binutils/ChangeLog:
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
219a461e 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
bb6a587d 3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
979c05d3
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
e2eaf477
ILT
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
a17fcd19
DD
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
bb6a587d
DD
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
5f73c378 59
e2eaf477
ILT
60#include <stdio.h>
61
62#include "libiberty.h"
bb6a587d 63#include "ansidecl.h"
e2eaf477
ILT
64#include "hashtab.h"
65
bb6a587d
DD
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
49b1fae4
DD
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
78
79/* At some point, we could make these be NULL, and modify the
80 hash-table routines to handle NULL specially; that would avoid
81 function-call overhead for the common case of hashing pointers. */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
84
bb6a587d
DD
85/* Table of primes and multiplicative inverses.
86
87 Note that these are not minimally reduced inverses. Unlike when generating
88 code to divide by a constant, we want to be able to use the same algorithm
89 all the time. All of these inverses (are implied to) have bit 32 set.
90
91 For the record, here's the function that computed the table; it's a
92 vastly simplified version of the function of the same name from gcc. */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98 int i;
99 for (i = 31; i >= 0 ; --i)
100 if (x > (1u << i))
101 return i+1;
102 abort ();
103}
e2eaf477 104
bb6a587d
DD
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108 unsigned long long mhigh;
109 double nx;
110 int lgup, post_shift;
111 int pow, pow2;
112 int n = 32, precision = 32;
113
114 lgup = ceil_log2 (d);
115 pow = n + lgup;
116 pow2 = n + lgup - precision;
117
118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119 mhigh = nx / d;
120
121 *shiftp = lgup - 1;
122 *mlp = mhigh;
123 return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129 hashval_t prime;
130 hashval_t inv;
131 hashval_t inv_m2; /* inverse of prime-2 */
132 hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136 { 7, 0x24924925, 0x9999999b, 2 },
137 { 13, 0x3b13b13c, 0x745d1747, 3 },
138 { 31, 0x08421085, 0x1a7b9612, 4 },
139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
140 { 127, 0x02040811, 0x0624dd30, 6 },
141 { 251, 0x05197f7e, 0x073260a5, 7 },
142 { 509, 0x01824366, 0x02864fc8, 8 },
143 { 1021, 0x00c0906d, 0x014191f7, 9 },
144 { 2039, 0x0121456f, 0x0161e69e, 10 },
145 { 4093, 0x00300902, 0x00501908, 11 },
146 { 8191, 0x00080041, 0x00180241, 12 },
147 { 16381, 0x000c0091, 0x00140191, 13 },
148 { 32749, 0x002605a5, 0x002a06e6, 14 },
149 { 65521, 0x000f00e2, 0x00110122, 15 },
150 { 131071, 0x00008001, 0x00018003, 16 },
151 { 262139, 0x00014002, 0x0001c004, 17 },
152 { 524287, 0x00002001, 0x00006001, 18 },
153 { 1048573, 0x00003001, 0x00005001, 19 },
154 { 2097143, 0x00004801, 0x00005801, 20 },
155 { 4194301, 0x00000c01, 0x00001401, 21 },
156 { 8388593, 0x00001e01, 0x00002201, 22 },
157 { 16777213, 0x00000301, 0x00000501, 23 },
158 { 33554393, 0x00001381, 0x00001481, 24 },
159 { 67108859, 0x00000141, 0x000001c1, 25 },
160 { 134217689, 0x000004e1, 0x00000521, 26 },
161 { 268435399, 0x00000391, 0x000003b1, 27 },
162 { 536870909, 0x00000019, 0x00000029, 28 },
163 { 1073741789, 0x0000008d, 0x00000095, 29 },
164 { 2147483647, 0x00000003, 0x00000007, 30 },
165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
166 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170 nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
49b1fae4 173higher_prime_index (unsigned long n)
e2eaf477 174{
bb6a587d
DD
175 unsigned int low = 0;
176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
177
178 while (low != high)
179 {
bb6a587d
DD
180 unsigned int mid = low + (high - low) / 2;
181 if (n > prime_tab[mid].prime)
5ca0f83d
DD
182 low = mid + 1;
183 else
184 high = mid;
185 }
186
187 /* If we've run out of primes, abort. */
bb6a587d 188 if (n > prime_tab[low].prime)
5ca0f83d
DD
189 {
190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191 abort ();
192 }
193
bb6a587d 194 return low;
e2eaf477
ILT
195}
196
eb383413
L
197/* Returns non-zero if P1 and P2 are equal. */
198
199static int
49b1fae4 200eq_pointer (const PTR p1, const PTR p2)
eb383413
L
201{
202 return p1 == p2;
203}
204
fe046a17 205
abf6a75b
DD
206/* The parens around the function names in the next two definitions
207 are essential in order to prevent macro expansions of the name.
