto retry;
1362 }
1363 /* oops */
1364 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1365 wq->name, cpu);
1366 }
1367
112202d9
TH
1368 /* pwq determined, queue */
1369 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1370
f5b2552b 1371 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1372 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1373 return;
1374 }
1e19ffc6 1375
112202d9
TH
1376 pwq->nr_in_flight[pwq->work_color]++;
1377 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1378
112202d9 1379 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1380 trace_workqueue_activate_work(work);
112202d9
TH
1381 pwq->nr_active++;
1382 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1383 } else {
1384 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1385 worklist = &pwq->delayed_works;
8a2e8e5d 1386 }
1e19ffc6 1387
112202d9 1388 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1389
112202d9 1390 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1391}
1392
0fcb78c2 1393/**
c1a220e7
ZR
1394 * queue_work_on - queue work on specific cpu
1395 * @cpu: CPU number to execute work on
0fcb78c2
REB
1396 * @wq: workqueue to use
1397 * @work: work to queue
1398 *
c1a220e7
ZR
1399 * We queue the work to a specific CPU, the caller must ensure it
1400 * can't go away.
d185af30
YB
1401 *
1402 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1403 */
d4283e93
TH
1404bool queue_work_on(int cpu, struct workqueue_struct *wq,
1405 struct work_struct *work)
1da177e4 1406{
d4283e93 1407 bool ret = false;
8930caba 1408 unsigned long flags;
ef1ca236 1409
8930caba 1410 local_irq_save(flags);
c1a220e7 1411
22df02bb 1412 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1413 __queue_work(cpu, wq, work);
d4283e93 1414 ret = true;
c1a220e7 1415 }
ef1ca236 1416
8930caba 1417 local_irq_restore(flags);
1da177e4
LT
1418 return ret;
1419}
ad7b1f84 1420EXPORT_SYMBOL(queue_work_on);
1da177e4 1421
d8e794df 1422void delayed_work_timer_fn(unsigned long __data)
1da177e4 1423{
52bad64d 1424 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1425
e0aecdd8 1426 /* should have been called from irqsafe timer with irq already off */
60c057bc 1427 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1428}
1438ade5 1429EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1430
7beb2edf
TH
1431static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1432 struct delayed_work *dwork, unsigned long delay)
1da177e4 1433{
7beb2edf
TH
1434 struct timer_list *timer = &dwork->timer;
1435 struct work_struct *work = &dwork->work;
7beb2edf
TH
1436
1437 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1438 timer->data != (unsigned long)dwork);
fc4b514f
TH
1439 WARN_ON_ONCE(timer_pending(timer));
1440 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1441
8852aac2
TH
1442 /*
1443 * If @delay is 0, queue @dwork->work immediately. This is for
1444 * both optimization and correctness. The earliest @timer can
1445 * expire is on the closest next tick and delayed_work users depend
1446 * on that there's no such delay when @delay is 0.
1447 */
1448 if (!delay) {
1449 __queue_work(cpu, wq, &dwork->work);
1450 return;
1451 }
1452
7beb2edf 1453 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1454
60c057bc 1455 dwork->wq = wq;
1265057f 1456 dwork->cpu = cpu;
7beb2edf
TH
1457 timer->expires = jiffies + delay;
1458
1459 if (unlikely(cpu != WORK_CPU_UNBOUND))
1460 add_timer_on(timer, cpu);
1461 else
1462 add_timer(timer);
1da177e4
LT
1463}
1464
0fcb78c2
REB
1465/**
1466 * queue_delayed_work_on - queue work on specific CPU after delay
1467 * @cpu: CPU number to execute work on
1468 * @wq: workqueue to use
af9997e4 1469 * @dwork: work to queue
0fcb78c2
REB
1470 * @delay: number of jiffies to wait before queueing
1471 *
d185af30 1472 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1473 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1474 * execution.
0fcb78c2 1475 */
d4283e93
TH
1476bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1477 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1478{
52bad64d 1479 struct work_struct *work = &dwork->work;
d4283e93 1480 bool ret = false;
8930caba 1481 unsigned long flags;
7a6bc1cd 1482
8930caba
TH
1483 /* read the comment in __queue_work() */
1484 local_irq_save(flags);
7a6bc1cd 1485
22df02bb 1486 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1487 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1488 ret = true;
7a6bc1cd 1489 }
8a3e77cc 1490
8930caba 1491 local_irq_restore(flags);
7a6bc1cd
VP
1492 return ret;
1493}
ad7b1f84 1494EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1495
8376fe22
TH
1496/**
1497 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1498 * @cpu: CPU number to execute work on
1499 * @wq: workqueue to use
1500 * @dwork: work to queue
1501 * @delay: number of jiffies to wait before queueing
1502 *
1503 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1504 * modify @dwork's timer so that it expires after @delay. If @delay is
1505 * zero, @work is guaranteed to be scheduled immediately regardless of its
1506 * current state.
1507 *
d185af30 1508 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1509 * pending and its timer was modified.
1510 *
e0aecdd8 1511 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1512 * See try_to_grab_pending() for details.
1513 */
1514bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1515 struct delayed_work *dwork, unsigned long delay)
1516{
1517 unsigned long flags;
1518 int ret;
c7fc77f7 1519
8376fe22
TH
1520 do {
1521 ret = try_to_grab_pending(&dwork->work, true, &flags);
1522 } while (unlikely(ret == -EAGAIN));
63bc0362 1523
8376fe22
TH
1524 if (likely(ret >= 0)) {
1525 __queue_delayed_work(cpu, wq, dwork, delay);
1526 local_irq_restore(flags);
7a6bc1cd 1527 }
8376fe22
TH
1528
1529 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1530 return ret;
1531}
8376fe22
TH
1532EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1533
c8e55f36
TH
1534/**
1535 * worker_enter_idle - enter idle state
1536 * @worker: worker which is entering idle state
1537 *
1538 * @worker is entering idle state. Update stats and idle timer if
1539 * necessary.
1540 *
1541 * LOCKING:
d565ed63 1542 * spin_lock_irq(pool->lock).
c8e55f36
TH
1543 */
1544static void worker_enter_idle(struct worker *worker)
1da177e4 1545{
bd7bdd43 1546 struct worker_pool *pool = worker->pool;
c8e55f36 1547
6183c009
TH
1548 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1549 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1550 (worker->hentry.next || worker->hentry.pprev)))
1551 return;
c8e55f36 1552
051e1850 1553 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1554 worker->flags |= WORKER_IDLE;
bd7bdd43 1555 pool->nr_idle++;
e22bee78 1556 worker->last_active = jiffies;
c8e55f36
TH
1557
1558 /* idle_list is LIFO */
bd7bdd43 1559 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1560
628c78e7
TH
1561 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1562 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1563
544ecf31 1564 /*
706026c2 1565 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1566 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1567 * nr_running, the warning may trigger spuriously. Check iff
1568 * unbind is not in progress.
544ecf31 1569 */
24647570 1570 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1571 pool->nr_workers == pool->nr_idle &&
e19e397a 1572 atomic_read(&pool->nr_running));
c8e55f36
TH
1573}
1574
1575/**
1576 * worker_leave_idle - leave idle state
1577 * @worker: worker which is leaving idle state
1578 *
1579 * @worker is leaving idle state. Update stats.
1580 *
1581 * LOCKING:
d565ed63 1582 * spin_lock_irq(pool->lock).
c8e55f36
TH
1583 */
1584static void worker_leave_idle(struct worker *worker)
1585{
bd7bdd43 1586 struct worker_pool *pool = worker->pool;
c8e55f36 1587
6183c009
TH
1588 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1589 return;
d302f017 1590 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1591 pool->nr_idle--;
c8e55f36
TH
1592 list_del_init(&worker->entry);
1593}
1594
f7537df5 1595static struct worker *alloc_worker(int node)
c34056a3
TH
1596{
1597 struct worker *worker;
1598
f7537df5 1599 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1600 if (worker) {
1601 INIT_LIST_HEAD(&worker->entry);
affee4b2 1602 INIT_LIST_HEAD(&worker->scheduled);
da028469 1603 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1604 /* on creation a worker is in !idle && prep state */
1605 worker->flags = WORKER_PREP;
c8e55f36 1606 }
c34056a3
TH
1607 return worker;
1608}
1609
4736cbf7
LJ
1610/**
1611 * worker_attach_to_pool() - attach a worker to a pool
1612 * @worker: worker to be attached
1613 * @pool: the target pool
1614 *
1615 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1616 * cpu-binding of @worker are kept coordinated with the pool across
1617 * cpu-[un]hotplugs.
1618 */
1619static void worker_attach_to_pool(struct worker *worker,
1620 struct worker_pool *pool)
1621{
1622 mutex_lock(&pool->attach_mutex);
1623
1624 /*
1625 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1626 * online CPUs. It'll be re-applied when any of the CPUs come up.
1627 */
1628 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1629
1630 /*
1631 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1632 * stable across this function. See the comments above the
1633 * flag definition for details.
1634 */
1635 if (pool->flags & POOL_DISASSOCIATED)
1636 worker->flags |= WORKER_UNBOUND;
1637
1638 list_add_tail(&worker->node, &pool->workers);
1639
1640 mutex_unlock(&pool->attach_mutex);
1641}
1642
60f5a4bc
LJ
1643/**
1644 * worker_detach_from_pool() - detach a worker from its pool
1645 * @worker: worker which is attached to its pool
1646 * @pool: the pool @worker is attached to
1647 *
4736cbf7
LJ
1648 * Undo the attaching which had been done in worker_attach_to_pool(). The
1649 * caller worker shouldn't access to the pool after detached except it has
1650 * other reference to the pool.
60f5a4bc
LJ
1651 */
1652static void worker_detach_from_pool(struct worker *worker,
1653 struct worker_pool *pool)
1654{
1655 struct completion *detach_completion = NULL;
1656
92f9c5c4 1657 mutex_lock(&pool->attach_mutex);
da028469
LJ
1658 list_del(&worker->node);
1659 if (list_empty(&pool->workers))
60f5a4bc 1660 detach_completion = pool->detach_completion;
92f9c5c4 1661 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1662
b62c0751
LJ
1663 /* clear leftover flags without pool->lock after it is detached */
1664 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1665
60f5a4bc
LJ
1666 if (detach_completion)
1667 complete(detach_completion);
1668}
1669
c34056a3
TH
1670/**
1671 * create_worker - create a new workqueue worker
63d95a91 1672 * @pool: pool the new worker will belong to
c34056a3 1673 *
051e1850 1674 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1675 *
1676 * CONTEXT:
1677 * Might sleep. Does GFP_KERNEL allocations.
1678 *
d185af30 1679 * Return:
c34056a3
TH
1680 * Pointer to the newly created worker.
1681 */
bc2ae0f5 1682static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1683{
c34056a3 1684 struct worker *worker = NULL;
f3421797 1685 int id = -1;
e3c916a4 1686 char id_buf[16];
c34056a3 1687
7cda9aae
LJ
1688 /* ID is needed to determine kthread name */
1689 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1690 if (id < 0)
1691 goto fail;
c34056a3 1692
f7537df5 1693 worker = alloc_worker(pool->node);
c34056a3
TH
1694 if (!worker)
1695 goto fail;
1696
bd7bdd43 1697 worker->pool = pool;
c34056a3
TH
1698 worker->id = id;
1699
29c91e99 1700 if (pool->cpu >= 0)
e3c916a4
TH
1701 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1702 pool->attrs->nice < 0 ? "H" : "");
f3421797 1703 else
e3c916a4
TH
1704 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1705
f3f90ad4 1706 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1707 "kworker/%s", id_buf);
c34056a3
TH
1708 if (IS_ERR(worker->task))
1709 goto fail;
1710
91151228
ON
1711 set_user_nice(worker->task, pool->attrs->nice);
1712
1713 /* prevent userland from meddling with cpumask of workqueue workers */
1714 worker->task->flags |= PF_NO_SETAFFINITY;
1715
da028469 1716 /* successful, attach the worker to the pool */
4736cbf7 1717 worker_attach_to_pool(worker, pool);
822d8405 1718
051e1850
LJ
1719 /* start the newly created worker */
1720 spin_lock_irq(&pool->lock);
1721 worker->pool->nr_workers++;
1722 worker_enter_idle(worker);
1723 wake_up_process(worker->task);
1724 spin_unlock_irq(&pool->lock);
1725
c34056a3 1726 return worker;
822d8405 1727
c34056a3 1728fail:
9625ab17 1729 if (id >= 0)
7cda9aae 1730 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1731 kfree(worker);
1732 return NULL;
1733}
1734
c34056a3
TH
1735/**
1736 * destroy_worker - destroy a workqueue worker
1737 * @worker: worker to be destroyed
1738 *
73eb7fe7
LJ
1739 * Destroy @worker and adjust @pool stats accordingly. The worker should
1740 * be idle.
c8e55f36
TH
1741 *
1742 * CONTEXT:
60f5a4bc 1743 * spin_lock_irq(pool->lock).
c34056a3
TH
1744 */
1745static void destroy_worker(struct worker *worker)
1746{
bd7bdd43 1747 struct worker_pool *pool = worker->pool;
c34056a3 1748
cd549687
TH
1749 lockdep_assert_held(&pool->lock);
1750
c34056a3 1751 /* sanity check frenzy */
6183c009 1752 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1753 WARN_ON(!list_empty(&worker->scheduled)) ||
1754 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1755 return;
c34056a3 1756
73eb7fe7
LJ
1757 pool->nr_workers--;
1758 pool->nr_idle--;
5bdfff96 1759
c8e55f36 1760 list_del_init(&worker->entry);
cb444766 1761 worker->flags |= WORKER_DIE;
60f5a4bc 1762 wake_up_process(worker->task);
c34056a3
TH
1763}
1764
63d95a91 1765static void idle_worker_timeout(unsigned long __pool)
e22bee78 1766{
63d95a91 1767 struct worker_pool *pool = (void *)__pool;
e22bee78 1768
d565ed63 1769 spin_lock_irq(&pool->lock);
e22bee78 1770
3347fc9f 1771 while (too_many_workers(pool)) {
e22bee78
TH
1772 struct worker *worker;
1773 unsigned long expires;
1774
1775 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1776 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1777 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1778
3347fc9f 1779 if (time_before(jiffies, expires)) {
63d95a91 1780 mod_timer(&pool->idle_timer, expires);
3347fc9f 1781 break;
d5abe669 1782 }
3347fc9f
LJ
1783
1784 destroy_worker(worker);
e22bee78
TH
1785 }
1786
d565ed63 1787 spin_unlock_irq(&pool->lock);
e22bee78 1788}
d5abe669 1789
493a1724 1790static void send_mayday(struct work_struct *work)
e22bee78 1791{
112202d9
TH
1792 struct pool_workqueue *pwq = get_work_pwq(work);
1793 struct workqueue_struct *wq = pwq->wq;
493a1724 1794
2e109a28 1795 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1796
493008a8 1797 if (!wq->rescuer)
493a1724 1798 return;
e22bee78
TH
1799
1800 /* mayday mayday mayday */
493a1724 1801 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1802 /*
1803 * If @pwq is for an unbound wq, its base ref may be put at
1804 * any time due to an attribute change. Pin @pwq until the
1805 * rescuer is done with it.
1806 */
1807 get_pwq(pwq);
493a1724 1808 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1809 wake_up_process(wq->rescuer->task);
493a1724 1810 }
e22bee78
TH
1811}
1812
706026c2 1813static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1814{
63d95a91 1815 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1816 struct work_struct *work;
1817
b2d82909
TH
1818 spin_lock_irq(&pool->lock);
1819 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1820
63d95a91 1821 if (need_to_create_worker(pool)) {
e22bee78
TH
1822 /*
1823 * We've been trying to create a new worker but
1824 * haven't been successful. We might be hitting an
1825 * allocation deadlock. Send distress signals to
1826 * rescuers.
1827 */
63d95a91 1828 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1829 send_mayday(work);
1da177e4 1830 }
e22bee78 1831
b2d82909
TH
1832 spin_unlock(&wq_mayday_lock);
1833 spin_unlock_irq(&pool->lock);
e22bee78 1834
63d95a91 1835 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1836}
1837
e22bee78
TH
1838/**
1839 * maybe_create_worker - create a new worker if necessary
63d95a91 1840 * @pool: pool to create a new worker for
e22bee78 1841 *
63d95a91 1842 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1843 * have at least one idle worker on return from this function. If
1844 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1845 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1846 * possible allocation deadlock.
