merge from gcc
[deliverable/binutils-gdb.git] / libdecnumber / decNumberLocal.h
CommitLineData
f5bc1778
DJ
1/* Local definitions for the decNumber C Library.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 In addition to the permissions in the GNU General Public License,
13 the Free Software Foundation gives you unlimited permission to link
14 the compiled version of this file into combinations with other
15 programs, and to distribute those combinations without any
16 restriction coming from the use of this file. (The General Public
17 License restrictions do apply in other respects; for example, they
18 cover modification of the file, and distribution when not linked
19 into a combine executable.)
20
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
24 for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
29 02110-1301, USA. */
30
31/* ------------------------------------------------------------------ */
32/* decNumber package local type, tuning, and macro definitions */
33/* ------------------------------------------------------------------ */
3481f392 34/* This header file is included by all modules in the decNumber */
f5bc1778 35/* library, and contains local type definitions, tuning parameters, */
3481f392 36/* etc. It should not need to be used by application programs. */
f5bc1778
DJ
37/* decNumber.h or one of decDouble (etc.) must be included first. */
38/* ------------------------------------------------------------------ */
39
40#if !defined(DECNUMBERLOC)
41 #define DECNUMBERLOC
3481f392 42 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
f5bc1778
DJ
43 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
44
45 #include <stdlib.h> /* for abs */
46 #include <string.h> /* for memset, strcpy */
f5bc1778
DJ
47
48 /* Conditional code flag -- set this to match hardware platform */
3481f392
DD
49 #if !defined(DECLITEND)
50 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
f5bc1778
DJ
51 #endif
52
53 /* Conditional code flag -- set this to 1 for best performance */
3481f392 54 #if !defined(DECUSE64)
f5bc1778 55 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
3481f392 56 #endif
f5bc1778
DJ
57
58 /* Conditional check flags -- set these to 0 for best performance */
3481f392 59 #if !defined(DECCHECK)
f5bc1778 60 #define DECCHECK 0 /* 1 to enable robust checking */
3481f392
DD
61 #endif
62 #if !defined(DECALLOC)
f5bc1778 63 #define DECALLOC 0 /* 1 to enable memory accounting */
3481f392
DD
64 #endif
65 #if !defined(DECTRACE)
f5bc1778 66 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
3481f392 67 #endif
f5bc1778
DJ
68
69 /* Tuning parameter for decNumber (arbitrary precision) module */
3481f392 70 #if !defined(DECBUFFER)
f5bc1778
DJ
71 #define DECBUFFER 36 /* Size basis for local buffers. This */
72 /* should be a common maximum precision */
73 /* rounded up to a multiple of 4; must */
74 /* be zero or positive. */
3481f392 75 #endif
f5bc1778
DJ
76
77 /* ---------------------------------------------------------------- */
78 /* Definitions for all modules (general-purpose) */
79 /* ---------------------------------------------------------------- */
80
81 /* Local names for common types -- for safety, decNumber modules do */
82 /* not use int or long directly. */
83 #define Flag uint8_t
84 #define Byte int8_t
3481f392
DD
85 #define uByte uint8_t
86 #define Short int16_t
f5bc1778
DJ
87 #define uShort uint16_t
88 #define Int int32_t
89 #define uInt uint32_t
90 #define Unit decNumberUnit
91 #if DECUSE64
92 #define Long int64_t
3481f392 93 #define uLong uint64_t
f5bc1778
DJ
94 #endif
95
96 /* Development-use definitions */
97 typedef long int LI; /* for printf arguments only */
98 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
3481f392 99 /* or stdint types */
f5bc1778
DJ
100 #if DECNOINT
101 /* if these interfere with your C includes, do not set DECNOINT */
3481f392
DD
102 #define int ? /* enable to ensure that plain C 'int' */
103 #define long ?? /* .. or 'long' types are not used */
f5bc1778
DJ
104 #endif
105
106 /* Shared lookup tables */
107 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
108 extern const uInt DECPOWERS[10]; /* powers of ten table */
109 /* The following are included from decDPD.h */
3481f392
DD
110 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
111 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
f5bc1778
DJ
112 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
113 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
114 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