208 The bodies, however, are expanded as expected, so they are not
209 recursive definitions. */
210
211/* Return the current size of given hash table. */
212
213#define htab_size(htab) ((htab)->size)
214
215size_t
216(htab_size) (htab_t htab)
fe046a17 217{
abf6a75b 218 return htab_size (htab);
fe046a17
DD
219}
220
221/* Return the current number of elements in given hash table. */
222
abf6a75b
DD
223#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
224
225size_t
226(htab_elements) (htab_t htab)
fe046a17 227{
abf6a75b 228 return htab_elements (htab);
fe046a17
DD
229}
230
bb6a587d
DD
231/* Return X % Y. */
232
233static inline hashval_t
49b1fae4 234htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
235{
236 /* The multiplicative inverses computed above are for 32-bit types, and
237 requires that we be able to compute a highpart multiply. */
238#ifdef UNSIGNED_64BIT_TYPE
239 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
240 if (sizeof (hashval_t) * CHAR_BIT <= 32)
241 {
242 hashval_t t1, t2, t3, t4, q, r;
243
244 t1 = ((ull)x * inv) >> 32;
245 t2 = x - t1;
246 t3 = t2 >> 1;
247 t4 = t1 + t3;
248 q = t4 >> shift;
249 r = x - (q * y);
250
251 return r;
252 }
253#endif
254
255 /* Otherwise just use the native division routines. */
256 return x % y;
257}
258
fe046a17
DD
259/* Compute the primary hash for HASH given HTAB's current size. */
260
261static inline hashval_t
49b1fae4 262htab_mod (hashval_t hash, htab_t htab)
fe046a17 263{
bb6a587d
DD
264 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
265 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
266}
267
268/* Compute the secondary hash for HASH given HTAB's current size. */
269
270static inline hashval_t
49b1fae4 271htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 272{
bb6a587d
DD
273 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
274 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
275}
276
e2eaf477
ILT
277/* This function creates table with length slightly longer than given
278 source length. Created hash table is initiated as empty (all the
c3cca4c9 279 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
18893690 280 created hash table, or NULL if memory allocation fails. */
e2eaf477 281
b4fe2683 282htab_t
49b1fae4
DD
283htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
284 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
219a461e
DD
285{
286 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
287 free_f);
288}
289
290/* As above, but uses the variants of ALLOC_F and FREE_F which accept
291 an extra argument. */
292
293htab_t
294htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
295 htab_del del_f, void *alloc_arg,
296 htab_alloc_with_arg alloc_f,
297 htab_free_with_arg free_f)
e2eaf477 298{
b4fe2683 299 htab_t result;
bb6a587d
DD
300 unsigned int size_prime_index;
301
302 size_prime_index = higher_prime_index (size);
303 size = prime_tab[size_prime_index].prime;
e2eaf477 304
219a461e 305 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
18893690
DD
306 if (result == NULL)
307 return NULL;
219a461e 308 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
18893690
DD
309 if (result->entries == NULL)
310 {
311 if (free_f != NULL)
219a461e 312 (*free_f) (alloc_arg, result);
18893690
DD
313 return NULL;
314 }
e2eaf477 315 result->size = size;
bb6a587d 316 result->size_prime_index = size_prime_index;
b4fe2683
JM
317 result->hash_f = hash_f;
318 result->eq_f = eq_f;
319 result->del_f = del_f;
219a461e
DD
320 result->alloc_arg = alloc_arg;
321 result->alloc_with_arg_f = alloc_f;
322 result->free_with_arg_f = free_f;
99a4c1bd
HPN
323 return result;
324}
325
219a461e
DD
326/*
327
d4d868a2
RW
328@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
329htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
330htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
219a461e
DD
331htab_free @var{free_f})
332
333This function creates a hash table that uses two different allocators
334@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
335and its entries respectively. This is useful when variables of different
336types need to be allocated with different allocators.
