HID: usbhid: quirk for MSI GX680R led panel
[deliverable/linux.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
1da177e4
LT
32
33#include <asm/io.h>
1da177e4 34#include <asm/dma.h>
17e5ad6c 35#include <asm/scatterlist.h>
1da177e4
LT
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4
LT
40
41#define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
0b9afede
AW
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
1da177e4
LT
53int swiotlb_force;
54
55/*
bfc5501f
KRW
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
58 * API.
59 */
ff7204a7 60static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
61
62/*
b595076a 63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
65 */
66static unsigned long io_tlb_nslabs;
67
68/*
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 */
71static unsigned long io_tlb_overflow = 32*1024;
72
ee3f6ba8 73static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
74
75/*
76 * This is a free list describing the number of free entries available from
77 * each index
78 */
79static unsigned int *io_tlb_list;
80static unsigned int io_tlb_index;
81
82/*
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
85 */
bc40ac66 86static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
87
88/*
89 * Protect the above data structures in the map and unmap calls
90 */
91static DEFINE_SPINLOCK(io_tlb_lock);
92
5740afdb
FT
93static int late_alloc;
94
1da177e4
LT
95static int __init
96setup_io_tlb_npages(char *str)
97{
98 if (isdigit(*str)) {
e8579e72 99 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 }
103 if (*str == ',')
104 ++str;
b18485e7 105 if (!strcmp(str, "force"))
1da177e4 106 swiotlb_force = 1;
b18485e7 107
1da177e4
LT
108 return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
f21ffe9f 113unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
114{
115 return io_tlb_nslabs;
116}
f21ffe9f 117EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
02ca646e 118/* Note that this doesn't work with highmem page */
70a7d3cc
JF
119static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120 volatile void *address)
e08e1f7a 121{
862d196b 122 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
123}
124
ad32e8cb 125void swiotlb_print_info(void)
2e5b2b86 126{
ad32e8cb 127 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 128 unsigned char *vstart, *vend;
2e5b2b86 129
ff7204a7 130 vstart = phys_to_virt(io_tlb_start);
c40dba06 131 vend = phys_to_virt(io_tlb_end);
2e5b2b86 132
3af684c7 133 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 134 (unsigned long long)io_tlb_start,
c40dba06 135 (unsigned long long)io_tlb_end,
ff7204a7 136 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
137}
138
abbceff7 139void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 140{
ee3f6ba8 141 void *v_overflow_buffer;
563aaf06 142 unsigned long i, bytes;
1da177e4 143
abbceff7 144 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 145
abbceff7 146 io_tlb_nslabs = nslabs;
ff7204a7
AD
147 io_tlb_start = __pa(tlb);
148 io_tlb_end = io_tlb_start + bytes;
1da177e4 149
ee3f6ba8
AD
150 /*
151 * Get the overflow emergency buffer
152 */
153 v_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
154 if (!v_overflow_buffer)
155 panic("Cannot allocate SWIOTLB overflow buffer!\n");
156
157 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
158
1da177e4
LT
159 /*
160 * Allocate and initialize the free list array. This array is used
161 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
162 * between io_tlb_start and io_tlb_end.
163 */
e79f86b2 164 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
25667d67 165 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
166 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
167 io_tlb_index = 0;
e79f86b2 168 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
1da177e4 169
ad32e8cb
FT
170 if (verbose)
171 swiotlb_print_info();
1da177e4
LT
172}
173
abbceff7
FT
174/*
175 * Statically reserve bounce buffer space and initialize bounce buffer data
176 * structures for the software IO TLB used to implement the DMA API.
177 */
74838b75 178static void __init
abbceff7
FT
179swiotlb_init_with_default_size(size_t default_size, int verbose)
180{
ff7204a7 181 unsigned char *vstart;
abbceff7
FT
182 unsigned long bytes;
183
184 if (!io_tlb_nslabs) {
185 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
186 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
187 }
188
189 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
190
191 /*
192 * Get IO TLB memory from the low pages
193 */
ff7204a7
AD
194 vstart = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
195 if (!vstart)
abbceff7
FT
196 panic("Cannot allocate SWIOTLB buffer");
197
ff7204a7 198 swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose);
abbceff7
FT
199}
200
563aaf06 201void __init
ad32e8cb 202swiotlb_init(int verbose)
1da177e4 203{
ad32e8cb 204 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
1da177e4
LT
205}
206
0b9afede
AW
207/*
208 * Systems with larger DMA zones (those that don't support ISA) can
209 * initialize the swiotlb later using the slab allocator if needed.