1847 *
c5aa87bb
TH
1848 * On return, need_to_create_worker() is guaranteed to be %false and
1849 * may_start_working() %true.
e22bee78
TH
1850 *
1851 * LOCKING:
d565ed63 1852 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1853 * multiple times. Does GFP_KERNEL allocations. Called only from
1854 * manager.
e22bee78 1855 */
29187a9e 1856static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1857__releases(&pool->lock)
1858__acquires(&pool->lock)
1da177e4 1859{
e22bee78 1860restart:
d565ed63 1861 spin_unlock_irq(&pool->lock);
9f9c2364 1862
e22bee78 1863 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1864 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1865
1866 while (true) {
051e1850 1867 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1868 break;
1da177e4 1869
e212f361 1870 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1871
63d95a91 1872 if (!need_to_create_worker(pool))
e22bee78
TH
1873 break;
1874 }
1875
63d95a91 1876 del_timer_sync(&pool->mayday_timer);
d565ed63 1877 spin_lock_irq(&pool->lock);
051e1850
LJ
1878 /*
1879 * This is necessary even after a new worker was just successfully
1880 * created as @pool->lock was dropped and the new worker might have
1881 * already become busy.
1882 */
63d95a91 1883 if (need_to_create_worker(pool))
e22bee78 1884 goto restart;
e22bee78
TH
1885}
1886
73f53c4a 1887/**
e22bee78
TH
1888 * manage_workers - manage worker pool
1889 * @worker: self
73f53c4a 1890 *
706026c2 1891 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1892 * to. At any given time, there can be only zero or one manager per
706026c2 1893 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1894 *
1895 * The caller can safely start processing works on false return. On
1896 * true return, it's guaranteed that need_to_create_worker() is false
1897 * and may_start_working() is true.
73f53c4a
TH
1898 *
1899 * CONTEXT:
d565ed63 1900 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1901 * multiple times. Does GFP_KERNEL allocations.
1902 *
d185af30 1903 * Return:
29187a9e
TH
1904 * %false if the pool doesn't need management and the caller can safely
1905 * start processing works, %true if management function was performed and
1906 * the conditions that the caller verified before calling the function may
1907 * no longer be true.
73f53c4a 1908 */
e22bee78 1909static bool manage_workers(struct worker *worker)
73f53c4a 1910{
63d95a91 1911 struct worker_pool *pool = worker->pool;
73f53c4a 1912
bc3a1afc 1913 /*
bc3a1afc
TH
1914 * Anyone who successfully grabs manager_arb wins the arbitration
1915 * and becomes the manager. mutex_trylock() on pool->manager_arb
1916 * failure while holding pool->lock reliably indicates that someone
1917 * else is managing the pool and the worker which failed trylock
1918 * can proceed to executing work items. This means that anyone
1919 * grabbing manager_arb is responsible for actually performing
1920 * manager duties. If manager_arb is grabbed and released without
1921 * actual management, the pool may stall indefinitely.
bc3a1afc 1922 */
34a06bd6 1923 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1924 return false;
2607d7a6 1925 pool->manager = worker;
1e19ffc6 1926
29187a9e 1927 maybe_create_worker(pool);
e22bee78 1928
2607d7a6 1929 pool->manager = NULL;
34a06bd6 1930 mutex_unlock(&pool->manager_arb);
29187a9e 1931 return true;
73f53c4a
TH
1932}
1933
a62428c0
TH
1934/**
1935 * process_one_work - process single work
c34056a3 1936 * @worker: self
a62428c0
TH
1937 * @work: work to process
1938 *
1939 * Process @work. This function contains all the logics necessary to
1940 * process a single work including synchronization against and
1941 * interaction with other workers on the same cpu, queueing and
1942 * flushing. As long as context requirement is met, any worker can
1943 * call this function to process a work.
1944 *
1945 * CONTEXT:
d565ed63 1946 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1947 */
c34056a3 1948static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1949__releases(&pool->lock)
1950__acquires(&pool->lock)
a62428c0 1951{
112202d9 1952 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1953 struct worker_pool *pool = worker->pool;
112202d9 1954 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1955 int work_color;
7e11629d 1956 struct worker *collision;
a62428c0
TH
1957#ifdef CONFIG_LOCKDEP
1958 /*
1959 * It is permissible to free the struct work_struct from
1960 * inside the function that is called from it, this we need to
1961 * take into account for lockdep too. To avoid bogus "held
1962 * lock freed" warnings as well as problems when looking into
1963 * work->lockdep_map, make a copy and use that here.
1964 */
4d82a1de
PZ
1965 struct lockdep_map lockdep_map;
1966
1967 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1968#endif
807407c0 1969 /* ensure we're on the correct CPU */
85327af6 1970 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 1971 raw_smp_processor_id() != pool->cpu);
25511a47 1972
7e11629d
TH
1973 /*
1974 * A single work shouldn't be executed concurrently by
1975 * multiple workers on a single cpu. Check whether anyone is
1976 * already processing the work. If so, defer the work to the
1977 * currently executing one.
1978 */
c9e7cf27 1979 collision = find_worker_executing_work(pool, work);
7e11629d
TH
1980 if (unlikely(collision)) {
1981 move_linked_works(work, &collision->scheduled, NULL);
1982 return;
1983 }
1984
8930caba 1985 /* claim and dequeue */
a62428c0 1986 debug_work_deactivate(work);
c9e7cf27 1987 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 1988 worker->current_work = work;
a2c1c57b 1989 worker->current_func = work->func;
112202d9 1990 worker->current_pwq = pwq;
73f53c4a 1991 work_color = get_work_color(work);
7a22ad75 1992
a62428c0
TH
1993 list_del_init(&work->entry);
1994
fb0e7beb 1995 /*
228f1d00
LJ
1996 * CPU intensive works don't participate in concurrency management.
1997 * They're the scheduler's responsibility. This takes @worker out
1998 * of concurrency management and the next code block will chain
1999 * execution of the pending work items.
fb0e7beb
TH
2000 */
2001 if (unlikely(cpu_intensive))
228f1d00 2002 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2003
974271c4 2004 /*
a489a03e
LJ
2005 * Wake up another worker if necessary. The condition is always
2006 * false for normal per-cpu workers since nr_running would always
2007 * be >= 1 at this point. This is used to chain execution of the
2008 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2009 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2010 */
a489a03e 2011 if (need_more_worker(pool))
63d95a91 2012 wake_up_worker(pool);
974271c4 2013
8930caba 2014 /*
7c3eed5c 2015 * Record the last pool and clear PENDING which should be the last
d565ed63 2016 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2017 * PENDING and queued state changes happen together while IRQ is
2018 * disabled.
8930caba 2019 */
7c3eed5c 2020 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2021
d565ed63 2022 spin_unlock_irq(&pool->lock);
a62428c0 2023
112202d9 2024 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2025 lock_map_acquire(&lockdep_map);
e36c886a 2026 trace_workqueue_execute_start(work);
a2c1c57b 2027 worker->current_func(work);
e36c886a
AV
2028 /*
2029 * While we must be careful to not use "work" after this, the trace
2030 * point will only record its address.
2031 */
2032 trace_workqueue_execute_end(work);
a62428c0 2033 lock_map_release(&lockdep_map);
112202d9 2034 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2035
2036 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2037 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2038 " last function: %pf\n",
a2c1c57b
TH
2039 current->comm, preempt_count(), task_pid_nr(current),
2040 worker->current_func);
a62428c0
TH
2041 debug_show_held_locks(current);
2042 dump_stack();
2043 }
2044
b22ce278
TH
2045 /*
2046 * The following prevents a kworker from hogging CPU on !PREEMPT
2047 * kernels, where a requeueing work item waiting for something to
2048 * happen could deadlock with stop_machine as such work item could
2049 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2050 * stop_machine. At the same time, report a quiescent RCU state so
2051 * the same condition doesn't freeze RCU.
b22ce278 2052 */
3e28e377 2053 cond_resched_rcu_qs();
b22ce278 2054
d565ed63 2055 spin_lock_irq(&pool->lock);
a62428c0 2056
fb0e7beb
TH
2057 /* clear cpu intensive status */
2058 if (unlikely(cpu_intensive))
2059 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2060
a62428c0 2061 /* we're done with it, release */
42f8570f 2062 hash_del(&worker->hentry);
c34056a3 2063 worker->current_work = NULL;
a2c1c57b 2064 worker->current_func = NULL;
112202d9 2065 worker->current_pwq = NULL;
3d1cb205 2066 worker->desc_valid = false;
112202d9 2067 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2068}
2069
affee4b2
TH
2070/**
2071 * process_scheduled_works - process scheduled works
2072 * @worker: self
2073 *
2074 * Process all scheduled works. Please note that the scheduled list
2075 * may change while processing a work, so this function repeatedly
2076 * fetches a work from the top and executes it.
2077 *
2078 * CONTEXT:
d565ed63 2079 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2080 * multiple times.
2081 */
2082static void process_scheduled_works(struct worker *worker)
1da177e4 2083{
affee4b2
TH
2084 while (!list_empty(&worker->scheduled)) {
2085 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2086 struct work_struct, entry);
c34056a3 2087 process_one_work(worker, work);
1da177e4 2088 }
1da177e4
LT
2089}
2090
4690c4ab
TH
2091/**
2092 * worker_thread - the worker thread function
c34056a3 2093 * @__worker: self
4690c4ab 2094 *
c5aa87bb
TH
2095 * The worker thread function. All workers belong to a worker_pool -
2096 * either a per-cpu one or dynamic unbound one. These workers process all
2097 * work items regardless of their specific target workqueue. The only
2098 * exception is work items which belong to workqueues with a rescuer which
2099 * will be explained in rescuer_thread().
d185af30
YB
2100 *
2101 * Return: 0
4690c4ab 2102 */
c34056a3 2103static int worker_thread(void *__worker)
1da177e4 2104{
c34056a3 2105 struct worker *worker = __worker;
bd7bdd43 2106 struct worker_pool *pool = worker->pool;
1da177e4 2107
e22bee78
TH
2108 /* tell the scheduler that this is a workqueue worker */
2109 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2110woke_up:
d565ed63 2111 spin_lock_irq(&pool->lock);
1da177e4 2112
a9ab775b
TH
2113 /* am I supposed to die? */
2114 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2115 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2116 WARN_ON_ONCE(!list_empty(&worker->entry));
2117 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2118
2119 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2120 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2121 worker_detach_from_pool(worker, pool);
2122 kfree(worker);
a9ab775b 2123 return 0;
c8e55f36 2124 }
affee4b2 2125
c8e55f36 2126 worker_leave_idle(worker);
db7bccf4 2127recheck:
e22bee78 2128 /* no more worker necessary? */
63d95a91 2129 if (!need_more_worker(pool))
e22bee78
TH
2130 goto sleep;
2131
2132 /* do we need to manage? */
63d95a91 2133 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2134 goto recheck;
2135
c8e55f36
TH
2136 /*
2137 * ->scheduled list can only be filled while a worker is
2138 * preparing to process a work or actually processing it.
2139 * Make sure nobody diddled with it while I was sleeping.
2140 */
6183c009 2141 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2142
e22bee78 2143 /*
a9ab775b
TH
2144 * Finish PREP stage. We're guaranteed to have at least one idle
2145 * worker or that someone else has already assumed the manager
2146 * role. This is where @worker starts participating in concurrency
2147 * management if applicable and concurrency management is restored
2148 * after being rebound. See rebind_workers() for details.
e22bee78 2149 */
a9ab775b 2150 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2151
2152 do {
c8e55f36 2153 struct work_struct *work =
bd7bdd43 2154 list_first_entry(&pool->worklist,
c8e55f36
TH
2155 struct work_struct, entry);
2156
2157 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2158 /* optimization path, not strictly necessary */
2159 process_one_work(worker, work);
2160 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2161 process_scheduled_works(worker);
c8e55f36
TH
2162 } else {
2163 move_linked_works(work, &worker->scheduled, NULL);
2164 process_scheduled_works(worker);
affee4b2 2165 }
63d95a91 2166 } while (keep_working(pool));
e22bee78 2167
228f1d00 2168 worker_set_flags(worker, WORKER_PREP);
d313dd85 2169sleep:
c8e55f36 2170 /*
d565ed63
TH
2171 * pool->lock is held and there's no work to process and no need to
2172 * manage, sleep. Workers are woken up only while holding
2173 * pool->lock or from local cpu, so setting the current state
2174 * before releasing pool->lock is enough to prevent losing any
2175 * event.
c8e55f36
TH
2176 */
2177 worker_enter_idle(worker);
2178 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2179 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2180 schedule();
2181 goto woke_up;
1da177e4
LT
2182}
2183
e22bee78
TH
2184/**
2185 * rescuer_thread - the rescuer thread function
111c225a 2186 * @__rescuer: self
e22bee78
TH
2187 *
2188 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2189 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2190 *
706026c2 2191 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2192 * worker which uses GFP_KERNEL allocation which has slight chance of
2193 * developing into deadlock if some works currently on the same queue
2194 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2195 * the problem rescuer solves.
2196 *
706026c2
TH
2197 * When such condition is possible, the pool summons rescuers of all
2198 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2199 * those works so that forward progress can be guaranteed.
2200 *
2201 * This should happen rarely.
d185af30
YB
2202 *
2203 * Return: 0
e22bee78 2204 */
111c225a 2205static int rescuer_thread(void *__rescuer)
e22bee78 2206{
111c225a
TH
2207 struct worker *rescuer = __rescuer;
2208 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2209 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2210 bool should_stop;
e22bee78
TH
2211
2212 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2213
2214 /*
2215 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2216 * doesn't participate in concurrency management.
2217 */
2218 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2219repeat:
2220 set_current_state(TASK_INTERRUPTIBLE);
2221
4d595b86
LJ
2222 /*
2223 * By the time the rescuer is requested to stop, the workqueue
2224 * shouldn't have any work pending, but @wq->maydays may still have
2225 * pwq(s) queued. This can happen by non-rescuer workers consuming
2226 * all the work items before the rescuer got to them. Go through
2227 * @wq->maydays processing before acting on should_stop so that the
2228 * list is always empty on exit.
2229 */
2230 should_stop = kthread_should_stop();
e22bee78 2231
493a1724 2232 /* see whether any pwq is asking for help */
2e109a28 2233 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2234
2235 while (!list_empty(&wq->maydays)) {
2236 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2237 struct pool_workqueue, mayday_node);
112202d9 2238 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2239 struct work_struct *work, *n;
2240
2241 __set_current_state(TASK_RUNNING);
493a1724
TH
2242 list_del_init(&pwq->mayday_node);
2243
2e109a28 2244 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2245
51697d39
LJ
2246 worker_attach_to_pool(rescuer, pool);
2247
2248 spin_lock_irq(&pool->lock);
b3104104 2249 rescuer->pool = pool;
e22bee78
TH
2250
2251 /*
2252 * Slurp in all works issued via this workqueue and
2253 * process'em.
2254 */
0479c8c5 2255 WARN_ON_ONCE(!list_empty(scheduled));
bd7bdd43 2256 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2257 if (get_work_pwq(work) == pwq)
e22bee78
TH
2258 move_linked_works(work, scheduled, &n);
2259
008847f6
N
2260 if (!list_empty(scheduled)) {
2261 process_scheduled_works(rescuer);
2262
2263 /*
2264 * The above execution of rescued work items could
2265 * have created more to rescue through
2266 * pwq_activate_first_delayed() or chained
2267 * queueing. Let's put @pwq back on mayday list so
2268 * that such back-to-back work items, which may be
2269 * being used to relieve memory pressure, don't
2270 * incur MAYDAY_INTERVAL delay inbetween.
2271 */
2272 if (need_to_create_worker(pool)) {
2273 spin_lock(&wq_mayday_lock);
2274 get_pwq(pwq);
2275 list_move_tail(&pwq->mayday_node, &wq->maydays);
2276 spin_unlock(&wq_mayday_lock);
2277 }
2278 }
7576958a 2279
77668c8b
LJ
2280 /*
2281 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2282 * go away while we're still attached to it.
