workqueue: make workqueue_lock irq-safe
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
112202d9
TH
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
1da177e4 161 */
112202d9 162struct pool_workqueue {
bd7bdd43 163 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 164 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
1e19ffc6 169 int nr_active; /* L: nr of active works */
a0a1a5fd 170 int max_active; /* L: max active works */
1e19ffc6 171 struct list_head delayed_works; /* L: delayed works */
0f900049 172};
1da177e4 173
73f53c4a
TH
174/*
175 * Structure used to wait for workqueue flush.
176 */
177struct wq_flusher {
178 struct list_head list; /* F: list of flushers */
179 int flush_color; /* F: flush color waiting for */
180 struct completion done; /* flush completion */
181};
182
f2e005aa
TH
183/*
184 * All cpumasks are assumed to be always set on UP and thus can't be
185 * used to determine whether there's something to be done.
186 */
187#ifdef CONFIG_SMP
188typedef cpumask_var_t mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) \
190 cpumask_test_and_set_cpu((cpu), (mask))
191#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
192#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 193#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
194#define free_mayday_mask(mask) free_cpumask_var((mask))
195#else
196typedef unsigned long mayday_mask_t;
197#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
198#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
199#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
200#define alloc_mayday_mask(maskp, gfp) true
201#define free_mayday_mask(mask) do { } while (0)
202#endif
1da177e4
LT
203
204/*
205 * The externally visible workqueue abstraction is an array of
206 * per-CPU workqueues:
207 */
208struct workqueue_struct {
9c5a2ba7 209 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7 210 union {
112202d9
TH
211 struct pool_workqueue __percpu *pcpu;
212 struct pool_workqueue *single;
bdbc5dd7 213 unsigned long v;
112202d9 214 } pool_wq; /* I: pwq's */
4690c4ab 215 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
216
217 struct mutex flush_mutex; /* protects wq flushing */
218 int work_color; /* F: current work color */
219 int flush_color; /* F: current flush color */
112202d9 220 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
221 struct wq_flusher *first_flusher; /* F: first flusher */
222 struct list_head flusher_queue; /* F: flush waiters */
223 struct list_head flusher_overflow; /* F: flush overflow list */
224
f2e005aa 225 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
226 struct worker *rescuer; /* I: rescue worker */
227
9c5a2ba7 228 int nr_drainers; /* W: drain in progress */
112202d9 229 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 230#ifdef CONFIG_LOCKDEP
4690c4ab 231 struct lockdep_map lockdep_map;
4e6045f1 232#endif
b196be89 233 char name[]; /* I: workqueue name */
1da177e4
LT
234};
235
d320c038 236struct workqueue_struct *system_wq __read_mostly;
d320c038 237EXPORT_SYMBOL_GPL(system_wq);
044c782c 238struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 239EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 240struct workqueue_struct *system_long_wq __read_mostly;
d320c038 241EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 242struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 243EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 244struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 245EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 246
97bd2347
TH
247#define CREATE_TRACE_POINTS
248#include <trace/events/workqueue.h>
249
38db41d9 250#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
251 for ((pool) = &std_worker_pools(cpu)[0]; \
252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 253
b67bfe0d
SL
254#define for_each_busy_worker(worker, i, pool) \
255 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 256
706026c2
TH
257static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 unsigned int sw)
f3421797
TH
259{
260 if (cpu < nr_cpu_ids) {
261 if (sw & 1) {
262 cpu = cpumask_next(cpu, mask);
263 if (cpu < nr_cpu_ids)
264 return cpu;
265 }
266 if (sw & 2)
267 return WORK_CPU_UNBOUND;
268 }
6be19588 269 return WORK_CPU_END;
f3421797
TH
270}
271
112202d9 272static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
706026c2 273 struct workqueue_struct *wq)
f3421797 274{
706026c2 275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
276}
277
09884951
TH
278/*
279 * CPU iterators
280 *
706026c2 281 * An extra cpu number is defined using an invalid cpu number
09884951 282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
283 * specific CPU. The following iterators are similar to for_each_*_cpu()
284 * iterators but also considers the unbound CPU.
09884951 285 *
706026c2
TH
286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
112202d9 288 * for_each_pwq_cpu() : possible CPUs for bound workqueues,
09884951
TH
289 * WORK_CPU_UNBOUND for unbound workqueues
290 */
706026c2
TH
291#define for_each_wq_cpu(cpu) \
292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 293 (cpu) < WORK_CPU_END; \
706026c2 294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 295
706026c2
TH
296#define for_each_online_wq_cpu(cpu) \
297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 298 (cpu) < WORK_CPU_END; \
706026c2 299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 300
112202d9
TH
301#define for_each_pwq_cpu(cpu, wq) \
302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 303 (cpu) < WORK_CPU_END; \
112202d9 304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 305
dc186ad7
TG
306#ifdef CONFIG_DEBUG_OBJECTS_WORK
307
308static struct debug_obj_descr work_debug_descr;
309
99777288
SG
310static void *work_debug_hint(void *addr)
311{
312 return ((struct work_struct *) addr)->func;
313}
314
dc186ad7
TG
315/*
316 * fixup_init is called when:
317 * - an active object is initialized
318 */
319static int work_fixup_init(void *addr, enum debug_obj_state state)
320{
321 struct work_struct *work = addr;
322
323 switch (state) {
324 case ODEBUG_STATE_ACTIVE:
325 cancel_work_sync(work);
326 debug_object_init(work, &work_debug_descr);
327 return 1;
328 default:
329 return 0;
330 }
331}
332
333/*
334 * fixup_activate is called when:
335 * - an active object is activated
336 * - an unknown object is activated (might be a statically initialized object)
337 */
338static int work_fixup_activate(void *addr, enum debug_obj_state state)
339{
340 struct work_struct *work = addr;
341
342 switch (state) {
343
344 case ODEBUG_STATE_NOTAVAILABLE:
345 /*
346 * This is not really a fixup. The work struct was
347 * statically initialized. We just make sure that it
348 * is tracked in the object tracker.
349 */
22df02bb 350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
351 debug_object_init(work, &work_debug_descr);
352 debug_object_activate(work, &work_debug_descr);
353 return 0;
354 }
355 WARN_ON_ONCE(1);
356 return 0;
357
358 case ODEBUG_STATE_ACTIVE:
359 WARN_ON(1);
360
361 default:
362 return 0;
363 }
364}
365
366/*
367 * fixup_free is called when:
368 * - an active object is freed
369 */
370static int work_fixup_free(void *addr, enum debug_obj_state state)
371{
372 struct work_struct *work = addr;
373
374 switch (state) {
375 case ODEBUG_STATE_ACTIVE:
376 cancel_work_sync(work);
377 debug_object_free(work, &work_debug_descr);
378 return 1;
379 default:
380 return 0;
381 }
382}
383
384static struct debug_obj_descr work_debug_descr = {
385 .name = "work_struct",
99777288 386 .debug_hint = work_debug_hint,
dc186ad7
TG
387 .fixup_init = work_fixup_init,
388 .fixup_activate = work_fixup_activate,
389 .fixup_free = work_fixup_free,
390};
391
392static inline void debug_work_activate(struct work_struct *work)
393{
394 debug_object_activate(work, &work_debug_descr);
395}
396
397static inline void debug_work_deactivate(struct work_struct *work)
398{
399 debug_object_deactivate(work, &work_debug_descr);
400}
401
402void __init_work(struct work_struct *work, int onstack)
403{
404 if (onstack)
405 debug_object_init_on_stack(work, &work_debug_descr);
406 else
407 debug_object_init(work, &work_debug_descr);
408}
409EXPORT_SYMBOL_GPL(__init_work);
410
411void destroy_work_on_stack(struct work_struct *work)
412{
413 debug_object_free(work, &work_debug_descr);
414}
415EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416
417#else
418static inline void debug_work_activate(struct work_struct *work) { }
419static inline void debug_work_deactivate(struct work_struct *work) { }
420#endif
421
95402b38
GS
422/* Serializes the accesses to the list of workqueues. */
423static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 424static LIST_HEAD(workqueues);
a0a1a5fd 425static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 426
e22bee78 427/*
e19e397a
TH
428 * The CPU and unbound standard worker pools. The unbound ones have
429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 430 */
e19e397a
TH
431static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 cpu_std_worker_pools);
a60dc39c 433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 434
9daf9e67
TH
435/* idr of all pools */
436static DEFINE_MUTEX(worker_pool_idr_mutex);
437static DEFINE_IDR(worker_pool_idr);
438
c34056a3 439static int worker_thread(void *__worker);
1da177e4 440
a60dc39c 441static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 442{
f3421797 443 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 444 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 445 else
a60dc39c 446 return unbound_std_worker_pools;
8b03ae3c
TH
447}
448
4e8f0a60
TH
449static int std_worker_pool_pri(struct worker_pool *pool)
450{
a60dc39c 451 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
452}
453
9daf9e67
TH
454/* allocate ID and assign it to @pool */
455static int worker_pool_assign_id(struct worker_pool *pool)
456{
457 int ret;
458
459 mutex_lock(&worker_pool_idr_mutex);
460 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
461 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
462 mutex_unlock(&worker_pool_idr_mutex);
463
464 return ret;
465}
466
7c3eed5c
TH
467/*
468 * Lookup worker_pool by id. The idr currently is built during boot and
469 * never modified. Don't worry about locking for now.
470 */
471static struct worker_pool *worker_pool_by_id(int pool_id)
472{
473 return idr_find(&worker_pool_idr, pool_id);
474}
475
d565ed63
TH
476static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
477{
a60dc39c 478 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 479
a60dc39c 480 return &pools[highpri];
d565ed63
TH
481}
482
112202d9
TH
483static struct pool_workqueue *get_pwq(unsigned int cpu,
484 struct workqueue_struct *wq)
b1f4ec17 485{
f3421797 486 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 487 if (likely(cpu < nr_cpu_ids))
112202d9 488 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
f3421797 489 } else if (likely(cpu == WORK_CPU_UNBOUND))
112202d9 490 return wq->pool_wq.single;
f3421797 491 return NULL;
b1f4ec17
ON
492}
493
73f53c4a
TH
494static unsigned int work_color_to_flags(int color)
495{
496 return color << WORK_STRUCT_COLOR_SHIFT;
497}
498
499static int get_work_color(struct work_struct *work)
500{
501 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
502 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
503}
504
505static int work_next_color(int color)
506{
507 return (color + 1) % WORK_NR_COLORS;
508}
1da177e4 509
14441960 510/*
112202d9
TH
511 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
512 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 513 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 514 *
112202d9
TH
515 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
516 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
517 * work->data. These functions should only be called while the work is
518 * owned - ie. while the PENDING bit is set.
7a22ad75 519 *
112202d9 520 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 521 * corresponding to a work. Pool is available once the work has been
112202d9 522 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 523 * available only while the work item is queued.
7a22ad75 524 *
bbb68dfa
TH
525 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
526 * canceled. While being canceled, a work item may have its PENDING set
527 * but stay off timer and worklist for arbitrarily long and nobody should
528 * try to steal the PENDING bit.
14441960 529 */
7a22ad75
TH
530static inline void set_work_data(struct work_struct *work, unsigned long data,
531 unsigned long flags)
365970a1 532{
6183c009 533 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
534 atomic_long_set(&work->data, data | flags | work_static(work));
535}
365970a1 536
112202d9 537static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
538 unsigned long extra_flags)
539{
112202d9
TH
540 set_work_data(work, (unsigned long)pwq,
541 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
542}
543
4468a00f
LJ
544static void set_work_pool_and_keep_pending(struct work_struct *work,
545 int pool_id)
546{
547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
548 WORK_STRUCT_PENDING);
549}
550
7c3eed5c
TH
551static void set_work_pool_and_clear_pending(struct work_struct *work,
552 int pool_id)
7a22ad75 553{
23657bb1
TH
554 /*
555 * The following wmb is paired with the implied mb in
556 * test_and_set_bit(PENDING) and ensures all updates to @work made
557 * here are visible to and precede any updates by the next PENDING
558 * owner.
559 */
560 smp_wmb();
7c3eed5c 561 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 562}
f756d5e2 563
7a22ad75 564static void clear_work_data(struct work_struct *work)
1da177e4 565{
7c3eed5c
TH
566 smp_wmb(); /* see set_work_pool_and_clear_pending() */
567 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
568}
569
112202d9 570static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 571{
e120153d 572 unsigned long data = atomic_long_read(&work->data);
7a22ad75 573
112202d9 574 if (data & WORK_STRUCT_PWQ)
e120153d
TH
575 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
576 else
577 return NULL;
4d707b9f
ON
578}
579
7c3eed5c
TH
580/**
581 * get_work_pool - return the worker_pool a given work was associated with
582 * @work: the work item of interest
583 *
584 * Return the worker_pool @work was last associated with. %NULL if none.
585 */
586static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
589 struct worker_pool *pool;
590 int pool_id;
7a22ad75 591
112202d9
TH
592 if (data & WORK_STRUCT_PWQ)
593 return ((struct pool_workqueue *)
7c3eed5c 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 595
7c3eed5c
TH
596 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
598 return NULL;
599
7c3eed5c
TH
600 pool = worker_pool_by_id(pool_id);
601 WARN_ON_ONCE(!pool);
602 return pool;
603}
604
605/**
606 * get_work_pool_id - return the worker pool ID a given work is associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool ID @work was last associated with.
610 * %WORK_OFFQ_POOL_NONE if none.
611 */
612static int get_work_pool_id(struct work_struct *work)
613{
54d5b7d0
LJ
614 unsigned long data = atomic_long_read(&work->data);
615
112202d9
TH
616 if (data & WORK_STRUCT_PWQ)
617 return ((struct pool_workqueue *)
54d5b7d0 618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 619
54d5b7d0 620 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
621}
622
bbb68dfa
TH
623static void mark_work_canceling(struct work_struct *work)
624{
7c3eed5c 625 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 626
7c3eed5c
TH
627 pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
629}
630
631static bool work_is_canceling(struct work_struct *work)
632{
633 unsigned long data = atomic_long_read(&work->data);
634
112202d9 635 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
636}
637
e22bee78 638/*
3270476a
TH
639 * Policy functions. These define the policies on how the global worker
640 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 641 * they're being called with pool->lock held.
e22bee78
TH
642 */
643
63d95a91 644static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 645{
e19e397a 646 return !atomic_read(&pool->nr_running);
a848e3b6
ON
647}
648
4594bf15 649/*
e22bee78
TH
650 * Need to wake up a worker? Called from anything but currently
651 * running workers.
974271c4
TH
652 *
653 * Note that, because unbound workers never contribute to nr_running, this
706026c2 654 * function will always return %true for unbound pools as long as the
974271c4 655 * worklist isn't empty.
