2001-08-23 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / libiberty / regex.c
CommitLineData
2a6ef469
DD
1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6ad8a379 6 This file is part of the GNU C Library.
2a6ef469
DD
7
8 The GNU C Library is free software; you can redistribute it and/or
6ad8a379
DD
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
2a6ef469
DD
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
6ad8a379 16 Lesser General Public License for more details.
2a6ef469 17
6ad8a379
DD
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 02111-1307 USA. */
2a6ef469
DD
22
23/* This file has been modified for usage in libiberty. It includes "xregex.h"
24 instead of <regex.h>. The "xregex.h" header file renames all external
25 routines with an "x" prefix so they do not collide with the native regex
26 routines or with other components regex routines. */
6ad8a379 27/* AIX requires this to be the first thing in the file. */
2a6ef469
DD
28#if defined _AIX && !defined REGEX_MALLOC
29 #pragma alloca
30#endif
31
32#undef _GNU_SOURCE
33#define _GNU_SOURCE
34
35#ifdef HAVE_CONFIG_H
36# include <config.h>
37#endif
38
39#ifndef PARAMS
40# if defined __GNUC__ || (defined __STDC__ && __STDC__)
41# define PARAMS(args) args
42# else
43# define PARAMS(args) ()
44# endif /* GCC. */
45#endif /* Not PARAMS. */
46
47#ifndef INSIDE_RECURSION
48
49# if defined STDC_HEADERS && !defined emacs
50# include <stddef.h>
51# else
52/* We need this for `regex.h', and perhaps for the Emacs include files. */
53# include <sys/types.h>
54# endif
55
56# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57
58/* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60# if defined _LIBC || WIDE_CHAR_SUPPORT
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62# include <wchar.h>
63# include <wctype.h>
64# endif
65
66# ifdef _LIBC
67/* We have to keep the namespace clean. */
68# define regfree(preg) __regfree (preg)
69# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71# define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73# define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77# define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79# define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81# define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83# define re_set_syntax(syntax) __re_set_syntax (syntax)
84# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
88# define btowc __btowc
89
90/* We are also using some library internals. */
91# include <locale/localeinfo.h>
92# include <locale/elem-hash.h>
93# include <langinfo.h>
94# include <locale/coll-lookup.h>
95# endif
96
97/* This is for other GNU distributions with internationalized messages. */
98# if HAVE_LIBINTL_H || defined _LIBC
99# include <libintl.h>
100# ifdef _LIBC
101# undef gettext
102# define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103# endif
104# else
105# define gettext(msgid) (msgid)
106# endif
107
108# ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
111# define gettext_noop(String) String
112# endif
113
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116# ifdef emacs
117
118# include "lisp.h"
119# include "buffer.h"
120# include "syntax.h"
121
122# else /* not emacs */
123
124/* If we are not linking with Emacs proper,
125 we can't use the relocating allocator
126 even if config.h says that we can. */
127# undef REL_ALLOC
128
129# if defined STDC_HEADERS || defined _LIBC
130# include <stdlib.h>
131# else
132char *malloc ();
133char *realloc ();
134# endif
135
136/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137 If nothing else has been done, use the method below. */
138# ifdef INHIBIT_STRING_HEADER
139# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140# if !defined bzero && !defined bcopy
141# undef INHIBIT_STRING_HEADER
142# endif
143# endif
144# endif
145
146/* This is the normal way of making sure we have a bcopy and a bzero.
147 This is used in most programs--a few other programs avoid this
148 by defining INHIBIT_STRING_HEADER. */
149# ifndef INHIBIT_STRING_HEADER
150# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151# include <string.h>
152# ifndef bzero
153# ifndef _LIBC
154# define bzero(s, n) (memset (s, '\0', n), (s))
155# else
156# define bzero(s, n) __bzero (s, n)
157# endif
158# endif
159# else
160# include <strings.h>
161# ifndef memcmp
162# define memcmp(s1, s2, n) bcmp (s1, s2, n)
163# endif
164# ifndef memcpy
165# define memcpy(d, s, n) (bcopy (s, d, n), (d))
166# endif
167# endif
168# endif
169
170/* Define the syntax stuff for \<, \>, etc. */
171
172/* This must be nonzero for the wordchar and notwordchar pattern
173 commands in re_match_2. */
174# ifndef Sword
175# define Sword 1
176# endif
177
178# ifdef SWITCH_ENUM_BUG
179# define SWITCH_ENUM_CAST(x) ((int)(x))
180# else
181# define SWITCH_ENUM_CAST(x) (x)
182# endif
183
184# endif /* not emacs */
185
186# if defined _LIBC || HAVE_LIMITS_H
187# include <limits.h>
188# endif
189
190# ifndef MB_LEN_MAX
191# define MB_LEN_MAX 1
192# endif
193\f
194/* Get the interface, including the syntax bits. */
195# include "xregex.h" /* change for libiberty */
196
197/* isalpha etc. are used for the character classes. */
198# include <ctype.h>
199
200/* Jim Meyering writes:
201
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
211
212# undef ISASCII
213# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214# define ISASCII(c) 1
215# else
216# define ISASCII(c) isascii(c)
217# endif
218
219# ifdef isblank
220# define ISBLANK(c) (ISASCII (c) && isblank (c))
221# else
222# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223# endif
224# ifdef isgraph
225# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226# else
227# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228# endif
229
230# undef ISPRINT
231# define ISPRINT(c) (ISASCII (c) && isprint (c))
232# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233# define ISALNUM(c) (ISASCII (c) && isalnum (c))
234# define ISALPHA(c) (ISASCII (c) && isalpha (c))
235# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236# define ISLOWER(c) (ISASCII (c) && islower (c))
237# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238# define ISSPACE(c) (ISASCII (c) && isspace (c))
239# define ISUPPER(c) (ISASCII (c) && isupper (c))
240# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
242# ifdef _tolower
243# define TOLOWER(c) _tolower(c)
244# else
245# define TOLOWER(c) tolower(c)
246# endif
247
248# ifndef NULL
249# define NULL (void *)0
250# endif
251
252/* We remove any previous definition of `SIGN_EXTEND_CHAR',
253 since ours (we hope) works properly with all combinations of
254 machines, compilers, `char' and `unsigned char' argument types.
255 (Per Bothner suggested the basic approach.) */
256# undef SIGN_EXTEND_CHAR
257# if __STDC__
258# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259# else /* not __STDC__ */
260/* As in Harbison and Steele. */
261# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262# endif
263\f
264# ifndef emacs
265/* How many characters in the character set. */
266# define CHAR_SET_SIZE 256
267
268# ifdef SYNTAX_TABLE
269
270extern char *re_syntax_table;
271
272# else /* not SYNTAX_TABLE */
273
274static char re_syntax_table[CHAR_SET_SIZE];
275
276static void init_syntax_once PARAMS ((void));
277
278static void
279init_syntax_once ()
280{
281 register int c;
282 static int done = 0;
283
284 if (done)
285 return;
286 bzero (re_syntax_table, sizeof re_syntax_table);
287
288 for (c = 0; c < CHAR_SET_SIZE; ++c)
289 if (ISALNUM (c))
290 re_syntax_table[c] = Sword;
291
292 re_syntax_table['_'] = Sword;
293
294 done = 1;
295}
296
297# endif /* not SYNTAX_TABLE */
298
299# define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
300
301# endif /* emacs */
302\f
303/* Integer type for pointers. */
304# if !defined _LIBC
305typedef unsigned long int uintptr_t;
306# endif
307
308/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
313
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
317
318# ifdef REGEX_MALLOC
319
320# define REGEX_ALLOCATE malloc
321# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322# define REGEX_FREE free
323
324# else /* not REGEX_MALLOC */
325
326/* Emacs already defines alloca, sometimes. */
327# ifndef alloca
328
329/* Make alloca work the best possible way. */
330# ifdef __GNUC__
331# define alloca __builtin_alloca
332# else /* not __GNUC__ */
333# if HAVE_ALLOCA_H
334# include <alloca.h>
335# endif /* HAVE_ALLOCA_H */
336# endif /* not __GNUC__ */
337
338# endif /* not alloca */
339
340# define REGEX_ALLOCATE alloca
341
342/* Assumes a `char *destination' variable. */
343# define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
346
347/* No need to do anything to free, after alloca. */
348# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
349
350# endif /* not REGEX_MALLOC */
351
352/* Define how to allocate the failure stack. */
353
354# if defined REL_ALLOC && defined REGEX_MALLOC
355
356# define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360# define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
362
363# else /* not using relocating allocator */
364
365# ifdef REGEX_MALLOC
366
367# define REGEX_ALLOCATE_STACK malloc
368# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369# define REGEX_FREE_STACK free
370
371# else /* not REGEX_MALLOC */
372
373# define REGEX_ALLOCATE_STACK alloca
374
375# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377/* No need to explicitly free anything. */
378# define REGEX_FREE_STACK(arg)
379
380# endif /* not REGEX_MALLOC */
381# endif /* not using relocating allocator */
382
383
384/* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
386 a good thing. */
387# define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389
390/* (Re)Allocate N items of type T using malloc, or fail. */
391# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393# define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396
397# define BYTEWIDTH 8 /* In bits. */
398
399# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400
401# undef MAX
402# undef MIN
403# define MAX(a, b) ((a) > (b) ? (a) : (b))
404# define MIN(a, b) ((a) < (b) ? (a) : (b))
405
406typedef char boolean;
407# define false 0
408# define true 1
409
410static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
411 reg_syntax_t syntax,
412 struct re_pattern_buffer *bufp));
2a6ef469
DD
413
414static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
415 const char *string1, int size1,
416 const char *string2, int size2,
417 int pos,
418 struct re_registers *regs,
419 int stop));
86710ce2
DD
420static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
421 const char *string1, int size1,
422 const char *string2, int size2,
423 int startpos, int range,
424 struct re_registers *regs, int stop));
425static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
426
427#ifdef MBS_SUPPORT
428static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
429 reg_syntax_t syntax,
430 struct re_pattern_buffer *bufp));
431
432
2a6ef469
DD
433static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
434 const char *cstring1, int csize1,
435 const char *cstring2, int csize2,
436 int pos,
437 struct re_registers *regs,
438 int stop,
439 wchar_t *string1, int size1,
440 wchar_t *string2, int size2,
441 int *mbs_offset1, int *mbs_offset2));
2a6ef469
DD
442static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
443 const char *string1, int size1,
444 const char *string2, int size2,
445 int startpos, int range,
446 struct re_registers *regs, int stop));
2a6ef469 447static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
86710ce2 448#endif
2a6ef469
DD
449\f
450/* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
454
455typedef enum
456{
457 no_op = 0,
458
459 /* Succeed right away--no more backtracking. */
460 succeed,
461
462 /* Followed by one byte giving n, then by n literal bytes. */
463 exactn,
464
465# ifdef MBS_SUPPORT
466 /* Same as exactn, but contains binary data. */
467 exactn_bin,
468# endif
469
470 /* Matches any (more or less) character. */
471 anychar,
472
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
484 elements follow.