77668c8b
LJ
2283 */
2284 put_pwq(pwq);
2285
7576958a 2286 /*
d8ca83e6 2287 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2288 * regular worker; otherwise, we end up with 0 concurrency
2289 * and stalling the execution.
2290 */
d8ca83e6 2291 if (need_more_worker(pool))
63d95a91 2292 wake_up_worker(pool);
7576958a 2293
b3104104 2294 rescuer->pool = NULL;
13b1d625
LJ
2295 spin_unlock_irq(&pool->lock);
2296
2297 worker_detach_from_pool(rescuer, pool);
2298
2299 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2300 }
2301
2e109a28 2302 spin_unlock_irq(&wq_mayday_lock);
493a1724 2303
4d595b86
LJ
2304 if (should_stop) {
2305 __set_current_state(TASK_RUNNING);
2306 rescuer->task->flags &= ~PF_WQ_WORKER;
2307 return 0;
2308 }
2309
111c225a
TH
2310 /* rescuers should never participate in concurrency management */
2311 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2312 schedule();
2313 goto repeat;
1da177e4
LT
2314}
2315
fc2e4d70
ON
2316struct wq_barrier {
2317 struct work_struct work;
2318 struct completion done;
2607d7a6 2319 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2320};
2321
2322static void wq_barrier_func(struct work_struct *work)
2323{
2324 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2325 complete(&barr->done);
2326}
2327
4690c4ab
TH
2328/**
2329 * insert_wq_barrier - insert a barrier work
112202d9 2330 * @pwq: pwq to insert barrier into
4690c4ab 2331 * @barr: wq_barrier to insert
affee4b2
TH
2332 * @target: target work to attach @barr to
2333 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2334 *
affee4b2
TH
2335 * @barr is linked to @target such that @barr is completed only after
2336 * @target finishes execution. Please note that the ordering
2337 * guarantee is observed only with respect to @target and on the local
2338 * cpu.
2339 *
2340 * Currently, a queued barrier can't be canceled. This is because
2341 * try_to_grab_pending() can't determine whether the work to be
2342 * grabbed is at the head of the queue and thus can't clear LINKED
2343 * flag of the previous work while there must be a valid next work
2344 * after a work with LINKED flag set.
2345 *
2346 * Note that when @worker is non-NULL, @target may be modified
112202d9 2347 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2348 *
2349 * CONTEXT:
d565ed63 2350 * spin_lock_irq(pool->lock).
4690c4ab 2351 */
112202d9 2352static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2353 struct wq_barrier *barr,
2354 struct work_struct *target, struct worker *worker)
fc2e4d70 2355{
affee4b2
TH
2356 struct list_head *head;
2357 unsigned int linked = 0;
2358
dc186ad7 2359 /*
d565ed63 2360 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2361 * as we know for sure that this will not trigger any of the
2362 * checks and call back into the fixup functions where we
2363 * might deadlock.
2364 */
ca1cab37 2365 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2366 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2367 init_completion(&barr->done);
2607d7a6 2368 barr->task = current;
83c22520 2369
affee4b2
TH
2370 /*
2371 * If @target is currently being executed, schedule the
2372 * barrier to the worker; otherwise, put it after @target.
2373 */
2374 if (worker)
2375 head = worker->scheduled.next;
2376 else {
2377 unsigned long *bits = work_data_bits(target);
2378
2379 head = target->entry.next;
2380 /* there can already be other linked works, inherit and set */
2381 linked = *bits & WORK_STRUCT_LINKED;
2382 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2383 }
2384
dc186ad7 2385 debug_work_activate(&barr->work);
112202d9 2386 insert_work(pwq, &barr->work, head,
affee4b2 2387 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2388}
2389
73f53c4a 2390/**
112202d9 2391 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2392 * @wq: workqueue being flushed
2393 * @flush_color: new flush color, < 0 for no-op
2394 * @work_color: new work color, < 0 for no-op
2395 *
112202d9 2396 * Prepare pwqs for workqueue flushing.
73f53c4a 2397 *
112202d9
TH
2398 * If @flush_color is non-negative, flush_color on all pwqs should be
2399 * -1. If no pwq has in-flight commands at the specified color, all
2400 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2401 * has in flight commands, its pwq->flush_color is set to
2402 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2403 * wakeup logic is armed and %true is returned.
2404 *
2405 * The caller should have initialized @wq->first_flusher prior to
2406 * calling this function with non-negative @flush_color. If
2407 * @flush_color is negative, no flush color update is done and %false
2408 * is returned.
2409 *
112202d9 2410 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2411 * work_color which is previous to @work_color and all will be
2412 * advanced to @work_color.
2413 *
2414 * CONTEXT:
3c25a55d 2415 * mutex_lock(wq->mutex).
73f53c4a 2416 *
d185af30 2417 * Return:
73f53c4a
TH
2418 * %true if @flush_color >= 0 and there's something to flush. %false
2419 * otherwise.
2420 */
112202d9 2421static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2422 int flush_color, int work_color)
1da177e4 2423{
73f53c4a 2424 bool wait = false;
49e3cf44 2425 struct pool_workqueue *pwq;
1da177e4 2426
73f53c4a 2427 if (flush_color >= 0) {
6183c009 2428 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2429 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2430 }
2355b70f 2431
49e3cf44 2432 for_each_pwq(pwq, wq) {
112202d9 2433 struct worker_pool *pool = pwq->pool;
fc2e4d70 2434
b09f4fd3 2435 spin_lock_irq(&pool->lock);
83c22520 2436
73f53c4a 2437 if (flush_color >= 0) {
6183c009 2438 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2439
112202d9
TH
2440 if (pwq->nr_in_flight[flush_color]) {
2441 pwq->flush_color = flush_color;
2442 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2443 wait = true;
2444 }
2445 }
1da177e4 2446
73f53c4a 2447 if (work_color >= 0) {
6183c009 2448 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2449 pwq->work_color = work_color;
73f53c4a 2450 }
1da177e4 2451
b09f4fd3 2452 spin_unlock_irq(&pool->lock);
1da177e4 2453 }
2355b70f 2454
112202d9 2455 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2456 complete(&wq->first_flusher->done);
14441960 2457
73f53c4a 2458 return wait;
1da177e4
LT
2459}
2460
0fcb78c2 2461/**
1da177e4 2462 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2463 * @wq: workqueue to flush
1da177e4 2464 *
c5aa87bb
TH
2465 * This function sleeps until all work items which were queued on entry
2466 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2467 */
7ad5b3a5 2468void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2469{
73f53c4a
TH
2470 struct wq_flusher this_flusher = {
2471 .list = LIST_HEAD_INIT(this_flusher.list),
2472 .flush_color = -1,
2473 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2474 };
2475 int next_color;
1da177e4 2476
3295f0ef
IM
2477 lock_map_acquire(&wq->lockdep_map);
2478 lock_map_release(&wq->lockdep_map);
73f53c4a 2479
3c25a55d 2480 mutex_lock(&wq->mutex);
73f53c4a
TH
2481
2482 /*
2483 * Start-to-wait phase
2484 */
2485 next_color = work_next_color(wq->work_color);
2486
2487 if (next_color != wq->flush_color) {
2488 /*
2489 * Color space is not full. The current work_color
2490 * becomes our flush_color and work_color is advanced
2491 * by one.
2492 */
6183c009 2493 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2494 this_flusher.flush_color = wq->work_color;
2495 wq->work_color = next_color;
2496
2497 if (!wq->first_flusher) {
2498 /* no flush in progress, become the first flusher */
6183c009 2499 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2500
2501 wq->first_flusher = &this_flusher;
2502
112202d9 2503 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2504 wq->work_color)) {
2505 /* nothing to flush, done */
2506 wq->flush_color = next_color;
2507 wq->first_flusher = NULL;
2508 goto out_unlock;
2509 }
2510 } else {
2511 /* wait in queue */
6183c009 2512 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2513 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2514 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2515 }
2516 } else {
2517 /*
2518 * Oops, color space is full, wait on overflow queue.
2519 * The next flush completion will assign us
2520 * flush_color and transfer to flusher_queue.
2521 */
2522 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2523 }
2524
3c25a55d 2525 mutex_unlock(&wq->mutex);
73f53c4a
TH
2526
2527 wait_for_completion(&this_flusher.done);
2528
2529 /*
2530 * Wake-up-and-cascade phase
2531 *
2532 * First flushers are responsible for cascading flushes and
2533 * handling overflow. Non-first flushers can simply return.
2534 */
2535 if (wq->first_flusher != &this_flusher)
2536 return;
2537
3c25a55d 2538 mutex_lock(&wq->mutex);
73f53c4a 2539
4ce48b37
TH
2540 /* we might have raced, check again with mutex held */
2541 if (wq->first_flusher != &this_flusher)
2542 goto out_unlock;
2543
73f53c4a
TH
2544 wq->first_flusher = NULL;
2545
6183c009
TH
2546 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2547 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2548
2549 while (true) {
2550 struct wq_flusher *next, *tmp;
2551
2552 /* complete all the flushers sharing the current flush color */
2553 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2554 if (next->flush_color != wq->flush_color)
2555 break;
2556 list_del_init(&next->list);
2557 complete(&next->done);
2558 }
2559
6183c009
TH
2560 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2561 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2562
2563 /* this flush_color is finished, advance by one */
2564 wq->flush_color = work_next_color(wq->flush_color);
2565
2566 /* one color has been freed, handle overflow queue */
2567 if (!list_empty(&wq->flusher_overflow)) {
2568 /*
2569 * Assign the same color to all overflowed
2570 * flushers, advance work_color and append to
2571 * flusher_queue. This is the start-to-wait
2572 * phase for these overflowed flushers.
2573 */
2574 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2575 tmp->flush_color = wq->work_color;
2576
2577 wq->work_color = work_next_color(wq->work_color);
2578
2579 list_splice_tail_init(&wq->flusher_overflow,
2580 &wq->flusher_queue);
112202d9 2581 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2582 }
2583
2584 if (list_empty(&wq->flusher_queue)) {
6183c009 2585 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2586 break;
2587 }
2588
2589 /*
2590 * Need to flush more colors. Make the next flusher
112202d9 2591 * the new first flusher and arm pwqs.
73f53c4a 2592 */
6183c009
TH
2593 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2594 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2595
2596 list_del_init(&next->list);
2597 wq->first_flusher = next;
2598
112202d9 2599 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2600 break;
2601
2602 /*
2603 * Meh... this color is already done, clear first
2604 * flusher and repeat cascading.
2605 */
2606 wq->first_flusher = NULL;
2607 }
2608
2609out_unlock:
3c25a55d 2610 mutex_unlock(&wq->mutex);
1da177e4 2611}
ae90dd5d 2612EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2613
9c5a2ba7
TH
2614/**
2615 * drain_workqueue - drain a workqueue
2616 * @wq: workqueue to drain
2617 *
2618 * Wait until the workqueue becomes empty. While draining is in progress,
2619 * only chain queueing is allowed. IOW, only currently pending or running
2620 * work items on @wq can queue further work items on it. @wq is flushed
2621 * repeatedly until it becomes empty. The number of flushing is detemined
2622 * by the depth of chaining and should be relatively short. Whine if it
2623 * takes too long.
2624 */
2625void drain_workqueue(struct workqueue_struct *wq)
2626{
2627 unsigned int flush_cnt = 0;
49e3cf44 2628 struct pool_workqueue *pwq;
9c5a2ba7
TH
2629
2630 /*
2631 * __queue_work() needs to test whether there are drainers, is much
2632 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2633 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2634 */
87fc741e 2635 mutex_lock(&wq->mutex);
9c5a2ba7 2636 if (!wq->nr_drainers++)
618b01eb 2637 wq->flags |= __WQ_DRAINING;
87fc741e 2638 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2639reflush:
2640 flush_workqueue(wq);
2641
b09f4fd3 2642 mutex_lock(&wq->mutex);
76af4d93 2643
49e3cf44 2644 for_each_pwq(pwq, wq) {
fa2563e4 2645 bool drained;
9c5a2ba7 2646
b09f4fd3 2647 spin_lock_irq(&pwq->pool->lock);
112202d9 2648 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2649 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2650
2651 if (drained)
9c5a2ba7
TH
2652 continue;
2653
2654 if (++flush_cnt == 10 ||
2655 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2656 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2657 wq->name, flush_cnt);
76af4d93 2658
b09f4fd3 2659 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2660 goto reflush;
2661 }
2662
9c5a2ba7 2663 if (!--wq->nr_drainers)
618b01eb 2664 wq->flags &= ~__WQ_DRAINING;
87fc741e 2665 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2666}
2667EXPORT_SYMBOL_GPL(drain_workqueue);
2668
606a5020 2669static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2670{
affee4b2 2671 struct worker *worker = NULL;
c9e7cf27 2672 struct worker_pool *pool;
112202d9 2673 struct pool_workqueue *pwq;
db700897
ON
2674
2675 might_sleep();
fa1b54e6
TH
2676
2677 local_irq_disable();
c9e7cf27 2678 pool = get_work_pool(work);
fa1b54e6
TH
2679 if (!pool) {
2680 local_irq_enable();
baf59022 2681 return false;
fa1b54e6 2682 }
db700897 2683
fa1b54e6 2684 spin_lock(&pool->lock);
0b3dae68 2685 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2686 pwq = get_work_pwq(work);
2687 if (pwq) {
2688 if (unlikely(pwq->pool != pool))
4690c4ab 2689 goto already_gone;
606a5020 2690 } else {
c9e7cf27 2691 worker = find_worker_executing_work(pool, work);
affee4b2 2692 if (!worker)
4690c4ab 2693 goto already_gone;
112202d9 2694 pwq = worker->current_pwq;
606a5020 2695 }
db700897 2696
112202d9 2697 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2698 spin_unlock_irq(&pool->lock);
7a22ad75 2699
e159489b
TH
2700 /*
2701 * If @max_active is 1 or rescuer is in use, flushing another work
2702 * item on the same workqueue may lead to deadlock. Make sure the
2703 * flusher is not running on the same workqueue by verifying write
2704 * access.
2705 */
493008a8 2706 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2707 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2708 else
112202d9
TH
2709 lock_map_acquire_read(&pwq->wq->lockdep_map);
2710 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2711
401a8d04 2712 return true;
4690c4ab 2713already_gone:
d565ed63 2714 spin_unlock_irq(&pool->lock);
401a8d04 2715 return false;
db700897 2716}
baf59022
TH
2717
2718/**
2719 * flush_work - wait for a work to finish executing the last queueing instance
2720 * @work: the work to flush
2721 *
606a5020
TH
2722 * Wait until @work has finished execution. @work is guaranteed to be idle
2723 * on return if it hasn't been requeued since flush started.
baf59022 2724 *
d185af30 2725 * Return:
baf59022
TH
2726 * %true if flush_work() waited for the work to finish execution,
2727 * %false if it was already idle.
2728 */
2729bool flush_work(struct work_struct *work)
2730{
12997d1a
BH
2731 struct wq_barrier barr;
2732
0976dfc1
SB
2733 lock_map_acquire(&work->lockdep_map);
2734 lock_map_release(&work->lockdep_map);
2735
12997d1a
BH
2736 if (start_flush_work(work, &barr)) {
2737 wait_for_completion(&barr.done);
2738 destroy_work_on_stack(&barr.work);
2739 return true;
2740 } else {
2741 return false;
2742 }
6e84d644 2743}
606a5020 2744EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2745
8603e1b3
TH
2746struct cwt_wait {
2747 wait_queue_t wait;
2748 struct work_struct *work;
2749};
2750
2751static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2752{
2753 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2754
2755 if (cwait->work != key)
2756 return 0;
2757 return autoremove_wake_function(wait, mode, sync, key);
2758}
2759
36e227d2 2760static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2761{
8603e1b3 2762 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2763 unsigned long flags;
1f1f642e
ON
2764 int ret;
2765
2766 do {
bbb68dfa
TH
2767 ret = try_to_grab_pending(work, is_dwork, &flags);
2768 /*
8603e1b3
TH
2769 * If someone else is already canceling, wait for it to
2770 * finish. flush_work() doesn't work for PREEMPT_NONE
2771 * because we may get scheduled between @work's completion
2772 * and the other canceling task resuming and clearing
2773 * CANCELING - flush_work() will return false immediately
2774 * as @work is no longer busy, try_to_grab_pending() will
2775 * return -ENOENT as @work is still being canceled and the
2776 * other canceling task won't be able to clear CANCELING as
2777 * we're hogging the CPU.
