gas/
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
bb6a587d
DD
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
19not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
5f73c378 56
e2eaf477
ILT
57#include <stdio.h>
58
59#include "libiberty.h"
bb6a587d 60#include "ansidecl.h"
e2eaf477
ILT
61#include "hashtab.h"
62
bb6a587d
DD
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
e2eaf477
ILT
67/* This macro defines reserved value for empty table entry. */
68
e0f3df8f 69#define EMPTY_ENTRY ((PTR) 0)
e2eaf477
ILT
70
71/* This macro defines reserved value for table entry which contained
72 a deleted element. */
73
e0f3df8f 74#define DELETED_ENTRY ((PTR) 1)
e2eaf477 75
49b1fae4
DD
76static unsigned int higher_prime_index (unsigned long);
77static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
78static hashval_t htab_mod (hashval_t, htab_t);
79static hashval_t htab_mod_m2 (hashval_t, htab_t);
80static hashval_t hash_pointer (const void *);
81static int eq_pointer (const void *, const void *);
82static int htab_expand (htab_t);
83static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
84
85/* At some point, we could make these be NULL, and modify the
86 hash-table routines to handle NULL specially; that would avoid
87 function-call overhead for the common case of hashing pointers. */
88htab_hash htab_hash_pointer = hash_pointer;
89htab_eq htab_eq_pointer = eq_pointer;
90
bb6a587d
DD
91/* Table of primes and multiplicative inverses.
92
93 Note that these are not minimally reduced inverses. Unlike when generating
94 code to divide by a constant, we want to be able to use the same algorithm
95 all the time. All of these inverses (are implied to) have bit 32 set.
96
97 For the record, here's the function that computed the table; it's a
98 vastly simplified version of the function of the same name from gcc. */
99
100#if 0
101unsigned int
102ceil_log2 (unsigned int x)
103{
104 int i;
105 for (i = 31; i >= 0 ; --i)
106 if (x > (1u << i))
107 return i+1;
108 abort ();
109}
e2eaf477 110
bb6a587d
DD
111unsigned int
112choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
113{
114 unsigned long long mhigh;
115 double nx;
116 int lgup, post_shift;
117 int pow, pow2;
118 int n = 32, precision = 32;
119
120 lgup = ceil_log2 (d);
121 pow = n + lgup;
122 pow2 = n + lgup - precision;
123
124 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
125 mhigh = nx / d;
126
127 *shiftp = lgup - 1;
128 *mlp = mhigh;
129 return mhigh >> 32;
130}
131#endif
132
133struct prime_ent
134{
135 hashval_t prime;
136 hashval_t inv;
137 hashval_t inv_m2; /* inverse of prime-2 */
138 hashval_t shift;
139};
140
141static struct prime_ent const prime_tab[] = {
142 { 7, 0x24924925, 0x9999999b, 2 },
143 { 13, 0x3b13b13c, 0x745d1747, 3 },
144 { 31, 0x08421085, 0x1a7b9612, 4 },
145 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
146 { 127, 0x02040811, 0x0624dd30, 6 },
147 { 251, 0x05197f7e, 0x073260a5, 7 },
148 { 509, 0x01824366, 0x02864fc8, 8 },
149 { 1021, 0x00c0906d, 0x014191f7, 9 },
150 { 2039, 0x0121456f, 0x0161e69e, 10 },
151 { 4093, 0x00300902, 0x00501908, 11 },
152 { 8191, 0x00080041, 0x00180241, 12 },
153 { 16381, 0x000c0091, 0x00140191, 13 },
154 { 32749, 0x002605a5, 0x002a06e6, 14 },
155 { 65521, 0x000f00e2, 0x00110122, 15 },
156 { 131071, 0x00008001, 0x00018003, 16 },
157 { 262139, 0x00014002, 0x0001c004, 17 },
158 { 524287, 0x00002001, 0x00006001, 18 },
159 { 1048573, 0x00003001, 0x00005001, 19 },
160 { 2097143, 0x00004801, 0x00005801, 20 },
161 { 4194301, 0x00000c01, 0x00001401, 21 },
162 { 8388593, 0x00001e01, 0x00002201, 22 },
163 { 16777213, 0x00000301, 0x00000501, 23 },
164 { 33554393, 0x00001381, 0x00001481, 24 },
165 { 67108859, 0x00000141, 0x000001c1, 25 },
166 { 134217689, 0x000004e1, 0x00000521, 26 },
167 { 268435399, 0x00000391, 0x000003b1, 27 },
168 { 536870909, 0x00000019, 0x00000029, 28 },
169 { 1073741789, 0x0000008d, 0x00000095, 29 },