337
338The created hash table is slightly larger than @var{size} and it is
339initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
340The function returns the created hash table, or @code{NULL} if memory
341allocation fails.
342
343@end deftypefn
344
345*/
5f9624e3
DJ
346
347htab_t
219a461e
DD
348htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
349 htab_del del_f, htab_alloc alloc_tab_f,
350 htab_alloc alloc_f, htab_free free_f)
5f9624e3
DJ
351{
352 htab_t result;
bb6a587d
DD
353 unsigned int size_prime_index;
354
355 size_prime_index = higher_prime_index (size);
356 size = prime_tab[size_prime_index].prime;
5f9624e3 357
219a461e 358 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
5f9624e3
DJ
359 if (result == NULL)
360 return NULL;
219a461e 361 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
5f9624e3
DJ
362 if (result->entries == NULL)
363 {
364 if (free_f != NULL)
219a461e 365 (*free_f) (result);
5f9624e3
DJ
366 return NULL;
367 }
368 result->size = size;
bb6a587d 369 result->size_prime_index = size_prime_index;
5f9624e3
DJ
370 result->hash_f = hash_f;
371 result->eq_f = eq_f;
372 result->del_f = del_f;
219a461e
DD
373 result->alloc_f = alloc_f;
374 result->free_f = free_f;
5f9624e3
DJ
375 return result;
376}
377
219a461e 378
5f9624e3
DJ
379/* Update the function pointers and allocation parameter in the htab_t. */
380
381void
49b1fae4
DD
382htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
383 htab_del del_f, PTR alloc_arg,
384 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
385{
386 htab->hash_f = hash_f;
387 htab->eq_f = eq_f;
388 htab->del_f = del_f;
389 htab->alloc_arg = alloc_arg;
390 htab->alloc_with_arg_f = alloc_f;
391 htab->free_with_arg_f = free_f;
392}
393
18893690 394/* These functions exist solely for backward compatibility. */
99a4c1bd 395
18893690 396#undef htab_create
99a4c1bd 397htab_t
49b1fae4 398htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 399{
18893690
DD
400 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
401}
99a4c1bd 402
18893690 403htab_t
49b1fae4 404htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
405{
406 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
407}
408
409/* This function frees all memory allocated for given hash table.