2778 *
2779 * Let's wait for completion using a waitqueue. As this
2780 * may lead to the thundering herd problem, use a custom
2781 * wake function which matches @work along with exclusive
2782 * wait and wakeup.
bbb68dfa 2783 */
8603e1b3
TH
2784 if (unlikely(ret == -ENOENT)) {
2785 struct cwt_wait cwait;
2786
2787 init_wait(&cwait.wait);
2788 cwait.wait.func = cwt_wakefn;
2789 cwait.work = work;
2790
2791 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2792 TASK_UNINTERRUPTIBLE);
2793 if (work_is_canceling(work))
2794 schedule();
2795 finish_wait(&cancel_waitq, &cwait.wait);
2796 }
1f1f642e
ON
2797 } while (unlikely(ret < 0));
2798
bbb68dfa
TH
2799 /* tell other tasks trying to grab @work to back off */
2800 mark_work_canceling(work);
2801 local_irq_restore(flags);
2802
606a5020 2803 flush_work(work);
7a22ad75 2804 clear_work_data(work);
8603e1b3
TH
2805
2806 /*
2807 * Paired with prepare_to_wait() above so that either
2808 * waitqueue_active() is visible here or !work_is_canceling() is
2809 * visible there.
2810 */
2811 smp_mb();
2812 if (waitqueue_active(&cancel_waitq))
2813 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2814
1f1f642e
ON
2815 return ret;
2816}
2817
6e84d644 2818/**
401a8d04
TH
2819 * cancel_work_sync - cancel a work and wait for it to finish
2820 * @work: the work to cancel
6e84d644 2821 *
401a8d04
TH
2822 * Cancel @work and wait for its execution to finish. This function
2823 * can be used even if the work re-queues itself or migrates to
2824 * another workqueue. On return from this function, @work is
2825 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2826 *
401a8d04
TH
2827 * cancel_work_sync(&delayed_work->work) must not be used for
2828 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2829 *
401a8d04 2830 * The caller must ensure that the workqueue on which @work was last
6e84d644 2831 * queued can't be destroyed before this function returns.
401a8d04 2832 *
d185af30 2833 * Return:
401a8d04 2834 * %true if @work was pending, %false otherwise.
6e84d644 2835 */
401a8d04 2836bool cancel_work_sync(struct work_struct *work)
6e84d644 2837{
36e227d2 2838 return __cancel_work_timer(work, false);
b89deed3 2839}
28e53bdd 2840EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2841
6e84d644 2842/**
401a8d04
TH
2843 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2844 * @dwork: the delayed work to flush
6e84d644 2845 *
401a8d04
TH
2846 * Delayed timer is cancelled and the pending work is queued for
2847 * immediate execution. Like flush_work(), this function only
2848 * considers the last queueing instance of @dwork.
1f1f642e 2849 *
d185af30 2850 * Return:
401a8d04
TH
2851 * %true if flush_work() waited for the work to finish execution,
2852 * %false if it was already idle.
6e84d644 2853 */
401a8d04
TH
2854bool flush_delayed_work(struct delayed_work *dwork)
2855{
8930caba 2856 local_irq_disable();
401a8d04 2857 if (del_timer_sync(&dwork->timer))
60c057bc 2858 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2859 local_irq_enable();
401a8d04
TH
2860 return flush_work(&dwork->work);
2861}
2862EXPORT_SYMBOL(flush_delayed_work);
2863
09383498 2864/**
57b30ae7
TH
2865 * cancel_delayed_work - cancel a delayed work
2866 * @dwork: delayed_work to cancel
09383498 2867 *
d185af30
YB
2868 * Kill off a pending delayed_work.
2869 *
2870 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2871 * pending.
2872 *
2873 * Note:
2874 * The work callback function may still be running on return, unless
2875 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2876 * use cancel_delayed_work_sync() to wait on it.
09383498 2877 *
57b30ae7 2878 * This function is safe to call from any context including IRQ handler.
09383498 2879 */
57b30ae7 2880bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2881{
57b30ae7
TH
2882 unsigned long flags;
2883 int ret;
2884
2885 do {
2886 ret = try_to_grab_pending(&dwork->work, true, &flags);
2887 } while (unlikely(ret == -EAGAIN));
2888
2889 if (unlikely(ret < 0))
2890 return false;
2891
7c3eed5c
TH
2892 set_work_pool_and_clear_pending(&dwork->work,
2893 get_work_pool_id(&dwork->work));
57b30ae7 2894 local_irq_restore(flags);
c0158ca6 2895 return ret;
09383498 2896}
57b30ae7 2897EXPORT_SYMBOL(cancel_delayed_work);
09383498 2898
401a8d04
TH
2899/**
2900 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2901 * @dwork: the delayed work cancel
2902 *
2903 * This is cancel_work_sync() for delayed works.
2904 *
d185af30 2905 * Return:
401a8d04
TH
2906 * %true if @dwork was pending, %false otherwise.
2907 */
2908bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2909{
36e227d2 2910 return __cancel_work_timer(&dwork->work, true);
6e84d644 2911}
f5a421a4 2912EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2913
b6136773 2914/**
31ddd871 2915 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2916 * @func: the function to call
b6136773 2917 *
31ddd871
TH
2918 * schedule_on_each_cpu() executes @func on each online CPU using the
2919 * system workqueue and blocks until all CPUs have completed.
b6136773 2920 * schedule_on_each_cpu() is very slow.
31ddd871 2921 *
d185af30 2922 * Return:
31ddd871 2923 * 0 on success, -errno on failure.
b6136773 2924 */
65f27f38 2925int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2926{
2927 int cpu;
38f51568 2928 struct work_struct __percpu *works;
15316ba8 2929
b6136773
AM
2930 works = alloc_percpu(struct work_struct);
2931 if (!works)
15316ba8 2932 return -ENOMEM;
b6136773 2933
93981800
TH
2934 get_online_cpus();
2935
15316ba8 2936 for_each_online_cpu(cpu) {
9bfb1839
IM
2937 struct work_struct *work = per_cpu_ptr(works, cpu);
2938
2939 INIT_WORK(work, func);
b71ab8c2 2940 schedule_work_on(cpu, work);
65a64464 2941 }
93981800
TH
2942
2943 for_each_online_cpu(cpu)
2944 flush_work(per_cpu_ptr(works, cpu));
2945
95402b38 2946 put_online_cpus();
b6136773 2947 free_percpu(works);
15316ba8
CL
2948 return 0;
2949}
2950
eef6a7d5
AS
2951/**
2952 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2953 *
2954 * Forces execution of the kernel-global workqueue and blocks until its
2955 * completion.
2956 *
2957 * Think twice before calling this function! It's very easy to get into
2958 * trouble if you don't take great care. Either of the following situations
2959 * will lead to deadlock:
2960 *
2961 * One of the work items currently on the workqueue needs to acquire
2962 * a lock held by your code or its caller.
2963 *
2964 * Your code is running in the context of a work routine.
2965 *
2966 * They will be detected by lockdep when they occur, but the first might not
2967 * occur very often. It depends on what work items are on the workqueue and
2968 * what locks they need, which you have no control over.
2969 *
2970 * In most situations flushing the entire workqueue is overkill; you merely
2971 * need to know that a particular work item isn't queued and isn't running.
2972 * In such cases you should use cancel_delayed_work_sync() or
2973 * cancel_work_sync() instead.
2974 */
1da177e4
LT
2975void flush_scheduled_work(void)
2976{
d320c038 2977 flush_workqueue(system_wq);
1da177e4 2978}
ae90dd5d 2979EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2980
1fa44eca
JB
2981/**
2982 * execute_in_process_context - reliably execute the routine with user context
2983 * @fn: the function to execute
1fa44eca
JB
2984 * @ew: guaranteed storage for the execute work structure (must
2985 * be available when the work executes)
2986 *
2987 * Executes the function immediately if process context is available,
2988 * otherwise schedules the function for delayed execution.
2989 *
d185af30 2990 * Return: 0 - function was executed
1fa44eca
JB
2991 * 1 - function was scheduled for execution
2992 */
65f27f38 2993int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2994{
2995 if (!in_interrupt()) {
65f27f38 2996 fn(&ew->work);
1fa44eca
JB
2997 return 0;
2998 }
2999
65f27f38 3000 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3001 schedule_work(&ew->work);
3002
3003 return 1;
3004}
3005EXPORT_SYMBOL_GPL(execute_in_process_context);
3006
6ba94429
FW
3007/**
3008 * free_workqueue_attrs - free a workqueue_attrs
3009 * @attrs: workqueue_attrs to free
226223ab 3010 *
6ba94429 3011 * Undo alloc_workqueue_attrs().
226223ab 3012 */
6ba94429 3013void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3014{
6ba94429
FW
3015 if (attrs) {
3016 free_cpumask_var(attrs->cpumask);
3017 kfree(attrs);
3018 }
226223ab
TH
3019}
3020
6ba94429
FW
3021/**
3022 * alloc_workqueue_attrs - allocate a workqueue_attrs
3023 * @gfp_mask: allocation mask to use
3024 *
3025 * Allocate a new workqueue_attrs, initialize with default settings and
3026 * return it.
3027 *
3028 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3029 */
3030struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3031{
6ba94429 3032 struct workqueue_attrs *attrs;
226223ab 3033
6ba94429
FW
3034 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3035 if (!attrs)
3036 goto fail;
3037 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3038 goto fail;
3039
3040 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3041 return attrs;
3042fail:
3043 free_workqueue_attrs(attrs);
3044 return NULL;
226223ab
TH
3045}
3046
6ba94429
FW
3047static void copy_workqueue_attrs(struct workqueue_attrs *to,
3048 const struct workqueue_attrs *from)
226223ab 3049{
6ba94429
FW
3050 to->nice = from->nice;
3051 cpumask_copy(to->cpumask, from->cpumask);
3052 /*
3053 * Unlike hash and equality test, this function doesn't ignore
3054 * ->no_numa as it is used for both pool and wq attrs. Instead,
3055 * get_unbound_pool() explicitly clears ->no_numa after copying.
3056 */
3057 to->no_numa = from->no_numa;
226223ab
TH
3058}
3059
6ba94429
FW
3060/* hash value of the content of @attr */
3061static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3062{
6ba94429 3063 u32 hash = 0;
226223ab 3064
6ba94429
FW
3065 hash = jhash_1word(attrs->nice, hash);
3066 hash = jhash(cpumask_bits(attrs->cpumask),
3067 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3068 return hash;
226223ab 3069}
226223ab 3070
6ba94429
FW
3071/* content equality test */
3072static bool wqattrs_equal(const struct workqueue_attrs *a,
3073 const struct workqueue_attrs *b)
226223ab 3074{
6ba94429
FW
3075 if (a->nice != b->nice)
3076 return false;
3077 if (!cpumask_equal(a->cpumask, b->cpumask))
3078 return false;
3079 return true;
226223ab
TH
3080}
3081
6ba94429
FW
3082/**
3083 * init_worker_pool - initialize a newly zalloc'd worker_pool
3084 * @pool: worker_pool to initialize
3085 *
3086 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3087 *
3088 * Return: 0 on success, -errno on failure. Even on failure, all fields
3089 * inside @pool proper are initialized and put_unbound_pool() can be called
3090 * on @pool safely to release it.
3091 */
3092static int init_worker_pool(struct worker_pool *pool)
226223ab 3093{
6ba94429
FW
3094 spin_lock_init(&pool->lock);
3095 pool->id = -1;
3096 pool->cpu = -1;
3097 pool->node = NUMA_NO_NODE;
3098 pool->flags |= POOL_DISASSOCIATED;
3099 INIT_LIST_HEAD(&pool->worklist);
3100 INIT_LIST_HEAD(&pool->idle_list);
3101 hash_init(pool->busy_hash);
226223ab 3102
6ba94429
FW
3103 init_timer_deferrable(&pool->idle_timer);
3104 pool->idle_timer.function = idle_worker_timeout;
3105 pool->idle_timer.data = (unsigned long)pool;
226223ab 3106
6ba94429
FW
3107 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3108 (unsigned long)pool);
226223ab 3109
6ba94429
FW
3110 mutex_init(&pool->manager_arb);
3111 mutex_init(&pool->attach_mutex);
3112 INIT_LIST_HEAD(&pool->workers);
226223ab 3113
6ba94429
FW
3114 ida_init(&pool->worker_ida);
3115 INIT_HLIST_NODE(&pool->hash_node);
3116 pool->refcnt = 1;
226223ab 3117
6ba94429
FW
3118 /* shouldn't fail above this point */
3119 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3120 if (!pool->attrs)
3121 return -ENOMEM;
3122 return 0;
226223ab
TH
3123}
3124
6ba94429 3125static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3126{
6ba94429
FW
3127 struct workqueue_struct *wq =
3128 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3129
6ba94429
FW
3130 if (!(wq->flags & WQ_UNBOUND))
3131 free_percpu(wq->cpu_pwqs);
226223ab 3132 else
6ba94429 3133 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3134
6ba94429
FW
3135 kfree(wq->rescuer);
3136 kfree(wq);
226223ab
TH
3137}
3138
6ba94429 3139static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3140{
6ba94429 3141 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3142
6ba94429
FW
3143 ida_destroy(&pool->worker_ida);
3144 free_workqueue_attrs(pool->attrs);
3145 kfree(pool);
226223ab
TH
3146}
3147
6ba94429
FW
3148/**
3149 * put_unbound_pool - put a worker_pool
3150 * @pool: worker_pool to put
3151 *
3152 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3153 * safe manner. get_unbound_pool() calls this function on its failure path
3154 * and this function should be able to release pools which went through,
3155 * successfully or not, init_worker_pool().
3156 *
3157 * Should be called with wq_pool_mutex held.
3158 */
3159static void put_unbound_pool(struct worker_pool *pool)
226223ab 3160{
6ba94429
FW
3161 DECLARE_COMPLETION_ONSTACK(detach_completion);
3162 struct worker *worker;
226223ab 3163
6ba94429 3164 lockdep_assert_held(&wq_pool_mutex);
226223ab 3165
6ba94429
FW
3166 if (--pool->refcnt)
3167 return;
226223ab 3168
6ba94429
FW
3169 /* sanity checks */
3170 if (WARN_ON(!(pool->cpu < 0)) ||
3171 WARN_ON(!list_empty(&pool->worklist)))
3172 return;
226223ab 3173
6ba94429
FW
3174 /* release id and unhash */
3175 if (pool->id >= 0)
3176 idr_remove(&worker_pool_idr, pool->id);
3177 hash_del(&pool->hash_node);
d55262c4 3178
6ba94429
FW
3179 /*
3180 * Become the manager and destroy all workers. Grabbing
3181 * manager_arb prevents @pool's workers from blocking on
3182 * attach_mutex.
3183 */
3184 mutex_lock(&pool->manager_arb);
d55262c4 3185
6ba94429
FW
3186 spin_lock_irq(&pool->lock);
3187 while ((worker = first_idle_worker(pool)))
3188 destroy_worker(worker);
3189 WARN_ON(pool->nr_workers || pool->nr_idle);
3190 spin_unlock_irq(&pool->lock);
d55262c4 3191
6ba94429
FW
3192 mutex_lock(&pool->attach_mutex);
3193 if (!list_empty(&pool->workers))
3194 pool->detach_completion = &detach_completion;
3195 mutex_unlock(&pool->attach_mutex);
226223ab 3196
6ba94429
FW
3197 if (pool->detach_completion)
3198 wait_for_completion(pool->detach_completion);
226223ab 3199
6ba94429 3200 mutex_unlock(&pool->manager_arb);
226223ab 3201
6ba94429
FW
3202 /* shut down the timers */
3203 del_timer_sync(&pool->idle_timer);
3204 del_timer_sync(&pool->mayday_timer);
226223ab 3205
6ba94429
FW
3206 /* sched-RCU protected to allow dereferences from get_work_pool() */
3207 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3208}
3209
3210/**
6ba94429
FW
3211 * get_unbound_pool - get a worker_pool with the specified attributes
3212 * @attrs: the attributes of the worker_pool to get
226223ab 3213 *
6ba94429
FW
3214 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3215 * reference count and return it. If there already is a matching
3216 * worker_pool, it will be used; otherwise, this function attempts to
3217 * create a new one.