115 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
116 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
117
118 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
119 /* (that is, sets w to be the high-order word of the 64-bit result; */
3481f392 120 /* the low-order word is simply u*v.) */
f5bc1778 121 /* This version is derived from Knuth via Hacker's Delight; */
3481f392 122 /* it seems to optimize better than some others tried */
f5bc1778 123 #define LONGMUL32HI(w, u, v) { \
3481f392 124 uInt u0, u1, v0, v1, w0, w1, w2, t; \
f5bc1778
DJ
125 u0=u & 0xffff; u1=u>>16; \
126 v0=v & 0xffff; v1=v>>16; \
127 w0=u0*v0; \
3481f392 128 t=u1*v0 + (w0>>16); \
f5bc1778
DJ
129 w1=t & 0xffff; w2=t>>16; \
130 w1=u0*v1 + w1; \
131 (w)=u1*v1 + w2 + (w1>>16);}
132
133 /* ROUNDUP -- round an integer up to a multiple of n */
134 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
3481f392 135 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
f5bc1778
DJ
136
137 /* ROUNDDOWN -- round an integer down to a multiple of n */
138 #define ROUNDDOWN(i, n) (((i)/n)*n)
3481f392
DD
139 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
140
141 /* References to multi-byte sequences under different sizes; these */
142 /* require locally declared variables, but do not violate strict */
143 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
144 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
145 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
f5bc1778 146
3481f392
DD
147 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
148 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
149 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
150
151 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
152 /* Returns i, evaluated, for convenience; has to use uiwork because */
153 /* i may be an expression. */
154 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
155 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
f5bc1778
DJ
156
157 /* X10 and X100 -- multiply integer i by 10 or 100 */
158 /* [shifts are usually faster than multiply; could be conditional] */
159 #define X10(i) (((i)<<1)+((i)<<3))
160 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
161
162 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
163 #define MAXI(x,y) ((x)<(y)?(y):(x))
164 #define MINI(x,y) ((x)>(y)?(y):(x))
165
166 /* Useful constants */
167 #define BILLION 1000000000 /* 10**9 */
3481f392 168 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
f5bc1778
DJ
169 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
170
171
172 /* ---------------------------------------------------------------- */
173 /* Definitions for arbitary-precision modules (only valid after */
174 /* decNumber.h has been included) */
175 /* ---------------------------------------------------------------- */
176
177 /* Limits and constants */
178 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
179 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
180 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
181 #if (DECNUMMAXP != DEC_MAX_DIGITS)
182 #error Maximum digits mismatch
183 #endif
184 #if (DECNUMMAXE != DEC_MAX_EMAX)
185 #error Maximum exponent mismatch
186 #endif
187 #if (DECNUMMINE != DEC_MIN_EMIN)
188 #error Minimum exponent mismatch
189 #endif
190
3481f392 191 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
f5bc1778
DJ
192 /* digits, and D2UTABLE -- the initializer for the D2U table */
193 #if DECDPUN==1
194 #define DECDPUNMAX 9
195 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
196 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
197 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
198 48,49}
199 #elif DECDPUN==2
200 #define DECDPUNMAX 99
201 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
202 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
203 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
204 #elif DECDPUN==3
205 #define DECDPUNMAX 999
206 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
207 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
208 13,14,14,14,15,15,15,16,16,16,17}
209 #elif DECDPUN==4
210 #define DECDPUNMAX 9999
211 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
212 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
213 11,11,11,12,12,12,12,13}
214 #elif DECDPUN==5
215 #define DECDPUNMAX 99999
216 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
217 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
218 9,9,10,10,10,10}
219 #elif DECDPUN==6
220 #define DECDPUNMAX 999999
221 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