4594bf15 656 */
63d95a91 657static bool need_more_worker(struct worker_pool *pool)
365970a1 658{
63d95a91 659 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 660}
4594bf15 661
e22bee78 662/* Can I start working? Called from busy but !running workers. */
63d95a91 663static bool may_start_working(struct worker_pool *pool)
e22bee78 664{
63d95a91 665 return pool->nr_idle;
e22bee78
TH
666}
667
668/* Do I need to keep working? Called from currently running workers. */
63d95a91 669static bool keep_working(struct worker_pool *pool)
e22bee78 670{
e19e397a
TH
671 return !list_empty(&pool->worklist) &&
672 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
673}
674
675/* Do we need a new worker? Called from manager. */
63d95a91 676static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 677{
63d95a91 678 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 679}
365970a1 680
e22bee78 681/* Do I need to be the manager? */
63d95a91 682static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 683{
63d95a91 684 return need_to_create_worker(pool) ||
11ebea50 685 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
686}
687
688/* Do we have too many workers and should some go away? */
63d95a91 689static bool too_many_workers(struct worker_pool *pool)
e22bee78 690{
552a37e9 691 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 694
ea1abd61
LJ
695 /*
696 * nr_idle and idle_list may disagree if idle rebinding is in
697 * progress. Never return %true if idle_list is empty.
698 */
699 if (list_empty(&pool->idle_list))
700 return false;
701
e22bee78 702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
703}
704
4d707b9f 705/*
e22bee78
TH
706 * Wake up functions.
707 */
708
7e11629d 709/* Return the first worker. Safe with preemption disabled */
63d95a91 710static struct worker *first_worker(struct worker_pool *pool)
7e11629d 711{
63d95a91 712 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
713 return NULL;
714
63d95a91 715 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
716}
717
718/**
719 * wake_up_worker - wake up an idle worker
63d95a91 720 * @pool: worker pool to wake worker from
7e11629d 721 *
63d95a91 722 * Wake up the first idle worker of @pool.
7e11629d
TH
723 *
724 * CONTEXT:
d565ed63 725 * spin_lock_irq(pool->lock).
7e11629d 726 */
63d95a91 727static void wake_up_worker(struct worker_pool *pool)
7e11629d 728{
63d95a91 729 struct worker *worker = first_worker(pool);
7e11629d
TH
730
731 if (likely(worker))
732 wake_up_process(worker->task);
733}
734
d302f017 735/**
e22bee78
TH
736 * wq_worker_waking_up - a worker is waking up
737 * @task: task waking up
738 * @cpu: CPU @task is waking up to
739 *
740 * This function is called during try_to_wake_up() when a worker is
741 * being awoken.
742 *
743 * CONTEXT:
744 * spin_lock_irq(rq->lock)
745 */
746void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
747{
748 struct worker *worker = kthread_data(task);
749
36576000 750 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 751 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 752 atomic_inc(&worker->pool->nr_running);
36576000 753 }
e22bee78
TH
754}
755
756/**
757 * wq_worker_sleeping - a worker is going to sleep
758 * @task: task going to sleep
759 * @cpu: CPU in question, must be the current CPU number
760 *
761 * This function is called during schedule() when a busy worker is
762 * going to sleep. Worker on the same cpu can be woken up by
763 * returning pointer to its task.
764 *
765 * CONTEXT:
766 * spin_lock_irq(rq->lock)
767 *
768 * RETURNS:
769 * Worker task on @cpu to wake up, %NULL if none.
770 */
771struct task_struct *wq_worker_sleeping(struct task_struct *task,
772 unsigned int cpu)
773{
774 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 775 struct worker_pool *pool;
e22bee78 776
111c225a
TH
777 /*
778 * Rescuers, which may not have all the fields set up like normal
779 * workers, also reach here, let's not access anything before
780 * checking NOT_RUNNING.
781 */
2d64672e 782 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
783 return NULL;
784
111c225a 785 pool = worker->pool;
111c225a 786
e22bee78 787 /* this can only happen on the local cpu */
6183c009
TH
788 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
789 return NULL;
e22bee78
TH
790
791 /*
792 * The counterpart of the following dec_and_test, implied mb,
793 * worklist not empty test sequence is in insert_work().
794 * Please read comment there.
795 *
628c78e7
TH
796 * NOT_RUNNING is clear. This means that we're bound to and
797 * running on the local cpu w/ rq lock held and preemption
798 * disabled, which in turn means that none else could be
d565ed63 799 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 800 * lock is safe.
e22bee78 801 */
e19e397a
TH
802 if (atomic_dec_and_test(&pool->nr_running) &&
803 !list_empty(&pool->worklist))
63d95a91 804 to_wakeup = first_worker(pool);
e22bee78
TH
805 return to_wakeup ? to_wakeup->task : NULL;
806}
807
808/**
809 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 810 * @worker: self
d302f017
TH
811 * @flags: flags to set
812 * @wakeup: wakeup an idle worker if necessary
813 *
e22bee78
TH
814 * Set @flags in @worker->flags and adjust nr_running accordingly. If
815 * nr_running becomes zero and @wakeup is %true, an idle worker is
816 * woken up.
d302f017 817 *
cb444766 818 * CONTEXT:
d565ed63 819 * spin_lock_irq(pool->lock)
d302f017
TH
820 */
821static inline void worker_set_flags(struct worker *worker, unsigned int flags,
822 bool wakeup)
823{
bd7bdd43 824 struct worker_pool *pool = worker->pool;
e22bee78 825
cb444766
TH
826 WARN_ON_ONCE(worker->task != current);
827
e22bee78
TH
828 /*
829 * If transitioning into NOT_RUNNING, adjust nr_running and
830 * wake up an idle worker as necessary if requested by
831 * @wakeup.
832 */
833 if ((flags & WORKER_NOT_RUNNING) &&
834 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 835 if (wakeup) {
e19e397a 836 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 837 !list_empty(&pool->worklist))
63d95a91 838 wake_up_worker(pool);
e22bee78 839 } else
e19e397a 840 atomic_dec(&pool->nr_running);
e22bee78
TH
841 }
842
d302f017
TH
843 worker->flags |= flags;
844}
845
846/**
e22bee78 847 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 848 * @worker: self
d302f017
TH
849 * @flags: flags to clear
850 *
e22bee78 851 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 852 *
cb444766 853 * CONTEXT:
d565ed63 854 * spin_lock_irq(pool->lock)
d302f017
TH
855 */
856static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
857{
63d95a91 858 struct worker_pool *pool = worker->pool;
e22bee78
TH
859 unsigned int oflags = worker->flags;
860
cb444766
TH
861 WARN_ON_ONCE(worker->task != current);
862
d302f017 863 worker->flags &= ~flags;
e22bee78 864
42c025f3
TH
865 /*
866 * If transitioning out of NOT_RUNNING, increment nr_running. Note
867 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
868 * of multiple flags, not a single flag.
869 */
e22bee78
TH
870 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
871 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 872 atomic_inc(&pool->nr_running);
d302f017
TH
873}
874
8cca0eea
TH
875/**
876 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 877 * @pool: pool of interest
8cca0eea
TH
878 * @work: work to find worker for
879 *
c9e7cf27
TH
880 * Find a worker which is executing @work on @pool by searching
881 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
882 * to match, its current execution should match the address of @work and
883 * its work function. This is to avoid unwanted dependency between
884 * unrelated work executions through a work item being recycled while still
885 * being executed.
886 *
887 * This is a bit tricky. A work item may be freed once its execution
888 * starts and nothing prevents the freed area from being recycled for
889 * another work item. If the same work item address ends up being reused
890 * before the original execution finishes, workqueue will identify the
891 * recycled work item as currently executing and make it wait until the
892 * current execution finishes, introducing an unwanted dependency.
893 *
894 * This function checks the work item address, work function and workqueue
895 * to avoid false positives. Note that this isn't complete as one may
896 * construct a work function which can introduce dependency onto itself
897 * through a recycled work item. Well, if somebody wants to shoot oneself
898 * in the foot that badly, there's only so much we can do, and if such
899 * deadlock actually occurs, it should be easy to locate the culprit work
900 * function.
8cca0eea
TH
901 *
902 * CONTEXT:
d565ed63 903 * spin_lock_irq(pool->lock).
8cca0eea
TH
904 *
905 * RETURNS:
906 * Pointer to worker which is executing @work if found, NULL
907 * otherwise.
4d707b9f 908 */
c9e7cf27 909static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 910 struct work_struct *work)
4d707b9f 911{
42f8570f 912 struct worker *worker;
42f8570f 913
b67bfe0d 914 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
915 (unsigned long)work)
916 if (worker->current_work == work &&
917 worker->current_func == work->func)
42f8570f
SL
918 return worker;
919
920 return NULL;
4d707b9f
ON
921}
922
bf4ede01
TH
923/**
924 * move_linked_works - move linked works to a list
925 * @work: start of series of works to be scheduled
926 * @head: target list to append @work to
927 * @nextp: out paramter for nested worklist walking
928 *
929 * Schedule linked works starting from @work to @head. Work series to
930 * be scheduled starts at @work and includes any consecutive work with
931 * WORK_STRUCT_LINKED set in its predecessor.
932 *
933 * If @nextp is not NULL, it's updated to point to the next work of
934 * the last scheduled work. This allows move_linked_works() to be
935 * nested inside outer list_for_each_entry_safe().
936 *
937 * CONTEXT:
d565ed63 938 * spin_lock_irq(pool->lock).
bf4ede01
TH
939 */
940static void move_linked_works(struct work_struct *work, struct list_head *head,
941 struct work_struct **nextp)
942{
943 struct work_struct *n;
944
945 /*
946 * Linked worklist will always end before the end of the list,
947 * use NULL for list head.
948 */
949 list_for_each_entry_safe_from(work, n, NULL, entry) {
950 list_move_tail(&work->entry, head);
951 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
952 break;
953 }
954
955 /*
956 * If we're already inside safe list traversal and have moved
957 * multiple works to the scheduled queue, the next position
958 * needs to be updated.
959 */
960 if (nextp)
961 *nextp = n;
962}
963
112202d9 964static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 965{
112202d9 966 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
967
968 trace_workqueue_activate_work(work);
112202d9 969 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 970 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 971 pwq->nr_active++;
bf4ede01
TH
972}
973
112202d9 974static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 975{
112202d9 976 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
977 struct work_struct, entry);
978
112202d9 979 pwq_activate_delayed_work(work);
3aa62497
LJ
980}
981
bf4ede01 982/**
112202d9
TH
983 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
984 * @pwq: pwq of interest
bf4ede01 985 * @color: color of work which left the queue
bf4ede01
TH
986 *
987 * A work either has completed or is removed from pending queue,
112202d9 988 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
989 *
990 * CONTEXT:
d565ed63 991 * spin_lock_irq(pool->lock).
bf4ede01 992 */
112202d9 993static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
994{
995 /* ignore uncolored works */
996 if (color == WORK_NO_COLOR)
997 return;
998
112202d9 999 pwq->nr_in_flight[color]--;
bf4ede01 1000
112202d9
TH
1001 pwq->nr_active--;
1002 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1003 /* one down, submit a delayed one */
112202d9
TH
1004 if (pwq->nr_active < pwq->max_active)
1005 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1006 }
1007
1008 /* is flush in progress and are we at the flushing tip? */
112202d9 1009 if (likely(pwq->flush_color != color))
bf4ede01
TH
1010 return;
1011
1012 /* are there still in-flight works? */
112202d9 1013 if (pwq->nr_in_flight[color])
bf4ede01
TH
1014 return;
1015
112202d9
TH
1016 /* this pwq is done, clear flush_color */
1017 pwq->flush_color = -1;
bf4ede01
TH
1018
1019 /*
112202d9 1020 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1021 * will handle the rest.
1022 */
112202d9
TH
1023 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1024 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1025}
1026
36e227d2 1027/**
bbb68dfa 1028 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1029 * @work: work item to steal
1030 * @is_dwork: @work is a delayed_work
bbb68dfa 1031 * @flags: place to store irq state
36e227d2
TH
1032 *
1033 * Try to grab PENDING bit of @work. This function can handle @work in any
1034 * stable state - idle, on timer or on worklist. Return values are
1035 *
1036 * 1 if @work was pending and we successfully stole PENDING
1037 * 0 if @work was idle and we claimed PENDING
1038 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1039 * -ENOENT if someone else is canceling @work, this state may persist
1040 * for arbitrarily long
36e227d2 1041 *
bbb68dfa 1042 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1043 * interrupted while holding PENDING and @work off queue, irq must be
1044 * disabled on entry. This, combined with delayed_work->timer being
1045 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1046 *
1047 * On successful return, >= 0, irq is disabled and the caller is
1048 * responsible for releasing it using local_irq_restore(*@flags).
1049 *
e0aecdd8 1050 * This function is safe to call from any context including IRQ handler.
bf4ede01 1051 */
bbb68dfa
TH
1052static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1053 unsigned long *flags)
bf4ede01 1054{
d565ed63 1055 struct worker_pool *pool;
112202d9 1056 struct pool_workqueue *pwq;
bf4ede01 1057
bbb68dfa
TH
1058 local_irq_save(*flags);
1059
36e227d2
TH
1060 /* try to steal the timer if it exists */
1061 if (is_dwork) {
1062 struct delayed_work *dwork = to_delayed_work(work);
1063
e0aecdd8
TH
1064 /*
1065 * dwork->timer is irqsafe. If del_timer() fails, it's
1066 * guaranteed that the timer is not queued anywhere and not
1067 * running on the local CPU.
1068 */
36e227d2
TH
1069 if (likely(del_timer(&dwork->timer)))
1070 return 1;
1071 }
1072
1073 /* try to claim PENDING the normal way */
bf4ede01
TH
1074 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1075 return 0;
1076
1077 /*
1078 * The queueing is in progress, or it is already queued. Try to
1079 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1080 */
d565ed63
TH
1081 pool = get_work_pool(work);
1082 if (!pool)
bbb68dfa 1083 goto fail;
bf4ede01 1084
d565ed63 1085 spin_lock(&pool->lock);
0b3dae68 1086 /*
112202d9
TH
1087 * work->data is guaranteed to point to pwq only while the work
1088 * item is queued on pwq->wq, and both updating work->data to point
1089 * to pwq on queueing and to pool on dequeueing are done under
1090 * pwq->pool->lock. This in turn guarantees that, if work->data
1091 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1092 * item is currently queued on that pool.
1093 */
112202d9
TH
1094 pwq = get_work_pwq(work);
1095 if (pwq && pwq->pool == pool) {
16062836
TH
1096 debug_work_deactivate(work);
1097
1098 /*
1099 * A delayed work item cannot be grabbed directly because
1100 * it might have linked NO_COLOR work items which, if left
112202d9 1101 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1102 * management later on and cause stall. Make sure the work
1103 * item is activated before grabbing.
1104 */
1105 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1106 pwq_activate_delayed_work(work);
16062836
TH
1107
1108 list_del_init(&work->entry);
112202d9 1109 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1110
112202d9 1111 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1112 set_work_pool_and_keep_pending(work, pool->id);
1113
1114 spin_unlock(&pool->lock);
1115 return 1;
bf4ede01 1116 }
d565ed63 1117 spin_unlock(&pool->lock);
bbb68dfa
TH
1118fail:
1119 local_irq_restore(*flags);
1120 if (work_is_canceling(work))
1121 return -ENOENT;
1122 cpu_relax();
36e227d2 1123 return -EAGAIN;
bf4ede01
TH
1124}
1125
4690c4ab 1126/**
706026c2 1127 * insert_work - insert a work into a pool
112202d9 1128 * @pwq: pwq @work belongs to
4690c4ab
TH
1129 * @work: work to insert
1130 * @head: insertion point
1131 * @extra_flags: extra WORK_STRUCT_* flags to set
1132 *
112202d9 1133 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1134 * work_struct flags.