210 * This should be just like above, but with some error catching.
211 */
212int
563aaf06 213swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 214{
74838b75 215 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 216 unsigned char *vstart = NULL;
0b9afede 217 unsigned int order;
74838b75 218 int rc = 0;
0b9afede
AW
219
220 if (!io_tlb_nslabs) {
221 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
222 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
223 }
224
225 /*
226 * Get IO TLB memory from the low pages
227 */
563aaf06 228 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 229 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 230 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
231
232 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
233 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
234 order);
235 if (vstart)
0b9afede
AW
236 break;
237 order--;
238 }
239
ff7204a7 240 if (!vstart) {
74838b75
KRW
241 io_tlb_nslabs = req_nslabs;
242 return -ENOMEM;
243 }
563aaf06 244 if (order != get_order(bytes)) {
0b9afede
AW
245 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
246 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
247 io_tlb_nslabs = SLABS_PER_PAGE << order;
248 }
ff7204a7 249 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 250 if (rc)
ff7204a7 251 free_pages((unsigned long)vstart, order);
74838b75
KRW
252 return rc;
253}
254
255int
256swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
257{
258 unsigned long i, bytes;
ee3f6ba8 259 unsigned char *v_overflow_buffer;
74838b75
KRW
260
261 bytes = nslabs << IO_TLB_SHIFT;
262
263 io_tlb_nslabs = nslabs;
ff7204a7
AD
264 io_tlb_start = virt_to_phys(tlb);
265 io_tlb_end = io_tlb_start + bytes;
74838b75 266
ff7204a7 267 memset(tlb, 0, bytes);
0b9afede 268
ee3f6ba8
AD
269 /*
270 * Get the overflow emergency buffer
271 */
272 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
273 get_order(io_tlb_overflow));
274 if (!v_overflow_buffer)
275 goto cleanup2;
276
277 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
278
0b9afede
AW
279 /*
280 * Allocate and initialize the free list array. This array is used
281 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
282 * between io_tlb_start and io_tlb_end.
283 */
284 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
285 get_order(io_tlb_nslabs * sizeof(int)));
286 if (!io_tlb_list)
ee3f6ba8 287 goto cleanup3;
0b9afede
AW
288
289 for (i = 0; i < io_tlb_nslabs; i++)
290 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
291 io_tlb_index = 0;
292
bc40ac66
BB
293 io_tlb_orig_addr = (phys_addr_t *)
294 __get_free_pages(GFP_KERNEL,
295 get_order(io_tlb_nslabs *
296 sizeof(phys_addr_t)));
0b9afede 297 if (!io_tlb_orig_addr)
ee3f6ba8 298 goto cleanup4;
0b9afede 299
bc40ac66 300 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede 301
ad32e8cb 302 swiotlb_print_info();
0b9afede 303
5740afdb
FT
304 late_alloc = 1;
305
0b9afede
AW
306 return 0;
307
308cleanup4:
25667d67
TL
309 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
310 sizeof(int)));
0b9afede 311 io_tlb_list = NULL;
ee3f6ba8
AD
312cleanup3:
313 free_pages((unsigned long)v_overflow_buffer,
314 get_order(io_tlb_overflow));
315 io_tlb_overflow_buffer = 0;
0b9afede 316cleanup2:
c40dba06 317 io_tlb_end = 0;
ff7204a7 318 io_tlb_start = 0;
74838b75 319 io_tlb_nslabs = 0;
0b9afede
AW
320 return -ENOMEM;
321}
322
5740afdb
FT
323void __init swiotlb_free(void)
324{
ee3f6ba8 325 if (!io_tlb_orig_addr)
5740afdb
FT
326 return;
327
328 if (late_alloc) {
ee3f6ba8 329 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
330 get_order(io_tlb_overflow));
331 free_pages((unsigned long)io_tlb_orig_addr,
332 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
333 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
334 sizeof(int)));
ff7204a7 335 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
336 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
337 } else {
ee3f6ba8 338 free_bootmem_late(io_tlb_overflow_buffer,
e79f86b2 339 PAGE_ALIGN(io_tlb_overflow));
5740afdb 340 free_bootmem_late(__pa(io_tlb_orig_addr),
e79f86b2 341 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
5740afdb 342 free_bootmem_late(__pa(io_tlb_list),
e79f86b2 343 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
ff7204a7 344 free_bootmem_late(io_tlb_start,