222 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
223 8,8,8,8,8,9}
224 #elif DECDPUN==7
225 #define DECDPUNMAX 9999999
226 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
227 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
228 7,7,7,7,7,7}
229 #elif DECDPUN==8
230 #define DECDPUNMAX 99999999
231 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
232 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
233 6,6,6,6,6,7}
234 #elif DECDPUN==9
235 #define DECDPUNMAX 999999999
236 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
237 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
238 5,5,6,6,6,6}
239 #elif defined(DECDPUN)
240 #error DECDPUN must be in the range 1-9
241 #endif
242
243 /* ----- Shared data (in decNumber.c) ----- */
244 /* Public lookup table used by the D2U macro (see below) */
245 #define DECMAXD2U 49
246 extern const uByte d2utable[DECMAXD2U+1];
247
248 /* ----- Macros ----- */
249 /* ISZERO -- return true if decNumber dn is a zero */
250 /* [performance-critical in some situations] */
251 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
252
253 /* D2U -- return the number of Units needed to hold d digits */
254 /* (runtime version, with table lookaside for small d) */
255 #if DECDPUN==8
256 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
257 #elif DECDPUN==4
258 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
259 #else
260 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
261 #endif
262 /* SD2U -- static D2U macro (for compile-time calculation) */
263 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
264
265 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
266 /* using D2U */
267 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
268
269 /* D2N -- return the number of decNumber structs that would be */
270 /* needed to contain that number of digits (and the initial */
271 /* decNumber struct) safely. Note that one Unit is included in the */
3481f392 272 /* initial structure. Used for allocating space that is aligned on */
f5bc1778
DJ
273 /* a decNumber struct boundary. */
274 #define D2N(d) \
275 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
276
277 /* TODIGIT -- macro to remove the leading digit from the unsigned */
278 /* integer u at column cut (counting from the right, LSD=0) and */
279 /* place it as an ASCII character into the character pointed to by */
3481f392 280 /* c. Note that cut must be <= 9, and the maximum value for u is */
f5bc1778
DJ
281 /* 2,000,000,000 (as is needed for negative exponents of */
282 /* subnormals). The unsigned integer pow is used as a temporary */
283 /* variable. */
284 #define TODIGIT(u, cut, c, pow) { \
285 *(c)='0'; \
286 pow=DECPOWERS[cut]*2; \
287 if ((u)>pow) { \
288 pow*=4; \
289 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
290 pow/=2; \
291 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
292 pow/=2; \
3481f392 293 } \
f5bc1778
DJ
294 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
295 pow/=2; \
296 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
297 }
298
299 /* ---------------------------------------------------------------- */
300 /* Definitions for fixed-precision modules (only valid after */
301 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
302 /* ---------------------------------------------------------------- */
303
304 /* bcdnum -- a structure describing a format-independent finite */
305 /* number, whose coefficient is a string of bcd8 uBytes */
306 typedef struct {
307 uByte *msd; /* -> most significant digit */
3481f392 308 uByte *lsd; /* -> least ditto */
f5bc1778 309 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
3481f392 310 Int exponent; /* Unadjusted signed exponent (q), or */
f5bc1778
DJ
311 /* DECFLOAT_NaN etc. for a special */
312 } bcdnum;
313
314 /* Test if exponent or bcdnum exponent must be a special, etc. */
315 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
316 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
317 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
318 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
319
320 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
321 /* (array) notation (the 0 word or byte contains the sign bit), */
322 /* automatically adjusting for endianness; similarly address a word */
323 /* in the next-wider format (decFloatWider, or dfw) */
324 #define DECWORDS (DECBYTES/4)
325 #define DECWWORDS (DECWBYTES/4)
326 #if DECLITEND
3481f392
DD
327 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