226223ab 3218 *
6ba94429 3219 * Should be called with wq_pool_mutex held.
226223ab 3220 *
6ba94429
FW
3221 * Return: On success, a worker_pool with the same attributes as @attrs.
3222 * On failure, %NULL.
226223ab 3223 */
6ba94429 3224static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3225{
6ba94429
FW
3226 u32 hash = wqattrs_hash(attrs);
3227 struct worker_pool *pool;
3228 int node;
226223ab 3229
6ba94429 3230 lockdep_assert_held(&wq_pool_mutex);
226223ab 3231
6ba94429
FW
3232 /* do we already have a matching pool? */
3233 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3234 if (wqattrs_equal(pool->attrs, attrs)) {
3235 pool->refcnt++;
3236 return pool;
3237 }
3238 }
226223ab 3239
6ba94429
FW
3240 /* nope, create a new one */
3241 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3242 if (!pool || init_worker_pool(pool) < 0)
3243 goto fail;
3244
3245 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3246 copy_workqueue_attrs(pool->attrs, attrs);
226223ab
TH
3247
3248 /*
6ba94429
FW
3249 * no_numa isn't a worker_pool attribute, always clear it. See
3250 * 'struct workqueue_attrs' comments for detail.
226223ab 3251 */
6ba94429 3252 pool->attrs->no_numa = false;
226223ab 3253
6ba94429
FW
3254 /* if cpumask is contained inside a NUMA node, we belong to that node */
3255 if (wq_numa_enabled) {
3256 for_each_node(node) {
3257 if (cpumask_subset(pool->attrs->cpumask,
3258 wq_numa_possible_cpumask[node])) {
3259 pool->node = node;
3260 break;
226223ab
TH
3261 }
3262 }
3263 }
3264
6ba94429
FW
3265 if (worker_pool_assign_id(pool) < 0)
3266 goto fail;
226223ab 3267
6ba94429
FW
3268 /* create and start the initial worker */
3269 if (!create_worker(pool))
3270 goto fail;
226223ab 3271
6ba94429
FW
3272 /* install */
3273 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3274
6ba94429
FW
3275 return pool;
3276fail:
3277 if (pool)
3278 put_unbound_pool(pool);
3279 return NULL;
226223ab 3280}
226223ab 3281
6ba94429 3282static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3283{
6ba94429
FW
3284 kmem_cache_free(pwq_cache,
3285 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3286}
3287
6ba94429
FW
3288/*
3289 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3290 * and needs to be destroyed.
7a4e344c 3291 */
6ba94429 3292static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3293{
6ba94429
FW
3294 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3295 unbound_release_work);
3296 struct workqueue_struct *wq = pwq->wq;
3297 struct worker_pool *pool = pwq->pool;
3298 bool is_last;
7a4e344c 3299
6ba94429
FW
3300 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3301 return;
7a4e344c 3302
6ba94429
FW
3303 mutex_lock(&wq->mutex);
3304 list_del_rcu(&pwq->pwqs_node);
3305 is_last = list_empty(&wq->pwqs);
3306 mutex_unlock(&wq->mutex);
3307
3308 mutex_lock(&wq_pool_mutex);
3309 put_unbound_pool(pool);
3310 mutex_unlock(&wq_pool_mutex);
3311
3312 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3313
2865a8fb 3314 /*
6ba94429
FW
3315 * If we're the last pwq going away, @wq is already dead and no one
3316 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3317 */
6ba94429
FW
3318 if (is_last)
3319 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3320}
3321
7a4e344c 3322/**
6ba94429
FW
3323 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3324 * @pwq: target pool_workqueue
d185af30 3325 *
6ba94429
FW
3326 * If @pwq isn't freezing, set @pwq->max_active to the associated
3327 * workqueue's saved_max_active and activate delayed work items
3328 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3329 */
6ba94429 3330static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3331{
6ba94429
FW
3332 struct workqueue_struct *wq = pwq->wq;
3333 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3334
6ba94429
FW
3335 /* for @wq->saved_max_active */
3336 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3337
6ba94429
FW
3338 /* fast exit for non-freezable wqs */
3339 if (!freezable && pwq->max_active == wq->saved_max_active)
3340 return;
7a4e344c 3341
6ba94429 3342 spin_lock_irq(&pwq->pool->lock);
29c91e99 3343
6ba94429
FW
3344 /*
3345 * During [un]freezing, the caller is responsible for ensuring that
3346 * this function is called at least once after @workqueue_freezing
3347 * is updated and visible.
3348 */
3349 if (!freezable || !workqueue_freezing) {
3350 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3351
6ba94429
FW
3352 while (!list_empty(&pwq->delayed_works) &&
3353 pwq->nr_active < pwq->max_active)
3354 pwq_activate_first_delayed(pwq);
e2dca7ad 3355
6ba94429
FW
3356 /*
3357 * Need to kick a worker after thawed or an unbound wq's
3358 * max_active is bumped. It's a slow path. Do it always.
3359 */
3360 wake_up_worker(pwq->pool);
3361 } else {
3362 pwq->max_active = 0;
3363 }
e2dca7ad 3364
6ba94429 3365 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3366}
3367
6ba94429
FW
3368/* initialize newly alloced @pwq which is associated with @wq and @pool */
3369static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3370 struct worker_pool *pool)
29c91e99 3371{
6ba94429 3372 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3373
6ba94429
FW
3374 memset(pwq, 0, sizeof(*pwq));
3375
3376 pwq->pool = pool;
3377 pwq->wq = wq;
3378 pwq->flush_color = -1;
3379 pwq->refcnt = 1;
3380 INIT_LIST_HEAD(&pwq->delayed_works);
3381 INIT_LIST_HEAD(&pwq->pwqs_node);
3382 INIT_LIST_HEAD(&pwq->mayday_node);
3383 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3384}
3385
6ba94429
FW
3386/* sync @pwq with the current state of its associated wq and link it */
3387static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3388{
6ba94429 3389 struct workqueue_struct *wq = pwq->wq;
29c91e99 3390
6ba94429 3391 lockdep_assert_held(&wq->mutex);
a892cacc 3392
6ba94429
FW
3393 /* may be called multiple times, ignore if already linked */
3394 if (!list_empty(&pwq->pwqs_node))
29c91e99 3395 return;
29c91e99 3396
6ba94429
FW
3397 /* set the matching work_color */
3398 pwq->work_color = wq->work_color;
29c91e99 3399
6ba94429
FW
3400 /* sync max_active to the current setting */
3401 pwq_adjust_max_active(pwq);
29c91e99 3402
6ba94429
FW
3403 /* link in @pwq */
3404 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3405}
29c91e99 3406
6ba94429
FW
3407/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3408static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3409 const struct workqueue_attrs *attrs)
3410{
3411 struct worker_pool *pool;
3412 struct pool_workqueue *pwq;
60f5a4bc 3413
6ba94429 3414 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3415
6ba94429
FW
3416 pool = get_unbound_pool(attrs);
3417 if (!pool)
3418 return NULL;
60f5a4bc 3419
6ba94429
FW
3420 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3421 if (!pwq) {
3422 put_unbound_pool(pool);
3423 return NULL;
3424 }
29c91e99 3425
6ba94429
FW
3426 init_pwq(pwq, wq, pool);
3427 return pwq;
3428}
29c91e99 3429
29c91e99 3430/**
6ba94429
FW
3431 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3432 * @attrs: the wq_attrs of interest
3433 * @node: the target NUMA node
3434 * @cpu_going_down: if >= 0, the CPU to consider as offline
3435 * @cpumask: outarg, the resulting cpumask
29c91e99 3436 *
6ba94429
FW
3437 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3438 * @cpu_going_down is >= 0, that cpu is considered offline during
3439 * calculation. The result is stored in @cpumask.
a892cacc 3440 *
6ba94429
FW
3441 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3442 * enabled and @node has online CPUs requested by @attrs, the returned
3443 * cpumask is the intersection of the possible CPUs of @node and
3444 * @attrs->cpumask.
d185af30 3445 *
6ba94429
FW
3446 * The caller is responsible for ensuring that the cpumask of @node stays
3447 * stable.
3448 *
3449 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3450 * %false if equal.
29c91e99 3451 */
6ba94429
FW
3452static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3453 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3454{
6ba94429
FW
3455 if (!wq_numa_enabled || attrs->no_numa)
3456 goto use_dfl;
29c91e99 3457
6ba94429
FW
3458 /* does @node have any online CPUs @attrs wants? */
3459 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3460 if (cpu_going_down >= 0)
3461 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3462
6ba94429
FW
3463 if (cpumask_empty(cpumask))
3464 goto use_dfl;
4c16bd32
TH
3465
3466 /* yeap, return possible CPUs in @node that @attrs wants */
3467 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3468 return !cpumask_equal(cpumask, attrs->cpumask);
3469
3470use_dfl:
3471 cpumask_copy(cpumask, attrs->cpumask);
3472 return false;
3473}
3474
1befcf30
TH
3475/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3476static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3477 int node,
3478 struct pool_workqueue *pwq)
3479{
3480 struct pool_workqueue *old_pwq;
3481
3482 lockdep_assert_held(&wq->mutex);
3483
3484 /* link_pwq() can handle duplicate calls */
3485 link_pwq(pwq);
3486
3487 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3488 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3489 return old_pwq;
3490}
3491
2d5f0764
LJ
3492/* context to store the prepared attrs & pwqs before applying */
3493struct apply_wqattrs_ctx {
3494 struct workqueue_struct *wq; /* target workqueue */
3495 struct workqueue_attrs *attrs; /* attrs to apply */
3496 struct pool_workqueue *dfl_pwq;
3497 struct pool_workqueue *pwq_tbl[];
3498};
3499
3500/* free the resources after success or abort */
3501static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3502{
3503 if (ctx) {
3504 int node;
3505
3506 for_each_node(node)
3507 put_pwq_unlocked(ctx->pwq_tbl[node]);
3508 put_pwq_unlocked(ctx->dfl_pwq);
3509
3510 free_workqueue_attrs(ctx->attrs);
3511
3512 kfree(ctx);
3513 }
3514}
3515
3516/* allocate the attrs and pwqs for later installation */
3517static struct apply_wqattrs_ctx *
3518apply_wqattrs_prepare(struct workqueue_struct *wq,
3519 const struct workqueue_attrs *attrs)
9e8cd2f5 3520{
2d5f0764 3521 struct apply_wqattrs_ctx *ctx;
4c16bd32 3522 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3523 int node;
9e8cd2f5 3524
2d5f0764 3525 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3526
2d5f0764
LJ
3527 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3528 GFP_KERNEL);
8719dcea 3529
13e2e556 3530 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3531 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3532 if (!ctx || !new_attrs || !tmp_attrs)
3533 goto out_free;
13e2e556 3534
4c16bd32 3535 /* make a copy of @attrs and sanitize it */
13e2e556 3536 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3537 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3538
4c16bd32
TH
3539 /*
3540 * We may create multiple pwqs with differing cpumasks. Make a
3541 * copy of @new_attrs which will be modified and used to obtain
3542 * pools.
3543 */
3544 copy_workqueue_attrs(tmp_attrs, new_attrs);
3545
4c16bd32
TH
3546 /*
3547 * If something goes wrong during CPU up/down, we'll fall back to
3548 * the default pwq covering whole @attrs->cpumask. Always create
3549 * it even if we don't use it immediately.
3550 */
2d5f0764
LJ
3551 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3552 if (!ctx->dfl_pwq)
3553 goto out_free;
4c16bd32
TH
3554
3555 for_each_node(node) {
3556 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3557 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3558 if (!ctx->pwq_tbl[node])
3559 goto out_free;
4c16bd32 3560 } else {
2d5f0764
LJ
3561 ctx->dfl_pwq->refcnt++;
3562 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3563 }
3564 }
3565
2d5f0764
LJ
3566 ctx->attrs = new_attrs;
3567 ctx->wq = wq;
3568 free_workqueue_attrs(tmp_attrs);
3569 return ctx;
3570
3571out_free:
3572 free_workqueue_attrs(tmp_attrs);
3573 free_workqueue_attrs(new_attrs);
3574 apply_wqattrs_cleanup(ctx);
3575 return NULL;
3576}
3577
3578/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3579static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3580{
3581 int node;
9e8cd2f5 3582
4c16bd32 3583 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3584 mutex_lock(&ctx->wq->mutex);
a892cacc 3585
2d5f0764 3586 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3587
3588 /* save the previous pwq and install the new one */
f147f29e 3589 for_each_node(node)
2d5f0764
LJ
3590 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3591 ctx->pwq_tbl[node]);
4c16bd32
TH
3592
3593 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3594 link_pwq(ctx->dfl_pwq);
3595 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3596
2d5f0764
LJ
3597 mutex_unlock(&ctx->wq->mutex);
3598}
9e8cd2f5 3599
2d5f0764
LJ
3600/**
3601 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3602 * @wq: the target workqueue
3603 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3604 *
3605 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3606 * machines, this function maps a separate pwq to each NUMA node with
3607 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3608 * NUMA node it was issued on. Older pwqs are released as in-flight work
3609 * items finish. Note that a work item which repeatedly requeues itself
3610 * back-to-back will stay on its current pwq.
3611 *
3612 * Performs GFP_KERNEL allocations.
3613 *
3614 * Return: 0 on success and -errno on failure.
3615 */
3616int apply_workqueue_attrs(struct workqueue_struct *wq,
3617 const struct workqueue_attrs *attrs)
3618{
3619 struct apply_wqattrs_ctx *ctx;
3620 int ret = -ENOMEM;
4c16bd32 3621
2d5f0764
LJ
3622 /* only unbound workqueues can change attributes */
3623 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3624 return -EINVAL;
13e2e556 3625
2d5f0764
LJ
3626 /* creating multiple pwqs breaks ordering guarantee */
3627 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3628 return -EINVAL;
3629
3630 /*
3631 * CPUs should stay stable across pwq creations and installations.
3632 * Pin CPUs, determine the target cpumask for each node and create
3633 * pwqs accordingly.
3634 */
3635 get_online_cpus();
3636
3637 mutex_lock(&wq_pool_mutex);
3638 ctx = apply_wqattrs_prepare(wq, attrs);
4c16bd32 3639 mutex_unlock(&wq_pool_mutex);
2d5f0764
LJ
3640
3641 /* the ctx has been prepared successfully, let's commit it */
3642 if (ctx) {
3643 apply_wqattrs_commit(ctx);
3644 ret = 0;
3645 }
3646
4c16bd32 3647 put_online_cpus();
2d5f0764
LJ
3648
3649 apply_wqattrs_cleanup(ctx);
3650
3651 return ret;
9e8cd2f5
TH
3652}
3653
4c16bd32
TH
3654/**
3655 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3656 * @wq: the target workqueue
3657 * @cpu: the CPU coming up or going down
3658 * @online: whether @cpu is coming up or going down
3659 *
3660 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3661 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3662 * @wq accordingly.
3663 *
3664 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3665 * falls back to @wq->dfl_pwq which may not be optimal but is always
3666 * correct.
3667 *
3668 * Note that when the last allowed CPU of a NUMA node goes offline for a
3669 * workqueue with a cpumask spanning multiple nodes, the workers which were
3670 * already executing the work items for the workqueue will lose their CPU
3671 * affinity and may execute on any CPU. This is similar to how per-cpu
3672 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3673 * affinity, it's the user's responsibility to flush the work item from
3674 * CPU_DOWN_PREPARE.
3675 */
3676static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3677 bool online)
3678{
3679 int node = cpu_to_node(cpu);
3680 int cpu_off = online ? -1 : cpu;
3681 struct pool_workqueue *old_pwq = NULL, *pwq;
3682 struct workqueue_attrs *target_attrs;
3683 cpumask_t *cpumask;
3684
3685 lockdep_assert_held(&wq_pool_mutex);
3686
3687 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3688 return;
3689
3690 /*
3691 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3692 * Let's use a preallocated one. The following buf is protected by
3693 * CPU hotplug exclusion.