4690c4ab
TH
1135 *
1136 * CONTEXT:
d565ed63 1137 * spin_lock_irq(pool->lock).
4690c4ab 1138 */
112202d9
TH
1139static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1140 struct list_head *head, unsigned int extra_flags)
b89deed3 1141{
112202d9 1142 struct worker_pool *pool = pwq->pool;
e22bee78 1143
4690c4ab 1144 /* we own @work, set data and link */
112202d9 1145 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1146 list_add_tail(&work->entry, head);
e22bee78
TH
1147
1148 /*
1149 * Ensure either worker_sched_deactivated() sees the above
1150 * list_add_tail() or we see zero nr_running to avoid workers
1151 * lying around lazily while there are works to be processed.
1152 */
1153 smp_mb();
1154
63d95a91
TH
1155 if (__need_more_worker(pool))
1156 wake_up_worker(pool);
b89deed3
ON
1157}
1158
c8efcc25
TH
1159/*
1160 * Test whether @work is being queued from another work executing on the
8d03ecfe 1161 * same workqueue.
c8efcc25
TH
1162 */
1163static bool is_chained_work(struct workqueue_struct *wq)
1164{
8d03ecfe
TH
1165 struct worker *worker;
1166
1167 worker = current_wq_worker();
1168 /*
1169 * Return %true iff I'm a worker execuing a work item on @wq. If
1170 * I'm @worker, it's safe to dereference it without locking.
1171 */
112202d9 1172 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1173}
1174
4690c4ab 1175static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1176 struct work_struct *work)
1177{
112202d9 1178 struct pool_workqueue *pwq;
1e19ffc6 1179 struct list_head *worklist;
8a2e8e5d 1180 unsigned int work_flags;
b75cac93 1181 unsigned int req_cpu = cpu;
8930caba
TH
1182
1183 /*
1184 * While a work item is PENDING && off queue, a task trying to
1185 * steal the PENDING will busy-loop waiting for it to either get
1186 * queued or lose PENDING. Grabbing PENDING and queueing should
1187 * happen with IRQ disabled.
1188 */
1189 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1190
dc186ad7 1191 debug_work_activate(work);
1e19ffc6 1192
c8efcc25 1193 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1194 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1195 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1196 return;
1197
112202d9 1198 /* determine the pwq to use */
c7fc77f7 1199 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1200 struct worker_pool *last_pool;
18aa9eff 1201
57469821 1202 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1203 cpu = raw_smp_processor_id();
1204
18aa9eff 1205 /*
dbf2576e
TH
1206 * It's multi cpu. If @work was previously on a different
1207 * cpu, it might still be running there, in which case the
1208 * work needs to be queued on that cpu to guarantee
1209 * non-reentrancy.
18aa9eff 1210 */
112202d9 1211 pwq = get_pwq(cpu, wq);
c9e7cf27 1212 last_pool = get_work_pool(work);
dbf2576e 1213
112202d9 1214 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1215 struct worker *worker;
1216
d565ed63 1217 spin_lock(&last_pool->lock);
18aa9eff 1218
c9e7cf27 1219 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1220
112202d9
TH
1221 if (worker && worker->current_pwq->wq == wq) {
1222 pwq = get_pwq(last_pool->cpu, wq);
8594fade 1223 } else {
18aa9eff 1224 /* meh... not running there, queue here */
d565ed63 1225 spin_unlock(&last_pool->lock);
112202d9 1226 spin_lock(&pwq->pool->lock);
18aa9eff 1227 }
8930caba 1228 } else {
112202d9 1229 spin_lock(&pwq->pool->lock);
8930caba 1230 }
f3421797 1231 } else {
112202d9
TH
1232 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1233 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1234 }
1235
112202d9
TH
1236 /* pwq determined, queue */
1237 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1238
f5b2552b 1239 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1240 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1241 return;
1242 }
1e19ffc6 1243
112202d9
TH
1244 pwq->nr_in_flight[pwq->work_color]++;
1245 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1246
112202d9 1247 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1248 trace_workqueue_activate_work(work);
112202d9
TH
1249 pwq->nr_active++;
1250 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1251 } else {
1252 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1253 worklist = &pwq->delayed_works;
8a2e8e5d 1254 }
1e19ffc6 1255
112202d9 1256 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1257
112202d9 1258 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1259}
1260
0fcb78c2 1261/**
c1a220e7
ZR
1262 * queue_work_on - queue work on specific cpu
1263 * @cpu: CPU number to execute work on
0fcb78c2
REB
1264 * @wq: workqueue to use
1265 * @work: work to queue
1266 *
d4283e93 1267 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1268 *
c1a220e7
ZR
1269 * We queue the work to a specific CPU, the caller must ensure it
1270 * can't go away.
1da177e4 1271 */
d4283e93
TH
1272bool queue_work_on(int cpu, struct workqueue_struct *wq,
1273 struct work_struct *work)
1da177e4 1274{
d4283e93 1275 bool ret = false;
8930caba 1276 unsigned long flags;
ef1ca236 1277
8930caba 1278 local_irq_save(flags);
c1a220e7 1279
22df02bb 1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1281 __queue_work(cpu, wq, work);
d4283e93 1282 ret = true;
c1a220e7 1283 }
ef1ca236 1284
8930caba 1285 local_irq_restore(flags);
1da177e4
LT
1286 return ret;
1287}
c1a220e7 1288EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1289
c1a220e7 1290/**
0a13c00e 1291 * queue_work - queue work on a workqueue
c1a220e7
ZR
1292 * @wq: workqueue to use
1293 * @work: work to queue
1294 *
d4283e93 1295 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1296 *
0a13c00e
TH
1297 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1298 * it can be processed by another CPU.
c1a220e7 1299 */
d4283e93 1300bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1301{
57469821 1302 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1303}
0a13c00e 1304EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1305
d8e794df 1306void delayed_work_timer_fn(unsigned long __data)
1da177e4 1307{
52bad64d 1308 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1309
e0aecdd8 1310 /* should have been called from irqsafe timer with irq already off */
60c057bc 1311 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1312}
1438ade5 1313EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1314
7beb2edf
TH
1315static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1316 struct delayed_work *dwork, unsigned long delay)
1da177e4 1317{
7beb2edf
TH
1318 struct timer_list *timer = &dwork->timer;
1319 struct work_struct *work = &dwork->work;
7beb2edf
TH
1320
1321 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1322 timer->data != (unsigned long)dwork);
fc4b514f
TH
1323 WARN_ON_ONCE(timer_pending(timer));
1324 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1325
8852aac2
TH
1326 /*
1327 * If @delay is 0, queue @dwork->work immediately. This is for
1328 * both optimization and correctness. The earliest @timer can
1329 * expire is on the closest next tick and delayed_work users depend
1330 * on that there's no such delay when @delay is 0.
1331 */
1332 if (!delay) {
1333 __queue_work(cpu, wq, &dwork->work);
1334 return;
1335 }
1336
7beb2edf 1337 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1338
60c057bc 1339 dwork->wq = wq;
1265057f 1340 dwork->cpu = cpu;
7beb2edf
TH
1341 timer->expires = jiffies + delay;
1342
1343 if (unlikely(cpu != WORK_CPU_UNBOUND))
1344 add_timer_on(timer, cpu);
1345 else
1346 add_timer(timer);
1da177e4
LT
1347}
1348
0fcb78c2
REB
1349/**
1350 * queue_delayed_work_on - queue work on specific CPU after delay
1351 * @cpu: CPU number to execute work on
1352 * @wq: workqueue to use
af9997e4 1353 * @dwork: work to queue
0fcb78c2
REB
1354 * @delay: number of jiffies to wait before queueing
1355 *
715f1300
TH
1356 * Returns %false if @work was already on a queue, %true otherwise. If
1357 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1358 * execution.
0fcb78c2 1359 */
d4283e93
TH
1360bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1361 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1362{
52bad64d 1363 struct work_struct *work = &dwork->work;
d4283e93 1364 bool ret = false;
8930caba 1365 unsigned long flags;
7a6bc1cd 1366
8930caba
TH
1367 /* read the comment in __queue_work() */
1368 local_irq_save(flags);
7a6bc1cd 1369
22df02bb 1370 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1371 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1372 ret = true;
7a6bc1cd 1373 }
8a3e77cc 1374
8930caba 1375 local_irq_restore(flags);
7a6bc1cd
VP
1376 return ret;
1377}
ae90dd5d 1378EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1379
0a13c00e
TH
1380/**
1381 * queue_delayed_work - queue work on a workqueue after delay
1382 * @wq: workqueue to use
1383 * @dwork: delayable work to queue
1384 * @delay: number of jiffies to wait before queueing
1385 *
715f1300 1386 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1387 */
d4283e93 1388bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1389 struct delayed_work *dwork, unsigned long delay)
1390{
57469821 1391 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1392}
1393EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1394
8376fe22
TH
1395/**
1396 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1397 * @cpu: CPU number to execute work on
1398 * @wq: workqueue to use
1399 * @dwork: work to queue
1400 * @delay: number of jiffies to wait before queueing
1401 *
1402 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1403 * modify @dwork's timer so that it expires after @delay. If @delay is
1404 * zero, @work is guaranteed to be scheduled immediately regardless of its
1405 * current state.
1406 *
1407 * Returns %false if @dwork was idle and queued, %true if @dwork was
1408 * pending and its timer was modified.
1409 *
e0aecdd8 1410 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1411 * See try_to_grab_pending() for details.
1412 */
1413bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 struct delayed_work *dwork, unsigned long delay)
1415{
1416 unsigned long flags;
1417 int ret;
c7fc77f7 1418
8376fe22
TH
1419 do {
1420 ret = try_to_grab_pending(&dwork->work, true, &flags);
1421 } while (unlikely(ret == -EAGAIN));
63bc0362 1422
8376fe22
TH
1423 if (likely(ret >= 0)) {
1424 __queue_delayed_work(cpu, wq, dwork, delay);
1425 local_irq_restore(flags);
7a6bc1cd 1426 }
8376fe22
TH
1427
1428 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1429 return ret;
1430}
8376fe22
TH
1431EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1432
1433/**
1434 * mod_delayed_work - modify delay of or queue a delayed work
1435 * @wq: workqueue to use
1436 * @dwork: work to queue
1437 * @delay: number of jiffies to wait before queueing
1438 *
1439 * mod_delayed_work_on() on local CPU.
1440 */
1441bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1442 unsigned long delay)
1443{
1444 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1445}
1446EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1447
c8e55f36
TH
1448/**
1449 * worker_enter_idle - enter idle state
1450 * @worker: worker which is entering idle state
1451 *
1452 * @worker is entering idle state. Update stats and idle timer if
1453 * necessary.
1454 *
1455 * LOCKING:
d565ed63 1456 * spin_lock_irq(pool->lock).
c8e55f36
TH
1457 */
1458static void worker_enter_idle(struct worker *worker)
1da177e4 1459{
bd7bdd43 1460 struct worker_pool *pool = worker->pool;
c8e55f36 1461
6183c009
TH
1462 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1463 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1464 (worker->hentry.next || worker->hentry.pprev)))
1465 return;
c8e55f36 1466
cb444766
TH
1467 /* can't use worker_set_flags(), also called from start_worker() */
1468 worker->flags |= WORKER_IDLE;
bd7bdd43 1469 pool->nr_idle++;
e22bee78 1470 worker->last_active = jiffies;
c8e55f36
TH
1471
1472 /* idle_list is LIFO */
bd7bdd43 1473 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1474
628c78e7
TH
1475 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1476 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1477
544ecf31 1478 /*
706026c2 1479 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1480 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1481 * nr_running, the warning may trigger spuriously. Check iff
1482 * unbind is not in progress.
544ecf31 1483 */
24647570 1484 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1485 pool->nr_workers == pool->nr_idle &&
e19e397a 1486 atomic_read(&pool->nr_running));
c8e55f36
TH
1487}
1488
1489/**
1490 * worker_leave_idle - leave idle state
1491 * @worker: worker which is leaving idle state
1492 *
1493 * @worker is leaving idle state. Update stats.
1494 *
1495 * LOCKING:
d565ed63 1496 * spin_lock_irq(pool->lock).
c8e55f36
TH
1497 */
1498static void worker_leave_idle(struct worker *worker)
1499{
bd7bdd43 1500 struct worker_pool *pool = worker->pool;
c8e55f36 1501
6183c009
TH
1502 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1503 return;
d302f017 1504 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1505 pool->nr_idle--;
c8e55f36
TH
1506 list_del_init(&worker->entry);
1507}
1508
e22bee78 1509/**
f36dc67b
LJ
1510 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1511 * @pool: target worker_pool
1512 *
1513 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1514 *
1515 * Works which are scheduled while the cpu is online must at least be
1516 * scheduled to a worker which is bound to the cpu so that if they are
1517 * flushed from cpu callbacks while cpu is going down, they are
1518 * guaranteed to execute on the cpu.
1519 *
f5faa077 1520 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1521 * themselves to the target cpu and may race with cpu going down or
1522 * coming online. kthread_bind() can't be used because it may put the
1523 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1524 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1525 * [dis]associated in the meantime.
1526 *
706026c2 1527 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1528 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1529 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1530 * enters idle state or fetches works without dropping lock, it can
1531 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1532 *
1533 * CONTEXT:
d565ed63 1534 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1535 * held.
1536 *
1537 * RETURNS:
706026c2 1538 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1539 * bound), %false if offline.
1540 */
f36dc67b 1541static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1542__acquires(&pool->lock)
e22bee78 1543{
e22bee78 1544 while (true) {
4e6045f1 1545 /*
e22bee78
TH
1546 * The following call may fail, succeed or succeed
1547 * without actually migrating the task to the cpu if
1548 * it races with cpu hotunplug operation. Verify
24647570 1549 * against POOL_DISASSOCIATED.
4e6045f1 1550 */
24647570 1551 if (!(pool->flags & POOL_DISASSOCIATED))
f5faa077 1552 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
e22bee78 1553
d565ed63 1554 spin_lock_irq(&pool->lock);
24647570 1555 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1556 return false;
f5faa077 1557 if (task_cpu(current) == pool->cpu &&
e22bee78 1558 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1559 get_cpu_mask(pool->cpu)))
e22bee78 1560 return true;
d565ed63 1561 spin_unlock_irq(&pool->lock);
e22bee78 1562
5035b20f
TH
1563 /*
1564 * We've raced with CPU hot[un]plug. Give it a breather
1565 * and retry migration. cond_resched() is required here;
1566 * otherwise, we might deadlock against cpu_stop trying to
1567 * bring down the CPU on non-preemptive kernel.