485 See regex_compile function. */
486 charset,
487
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
490 charset_not,
491
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
498 of re_match_2.) */
499 start_memory,
500
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
508 stop_memory,
509
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
512 duplicate,
513
514 /* Fail unless at beginning of line. */
515 begline,
516
517 /* Fail unless at end of line. */
518 endline,
519
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
522 begbuf,
523
524 /* Analogously, for end of buffer/string. */
525 endbuf,
526
527 /* Followed by two byte relative address to which to jump. */
528 jump,
529
530 /* Same as jump, but marks the end of an alternative. */
531 jump_past_alt,
532
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
536 on_failure_jump,
537
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump,
541
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
545 pop_failure_jump,
546
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
555 maybe_pop_jump,
556
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
563 dummy_failure_jump,
564
565 /* Push a dummy failure point and continue. Used at the end of
566 alternatives. */
567 push_dummy_failure,
568
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
572 succeed_n,
573
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
577 jump_n,
578
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
581 bytes of number. */
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
583 set_number_at,
584
585 wordchar, /* Matches any word-constituent character. */
586 notwordchar, /* Matches any char that is not a word-constituent. */
587
588 wordbeg, /* Succeeds if at word beginning. */
589 wordend, /* Succeeds if at word end. */
590
591 wordbound, /* Succeeds if at a word boundary. */
592 notwordbound /* Succeeds if not at a word boundary. */
593
594# ifdef emacs
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
598
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
601 syntaxspec,
602
603 /* Matches any character whose syntax is not that specified. */
604 notsyntaxspec
605# endif /* emacs */
606} re_opcode_t;
607#endif /* not INSIDE_RECURSION */
608\f
609
610#ifdef BYTE
611# define CHAR_T char
612# define UCHAR_T unsigned char
613# define COMPILED_BUFFER_VAR bufp->buffer
614# define OFFSET_ADDRESS_SIZE 2
615# define PREFIX(name) byte_##name
616# define ARG_PREFIX(name) name
617# define PUT_CHAR(c) putchar (c)
2a6ef469 618#else
86710ce2
DD
619# ifdef WCHAR
620# define CHAR_T wchar_t
621# define UCHAR_T wchar_t
622# define COMPILED_BUFFER_VAR wc_buffer
623# define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624# define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625# define PREFIX(name) wcs_##name
626# define ARG_PREFIX(name) c##name
627/* Should we use wide stream?? */
628# define PUT_CHAR(c) printf ("%C", c);
629# define TRUE 1
630# define FALSE 0
631# else
632# ifdef MBS_SUPPORT
633# define WCHAR
634# define INSIDE_RECURSION
635# include "regex.c"
636# undef INSIDE_RECURSION
637# endif
638# define BYTE
2a6ef469
DD
639# define INSIDE_RECURSION
640# include "regex.c"
641# undef INSIDE_RECURSION
642# endif
2a6ef469
DD
643#endif
644
645#ifdef INSIDE_RECURSION
646/* Common operations on the compiled pattern. */
647
648/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
649/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
650
651# ifdef WCHAR
652# define STORE_NUMBER(destination, number) \
653 do { \
654 *(destination) = (UCHAR_T)(number); \
655 } while (0)
656# else /* BYTE */
657# define STORE_NUMBER(destination, number) \
658 do { \
659 (destination)[0] = (number) & 0377; \
660 (destination)[1] = (number) >> 8; \
661 } while (0)
662# endif /* WCHAR */
663
664/* Same as STORE_NUMBER, except increment DESTINATION to
665 the byte after where the number is stored. Therefore, DESTINATION
666 must be an lvalue. */
667/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
668
669# define STORE_NUMBER_AND_INCR(destination, number) \
670 do { \
671 STORE_NUMBER (destination, number); \
672 (destination) += OFFSET_ADDRESS_SIZE; \
673 } while (0)
674
675/* Put into DESTINATION a number stored in two contiguous bytes starting
676 at SOURCE. */
677/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
678
679# ifdef WCHAR
680# define EXTRACT_NUMBER(destination, source) \
681 do { \
682 (destination) = *(source); \
683 } while (0)
684# else /* BYTE */
685# define EXTRACT_NUMBER(destination, source) \
686 do { \
687 (destination) = *(source) & 0377; \
688 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
689 } while (0)
690# endif
691
692# ifdef DEBUG
693static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
694static void
695PREFIX(extract_number) (dest, source)
696 int *dest;
697 UCHAR_T *source;
698{
699# ifdef WCHAR
700 *dest = *source;
701# else /* BYTE */
702 int temp = SIGN_EXTEND_CHAR (*(source + 1));
703 *dest = *source & 0377;
704 *dest += temp << 8;
705# endif
706}
707
708# ifndef EXTRACT_MACROS /* To debug the macros. */
709# undef EXTRACT_NUMBER
710# define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
711# endif /* not EXTRACT_MACROS */
712
713# endif /* DEBUG */
714
715/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
716 SOURCE must be an lvalue. */
717
718# define EXTRACT_NUMBER_AND_INCR(destination, source) \
719 do { \
720 EXTRACT_NUMBER (destination, source); \
721 (source) += OFFSET_ADDRESS_SIZE; \
722 } while (0)
723
724# ifdef DEBUG
725static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
726 UCHAR_T **source));
727static void
728PREFIX(extract_number_and_incr) (destination, source)
729 int *destination;
730 UCHAR_T **source;
731{
732 PREFIX(extract_number) (destination, *source);
733 *source += OFFSET_ADDRESS_SIZE;
734}
735
736# ifndef EXTRACT_MACROS
737# undef EXTRACT_NUMBER_AND_INCR
738# define EXTRACT_NUMBER_AND_INCR(dest, src) \
739 PREFIX(extract_number_and_incr) (&dest, &src)
740# endif /* not EXTRACT_MACROS */
741
742# endif /* DEBUG */
743
744\f
745
746/* If DEBUG is defined, Regex prints many voluminous messages about what
747 it is doing (if the variable `debug' is nonzero). If linked with the
748 main program in `iregex.c', you can enter patterns and strings
749 interactively. And if linked with the main program in `main.c' and
750 the other test files, you can run the already-written tests. */
751
752# ifdef DEBUG
753
754# ifndef DEFINED_ONCE
755
756/* We use standard I/O for debugging. */
757# include <stdio.h>
758
759/* It is useful to test things that ``must'' be true when debugging. */
760# include <assert.h>
761
762static int debug;
763
764# define DEBUG_STATEMENT(e) e
765# define DEBUG_PRINT1(x) if (debug) printf (x)
766# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
767# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
768# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
769# endif /* not DEFINED_ONCE */
770
771# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
772 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
773# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
774 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
775
776
777/* Print the fastmap in human-readable form. */
778
779# ifndef DEFINED_ONCE
780void
781print_fastmap (fastmap)
782 char *fastmap;
783{
784 unsigned was_a_range = 0;
785 unsigned i = 0;
786
787 while (i < (1 << BYTEWIDTH))
788 {
789 if (fastmap[i++])
790 {
791 was_a_range = 0;
792 putchar (i - 1);
793 while (i < (1 << BYTEWIDTH) && fastmap[i])
794 {
795 was_a_range = 1;
796 i++;
797 }
798 if (was_a_range)
799 {
800 printf ("-");
801 putchar (i - 1);
802 }
803 }
804 }
805 putchar ('\n');
806}
807# endif /* not DEFINED_ONCE */
808
809
810/* Print a compiled pattern string in human-readable form, starting at
811 the START pointer into it and ending just before the pointer END. */
812
813void
814PREFIX(print_partial_compiled_pattern) (start, end)
815 UCHAR_T *start;
816 UCHAR_T *end;
817{
818 int mcnt, mcnt2;
819 UCHAR_T *p1;
820 UCHAR_T *p = start;
821 UCHAR_T *pend = end;
822
823 if (start == NULL)
824 {
825 printf ("(null)\n");
826 return;
827 }
828
829 /* Loop over pattern commands. */
830 while (p < pend)
831 {
832# ifdef _LIBC
833 printf ("%td:\t", p - start);
834# else
835 printf ("%ld:\t", (long int) (p - start));
836# endif
837
838 switch ((re_opcode_t) *p++)
839 {
840 case no_op:
841 printf ("/no_op");
842 break;
843
844 case exactn:
845 mcnt = *p++;
846 printf ("/exactn/%d", mcnt);
847 do
848 {
849 putchar ('/');
850 PUT_CHAR (*p++);
851 }
852 while (--mcnt);
853 break;
854
855# ifdef MBS_SUPPORT
856 case exactn_bin:
857 mcnt = *p++;
858 printf ("/exactn_bin/%d", mcnt);
859 do
860 {
861 printf("/%lx", (long int) *p++);
862 }
863 while (--mcnt);
864 break;
865# endif /* MBS_SUPPORT */
866
867 case start_memory:
868 mcnt = *p++;
869 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
870 break;
871
872 case stop_memory:
873 mcnt = *p++;
874 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
875 break;
876
877 case duplicate:
878 printf ("/duplicate/%ld", (long int) *p++);
879 break;
880
881 case anychar:
882 printf ("/anychar");
883 break;
884
885 case charset:
886 case charset_not:
887 {
888# ifdef WCHAR
889 int i, length;
890 wchar_t *workp = p;
891 printf ("/charset [%s",
892 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
893 p += 5;
894 length = *workp++; /* the length of char_classes */
895 for (i=0 ; i<length ; i++)
896 printf("[:%lx:]", (long int) *p++);
897 length = *workp++; /* the length of collating_symbol */
898 for (i=0 ; i<length ;)
899 {
900 printf("[.");
901 while(*p != 0)
902 PUT_CHAR((i++,*p++));
903 i++,p++;
904 printf(".]");
905 }
906 length = *workp++; /* the length of equivalence_class */
907 for (i=0 ; i<length ;)
908 {
909 printf("[=");
910 while(*p != 0)
911 PUT_CHAR((i++,*p++));
912 i++,p++;
913 printf("=]");
914 }
915 length = *workp++; /* the length of char_range */
916 for (i=0 ; i<length ; i++)
917 {
918 wchar_t range_start = *p++;
919 wchar_t range_end = *p++;
920 printf("%C-%C", range_start, range_end);
921 }
922 length = *workp++; /* the length of char */
923 for (i=0 ; i<length ; i++)
924 printf("%C", *p++);
925 putchar (']');
926# else