410 Naturally the hash table must already exist. */
411
412void
49b1fae4 413htab_delete (htab_t htab)
e2eaf477 414{
fe046a17
DD
415 size_t size = htab_size (htab);
416 PTR *entries = htab->entries;
b4fe2683 417 int i;
eb383413 418
b4fe2683 419 if (htab->del_f)
fe046a17 420 for (i = size - 1; i >= 0; i--)
c3cca4c9 421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 422 (*htab->del_f) (entries[i]);
b4fe2683 423
18893690
DD
424 if (htab->free_f != NULL)
425 {
fe046a17 426 (*htab->free_f) (entries);
18893690
DD
427 (*htab->free_f) (htab);
428 }
5f9624e3
DJ
429 else if (htab->free_with_arg_f != NULL)
430 {
fe046a17 431 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
432 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
433 }
e2eaf477
ILT
434}
435
436/* This function clears all entries in the given hash table. */
437
438void
49b1fae4 439htab_empty (htab_t htab)
b4fe2683 440{
fe046a17
DD
441 size_t size = htab_size (htab);
442 PTR *entries = htab->entries;
b4fe2683 443 int i;
eb383413 444
b4fe2683 445 if (htab->del_f)
fe046a17 446 for (i = size - 1; i >= 0; i--)
c3cca4c9 447 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 448 (*htab->del_f) (entries[i]);
b4fe2683 449
a7d421b8
DD
450 /* Instead of clearing megabyte, downsize the table. */
451 if (size > 1024*1024 / sizeof (PTR))
452 {
453 int nindex = higher_prime_index (1024 / sizeof (PTR));
454 int nsize = prime_tab[nindex].prime;
455
456 if (htab->free_f != NULL)
457 (*htab->free_f) (htab->entries);
458 else if (htab->free_with_arg_f != NULL)
459 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
460 if (htab->alloc_with_arg_f != NULL)
461 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
462 sizeof (PTR *));
463 else
464 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
465 htab->size = nsize;
466 htab->size_prime_index = nindex;
467 }
468 else
469 memset (entries, 0, size * sizeof (PTR));
470 htab->n_deleted = 0;
471 htab->n_elements = 0;
b4fe2683
JM
472}
473
474/* Similar to htab_find_slot, but without several unwanted side effects:
475 - Does not call htab->eq_f when it finds an existing entry.
476 - Does not change the count of elements/searches/collisions in the
477 hash table.
478 This function also assumes there are no deleted entries in the table.
479 HASH is the hash value for the element to be inserted. */
eb383413 480
e0f3df8f 481static PTR *
49b1fae4 482find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 483{
fe046a17
DD
484 hashval_t index = htab_mod (hash, htab);
485 size_t size = htab_size (htab);
b1c933fc
RH
486 PTR *slot = htab->entries + index;
487 hashval_t hash2;
488
c3cca4c9 489 if (*slot == HTAB_EMPTY_ENTRY)
b1c933fc 490 return slot;
c3cca4c9 491 else if (*slot == HTAB_DELETED_ENTRY)
b1c933fc 492 abort ();
b4fe2683 493
fe046a17 494 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
495 for (;;)
496 {
b1c933fc
RH
497 index += hash2;
498 if (index >= size)
499 index -= size;
eb383413 500
b1c933fc 501 slot = htab->entries + index;
c3cca4c9 502 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683 503 return slot;
c3cca4c9 504 else if (*slot == HTAB_DELETED_ENTRY)
b4fe2683 505 abort ();
b4fe2683 506 }
e2eaf477
ILT
507}
508
509/* The following function changes size of memory allocated for the
510 entries and repeatedly inserts the table elements. The occupancy
511 of the table after the call will be about 50%. Naturally the hash
512 table must already exist. Remember also that the place of the
99a4c1bd
HPN
513 table entries is changed. If memory allocation failures are allowed,
514 this function will return zero, indicating that the table could not be
515 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 516
99a4c1bd 517static int
49b1fae4 518htab_expand (htab_t htab)
e2eaf477 519{
e0f3df8f
HPN
520 PTR *oentries;
521 PTR *olimit;
522 PTR *p;
18893690 523 PTR *nentries;
bb6a587d
DD
524 size_t nsize, osize, elts;
525 unsigned int oindex, nindex;
b4fe2683
JM
526
527 oentries = htab->entries;
bb6a587d
DD
528 oindex = htab->size_prime_index;
529 osize = htab->size;
530 olimit = oentries + osize;
531 elts = htab_elements (htab);
b4fe2683 532
c4d8feb2
DD
533 /* Resize only when table after removal of unused elements is either