1568 */
e22bee78 1569 cpu_relax();
5035b20f 1570 cond_resched();
e22bee78
TH
1571 }
1572}
1573
25511a47 1574/*
ea1abd61 1575 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1576 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1577 */
1578static void idle_worker_rebind(struct worker *worker)
1579{
5f7dabfd 1580 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1581 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1582 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1583
ea1abd61
LJ
1584 /* rebind complete, become available again */
1585 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1586 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1587}
1588
e22bee78 1589/*
25511a47 1590 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1591 * the associated cpu which is coming back online. This is scheduled by
1592 * cpu up but can race with other cpu hotplug operations and may be
1593 * executed twice without intervening cpu down.
e22bee78 1594 */
25511a47 1595static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1596{
1597 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1598
f36dc67b 1599 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1600 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1601
d565ed63 1602 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1603}
1604
25511a47 1605/**
94cf58bb
TH
1606 * rebind_workers - rebind all workers of a pool to the associated CPU
1607 * @pool: pool of interest
25511a47 1608 *
94cf58bb 1609 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1610 * is different for idle and busy ones.
1611 *
ea1abd61
LJ
1612 * Idle ones will be removed from the idle_list and woken up. They will
1613 * add themselves back after completing rebind. This ensures that the
1614 * idle_list doesn't contain any unbound workers when re-bound busy workers
1615 * try to perform local wake-ups for concurrency management.
25511a47 1616 *
ea1abd61
LJ
1617 * Busy workers can rebind after they finish their current work items.
1618 * Queueing the rebind work item at the head of the scheduled list is
1619 * enough. Note that nr_running will be properly bumped as busy workers
1620 * rebind.
25511a47 1621 *
ea1abd61
LJ
1622 * On return, all non-manager workers are scheduled for rebind - see
1623 * manage_workers() for the manager special case. Any idle worker
1624 * including the manager will not appear on @idle_list until rebind is
1625 * complete, making local wake-ups safe.
25511a47 1626 */
94cf58bb 1627static void rebind_workers(struct worker_pool *pool)
25511a47 1628{
ea1abd61 1629 struct worker *worker, *n;
25511a47
TH
1630 int i;
1631
94cf58bb
TH
1632 lockdep_assert_held(&pool->assoc_mutex);
1633 lockdep_assert_held(&pool->lock);
25511a47 1634
5f7dabfd 1635 /* dequeue and kick idle ones */
94cf58bb
TH
1636 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1637 /*
1638 * idle workers should be off @pool->idle_list until rebind
1639 * is complete to avoid receiving premature local wake-ups.
1640 */
1641 list_del_init(&worker->entry);
25511a47 1642
94cf58bb
TH
1643 /*
1644 * worker_thread() will see the above dequeuing and call
1645 * idle_worker_rebind().
1646 */
1647 wake_up_process(worker->task);
1648 }
25511a47 1649
94cf58bb 1650 /* rebind busy workers */
b67bfe0d 1651 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1652 struct work_struct *rebind_work = &worker->rebind_work;
1653 struct workqueue_struct *wq;
25511a47 1654
94cf58bb
TH
1655 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1656 work_data_bits(rebind_work)))
1657 continue;
25511a47 1658
94cf58bb 1659 debug_work_activate(rebind_work);
90beca5d 1660
94cf58bb
TH
1661 /*
1662 * wq doesn't really matter but let's keep @worker->pool
112202d9 1663 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1664 */
1665 if (std_worker_pool_pri(worker->pool))
1666 wq = system_highpri_wq;
1667 else
1668 wq = system_wq;
1669
112202d9 1670 insert_work(get_pwq(pool->cpu, wq), rebind_work,
94cf58bb
TH
1671 worker->scheduled.next,
1672 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1673 }
25511a47
TH
1674}
1675
c34056a3
TH
1676static struct worker *alloc_worker(void)
1677{
1678 struct worker *worker;
1679
1680 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1681 if (worker) {
1682 INIT_LIST_HEAD(&worker->entry);
affee4b2 1683 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1684 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1685 /* on creation a worker is in !idle && prep state */
1686 worker->flags = WORKER_PREP;
c8e55f36 1687 }
c34056a3
TH
1688 return worker;
1689}
1690
1691/**
1692 * create_worker - create a new workqueue worker
63d95a91 1693 * @pool: pool the new worker will belong to
c34056a3 1694 *
63d95a91 1695 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1696 * can be started by calling start_worker() or destroyed using
1697 * destroy_worker().
1698 *
1699 * CONTEXT:
1700 * Might sleep. Does GFP_KERNEL allocations.
1701 *
1702 * RETURNS:
1703 * Pointer to the newly created worker.
1704 */
bc2ae0f5 1705static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1706{
e34cdddb 1707 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1708 struct worker *worker = NULL;
f3421797 1709 int id = -1;
c34056a3 1710
d565ed63 1711 spin_lock_irq(&pool->lock);
bd7bdd43 1712 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1713 spin_unlock_irq(&pool->lock);
bd7bdd43 1714 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1715 goto fail;
d565ed63 1716 spin_lock_irq(&pool->lock);
c34056a3 1717 }
d565ed63 1718 spin_unlock_irq(&pool->lock);
c34056a3
TH
1719
1720 worker = alloc_worker();
1721 if (!worker)
1722 goto fail;
1723
bd7bdd43 1724 worker->pool = pool;
c34056a3
TH
1725 worker->id = id;
1726
ec22ca5e 1727 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1728 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1729 worker, cpu_to_node(pool->cpu),
1730 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1731 else
1732 worker->task = kthread_create(worker_thread, worker,
3270476a 1733 "kworker/u:%d%s", id, pri);
c34056a3
TH
1734 if (IS_ERR(worker->task))
1735 goto fail;
1736
e34cdddb 1737 if (std_worker_pool_pri(pool))
3270476a
TH
1738 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1739
db7bccf4 1740 /*
bc2ae0f5 1741 * Determine CPU binding of the new worker depending on
24647570 1742 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1743 * flag remains stable across this function. See the comments
1744 * above the flag definition for details.
1745 *
1746 * As an unbound worker may later become a regular one if CPU comes
1747 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1748 */
24647570 1749 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1750 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1751 } else {
db7bccf4 1752 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1753 worker->flags |= WORKER_UNBOUND;
f3421797 1754 }
c34056a3
TH
1755
1756 return worker;
1757fail:
1758 if (id >= 0) {
d565ed63 1759 spin_lock_irq(&pool->lock);
bd7bdd43 1760 ida_remove(&pool->worker_ida, id);
d565ed63 1761 spin_unlock_irq(&pool->lock);
c34056a3
TH
1762 }
1763 kfree(worker);
1764 return NULL;
1765}
1766
1767/**
1768 * start_worker - start a newly created worker
1769 * @worker: worker to start
1770 *
706026c2 1771 * Make the pool aware of @worker and start it.
c34056a3
TH
1772 *
1773 * CONTEXT:
d565ed63 1774 * spin_lock_irq(pool->lock).
c34056a3
TH
1775 */
1776static void start_worker(struct worker *worker)
1777{
cb444766 1778 worker->flags |= WORKER_STARTED;
bd7bdd43 1779 worker->pool->nr_workers++;
c8e55f36 1780 worker_enter_idle(worker);
c34056a3
TH
1781 wake_up_process(worker->task);
1782}
1783
1784/**
1785 * destroy_worker - destroy a workqueue worker
1786 * @worker: worker to be destroyed
1787 *
706026c2 1788 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1789 *
1790 * CONTEXT:
d565ed63 1791 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1792 */
1793static void destroy_worker(struct worker *worker)
1794{
bd7bdd43 1795 struct worker_pool *pool = worker->pool;
c34056a3
TH
1796 int id = worker->id;
1797
1798 /* sanity check frenzy */
6183c009
TH
1799 if (WARN_ON(worker->current_work) ||
1800 WARN_ON(!list_empty(&worker->scheduled)))
1801 return;
c34056a3 1802
c8e55f36 1803 if (worker->flags & WORKER_STARTED)
bd7bdd43 1804 pool->nr_workers--;
c8e55f36 1805 if (worker->flags & WORKER_IDLE)
bd7bdd43 1806 pool->nr_idle--;
c8e55f36
TH
1807
1808 list_del_init(&worker->entry);
cb444766 1809 worker->flags |= WORKER_DIE;
c8e55f36 1810
d565ed63 1811 spin_unlock_irq(&pool->lock);
c8e55f36 1812
c34056a3
TH
1813 kthread_stop(worker->task);
1814 kfree(worker);
1815
d565ed63 1816 spin_lock_irq(&pool->lock);
bd7bdd43 1817 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1818}
1819
63d95a91 1820static void idle_worker_timeout(unsigned long __pool)
e22bee78 1821{
63d95a91 1822 struct worker_pool *pool = (void *)__pool;
e22bee78 1823
d565ed63 1824 spin_lock_irq(&pool->lock);
e22bee78 1825
63d95a91 1826 if (too_many_workers(pool)) {
e22bee78
TH
1827 struct worker *worker;
1828 unsigned long expires;
1829
1830 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1831 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1832 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1833
1834 if (time_before(jiffies, expires))
63d95a91 1835 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1836 else {
1837 /* it's been idle for too long, wake up manager */
11ebea50 1838 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1839 wake_up_worker(pool);
d5abe669 1840 }
e22bee78
TH
1841 }
1842
d565ed63 1843 spin_unlock_irq(&pool->lock);
e22bee78 1844}
d5abe669 1845
e22bee78
TH
1846static bool send_mayday(struct work_struct *work)
1847{
112202d9
TH
1848 struct pool_workqueue *pwq = get_work_pwq(work);
1849 struct workqueue_struct *wq = pwq->wq;
f3421797 1850 unsigned int cpu;
e22bee78
TH
1851
1852 if (!(wq->flags & WQ_RESCUER))
1853 return false;
1854
1855 /* mayday mayday mayday */
112202d9 1856 cpu = pwq->pool->cpu;
f3421797
TH
1857 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1858 if (cpu == WORK_CPU_UNBOUND)
1859 cpu = 0;
f2e005aa 1860 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1861 wake_up_process(wq->rescuer->task);
1862 return true;
1863}
1864
706026c2 1865static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1866{
63d95a91 1867 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1868 struct work_struct *work;
1869
d565ed63 1870 spin_lock_irq(&pool->lock);
e22bee78 1871
63d95a91 1872 if (need_to_create_worker(pool)) {
e22bee78
TH
1873 /*
1874 * We've been trying to create a new worker but
1875 * haven't been successful. We might be hitting an
1876 * allocation deadlock. Send distress signals to
1877 * rescuers.
1878 */
63d95a91 1879 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1880 send_mayday(work);
1da177e4 1881 }
e22bee78 1882
d565ed63 1883 spin_unlock_irq(&pool->lock);
e22bee78 1884
63d95a91 1885 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1886}
1887
e22bee78
TH
1888/**
1889 * maybe_create_worker - create a new worker if necessary
63d95a91 1890 * @pool: pool to create a new worker for
e22bee78 1891 *
63d95a91 1892 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1893 * have at least one idle worker on return from this function. If
1894 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1895 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1896 * possible allocation deadlock.
1897 *
1898 * On return, need_to_create_worker() is guaranteed to be false and
1899 * may_start_working() true.
1900 *
1901 * LOCKING:
d565ed63 1902 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1903 * multiple times. Does GFP_KERNEL allocations. Called only from
1904 * manager.
1905 *
1906 * RETURNS:
d565ed63 1907 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1908 * otherwise.
1909 */
63d95a91 1910static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1911__releases(&pool->lock)
1912__acquires(&pool->lock)
1da177e4 1913{
63d95a91 1914 if (!need_to_create_worker(pool))
e22bee78
TH
1915 return false;
1916restart:
d565ed63 1917 spin_unlock_irq(&pool->lock);
9f9c2364 1918
e22bee78 1919 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1920 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1921
1922 while (true) {
1923 struct worker *worker;
1924
bc2ae0f5 1925 worker = create_worker(pool);
e22bee78 1926 if (worker) {
63d95a91 1927 del_timer_sync(&pool->mayday_timer);
d565ed63 1928 spin_lock_irq(&pool->lock);
e22bee78 1929 start_worker(worker);
6183c009
TH
1930 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1931 goto restart;
e22bee78
TH
1932 return true;
1933 }
1934
63d95a91 1935 if (!need_to_create_worker(pool))
e22bee78 1936 break;
1da177e4 1937
e22bee78
TH
1938 __set_current_state(TASK_INTERRUPTIBLE);
1939 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1940
63d95a91 1941 if (!need_to_create_worker(pool))
e22bee78
TH
1942 break;
1943 }
1944
63d95a91 1945 del_timer_sync(&pool->mayday_timer);
d565ed63 1946 spin_lock_irq(&pool->lock);
63d95a91 1947 if (need_to_create_worker(pool))
e22bee78
TH
1948 goto restart;
1949 return true;
1950}
1951
1952/**
1953 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1954 * @pool: pool to destroy workers for
e22bee78 1955 *
63d95a91 1956 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1957 * IDLE_WORKER_TIMEOUT.
1958 *
1959 * LOCKING:
d565ed63 1960 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1961 * multiple times. Called only from manager.
1962 *
1963 * RETURNS:
d565ed63 1964 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1965 * otherwise.
1966 */
63d95a91 1967static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1968{
1969 bool ret = false;
1da177e4 1970
63d95a91 1971 while (too_many_workers(pool)) {
e22bee78
TH
1972 struct worker *worker;
1973 unsigned long expires;
3af24433 1974
63d95a91 1975 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1976 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1977
e22bee78 1978 if (time_before(jiffies, expires)) {
63d95a91 1979 mod_timer(&pool->idle_timer, expires);
3af24433 1980 break;
e22bee78 1981 }
1da177e4 1982
e22bee78
TH
1983 destroy_worker(worker);
1984 ret = true;
1da177e4 1985 }
1e19ffc6 1986
e22bee78 1987 return ret;
1e19ffc6
TH
1988}
1989
73f53c4a 1990/**
e22bee78
TH
1991 * manage_workers - manage worker pool
1992 * @worker: self
73f53c4a 1993 *
706026c2 1994 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1995 * to. At any given time, there can be only zero or one manager per
706026c2 1996 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1997 *
1998 * The caller can safely start processing works on false return. On
1999 * true return, it's guaranteed that need_to_create_worker() is false
2000 * and may_start_working() is true.
73f53c4a
TH
2001 *
2002 * CONTEXT:
d565ed63 2003 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2004 * multiple times. Does GFP_KERNEL allocations.
2005 *
2006 * RETURNS:
d565ed63
TH
2007 * spin_lock_irq(pool->lock) which may be released and regrabbed
2008 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2009 */
e22bee78 2010static bool manage_workers(struct worker *worker)
73f53c4a 2011{
63d95a91 2012 struct worker_pool *pool = worker->pool;
e22bee78 2013 bool ret = false;
73f53c4a 2014
ee378aa4 2015 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2016 return ret;
1e19ffc6 2017
552a37e9 2018 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2019
ee378aa4
LJ
2020 /*
2021 * To simplify both worker management and CPU hotplug, hold off
2022 * management while hotplug is in progress. CPU hotplug path can't
2023 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2024 * lead to idle worker depletion (all become busy thinking someone
2025 * else is managing) which in turn can result in deadlock under
b2eb83d1 2026 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2027 * manager against CPU hotplug.