927 register int c, last = -100;
928 register int in_range = 0;
929
930 printf ("/charset [%s",
931 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
932
933 assert (p + *p < pend);
934
935 for (c = 0; c < 256; c++)
936 if (c / 8 < *p
937 && (p[1 + (c/8)] & (1 << (c % 8))))
938 {
939 /* Are we starting a range? */
940 if (last + 1 == c && ! in_range)
941 {
942 putchar ('-');
943 in_range = 1;
944 }
945 /* Have we broken a range? */
946 else if (last + 1 != c && in_range)
947 {
948 putchar (last);
949 in_range = 0;
950 }
951
952 if (! in_range)
953 putchar (c);
954
955 last = c;
956 }
957
958 if (in_range)
959 putchar (last);
960
961 putchar (']');
962
963 p += 1 + *p;
964# endif /* WCHAR */
965 }
966 break;
967
968 case begline:
969 printf ("/begline");
970 break;
971
972 case endline:
973 printf ("/endline");
974 break;
975
976 case on_failure_jump:
977 PREFIX(extract_number_and_incr) (&mcnt, &p);
978# ifdef _LIBC
979 printf ("/on_failure_jump to %td", p + mcnt - start);
980# else
981 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
982# endif
983 break;
984
985 case on_failure_keep_string_jump:
986 PREFIX(extract_number_and_incr) (&mcnt, &p);
987# ifdef _LIBC
988 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
989# else
990 printf ("/on_failure_keep_string_jump to %ld",
991 (long int) (p + mcnt - start));
992# endif
993 break;
994
995 case dummy_failure_jump:
996 PREFIX(extract_number_and_incr) (&mcnt, &p);
997# ifdef _LIBC
998 printf ("/dummy_failure_jump to %td", p + mcnt - start);
999# else
1000 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1001# endif
1002 break;
1003
1004 case push_dummy_failure:
1005 printf ("/push_dummy_failure");
1006 break;
1007
1008 case maybe_pop_jump:
1009 PREFIX(extract_number_and_incr) (&mcnt, &p);
1010# ifdef _LIBC
1011 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1012# else
1013 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1014# endif
1015 break;
1016
1017 case pop_failure_jump:
1018 PREFIX(extract_number_and_incr) (&mcnt, &p);
1019# ifdef _LIBC
1020 printf ("/pop_failure_jump to %td", p + mcnt - start);
1021# else
1022 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1023# endif
1024 break;
1025
1026 case jump_past_alt:
1027 PREFIX(extract_number_and_incr) (&mcnt, &p);
1028# ifdef _LIBC
1029 printf ("/jump_past_alt to %td", p + mcnt - start);
1030# else
1031 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1032# endif
1033 break;
1034
1035 case jump:
1036 PREFIX(extract_number_and_incr) (&mcnt, &p);
1037# ifdef _LIBC
1038 printf ("/jump to %td", p + mcnt - start);
1039# else
1040 printf ("/jump to %ld", (long int) (p + mcnt - start));
1041# endif
1042 break;
1043
1044 case succeed_n:
1045 PREFIX(extract_number_and_incr) (&mcnt, &p);
1046 p1 = p + mcnt;
1047 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1048# ifdef _LIBC
1049 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1050# else
1051 printf ("/succeed_n to %ld, %d times",
1052 (long int) (p1 - start), mcnt2);
1053# endif
1054 break;
1055
1056 case jump_n:
1057 PREFIX(extract_number_and_incr) (&mcnt, &p);
1058 p1 = p + mcnt;
1059 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1060 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1061 break;
1062
1063 case set_number_at:
1064 PREFIX(extract_number_and_incr) (&mcnt, &p);
1065 p1 = p + mcnt;
1066 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1067# ifdef _LIBC
1068 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1069# else
1070 printf ("/set_number_at location %ld to %d",
1071 (long int) (p1 - start), mcnt2);
1072# endif
1073 break;
1074
1075 case wordbound:
1076 printf ("/wordbound");
1077 break;
1078
1079 case notwordbound:
1080 printf ("/notwordbound");
1081 break;
1082
1083 case wordbeg:
1084 printf ("/wordbeg");
1085 break;
1086
1087 case wordend:
1088 printf ("/wordend");
1089 break;
1090
1091# ifdef emacs
1092 case before_dot:
1093 printf ("/before_dot");
1094 break;
1095
1096 case at_dot:
1097 printf ("/at_dot");
1098 break;
1099
1100 case after_dot:
1101 printf ("/after_dot");
1102 break;
1103
1104 case syntaxspec:
1105 printf ("/syntaxspec");
1106 mcnt = *p++;
1107 printf ("/%d", mcnt);
1108 break;
1109
1110 case notsyntaxspec:
1111 printf ("/notsyntaxspec");
1112 mcnt = *p++;
1113 printf ("/%d", mcnt);
1114 break;
1115# endif /* emacs */
1116
1117 case wordchar:
1118 printf ("/wordchar");
1119 break;
1120
1121 case notwordchar:
1122 printf ("/notwordchar");
1123 break;
1124
1125 case begbuf:
1126 printf ("/begbuf");
1127 break;
1128
1129 case endbuf:
1130 printf ("/endbuf");
1131 break;
1132
1133 default:
1134 printf ("?%ld", (long int) *(p-1));
1135 }
1136
1137 putchar ('\n');
1138 }
1139
1140# ifdef _LIBC
1141 printf ("%td:\tend of pattern.\n", p - start);
1142# else
1143 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1144# endif
1145}
1146
1147
1148void
1149PREFIX(print_compiled_pattern) (bufp)
1150 struct re_pattern_buffer *bufp;
1151{
1152 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1153
1154 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1155 + bufp->used / sizeof(UCHAR_T));
1156 printf ("%ld bytes used/%ld bytes allocated.\n",
1157 bufp->used, bufp->allocated);
1158
1159 if (bufp->fastmap_accurate && bufp->fastmap)
1160 {
1161 printf ("fastmap: ");
1162 print_fastmap (bufp->fastmap);
1163 }
1164
1165# ifdef _LIBC
1166 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1167# else
1168 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1169# endif
1170 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1171 printf ("can_be_null: %d\t", bufp->can_be_null);
1172 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1173 printf ("no_sub: %d\t", bufp->no_sub);
1174 printf ("not_bol: %d\t", bufp->not_bol);
1175 printf ("not_eol: %d\t", bufp->not_eol);
1176 printf ("syntax: %lx\n", bufp->syntax);
1177 /* Perhaps we should print the translate table? */
1178}
1179
1180
1181void
1182PREFIX(print_double_string) (where, string1, size1, string2, size2)
1183 const CHAR_T *where;
1184 const CHAR_T *string1;
1185 const CHAR_T *string2;
1186 int size1;
1187 int size2;
1188{
1189 int this_char;
1190
1191 if (where == NULL)
1192 printf ("(null)");
1193 else
1194 {
6ad8a379
DD
1195 int cnt;
1196
2a6ef469
DD
1197 if (FIRST_STRING_P (where))
1198 {
1199 for (this_char = where - string1; this_char < size1; this_char++)
1200 PUT_CHAR (string1[this_char]);
1201
1202 where = string2;
1203 }
1204
6ad8a379 1205 cnt = 0;
2a6ef469 1206 for (this_char = where - string2; this_char < size2; this_char++)
6ad8a379
DD
1207 {
1208 PUT_CHAR (string2[this_char]);
1209 if (++cnt > 100)
1210 {
1211 fputs ("...", stdout);
1212 break;
1213 }
1214 }
2a6ef469
DD
1215 }
1216}
1217
1218# ifndef DEFINED_ONCE
1219void
1220printchar (c)
1221 int c;
1222{
1223 putc (c, stderr);
1224}
1225# endif
1226
1227# else /* not DEBUG */
1228
1229# ifndef DEFINED_ONCE
1230# undef assert
1231# define assert(e)
1232
1233# define DEBUG_STATEMENT(e)
1234# define DEBUG_PRINT1(x)
1235# define DEBUG_PRINT2(x1, x2)
1236# define DEBUG_PRINT3(x1, x2, x3)
1237# define DEBUG_PRINT4(x1, x2, x3, x4)
1238# endif /* not DEFINED_ONCE */
1239# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1240# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1241
1242# endif /* not DEBUG */
1243
1244\f
1245
1246# ifdef WCHAR
1247/* This convert a multibyte string to a wide character string.
1248 And write their correspondances to offset_buffer(see below)
1249 and write whether each wchar_t is binary data to is_binary.
1250 This assume invalid multibyte sequences as binary data.
1251 We assume offset_buffer and is_binary is already allocated
1252 enough space. */
1253
1254static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1255 size_t len, int *offset_buffer,
1256 char *is_binary);
1257static size_t
1258convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1259 CHAR_T *dest;
1260 const unsigned char* src;
1261 size_t len; /* the length of multibyte string. */
1262
1263 /* It hold correspondances between src(char string) and
1264 dest(wchar_t string) for optimization.
1265 e.g. src = "xxxyzz"
1266 dest = {'X', 'Y', 'Z'}
1267 (each "xxx", "y" and "zz" represent one multibyte character
1268 corresponding to 'X', 'Y' and 'Z'.)
1269 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1270 = {0, 3, 4, 6}
1271 */
1272 int *offset_buffer;
1273 char *is_binary;
1274{
1275 wchar_t *pdest = dest;
1276 const unsigned char *psrc = src;
1277 size_t wc_count = 0;
1278
1279 mbstate_t mbs;
1280 int i, consumed;
1281 size_t mb_remain = len;
1282 size_t mb_count = 0;
1283
1284 /* Initialize the conversion state. */
1285 memset (&mbs, 0, sizeof (mbstate_t));
1286
1287 offset_buffer[0] = 0;
1288 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1289 psrc += consumed)
1290 {
1291 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1292
1293 if (consumed <= 0)
1294 /* failed to convert. maybe src contains binary data.
1295 So we consume 1 byte manualy. */
1296 {
1297 *pdest = *psrc;
1298 consumed = 1;
1299 is_binary[wc_count] = TRUE;
1300 }
1301 else
1302 is_binary[wc_count] = FALSE;
1303 /* In sjis encoding, we use yen sign as escape character in
1304 place of reverse solidus. So we convert 0x5c(yen sign in
1305 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1306 solidus in UCS2). */
1307 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1308 *pdest = (wchar_t) *psrc;
1309
1310 offset_buffer[wc_count + 1] = mb_count += consumed;
1311 }
1312
1313 /* Fill remain of the buffer with sentinel. */
1314 for (i = wc_count + 1 ; i <= len ; i++)
1315 offset_buffer[i] = mb_count + 1;
1316
1317 return wc_count;
1318}
1319
1320# endif /* WCHAR */
1321
1322#else /* not INSIDE_RECURSION */
1323
1324/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1325 also be assigned to arbitrarily: each pattern buffer stores its own
1326 syntax, so it can be changed between regex compilations. */
1327/* This has no initializer because initialized variables in Emacs
1328 become read-only after dumping. */
1329reg_syntax_t re_syntax_options;
1330
1331
1332/* Specify the precise syntax of regexps for compilation. This provides
1333 for compatibility for various utilities which historically have
1334 different, incompatible syntaxes.