328 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
aed1add3 329 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
f5bc1778 330 #else
3481f392
DD
331 #define DFBYTE(df, off) ((df)->bytes[off])
332 #define DFWORD(df, off) ((df)->words[off])
aed1add3 333 #define DFWWORD(dfw, off) ((dfw)->words[off])
f5bc1778
DJ
334 #endif
335
336 /* Tests for sign or specials, directly on DECFLOATs */
337 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
338 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
339 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
340 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
341 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
342 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
343
344 /* Shared lookup tables */
345 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
346 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
347
348 /* Private generic (utility) routine */
349 #if DECCHECK || DECTRACE
350 extern void decShowNum(const bcdnum *, const char *);
351 #endif
352
353 /* Format-dependent macros and constants */
354 #if defined(DECPMAX)
355
3481f392 356 /* Useful constants */
f5bc1778
DJ
357 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
358 /* Top words for a zero */
359 #define SINGLEZERO 0x22500000
360 #define DOUBLEZERO 0x22380000
361 #define QUADZERO 0x22080000
362 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
363
364 /* Format-dependent common tests: */
365 /* DFISZERO -- test for (any) zero */
366 /* DFISCCZERO -- test for coefficient continuation being zero */
367 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
3481f392 368 /* DFISINT -- test for finite and exponent q=0 */
f5bc1778
DJ
369 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
370 /* MSD=0 or 1 */
3481f392 371 /* ZEROWORD is also defined here. */
f5bc1778
DJ
372 /* In DFISZERO the first test checks the least-significant word */
373 /* (most likely to be non-zero); the penultimate tests MSD and */
374 /* DPDs in the signword, and the final test excludes specials and */
375 /* MSD>7. DFISINT similarly has to allow for the two forms of */
376 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
377 /* code. */
378 #if DECPMAX==7
379 #define ZEROWORD SINGLEZERO
380 /* [test macros not needed except for Zero] */
381 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
382 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
383 #elif DECPMAX==16
384 #define ZEROWORD DOUBLEZERO
385 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
386 && (DFWORD(df, 0)&0x1c03ffff)==0 \
387 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
388 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
389 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
390 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
391 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
392 && (DFWORD(df, 0)&0x0003ffff)==0)
393 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
394 && (DFWORD(df, 1)&~0x49124491)==0)
395 #elif DECPMAX==34
396 #define ZEROWORD QUADZERO
397 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
398 && DFWORD(df, 2)==0 \
399 && DFWORD(df, 1)==0 \
400 && (DFWORD(df, 0)&0x1c003fff)==0 \
401 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
402 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
403 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
404 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
405 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
406 && DFWORD(df, 2)==0 \
407 && DFWORD(df, 1)==0 \
408 && (DFWORD(df, 0)&0x00003fff)==0)
409
410 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
411 && (DFWORD(df, 1)&~0x44912449)==0 \
412 && (DFWORD(df, 2)&~0x12449124)==0 \
413 && (DFWORD(df, 3)&~0x49124491)==0)
414 #endif
415
416 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
417 /* are a canonical declet [higher or lower bits are ignored]. */
418 /* declet is at offset 0 (from the right) in a uInt: */
419 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
420 /* declet is at offset k (a multiple of 2) in a uInt: */
421 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
422 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
423 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
424 /* [the top 2 bits will always be in the more-significant uInt] */
3481f392 425 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
f5bc1778
DJ
426 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
427 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
428