2028 *
b2eb83d1 2029 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2030 * progress. trylock first without dropping @pool->lock.
ee378aa4 2031 */
b2eb83d1 2032 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2033 spin_unlock_irq(&pool->lock);
b2eb83d1 2034 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2035 /*
2036 * CPU hotplug could have happened while we were waiting
b2eb83d1 2037 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2038 * because manager isn't either on idle or busy list, and
706026c2 2039 * @pool's state and ours could have deviated.
ee378aa4 2040 *
b2eb83d1 2041 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2042 * simply try to bind. It will succeed or fail depending
706026c2 2043 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2044 * %WORKER_UNBOUND accordingly.
2045 */
f36dc67b 2046 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2047 worker->flags &= ~WORKER_UNBOUND;
2048 else
2049 worker->flags |= WORKER_UNBOUND;
73f53c4a 2050
ee378aa4
LJ
2051 ret = true;
2052 }
73f53c4a 2053
11ebea50 2054 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2055
2056 /*
e22bee78
TH
2057 * Destroy and then create so that may_start_working() is true
2058 * on return.
73f53c4a 2059 */
63d95a91
TH
2060 ret |= maybe_destroy_workers(pool);
2061 ret |= maybe_create_worker(pool);
e22bee78 2062
552a37e9 2063 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2064 mutex_unlock(&pool->assoc_mutex);
e22bee78 2065 return ret;
73f53c4a
TH
2066}
2067
a62428c0
TH
2068/**
2069 * process_one_work - process single work
c34056a3 2070 * @worker: self
a62428c0
TH
2071 * @work: work to process
2072 *
2073 * Process @work. This function contains all the logics necessary to
2074 * process a single work including synchronization against and
2075 * interaction with other workers on the same cpu, queueing and
2076 * flushing. As long as context requirement is met, any worker can
2077 * call this function to process a work.
2078 *
2079 * CONTEXT:
d565ed63 2080 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2081 */
c34056a3 2082static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2083__releases(&pool->lock)
2084__acquires(&pool->lock)
a62428c0 2085{
112202d9 2086 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2087 struct worker_pool *pool = worker->pool;
112202d9 2088 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2089 int work_color;
7e11629d 2090 struct worker *collision;
a62428c0
TH
2091#ifdef CONFIG_LOCKDEP
2092 /*
2093 * It is permissible to free the struct work_struct from
2094 * inside the function that is called from it, this we need to
2095 * take into account for lockdep too. To avoid bogus "held
2096 * lock freed" warnings as well as problems when looking into
2097 * work->lockdep_map, make a copy and use that here.
2098 */
4d82a1de
PZ
2099 struct lockdep_map lockdep_map;
2100
2101 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2102#endif
6fec10a1
TH
2103 /*
2104 * Ensure we're on the correct CPU. DISASSOCIATED test is
2105 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2106 * unbound or a disassociated pool.
6fec10a1 2107 */
5f7dabfd 2108 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2109 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2110 raw_smp_processor_id() != pool->cpu);
25511a47 2111
7e11629d
TH
2112 /*
2113 * A single work shouldn't be executed concurrently by
2114 * multiple workers on a single cpu. Check whether anyone is
2115 * already processing the work. If so, defer the work to the
2116 * currently executing one.
2117 */
c9e7cf27 2118 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2119 if (unlikely(collision)) {
2120 move_linked_works(work, &collision->scheduled, NULL);
2121 return;
2122 }
2123
8930caba 2124 /* claim and dequeue */
a62428c0 2125 debug_work_deactivate(work);
c9e7cf27 2126 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2127 worker->current_work = work;
a2c1c57b 2128 worker->current_func = work->func;
112202d9 2129 worker->current_pwq = pwq;
73f53c4a 2130 work_color = get_work_color(work);
7a22ad75 2131
a62428c0
TH
2132 list_del_init(&work->entry);
2133
fb0e7beb
TH
2134 /*
2135 * CPU intensive works don't participate in concurrency
2136 * management. They're the scheduler's responsibility.
2137 */
2138 if (unlikely(cpu_intensive))
2139 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2140
974271c4 2141 /*
d565ed63 2142 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2143 * executed ASAP. Wake up another worker if necessary.
2144 */
63d95a91
TH
2145 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2146 wake_up_worker(pool);
974271c4 2147
8930caba 2148 /*
7c3eed5c 2149 * Record the last pool and clear PENDING which should be the last
d565ed63 2150 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2151 * PENDING and queued state changes happen together while IRQ is
2152 * disabled.
8930caba 2153 */
7c3eed5c 2154 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2155
d565ed63 2156 spin_unlock_irq(&pool->lock);
a62428c0 2157
112202d9 2158 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2159 lock_map_acquire(&lockdep_map);
e36c886a 2160 trace_workqueue_execute_start(work);
a2c1c57b 2161 worker->current_func(work);
e36c886a
AV
2162 /*
2163 * While we must be careful to not use "work" after this, the trace
2164 * point will only record its address.
2165 */
2166 trace_workqueue_execute_end(work);
a62428c0 2167 lock_map_release(&lockdep_map);
112202d9 2168 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2169
2170 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2171 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2172 " last function: %pf\n",
a2c1c57b
TH
2173 current->comm, preempt_count(), task_pid_nr(current),
2174 worker->current_func);
a62428c0
TH
2175 debug_show_held_locks(current);
2176 dump_stack();
2177 }
2178
d565ed63 2179 spin_lock_irq(&pool->lock);
a62428c0 2180
fb0e7beb
TH
2181 /* clear cpu intensive status */
2182 if (unlikely(cpu_intensive))
2183 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2184
a62428c0 2185 /* we're done with it, release */
42f8570f 2186 hash_del(&worker->hentry);
c34056a3 2187 worker->current_work = NULL;
a2c1c57b 2188 worker->current_func = NULL;
112202d9
TH
2189 worker->current_pwq = NULL;
2190 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2191}
2192
affee4b2
TH
2193/**
2194 * process_scheduled_works - process scheduled works
2195 * @worker: self
2196 *
2197 * Process all scheduled works. Please note that the scheduled list
2198 * may change while processing a work, so this function repeatedly
2199 * fetches a work from the top and executes it.
2200 *
2201 * CONTEXT:
d565ed63 2202 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2203 * multiple times.
2204 */
2205static void process_scheduled_works(struct worker *worker)
1da177e4 2206{
affee4b2
TH
2207 while (!list_empty(&worker->scheduled)) {
2208 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2209 struct work_struct, entry);
c34056a3 2210 process_one_work(worker, work);
1da177e4 2211 }
1da177e4
LT
2212}
2213
4690c4ab
TH
2214/**
2215 * worker_thread - the worker thread function
c34056a3 2216 * @__worker: self
4690c4ab 2217 *
706026c2
TH
2218 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2219 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2220 * their specific target workqueue. The only exception is works which
2221 * belong to workqueues with a rescuer which will be explained in
2222 * rescuer_thread().
4690c4ab 2223 */
c34056a3 2224static int worker_thread(void *__worker)
1da177e4 2225{
c34056a3 2226 struct worker *worker = __worker;
bd7bdd43 2227 struct worker_pool *pool = worker->pool;
1da177e4 2228
e22bee78
TH
2229 /* tell the scheduler that this is a workqueue worker */
2230 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2231woke_up:
d565ed63 2232 spin_lock_irq(&pool->lock);
1da177e4 2233
5f7dabfd
LJ
2234 /* we are off idle list if destruction or rebind is requested */
2235 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2236 spin_unlock_irq(&pool->lock);
25511a47 2237
5f7dabfd 2238 /* if DIE is set, destruction is requested */
25511a47
TH
2239 if (worker->flags & WORKER_DIE) {
2240 worker->task->flags &= ~PF_WQ_WORKER;
2241 return 0;
2242 }
2243
5f7dabfd 2244 /* otherwise, rebind */
25511a47
TH
2245 idle_worker_rebind(worker);
2246 goto woke_up;
c8e55f36 2247 }
affee4b2 2248
c8e55f36 2249 worker_leave_idle(worker);
db7bccf4 2250recheck:
e22bee78 2251 /* no more worker necessary? */
63d95a91 2252 if (!need_more_worker(pool))
e22bee78
TH
2253 goto sleep;
2254
2255 /* do we need to manage? */
63d95a91 2256 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2257 goto recheck;
2258
c8e55f36
TH
2259 /*
2260 * ->scheduled list can only be filled while a worker is
2261 * preparing to process a work or actually processing it.
2262 * Make sure nobody diddled with it while I was sleeping.
2263 */
6183c009 2264 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2265
e22bee78
TH
2266 /*
2267 * When control reaches this point, we're guaranteed to have
2268 * at least one idle worker or that someone else has already
2269 * assumed the manager role.
2270 */
2271 worker_clr_flags(worker, WORKER_PREP);
2272
2273 do {
c8e55f36 2274 struct work_struct *work =
bd7bdd43 2275 list_first_entry(&pool->worklist,
c8e55f36
TH
2276 struct work_struct, entry);
2277
2278 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2279 /* optimization path, not strictly necessary */
2280 process_one_work(worker, work);
2281 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2282 process_scheduled_works(worker);
c8e55f36
TH
2283 } else {
2284 move_linked_works(work, &worker->scheduled, NULL);
2285 process_scheduled_works(worker);
affee4b2 2286 }
63d95a91 2287 } while (keep_working(pool));
e22bee78
TH
2288
2289 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2290sleep:
63d95a91 2291 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2292 goto recheck;
d313dd85 2293
c8e55f36 2294 /*
d565ed63
TH
2295 * pool->lock is held and there's no work to process and no need to
2296 * manage, sleep. Workers are woken up only while holding
2297 * pool->lock or from local cpu, so setting the current state
2298 * before releasing pool->lock is enough to prevent losing any
2299 * event.
c8e55f36
TH
2300 */
2301 worker_enter_idle(worker);
2302 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2303 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2304 schedule();
2305 goto woke_up;
1da177e4
LT
2306}
2307
e22bee78
TH
2308/**
2309 * rescuer_thread - the rescuer thread function
111c225a 2310 * @__rescuer: self
e22bee78
TH
2311 *
2312 * Workqueue rescuer thread function. There's one rescuer for each
2313 * workqueue which has WQ_RESCUER set.
2314 *
706026c2 2315 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2316 * worker which uses GFP_KERNEL allocation which has slight chance of
2317 * developing into deadlock if some works currently on the same queue
2318 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2319 * the problem rescuer solves.
2320 *
706026c2
TH
2321 * When such condition is possible, the pool summons rescuers of all
2322 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2323 * those works so that forward progress can be guaranteed.
2324 *
2325 * This should happen rarely.
2326 */
111c225a 2327static int rescuer_thread(void *__rescuer)
e22bee78 2328{
111c225a
TH
2329 struct worker *rescuer = __rescuer;
2330 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2331 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2332 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2333 unsigned int cpu;
2334
2335 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2336
2337 /*
2338 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2339 * doesn't participate in concurrency management.
2340 */
2341 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2342repeat:
2343 set_current_state(TASK_INTERRUPTIBLE);
2344
412d32e6
MG
2345 if (kthread_should_stop()) {
2346 __set_current_state(TASK_RUNNING);
111c225a 2347 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2348 return 0;
412d32e6 2349 }
e22bee78 2350
f3421797
TH
2351 /*
2352 * See whether any cpu is asking for help. Unbounded
2353 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2354 */
f2e005aa 2355 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797 2356 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
112202d9
TH
2357 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2358 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2359 struct work_struct *work, *n;
2360
2361 __set_current_state(TASK_RUNNING);
f2e005aa 2362 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2363
2364 /* migrate to the target cpu if possible */
f36dc67b 2365 worker_maybe_bind_and_lock(pool);
b3104104 2366 rescuer->pool = pool;
e22bee78
TH
2367
2368 /*
2369 * Slurp in all works issued via this workqueue and
2370 * process'em.
2371 */
6183c009 2372 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2373 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2374 if (get_work_pwq(work) == pwq)
e22bee78
TH
2375 move_linked_works(work, scheduled, &n);
2376
2377 process_scheduled_works(rescuer);
7576958a
TH
2378
2379 /*
d565ed63 2380 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2381 * regular worker; otherwise, we end up with 0 concurrency
2382 * and stalling the execution.
2383 */
63d95a91
TH
2384 if (keep_working(pool))
2385 wake_up_worker(pool);
7576958a 2386
b3104104 2387 rescuer->pool = NULL;
d565ed63 2388 spin_unlock_irq(&pool->lock);
e22bee78
TH
2389 }
2390
111c225a
TH
2391 /* rescuers should never participate in concurrency management */
2392 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2393 schedule();
2394 goto repeat;
1da177e4
LT
2395}
2396
fc2e4d70
ON
2397struct wq_barrier {
2398 struct work_struct work;
2399 struct completion done;
2400};
2401
2402static void wq_barrier_func(struct work_struct *work)
2403{
2404 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2405 complete(&barr->done);
2406}
2407
4690c4ab
TH
2408/**
2409 * insert_wq_barrier - insert a barrier work
112202d9 2410 * @pwq: pwq to insert barrier into
4690c4ab 2411 * @barr: wq_barrier to insert
affee4b2
TH
2412 * @target: target work to attach @barr to
2413 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2414 *
affee4b2
TH
2415 * @barr is linked to @target such that @barr is completed only after
2416 * @target finishes execution. Please note that the ordering
2417 * guarantee is observed only with respect to @target and on the local
2418 * cpu.
2419 *
2420 * Currently, a queued barrier can't be canceled. This is because
2421 * try_to_grab_pending() can't determine whether the work to be
2422 * grabbed is at the head of the queue and thus can't clear LINKED
2423 * flag of the previous work while there must be a valid next work
2424 * after a work with LINKED flag set.
2425 *
2426 * Note that when @worker is non-NULL, @target may be modified
112202d9 2427 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2428 *
2429 * CONTEXT:
d565ed63 2430 * spin_lock_irq(pool->lock).
4690c4ab 2431 */
112202d9 2432static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2433 struct wq_barrier *barr,
2434 struct work_struct *target, struct worker *worker)
fc2e4d70 2435{
affee4b2
TH
2436 struct list_head *head;
2437 unsigned int linked = 0;
2438
dc186ad7 2439 /*
d565ed63 2440 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2441 * as we know for sure that this will not trigger any of the
2442 * checks and call back into the fixup functions where we
2443 * might deadlock.
2444 */
ca1cab37 2445 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2446 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2447 init_completion(&barr->done);
83c22520 2448
affee4b2
TH
2449 /*
2450 * If @target is currently being executed, schedule the
2451 * barrier to the worker; otherwise, put it after @target.
2452 */
2453 if (worker)
2454 head = worker->scheduled.next;
2455 else {
2456 unsigned long *bits = work_data_bits(target);
2457
2458 head = target->entry.next;
2459 /* there can already be other linked works, inherit and set */
2460 linked = *bits & WORK_STRUCT_LINKED;
2461 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2462 }
2463
dc186ad7 2464 debug_work_activate(&barr->work);
112202d9 2465 insert_work(pwq, &barr->work, head,
affee4b2 2466 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2467}
2468
73f53c4a 2469/**
112202d9 2470 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2471 * @wq: workqueue being flushed
2472 * @flush_color: new flush color, < 0 for no-op
2473 * @work_color: new work color, < 0 for no-op
2474 *
112202d9 2475 * Prepare pwqs for workqueue flushing.