e79f86b2 345 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 346 }
f21ffe9f 347 io_tlb_nslabs = 0;
5740afdb
FT
348}
349
02ca646e 350static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 351{
ff7204a7 352 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
353}
354
fb05a379
BB
355/*
356 * Bounce: copy the swiotlb buffer back to the original dma location
357 */
af51a9f1
AD
358static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
359 size_t size, enum dma_data_direction dir)
fb05a379 360{
af51a9f1
AD
361 unsigned long pfn = PFN_DOWN(orig_addr);
362 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
363
364 if (PageHighMem(pfn_to_page(pfn))) {
365 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 366 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
367 char *buffer;
368 unsigned int sz = 0;
369 unsigned long flags;
370
371 while (size) {
67131ad0 372 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
373
374 local_irq_save(flags);
c3eede8e 375 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 376 if (dir == DMA_TO_DEVICE)
af51a9f1 377 memcpy(vaddr, buffer + offset, sz);
ef9b1893 378 else
af51a9f1 379 memcpy(buffer + offset, vaddr, sz);
c3eede8e 380 kunmap_atomic(buffer);
ef9b1893 381 local_irq_restore(flags);
fb05a379
BB
382
383 size -= sz;
384 pfn++;
af51a9f1 385 vaddr += sz;
fb05a379 386 offset = 0;
ef9b1893 387 }
af51a9f1
AD
388 } else if (dir == DMA_TO_DEVICE) {
389 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 390 } else {
af51a9f1 391 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 392 }
1b548f66
JF
393}
394
e05ed4d1
AD
395phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
396 dma_addr_t tbl_dma_addr,
397 phys_addr_t orig_addr, size_t size,
398 enum dma_data_direction dir)
1da177e4
LT
399{
400 unsigned long flags;
e05ed4d1 401 phys_addr_t tlb_addr;
1da177e4
LT
402 unsigned int nslots, stride, index, wrap;
403 int i;
681cc5cd
FT
404 unsigned long mask;
405 unsigned long offset_slots;
406 unsigned long max_slots;
407
408 mask = dma_get_seg_boundary(hwdev);
681cc5cd 409
eb605a57
FT
410 tbl_dma_addr &= mask;
411
412 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
413
414 /*
415 * Carefully handle integer overflow which can occur when mask == ~0UL.
416 */
b15a3891
JB
417 max_slots = mask + 1
418 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
419 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
420
421 /*
422 * For mappings greater than a page, we limit the stride (and
423 * hence alignment) to a page size.
424 */
425 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
426 if (size > PAGE_SIZE)
427 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
428 else
429 stride = 1;
430
34814545 431 BUG_ON(!nslots);
1da177e4
LT
432
433 /*
434 * Find suitable number of IO TLB entries size that will fit this
435 * request and allocate a buffer from that IO TLB pool.
436 */
437 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
438 index = ALIGN(io_tlb_index, stride);
439 if (index >= io_tlb_nslabs)
440 index = 0;
441 wrap = index;
442
443 do {
a8522509
FT
444 while (iommu_is_span_boundary(index, nslots, offset_slots,
445 max_slots)) {
b15a3891
JB
446 index += stride;
447 if (index >= io_tlb_nslabs)
448 index = 0;
a7133a15
AM
449 if (index == wrap)
450 goto not_found;
451 }
452
453 /*
454 * If we find a slot that indicates we have 'nslots' number of
455 * contiguous buffers, we allocate the buffers from that slot
456 * and mark the entries as '0' indicating unavailable.
457 */
458 if (io_tlb_list[index] >= nslots) {
459 int count = 0;
460
461 for (i = index; i < (int) (index + nslots); i++)
462 io_tlb_list[i] = 0;
463 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
464 io_tlb_list[i] = ++count;
e05ed4d1 465 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 466
a7133a15
AM
467 /*
468 * Update the indices to avoid searching in the next
469 * round.
470 */
471 io_tlb_index = ((index + nslots) < io_tlb_nslabs
472 ? (index + nslots) : 0);
473
474 goto found;
475 }
476 index += stride;
477 if (index >= io_tlb_nslabs)
478 index = 0;
479 } while (index != wrap);
480
481not_found:
482 spin_unlock_irqrestore(&io_tlb_lock, flags);
e05ed4d1 483 return SWIOTLB_MAP_ERROR;
a7133a15 484found:
1da177e4
LT
485 spin_unlock_irqrestore(&io_tlb_lock, flags);
486
487 /*
488 * Save away the mapping from the original address to the DMA address.