1335
1336 The argument SYNTAX is a bit mask comprised of the various bits
1337 defined in regex.h. We return the old syntax. */
1338
1339reg_syntax_t
1340re_set_syntax (syntax)
1341 reg_syntax_t syntax;
1342{
1343 reg_syntax_t ret = re_syntax_options;
1344
1345 re_syntax_options = syntax;
1346# ifdef DEBUG
1347 if (syntax & RE_DEBUG)
1348 debug = 1;
1349 else if (debug) /* was on but now is not */
1350 debug = 0;
1351# endif /* DEBUG */
1352 return ret;
1353}
1354# ifdef _LIBC
1355weak_alias (__re_set_syntax, re_set_syntax)
1356# endif
1357\f
1358/* This table gives an error message for each of the error codes listed
1359 in regex.h. Obviously the order here has to be same as there.
1360 POSIX doesn't require that we do anything for REG_NOERROR,
1361 but why not be nice? */
1362
1363static const char re_error_msgid[] =
1364 {
1365# define REG_NOERROR_IDX 0
1366 gettext_noop ("Success") /* REG_NOERROR */
1367 "\0"
1368# define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1369 gettext_noop ("No match") /* REG_NOMATCH */
1370 "\0"
1371# define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1372 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1373 "\0"
1374# define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1375 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1376 "\0"
1377# define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1378 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1379 "\0"
1380# define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1381 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1382 "\0"
1383# define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1384 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1385 "\0"
1386# define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1387 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1388 "\0"
1389# define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1390 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1391 "\0"
1392# define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1393 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1394 "\0"
1395# define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1396 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1397 "\0"
1398# define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1399 gettext_noop ("Invalid range end") /* REG_ERANGE */
1400 "\0"
1401# define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1402 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1403 "\0"
1404# define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1405 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1406 "\0"
1407# define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1408 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1409 "\0"
1410# define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1411 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1412 "\0"
1413# define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1414 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1415 };
1416
1417static const size_t re_error_msgid_idx[] =
1418 {
1419 REG_NOERROR_IDX,
1420 REG_NOMATCH_IDX,
1421 REG_BADPAT_IDX,
1422 REG_ECOLLATE_IDX,
1423 REG_ECTYPE_IDX,
1424 REG_EESCAPE_IDX,
1425 REG_ESUBREG_IDX,
1426 REG_EBRACK_IDX,
1427 REG_EPAREN_IDX,
1428 REG_EBRACE_IDX,
1429 REG_BADBR_IDX,
1430 REG_ERANGE_IDX,
1431 REG_ESPACE_IDX,
1432 REG_BADRPT_IDX,
1433 REG_EEND_IDX,
1434 REG_ESIZE_IDX,
1435 REG_ERPAREN_IDX
1436 };
1437\f
1438#endif /* INSIDE_RECURSION */
1439
1440#ifndef DEFINED_ONCE
1441/* Avoiding alloca during matching, to placate r_alloc. */
1442
1443/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1444 searching and matching functions should not call alloca. On some
1445 systems, alloca is implemented in terms of malloc, and if we're
1446 using the relocating allocator routines, then malloc could cause a
1447 relocation, which might (if the strings being searched are in the
1448 ralloc heap) shift the data out from underneath the regexp
1449 routines.
1450
1451 Here's another reason to avoid allocation: Emacs
1452 processes input from X in a signal handler; processing X input may
1453 call malloc; if input arrives while a matching routine is calling
1454 malloc, then we're scrod. But Emacs can't just block input while
1455 calling matching routines; then we don't notice interrupts when
1456 they come in. So, Emacs blocks input around all regexp calls
1457 except the matching calls, which it leaves unprotected, in the
1458 faith that they will not malloc. */
1459
1460/* Normally, this is fine. */
1461# define MATCH_MAY_ALLOCATE
1462
1463/* When using GNU C, we are not REALLY using the C alloca, no matter
1464 what config.h may say. So don't take precautions for it. */
1465# ifdef __GNUC__
1466# undef C_ALLOCA
1467# endif
1468
1469/* The match routines may not allocate if (1) they would do it with malloc
1470 and (2) it's not safe for them to use malloc.
1471 Note that if REL_ALLOC is defined, matching would not use malloc for the
1472 failure stack, but we would still use it for the register vectors;
1473 so REL_ALLOC should not affect this. */
1474# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1475# undef MATCH_MAY_ALLOCATE
1476# endif
1477#endif /* not DEFINED_ONCE */
1478\f
1479#ifdef INSIDE_RECURSION
1480/* Failure stack declarations and macros; both re_compile_fastmap and
1481 re_match_2 use a failure stack. These have to be macros because of
1482 REGEX_ALLOCATE_STACK. */
1483
1484
1485/* Number of failure points for which to initially allocate space
1486 when matching. If this number is exceeded, we allocate more
1487 space, so it is not a hard limit. */
1488# ifndef INIT_FAILURE_ALLOC
1489# define INIT_FAILURE_ALLOC 5
1490# endif
1491
1492/* Roughly the maximum number of failure points on the stack. Would be
1493 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1494 This is a variable only so users of regex can assign to it; we never
1495 change it ourselves. */
1496
1497# ifdef INT_IS_16BIT
1498
1499# ifndef DEFINED_ONCE
1500# if defined MATCH_MAY_ALLOCATE
1501/* 4400 was enough to cause a crash on Alpha OSF/1,
1502 whose default stack limit is 2mb. */
1503long int re_max_failures = 4000;
1504# else
1505long int re_max_failures = 2000;
1506# endif
1507# endif
1508
1509union PREFIX(fail_stack_elt)
1510{
1511 UCHAR_T *pointer;
1512 long int integer;
1513};
1514
1515typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1516
1517typedef struct
1518{
1519 PREFIX(fail_stack_elt_t) *stack;
1520 unsigned long int size;
1521 unsigned long int avail; /* Offset of next open position. */
1522} PREFIX(fail_stack_type);
1523
1524# else /* not INT_IS_16BIT */
1525
1526# ifndef DEFINED_ONCE
1527# if defined MATCH_MAY_ALLOCATE
1528/* 4400 was enough to cause a crash on Alpha OSF/1,
1529 whose default stack limit is 2mb. */
1530int re_max_failures = 4000;
1531# else
1532int re_max_failures = 2000;
1533# endif
1534# endif
1535
1536union PREFIX(fail_stack_elt)
1537{
1538 UCHAR_T *pointer;
1539 int integer;
1540};
1541
1542typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1543
1544typedef struct
1545{
1546 PREFIX(fail_stack_elt_t) *stack;
1547 unsigned size;
1548 unsigned avail; /* Offset of next open position. */
1549} PREFIX(fail_stack_type);
1550
1551# endif /* INT_IS_16BIT */
1552
1553# ifndef DEFINED_ONCE
1554# define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1555# define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1556# define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1557# endif
1558
1559
1560/* Define macros to initialize and free the failure stack.
1561 Do `return -2' if the alloc fails. */
1562
1563# ifdef MATCH_MAY_ALLOCATE
1564# define INIT_FAIL_STACK() \
1565 do { \
1566 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1567 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1568 \
1569 if (fail_stack.stack == NULL) \
1570 return -2; \
1571 \
1572 fail_stack.size = INIT_FAILURE_ALLOC; \
1573 fail_stack.avail = 0; \
1574 } while (0)
1575
1576# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1577# else
1578# define INIT_FAIL_STACK() \
1579 do { \
1580 fail_stack.avail = 0; \
1581 } while (0)
1582
1583# define RESET_FAIL_STACK()
1584# endif
1585
1586
1587/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1588
1589 Return 1 if succeeds, and 0 if either ran out of memory
1590 allocating space for it or it was already too large.
1591
1592 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1593
1594# define DOUBLE_FAIL_STACK(fail_stack) \
1595 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1596 ? 0 \
1597 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1598 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1599 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1600 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1601 \
1602 (fail_stack).stack == NULL \
1603 ? 0 \
1604 : ((fail_stack).size <<= 1, \
1605 1)))
1606
1607
1608/* Push pointer POINTER on FAIL_STACK.
1609 Return 1 if was able to do so and 0 if ran out of memory allocating
1610 space to do so. */
1611# define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1612 ((FAIL_STACK_FULL () \
1613 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1614 ? 0 \
1615 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1616 1))
1617
1618/* Push a pointer value onto the failure stack.
1619 Assumes the variable `fail_stack'. Probably should only
1620 be called from within `PUSH_FAILURE_POINT'. */
1621# define PUSH_FAILURE_POINTER(item) \
1622 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1623
1624/* This pushes an integer-valued item onto the failure stack.
1625 Assumes the variable `fail_stack'. Probably should only
1626 be called from within `PUSH_FAILURE_POINT'. */
1627# define PUSH_FAILURE_INT(item) \
1628 fail_stack.stack[fail_stack.avail++].integer = (item)
1629
1630/* Push a fail_stack_elt_t value onto the failure stack.
1631 Assumes the variable `fail_stack'. Probably should only
1632 be called from within `PUSH_FAILURE_POINT'. */
1633# define PUSH_FAILURE_ELT(item) \
1634 fail_stack.stack[fail_stack.avail++] = (item)
1635
1636/* These three POP... operations complement the three PUSH... operations.
1637 All assume that `fail_stack' is nonempty. */
1638# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1639# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1640# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1641
1642/* Used to omit pushing failure point id's when we're not debugging. */
1643# ifdef DEBUG
1644# define DEBUG_PUSH PUSH_FAILURE_INT
1645# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1646# else
1647# define DEBUG_PUSH(item)
1648# define DEBUG_POP(item_addr)
1649# endif
1650
1651
1652/* Push the information about the state we will need
1653 if we ever fail back to it.
1654
1655 Requires variables fail_stack, regstart, regend, reg_info, and
1656 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1657 be declared.