170 { 2147483647, 0x00000003, 0x00000007, 30 },
171 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
172 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
173};
174
175/* The following function returns an index into the above table of the
176 nearest prime number which is greater than N, and near a power of two. */
177
178static unsigned int
49b1fae4 179higher_prime_index (unsigned long n)
e2eaf477 180{
bb6a587d
DD
181 unsigned int low = 0;
182 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
183
184 while (low != high)
185 {
bb6a587d
DD
186 unsigned int mid = low + (high - low) / 2;
187 if (n > prime_tab[mid].prime)
5ca0f83d
DD
188 low = mid + 1;
189 else
190 high = mid;
191 }
192
193 /* If we've run out of primes, abort. */
bb6a587d 194 if (n > prime_tab[low].prime)
5ca0f83d
DD
195 {
196 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
197 abort ();
198 }
199
bb6a587d 200 return low;
e2eaf477
ILT
201}
202
eb383413
L
203/* Returns a hash code for P. */
204
205static hashval_t
49b1fae4 206hash_pointer (const PTR p)
eb383413
L
207{
208 return (hashval_t) ((long)p >> 3);
209}
210
211/* Returns non-zero if P1 and P2 are equal. */
212
213static int
49b1fae4 214eq_pointer (const PTR p1, const PTR p2)
eb383413
L
215{
216 return p1 == p2;
217}
218
fe046a17
DD
219/* Return the current size of given hash table. */
220
221inline size_t
49b1fae4 222htab_size (htab_t htab)
fe046a17
DD
223{
224 return htab->size;
225}
226
227/* Return the current number of elements in given hash table. */
228
229inline size_t
49b1fae4 230htab_elements (htab_t htab)
fe046a17
DD
231{
232 return htab->n_elements - htab->n_deleted;
233}
234
bb6a587d
DD
235/* Return X % Y. */
236
237static inline hashval_t
49b1fae4 238htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
239{
240 /* The multiplicative inverses computed above are for 32-bit types, and
241 requires that we be able to compute a highpart multiply. */
242#ifdef UNSIGNED_64BIT_TYPE
243 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
244 if (sizeof (hashval_t) * CHAR_BIT <= 32)
245 {
246 hashval_t t1, t2, t3, t4, q, r;
247
248 t1 = ((ull)x * inv) >> 32;
249 t2 = x - t1;
250 t3 = t2 >> 1;
251 t4 = t1 + t3;
252 q = t4 >> shift;
253 r = x - (q * y);
254
255 return r;
256 }
257#endif
258
259 /* Otherwise just use the native division routines. */
260 return x % y;
261}
262
fe046a17
DD
263/* Compute the primary hash for HASH given HTAB's current size. */
264
265static inline hashval_t
49b1fae4 266htab_mod (hashval_t hash, htab_t htab)
fe046a17 267{
bb6a587d
DD
268 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
269 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
270}
271
272/* Compute the secondary hash for HASH given HTAB's current size. */
273
274static inline hashval_t
49b1fae4 275htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 276{
bb6a587d
DD
277 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
278 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
279}
280
e2eaf477
ILT
281/* This function creates table with length slightly longer than given
282 source length. Created hash table is initiated as empty (all the
283 hash table entries are EMPTY_ENTRY). The function returns the
18893690 284 created hash table, or NULL if memory allocation fails. */
e2eaf477 285
b4fe2683 286htab_t
49b1fae4
DD
287htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
288 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
e2eaf477 289{
b4fe2683 290 htab_t result;
bb6a587d
DD
291 unsigned int size_prime_index;
292
293 size_prime_index = higher_prime_index (size);
294 size = prime_tab[size_prime_index].prime;
e2eaf477 295
18893690
DD
296 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
297 if (result == NULL)
298 return NULL;
299 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
300 if (result->entries == NULL)
301 {
302 if (free_f != NULL)
303 (*free_f) (result);
304 return NULL;