489 * This is needed when we sync the memory. Then we sync the buffer if
490 * needed.
491 */
bc40ac66 492 for (i = 0; i < nslots; i++)
e05ed4d1 493 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
1da177e4 494 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
af51a9f1 495 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 496
e05ed4d1 497 return tlb_addr;
1da177e4 498}
d7ef1533 499EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 500
eb605a57
FT
501/*
502 * Allocates bounce buffer and returns its kernel virtual address.
503 */
504
e05ed4d1
AD
505phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
506 enum dma_data_direction dir)
eb605a57 507{
ff7204a7 508 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
eb605a57
FT
509
510 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
511}
512
1da177e4
LT
513/*
514 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
515 */
61ca08c3
AD
516void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
517 size_t size, enum dma_data_direction dir)
1da177e4
LT
518{
519 unsigned long flags;
520 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
521 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
522 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
523
524 /*
525 * First, sync the memory before unmapping the entry
526 */
af51a9f1
AD
527 if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
528 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
529
530 /*
531 * Return the buffer to the free list by setting the corresponding
af901ca1 532 * entries to indicate the number of contiguous entries available.
1da177e4
LT
533 * While returning the entries to the free list, we merge the entries
534 * with slots below and above the pool being returned.
535 */
536 spin_lock_irqsave(&io_tlb_lock, flags);
537 {
538 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
539 io_tlb_list[index + nslots] : 0);
540 /*
541 * Step 1: return the slots to the free list, merging the
542 * slots with superceeding slots
543 */
544 for (i = index + nslots - 1; i >= index; i--)
545 io_tlb_list[i] = ++count;
546 /*
547 * Step 2: merge the returned slots with the preceding slots,
548 * if available (non zero)
549 */
550 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
551 io_tlb_list[i] = ++count;
552 }
553 spin_unlock_irqrestore(&io_tlb_lock, flags);
554}
d7ef1533 555EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 556
fbfda893
AD
557void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
558 size_t size, enum dma_data_direction dir,
559 enum dma_sync_target target)
1da177e4 560{
fbfda893
AD
561 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
562 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 563
fbfda893 564 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 565
de69e0f0
JL
566 switch (target) {
567 case SYNC_FOR_CPU:
568 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 569 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 570 size, DMA_FROM_DEVICE);
34814545
ES
571 else
572 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
573 break;
574 case SYNC_FOR_DEVICE:
575 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 576 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 577 size, DMA_TO_DEVICE);
34814545
ES
578 else
579 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
580 break;
581 default:
1da177e4 582 BUG();
de69e0f0 583 }
1da177e4 584}
d7ef1533 585EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
586
587void *
588swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 589 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 590{
563aaf06 591 dma_addr_t dev_addr;
1da177e4
LT
592 void *ret;
593 int order = get_order(size);
284901a9 594 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
595
596 if (hwdev && hwdev->coherent_dma_mask)
597 dma_mask = hwdev->coherent_dma_mask;
1da177e4 598
25667d67 599 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
600 if (ret) {
601 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
602 if (dev_addr + size - 1 > dma_mask) {
603 /*
604 * The allocated memory isn't reachable by the device.
605 */
606 free_pages((unsigned long) ret, order);
607 ret = NULL;
608 }
1da177e4
LT
609 }
610 if (!ret) {
611 /*
bfc5501f
KRW
612 * We are either out of memory or the device can't DMA to
613 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 614 * will grab memory from the lowest available address range.
1da177e4 615 */
e05ed4d1
AD
616 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
617 if (paddr == SWIOTLB_MAP_ERROR)
1da177e4 618 return NULL;
1da177e4 619
e05ed4d1
AD
620 ret = phys_to_virt(paddr);
621 dev_addr = phys_to_dma(hwdev, paddr);
1da177e4 622
61ca08c3
AD
623 /* Confirm address can be DMA'd by device */
624 if (dev_addr + size - 1 > dma_mask) {
625 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
626 (unsigned long long)dma_mask,
627 (unsigned long long)dev_addr);
a2b89b59 628
61ca08c3
AD
629 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
630 swiotlb_tbl_unmap_single(hwdev, paddr,
631 size, DMA_TO_DEVICE);
632 return NULL;
633 }
1da177e4 634 }
e05ed4d1 635
1da177e4 636 *dma_handle = dev_addr;
e05ed4d1
AD
637 memset(ret, 0, size);
638
1da177e4
LT
639 return ret;
640}
874d6a95 641EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
642
643void
644swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 645 dma_addr_t dev_addr)
1da177e4 646{
862d196b 647 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 648
aa24886e 649 WARN_ON(irqs_disabled());
02ca646e
FT
650 if (!is_swiotlb_buffer(paddr))
651 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 652 else
bfc5501f 653 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
61ca08c3 654 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
1da177e4 655}
874d6a95 656EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
657
658static void
22d48269
KRW
659swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
660 int do_panic)
1da177e4
LT
661{
662 /*
663 * Ran out of IOMMU space for this operation. This is very bad.