3694 */
3695 target_attrs = wq_update_unbound_numa_attrs_buf;
3696 cpumask = target_attrs->cpumask;
3697
3698 mutex_lock(&wq->mutex);
d55262c4
TH
3699 if (wq->unbound_attrs->no_numa)
3700 goto out_unlock;
4c16bd32
TH
3701
3702 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3703 pwq = unbound_pwq_by_node(wq, node);
3704
3705 /*
3706 * Let's determine what needs to be done. If the target cpumask is
3707 * different from wq's, we need to compare it to @pwq's and create
3708 * a new one if they don't match. If the target cpumask equals
534a3fbb 3709 * wq's, the default pwq should be used.
4c16bd32
TH
3710 */
3711 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3712 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3713 goto out_unlock;
3714 } else {
534a3fbb 3715 goto use_dfl_pwq;
4c16bd32
TH
3716 }
3717
3718 mutex_unlock(&wq->mutex);
3719
3720 /* create a new pwq */
3721 pwq = alloc_unbound_pwq(wq, target_attrs);
3722 if (!pwq) {
2d916033
FF
3723 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3724 wq->name);
77f300b1
DY
3725 mutex_lock(&wq->mutex);
3726 goto use_dfl_pwq;
4c16bd32
TH
3727 }
3728
3729 /*
3730 * Install the new pwq. As this function is called only from CPU
3731 * hotplug callbacks and applying a new attrs is wrapped with
3732 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3733 * inbetween.
3734 */
3735 mutex_lock(&wq->mutex);
3736 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3737 goto out_unlock;
3738
3739use_dfl_pwq:
3740 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3741 get_pwq(wq->dfl_pwq);
3742 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3743 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3744out_unlock:
3745 mutex_unlock(&wq->mutex);
3746 put_pwq_unlocked(old_pwq);
3747}
3748
30cdf249 3749static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3750{
49e3cf44 3751 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3752 int cpu, ret;
30cdf249
TH
3753
3754 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3755 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3756 if (!wq->cpu_pwqs)
30cdf249
TH
3757 return -ENOMEM;
3758
3759 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3760 struct pool_workqueue *pwq =
3761 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3762 struct worker_pool *cpu_pools =
f02ae73a 3763 per_cpu(cpu_worker_pools, cpu);
f3421797 3764
f147f29e
TH
3765 init_pwq(pwq, wq, &cpu_pools[highpri]);
3766
3767 mutex_lock(&wq->mutex);
1befcf30 3768 link_pwq(pwq);
f147f29e 3769 mutex_unlock(&wq->mutex);
30cdf249 3770 }
9e8cd2f5 3771 return 0;
8a2b7538
TH
3772 } else if (wq->flags & __WQ_ORDERED) {
3773 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3774 /* there should only be single pwq for ordering guarantee */
3775 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3776 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3777 "ordering guarantee broken for workqueue %s\n", wq->name);
3778 return ret;
30cdf249 3779 } else {
9e8cd2f5 3780 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3781 }
0f900049
TH
3782}
3783
f3421797
TH
3784static int wq_clamp_max_active(int max_active, unsigned int flags,
3785 const char *name)
b71ab8c2 3786{
f3421797
TH
3787 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3788
3789 if (max_active < 1 || max_active > lim)
044c782c
VI
3790 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3791 max_active, name, 1, lim);
b71ab8c2 3792
f3421797 3793 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3794}
3795
b196be89 3796struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3797 unsigned int flags,
3798 int max_active,
3799 struct lock_class_key *key,
b196be89 3800 const char *lock_name, ...)
1da177e4 3801{
df2d5ae4 3802 size_t tbl_size = 0;
ecf6881f 3803 va_list args;
1da177e4 3804 struct workqueue_struct *wq;
49e3cf44 3805 struct pool_workqueue *pwq;
b196be89 3806
cee22a15
VK
3807 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3808 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3809 flags |= WQ_UNBOUND;
3810
ecf6881f 3811 /* allocate wq and format name */
df2d5ae4 3812 if (flags & WQ_UNBOUND)
ddcb57e2 3813 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3814
3815 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3816 if (!wq)
d2c1d404 3817 return NULL;
b196be89 3818
6029a918
TH
3819 if (flags & WQ_UNBOUND) {
3820 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3821 if (!wq->unbound_attrs)
3822 goto err_free_wq;
3823 }
3824
ecf6881f
TH
3825 va_start(args, lock_name);
3826 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3827 va_end(args);
1da177e4 3828
d320c038 3829 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3830 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3831
b196be89 3832 /* init wq */
97e37d7b 3833 wq->flags = flags;
a0a1a5fd 3834 wq->saved_max_active = max_active;
3c25a55d 3835 mutex_init(&wq->mutex);
112202d9 3836 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3837 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3838 INIT_LIST_HEAD(&wq->flusher_queue);
3839 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3840 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3841
eb13ba87 3842 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3843 INIT_LIST_HEAD(&wq->list);
3af24433 3844
30cdf249 3845 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3846 goto err_free_wq;
1537663f 3847
493008a8
TH
3848 /*
3849 * Workqueues which may be used during memory reclaim should
3850 * have a rescuer to guarantee forward progress.
3851 */
3852 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3853 struct worker *rescuer;
3854
f7537df5 3855 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3856 if (!rescuer)
d2c1d404 3857 goto err_destroy;
e22bee78 3858
111c225a
TH
3859 rescuer->rescue_wq = wq;
3860 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3861 wq->name);
d2c1d404
TH
3862 if (IS_ERR(rescuer->task)) {
3863 kfree(rescuer);
3864 goto err_destroy;
3865 }
e22bee78 3866
d2c1d404 3867 wq->rescuer = rescuer;
14a40ffc 3868 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3869 wake_up_process(rescuer->task);
3af24433
ON
3870 }
3871
226223ab
TH
3872 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3873 goto err_destroy;
3874
a0a1a5fd 3875 /*
68e13a67
LJ
3876 * wq_pool_mutex protects global freeze state and workqueues list.
3877 * Grab it, adjust max_active and add the new @wq to workqueues
3878 * list.
a0a1a5fd 3879 */
68e13a67 3880 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3881
a357fc03 3882 mutex_lock(&wq->mutex);
699ce097
TH
3883 for_each_pwq(pwq, wq)
3884 pwq_adjust_max_active(pwq);
a357fc03 3885 mutex_unlock(&wq->mutex);
a0a1a5fd 3886
e2dca7ad 3887 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3888
68e13a67 3889 mutex_unlock(&wq_pool_mutex);
1537663f 3890
3af24433 3891 return wq;
d2c1d404
TH
3892
3893err_free_wq:
6029a918 3894 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3895 kfree(wq);
3896 return NULL;
3897err_destroy:
3898 destroy_workqueue(wq);
4690c4ab 3899 return NULL;
3af24433 3900}
d320c038 3901EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3902
3af24433
ON
3903/**
3904 * destroy_workqueue - safely terminate a workqueue
3905 * @wq: target workqueue
3906 *
3907 * Safely destroy a workqueue. All work currently pending will be done first.
3908 */
3909void destroy_workqueue(struct workqueue_struct *wq)
3910{
49e3cf44 3911 struct pool_workqueue *pwq;
4c16bd32 3912 int node;
3af24433 3913
9c5a2ba7
TH
3914 /* drain it before proceeding with destruction */
3915 drain_workqueue(wq);
c8efcc25 3916
6183c009 3917 /* sanity checks */
b09f4fd3 3918 mutex_lock(&wq->mutex);
49e3cf44 3919 for_each_pwq(pwq, wq) {
6183c009
TH
3920 int i;
3921
76af4d93
TH
3922 for (i = 0; i < WORK_NR_COLORS; i++) {
3923 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3924 mutex_unlock(&wq->mutex);
6183c009 3925 return;
76af4d93
TH
3926 }
3927 }
3928
5c529597 3929 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 3930 WARN_ON(pwq->nr_active) ||
76af4d93 3931 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3932 mutex_unlock(&wq->mutex);
6183c009 3933 return;
76af4d93 3934 }
6183c009 3935 }
b09f4fd3 3936 mutex_unlock(&wq->mutex);
6183c009 3937
a0a1a5fd
TH
3938 /*
3939 * wq list is used to freeze wq, remove from list after
3940 * flushing is complete in case freeze races us.
3941 */
68e13a67 3942 mutex_lock(&wq_pool_mutex);
e2dca7ad 3943 list_del_rcu(&wq->list);
68e13a67 3944 mutex_unlock(&wq_pool_mutex);
3af24433 3945
226223ab
TH
3946 workqueue_sysfs_unregister(wq);
3947
e2dca7ad 3948 if (wq->rescuer)
e22bee78 3949 kthread_stop(wq->rescuer->task);
e22bee78 3950
8864b4e5
TH
3951 if (!(wq->flags & WQ_UNBOUND)) {
3952 /*
3953 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 3954 * schedule RCU free.
8864b4e5 3955 */
e2dca7ad 3956 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
3957 } else {
3958 /*
3959 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
3960 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3961 * @wq will be freed when the last pwq is released.
8864b4e5 3962 */
4c16bd32
TH
3963 for_each_node(node) {
3964 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3965 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3966 put_pwq_unlocked(pwq);
3967 }
3968
3969 /*
3970 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
3971 * put. Don't access it afterwards.
3972 */
3973 pwq = wq->dfl_pwq;
3974 wq->dfl_pwq = NULL;
dce90d47 3975 put_pwq_unlocked(pwq);
29c91e99 3976 }
3af24433
ON
3977}
3978EXPORT_SYMBOL_GPL(destroy_workqueue);
3979
dcd989cb
TH
3980/**
3981 * workqueue_set_max_active - adjust max_active of a workqueue
3982 * @wq: target workqueue
3983 * @max_active: new max_active value.
3984 *
3985 * Set max_active of @wq to @max_active.
3986 *
3987 * CONTEXT:
3988 * Don't call from IRQ context.
3989 */
3990void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3991{
49e3cf44 3992 struct pool_workqueue *pwq;
dcd989cb 3993
8719dcea
TH
3994 /* disallow meddling with max_active for ordered workqueues */
3995 if (WARN_ON(wq->flags & __WQ_ORDERED))
3996 return;
3997
f3421797 3998 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3999
a357fc03 4000 mutex_lock(&wq->mutex);
dcd989cb
TH
4001
4002 wq->saved_max_active = max_active;
4003
699ce097
TH
4004 for_each_pwq(pwq, wq)
4005 pwq_adjust_max_active(pwq);
93981800 4006
a357fc03 4007 mutex_unlock(&wq->mutex);
15316ba8 4008}
dcd989cb 4009EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4010
e6267616
TH
4011/**
4012 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4013 *
4014 * Determine whether %current is a workqueue rescuer. Can be used from
4015 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4016 *
4017 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4018 */
4019bool current_is_workqueue_rescuer(void)
4020{
4021 struct worker *worker = current_wq_worker();
4022
6a092dfd 4023 return worker && worker->rescue_wq;
e6267616
TH
4024}
4025
eef6a7d5 4026/**
dcd989cb
TH
4027 * workqueue_congested - test whether a workqueue is congested
4028 * @cpu: CPU in question
4029 * @wq: target workqueue
eef6a7d5 4030 *
dcd989cb
TH
4031 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4032 * no synchronization around this function and the test result is
4033 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4034 *
d3251859
TH
4035 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4036 * Note that both per-cpu and unbound workqueues may be associated with
4037 * multiple pool_workqueues which have separate congested states. A
4038 * workqueue being congested on one CPU doesn't mean the workqueue is also
4039 * contested on other CPUs / NUMA nodes.
4040 *
d185af30 4041 * Return:
dcd989cb 4042 * %true if congested, %false otherwise.
eef6a7d5 4043 */
d84ff051 4044bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4045{
7fb98ea7 4046 struct pool_workqueue *pwq;
76af4d93
TH
4047 bool ret;
4048
88109453 4049 rcu_read_lock_sched();
7fb98ea7 4050
d3251859
TH
4051 if (cpu == WORK_CPU_UNBOUND)
4052 cpu = smp_processor_id();
4053
7fb98ea7
TH
4054 if (!(wq->flags & WQ_UNBOUND))
4055 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4056 else
df2d5ae4 4057 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4058
76af4d93 4059 ret = !list_empty(&pwq->delayed_works);
88109453 4060 rcu_read_unlock_sched();
76af4d93
TH
4061
4062 return ret;
1da177e4 4063}
dcd989cb 4064EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4065
dcd989cb
TH
4066/**
4067 * work_busy - test whether a work is currently pending or running
4068 * @work: the work to be tested
4069 *
4070 * Test whether @work is currently pending or running. There is no
4071 * synchronization around this function and the test result is
4072 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4073 *
d185af30 4074 * Return:
dcd989cb
TH
4075 * OR'd bitmask of WORK_BUSY_* bits.
4076 */
4077unsigned int work_busy(struct work_struct *work)
1da177e4 4078{
fa1b54e6 4079 struct worker_pool *pool;
dcd989cb
TH
4080 unsigned long flags;
4081 unsigned int ret = 0;
1da177e4 4082
dcd989cb
TH
4083 if (work_pending(work))
4084 ret |= WORK_BUSY_PENDING;
1da177e4 4085
fa1b54e6
TH
4086 local_irq_save(flags);
4087 pool = get_work_pool(work);
038366c5 4088 if (pool) {
fa1b54e6 4089 spin_lock(&pool->lock);
038366c5
LJ
4090 if (find_worker_executing_work(pool, work))
4091 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4092 spin_unlock(&pool->lock);
038366c5 4093 }
fa1b54e6 4094 local_irq_restore(flags);
1da177e4 4095
dcd989cb 4096 return ret;
1da177e4 4097}
dcd989cb 4098EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4099
3d1cb205
TH
4100/**
4101 * set_worker_desc - set description for the current work item
4102 * @fmt: printf-style format string
4103 * @...: arguments for the format string
4104 *
4105 * This function can be called by a running work function to describe what
4106 * the work item is about. If the worker task gets dumped, this
4107 * information will be printed out together to help debugging. The
4108 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4109 */
4110void set_worker_desc(const char *fmt, ...)
4111{
4112 struct worker *worker = current_wq_worker();
4113 va_list args;
4114
4115 if (worker) {
4116 va_start(args, fmt);
4117 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4118 va_end(args);
4119 worker->desc_valid = true;
4120 }
4121}
4122
4123/**
4124 * print_worker_info - print out worker information and description
4125 * @log_lvl: the log level to use when printing
4126 * @task: target task
4127 *
4128 * If @task is a worker and currently executing a work item, print out the
4129 * name of the workqueue being serviced and worker description set with
4130 * set_worker_desc() by the currently executing work item.
4131 *
4132 * This function can be safely called on any task as long as the
4133 * task_struct itself is accessible. While safe, this function isn't
4134 * synchronized and may print out mixups or garbages of limited length.
4135 */
4136void print_worker_info(const char *log_lvl, struct task_struct *task)
4137{
4138 work_func_t *fn = NULL;
4139 char name[WQ_NAME_LEN] = { };
4140 char desc[WORKER_DESC_LEN] = { };
4141 struct pool_workqueue *pwq = NULL;
4142 struct workqueue_struct *wq = NULL;
4143 bool desc_valid = false;
4144 struct worker *worker;
4145
4146 if (!(task->flags & PF_WQ_WORKER))
4147 return;
4148
4149 /*
4150 * This function is called without any synchronization and @task
4151 * could be in any state. Be careful with dereferences.
4152 */
4153 worker = probe_kthread_data(task);
4154
4155 /*
4156 * Carefully copy the associated workqueue's workfn and name. Keep
4157 * the original last '\0' in case the original contains garbage.