305 }
e2eaf477 306 result->size = size;
bb6a587d 307 result->size_prime_index = size_prime_index;
b4fe2683
JM
308 result->hash_f = hash_f;
309 result->eq_f = eq_f;
310 result->del_f = del_f;
18893690
DD
311 result->alloc_f = alloc_f;
312 result->free_f = free_f;
99a4c1bd
HPN
313 return result;
314}
315
5f9624e3
DJ
316/* As above, but use the variants of alloc_f and free_f which accept
317 an extra argument. */
318
319htab_t
320htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
321 free_f)
322 size_t size;
323 htab_hash hash_f;
324 htab_eq eq_f;
325 htab_del del_f;
326 PTR alloc_arg;
327 htab_alloc_with_arg alloc_f;
328 htab_free_with_arg free_f;
329{
330 htab_t result;
bb6a587d
DD
331 unsigned int size_prime_index;
332
333 size_prime_index = higher_prime_index (size);
334 size = prime_tab[size_prime_index].prime;
5f9624e3 335
5f9624e3
DJ
336 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
337 if (result == NULL)
338 return NULL;
339 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
340 if (result->entries == NULL)
341 {
342 if (free_f != NULL)
343 (*free_f) (alloc_arg, result);
344 return NULL;
345 }
346 result->size = size;
bb6a587d 347 result->size_prime_index = size_prime_index;
5f9624e3
DJ
348 result->hash_f = hash_f;
349 result->eq_f = eq_f;
350 result->del_f = del_f;
351 result->alloc_arg = alloc_arg;
352 result->alloc_with_arg_f = alloc_f;
353 result->free_with_arg_f = free_f;
354 return result;
355}
356
357/* Update the function pointers and allocation parameter in the htab_t. */
358
359void
49b1fae4
DD
360htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
361 htab_del del_f, PTR alloc_arg,
362 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
363{
364 htab->hash_f = hash_f;
365 htab->eq_f = eq_f;
366 htab->del_f = del_f;
367 htab->alloc_arg = alloc_arg;
368 htab->alloc_with_arg_f = alloc_f;
369 htab->free_with_arg_f = free_f;
370}
371
18893690 372/* These functions exist solely for backward compatibility. */
99a4c1bd 373
18893690 374#undef htab_create
99a4c1bd 375htab_t
49b1fae4 376htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 377{
18893690
DD
378 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
379}
99a4c1bd 380
18893690 381htab_t
49b1fae4 382htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
383{
384 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
385}
386
387/* This function frees all memory allocated for given hash table.
388 Naturally the hash table must already exist. */
389
390void
49b1fae4 391htab_delete (htab_t htab)
e2eaf477 392{
fe046a17
DD
393 size_t size = htab_size (htab);
394 PTR *entries = htab->entries;
b4fe2683 395 int i;
eb383413 396
b4fe2683 397 if (htab->del_f)
fe046a17
DD
398 for (i = size - 1; i >= 0; i--)
399 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
400 (*htab->del_f) (entries[i]);
b4fe2683 401
18893690
DD
402 if (htab->free_f != NULL)
403 {
fe046a17 404 (*htab->free_f) (entries);
18893690
DD
405 (*htab->free_f) (htab);
406 }
5f9624e3
DJ
407 else if (htab->free_with_arg_f != NULL)
408 {
fe046a17 409 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
410 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
411 }
e2eaf477
ILT
412}
413
414/* This function clears all entries in the given hash table. */
415
416void
49b1fae4 417htab_empty (htab_t htab)
b4fe2683 418{
fe046a17
DD
419 size_t size = htab_size (htab);
420 PTR *entries = htab->entries;
b4fe2683 421 int i;
eb383413 422
b4fe2683 423 if (htab->del_f)
fe046a17
DD
424 for (i = size - 1; i >= 0; i--)
425 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
426 (*htab->del_f) (entries[i]);
b4fe2683 427
fe046a17 428 memset (entries, 0, size * sizeof (PTR));
b4fe2683
JM
429}
430
431/* Similar to htab_find_slot, but without several unwanted side effects:
432 - Does not call htab->eq_f when it finds an existing entry.
433 - Does not change the count of elements/searches/collisions in the
434 hash table.