664 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 665 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
666 * When the mapping is small enough return a static buffer to limit
667 * the damage, or panic when the transfer is too big.
668 */
563aaf06 669 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 670 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 671
c7084b35
CD
672 if (size <= io_tlb_overflow || !do_panic)
673 return;
674
675 if (dir == DMA_BIDIRECTIONAL)
676 panic("DMA: Random memory could be DMA accessed\n");
677 if (dir == DMA_FROM_DEVICE)
678 panic("DMA: Random memory could be DMA written\n");
679 if (dir == DMA_TO_DEVICE)
680 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
681}
682
683/*
684 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 685 * physical address to use is returned.
1da177e4
LT
686 *
687 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 688 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 689 */
f98eee8e
FT
690dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
691 unsigned long offset, size_t size,
692 enum dma_data_direction dir,
693 struct dma_attrs *attrs)
1da177e4 694{
e05ed4d1 695 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 696 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 697
34814545 698 BUG_ON(dir == DMA_NONE);
1da177e4 699 /*
ceb5ac32 700 * If the address happens to be in the device's DMA window,
1da177e4
LT
701 * we can safely return the device addr and not worry about bounce
702 * buffering it.
703 */
b9394647 704 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
705 return dev_addr;
706
e05ed4d1 707 /* Oh well, have to allocate and map a bounce buffer. */
f98eee8e 708 map = map_single(dev, phys, size, dir);
e05ed4d1 709 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 710 swiotlb_full(dev, size, dir, 1);
ee3f6ba8 711 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
712 }
713
e05ed4d1 714 dev_addr = phys_to_dma(dev, map);
1da177e4 715
e05ed4d1 716 /* Ensure that the address returned is DMA'ble */
fba99fa3 717 if (!dma_capable(dev, dev_addr, size)) {
61ca08c3 718 swiotlb_tbl_unmap_single(dev, map, size, dir);
ee3f6ba8 719 return phys_to_dma(dev, io_tlb_overflow_buffer);
fba99fa3 720 }
1da177e4
LT
721
722 return dev_addr;
723}
f98eee8e 724EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 725
1da177e4
LT
726/*
727 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 728 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
729 * other usages are undefined.
730 *
731 * After this call, reads by the cpu to the buffer are guaranteed to see
732 * whatever the device wrote there.
733 */
7fcebbd2 734static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
22d48269 735 size_t size, enum dma_data_direction dir)
1da177e4 736{
862d196b 737 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 738
34814545 739 BUG_ON(dir == DMA_NONE);
7fcebbd2 740
02ca646e 741 if (is_swiotlb_buffer(paddr)) {
61ca08c3 742 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
7fcebbd2
BB
743 return;
744 }
745
746 if (dir != DMA_FROM_DEVICE)
747 return;
748
02ca646e
FT
749 /*
750 * phys_to_virt doesn't work with hihgmem page but we could
751 * call dma_mark_clean() with hihgmem page here. However, we
752 * are fine since dma_mark_clean() is null on POWERPC. We can
753 * make dma_mark_clean() take a physical address if necessary.
754 */
755 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
756}
757
758void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
759 size_t size, enum dma_data_direction dir,
760 struct dma_attrs *attrs)
761{
762 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 763}
f98eee8e 764EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 765
1da177e4
LT
766/*
767 * Make physical memory consistent for a single streaming mode DMA translation
768 * after a transfer.