429 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
3481f392
DD
430 /* coefficient, starting at uByte u, is all zeros */
431 /* Test just the LSWord first, then the remainder as a sequence */
432 /* of tests in order to avoid same-level use of UBTOUI */
f5bc1778 433 #if DECPMAX==7
3481f392
DD
434 #define ISCOEFFZERO(u) ( \
435 UBTOUI((u)+DECPMAX-4)==0 \
436 && UBTOUS((u)+DECPMAX-6)==0 \
437 && *(u)==0)
f5bc1778 438 #elif DECPMAX==16
3481f392
DD
439 #define ISCOEFFZERO(u) ( \
440 UBTOUI((u)+DECPMAX-4)==0 \
441 && UBTOUI((u)+DECPMAX-8)==0 \
442 && UBTOUI((u)+DECPMAX-12)==0 \
443 && UBTOUI(u)==0)
f5bc1778 444 #elif DECPMAX==34
3481f392
DD
445 #define ISCOEFFZERO(u) ( \
446 UBTOUI((u)+DECPMAX-4)==0 \
447 && UBTOUI((u)+DECPMAX-8)==0 \
448 && UBTOUI((u)+DECPMAX-12)==0 \
449 && UBTOUI((u)+DECPMAX-16)==0 \
450 && UBTOUI((u)+DECPMAX-20)==0 \
451 && UBTOUI((u)+DECPMAX-24)==0 \
452 && UBTOUI((u)+DECPMAX-28)==0 \
453 && UBTOUI((u)+DECPMAX-32)==0 \
454 && UBTOUS(u)==0)
f5bc1778
DJ
455 #endif
456
457 /* Macros and masks for the exponent continuation field and MSD */
458 /* Get the exponent continuation from a decFloat *df as an Int */
459 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
460 /* Ditto, from the next-wider format */
461 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
462 /* Get the biased exponent similarly */
463 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
464 /* Get the unbiased exponent similarly */
465 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
466 /* Get the MSD similarly (as uInt) */
467 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
468
469 /* Compile-time computes of the exponent continuation field masks */
470 /* full exponent continuation field: */
471 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
472 /* same, not including its first digit (the qNaN/sNaN selector): */
473 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
474
475 /* Macros to decode the coefficient in a finite decFloat *df into */
3481f392 476 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
f5bc1778 477
3481f392
DD
478 /* In-line sequence to convert least significant 10 bits of uInt */
479 /* dpd to three BCD8 digits starting at uByte u. Note that an */
480 /* extra byte is written to the right of the three digits because */
481 /* four bytes are moved at a time for speed; the alternative */
482 /* macro moves exactly three bytes (usually slower). */
483 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
484 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
f5bc1778
DJ
485
486 /* Decode the declets. After extracting each one, it is decoded */
487 /* to BCD8 using a table lookup (also used for variable-length */
3481f392
DD
488 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
489 /* length which is not used, here). Fixed-length 4-byte moves */
f5bc1778
DJ
490 /* are fast, however, almost everywhere, and so are used except */
491 /* for the final three bytes (to avoid overrun). The code below */
492 /* is 36 instructions for Doubles and about 70 for Quads, even */
3481f392 493 /* on IA32. */
f5bc1778
DJ
494
495 /* Two macros are defined for each format: */
496 /* GETCOEFF extracts the coefficient of the current format */
497 /* GETWCOEFF extracts the coefficient of the next-wider format. */
498 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
499
500 #if DECPMAX==7
3481f392 501 #define GETCOEFF(df, bcd) { \
f5bc1778
DJ
502 uInt sourhi=DFWORD(df, 0); \
503 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
504 dpd2bcd8(bcd+1, sourhi>>10); \
505 dpd2bcd83(bcd+4, sourhi);}
506 #define GETWCOEFF(df, bcd) { \
507 uInt sourhi=DFWWORD(df, 0); \
508 uInt sourlo=DFWWORD(df, 1); \
509 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
510 dpd2bcd8(bcd+1, sourhi>>8); \
511 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
512 dpd2bcd8(bcd+7, sourlo>>20); \
513 dpd2bcd8(bcd+10, sourlo>>10); \
514 dpd2bcd83(bcd+13, sourlo);}
515
516 #elif DECPMAX==16
3481f392 517 #define GETCOEFF(df, bcd) { \
f5bc1778
DJ
518 uInt sourhi=DFWORD(df, 0); \
519 uInt sourlo=DFWORD(df, 1); \
520 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
521 dpd2bcd8(bcd+1, sourhi>>8); \
522 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
523 dpd2bcd8(bcd+7, sourlo>>20); \
524 dpd2bcd8(bcd+10, sourlo>>10); \
525 dpd2bcd83(bcd+13, sourlo);}
526 #define GETWCOEFF(df, bcd) { \
527 uInt sourhi=DFWWORD(df, 0); \
528 uInt sourmh=DFWWORD(df, 1); \
529 uInt sourml=DFWWORD(df, 2); \
530 uInt sourlo=DFWWORD(df, 3); \
531 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