1658
1659 Does `return FAILURE_CODE' if runs out of memory. */
1660
1661# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1662 do { \
1663 char *destination; \
1664 /* Must be int, so when we don't save any registers, the arithmetic \
1665 of 0 + -1 isn't done as unsigned. */ \
1666 /* Can't be int, since there is not a shred of a guarantee that int \
1667 is wide enough to hold a value of something to which pointer can \
1668 be assigned */ \
1669 active_reg_t this_reg; \
1670 \
1671 DEBUG_STATEMENT (failure_id++); \
1672 DEBUG_STATEMENT (nfailure_points_pushed++); \
1673 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1674 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1675 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1676 \
1677 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1678 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1679 \
1680 /* Ensure we have enough space allocated for what we will push. */ \
1681 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1682 { \
1683 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1684 return failure_code; \
1685 \
1686 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1687 (fail_stack).size); \
1688 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1689 } \
1690 \
1691 /* Push the info, starting with the registers. */ \
1692 DEBUG_PRINT1 ("\n"); \
1693 \
1694 if (1) \
1695 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1696 this_reg++) \
1697 { \
1698 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1699 DEBUG_STATEMENT (num_regs_pushed++); \
1700 \
1701 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1702 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1703 \
1704 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1705 PUSH_FAILURE_POINTER (regend[this_reg]); \
1706 \
1707 DEBUG_PRINT2 (" info: %p\n ", \
1708 reg_info[this_reg].word.pointer); \
1709 DEBUG_PRINT2 (" match_null=%d", \
1710 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1711 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1712 DEBUG_PRINT2 (" matched_something=%d", \
1713 MATCHED_SOMETHING (reg_info[this_reg])); \
1714 DEBUG_PRINT2 (" ever_matched=%d", \
1715 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1716 DEBUG_PRINT1 ("\n"); \
1717 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1718 } \
1719 \
1720 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1721 PUSH_FAILURE_INT (lowest_active_reg); \
1722 \
1723 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1724 PUSH_FAILURE_INT (highest_active_reg); \
1725 \
1726 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1727 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1728 PUSH_FAILURE_POINTER (pattern_place); \
1729 \
1730 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1731 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1732 size2); \
1733 DEBUG_PRINT1 ("'\n"); \
1734 PUSH_FAILURE_POINTER (string_place); \
1735 \
1736 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1737 DEBUG_PUSH (failure_id); \
1738 } while (0)
1739
1740# ifndef DEFINED_ONCE
1741/* This is the number of items that are pushed and popped on the stack
1742 for each register. */
1743# define NUM_REG_ITEMS 3
1744
1745/* Individual items aside from the registers. */
1746# ifdef DEBUG
1747# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1748# else
1749# define NUM_NONREG_ITEMS 4
1750# endif
1751
1752/* We push at most this many items on the stack. */
1753/* We used to use (num_regs - 1), which is the number of registers
1754 this regexp will save; but that was changed to 5
1755 to avoid stack overflow for a regexp with lots of parens. */
1756# define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1757
1758/* We actually push this many items. */
1759# define NUM_FAILURE_ITEMS \
1760 (((0 \
1761 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1762 * NUM_REG_ITEMS) \
1763 + NUM_NONREG_ITEMS)
1764
1765/* How many items can still be added to the stack without overflowing it. */
1766# define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1767# endif /* not DEFINED_ONCE */
1768
1769
1770/* Pops what PUSH_FAIL_STACK pushes.
1771
1772 We restore into the parameters, all of which should be lvalues:
1773 STR -- the saved data position.
1774 PAT -- the saved pattern position.
1775 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1776 REGSTART, REGEND -- arrays of string positions.
1777 REG_INFO -- array of information about each subexpression.
1778
1779 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1780 `pend', `string1', `size1', `string2', and `size2'. */
1781# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1782{ \
1783 DEBUG_STATEMENT (unsigned failure_id;) \
1784 active_reg_t this_reg; \
1785 const UCHAR_T *string_temp; \
1786 \
1787 assert (!FAIL_STACK_EMPTY ()); \
1788 \
1789 /* Remove failure points and point to how many regs pushed. */ \
1790 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1791 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1792 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1793 \
1794 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1795 \
1796 DEBUG_POP (&failure_id); \
1797 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1798 \
1799 /* If the saved string location is NULL, it came from an \
1800 on_failure_keep_string_jump opcode, and we want to throw away the \
1801 saved NULL, thus retaining our current position in the string. */ \
1802 string_temp = POP_FAILURE_POINTER (); \
1803 if (string_temp != NULL) \
1804 str = (const CHAR_T *) string_temp; \
1805 \
1806 DEBUG_PRINT2 (" Popping string %p: `", str); \
1807 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1808 DEBUG_PRINT1 ("'\n"); \
1809 \
1810 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1811 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1812 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1813 \
1814 /* Restore register info. */ \
1815 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1816 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1817 \
1818 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1819 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1820 \
1821 if (1) \
1822 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1823 { \
1824 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1825 \
1826 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1827 DEBUG_PRINT2 (" info: %p\n", \
1828 reg_info[this_reg].word.pointer); \
1829 \
1830 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1831 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1832 \
1833 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1834 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1835 } \
1836 else \
1837 { \
1838 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1839 { \
1840 reg_info[this_reg].word.integer = 0; \
1841 regend[this_reg] = 0; \
1842 regstart[this_reg] = 0; \
1843 } \
1844 highest_active_reg = high_reg; \
1845 } \
1846 \
1847 set_regs_matched_done = 0; \
1848 DEBUG_STATEMENT (nfailure_points_popped++); \
1849} /* POP_FAILURE_POINT */
1850\f
1851/* Structure for per-register (a.k.a. per-group) information.
1852 Other register information, such as the
1853 starting and ending positions (which are addresses), and the list of
1854 inner groups (which is a bits list) are maintained in separate
1855 variables.
1856
1857 We are making a (strictly speaking) nonportable assumption here: that
1858 the compiler will pack our bit fields into something that fits into
1859 the type of `word', i.e., is something that fits into one item on the
1860 failure stack. */
1861
1862
1863/* Declarations and macros for re_match_2. */
1864
1865typedef union
1866{
1867 PREFIX(fail_stack_elt_t) word;
1868 struct
1869 {
1870 /* This field is one if this group can match the empty string,
1871 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1872# define MATCH_NULL_UNSET_VALUE 3
1873 unsigned match_null_string_p : 2;
1874 unsigned is_active : 1;
1875 unsigned matched_something : 1;
1876 unsigned ever_matched_something : 1;
1877 } bits;
1878} PREFIX(register_info_type);
1879
1880# ifndef DEFINED_ONCE
1881# define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1882# define IS_ACTIVE(R) ((R).bits.is_active)
1883# define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1884# define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1885
1886
1887/* Call this when have matched a real character; it sets `matched' flags
1888 for the subexpressions which we are currently inside. Also records
1889 that those subexprs have matched. */
1890# define SET_REGS_MATCHED() \
1891 do \
1892 { \
1893 if (!set_regs_matched_done) \
1894 { \
1895 active_reg_t r; \
1896 set_regs_matched_done = 1; \
1897 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1898 { \
1899 MATCHED_SOMETHING (reg_info[r]) \
1900 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1901 = 1; \
1902 } \
1903 } \
1904 } \
1905 while (0)
1906# endif /* not DEFINED_ONCE */
1907
1908/* Registers are set to a sentinel when they haven't yet matched. */
1909static CHAR_T PREFIX(reg_unset_dummy);
1910# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1911# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1912
1913/* Subroutine declarations and macros for regex_compile. */
1914static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1915static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1916 int arg1, int arg2));
1917static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1918 int arg, UCHAR_T *end));
1919static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1920 int arg1, int arg2, UCHAR_T *end));
1921static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1922 const CHAR_T *p,
1923 reg_syntax_t syntax));
1924static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1925 const CHAR_T *pend,
1926 reg_syntax_t syntax));
1927# ifdef WCHAR
1928static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1929 const CHAR_T **p_ptr,
1930 const CHAR_T *pend,
1931 char *translate,
1932 reg_syntax_t syntax,
1933 UCHAR_T *b,
1934 CHAR_T *char_set));
1935static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1936# else /* BYTE */
1937static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1938 const char **p_ptr,
1939 const char *pend,
1940 char *translate,
1941 reg_syntax_t syntax,
1942 unsigned char *b));
1943# endif /* WCHAR */
1944
1945/* Fetch the next character in the uncompiled pattern---translating it
1946 if necessary. Also cast from a signed character in the constant
1947 string passed to us by the user to an unsigned char that we can use
1948 as an array index (in, e.g., `translate'). */
1949/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1950 because it is impossible to allocate 4GB array for some encodings
1951 which have 4 byte character_set like UCS4. */
1952# ifndef PATFETCH
1953# ifdef WCHAR
1954# define PATFETCH(c) \
1955 do {if (p == pend) return REG_EEND; \
1956 c = (UCHAR_T) *p++; \
1957 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1958 } while (0)
1959# else /* BYTE */
1960# define PATFETCH(c) \
1961 do {if (p == pend) return REG_EEND; \
1962 c = (unsigned char) *p++; \
1963 if (translate) c = (unsigned char) translate[c]; \
1964 } while (0)
1965# endif /* WCHAR */
1966# endif
1967
1968/* Fetch the next character in the uncompiled pattern, with no
1969 translation. */
1970# define PATFETCH_RAW(c) \
1971 do {if (p == pend) return REG_EEND; \
1972 c = (UCHAR_T) *p++; \
1973 } while (0)
1974
1975/* Go backwards one character in the pattern. */
1976# define PATUNFETCH p--
1977
1978
1979/* If `translate' is non-null, return translate[D], else just D. We
1980 cast the subscript to translate because some data is declared as
1981 `char *', to avoid warnings when a string constant is passed. But
1982 when we use a character as a subscript we must make it unsigned. */
1983/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1984 because it is impossible to allocate 4GB array for some encodings
1985 which have 4 byte character_set like UCS4. */
1986
1987# ifndef TRANSLATE
1988# ifdef WCHAR
1989# define TRANSLATE(d) \
1990 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1991 ? (char) translate[(unsigned char) (d)] : (d))
1992# else /* BYTE */
1993# define TRANSLATE(d) \
1994 (translate ? (char) translate[(unsigned char) (d)] : (d))
1995# endif /* WCHAR */
1996# endif
1997
1998
1999/* Macros for outputting the compiled pattern into `buffer'. */
2000
2001/* If the buffer isn't allocated when it comes in, use this. */
2002# define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2003
2004/* Make sure we have at least N more bytes of space in buffer. */
2005# ifdef WCHAR
2006# define GET_BUFFER_SPACE(n) \
2007 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2008 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2009 EXTEND_BUFFER ()
2010# else /* BYTE */
2011# define GET_BUFFER_SPACE(n) \
2012 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2013 EXTEND_BUFFER ()
2014# endif /* WCHAR */
2015
2016/* Make sure we have one more byte of buffer space and then add C to it. */
2017# define BUF_PUSH(c) \
2018 do { \
2019 GET_BUFFER_SPACE (1); \
2020 *b++ = (UCHAR_T) (c); \
2021 } while (0)
2022
2023
2024/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2025# define BUF_PUSH_2(c1, c2) \
2026 do { \
2027 GET_BUFFER_SPACE (2); \
2028 *b++ = (UCHAR_T) (c1); \
2029 *b++ = (UCHAR_T) (c2); \
2030 } while (0)
2031
2032
2033/* As with BUF_PUSH_2, except for three bytes. */
2034# define BUF_PUSH_3(c1, c2, c3) \
2035 do { \
2036 GET_BUFFER_SPACE (3); \
2037 *b++ = (UCHAR_T) (c1); \
2038 *b++ = (UCHAR_T) (c2); \
2039 *b++ = (UCHAR_T) (c3); \
2040 } while (0)
2041
2042/* Store a jump with opcode OP at LOC to location TO. We store a
2043 relative address offset by the three bytes the jump itself occupies. */
2044# define STORE_JUMP(op, loc, to) \
2045 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2046
2047/* Likewise, for a two-argument jump. */
2048# define STORE_JUMP2(op, loc, to, arg) \
2049 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2050
2051/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2052# define INSERT_JUMP(op, loc, to) \
2053 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2054
2055/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2056# define INSERT_JUMP2(op, loc, to, arg) \
2057 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2058 arg, b)
2059
2060/* This is not an arbitrary limit: the arguments which represent offsets
2061 into the pattern are two bytes long. So if 2^16 bytes turns out to
2062 be too small, many things would have to change. */
2063/* Any other compiler which, like MSC, has allocation limit below 2^16
2064 bytes will have to use approach similar to what was done below for
2065 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2066 reallocating to 0 bytes. Such thing is not going to work too well.