73f53c4a 2476 *
112202d9
TH
2477 * If @flush_color is non-negative, flush_color on all pwqs should be
2478 * -1. If no pwq has in-flight commands at the specified color, all
2479 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2480 * has in flight commands, its pwq->flush_color is set to
2481 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2482 * wakeup logic is armed and %true is returned.
2483 *
2484 * The caller should have initialized @wq->first_flusher prior to
2485 * calling this function with non-negative @flush_color. If
2486 * @flush_color is negative, no flush color update is done and %false
2487 * is returned.
2488 *
112202d9 2489 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2490 * work_color which is previous to @work_color and all will be
2491 * advanced to @work_color.
2492 *
2493 * CONTEXT:
2494 * mutex_lock(wq->flush_mutex).
2495 *
2496 * RETURNS:
2497 * %true if @flush_color >= 0 and there's something to flush. %false
2498 * otherwise.
2499 */
112202d9 2500static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2501 int flush_color, int work_color)
1da177e4 2502{
73f53c4a
TH
2503 bool wait = false;
2504 unsigned int cpu;
1da177e4 2505
73f53c4a 2506 if (flush_color >= 0) {
6183c009 2507 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2508 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2509 }
2355b70f 2510
112202d9
TH
2511 for_each_pwq_cpu(cpu, wq) {
2512 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2513 struct worker_pool *pool = pwq->pool;
fc2e4d70 2514
d565ed63 2515 spin_lock_irq(&pool->lock);
83c22520 2516
73f53c4a 2517 if (flush_color >= 0) {
6183c009 2518 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2519
112202d9
TH
2520 if (pwq->nr_in_flight[flush_color]) {
2521 pwq->flush_color = flush_color;
2522 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2523 wait = true;
2524 }
2525 }
1da177e4 2526
73f53c4a 2527 if (work_color >= 0) {
6183c009 2528 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2529 pwq->work_color = work_color;
73f53c4a 2530 }
1da177e4 2531
d565ed63 2532 spin_unlock_irq(&pool->lock);
1da177e4 2533 }
2355b70f 2534
112202d9 2535 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2536 complete(&wq->first_flusher->done);
14441960 2537
73f53c4a 2538 return wait;
1da177e4
LT
2539}
2540
0fcb78c2 2541/**
1da177e4 2542 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2543 * @wq: workqueue to flush
1da177e4
LT
2544 *
2545 * Forces execution of the workqueue and blocks until its completion.
2546 * This is typically used in driver shutdown handlers.
2547 *
fc2e4d70
ON
2548 * We sleep until all works which were queued on entry have been handled,
2549 * but we are not livelocked by new incoming ones.
1da177e4 2550 */
7ad5b3a5 2551void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2552{
73f53c4a
TH
2553 struct wq_flusher this_flusher = {
2554 .list = LIST_HEAD_INIT(this_flusher.list),
2555 .flush_color = -1,
2556 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2557 };
2558 int next_color;
1da177e4 2559
3295f0ef
IM
2560 lock_map_acquire(&wq->lockdep_map);
2561 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2562
2563 mutex_lock(&wq->flush_mutex);
2564
2565 /*
2566 * Start-to-wait phase
2567 */
2568 next_color = work_next_color(wq->work_color);
2569
2570 if (next_color != wq->flush_color) {
2571 /*
2572 * Color space is not full. The current work_color
2573 * becomes our flush_color and work_color is advanced
2574 * by one.
2575 */
6183c009 2576 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2577 this_flusher.flush_color = wq->work_color;
2578 wq->work_color = next_color;
2579
2580 if (!wq->first_flusher) {
2581 /* no flush in progress, become the first flusher */
6183c009 2582 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2583
2584 wq->first_flusher = &this_flusher;
2585
112202d9 2586 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2587 wq->work_color)) {
2588 /* nothing to flush, done */
2589 wq->flush_color = next_color;
2590 wq->first_flusher = NULL;
2591 goto out_unlock;
2592 }
2593 } else {
2594 /* wait in queue */
6183c009 2595 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2596 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2597 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2598 }
2599 } else {
2600 /*
2601 * Oops, color space is full, wait on overflow queue.
2602 * The next flush completion will assign us
2603 * flush_color and transfer to flusher_queue.
2604 */
2605 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2606 }
2607
2608 mutex_unlock(&wq->flush_mutex);
2609
2610 wait_for_completion(&this_flusher.done);
2611
2612 /*
2613 * Wake-up-and-cascade phase
2614 *
2615 * First flushers are responsible for cascading flushes and
2616 * handling overflow. Non-first flushers can simply return.
2617 */
2618 if (wq->first_flusher != &this_flusher)
2619 return;
2620
2621 mutex_lock(&wq->flush_mutex);
2622
4ce48b37
TH
2623 /* we might have raced, check again with mutex held */
2624 if (wq->first_flusher != &this_flusher)
2625 goto out_unlock;
2626
73f53c4a
TH
2627 wq->first_flusher = NULL;
2628
6183c009
TH
2629 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2630 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2631
2632 while (true) {
2633 struct wq_flusher *next, *tmp;
2634
2635 /* complete all the flushers sharing the current flush color */
2636 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2637 if (next->flush_color != wq->flush_color)
2638 break;
2639 list_del_init(&next->list);
2640 complete(&next->done);
2641 }
2642
6183c009
TH
2643 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2644 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2645
2646 /* this flush_color is finished, advance by one */
2647 wq->flush_color = work_next_color(wq->flush_color);
2648
2649 /* one color has been freed, handle overflow queue */
2650 if (!list_empty(&wq->flusher_overflow)) {
2651 /*
2652 * Assign the same color to all overflowed
2653 * flushers, advance work_color and append to
2654 * flusher_queue. This is the start-to-wait
2655 * phase for these overflowed flushers.
2656 */
2657 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2658 tmp->flush_color = wq->work_color;
2659
2660 wq->work_color = work_next_color(wq->work_color);
2661
2662 list_splice_tail_init(&wq->flusher_overflow,
2663 &wq->flusher_queue);
112202d9 2664 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2665 }
2666
2667 if (list_empty(&wq->flusher_queue)) {
6183c009 2668 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2669 break;
2670 }
2671
2672 /*
2673 * Need to flush more colors. Make the next flusher
112202d9 2674 * the new first flusher and arm pwqs.
73f53c4a 2675 */
6183c009
TH
2676 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2677 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2678
2679 list_del_init(&next->list);
2680 wq->first_flusher = next;
2681
112202d9 2682 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2683 break;
2684
2685 /*
2686 * Meh... this color is already done, clear first
2687 * flusher and repeat cascading.
2688 */
2689 wq->first_flusher = NULL;
2690 }
2691
2692out_unlock:
2693 mutex_unlock(&wq->flush_mutex);
1da177e4 2694}
ae90dd5d 2695EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2696
9c5a2ba7
TH
2697/**
2698 * drain_workqueue - drain a workqueue
2699 * @wq: workqueue to drain
2700 *
2701 * Wait until the workqueue becomes empty. While draining is in progress,
2702 * only chain queueing is allowed. IOW, only currently pending or running
2703 * work items on @wq can queue further work items on it. @wq is flushed
2704 * repeatedly until it becomes empty. The number of flushing is detemined
2705 * by the depth of chaining and should be relatively short. Whine if it
2706 * takes too long.
2707 */
2708void drain_workqueue(struct workqueue_struct *wq)
2709{
2710 unsigned int flush_cnt = 0;
2711 unsigned int cpu;
2712
2713 /*
2714 * __queue_work() needs to test whether there are drainers, is much
2715 * hotter than drain_workqueue() and already looks at @wq->flags.
2716 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2717 */
e98d5b16 2718 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2719 if (!wq->nr_drainers++)
2720 wq->flags |= WQ_DRAINING;
e98d5b16 2721 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2722reflush:
2723 flush_workqueue(wq);
2724
112202d9
TH
2725 for_each_pwq_cpu(cpu, wq) {
2726 struct pool_workqueue *pwq = get_pwq(cpu, wq);
fa2563e4 2727 bool drained;
9c5a2ba7 2728
112202d9
TH
2729 spin_lock_irq(&pwq->pool->lock);
2730 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2731 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2732
2733 if (drained)
9c5a2ba7
TH
2734 continue;
2735
2736 if (++flush_cnt == 10 ||
2737 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2738 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2739 wq->name, flush_cnt);
9c5a2ba7
TH
2740 goto reflush;
2741 }
2742
e98d5b16 2743 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2744 if (!--wq->nr_drainers)
2745 wq->flags &= ~WQ_DRAINING;
e98d5b16 2746 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2747}
2748EXPORT_SYMBOL_GPL(drain_workqueue);
2749
606a5020 2750static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2751{
affee4b2 2752 struct worker *worker = NULL;
c9e7cf27 2753 struct worker_pool *pool;
112202d9 2754 struct pool_workqueue *pwq;
db700897
ON
2755
2756 might_sleep();
c9e7cf27
TH
2757 pool = get_work_pool(work);
2758 if (!pool)
baf59022 2759 return false;
db700897 2760
d565ed63 2761 spin_lock_irq(&pool->lock);
0b3dae68 2762 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2763 pwq = get_work_pwq(work);
2764 if (pwq) {
2765 if (unlikely(pwq->pool != pool))
4690c4ab 2766 goto already_gone;
606a5020 2767 } else {
c9e7cf27 2768 worker = find_worker_executing_work(pool, work);
affee4b2 2769 if (!worker)
4690c4ab 2770 goto already_gone;
112202d9 2771 pwq = worker->current_pwq;
606a5020 2772 }
db700897 2773
112202d9 2774 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2775 spin_unlock_irq(&pool->lock);
7a22ad75 2776
e159489b
TH
2777 /*
2778 * If @max_active is 1 or rescuer is in use, flushing another work
2779 * item on the same workqueue may lead to deadlock. Make sure the
2780 * flusher is not running on the same workqueue by verifying write
2781 * access.
2782 */
112202d9
TH
2783 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2784 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2785 else
112202d9
TH
2786 lock_map_acquire_read(&pwq->wq->lockdep_map);
2787 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2788
401a8d04 2789 return true;
4690c4ab 2790already_gone:
d565ed63 2791 spin_unlock_irq(&pool->lock);
401a8d04 2792 return false;
db700897 2793}
baf59022
TH
2794
2795/**
2796 * flush_work - wait for a work to finish executing the last queueing instance
2797 * @work: the work to flush
2798 *
606a5020
TH
2799 * Wait until @work has finished execution. @work is guaranteed to be idle
2800 * on return if it hasn't been requeued since flush started.
baf59022
TH
2801 *
2802 * RETURNS:
2803 * %true if flush_work() waited for the work to finish execution,
2804 * %false if it was already idle.
2805 */
2806bool flush_work(struct work_struct *work)
2807{
2808 struct wq_barrier barr;
2809
0976dfc1
SB
2810 lock_map_acquire(&work->lockdep_map);
2811 lock_map_release(&work->lockdep_map);
2812
606a5020 2813 if (start_flush_work(work, &barr)) {
401a8d04
TH
2814 wait_for_completion(&barr.done);
2815 destroy_work_on_stack(&barr.work);
2816 return true;
606a5020 2817 } else {
401a8d04 2818 return false;
6e84d644 2819 }
6e84d644 2820}
606a5020 2821EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2822
36e227d2 2823static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2824{
bbb68dfa 2825 unsigned long flags;
1f1f642e
ON
2826 int ret;
2827
2828 do {
bbb68dfa
TH
2829 ret = try_to_grab_pending(work, is_dwork, &flags);
2830 /*
2831 * If someone else is canceling, wait for the same event it
2832 * would be waiting for before retrying.
2833 */
2834 if (unlikely(ret == -ENOENT))
606a5020 2835 flush_work(work);
1f1f642e
ON
2836 } while (unlikely(ret < 0));
2837
bbb68dfa
TH
2838 /* tell other tasks trying to grab @work to back off */
2839 mark_work_canceling(work);
2840 local_irq_restore(flags);
2841
606a5020 2842 flush_work(work);
7a22ad75 2843 clear_work_data(work);
1f1f642e
ON
2844 return ret;
2845}
2846
6e84d644 2847/**
401a8d04
TH
2848 * cancel_work_sync - cancel a work and wait for it to finish
2849 * @work: the work to cancel
6e84d644 2850 *
401a8d04
TH
2851 * Cancel @work and wait for its execution to finish. This function
2852 * can be used even if the work re-queues itself or migrates to
2853 * another workqueue. On return from this function, @work is
2854 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2855 *
401a8d04
TH
2856 * cancel_work_sync(&delayed_work->work) must not be used for
2857 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2858 *
401a8d04 2859 * The caller must ensure that the workqueue on which @work was last
6e84d644 2860 * queued can't be destroyed before this function returns.
401a8d04
TH
2861 *
2862 * RETURNS:
2863 * %true if @work was pending, %false otherwise.
6e84d644 2864 */
401a8d04 2865bool cancel_work_sync(struct work_struct *work)
6e84d644 2866{
36e227d2 2867 return __cancel_work_timer(work, false);
b89deed3 2868}
28e53bdd 2869EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2870
6e84d644 2871/**
401a8d04
TH
2872 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2873 * @dwork: the delayed work to flush
6e84d644 2874 *
401a8d04
TH
2875 * Delayed timer is cancelled and the pending work is queued for
2876 * immediate execution. Like flush_work(), this function only
2877 * considers the last queueing instance of @dwork.
1f1f642e 2878 *
401a8d04
TH
2879 * RETURNS:
2880 * %true if flush_work() waited for the work to finish execution,
2881 * %false if it was already idle.
6e84d644 2882 */
401a8d04
TH
2883bool flush_delayed_work(struct delayed_work *dwork)
2884{
8930caba 2885 local_irq_disable();
401a8d04 2886 if (del_timer_sync(&dwork->timer))
60c057bc 2887 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2888 local_irq_enable();
401a8d04
TH
2889 return flush_work(&dwork->work);
2890}
2891EXPORT_SYMBOL(flush_delayed_work);
2892
09383498 2893/**
57b30ae7
TH
2894 * cancel_delayed_work - cancel a delayed work
2895 * @dwork: delayed_work to cancel
09383498 2896 *
57b30ae7
TH
2897 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2898 * and canceled; %false if wasn't pending. Note that the work callback
2899 * function may still be running on return, unless it returns %true and the
2900 * work doesn't re-arm itself. Explicitly flush or use
2901 * cancel_delayed_work_sync() to wait on it.
09383498 2902 *
57b30ae7 2903 * This function is safe to call from any context including IRQ handler.
09383498 2904 */
57b30ae7 2905bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2906{
57b30ae7
TH
2907 unsigned long flags;
2908 int ret;
2909
2910 do {
2911 ret = try_to_grab_pending(&dwork->work, true, &flags);
2912 } while (unlikely(ret == -EAGAIN));
2913
2914 if (unlikely(ret < 0))
2915 return false;
2916
7c3eed5c
TH
2917 set_work_pool_and_clear_pending(&dwork->work,
2918 get_work_pool_id(&dwork->work));
57b30ae7 2919 local_irq_restore(flags);
c0158ca6 2920 return ret;
09383498 2921}
57b30ae7 2922EXPORT_SYMBOL(cancel_delayed_work);
09383498 2923
401a8d04
TH
2924/**
2925 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2926 * @dwork: the delayed work cancel
2927 *
2928 * This is cancel_work_sync() for delayed works.