435 This function also assumes there are no deleted entries in the table.
436 HASH is the hash value for the element to be inserted. */
eb383413 437
e0f3df8f 438static PTR *
49b1fae4 439find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 440{
fe046a17
DD
441 hashval_t index = htab_mod (hash, htab);
442 size_t size = htab_size (htab);
b1c933fc
RH
443 PTR *slot = htab->entries + index;
444 hashval_t hash2;
445
446 if (*slot == EMPTY_ENTRY)
447 return slot;
448 else if (*slot == DELETED_ENTRY)
449 abort ();
b4fe2683 450
fe046a17 451 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
452 for (;;)
453 {
b1c933fc
RH
454 index += hash2;
455 if (index >= size)
456 index -= size;
eb383413 457
b1c933fc 458 slot = htab->entries + index;
b4fe2683
JM
459 if (*slot == EMPTY_ENTRY)
460 return slot;
eb383413 461 else if (*slot == DELETED_ENTRY)
b4fe2683 462 abort ();
b4fe2683 463 }
e2eaf477
ILT
464}
465
466/* The following function changes size of memory allocated for the
467 entries and repeatedly inserts the table elements. The occupancy
468 of the table after the call will be about 50%. Naturally the hash
469 table must already exist. Remember also that the place of the
99a4c1bd
HPN
470 table entries is changed. If memory allocation failures are allowed,
471 this function will return zero, indicating that the table could not be
472 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 473
99a4c1bd 474static int
49b1fae4 475htab_expand (htab_t htab)
e2eaf477 476{
e0f3df8f
HPN
477 PTR *oentries;
478 PTR *olimit;
479 PTR *p;
18893690 480 PTR *nentries;
bb6a587d
DD
481 size_t nsize, osize, elts;
482 unsigned int oindex, nindex;
b4fe2683
JM
483
484 oentries = htab->entries;
bb6a587d
DD
485 oindex = htab->size_prime_index;
486 osize = htab->size;
487 olimit = oentries + osize;
488 elts = htab_elements (htab);
b4fe2683 489
c4d8feb2
DD
490 /* Resize only when table after removal of unused elements is either
491 too full or too empty. */
bb6a587d
DD
492 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
493 {
494 nindex = higher_prime_index (elts * 2);
495 nsize = prime_tab[nindex].prime;
496 }
c4d8feb2 497 else
bb6a587d
DD
498 {
499 nindex = oindex;
500 nsize = osize;
501 }
99a4c1bd 502
5f9624e3
DJ
503 if (htab->alloc_with_arg_f != NULL)
504 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
505 sizeof (PTR *));
506 else
507 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
508 if (nentries == NULL)
509 return 0;
510 htab->entries = nentries;
eed2b28c 511 htab->size = nsize;
bb6a587d 512 htab->size_prime_index = nindex;
b4fe2683
JM
513 htab->n_elements -= htab->n_deleted;
514 htab->n_deleted = 0;
515
516 p = oentries;
517 do
518 {
e0f3df8f 519 PTR x = *p;
eb383413 520
b4fe2683
JM
521 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
522 {
e0f3df8f 523 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 524
b4fe2683
JM
525 *q = x;
526 }
eb383413 527
b4fe2683
JM
528 p++;
529 }
530 while (p < olimit);
eb383413 531
18893690
DD
532 if (htab->free_f != NULL)
533 (*htab->free_f) (oentries);
5f9624e3
DJ
534 else if (htab->free_with_arg_f != NULL)
535 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 536 return 1;
e2eaf477
ILT
537}
538
b4fe2683
JM
539/* This function searches for a hash table entry equal to the given
540 element. It cannot be used to insert or delete an element. */
541
e0f3df8f 542PTR
49b1fae4 543htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 544{
fe046a17 545 hashval_t index, hash2;
b4fe2683 546 size_t size;
e0f3df8f 547 PTR entry;
e2eaf477 548
b4fe2683 549 htab->searches++;
fe046a17
DD
550 size = htab_size (htab);
551 index = htab_mod (hash, htab);
b4fe2683 552
eb383413
L
553 entry = htab->entries[index];
554 if (entry == EMPTY_ENTRY
555 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
556 return entry;
557
fe046a17 558 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 559 for (;;)
e2eaf477 560 {
b4fe2683
JM
561 htab->collisions++;
562 index += hash2;
563 if (index >= size)
564 index -= size;
eb383413
L
565
566 entry = htab->entries[index];
567 if (entry == EMPTY_ENTRY