2067 You have been warned!! */
2068# ifndef DEFINED_ONCE
2069# if defined _MSC_VER && !defined WIN32
2070/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2071 The REALLOC define eliminates a flurry of conversion warnings,
2072 but is not required. */
2073# define MAX_BUF_SIZE 65500L
2074# define REALLOC(p,s) realloc ((p), (size_t) (s))
2075# else
2076# define MAX_BUF_SIZE (1L << 16)
2077# define REALLOC(p,s) realloc ((p), (s))
2078# endif
2079
2080/* Extend the buffer by twice its current size via realloc and
2081 reset the pointers that pointed into the old block to point to the
2082 correct places in the new one. If extending the buffer results in it
2083 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2084# if __BOUNDED_POINTERS__
2085# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2086# define MOVE_BUFFER_POINTER(P) \
2087 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2088# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2089 else \
2090 { \
2091 SET_HIGH_BOUND (b); \
2092 SET_HIGH_BOUND (begalt); \
2093 if (fixup_alt_jump) \
2094 SET_HIGH_BOUND (fixup_alt_jump); \
2095 if (laststart) \
2096 SET_HIGH_BOUND (laststart); \
2097 if (pending_exact) \
2098 SET_HIGH_BOUND (pending_exact); \
2099 }
2100# else
2101# define MOVE_BUFFER_POINTER(P) (P) += incr
2102# define ELSE_EXTEND_BUFFER_HIGH_BOUND
2103# endif
2104# endif /* not DEFINED_ONCE */
2105
2106# ifdef WCHAR
2107# define EXTEND_BUFFER() \
2108 do { \
2109 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2110 int wchar_count; \
2111 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2112 return REG_ESIZE; \
2113 bufp->allocated <<= 1; \
2114 if (bufp->allocated > MAX_BUF_SIZE) \
2115 bufp->allocated = MAX_BUF_SIZE; \
2116 /* How many characters the new buffer can have? */ \
2117 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2118 if (wchar_count == 0) wchar_count = 1; \
2119 /* Truncate the buffer to CHAR_T align. */ \
2120 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2121 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2122 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2123 if (COMPILED_BUFFER_VAR == NULL) \
2124 return REG_ESPACE; \
2125 /* If the buffer moved, move all the pointers into it. */ \
2126 if (old_buffer != COMPILED_BUFFER_VAR) \
2127 { \
2128 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2129 MOVE_BUFFER_POINTER (b); \
2130 MOVE_BUFFER_POINTER (begalt); \
2131 if (fixup_alt_jump) \
2132 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2133 if (laststart) \
2134 MOVE_BUFFER_POINTER (laststart); \
2135 if (pending_exact) \
2136 MOVE_BUFFER_POINTER (pending_exact); \
2137 } \
2138 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2139 } while (0)
2140# else /* BYTE */
2141# define EXTEND_BUFFER() \
2142 do { \
2143 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2144 if (bufp->allocated == MAX_BUF_SIZE) \
2145 return REG_ESIZE; \
2146 bufp->allocated <<= 1; \
2147 if (bufp->allocated > MAX_BUF_SIZE) \
2148 bufp->allocated = MAX_BUF_SIZE; \
2149 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2150 bufp->allocated); \
2151 if (COMPILED_BUFFER_VAR == NULL) \
2152 return REG_ESPACE; \
2153 /* If the buffer moved, move all the pointers into it. */ \
2154 if (old_buffer != COMPILED_BUFFER_VAR) \
2155 { \
2156 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2157 MOVE_BUFFER_POINTER (b); \
2158 MOVE_BUFFER_POINTER (begalt); \
2159 if (fixup_alt_jump) \
2160 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2161 if (laststart) \
2162 MOVE_BUFFER_POINTER (laststart); \
2163 if (pending_exact) \
2164 MOVE_BUFFER_POINTER (pending_exact); \
2165 } \
2166 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2167 } while (0)
2168# endif /* WCHAR */
2169
2170# ifndef DEFINED_ONCE
2171/* Since we have one byte reserved for the register number argument to
2172 {start,stop}_memory, the maximum number of groups we can report
2173 things about is what fits in that byte. */
2174# define MAX_REGNUM 255
2175
2176/* But patterns can have more than `MAX_REGNUM' registers. We just
2177 ignore the excess. */
2178typedef unsigned regnum_t;
2179
2180
2181/* Macros for the compile stack. */
2182
2183/* Since offsets can go either forwards or backwards, this type needs to
2184 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2185/* int may be not enough when sizeof(int) == 2. */
2186typedef long pattern_offset_t;
2187
2188typedef struct
2189{
2190 pattern_offset_t begalt_offset;
2191 pattern_offset_t fixup_alt_jump;
2192 pattern_offset_t inner_group_offset;
2193 pattern_offset_t laststart_offset;
2194 regnum_t regnum;
2195} compile_stack_elt_t;
2196
2197
2198typedef struct
2199{
2200 compile_stack_elt_t *stack;
2201 unsigned size;
2202 unsigned avail; /* Offset of next open position. */
2203} compile_stack_type;
2204
2205
2206# define INIT_COMPILE_STACK_SIZE 32
2207
2208# define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2209# define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2210
2211/* The next available element. */
2212# define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2213
2214# endif /* not DEFINED_ONCE */
2215
2216/* Set the bit for character C in a list. */
2217# ifndef DEFINED_ONCE
2218# define SET_LIST_BIT(c) \
2219 (b[((unsigned char) (c)) / BYTEWIDTH] \
2220 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2221# endif /* DEFINED_ONCE */
2222
2223/* Get the next unsigned number in the uncompiled pattern. */
2224# define GET_UNSIGNED_NUMBER(num) \
2225 { \
2226 while (p != pend) \
2227 { \
2228 PATFETCH (c); \
2229 if (c < '0' || c > '9') \
2230 break; \
2231 if (num <= RE_DUP_MAX) \
2232 { \
2233 if (num < 0) \
2234 num = 0; \
2235 num = num * 10 + c - '0'; \
2236 } \
2237 } \
2238 }
2239
2240# ifndef DEFINED_ONCE
2241# if defined _LIBC || WIDE_CHAR_SUPPORT
2242/* The GNU C library provides support for user-defined character classes
2243 and the functions from ISO C amendement 1. */
2244# ifdef CHARCLASS_NAME_MAX
2245# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2246# else
2247/* This shouldn't happen but some implementation might still have this
2248 problem. Use a reasonable default value. */
2249# define CHAR_CLASS_MAX_LENGTH 256
2250# endif
2251
2252# ifdef _LIBC
2253# define IS_CHAR_CLASS(string) __wctype (string)
2254# else
2255# define IS_CHAR_CLASS(string) wctype (string)
2256# endif
2257# else
2258# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2259
2260# define IS_CHAR_CLASS(string) \
2261 (STREQ (string, "alpha") || STREQ (string, "upper") \
2262 || STREQ (string, "lower") || STREQ (string, "digit") \
2263 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2264 || STREQ (string, "space") || STREQ (string, "print") \
2265 || STREQ (string, "punct") || STREQ (string, "graph") \
2266 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2267# endif
2268# endif /* DEFINED_ONCE */
2269\f
2270# ifndef MATCH_MAY_ALLOCATE
2271
2272/* If we cannot allocate large objects within re_match_2_internal,
2273 we make the fail stack and register vectors global.
2274 The fail stack, we grow to the maximum size when a regexp
2275 is compiled.
2276 The register vectors, we adjust in size each time we
2277 compile a regexp, according to the number of registers it needs. */
2278
2279static PREFIX(fail_stack_type) fail_stack;
2280
2281/* Size with which the following vectors are currently allocated.
2282 That is so we can make them bigger as needed,
2283 but never make them smaller. */
2284# ifdef DEFINED_ONCE
2285static int regs_allocated_size;
2286
2287static const char ** regstart, ** regend;
2288static const char ** old_regstart, ** old_regend;
2289static const char **best_regstart, **best_regend;
2290static const char **reg_dummy;
2291# endif /* DEFINED_ONCE */
2292
2293static PREFIX(register_info_type) *PREFIX(reg_info);
2294static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2295
2296/* Make the register vectors big enough for NUM_REGS registers,
2297 but don't make them smaller. */
2298
2299static void
2300PREFIX(regex_grow_registers) (num_regs)
2301 int num_regs;
2302{
2303 if (num_regs > regs_allocated_size)
2304 {
2305 RETALLOC_IF (regstart, num_regs, const char *);
2306 RETALLOC_IF (regend, num_regs, const char *);
2307 RETALLOC_IF (old_regstart, num_regs, const char *);
2308 RETALLOC_IF (old_regend, num_regs, const char *);
2309 RETALLOC_IF (best_regstart, num_regs, const char *);
2310 RETALLOC_IF (best_regend, num_regs, const char *);
2311 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2312 RETALLOC_IF (reg_dummy, num_regs, const char *);
2313 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2314
2315 regs_allocated_size = num_regs;
2316 }
2317}
2318
2319# endif /* not MATCH_MAY_ALLOCATE */
2320\f
2321# ifndef DEFINED_ONCE
2322static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2323 compile_stack,
2324 regnum_t regnum));
2325# endif /* not DEFINED_ONCE */
2326
2327/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2328 Returns one of error codes defined in `regex.h', or zero for success.
2329
2330 Assumes the `allocated' (and perhaps `buffer') and `translate'
2331 fields are set in BUFP on entry.