4158 */
4159 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4160 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4161 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4162 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4163
4164 /* copy worker description */
4165 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4166 if (desc_valid)
4167 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4168
4169 if (fn || name[0] || desc[0]) {
4170 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4171 if (desc[0])
4172 pr_cont(" (%s)", desc);
4173 pr_cont("\n");
4174 }
4175}
4176
3494fc30
TH
4177static void pr_cont_pool_info(struct worker_pool *pool)
4178{
4179 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4180 if (pool->node != NUMA_NO_NODE)
4181 pr_cont(" node=%d", pool->node);
4182 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4183}
4184
4185static void pr_cont_work(bool comma, struct work_struct *work)
4186{
4187 if (work->func == wq_barrier_func) {
4188 struct wq_barrier *barr;
4189
4190 barr = container_of(work, struct wq_barrier, work);
4191
4192 pr_cont("%s BAR(%d)", comma ? "," : "",
4193 task_pid_nr(barr->task));
4194 } else {
4195 pr_cont("%s %pf", comma ? "," : "", work->func);
4196 }
4197}
4198
4199static void show_pwq(struct pool_workqueue *pwq)
4200{
4201 struct worker_pool *pool = pwq->pool;
4202 struct work_struct *work;
4203 struct worker *worker;
4204 bool has_in_flight = false, has_pending = false;
4205 int bkt;
4206
4207 pr_info(" pwq %d:", pool->id);
4208 pr_cont_pool_info(pool);
4209
4210 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4211 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4212
4213 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4214 if (worker->current_pwq == pwq) {
4215 has_in_flight = true;
4216 break;
4217 }
4218 }
4219 if (has_in_flight) {
4220 bool comma = false;
4221
4222 pr_info(" in-flight:");
4223 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4224 if (worker->current_pwq != pwq)
4225 continue;
4226
4227 pr_cont("%s %d%s:%pf", comma ? "," : "",
4228 task_pid_nr(worker->task),
4229 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4230 worker->current_func);
4231 list_for_each_entry(work, &worker->scheduled, entry)
4232 pr_cont_work(false, work);
4233 comma = true;
4234 }
4235 pr_cont("\n");
4236 }
4237
4238 list_for_each_entry(work, &pool->worklist, entry) {
4239 if (get_work_pwq(work) == pwq) {
4240 has_pending = true;
4241 break;
4242 }
4243 }
4244 if (has_pending) {
4245 bool comma = false;
4246
4247 pr_info(" pending:");
4248 list_for_each_entry(work, &pool->worklist, entry) {
4249 if (get_work_pwq(work) != pwq)
4250 continue;
4251
4252 pr_cont_work(comma, work);
4253 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4254 }
4255 pr_cont("\n");
4256 }
4257
4258 if (!list_empty(&pwq->delayed_works)) {
4259 bool comma = false;
4260
4261 pr_info(" delayed:");
4262 list_for_each_entry(work, &pwq->delayed_works, entry) {
4263 pr_cont_work(comma, work);
4264 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4265 }
4266 pr_cont("\n");
4267 }
4268}
4269
4270/**
4271 * show_workqueue_state - dump workqueue state
4272 *
4273 * Called from a sysrq handler and prints out all busy workqueues and
4274 * pools.
4275 */
4276void show_workqueue_state(void)
4277{
4278 struct workqueue_struct *wq;
4279 struct worker_pool *pool;
4280 unsigned long flags;
4281 int pi;
4282
4283 rcu_read_lock_sched();
4284
4285 pr_info("Showing busy workqueues and worker pools:\n");
4286
4287 list_for_each_entry_rcu(wq, &workqueues, list) {
4288 struct pool_workqueue *pwq;
4289 bool idle = true;
4290
4291 for_each_pwq(pwq, wq) {
4292 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4293 idle = false;
4294 break;
4295 }
4296 }
4297 if (idle)
4298 continue;
4299
4300 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4301
4302 for_each_pwq(pwq, wq) {
4303 spin_lock_irqsave(&pwq->pool->lock, flags);
4304 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4305 show_pwq(pwq);
4306 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4307 }
4308 }
4309
4310 for_each_pool(pool, pi) {
4311 struct worker *worker;
4312 bool first = true;
4313
4314 spin_lock_irqsave(&pool->lock, flags);
4315 if (pool->nr_workers == pool->nr_idle)
4316 goto next_pool;
4317
4318 pr_info("pool %d:", pool->id);
4319 pr_cont_pool_info(pool);
4320 pr_cont(" workers=%d", pool->nr_workers);
4321 if (pool->manager)
4322 pr_cont(" manager: %d",
4323 task_pid_nr(pool->manager->task));
4324 list_for_each_entry(worker, &pool->idle_list, entry) {
4325 pr_cont(" %s%d", first ? "idle: " : "",
4326 task_pid_nr(worker->task));
4327 first = false;
4328 }
4329 pr_cont("\n");
4330 next_pool:
4331 spin_unlock_irqrestore(&pool->lock, flags);
4332 }
4333
4334 rcu_read_unlock_sched();
4335}
4336
db7bccf4
TH
4337/*
4338 * CPU hotplug.
4339 *
e22bee78 4340 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4341 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4342 * pool which make migrating pending and scheduled works very
e22bee78 4343 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4344 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4345 * blocked draining impractical.
4346 *
24647570 4347 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4348 * running as an unbound one and allowing it to be reattached later if the
4349 * cpu comes back online.
db7bccf4 4350 */
1da177e4 4351
706026c2 4352static void wq_unbind_fn(struct work_struct *work)
3af24433 4353{
38db41d9 4354 int cpu = smp_processor_id();
4ce62e9e 4355 struct worker_pool *pool;
db7bccf4 4356 struct worker *worker;
3af24433 4357
f02ae73a 4358 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4359 mutex_lock(&pool->attach_mutex);
94cf58bb 4360 spin_lock_irq(&pool->lock);
3af24433 4361
94cf58bb 4362 /*
92f9c5c4 4363 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4364 * unbound and set DISASSOCIATED. Before this, all workers
4365 * except for the ones which are still executing works from
4366 * before the last CPU down must be on the cpu. After
4367 * this, they may become diasporas.
4368 */
da028469 4369 for_each_pool_worker(worker, pool)
c9e7cf27 4370 worker->flags |= WORKER_UNBOUND;
06ba38a9 4371
24647570 4372 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4373
94cf58bb 4374 spin_unlock_irq(&pool->lock);
92f9c5c4 4375 mutex_unlock(&pool->attach_mutex);
628c78e7 4376
eb283428
LJ
4377 /*
4378 * Call schedule() so that we cross rq->lock and thus can
4379 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4380 * This is necessary as scheduler callbacks may be invoked
4381 * from other cpus.
4382 */
4383 schedule();
06ba38a9 4384
eb283428
LJ
4385 /*
4386 * Sched callbacks are disabled now. Zap nr_running.
4387 * After this, nr_running stays zero and need_more_worker()
4388 * and keep_working() are always true as long as the
4389 * worklist is not empty. This pool now behaves as an
4390 * unbound (in terms of concurrency management) pool which
4391 * are served by workers tied to the pool.
4392 */
e19e397a 4393 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4394
4395 /*
4396 * With concurrency management just turned off, a busy
4397 * worker blocking could lead to lengthy stalls. Kick off
4398 * unbound chain execution of currently pending work items.
4399 */
4400 spin_lock_irq(&pool->lock);
4401 wake_up_worker(pool);
4402 spin_unlock_irq(&pool->lock);
4403 }
3af24433 4404}
3af24433 4405
bd7c089e
TH
4406/**
4407 * rebind_workers - rebind all workers of a pool to the associated CPU
4408 * @pool: pool of interest
4409 *
a9ab775b 4410 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4411 */
4412static void rebind_workers(struct worker_pool *pool)
4413{
a9ab775b 4414 struct worker *worker;
bd7c089e 4415
92f9c5c4 4416 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4417
a9ab775b
TH
4418 /*
4419 * Restore CPU affinity of all workers. As all idle workers should
4420 * be on the run-queue of the associated CPU before any local
4421 * wake-ups for concurrency management happen, restore CPU affinty
4422 * of all workers first and then clear UNBOUND. As we're called
4423 * from CPU_ONLINE, the following shouldn't fail.
4424 */
da028469 4425 for_each_pool_worker(worker, pool)
a9ab775b
TH
4426 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4427 pool->attrs->cpumask) < 0);
bd7c089e 4428
a9ab775b 4429 spin_lock_irq(&pool->lock);
3de5e884 4430 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4431
da028469 4432 for_each_pool_worker(worker, pool) {
a9ab775b 4433 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4434
4435 /*
a9ab775b
TH
4436 * A bound idle worker should actually be on the runqueue
4437 * of the associated CPU for local wake-ups targeting it to
4438 * work. Kick all idle workers so that they migrate to the
4439 * associated CPU. Doing this in the same loop as
4440 * replacing UNBOUND with REBOUND is safe as no worker will
4441 * be bound before @pool->lock is released.
bd7c089e 4442 */
a9ab775b
TH
4443 if (worker_flags & WORKER_IDLE)
4444 wake_up_process(worker->task);
bd7c089e 4445
a9ab775b
TH
4446 /*
4447 * We want to clear UNBOUND but can't directly call
4448 * worker_clr_flags() or adjust nr_running. Atomically
4449 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4450 * @worker will clear REBOUND using worker_clr_flags() when
4451 * it initiates the next execution cycle thus restoring
4452 * concurrency management. Note that when or whether
4453 * @worker clears REBOUND doesn't affect correctness.
4454 *
4455 * ACCESS_ONCE() is necessary because @worker->flags may be
4456 * tested without holding any lock in
4457 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4458 * fail incorrectly leading to premature concurrency
4459 * management operations.
4460 */
4461 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4462 worker_flags |= WORKER_REBOUND;
4463 worker_flags &= ~WORKER_UNBOUND;
4464 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4465 }
a9ab775b
TH
4466
4467 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4468}
4469
7dbc725e
TH
4470/**
4471 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4472 * @pool: unbound pool of interest
4473 * @cpu: the CPU which is coming up
4474 *
4475 * An unbound pool may end up with a cpumask which doesn't have any online
4476 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4477 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4478 * online CPU before, cpus_allowed of all its workers should be restored.
4479 */
4480static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4481{
4482 static cpumask_t cpumask;
4483 struct worker *worker;
7dbc725e 4484
92f9c5c4 4485 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4486
4487 /* is @cpu allowed for @pool? */
4488 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4489 return;
4490
4491 /* is @cpu the only online CPU? */
4492 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4493 if (cpumask_weight(&cpumask) != 1)
4494 return;
4495
4496 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4497 for_each_pool_worker(worker, pool)
7dbc725e
TH
4498 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4499 pool->attrs->cpumask) < 0);
4500}
4501
8db25e78
TH
4502/*
4503 * Workqueues should be brought up before normal priority CPU notifiers.
4504 * This will be registered high priority CPU notifier.
4505 */
0db0628d 4506static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4507 unsigned long action,
4508 void *hcpu)
3af24433 4509{
d84ff051 4510 int cpu = (unsigned long)hcpu;
4ce62e9e 4511 struct worker_pool *pool;
4c16bd32 4512 struct workqueue_struct *wq;
7dbc725e 4513 int pi;
3ce63377 4514
8db25e78 4515 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4516 case CPU_UP_PREPARE:
f02ae73a 4517 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4518 if (pool->nr_workers)
4519 continue;
051e1850 4520 if (!create_worker(pool))
3ce63377 4521 return NOTIFY_BAD;
3af24433 4522 }
8db25e78 4523 break;
3af24433 4524
db7bccf4
TH
4525 case CPU_DOWN_FAILED:
4526 case CPU_ONLINE:
68e13a67 4527 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4528
4529 for_each_pool(pool, pi) {
92f9c5c4 4530 mutex_lock(&pool->attach_mutex);
94cf58bb 4531
f05b558d 4532 if (pool->cpu == cpu)
7dbc725e 4533 rebind_workers(pool);
f05b558d 4534 else if (pool->cpu < 0)
7dbc725e 4535 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4536
6ba94429
FW
4537 mutex_unlock(&pool->attach_mutex);
4538 }
4539
4540 /* update NUMA affinity of unbound workqueues */
4541 list_for_each_entry(wq, &workqueues, list)
4542 wq_update_unbound_numa(wq, cpu, true);
4543
4544 mutex_unlock(&wq_pool_mutex);
4545 break;
4546 }
4547 return NOTIFY_OK;
4548}
4549
4550/*
4551 * Workqueues should be brought down after normal priority CPU notifiers.
4552 * This will be registered as low priority CPU notifier.
4553 */
4554static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4555 unsigned long action,
4556 void *hcpu)
4557{
4558 int cpu = (unsigned long)hcpu;
4559 struct work_struct unbind_work;
4560 struct workqueue_struct *wq;
4561
4562 switch (action & ~CPU_TASKS_FROZEN) {
4563 case CPU_DOWN_PREPARE:
4564 /* unbinding per-cpu workers should happen on the local CPU */
4565 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4566 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4567
4568 /* update NUMA affinity of unbound workqueues */
4569 mutex_lock(&wq_pool_mutex);
4570 list_for_each_entry(wq, &workqueues, list)
4571 wq_update_unbound_numa(wq, cpu, false);
4572 mutex_unlock(&wq_pool_mutex);
4573
4574 /* wait for per-cpu unbinding to finish */
4575 flush_work(&unbind_work);
4576 destroy_work_on_stack(&unbind_work);
4577 break;
4578 }
4579 return NOTIFY_OK;
4580}
4581
4582#ifdef CONFIG_SMP
4583
4584struct work_for_cpu {
4585 struct work_struct work;
4586 long (*fn)(void *);
4587 void *arg;
4588 long ret;
4589};
4590
4591static void work_for_cpu_fn(struct work_struct *work)
4592{
4593 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4594
4595 wfc->ret = wfc->fn(wfc->arg);
4596}
4597
4598/**
4599 * work_on_cpu - run a function in user context on a particular cpu
4600 * @cpu: the cpu to run on
4601 * @fn: the function to run
4602 * @arg: the function arg
4603 *
4604 * It is up to the caller to ensure that the cpu doesn't go offline.
4605 * The caller must not hold any locks which would prevent @fn from completing.
4606 *
4607 * Return: The value @fn returns.
4608 */
4609long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4610{
4611 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4612
4613 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4614 schedule_work_on(cpu, &wfc.work);
4615 flush_work(&wfc.work);
4616 destroy_work_on_stack(&wfc.work);
4617 return wfc.ret;
4618}
4619EXPORT_SYMBOL_GPL(work_on_cpu);
4620#endif /* CONFIG_SMP */
4621
4622#ifdef CONFIG_FREEZER
4623
4624/**
4625 * freeze_workqueues_begin - begin freezing workqueues
4626 *
4627 * Start freezing workqueues. After this function returns, all freezable
4628 * workqueues will queue new works to their delayed_works list instead of
4629 * pool->worklist.
4630 *
4631 * CONTEXT:
4632 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4633 */
4634void freeze_workqueues_begin(void)
4635{
4636 struct workqueue_struct *wq;
4637 struct pool_workqueue *pwq;
4638
4639 mutex_lock(&wq_pool_mutex);
4640
4641 WARN_ON_ONCE(workqueue_freezing);
4642 workqueue_freezing = true;
4643
4644 list_for_each_entry(wq, &workqueues, list) {
4645 mutex_lock(&wq->mutex);
4646 for_each_pwq(pwq, wq)
4647 pwq_adjust_max_active(pwq);
4648 mutex_unlock(&wq->mutex);
4649 }
4650
4651 mutex_unlock(&wq_pool_mutex);
4652}
4653
4654/**
4655 * freeze_workqueues_busy - are freezable workqueues still busy?
4656 *
4657 * Check whether freezing is complete. This function must be called
4658 * between freeze_workqueues_begin() and thaw_workqueues().
4659 *
4660 * CONTEXT:
4661 * Grabs and releases wq_pool_mutex.
4662 *
4663 * Return:
4664 * %true if some freezable workqueues are still busy. %false if freezing
4665 * is complete.
4666 */
4667bool freeze_workqueues_busy(void)
4668{
4669 bool busy = false;
4670 struct workqueue_struct *wq;
4671 struct pool_workqueue *pwq;
4672
4673 mutex_lock(&wq_pool_mutex);
4674
4675 WARN_ON_ONCE(!workqueue_freezing);
4676
4677 list_for_each_entry(wq, &workqueues, list) {
4678 if (!(wq->flags & WQ_FREEZABLE))
4679 continue;
4680 /*
4681 * nr_active is monotonically decreasing. It's safe
4682 * to peek without lock.