568 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
569 return entry;
e2eaf477 570 }
b4fe2683
JM
571}
572
573/* Like htab_find_slot_with_hash, but compute the hash value from the
574 element. */
eb383413 575
e0f3df8f 576PTR
49b1fae4 577htab_find (htab_t htab, const PTR element)
b4fe2683
JM
578{
579 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
580}
581
582/* This function searches for a hash table slot containing an entry
583 equal to the given element. To delete an entry, call this with
bac7199c
DD
584 insert=NO_INSERT, then call htab_clear_slot on the slot returned
585 (possibly after doing some checks). To insert an entry, call this
586 with insert=INSERT, then write the value you want into the returned
587 slot. When inserting an entry, NULL may be returned if memory
588 allocation fails. */
b4fe2683 589
e0f3df8f 590PTR *
49b1fae4
DD
591htab_find_slot_with_hash (htab_t htab, const PTR element,
592 hashval_t hash, enum insert_option insert)
b4fe2683 593{
e0f3df8f 594 PTR *first_deleted_slot;
fe046a17 595 hashval_t index, hash2;
b4fe2683 596 size_t size;
b1c933fc 597 PTR entry;
b4fe2683 598
fe046a17
DD
599 size = htab_size (htab);
600 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
601 {
602 if (htab_expand (htab) == 0)
603 return NULL;
604 size = htab_size (htab);
605 }
b4fe2683 606
fe046a17 607 index = htab_mod (hash, htab);
b4fe2683 608
e2eaf477 609 htab->searches++;
b4fe2683
JM
610 first_deleted_slot = NULL;
611
b1c933fc
RH
612 entry = htab->entries[index];
613 if (entry == EMPTY_ENTRY)
614 goto empty_entry;
615 else if (entry == DELETED_ENTRY)
616 first_deleted_slot = &htab->entries[index];
617 else if ((*htab->eq_f) (entry, element))
618 return &htab->entries[index];
619
fe046a17 620 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 621 for (;;)
e2eaf477 622 {
b1c933fc
RH
623 htab->collisions++;
624 index += hash2;
625 if (index >= size)
626 index -= size;
627
628 entry = htab->entries[index];
b4fe2683 629 if (entry == EMPTY_ENTRY)
b1c933fc
RH
630 goto empty_entry;
631 else if (entry == DELETED_ENTRY)
b4fe2683
JM
632 {
633 if (!first_deleted_slot)
634 first_deleted_slot = &htab->entries[index];
635 }
b1c933fc 636 else if ((*htab->eq_f) (entry, element))
eb383413 637 return &htab->entries[index];
e2eaf477 638 }
b1c933fc
RH
639
640 empty_entry:
641 if (insert == NO_INSERT)
642 return NULL;
643
b1c933fc
RH
644 if (first_deleted_slot)
645 {
686e72d7 646 htab->n_deleted--;
b1c933fc
RH
647 *first_deleted_slot = EMPTY_ENTRY;
648 return first_deleted_slot;
649 }
650
686e72d7 651 htab->n_elements++;
b1c933fc 652 return &htab->entries[index];
e2eaf477
ILT
653}
654
b4fe2683
JM
655/* Like htab_find_slot_with_hash, but compute the hash value from the
656 element. */
eb383413 657
e0f3df8f 658PTR *
49b1fae4 659htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
660{
661 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
662 insert);
663}
664
d6ea4e80
DD
665/* This function deletes an element with the given value from hash
666 table (the hash is computed from the element). If there is no matching
667 element in the hash table, this function does nothing. */
668
669void
49b1fae4 670htab_remove_elt (htab_t htab, PTR element)
d6ea4e80
DD
671{
672 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
673}
674
675
b4fe2683
JM
676/* This function deletes an element with the given value from hash
677 table. If there is no matching element in the hash table, this
678 function does nothing. */
e2eaf477
ILT
679
680void
49b1fae4 681htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
e2eaf477 682{
e0f3df8f 683 PTR *slot;
b4fe2683 684
d6ea4e80 685 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
b4fe2683
JM
686 if (*slot == EMPTY_ENTRY)
687 return;
688
689 if (htab->del_f)
690 (*htab->del_f) (*slot);
e2eaf477 691
b4fe2683
JM
692 *slot = DELETED_ENTRY;
693 htab->n_deleted++;
e2eaf477
ILT
694}
695
b4fe2683
JM
696/* This function clears a specified slot in a hash table. It is
697 useful when you've already done the lookup and don't want to do it
698 again. */
e2eaf477
ILT
699
700void
49b1fae4 701htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 702{