769 *
ceb5ac32 770 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
771 * using the cpu, yet do not wish to teardown the dma mapping, you must
772 * call this function before doing so. At the next point you give the dma
1da177e4
LT
773 * address back to the card, you must first perform a
774 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
775 */
be6b0267 776static void
8270f3f1 777swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
778 size_t size, enum dma_data_direction dir,
779 enum dma_sync_target target)
1da177e4 780{
862d196b 781 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 782
34814545 783 BUG_ON(dir == DMA_NONE);
380d6878 784
02ca646e 785 if (is_swiotlb_buffer(paddr)) {
fbfda893 786 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
787 return;
788 }
789
790 if (dir != DMA_FROM_DEVICE)
791 return;
792
02ca646e 793 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
794}
795
8270f3f1
JL
796void
797swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 798 size_t size, enum dma_data_direction dir)
8270f3f1 799{
de69e0f0 800 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 801}
874d6a95 802EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 803
1da177e4
LT
804void
805swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 806 size_t size, enum dma_data_direction dir)
1da177e4 807{
de69e0f0 808 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 809}
874d6a95 810EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
811
812/*
813 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 814 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
815 * interface. Here the scatter gather list elements are each tagged with the
816 * appropriate dma address and length. They are obtained via
817 * sg_dma_{address,length}(SG).
818 *
819 * NOTE: An implementation may be able to use a smaller number of
820 * DMA address/length pairs than there are SG table elements.
821 * (for example via virtual mapping capabilities)
822 * The routine returns the number of addr/length pairs actually
823 * used, at most nents.
824 *
ceb5ac32 825 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
826 * same here.
827 */
828int
309df0c5 829swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 830 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 831{
dbfd49fe 832 struct scatterlist *sg;
1da177e4
LT
833 int i;
834
34814545 835 BUG_ON(dir == DMA_NONE);
1da177e4 836
dbfd49fe 837 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 838 phys_addr_t paddr = sg_phys(sg);
862d196b 839 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 840
cf56e3f2 841 if (swiotlb_force ||
b9394647 842 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1
AD
843 phys_addr_t map = map_single(hwdev, sg_phys(sg),
844 sg->length, dir);
845 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
846 /* Don't panic here, we expect map_sg users
847 to do proper error handling. */
848 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
849 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
850 attrs);
dbfd49fe 851 sgl[0].dma_length = 0;
1da177e4
LT
852 return 0;
853 }
e05ed4d1 854 sg->dma_address = phys_to_dma(hwdev, map);
1da177e4
LT
855 } else
856 sg->dma_address = dev_addr;
857 sg->dma_length = sg->length;
858 }
859 return nelems;
860}
309df0c5
AK
861EXPORT_SYMBOL(swiotlb_map_sg_attrs);
862
863int
864swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 865 enum dma_data_direction dir)
309df0c5
AK
866{
867 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
868}
874d6a95 869EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
870
871/*
872 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 873 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
874 */
875void
309df0c5 876swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 877 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 878{
dbfd49fe 879 struct scatterlist *sg;
1da177e4
LT
880 int i;
881
34814545 882 BUG_ON(dir == DMA_NONE);
1da177e4 883
7fcebbd2
BB
884 for_each_sg(sgl, sg, nelems, i)
885 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
886
1da177e4 887}
309df0c5
AK
888EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
889
890void
891swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 892 enum dma_data_direction dir)
309df0c5
AK
893{
894 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
895}
874d6a95 896EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
897
898/*
899 * Make physical memory consistent for a set of streaming mode DMA translations
900 * after a transfer.
901 *
902 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
903 * and usage.
904 */
be6b0267 905static void
dbfd49fe 906swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
907 int nelems, enum dma_data_direction dir,
908 enum dma_sync_target target)
1da177e4 909{
dbfd49fe 910 struct scatterlist *sg;
1da177e4
LT
911 int i;
912
380d6878
BB
913 for_each_sg(sgl, sg, nelems, i)
914 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 915 sg->dma_length, dir, target);
1da177e4
LT
916}
917
8270f3f1
JL
918void
919swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 920 int nelems, enum dma_data_direction dir)
8270f3f1 921{
de69e0f0 922 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 923}
874d6a95 924EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 925
1da177e4
LT
926void
927swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 928 int nelems, enum dma_data_direction dir)
1da177e4 929{
de69e0f0 930 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 931}
874d6a95 932EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
933
934int
8d8bb39b 935swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 936{
ee3f6ba8 937 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 938}
874d6a95 939EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
940
941/*
17e5ad6c 942 * Return whether the given device DMA address mask can be supported
1da177e4 943 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 944 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
945 * this function.
946 */
947int
563aaf06 948swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 949{
c40dba06 950 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 951}
1da177e4 952EXPORT_SYMBOL(swiotlb_dma_supported);
This page took 0.555815 seconds and 5 git commands to generate.