534 too full or too empty. */
bb6a587d
DD
535 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
536 {
537 nindex = higher_prime_index (elts * 2);
538 nsize = prime_tab[nindex].prime;
539 }
c4d8feb2 540 else
bb6a587d
DD
541 {
542 nindex = oindex;
543 nsize = osize;
544 }
99a4c1bd 545
5f9624e3
DJ
546 if (htab->alloc_with_arg_f != NULL)
547 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
548 sizeof (PTR *));
549 else
550 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
551 if (nentries == NULL)
552 return 0;
553 htab->entries = nentries;
eed2b28c 554 htab->size = nsize;
bb6a587d 555 htab->size_prime_index = nindex;
b4fe2683
JM
556 htab->n_elements -= htab->n_deleted;
557 htab->n_deleted = 0;
558
559 p = oentries;
560 do
561 {
e0f3df8f 562 PTR x = *p;
eb383413 563
c3cca4c9 564 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683 565 {
e0f3df8f 566 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 567
b4fe2683
JM
568 *q = x;
569 }
eb383413 570
b4fe2683
JM
571 p++;
572 }
573 while (p < olimit);
eb383413 574
18893690
DD
575 if (htab->free_f != NULL)
576 (*htab->free_f) (oentries);
5f9624e3
DJ
577 else if (htab->free_with_arg_f != NULL)
578 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 579 return 1;
e2eaf477
ILT
580}
581
b4fe2683
JM
582/* This function searches for a hash table entry equal to the given
583 element. It cannot be used to insert or delete an element. */
584
e0f3df8f 585PTR
49b1fae4 586htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 587{
fe046a17 588 hashval_t index, hash2;
b4fe2683 589 size_t size;
e0f3df8f 590 PTR entry;
e2eaf477 591
b4fe2683 592 htab->searches++;
fe046a17
DD
593 size = htab_size (htab);
594 index = htab_mod (hash, htab);
b4fe2683 595
eb383413 596 entry = htab->entries[index];
c3cca4c9
DD
597 if (entry == HTAB_EMPTY_ENTRY
598 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413
L
599 return entry;
600
fe046a17 601 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 602 for (;;)
e2eaf477 603 {
b4fe2683
JM
604 htab->collisions++;
605 index += hash2;
606 if (index >= size)
607 index -= size;
eb383413
L
608
609 entry = htab->entries[index];
c3cca4c9
DD
610 if (entry == HTAB_EMPTY_ENTRY
611 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413 612 return entry;
e2eaf477 613 }
b4fe2683
JM
614}
615
616/* Like htab_find_slot_with_hash, but compute the hash value from the
617 element. */
eb383413 618
e0f3df8f 619PTR
49b1fae4 620htab_find (htab_t htab, const PTR element)
b4fe2683
JM
621{
622 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
623}
624
625/* This function searches for a hash table slot containing an entry
626 equal to the given element. To delete an entry, call this with
bac7199c
DD
627 insert=NO_INSERT, then call htab_clear_slot on the slot returned
628 (possibly after doing some checks). To insert an entry, call this
629 with insert=INSERT, then write the value you want into the returned
630 slot. When inserting an entry, NULL may be returned if memory
631 allocation fails. */
b4fe2683 632
e0f3df8f 633PTR *
49b1fae4
DD
634htab_find_slot_with_hash (htab_t htab, const PTR element,
635 hashval_t hash, enum insert_option insert)
b4fe2683 636{
e0f3df8f 637 PTR *first_deleted_slot;
fe046a17 638 hashval_t index, hash2;
b4fe2683 639 size_t size;
b1c933fc 640 PTR entry;
b4fe2683 641
fe046a17
DD
642 size = htab_size (htab);
643 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
644 {
645 if (htab_expand (htab) == 0)
646 return NULL;
647 size = htab_size (htab);
648 }
b4fe2683 649
fe046a17 650 index = htab_mod (hash, htab);
b4fe2683 651
e2eaf477 652 htab->searches++;
b4fe2683
JM
653 first_deleted_slot = NULL;
654
b1c933fc 655 entry = htab->entries[index];
c3cca4c9 656 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 657 goto empty_entry;
c3cca4c9 658 else if (entry == HTAB_DELETED_ENTRY)
b1c933fc
RH
659 first_deleted_slot = &htab->entries[index];
660 else if ((*htab->eq_f) (entry, element))
661 return &htab->entries[index];
662
fe046a17 663 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 664 for (;;)
e2eaf477 665 {
b1c933fc
RH
666 htab->collisions++;
667 index += hash2;
668 if (index >= size)