fe046a17 703 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
e2eaf477
ILT
704 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
705 abort ();
eb383413 706
b4fe2683
JM
707 if (htab->del_f)
708 (*htab->del_f) (*slot);
eb383413 709
e2eaf477 710 *slot = DELETED_ENTRY;
b4fe2683 711 htab->n_deleted++;
e2eaf477
ILT
712}
713
714/* This function scans over the entire hash table calling
715 CALLBACK for each live entry. If CALLBACK returns false,
716 the iteration stops. INFO is passed as CALLBACK's second
717 argument. */
718
719void
49b1fae4 720htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 721{
c4d8feb2
DD
722 PTR *slot;
723 PTR *limit;
724
c4d8feb2 725 slot = htab->entries;
fe046a17 726 limit = slot + htab_size (htab);
eb383413 727
b4fe2683
JM
728 do
729 {
e0f3df8f 730 PTR x = *slot;
eb383413 731
b4fe2683
JM
732 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
733 if (!(*callback) (slot, info))
734 break;
735 }
736 while (++slot < limit);
e2eaf477
ILT
737}
738
f77ed96c
DD
739/* Like htab_traverse_noresize, but does resize the table when it is
740 too empty to improve effectivity of subsequent calls. */
741
742void
49b1fae4 743htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 744{
fe046a17 745 if (htab_elements (htab) * 8 < htab_size (htab))
f77ed96c
DD
746 htab_expand (htab);
747
748 htab_traverse_noresize (htab, callback, info);
749}
750
eb383413
L
751/* Return the fraction of fixed collisions during all work with given
752 hash table. */
e2eaf477 753
b4fe2683 754double
49b1fae4 755htab_collisions (htab_t htab)
e2eaf477 756{
eb383413 757 if (htab->searches == 0)
b4fe2683 758 return 0.0;
eb383413
L
759
760 return (double) htab->collisions / (double) htab->searches;
e2eaf477 761}
8fc34799 762
68a41de7
DD
763/* Hash P as a null-terminated string.
764
765 Copied from gcc/hashtable.c. Zack had the following to say with respect
766 to applicability, though note that unlike hashtable.c, this hash table
767 implementation re-hashes rather than chain buckets.
768
769 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
770 From: Zack Weinberg <zackw@panix.com>
771 Date: Fri, 17 Aug 2001 02:15:56 -0400
772
773 I got it by extracting all the identifiers from all the source code
774 I had lying around in mid-1999, and testing many recurrences of
775 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
776 prime numbers or the appropriate identity. This was the best one.
777 I don't remember exactly what constituted "best", except I was
778 looking at bucket-length distributions mostly.
779
780 So it should be very good at hashing identifiers, but might not be
781 as good at arbitrary strings.
782
783 I'll add that it thoroughly trounces the hash functions recommended
784 for this use at http://burtleburtle.net/bob/hash/index.html, both
785 on speed and bucket distribution. I haven't tried it against the
786 function they just started using for Perl's hashes. */
8fc34799
DD
787
788hashval_t
49b1fae4 789htab_hash_string (const PTR p)
8fc34799
DD
790{
791 const unsigned char *str = (const unsigned char *) p;
792 hashval_t r = 0;
793 unsigned char c;
794
795 while ((c = *str++) != 0)
796 r = r * 67 + c - 113;
797
798 return r;
799}
7108c5dc
JM
800
801/* DERIVED FROM:
802--------------------------------------------------------------------
803lookup2.c, by Bob Jenkins, December 1996, Public Domain.
804hash(), hash2(), hash3, and mix() are externally useful functions.
805Routines to test the hash are included if SELF_TEST is defined.
806You can use this free for any purpose. It has no warranty.
807--------------------------------------------------------------------
808*/
809
810/*
811--------------------------------------------------------------------
812mix -- mix 3 32-bit values reversibly.
813For every delta with one or two bit set, and the deltas of all three
814 high bits or all three low bits, whether the original value of a,b,c
815 is almost all zero or is uniformly distributed,
816* If mix() is run forward or backward, at least 32 bits in a,b,c
817 have at least 1/4 probability of changing.