2929 *
2930 * RETURNS:
2931 * %true if @dwork was pending, %false otherwise.
2932 */
2933bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2934{
36e227d2 2935 return __cancel_work_timer(&dwork->work, true);
6e84d644 2936}
f5a421a4 2937EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2938
0fcb78c2 2939/**
c1a220e7
ZR
2940 * schedule_work_on - put work task on a specific cpu
2941 * @cpu: cpu to put the work task on
2942 * @work: job to be done
2943 *
2944 * This puts a job on a specific cpu
2945 */
d4283e93 2946bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2947{
d320c038 2948 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2949}
2950EXPORT_SYMBOL(schedule_work_on);
2951
0fcb78c2 2952/**
0fcb78c2
REB
2953 * schedule_work - put work task in global workqueue
2954 * @work: job to be done
0fcb78c2 2955 *
d4283e93
TH
2956 * Returns %false if @work was already on the kernel-global workqueue and
2957 * %true otherwise.
5b0f437d
BVA
2958 *
2959 * This puts a job in the kernel-global workqueue if it was not already
2960 * queued and leaves it in the same position on the kernel-global
2961 * workqueue otherwise.
0fcb78c2 2962 */
d4283e93 2963bool schedule_work(struct work_struct *work)
1da177e4 2964{
d320c038 2965 return queue_work(system_wq, work);
1da177e4 2966}
ae90dd5d 2967EXPORT_SYMBOL(schedule_work);
1da177e4 2968
0fcb78c2
REB
2969/**
2970 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2971 * @cpu: cpu to use
52bad64d 2972 * @dwork: job to be done
0fcb78c2
REB
2973 * @delay: number of jiffies to wait
2974 *
2975 * After waiting for a given time this puts a job in the kernel-global
2976 * workqueue on the specified CPU.
2977 */
d4283e93
TH
2978bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2979 unsigned long delay)
1da177e4 2980{
d320c038 2981 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2982}
ae90dd5d 2983EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2984
0fcb78c2
REB
2985/**
2986 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2987 * @dwork: job to be done
2988 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2989 *
2990 * After waiting for a given time this puts a job in the kernel-global
2991 * workqueue.
2992 */
d4283e93 2993bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2994{
d320c038 2995 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2996}
ae90dd5d 2997EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2998
b6136773 2999/**
31ddd871 3000 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3001 * @func: the function to call
b6136773 3002 *
31ddd871
TH
3003 * schedule_on_each_cpu() executes @func on each online CPU using the
3004 * system workqueue and blocks until all CPUs have completed.
b6136773 3005 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3006 *
3007 * RETURNS:
3008 * 0 on success, -errno on failure.
b6136773 3009 */
65f27f38 3010int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3011{
3012 int cpu;
38f51568 3013 struct work_struct __percpu *works;
15316ba8 3014
b6136773
AM
3015 works = alloc_percpu(struct work_struct);
3016 if (!works)
15316ba8 3017 return -ENOMEM;
b6136773 3018
93981800
TH
3019 get_online_cpus();
3020
15316ba8 3021 for_each_online_cpu(cpu) {
9bfb1839
IM
3022 struct work_struct *work = per_cpu_ptr(works, cpu);
3023
3024 INIT_WORK(work, func);
b71ab8c2 3025 schedule_work_on(cpu, work);
65a64464 3026 }
93981800
TH
3027
3028 for_each_online_cpu(cpu)
3029 flush_work(per_cpu_ptr(works, cpu));
3030
95402b38 3031 put_online_cpus();
b6136773 3032 free_percpu(works);
15316ba8
CL
3033 return 0;
3034}
3035
eef6a7d5
AS
3036/**
3037 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3038 *
3039 * Forces execution of the kernel-global workqueue and blocks until its
3040 * completion.
3041 *
3042 * Think twice before calling this function! It's very easy to get into
3043 * trouble if you don't take great care. Either of the following situations
3044 * will lead to deadlock:
3045 *
3046 * One of the work items currently on the workqueue needs to acquire
3047 * a lock held by your code or its caller.
3048 *
3049 * Your code is running in the context of a work routine.
3050 *
3051 * They will be detected by lockdep when they occur, but the first might not
3052 * occur very often. It depends on what work items are on the workqueue and
3053 * what locks they need, which you have no control over.
3054 *
3055 * In most situations flushing the entire workqueue is overkill; you merely
3056 * need to know that a particular work item isn't queued and isn't running.
3057 * In such cases you should use cancel_delayed_work_sync() or
3058 * cancel_work_sync() instead.
3059 */
1da177e4
LT
3060void flush_scheduled_work(void)
3061{
d320c038 3062 flush_workqueue(system_wq);
1da177e4 3063}
ae90dd5d 3064EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3065
1fa44eca
JB
3066/**
3067 * execute_in_process_context - reliably execute the routine with user context
3068 * @fn: the function to execute
1fa44eca
JB
3069 * @ew: guaranteed storage for the execute work structure (must
3070 * be available when the work executes)
3071 *
3072 * Executes the function immediately if process context is available,
3073 * otherwise schedules the function for delayed execution.
3074 *
3075 * Returns: 0 - function was executed
3076 * 1 - function was scheduled for execution
3077 */
65f27f38 3078int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3079{
3080 if (!in_interrupt()) {
65f27f38 3081 fn(&ew->work);
1fa44eca
JB
3082 return 0;
3083 }
3084
65f27f38 3085 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3086 schedule_work(&ew->work);
3087
3088 return 1;
3089}
3090EXPORT_SYMBOL_GPL(execute_in_process_context);
3091
1da177e4
LT
3092int keventd_up(void)
3093{
d320c038 3094 return system_wq != NULL;
1da177e4
LT
3095}
3096
112202d9 3097static int alloc_pwqs(struct workqueue_struct *wq)
0f900049 3098{
65a64464 3099 /*
112202d9 3100 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
0f900049
TH
3101 * Make sure that the alignment isn't lower than that of
3102 * unsigned long long.
65a64464 3103 */
112202d9 3104 const size_t size = sizeof(struct pool_workqueue);
0f900049
TH
3105 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3106 __alignof__(unsigned long long));
65a64464 3107
e06ffa1e 3108 if (!(wq->flags & WQ_UNBOUND))
112202d9 3109 wq->pool_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3110 else {
f3421797
TH
3111 void *ptr;
3112
3113 /*
112202d9 3114 * Allocate enough room to align pwq and put an extra
f3421797
TH
3115 * pointer at the end pointing back to the originally
3116 * allocated pointer which will be used for free.
3117 */
3118 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3119 if (ptr) {
112202d9
TH
3120 wq->pool_wq.single = PTR_ALIGN(ptr, align);
3121 *(void **)(wq->pool_wq.single + 1) = ptr;
f3421797 3122 }
bdbc5dd7 3123 }
f3421797 3124
0415b00d 3125 /* just in case, make sure it's actually aligned */
112202d9
TH
3126 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3127 return wq->pool_wq.v ? 0 : -ENOMEM;
0f900049
TH
3128}
3129
112202d9 3130static void free_pwqs(struct workqueue_struct *wq)
0f900049 3131{
e06ffa1e 3132 if (!(wq->flags & WQ_UNBOUND))
112202d9
TH
3133 free_percpu(wq->pool_wq.pcpu);
3134 else if (wq->pool_wq.single) {
3135 /* the pointer to free is stored right after the pwq */
3136 kfree(*(void **)(wq->pool_wq.single + 1));
f3421797 3137 }
0f900049
TH
3138}
3139
f3421797
TH
3140static int wq_clamp_max_active(int max_active, unsigned int flags,
3141 const char *name)
b71ab8c2 3142{
f3421797
TH
3143 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3144
3145 if (max_active < 1 || max_active > lim)
044c782c
VI
3146 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3147 max_active, name, 1, lim);
b71ab8c2 3148
f3421797 3149 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3150}
3151
b196be89 3152struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3153 unsigned int flags,
3154 int max_active,
3155 struct lock_class_key *key,
b196be89 3156 const char *lock_name, ...)
1da177e4 3157{
b196be89 3158 va_list args, args1;
1da177e4 3159 struct workqueue_struct *wq;
c34056a3 3160 unsigned int cpu;
b196be89
TH
3161 size_t namelen;
3162
3163 /* determine namelen, allocate wq and format name */
3164 va_start(args, lock_name);
3165 va_copy(args1, args);
3166 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3167
3168 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3169 if (!wq)
3170 goto err;
3171
3172 vsnprintf(wq->name, namelen, fmt, args1);
3173 va_end(args);
3174 va_end(args1);
1da177e4 3175
6370a6ad
TH
3176 /*
3177 * Workqueues which may be used during memory reclaim should
3178 * have a rescuer to guarantee forward progress.
3179 */
3180 if (flags & WQ_MEM_RECLAIM)
3181 flags |= WQ_RESCUER;
3182
d320c038 3183 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3184 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3185
b196be89 3186 /* init wq */
97e37d7b 3187 wq->flags = flags;
a0a1a5fd 3188 wq->saved_max_active = max_active;
73f53c4a 3189 mutex_init(&wq->flush_mutex);
112202d9 3190 atomic_set(&wq->nr_pwqs_to_flush, 0);
73f53c4a
TH
3191 INIT_LIST_HEAD(&wq->flusher_queue);
3192 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3193
eb13ba87 3194 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3195 INIT_LIST_HEAD(&wq->list);
3af24433 3196
112202d9 3197 if (alloc_pwqs(wq) < 0)
bdbc5dd7
TH
3198 goto err;
3199
112202d9
TH
3200 for_each_pwq_cpu(cpu, wq) {
3201 struct pool_workqueue *pwq = get_pwq(cpu, wq);
1537663f 3202
112202d9
TH
3203 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3204 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3205 pwq->wq = wq;
3206 pwq->flush_color = -1;
3207 pwq->max_active = max_active;
3208 INIT_LIST_HEAD(&pwq->delayed_works);
e22bee78 3209 }
1537663f 3210
e22bee78
TH
3211 if (flags & WQ_RESCUER) {
3212 struct worker *rescuer;
3213
f2e005aa 3214 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3215 goto err;
3216
3217 wq->rescuer = rescuer = alloc_worker();
3218 if (!rescuer)
3219 goto err;
3220
111c225a
TH
3221 rescuer->rescue_wq = wq;
3222 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3223 wq->name);
e22bee78
TH
3224 if (IS_ERR(rescuer->task))
3225 goto err;
3226
e22bee78
TH
3227 rescuer->task->flags |= PF_THREAD_BOUND;
3228 wake_up_process(rescuer->task);
3af24433
ON
3229 }
3230
a0a1a5fd
TH
3231 /*
3232 * workqueue_lock protects global freeze state and workqueues
3233 * list. Grab it, set max_active accordingly and add the new
3234 * workqueue to workqueues list.
3235 */
e98d5b16 3236 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3237
58a69cb4 3238 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
112202d9
TH
3239 for_each_pwq_cpu(cpu, wq)
3240 get_pwq(cpu, wq)->max_active = 0;
a0a1a5fd 3241
1537663f 3242 list_add(&wq->list, &workqueues);
a0a1a5fd 3243
e98d5b16 3244 spin_unlock_irq(&workqueue_lock);
1537663f 3245
3af24433 3246 return wq;
4690c4ab
TH
3247err:
3248 if (wq) {
112202d9 3249 free_pwqs(wq);
f2e005aa 3250 free_mayday_mask(wq->mayday_mask);
e22bee78 3251 kfree(wq->rescuer);
4690c4ab
TH
3252 kfree(wq);
3253 }
3254 return NULL;
3af24433 3255}
d320c038 3256EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3257
3af24433
ON
3258/**
3259 * destroy_workqueue - safely terminate a workqueue
3260 * @wq: target workqueue
3261 *
3262 * Safely destroy a workqueue. All work currently pending will be done first.
3263 */
3264void destroy_workqueue(struct workqueue_struct *wq)
3265{
c8e55f36 3266 unsigned int cpu;
3af24433 3267
9c5a2ba7
TH
3268 /* drain it before proceeding with destruction */
3269 drain_workqueue(wq);
c8efcc25 3270
6183c009
TH
3271 /* sanity checks */
3272 for_each_pwq_cpu(cpu, wq) {
3273 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3274 int i;
3275
3276 for (i = 0; i < WORK_NR_COLORS; i++)
3277 if (WARN_ON(pwq->nr_in_flight[i]))
3278 return;
3279 if (WARN_ON(pwq->nr_active) ||
3280 WARN_ON(!list_empty(&pwq->delayed_works)))
3281 return;
3282 }
3283
a0a1a5fd
TH
3284 /*
3285 * wq list is used to freeze wq, remove from list after
3286 * flushing is complete in case freeze races us.
3287 */
e98d5b16 3288 spin_lock_irq(&workqueue_lock);
b1f4ec17 3289 list_del(&wq->list);
e98d5b16 3290 spin_unlock_irq(&workqueue_lock);
3af24433 3291
e22bee78
TH
3292 if (wq->flags & WQ_RESCUER) {
3293 kthread_stop(wq->rescuer->task);
f2e005aa 3294 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3295 kfree(wq->rescuer);
e22bee78
TH
3296 }
3297
112202d9 3298 free_pwqs(wq);
3af24433
ON
3299 kfree(wq);
3300}
3301EXPORT_SYMBOL_GPL(destroy_workqueue);
3302
9f4bd4cd 3303/**
112202d9
TH
3304 * pwq_set_max_active - adjust max_active of a pwq
3305 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3306 * @max_active: new max_active value.
3307 *
112202d9 3308 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3309 * increased.
3310 *
3311 * CONTEXT:
d565ed63 3312 * spin_lock_irq(pool->lock).
9f4bd4cd 3313 */
112202d9 3314static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3315{
112202d9 3316 pwq->max_active = max_active;
9f4bd4cd 3317
112202d9
TH
3318 while (!list_empty(&pwq->delayed_works) &&
3319 pwq->nr_active < pwq->max_active)
3320 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3321}
3322
dcd989cb
TH
3323/**
3324 * workqueue_set_max_active - adjust max_active of a workqueue
3325 * @wq: target workqueue
3326 * @max_active: new max_active value.
3327 *
3328 * Set max_active of @wq to @max_active.
3329 *
3330 * CONTEXT:
3331 * Don't call from IRQ context.