532 dpd2bcd8(bcd+1, sourhi>>4); \
533 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
534 dpd2bcd8(bcd+7, sourmh>>16); \
535 dpd2bcd8(bcd+10, sourmh>>6); \
536 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
537 dpd2bcd8(bcd+16, sourml>>18); \
538 dpd2bcd8(bcd+19, sourml>>8); \
539 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
540 dpd2bcd8(bcd+25, sourlo>>20); \
541 dpd2bcd8(bcd+28, sourlo>>10); \
542 dpd2bcd83(bcd+31, sourlo);}
543
544 #elif DECPMAX==34
3481f392 545 #define GETCOEFF(df, bcd) { \
f5bc1778
DJ
546 uInt sourhi=DFWORD(df, 0); \
547 uInt sourmh=DFWORD(df, 1); \
548 uInt sourml=DFWORD(df, 2); \
549 uInt sourlo=DFWORD(df, 3); \
550 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
551 dpd2bcd8(bcd+1, sourhi>>4); \
552 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
553 dpd2bcd8(bcd+7, sourmh>>16); \
554 dpd2bcd8(bcd+10, sourmh>>6); \
555 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
556 dpd2bcd8(bcd+16, sourml>>18); \
557 dpd2bcd8(bcd+19, sourml>>8); \
558 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
559 dpd2bcd8(bcd+25, sourlo>>20); \
560 dpd2bcd8(bcd+28, sourlo>>10); \
561 dpd2bcd83(bcd+31, sourlo);}
562
3481f392 563 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
f5bc1778
DJ
564 #endif
565
566 /* Macros to decode the coefficient in a finite decFloat *df into */
567 /* a base-billion uInt array, with the least-significant */
3481f392 568 /* 0-999999999 'digit' at offset 0. */
f5bc1778
DJ
569
570 /* Decode the declets. After extracting each one, it is decoded */
571 /* to binary using a table lookup. Three tables are used; one */
572 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
573 /* and 1000000 to avoid multiplication during decode. These */
574 /* tables can also be used for multiplying up the MSD as the DPD */
575 /* code for 0 through 9 is the identity. */
576 #define DPD2BIN0 DPD2BIN /* for prettier code */
577
578 #if DECPMAX==7
579 #define GETCOEFFBILL(df, buf) { \
580 uInt sourhi=DFWORD(df, 0); \
581 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
582 +DPD2BINK[(sourhi>>10)&0x3ff] \
583 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
584
585 #elif DECPMAX==16
586 #define GETCOEFFBILL(df, buf) { \
587 uInt sourhi, sourlo; \
588 sourlo=DFWORD(df, 1); \
589 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
590 +DPD2BINK[(sourlo>>10)&0x3ff] \
591 +DPD2BINM[(sourlo>>20)&0x3ff]; \
592 sourhi=DFWORD(df, 0); \
593 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
594 +DPD2BINK[(sourhi>>8)&0x3ff] \
595 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
596
597 #elif DECPMAX==34
598 #define GETCOEFFBILL(df, buf) { \
599 uInt sourhi, sourmh, sourml, sourlo; \
600 sourlo=DFWORD(df, 3); \
601 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
602 +DPD2BINK[(sourlo>>10)&0x3ff] \
603 +DPD2BINM[(sourlo>>20)&0x3ff]; \
604 sourml=DFWORD(df, 2); \
605 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
606 +DPD2BINK[(sourml>>8)&0x3ff] \
607 +DPD2BINM[(sourml>>18)&0x3ff]; \
608 sourmh=DFWORD(df, 1); \
609 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
610 +DPD2BINK[(sourmh>>6)&0x3ff] \
611 +DPD2BINM[(sourmh>>16)&0x3ff]; \
612 sourhi=DFWORD(df, 0); \
613 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
614 +DPD2BINK[(sourhi>>4)&0x3ff] \
615 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
616
617 #endif
618
619 /* Macros to decode the coefficient in a finite decFloat *df into */
3481f392
DD
620 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
621 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
f5bc1778
DJ
622
623 /* Decode the declets. After extracting each one, it is decoded */
624 /* to binary using a table lookup. */
625 #if DECPMAX==7
626 #define GETCOEFFTHOU(df, buf) { \
627 uInt sourhi=DFWORD(df, 0); \
628 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
629 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
630 (buf)[2]=DECCOMBMSD[sourhi>>26];}
631
632 #elif DECPMAX==16
633 #define GETCOEFFTHOU(df, buf) { \
634 uInt sourhi, sourlo; \
635 sourlo=DFWORD(df, 1); \
636 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
637 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
638 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
639 sourhi=DFWORD(df, 0); \
640 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
641 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
642 (buf)[5]=DECCOMBMSD[sourhi>>26];}
643
644 #elif DECPMAX==34
645 #define GETCOEFFTHOU(df, buf) { \
646 uInt sourhi, sourmh, sourml, sourlo; \