2332
2333 If it succeeds, results are put in BUFP (if it returns an error, the
2334 contents of BUFP are undefined):
2335 `buffer' is the compiled pattern;
2336 `syntax' is set to SYNTAX;
2337 `used' is set to the length of the compiled pattern;
2338 `fastmap_accurate' is zero;
2339 `re_nsub' is the number of subexpressions in PATTERN;
2340 `not_bol' and `not_eol' are zero;
2341
2342 The `fastmap' and `newline_anchor' fields are neither
2343 examined nor set. */
2344
2345/* Return, freeing storage we allocated. */
2346# ifdef WCHAR
2347# define FREE_STACK_RETURN(value) \
2348 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2349# else
2350# define FREE_STACK_RETURN(value) \
2351 return (free (compile_stack.stack), value)
2352# endif /* WCHAR */
2353
2354static reg_errcode_t
2355PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2356 const char *ARG_PREFIX(pattern);
2357 size_t ARG_PREFIX(size);
2358 reg_syntax_t syntax;
2359 struct re_pattern_buffer *bufp;
2360{
2361 /* We fetch characters from PATTERN here. Even though PATTERN is
2362 `char *' (i.e., signed), we declare these variables as unsigned, so
2363 they can be reliably used as array indices. */
2364 register UCHAR_T c, c1;
2365
2366#ifdef WCHAR
2367 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2368 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2369 size_t size;
2370 /* offset buffer for optimization. See convert_mbs_to_wc. */
2371 int *mbs_offset = NULL;
2372 /* It hold whether each wchar_t is binary data or not. */
2373 char *is_binary = NULL;
2374 /* A flag whether exactn is handling binary data or not. */
2375 char is_exactn_bin = FALSE;
2376#endif /* WCHAR */
2377
2378 /* A random temporary spot in PATTERN. */
2379 const CHAR_T *p1;
2380
2381 /* Points to the end of the buffer, where we should append. */
2382 register UCHAR_T *b;
2383
2384 /* Keeps track of unclosed groups. */
2385 compile_stack_type compile_stack;
2386
2387 /* Points to the current (ending) position in the pattern. */
2388#ifdef WCHAR
2389 const CHAR_T *p;
2390 const CHAR_T *pend;
2391#else /* BYTE */
2392 const CHAR_T *p = pattern;
2393 const CHAR_T *pend = pattern + size;
2394#endif /* WCHAR */
2395
2396 /* How to translate the characters in the pattern. */
2397 RE_TRANSLATE_TYPE translate = bufp->translate;
2398
2399 /* Address of the count-byte of the most recently inserted `exactn'
2400 command. This makes it possible to tell if a new exact-match
2401 character can be added to that command or if the character requires
2402 a new `exactn' command. */
2403 UCHAR_T *pending_exact = 0;
2404
2405 /* Address of start of the most recently finished expression.
2406 This tells, e.g., postfix * where to find the start of its
2407 operand. Reset at the beginning of groups and alternatives. */
2408 UCHAR_T *laststart = 0;
2409
2410 /* Address of beginning of regexp, or inside of last group. */
2411 UCHAR_T *begalt;
2412
2413 /* Address of the place where a forward jump should go to the end of
2414 the containing expression. Each alternative of an `or' -- except the
2415 last -- ends with a forward jump of this sort. */
2416 UCHAR_T *fixup_alt_jump = 0;
2417
2418 /* Counts open-groups as they are encountered. Remembered for the
2419 matching close-group on the compile stack, so the same register
2420 number is put in the stop_memory as the start_memory. */
2421 regnum_t regnum = 0;
2422
2423#ifdef WCHAR
2424 /* Initialize the wchar_t PATTERN and offset_buffer. */
2425 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2426 mbs_offset = TALLOC(csize + 1, int);
2427 is_binary = TALLOC(csize + 1, char);
2428 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2429 {
2430 free(pattern);
2431 free(mbs_offset);
2432 free(is_binary);
2433 return REG_ESPACE;
2434 }
2435 pattern[csize] = L'\0'; /* sentinel */
2436 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2437 pend = p + size;
2438 if (size < 0)
2439 {
2440 free(pattern);
2441 free(mbs_offset);
2442 free(is_binary);
2443 return REG_BADPAT;
2444 }
2445#endif
2446
2447#ifdef DEBUG
2448 DEBUG_PRINT1 ("\nCompiling pattern: ");
2449 if (debug)
2450 {
2451 unsigned debug_count;
2452
2453 for (debug_count = 0; debug_count < size; debug_count++)
2454 PUT_CHAR (pattern[debug_count]);
2455 putchar ('\n');
2456 }
2457#endif /* DEBUG */
2458
2459 /* Initialize the compile stack. */
2460 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2461 if (compile_stack.stack == NULL)
2462 {
2463#ifdef WCHAR
2464 free(pattern);
2465 free(mbs_offset);
2466 free(is_binary);
2467#endif
2468 return REG_ESPACE;
2469 }
2470
2471 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2472 compile_stack.avail = 0;
2473
2474 /* Initialize the pattern buffer. */
2475 bufp->syntax = syntax;
2476 bufp->fastmap_accurate = 0;
2477 bufp->not_bol = bufp->not_eol = 0;
2478
2479 /* Set `used' to zero, so that if we return an error, the pattern
2480 printer (for debugging) will think there's no pattern. We reset it
2481 at the end. */
2482 bufp->used = 0;
2483
2484 /* Always count groups, whether or not bufp->no_sub is set. */
2485 bufp->re_nsub = 0;
2486
2487#if !defined emacs && !defined SYNTAX_TABLE
2488 /* Initialize the syntax table. */
2489 init_syntax_once ();
2490#endif
2491
2492 if (bufp->allocated == 0)
2493 {
2494 if (bufp->buffer)
2495 { /* If zero allocated, but buffer is non-null, try to realloc
2496 enough space. This loses if buffer's address is bogus, but
2497 that is the user's responsibility. */
2498#ifdef WCHAR
2499 /* Free bufp->buffer and allocate an array for wchar_t pattern
2500 buffer. */
2501 free(bufp->buffer);
2502 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2503 UCHAR_T);
2504#else
2505 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2506#endif /* WCHAR */
2507 }
2508 else
2509 { /* Caller did not allocate a buffer. Do it for them. */
2510 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2511 UCHAR_T);
2512 }
2513
2514 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2515#ifdef WCHAR
2516 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2517#endif /* WCHAR */
2518 bufp->allocated = INIT_BUF_SIZE;
2519 }
2520#ifdef WCHAR
2521 else
2522 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2523#endif
2524
2525 begalt = b = COMPILED_BUFFER_VAR;
2526
2527 /* Loop through the uncompiled pattern until we're at the end. */
2528 while (p != pend)
2529 {
2530 PATFETCH (c);
2531
2532 switch (c)
2533 {
2534 case '^':
2535 {
2536 if ( /* If at start of pattern, it's an operator. */
2537 p == pattern + 1
2538 /* If context independent, it's an operator. */
2539 || syntax & RE_CONTEXT_INDEP_ANCHORS
2540 /* Otherwise, depends on what's come before. */
2541 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2542 BUF_PUSH (begline);
2543 else
2544 goto normal_char;
2545 }
2546 break;
2547
2548
2549 case '$':
2550 {
2551 if ( /* If at end of pattern, it's an operator. */
2552 p == pend
2553 /* If context independent, it's an operator. */
2554 || syntax & RE_CONTEXT_INDEP_ANCHORS
2555 /* Otherwise, depends on what's next. */
2556 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2557 BUF_PUSH (endline);
2558 else
2559 goto normal_char;
2560 }
2561 break;
2562
2563
2564 case '+':
2565 case '?':
2566 if ((syntax & RE_BK_PLUS_QM)
2567 || (syntax & RE_LIMITED_OPS))
2568 goto normal_char;
2569 handle_plus:
2570 case '*':
2571 /* If there is no previous pattern... */
2572 if (!laststart)
2573 {
2574 if (syntax & RE_CONTEXT_INVALID_OPS)
2575 FREE_STACK_RETURN (REG_BADRPT);
2576 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2577 goto normal_char;
2578 }
2579
2580 {
2581 /* Are we optimizing this jump? */
2582 boolean keep_string_p = false;
2583
2584 /* 1 means zero (many) matches is allowed. */
2585 char zero_times_ok = 0, many_times_ok = 0;
2586
2587 /* If there is a sequence of repetition chars, collapse it
2588 down to just one (the right one). We can't combine
2589 interval operators with these because of, e.g., `a{2}*',
2590 which should only match an even number of `a's. */
2591
2592 for (;;)
2593 {
2594 zero_times_ok |= c != '+';
2595 many_times_ok |= c != '?';
2596
2597 if (p == pend)
2598 break;
2599
2600 PATFETCH (c);
2601
2602 if (c == '*'
2603 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2604 ;
2605
2606 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2607 {
2608 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2609
2610 PATFETCH (c1);
2611 if (!(c1 == '+' || c1 == '?'))
2612 {
2613 PATUNFETCH;
2614 PATUNFETCH;
2615 break;
2616 }
2617
2618 c = c1;
2619 }
2620 else
2621 {
2622 PATUNFETCH;
2623 break;
2624 }
2625
2626 /* If we get here, we found another repeat character. */
2627 }
2628
2629 /* Star, etc. applied to an empty pattern is equivalent
2630 to an empty pattern. */
2631 if (!laststart)
2632 break;
2633
2634 /* Now we know whether or not zero matches is allowed
2635 and also whether or not two or more matches is allowed. */
2636 if (many_times_ok)
2637 { /* More than one repetition is allowed, so put in at the
2638 end a backward relative jump from `b' to before the next
2639 jump we're going to put in below (which jumps from
2640 laststart to after this jump).
2641
2642 But if we are at the `*' in the exact sequence `.*\n',
2643 insert an unconditional jump backwards to the .,
2644 instead of the beginning of the loop. This way we only
2645 push a failure point once, instead of every time
2646 through the loop. */
2647 assert (p - 1 > pattern);
2648
2649 /* Allocate the space for the jump. */
2650 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2651
2652 /* We know we are not at the first character of the pattern,
2653 because laststart was nonzero. And we've already
2654 incremented `p', by the way, to be the character after
2655 the `*'. Do we have to do something analogous here
2656 for null bytes, because of RE_DOT_NOT_NULL? */
2657 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2658 && zero_times_ok
2659 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2660 && !(syntax & RE_DOT_NEWLINE))
2661 { /* We have .*\n. */
2662 STORE_JUMP (jump, b, laststart);
2663 keep_string_p = true;
2664 }
2665 else
2666 /* Anything else. */
2667 STORE_JUMP (maybe_pop_jump, b, laststart -
2668 (1 + OFFSET_ADDRESS_SIZE));
2669
2670 /* We've added more stuff to the buffer. */
2671 b += 1 + OFFSET_ADDRESS_SIZE;
2672 }
2673
2674 /* On failure, jump from laststart to b + 3, which will be the
2675 end of the buffer after this jump is inserted. */
2676 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2677 'b + 3'. */
2678 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2679 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2680 : on_failure_jump,
2681 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2682 pending_exact = 0;
2683 b += 1 + OFFSET_ADDRESS_SIZE;
2684
2685 if (!zero_times_ok)
2686 {
2687 /* At least one repetition is required, so insert a
2688 `dummy_failure_jump' before the initial
2689 `on_failure_jump' instruction of the loop. This
2690 effects a skip over that instruction the first time
2691 we hit that loop. */
2692 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2693 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2694 2 + 2 * OFFSET_ADDRESS_SIZE);
2695 b += 1 + OFFSET_ADDRESS_SIZE;
2696 }
2697 }
2698 break;
2699
2700
2701 case '.':
2702 laststart = b;
2703 BUF_PUSH (anychar);
2704 break;
2705
2706
2707 case '[':
2708 {
2709 boolean had_char_class = false;
2710#ifdef WCHAR
2711 CHAR_T range_start = 0xffffffff;
2712#else
2713 unsigned int range_start = 0xffffffff;
2714#endif
2715 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2716
2717#ifdef WCHAR
2718 /* We assume a charset(_not) structure as a wchar_t array.