4683 */
4684 rcu_read_lock_sched();
4685 for_each_pwq(pwq, wq) {
4686 WARN_ON_ONCE(pwq->nr_active < 0);
4687 if (pwq->nr_active) {
4688 busy = true;
4689 rcu_read_unlock_sched();
4690 goto out_unlock;
4691 }
4692 }
4693 rcu_read_unlock_sched();
4694 }
4695out_unlock:
4696 mutex_unlock(&wq_pool_mutex);
4697 return busy;
4698}
4699
4700/**
4701 * thaw_workqueues - thaw workqueues
4702 *
4703 * Thaw workqueues. Normal queueing is restored and all collected
4704 * frozen works are transferred to their respective pool worklists.
4705 *
4706 * CONTEXT:
4707 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4708 */
4709void thaw_workqueues(void)
4710{
4711 struct workqueue_struct *wq;
4712 struct pool_workqueue *pwq;
4713
4714 mutex_lock(&wq_pool_mutex);
4715
4716 if (!workqueue_freezing)
4717 goto out_unlock;
4718
4719 workqueue_freezing = false;
4720
4721 /* restore max_active and repopulate worklist */
4722 list_for_each_entry(wq, &workqueues, list) {
4723 mutex_lock(&wq->mutex);
4724 for_each_pwq(pwq, wq)
4725 pwq_adjust_max_active(pwq);
4726 mutex_unlock(&wq->mutex);
4727 }
4728
4729out_unlock:
4730 mutex_unlock(&wq_pool_mutex);
4731}
4732#endif /* CONFIG_FREEZER */
4733
4734#ifdef CONFIG_SYSFS
4735/*
4736 * Workqueues with WQ_SYSFS flag set is visible to userland via
4737 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4738 * following attributes.
4739 *
4740 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4741 * max_active RW int : maximum number of in-flight work items
4742 *
4743 * Unbound workqueues have the following extra attributes.
4744 *
4745 * id RO int : the associated pool ID
4746 * nice RW int : nice value of the workers
4747 * cpumask RW mask : bitmask of allowed CPUs for the workers
4748 */
4749struct wq_device {
4750 struct workqueue_struct *wq;
4751 struct device dev;
4752};
4753
4754static struct workqueue_struct *dev_to_wq(struct device *dev)
4755{
4756 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4757
4758 return wq_dev->wq;
4759}
4760
4761static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4762 char *buf)
4763{
4764 struct workqueue_struct *wq = dev_to_wq(dev);
4765
4766 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4767}
4768static DEVICE_ATTR_RO(per_cpu);
4769
4770static ssize_t max_active_show(struct device *dev,
4771 struct device_attribute *attr, char *buf)
4772{
4773 struct workqueue_struct *wq = dev_to_wq(dev);
4774
4775 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4776}
4777
4778static ssize_t max_active_store(struct device *dev,
4779 struct device_attribute *attr, const char *buf,
4780 size_t count)
4781{
4782 struct workqueue_struct *wq = dev_to_wq(dev);
4783 int val;
4784
4785 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4786 return -EINVAL;
4787
4788 workqueue_set_max_active(wq, val);
4789 return count;
4790}
4791static DEVICE_ATTR_RW(max_active);
4792
4793static struct attribute *wq_sysfs_attrs[] = {
4794 &dev_attr_per_cpu.attr,
4795 &dev_attr_max_active.attr,
4796 NULL,
4797};
4798ATTRIBUTE_GROUPS(wq_sysfs);
4799
4800static ssize_t wq_pool_ids_show(struct device *dev,
4801 struct device_attribute *attr, char *buf)
4802{
4803 struct workqueue_struct *wq = dev_to_wq(dev);
4804 const char *delim = "";
4805 int node, written = 0;
4806
4807 rcu_read_lock_sched();
4808 for_each_node(node) {
4809 written += scnprintf(buf + written, PAGE_SIZE - written,
4810 "%s%d:%d", delim, node,
4811 unbound_pwq_by_node(wq, node)->pool->id);
4812 delim = " ";
4813 }
4814 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4815 rcu_read_unlock_sched();
4816
4817 return written;
4818}
4819
4820static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4821 char *buf)
4822{
4823 struct workqueue_struct *wq = dev_to_wq(dev);
4824 int written;
4825
4826 mutex_lock(&wq->mutex);
4827 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4828 mutex_unlock(&wq->mutex);
4829
4830 return written;
4831}
4832
4833/* prepare workqueue_attrs for sysfs store operations */
4834static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4835{
4836 struct workqueue_attrs *attrs;
4837
4838 attrs = alloc_workqueue_attrs(GFP_KERNEL);
4839 if (!attrs)
4840 return NULL;
4841
4842 mutex_lock(&wq->mutex);
4843 copy_workqueue_attrs(attrs, wq->unbound_attrs);
4844 mutex_unlock(&wq->mutex);
4845 return attrs;
4846}
4847
4848static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4849 const char *buf, size_t count)
4850{
4851 struct workqueue_struct *wq = dev_to_wq(dev);
4852 struct workqueue_attrs *attrs;
4853 int ret;
4854
4855 attrs = wq_sysfs_prep_attrs(wq);
4856 if (!attrs)
4857 return -ENOMEM;
4858
4859 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4860 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4861 ret = apply_workqueue_attrs(wq, attrs);
4862 else
4863 ret = -EINVAL;
4864
4865 free_workqueue_attrs(attrs);
4866 return ret ?: count;
4867}
4868
4869static ssize_t wq_cpumask_show(struct device *dev,
4870 struct device_attribute *attr, char *buf)
4871{
4872 struct workqueue_struct *wq = dev_to_wq(dev);
4873 int written;
4874
4875 mutex_lock(&wq->mutex);
4876 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4877 cpumask_pr_args(wq->unbound_attrs->cpumask));
4878 mutex_unlock(&wq->mutex);
4879 return written;
4880}
4881
4882static ssize_t wq_cpumask_store(struct device *dev,
4883 struct device_attribute *attr,
4884 const char *buf, size_t count)
4885{
4886 struct workqueue_struct *wq = dev_to_wq(dev);
4887 struct workqueue_attrs *attrs;
4888 int ret;
4889
4890 attrs = wq_sysfs_prep_attrs(wq);
4891 if (!attrs)
4892 return -ENOMEM;
4893
4894 ret = cpumask_parse(buf, attrs->cpumask);
4895 if (!ret)
4896 ret = apply_workqueue_attrs(wq, attrs);
4897
4898 free_workqueue_attrs(attrs);
4899 return ret ?: count;
4900}
4901
4902static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
4903 char *buf)
4904{
4905 struct workqueue_struct *wq = dev_to_wq(dev);
4906 int written;
7dbc725e 4907
6ba94429
FW
4908 mutex_lock(&wq->mutex);
4909 written = scnprintf(buf, PAGE_SIZE, "%d\n",
4910 !wq->unbound_attrs->no_numa);
4911 mutex_unlock(&wq->mutex);
4c16bd32 4912
6ba94429 4913 return written;
65758202
TH
4914}
4915
6ba94429
FW
4916static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
4917 const char *buf, size_t count)
65758202 4918{
6ba94429
FW
4919 struct workqueue_struct *wq = dev_to_wq(dev);
4920 struct workqueue_attrs *attrs;
4921 int v, ret;
4c16bd32 4922
6ba94429
FW
4923 attrs = wq_sysfs_prep_attrs(wq);
4924 if (!attrs)
4925 return -ENOMEM;
4c16bd32 4926
6ba94429
FW
4927 ret = -EINVAL;
4928 if (sscanf(buf, "%d", &v) == 1) {
4929 attrs->no_numa = !v;
4930 ret = apply_workqueue_attrs(wq, attrs);
65758202 4931 }
6ba94429
FW
4932
4933 free_workqueue_attrs(attrs);
4934 return ret ?: count;
65758202
TH
4935}
4936
6ba94429
FW
4937static struct device_attribute wq_sysfs_unbound_attrs[] = {
4938 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
4939 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
4940 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
4941 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
4942 __ATTR_NULL,
4943};
8ccad40d 4944
6ba94429
FW
4945static struct bus_type wq_subsys = {
4946 .name = "workqueue",
4947 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
4948};
4949
b05a7928
FW
4950static ssize_t wq_unbound_cpumask_show(struct device *dev,
4951 struct device_attribute *attr, char *buf)
4952{
4953 int written;
4954
4955 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4956 cpumask_pr_args(wq_unbound_cpumask));
4957
4958 return written;
4959}
4960
4961static struct device_attribute wq_sysfs_cpumask_attr =
4962 __ATTR(cpumask, 0444, wq_unbound_cpumask_show, NULL);
4963
6ba94429 4964static int __init wq_sysfs_init(void)
2d3854a3 4965{
b05a7928
FW
4966 int err;
4967
4968 err = subsys_virtual_register(&wq_subsys, NULL);
4969 if (err)
4970 return err;
4971
4972 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 4973}
6ba94429 4974core_initcall(wq_sysfs_init);
2d3854a3 4975
6ba94429 4976static void wq_device_release(struct device *dev)
2d3854a3 4977{
6ba94429 4978 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 4979
6ba94429 4980 kfree(wq_dev);
2d3854a3 4981}
a0a1a5fd
TH
4982
4983/**
6ba94429
FW
4984 * workqueue_sysfs_register - make a workqueue visible in sysfs
4985 * @wq: the workqueue to register
a0a1a5fd 4986 *
6ba94429
FW
4987 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
4988 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
4989 * which is the preferred method.
a0a1a5fd 4990 *
6ba94429
FW
4991 * Workqueue user should use this function directly iff it wants to apply
4992 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
4993 * apply_workqueue_attrs() may race against userland updating the
4994 * attributes.
4995 *
4996 * Return: 0 on success, -errno on failure.
a0a1a5fd 4997 */
6ba94429 4998int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 4999{
6ba94429
FW
5000 struct wq_device *wq_dev;
5001 int ret;
a0a1a5fd 5002
6ba94429
FW
5003 /*
5004 * Adjusting max_active or creating new pwqs by applyting
5005 * attributes breaks ordering guarantee. Disallow exposing ordered
5006 * workqueues.
5007 */
5008 if (WARN_ON(wq->flags & __WQ_ORDERED))
5009 return -EINVAL;
a0a1a5fd 5010
6ba94429
FW
5011 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5012 if (!wq_dev)
5013 return -ENOMEM;
5bcab335 5014
6ba94429
FW
5015 wq_dev->wq = wq;
5016 wq_dev->dev.bus = &wq_subsys;
5017 wq_dev->dev.init_name = wq->name;
5018 wq_dev->dev.release = wq_device_release;
a0a1a5fd 5019
6ba94429
FW
5020 /*
5021 * unbound_attrs are created separately. Suppress uevent until
5022 * everything is ready.
5023 */
5024 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5025
6ba94429
FW
5026 ret = device_register(&wq_dev->dev);
5027 if (ret) {
5028 kfree(wq_dev);
5029 wq->wq_dev = NULL;
5030 return ret;
5031 }
a0a1a5fd 5032
6ba94429
FW
5033 if (wq->flags & WQ_UNBOUND) {
5034 struct device_attribute *attr;
a0a1a5fd 5035
6ba94429
FW
5036 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5037 ret = device_create_file(&wq_dev->dev, attr);
5038 if (ret) {
5039 device_unregister(&wq_dev->dev);
5040 wq->wq_dev = NULL;
5041 return ret;
a0a1a5fd
TH
5042 }
5043 }
5044 }
6ba94429
FW
5045
5046 dev_set_uevent_suppress(&wq_dev->dev, false);
5047 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5048 return 0;
a0a1a5fd
TH
5049}
5050
5051/**
6ba94429
FW
5052 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5053 * @wq: the workqueue to unregister
a0a1a5fd 5054 *
6ba94429 5055 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5056 */
6ba94429 5057static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5058{
6ba94429 5059 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5060
6ba94429
FW
5061 if (!wq->wq_dev)
5062 return;
a0a1a5fd 5063
6ba94429
FW
5064 wq->wq_dev = NULL;
5065 device_unregister(&wq_dev->dev);
a0a1a5fd 5066}
6ba94429
FW
5067#else /* CONFIG_SYSFS */
5068static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5069#endif /* CONFIG_SYSFS */
a0a1a5fd 5070
bce90380
TH
5071static void __init wq_numa_init(void)
5072{
5073 cpumask_var_t *tbl;
5074 int node, cpu;
5075
bce90380
TH
5076 if (num_possible_nodes() <= 1)
5077 return;
5078
d55262c4
TH
5079 if (wq_disable_numa) {
5080 pr_info("workqueue: NUMA affinity support disabled\n");
5081 return;
5082 }
5083
4c16bd32
TH
5084 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5085 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5086
bce90380
TH
5087 /*
5088 * We want masks of possible CPUs of each node which isn't readily
5089 * available. Build one from cpu_to_node() which should have been
5090 * fully initialized by now.
5091 */
ddcb57e2 5092 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5093 BUG_ON(!tbl);
5094
5095 for_each_node(node)
5a6024f1 5096 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5097 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5098
5099 for_each_possible_cpu(cpu) {
5100 node = cpu_to_node(cpu);
5101 if (WARN_ON(node == NUMA_NO_NODE)) {
5102 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5103 /* happens iff arch is bonkers, let's just proceed */
5104 return;
5105 }
5106 cpumask_set_cpu(cpu, tbl[node]);
5107 }
5108
5109 wq_numa_possible_cpumask = tbl;
5110 wq_numa_enabled = true;
5111}
5112
6ee0578b 5113static int __init init_workqueues(void)
1da177e4 5114{
7a4e344c
TH
5115 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5116 int i, cpu;
c34056a3 5117
e904e6c2
TH
5118 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5119
b05a7928
FW
5120 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5121 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5122
e904e6c2
TH
5123 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5124
65758202 5125 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5126 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5127
bce90380
TH
5128 wq_numa_init();
5129
706026c2 5130 /* initialize CPU pools */
29c91e99 5131 for_each_possible_cpu(cpu) {
4ce62e9e 5132 struct worker_pool *pool;
8b03ae3c 5133
7a4e344c 5134 i = 0;
f02ae73a 5135 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5136 BUG_ON(init_worker_pool(pool));
ec22ca5e 5137 pool->cpu = cpu;
29c91e99 5138 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5139 pool->attrs->nice = std_nice[i++];
f3f90ad4 5140 pool->node = cpu_to_node(cpu);
7a4e344c 5141
9daf9e67 5142 /* alloc pool ID */
68e13a67 5143 mutex_lock(&wq_pool_mutex);
9daf9e67 5144 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5145 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5146 }
8b03ae3c
TH
5147 }
5148
e22bee78 5149 /* create the initial worker */
29c91e99 5150 for_each_online_cpu(cpu) {
4ce62e9e 5151 struct worker_pool *pool;
e22bee78 5152
f02ae73a 5153 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5154 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5155 BUG_ON(!create_worker(pool));
4ce62e9e 5156 }
e22bee78
TH
5157 }
5158
8a2b7538 5159 /* create default unbound and ordered wq attrs */
29c91e99
TH
5160 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5161 struct workqueue_attrs *attrs;
5162
5163 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5164 attrs->nice = std_nice[i];
29c91e99 5165 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5166
5167 /*
5168 * An ordered wq should have only one pwq as ordering is
5169 * guaranteed by max_active which is enforced by pwqs.
5170 * Turn off NUMA so that dfl_pwq is used for all nodes.
5171 */
5172 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5173 attrs->nice = std_nice[i];
5174 attrs->no_numa = true;
5175 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5176 }
5177
d320c038 5178 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5179 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5180 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5181 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5182 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5183 system_freezable_wq = alloc_workqueue("events_freezable",
5184 WQ_FREEZABLE, 0);
0668106c
VK
5185 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5186 WQ_POWER_EFFICIENT, 0);
5187 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5188 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5189 0);
1aabe902 5190 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5191 !system_unbound_wq || !system_freezable_wq ||
5192 !system_power_efficient_wq ||
5193 !system_freezable_power_efficient_wq);
6ee0578b 5194 return 0;
1da177e4 5195}
6ee0578b 5196early_initcall(init_workqueues);
This page took 1.143527 seconds and 5 git commands to generate.