3332 */
3333void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3334{
3335 unsigned int cpu;
3336
f3421797 3337 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3338
e98d5b16 3339 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3340
3341 wq->saved_max_active = max_active;
3342
112202d9
TH
3343 for_each_pwq_cpu(cpu, wq) {
3344 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3345 struct worker_pool *pool = pwq->pool;
dcd989cb 3346
e98d5b16 3347 spin_lock(&pool->lock);
dcd989cb 3348
58a69cb4 3349 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3350 !(pool->flags & POOL_FREEZING))
112202d9 3351 pwq_set_max_active(pwq, max_active);
9bfb1839 3352
e98d5b16 3353 spin_unlock(&pool->lock);
65a64464 3354 }
93981800 3355
e98d5b16 3356 spin_unlock_irq(&workqueue_lock);
15316ba8 3357}
dcd989cb 3358EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3359
eef6a7d5 3360/**
dcd989cb
TH
3361 * workqueue_congested - test whether a workqueue is congested
3362 * @cpu: CPU in question
3363 * @wq: target workqueue
eef6a7d5 3364 *
dcd989cb
TH
3365 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3366 * no synchronization around this function and the test result is
3367 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3368 *
dcd989cb
TH
3369 * RETURNS:
3370 * %true if congested, %false otherwise.
eef6a7d5 3371 */
dcd989cb 3372bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3373{
112202d9 3374 struct pool_workqueue *pwq = get_pwq(cpu, wq);
dcd989cb 3375
112202d9 3376 return !list_empty(&pwq->delayed_works);
1da177e4 3377}
dcd989cb 3378EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3379
dcd989cb
TH
3380/**
3381 * work_busy - test whether a work is currently pending or running
3382 * @work: the work to be tested
3383 *
3384 * Test whether @work is currently pending or running. There is no
3385 * synchronization around this function and the test result is
3386 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3387 *
3388 * RETURNS:
3389 * OR'd bitmask of WORK_BUSY_* bits.
3390 */
3391unsigned int work_busy(struct work_struct *work)
1da177e4 3392{
c9e7cf27 3393 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3394 unsigned long flags;
3395 unsigned int ret = 0;
1da177e4 3396
dcd989cb
TH
3397 if (work_pending(work))
3398 ret |= WORK_BUSY_PENDING;
1da177e4 3399
038366c5
LJ
3400 if (pool) {
3401 spin_lock_irqsave(&pool->lock, flags);
3402 if (find_worker_executing_work(pool, work))
3403 ret |= WORK_BUSY_RUNNING;
3404 spin_unlock_irqrestore(&pool->lock, flags);
3405 }
1da177e4 3406
dcd989cb 3407 return ret;
1da177e4 3408}
dcd989cb 3409EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3410
db7bccf4
TH
3411/*
3412 * CPU hotplug.
3413 *
e22bee78 3414 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3415 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3416 * pool which make migrating pending and scheduled works very
e22bee78 3417 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3418 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3419 * blocked draining impractical.
3420 *
24647570 3421 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3422 * running as an unbound one and allowing it to be reattached later if the
3423 * cpu comes back online.
db7bccf4 3424 */
1da177e4 3425
706026c2 3426static void wq_unbind_fn(struct work_struct *work)
3af24433 3427{
38db41d9 3428 int cpu = smp_processor_id();
4ce62e9e 3429 struct worker_pool *pool;
db7bccf4 3430 struct worker *worker;
db7bccf4 3431 int i;
3af24433 3432
38db41d9 3433 for_each_std_worker_pool(pool, cpu) {
6183c009 3434 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3435
94cf58bb
TH
3436 mutex_lock(&pool->assoc_mutex);
3437 spin_lock_irq(&pool->lock);
3af24433 3438
94cf58bb
TH
3439 /*
3440 * We've claimed all manager positions. Make all workers
3441 * unbound and set DISASSOCIATED. Before this, all workers
3442 * except for the ones which are still executing works from
3443 * before the last CPU down must be on the cpu. After
3444 * this, they may become diasporas.
3445 */
4ce62e9e 3446 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3447 worker->flags |= WORKER_UNBOUND;
3af24433 3448
b67bfe0d 3449 for_each_busy_worker(worker, i, pool)
c9e7cf27 3450 worker->flags |= WORKER_UNBOUND;
06ba38a9 3451
24647570 3452 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3453
94cf58bb
TH
3454 spin_unlock_irq(&pool->lock);
3455 mutex_unlock(&pool->assoc_mutex);
3456 }
628c78e7 3457
e22bee78 3458 /*
403c821d 3459 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3460 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3461 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3462 */
e22bee78 3463 schedule();
06ba38a9 3464
e22bee78 3465 /*
628c78e7
TH
3466 * Sched callbacks are disabled now. Zap nr_running. After this,
3467 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3468 * are always true as long as the worklist is not empty. Pools on
3469 * @cpu now behave as unbound (in terms of concurrency management)
3470 * pools which are served by workers tied to the CPU.
628c78e7
TH
3471 *
3472 * On return from this function, the current worker would trigger
3473 * unbound chain execution of pending work items if other workers
3474 * didn't already.
e22bee78 3475 */
38db41d9 3476 for_each_std_worker_pool(pool, cpu)
e19e397a 3477 atomic_set(&pool->nr_running, 0);
3af24433 3478}
3af24433 3479
8db25e78
TH
3480/*
3481 * Workqueues should be brought up before normal priority CPU notifiers.
3482 * This will be registered high priority CPU notifier.
3483 */
9fdf9b73 3484static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3485 unsigned long action,
3486 void *hcpu)
3af24433
ON
3487{
3488 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3489 struct worker_pool *pool;
3ce63377 3490
8db25e78 3491 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3492 case CPU_UP_PREPARE:
38db41d9 3493 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3494 struct worker *worker;
3495
3496 if (pool->nr_workers)
3497 continue;
3498
3499 worker = create_worker(pool);
3500 if (!worker)
3501 return NOTIFY_BAD;
3502
d565ed63 3503 spin_lock_irq(&pool->lock);
3ce63377 3504 start_worker(worker);
d565ed63 3505 spin_unlock_irq(&pool->lock);
3af24433 3506 }
8db25e78 3507 break;
3af24433 3508
db7bccf4
TH
3509 case CPU_DOWN_FAILED:
3510 case CPU_ONLINE:
38db41d9 3511 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3512 mutex_lock(&pool->assoc_mutex);
3513 spin_lock_irq(&pool->lock);
3514
24647570 3515 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3516 rebind_workers(pool);
3517
3518 spin_unlock_irq(&pool->lock);
3519 mutex_unlock(&pool->assoc_mutex);
3520 }
db7bccf4 3521 break;
00dfcaf7 3522 }
65758202
TH
3523 return NOTIFY_OK;
3524}
3525
3526/*
3527 * Workqueues should be brought down after normal priority CPU notifiers.
3528 * This will be registered as low priority CPU notifier.
3529 */
9fdf9b73 3530static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3531 unsigned long action,
3532 void *hcpu)
3533{
8db25e78
TH
3534 unsigned int cpu = (unsigned long)hcpu;
3535 struct work_struct unbind_work;
3536
65758202
TH
3537 switch (action & ~CPU_TASKS_FROZEN) {
3538 case CPU_DOWN_PREPARE:
8db25e78 3539 /* unbinding should happen on the local CPU */
706026c2 3540 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3541 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3542 flush_work(&unbind_work);
3543 break;
65758202
TH
3544 }
3545 return NOTIFY_OK;
3546}
3547
2d3854a3 3548#ifdef CONFIG_SMP
8ccad40d 3549
2d3854a3 3550struct work_for_cpu {
ed48ece2 3551 struct work_struct work;
2d3854a3
RR
3552 long (*fn)(void *);
3553 void *arg;
3554 long ret;
3555};
3556
ed48ece2 3557static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3558{
ed48ece2
TH
3559 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3560
2d3854a3
RR
3561 wfc->ret = wfc->fn(wfc->arg);
3562}
3563
3564/**
3565 * work_on_cpu - run a function in user context on a particular cpu
3566 * @cpu: the cpu to run on
3567 * @fn: the function to run
3568 * @arg: the function arg
3569 *
31ad9081
RR
3570 * This will return the value @fn returns.
3571 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3572 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3573 */
3574long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3575{
ed48ece2 3576 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3577
ed48ece2
TH
3578 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3579 schedule_work_on(cpu, &wfc.work);
3580 flush_work(&wfc.work);
2d3854a3
RR
3581 return wfc.ret;
3582}
3583EXPORT_SYMBOL_GPL(work_on_cpu);
3584#endif /* CONFIG_SMP */
3585
a0a1a5fd
TH
3586#ifdef CONFIG_FREEZER
3587
3588/**
3589 * freeze_workqueues_begin - begin freezing workqueues
3590 *
58a69cb4
TH
3591 * Start freezing workqueues. After this function returns, all freezable
3592 * workqueues will queue new works to their frozen_works list instead of
706026c2 3593 * pool->worklist.
a0a1a5fd
TH
3594 *
3595 * CONTEXT:
d565ed63 3596 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3597 */
3598void freeze_workqueues_begin(void)
3599{
a0a1a5fd
TH
3600 unsigned int cpu;
3601
e98d5b16 3602 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3603
6183c009 3604 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
3605 workqueue_freezing = true;
3606
706026c2 3607 for_each_wq_cpu(cpu) {
35b6bb63 3608 struct worker_pool *pool;
bdbc5dd7 3609 struct workqueue_struct *wq;
8b03ae3c 3610
38db41d9 3611 for_each_std_worker_pool(pool, cpu) {
e98d5b16 3612 spin_lock(&pool->lock);
d565ed63 3613
35b6bb63
TH
3614 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3615 pool->flags |= POOL_FREEZING;
db7bccf4 3616
a1056305 3617 list_for_each_entry(wq, &workqueues, list) {
112202d9 3618 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3619
112202d9 3620 if (pwq && pwq->pool == pool &&
a1056305 3621 (wq->flags & WQ_FREEZABLE))
112202d9 3622 pwq->max_active = 0;
a1056305 3623 }
8b03ae3c 3624
e98d5b16 3625 spin_unlock(&pool->lock);
a1056305 3626 }
a0a1a5fd
TH
3627 }
3628
e98d5b16 3629 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3630}
3631
3632/**
58a69cb4 3633 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3634 *
3635 * Check whether freezing is complete. This function must be called
3636 * between freeze_workqueues_begin() and thaw_workqueues().
3637 *
3638 * CONTEXT:
3639 * Grabs and releases workqueue_lock.
3640 *
3641 * RETURNS:
58a69cb4
TH
3642 * %true if some freezable workqueues are still busy. %false if freezing
3643 * is complete.
a0a1a5fd
TH
3644 */
3645bool freeze_workqueues_busy(void)
3646{
a0a1a5fd
TH
3647 unsigned int cpu;
3648 bool busy = false;
3649
e98d5b16 3650 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3651
6183c009 3652 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 3653
706026c2 3654 for_each_wq_cpu(cpu) {
bdbc5dd7 3655 struct workqueue_struct *wq;
a0a1a5fd
TH
3656 /*
3657 * nr_active is monotonically decreasing. It's safe
3658 * to peek without lock.
3659 */
3660 list_for_each_entry(wq, &workqueues, list) {
112202d9 3661 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3662
112202d9 3663 if (!pwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3664 continue;
3665
6183c009 3666 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 3667 if (pwq->nr_active) {
a0a1a5fd
TH
3668 busy = true;
3669 goto out_unlock;
3670 }
3671 }
3672 }
3673out_unlock:
e98d5b16 3674 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3675 return busy;
3676}
3677
3678/**
3679 * thaw_workqueues - thaw workqueues
3680 *
3681 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3682 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3683 *
3684 * CONTEXT:
d565ed63 3685 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3686 */
3687void thaw_workqueues(void)
3688{
a0a1a5fd
TH
3689 unsigned int cpu;
3690
e98d5b16 3691 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
3692
3693 if (!workqueue_freezing)
3694 goto out_unlock;
3695
706026c2 3696 for_each_wq_cpu(cpu) {
4ce62e9e 3697 struct worker_pool *pool;
bdbc5dd7 3698 struct workqueue_struct *wq;
8b03ae3c 3699
38db41d9 3700 for_each_std_worker_pool(pool, cpu) {
e98d5b16 3701 spin_lock(&pool->lock);
d565ed63 3702
35b6bb63
TH
3703 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3704 pool->flags &= ~POOL_FREEZING;
db7bccf4 3705
a1056305 3706 list_for_each_entry(wq, &workqueues, list) {
112202d9 3707 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3708
112202d9 3709 if (!pwq || pwq->pool != pool ||
a1056305
TH
3710 !(wq->flags & WQ_FREEZABLE))
3711 continue;
a0a1a5fd 3712
a1056305 3713 /* restore max_active and repopulate worklist */
112202d9 3714 pwq_set_max_active(pwq, wq->saved_max_active);
a1056305 3715 }
8b03ae3c 3716
4ce62e9e 3717 wake_up_worker(pool);
a1056305 3718
e98d5b16 3719 spin_unlock(&pool->lock);
d565ed63 3720 }
a0a1a5fd
TH
3721 }
3722
3723 workqueue_freezing = false;
3724out_unlock:
e98d5b16 3725 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3726}
3727#endif /* CONFIG_FREEZER */
3728
6ee0578b 3729static int __init init_workqueues(void)
1da177e4 3730{
c34056a3
TH
3731 unsigned int cpu;
3732
7c3eed5c
TH
3733 /* make sure we have enough bits for OFFQ pool ID */
3734 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3735 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3736
65758202 3737 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3738 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3739
706026c2
TH
3740 /* initialize CPU pools */
3741 for_each_wq_cpu(cpu) {
4ce62e9e 3742 struct worker_pool *pool;
8b03ae3c 3743
38db41d9 3744 for_each_std_worker_pool(pool, cpu) {
d565ed63 3745 spin_lock_init(&pool->lock);
ec22ca5e 3746 pool->cpu = cpu;
24647570 3747 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3748 INIT_LIST_HEAD(&pool->worklist);
3749 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3750 hash_init(pool->busy_hash);
e7577c50 3751
4ce62e9e
TH
3752 init_timer_deferrable(&pool->idle_timer);
3753 pool->idle_timer.function = idle_worker_timeout;
3754 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3755
706026c2 3756 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3757 (unsigned long)pool);
3758
b2eb83d1 3759 mutex_init(&pool->assoc_mutex);
4ce62e9e 3760 ida_init(&pool->worker_ida);
9daf9e67
TH
3761
3762 /* alloc pool ID */
3763 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3764 }
8b03ae3c
TH
3765 }
3766
e22bee78 3767 /* create the initial worker */
706026c2 3768 for_each_online_wq_cpu(cpu) {
4ce62e9e 3769 struct worker_pool *pool;
e22bee78 3770
38db41d9 3771 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3772 struct worker *worker;
3773
24647570
TH
3774 if (cpu != WORK_CPU_UNBOUND)
3775 pool->flags &= ~POOL_DISASSOCIATED;
3776
bc2ae0f5 3777 worker = create_worker(pool);
4ce62e9e 3778 BUG_ON(!worker);
d565ed63 3779 spin_lock_irq(&pool->lock);
4ce62e9e 3780 start_worker(worker);
d565ed63 3781 spin_unlock_irq(&pool->lock);
4ce62e9e 3782 }
e22bee78
TH
3783 }
3784
d320c038 3785 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3786 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3787 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3788 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3789 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3790 system_freezable_wq = alloc_workqueue("events_freezable",
3791 WQ_FREEZABLE, 0);
1aabe902 3792 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3793 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3794 return 0;
1da177e4 3795}
6ee0578b 3796early_initcall(init_workqueues);
This page took 0.848836 seconds and 5 git commands to generate.