669 index -= size;
670
671 entry = htab->entries[index];
c3cca4c9 672 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 673 goto empty_entry;
c3cca4c9 674 else if (entry == HTAB_DELETED_ENTRY)
b4fe2683
JM
675 {
676 if (!first_deleted_slot)
677 first_deleted_slot = &htab->entries[index];
678 }
b1c933fc 679 else if ((*htab->eq_f) (entry, element))
eb383413 680 return &htab->entries[index];
e2eaf477 681 }
b1c933fc
RH
682
683 empty_entry:
684 if (insert == NO_INSERT)
685 return NULL;
686
b1c933fc
RH
687 if (first_deleted_slot)
688 {
686e72d7 689 htab->n_deleted--;
c3cca4c9 690 *first_deleted_slot = HTAB_EMPTY_ENTRY;
b1c933fc
RH
691 return first_deleted_slot;
692 }
693
686e72d7 694 htab->n_elements++;
b1c933fc 695 return &htab->entries[index];
e2eaf477
ILT
696}
697
b4fe2683
JM
698/* Like htab_find_slot_with_hash, but compute the hash value from the
699 element. */
eb383413 700
e0f3df8f 701PTR *
49b1fae4 702htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
703{
704 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
705 insert);
706}
707
d6ea4e80
DD
708/* This function deletes an element with the given value from hash
709 table (the hash is computed from the element). If there is no matching
710 element in the hash table, this function does nothing. */
711
712void
49b1fae4 713htab_remove_elt (htab_t htab, PTR element)
d6ea4e80
DD
714{
715 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
716}
717
718
b4fe2683
JM
719/* This function deletes an element with the given value from hash
720 table. If there is no matching element in the hash table, this
721 function does nothing. */
e2eaf477
ILT
722
723void
49b1fae4 724htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
e2eaf477 725{
e0f3df8f 726 PTR *slot;
b4fe2683 727
d6ea4e80 728 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
c3cca4c9 729 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683
JM
730 return;
731
732 if (htab->del_f)
733 (*htab->del_f) (*slot);
e2eaf477 734
c3cca4c9 735 *slot = HTAB_DELETED_ENTRY;
b4fe2683 736 htab->n_deleted++;
e2eaf477
ILT
737}
738
b4fe2683
JM
739/* This function clears a specified slot in a hash table. It is
740 useful when you've already done the lookup and don't want to do it
741 again. */
e2eaf477
ILT
742
743void
49b1fae4 744htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 745{
fe046a17 746 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
c3cca4c9 747 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
e2eaf477 748 abort ();
eb383413 749
b4fe2683
JM
750 if (htab->del_f)
751 (*htab->del_f) (*slot);
eb383413 752
c3cca4c9 753 *slot = HTAB_DELETED_ENTRY;
b4fe2683 754 htab->n_deleted++;
e2eaf477
ILT
755}
756
757/* This function scans over the entire hash table calling
758 CALLBACK for each live entry. If CALLBACK returns false,
759 the iteration stops. INFO is passed as CALLBACK's second
760 argument. */
761
762void
49b1fae4 763htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 764{
c4d8feb2
DD
765 PTR *slot;
766 PTR *limit;
c3cca4c9 767
c4d8feb2 768 slot = htab->entries;
fe046a17 769 limit = slot + htab_size (htab);
eb383413 770
b4fe2683
JM
771 do
772 {
e0f3df8f 773 PTR x = *slot;
eb383413 774
c3cca4c9 775 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683
JM
776 if (!(*callback) (slot, info))
777 break;
778 }
779 while (++slot < limit);
e2eaf477
ILT
780}
781
f77ed96c
DD
782/* Like htab_traverse_noresize, but does resize the table when it is
783 too empty to improve effectivity of subsequent calls. */
784
785void
49b1fae4 786htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 787{
483d7cf4
DD
788 size_t size = htab_size (htab);
789 if (htab_elements (htab) * 8 < size && size > 32)
f77ed96c
DD
790 htab_expand (htab);
791
792 htab_traverse_noresize (htab, callback, info);
793}
794
eb383413
L
795/* Return the fraction of fixed collisions during all work with given
796 hash table. */
e2eaf477 797
b4fe2683 798double
49b1fae4 799htab_collisions (htab_t htab)
e2eaf477 800{
eb383413 801 if (htab->searches == 0)
b4fe2683 802 return 0.0;
eb383413
L
803
804 return (double) htab->collisions / (double) htab->searches;
e2eaf477 805}
8fc34799 806
68a41de7
DD
807/* Hash P as a null-terminated string.