647 sourlo=DFWORD(df, 3); \
648 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
649 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
650 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
651 sourml=DFWORD(df, 2); \
652 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
653 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
654 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
655 sourmh=DFWORD(df, 1); \
656 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
657 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
658 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
659 sourhi=DFWORD(df, 0); \
660 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
661 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
662 (buf)[11]=DECCOMBMSD[sourhi>>26];}
3481f392
DD
663 #endif
664
665
666 /* Macros to decode the coefficient in a finite decFloat *df and */
667 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
668 /* After the addition then most significant 'digit' in the array */
669 /* might have a value larger then 10 (with a maximum of 19). */
670 #if DECPMAX==7
671 #define ADDCOEFFTHOU(df, buf) { \
672 uInt sourhi=DFWORD(df, 0); \
673 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
674 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
675 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
676 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
677 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
f5bc1778 678
3481f392
DD
679 #elif DECPMAX==16
680 #define ADDCOEFFTHOU(df, buf) { \
681 uInt sourhi, sourlo; \
682 sourlo=DFWORD(df, 1); \
683 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
684 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
685 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
686 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
687 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
688 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
689 sourhi=DFWORD(df, 0); \
690 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
691 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
692 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
693 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
694 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
695
696 #elif DECPMAX==34
697 #define ADDCOEFFTHOU(df, buf) { \
698 uInt sourhi, sourmh, sourml, sourlo; \
699 sourlo=DFWORD(df, 3); \
700 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
701 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
702 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
703 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
704 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
705 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
706 sourml=DFWORD(df, 2); \
707 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
708 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
709 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
710 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
711 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
712 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
713 sourmh=DFWORD(df, 1); \
714 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
715 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
716 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
717 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
718 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
719 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
720 sourhi=DFWORD(df, 0); \
721 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
722 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
723 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
724 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
725 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
f5bc1778
DJ
726 #endif
727
3481f392 728
f5bc1778
DJ
729 /* Set a decFloat to the maximum positive finite number (Nmax) */
730 #if DECPMAX==7
731 #define DFSETNMAX(df) \
732 {DFWORD(df, 0)=0x77f3fcff;}
733 #elif DECPMAX==16
734 #define DFSETNMAX(df) \
735 {DFWORD(df, 0)=0x77fcff3f; \
736 DFWORD(df, 1)=0xcff3fcff;}
737 #elif DECPMAX==34
738 #define DFSETNMAX(df) \
739 {DFWORD(df, 0)=0x77ffcff3; \
740 DFWORD(df, 1)=0xfcff3fcf; \
741 DFWORD(df, 2)=0xf3fcff3f; \
742 DFWORD(df, 3)=0xcff3fcff;}
743 #endif
744
745 /* [end of format-dependent macros and constants] */
746 #endif
747
748#else
749 #error decNumberLocal included more than once
750#endif
This page took 0.110166 seconds and 4 git commands to generate.