818* If mix() is run forward, every bit of c will change between 1/3 and
819 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
820mix() was built out of 36 single-cycle latency instructions in a
821 structure that could supported 2x parallelism, like so:
822 a -= b;
823 a -= c; x = (c>>13);
824 b -= c; a ^= x;
825 b -= a; x = (a<<8);
826 c -= a; b ^= x;
827 c -= b; x = (b>>13);
828 ...
829 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
830 of that parallelism. They've also turned some of those single-cycle
831 latency instructions into multi-cycle latency instructions. Still,
832 this is the fastest good hash I could find. There were about 2^^68
833 to choose from. I only looked at a billion or so.
834--------------------------------------------------------------------
835*/
836/* same, but slower, works on systems that might have 8 byte hashval_t's */
837#define mix(a,b,c) \
838{ \
839 a -= b; a -= c; a ^= (c>>13); \
840 b -= c; b -= a; b ^= (a<< 8); \
841 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
842 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
843 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
844 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
845 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
846 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
847 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
848}
849
850/*
851--------------------------------------------------------------------
852hash() -- hash a variable-length key into a 32-bit value
853 k : the key (the unaligned variable-length array of bytes)
854 len : the length of the key, counting by bytes
855 level : can be any 4-byte value
856Returns a 32-bit value. Every bit of the key affects every bit of
857the return value. Every 1-bit and 2-bit delta achieves avalanche.
858About 36+6len instructions.
859
860The best hash table sizes are powers of 2. There is no need to do
861mod a prime (mod is sooo slow!). If you need less than 32 bits,
862use a bitmask. For example, if you need only 10 bits, do
863 h = (h & hashmask(10));
864In which case, the hash table should have hashsize(10) elements.
865
866If you are hashing n strings (ub1 **)k, do it like this:
867 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
868
869By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
870code any way you wish, private, educational, or commercial. It's free.
871
872See http://burtleburtle.net/bob/hash/evahash.html
873Use for hash table lookup, or anything where one collision in 2^32 is
874acceptable. Do NOT use for cryptographic purposes.
875--------------------------------------------------------------------
876*/
877
49b1fae4
DD
878hashval_t
879iterative_hash (const PTR k_in /* the key */,
880 register size_t length /* the length of the key */,
881 register hashval_t initval /* the previous hash, or
882 an arbitrary value */)
7108c5dc
JM
883{
884 register const unsigned char *k = (const unsigned char *)k_in;
885 register hashval_t a,b,c,len;
886
887 /* Set up the internal state */
888 len = length;
889 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
890 c = initval; /* the previous hash value */
891
892 /*---------------------------------------- handle most of the key */
893#ifndef WORDS_BIGENDIAN
894 /* On a little-endian machine, if the data is 4-byte aligned we can hash
895 by word for better speed. This gives nondeterministic results on
896 big-endian machines. */
897 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
898 while (len >= 12) /* aligned */
899 {
900 a += *(hashval_t *)(k+0);
901 b += *(hashval_t *)(k+4);
902 c += *(hashval_t *)(k+8);
903 mix(a,b,c);
904 k += 12; len -= 12;
905 }
906 else /* unaligned */
907#endif
908 while (len >= 12)
909 {
910 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
911 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
912 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
913 mix(a,b,c);
914 k += 12; len -= 12;
915 }
916
917 /*------------------------------------- handle the last 11 bytes */
918 c += length;
919 switch(len) /* all the case statements fall through */
920 {
921 case 11: c+=((hashval_t)k[10]<<24);
922 case 10: c+=((hashval_t)k[9]<<16);
923 case 9 : c+=((hashval_t)k[8]<<8);
924 /* the first byte of c is reserved for the length */
925 case 8 : b+=((hashval_t)k[7]<<24);
926 case 7 : b+=((hashval_t)k[6]<<16);
927 case 6 : b+=((hashval_t)k[5]<<8);
928 case 5 : b+=k[4];
929 case 4 : a+=((hashval_t)k[3]<<24);
930 case 3 : a+=((hashval_t)k[2]<<16);
931 case 2 : a+=((hashval_t)k[1]<<8);
932 case 1 : a+=k[0];
933 /* case 0: nothing left to add */
934 }
935 mix(a,b,c);
936 /*-------------------------------------------- report the result */
937 return c;
938}
This page took 0.376887 seconds and 4 git commands to generate.