808
809 Copied from gcc/hashtable.c. Zack had the following to say with respect
810 to applicability, though note that unlike hashtable.c, this hash table
811 implementation re-hashes rather than chain buckets.
812
813 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
814 From: Zack Weinberg <zackw@panix.com>
815 Date: Fri, 17 Aug 2001 02:15:56 -0400
816
817 I got it by extracting all the identifiers from all the source code
818 I had lying around in mid-1999, and testing many recurrences of
819 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
820 prime numbers or the appropriate identity. This was the best one.
821 I don't remember exactly what constituted "best", except I was
822 looking at bucket-length distributions mostly.
823
824 So it should be very good at hashing identifiers, but might not be
825 as good at arbitrary strings.
826
827 I'll add that it thoroughly trounces the hash functions recommended
828 for this use at http://burtleburtle.net/bob/hash/index.html, both
829 on speed and bucket distribution. I haven't tried it against the
830 function they just started using for Perl's hashes. */
8fc34799
DD
831
832hashval_t
49b1fae4 833htab_hash_string (const PTR p)
8fc34799
DD
834{
835 const unsigned char *str = (const unsigned char *) p;
836 hashval_t r = 0;
837 unsigned char c;
838
839 while ((c = *str++) != 0)
840 r = r * 67 + c - 113;
841
842 return r;
843}
7108c5dc
JM
844
845/* DERIVED FROM:
846--------------------------------------------------------------------
847lookup2.c, by Bob Jenkins, December 1996, Public Domain.
848hash(), hash2(), hash3, and mix() are externally useful functions.
849Routines to test the hash are included if SELF_TEST is defined.
850You can use this free for any purpose. It has no warranty.
851--------------------------------------------------------------------
852*/
853
854/*
855--------------------------------------------------------------------
856mix -- mix 3 32-bit values reversibly.
857For every delta with one or two bit set, and the deltas of all three
858 high bits or all three low bits, whether the original value of a,b,c
859 is almost all zero or is uniformly distributed,
860* If mix() is run forward or backward, at least 32 bits in a,b,c
861 have at least 1/4 probability of changing.
862* If mix() is run forward, every bit of c will change between 1/3 and
863 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
864mix() was built out of 36 single-cycle latency instructions in a
865 structure that could supported 2x parallelism, like so:
866 a -= b;
867 a -= c; x = (c>>13);
868 b -= c; a ^= x;
869 b -= a; x = (a<<8);
870 c -= a; b ^= x;
871 c -= b; x = (b>>13);
872 ...
873 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
874 of that parallelism. They've also turned some of those single-cycle
875 latency instructions into multi-cycle latency instructions. Still,
876 this is the fastest good hash I could find. There were about 2^^68
877 to choose from. I only looked at a billion or so.
878--------------------------------------------------------------------
879*/
880/* same, but slower, works on systems that might have 8 byte hashval_t's */
881#define mix(a,b,c) \
882{ \
883 a -= b; a -= c; a ^= (c>>13); \
884 b -= c; b -= a; b ^= (a<< 8); \
885 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
886 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
887 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
888 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
889 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
890 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
891 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
892}
893
894/*
895--------------------------------------------------------------------
896hash() -- hash a variable-length key into a 32-bit value
897 k : the key (the unaligned variable-length array of bytes)
898 len : the length of the key, counting by bytes
899 level : can be any 4-byte value
900Returns a 32-bit value. Every bit of the key affects every bit of
901the return value. Every 1-bit and 2-bit delta achieves avalanche.
902About 36+6len instructions.
903
904The best hash table sizes are powers of 2. There is no need to do
905mod a prime (mod is sooo slow!). If you need less than 32 bits,
906use a bitmask. For example, if you need only 10 bits, do
907 h = (h & hashmask(10));
908In which case, the hash table should have hashsize(10) elements.
909
910If you are hashing n strings (ub1 **)k, do it like this:
911 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
912
913By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
914code any way you wish, private, educational, or commercial. It's free.
915
916See http://burtleburtle.net/bob/hash/evahash.html
917Use for hash table lookup, or anything where one collision in 2^32 is
918acceptable. Do NOT use for cryptographic purposes.
919--------------------------------------------------------------------
920*/
921
49b1fae4
DD
922hashval_t
923iterative_hash (const PTR k_in /* the key */,
924 register size_t length /* the length of the key */,
925 register hashval_t initval /* the previous hash, or
926 an arbitrary value */)
7108c5dc
JM
927{
928 register const unsigned char *k = (const unsigned char *)k_in;
929 register hashval_t a,b,c,len;
930
931 /* Set up the internal state */
932 len = length;
933 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
934 c = initval; /* the previous hash value */
935
936 /*---------------------------------------- handle most of the key */
937#ifndef WORDS_BIGENDIAN
938 /* On a little-endian machine, if the data is 4-byte aligned we can hash
939 by word for better speed. This gives nondeterministic results on
940 big-endian machines. */
941 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
942 while (len >= 12) /* aligned */
943 {
944 a += *(hashval_t *)(k+0);
945 b += *(hashval_t *)(k+4);
946 c += *(hashval_t *)(k+8);
947 mix(a,b,c);
948 k += 12; len -= 12;
949 }
950 else /* unaligned */
951#endif
952 while (len >= 12)
953 {
954 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
955 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
956 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
957 mix(a,b,c);
958 k += 12; len -= 12;
959 }
960
961 /*------------------------------------- handle the last 11 bytes */
962 c += length;
963 switch(len) /* all the case statements fall through */
964 {
965 case 11: c+=((hashval_t)k[10]<<24);
966 case 10: c+=((hashval_t)k[9]<<16);
967 case 9 : c+=((hashval_t)k[8]<<8);
968 /* the first byte of c is reserved for the length */
969 case 8 : b+=((hashval_t)k[7]<<24);
970 case 7 : b+=((hashval_t)k[6]<<16);
971 case 6 : b+=((hashval_t)k[5]<<8);
972 case 5 : b+=k[4];
973 case 4 : a+=((hashval_t)k[3]<<24);
974 case 3 : a+=((hashval_t)k[2]<<16);
975 case 2 : a+=((hashval_t)k[1]<<8);
976 case 1 : a+=k[0];
977 /* case 0: nothing left to add */
978 }
979 mix(a,b,c);
980 /*-------------------------------------------- report the result */
981 return c;
982}
29f045bb
DD
983
984/* Returns a hash code for pointer P. Simplified version of evahash */
985
986static hashval_t
987hash_pointer (const PTR p)
988{
989 intptr_t v = (intptr_t) p;
990 unsigned a, b, c;
991
992 a = b = 0x9e3779b9;
993 if (sizeof (intptr_t) == 4)
994 {
995 /* Mix as 16bit for now */
996 a += v >> 16;
997 b += v & 0xffff;
998 }
999 else
1000 {
1001 a += v >> 32;
1002 b += v & 0xffffffff;
1003 }
1004 c = 0x42135234;
1005 mix (a, b, c);
1006 return c;
1007}
This page took 0.727835 seconds and 4 git commands to generate.