2719 charset[0] = (re_opcode_t) charset(_not)
2720 charset[1] = l (= length of char_classes)
2721 charset[2] = m (= length of collating_symbols)
2722 charset[3] = n (= length of equivalence_classes)
2723 charset[4] = o (= length of char_ranges)
2724 charset[5] = p (= length of chars)
2725
2726 charset[6] = char_class (wctype_t)
2727 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2728 ...
2729 charset[l+5] = char_class (wctype_t)
2730
2731 charset[l+6] = collating_symbol (wchar_t)
2732 ...
2733 charset[l+m+5] = collating_symbol (wchar_t)
2734 ifdef _LIBC we use the index if
2735 _NL_COLLATE_SYMB_EXTRAMB instead of
2736 wchar_t string.
2737
2738 charset[l+m+6] = equivalence_classes (wchar_t)
2739 ...
2740 charset[l+m+n+5] = equivalence_classes (wchar_t)
2741 ifdef _LIBC we use the index in
2742 _NL_COLLATE_WEIGHT instead of
2743 wchar_t string.
2744
2745 charset[l+m+n+6] = range_start
2746 charset[l+m+n+7] = range_end
2747 ...
2748 charset[l+m+n+2o+4] = range_start
2749 charset[l+m+n+2o+5] = range_end
2750 ifdef _LIBC we use the value looked up
2751 in _NL_COLLATE_COLLSEQ instead of
2752 wchar_t character.
2753
2754 charset[l+m+n+2o+6] = char
2755 ...
2756 charset[l+m+n+2o+p+5] = char
2757
2758 */
2759
2760 /* We need at least 6 spaces: the opcode, the length of
2761 char_classes, the length of collating_symbols, the length of
2762 equivalence_classes, the length of char_ranges, the length of
2763 chars. */
2764 GET_BUFFER_SPACE (6);
2765
2766 /* Save b as laststart. And We use laststart as the pointer
2767 to the first element of the charset here.
2768 In other words, laststart[i] indicates charset[i]. */
2769 laststart = b;
2770
2771 /* We test `*p == '^' twice, instead of using an if
2772 statement, so we only need one BUF_PUSH. */
2773 BUF_PUSH (*p == '^' ? charset_not : charset);
2774 if (*p == '^')
2775 p++;
2776
2777 /* Push the length of char_classes, the length of
2778 collating_symbols, the length of equivalence_classes, the
2779 length of char_ranges and the length of chars. */
2780 BUF_PUSH_3 (0, 0, 0);
2781 BUF_PUSH_2 (0, 0);
2782
2783 /* Remember the first position in the bracket expression. */
2784 p1 = p;
2785
2786 /* charset_not matches newline according to a syntax bit. */
2787 if ((re_opcode_t) b[-6] == charset_not
2788 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2789 {
2790 BUF_PUSH('\n');
2791 laststart[5]++; /* Update the length of characters */
2792 }
2793
2794 /* Read in characters and ranges, setting map bits. */
2795 for (;;)
2796 {
2797 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2798
2799 PATFETCH (c);
2800
2801 /* \ might escape characters inside [...] and [^...]. */
2802 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2803 {
2804 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2805
2806 PATFETCH (c1);
2807 BUF_PUSH(c1);
2808 laststart[5]++; /* Update the length of chars */
2809 range_start = c1;
2810 continue;
2811 }
2812
2813 /* Could be the end of the bracket expression. If it's
2814 not (i.e., when the bracket expression is `[]' so
2815 far), the ']' character bit gets set way below. */
2816 if (c == ']' && p != p1 + 1)
2817 break;
2818
2819 /* Look ahead to see if it's a range when the last thing
2820 was a character class. */
2821 if (had_char_class && c == '-' && *p != ']')
2822 FREE_STACK_RETURN (REG_ERANGE);
2823
2824 /* Look ahead to see if it's a range when the last thing
2825 was a character: if this is a hyphen not at the
2826 beginning or the end of a list, then it's the range
2827 operator. */
2828 if (c == '-'
2829 && !(p - 2 >= pattern && p[-2] == '[')
2830 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2831 && *p != ']')
2832 {
2833 reg_errcode_t ret;
2834 /* Allocate the space for range_start and range_end. */
2835 GET_BUFFER_SPACE (2);
2836 /* Update the pointer to indicate end of buffer. */
2837 b += 2;
2838 ret = wcs_compile_range (range_start, &p, pend, translate,
2839 syntax, b, laststart);
2840 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2841 range_start = 0xffffffff;
2842 }
2843 else if (p[0] == '-' && p[1] != ']')
2844 { /* This handles ranges made up of characters only. */
2845 reg_errcode_t ret;
2846
2847 /* Move past the `-'. */
2848 PATFETCH (c1);
2849 /* Allocate the space for range_start and range_end. */
2850 GET_BUFFER_SPACE (2);
2851 /* Update the pointer to indicate end of buffer. */
2852 b += 2;
2853 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2854 laststart);
2855 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2856 range_start = 0xffffffff;
2857 }
2858
2859 /* See if we're at the beginning of a possible character
2860 class. */
2861 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2862 { /* Leave room for the null. */
2863 char str[CHAR_CLASS_MAX_LENGTH + 1];
2864
2865 PATFETCH (c);
2866 c1 = 0;
2867
2868 /* If pattern is `[[:'. */
2869 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2870
2871 for (;;)
2872 {
2873 PATFETCH (c);
2874 if ((c == ':' && *p == ']') || p == pend)
2875 break;
2876 if (c1 < CHAR_CLASS_MAX_LENGTH)
2877 str[c1++] = c;
2878 else
2879 /* This is in any case an invalid class name. */
2880 str[0] = '\0';
2881 }
2882 str[c1] = '\0';
2883
2884 /* If isn't a word bracketed by `[:' and `:]':
2885 undo the ending character, the letters, and leave
2886 the leading `:' and `[' (but store them as character). */
2887 if (c == ':' && *p == ']')
2888 {
2889 wctype_t wt;
2890 uintptr_t alignedp;
2891
2892 /* Query the character class as wctype_t. */
2893 wt = IS_CHAR_CLASS (str);
2894 if (wt == 0)
2895 FREE_STACK_RETURN (REG_ECTYPE);
2896
2897 /* Throw away the ] at the end of the character
2898 class. */
2899 PATFETCH (c);
2900
2901 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2902
2903 /* Allocate the space for character class. */
2904 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2905 /* Update the pointer to indicate end of buffer. */
2906 b += CHAR_CLASS_SIZE;
2907 /* Move data which follow character classes
2908 not to violate the data. */
2909 insert_space(CHAR_CLASS_SIZE,
2910 laststart + 6 + laststart[1],
2911 b - 1);
2912 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2913 + __alignof__(wctype_t) - 1)
2914 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2915 /* Store the character class. */
2916 *((wctype_t*)alignedp) = wt;
2917 /* Update length of char_classes */
2918 laststart[1] += CHAR_CLASS_SIZE;
2919
2920 had_char_class = true;
2921 }
2922 else
2923 {
2924 c1++;
2925 while (c1--)
2926 PATUNFETCH;
2927 BUF_PUSH ('[');
2928 BUF_PUSH (':');
2929 laststart[5] += 2; /* Update the length of characters */
2930 range_start = ':';
2931 had_char_class = false;
2932 }
2933 }
2934 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2935 || *p == '.'))
2936 {
2937 CHAR_T str[128]; /* Should be large enough. */
2938 CHAR_T delim = *p; /* '=' or '.' */
2939# ifdef _LIBC
2940 uint32_t nrules =
2941 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2942# endif
2943 PATFETCH (c);
2944 c1 = 0;
2945
2946 /* If pattern is `[[=' or '[[.'. */
2947 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2948
2949 for (;;)
2950 {
2951 PATFETCH (c);
2952 if ((c == delim && *p == ']') || p == pend)
2953 break;
2954 if (c1 < sizeof (str) - 1)
2955 str[c1++] = c;
2956 else
2957 /* This is in any case an invalid class name. */
2958 str[0] = '\0';
2959 }
2960 str[c1] = '\0';
2961
2962 if (c == delim && *p == ']' && str[0] != '\0')
2963 {
2964 unsigned int i, offset;
2965 /* If we have no collation data we use the default
2966 collation in which each character is in a class
2967 by itself. It also means that ASCII is the
2968 character set and therefore we cannot have character
2969 with more than one byte in the multibyte
2970 representation. */
2971
2972 /* If not defined _LIBC, we push the name and
2973 `\0' for the sake of matching performance. */
2974 int datasize = c1 + 1;
2975
2976# ifdef _LIBC
2977 int32_t idx = 0;
2978 if (nrules == 0)
2979# endif
2980 {
2981 if (c1 != 1)
2982 FREE_STACK_RETURN (REG_ECOLLATE);
2983 }
2984# ifdef _LIBC
2985 else
2986 {
2987 const int32_t *table;
2988 const int32_t *weights;
2989 const int32_t *extra;
2990 const int32_t *indirect;
2991 wint_t *cp;
2992
2993 /* This #include defines a local function! */
2994# include <locale/weightwc.h>
2995
2996 if(delim == '=')
2997 {
2998 /* We push the index for equivalence class. */
2999 cp = (wint_t*)str;
3000
3001 table = (const int32_t *)
3002 _NL_CURRENT (LC_COLLATE,
3003 _NL_COLLATE_TABLEWC);
3004 weights = (const int32_t *)
3005 _NL_CURRENT (LC_COLLATE,
3006 _NL_COLLATE_WEIGHTWC);
3007 extra = (const int32_t *)
3008 _NL_CURRENT (LC_COLLATE,
3009 _NL_COLLATE_EXTRAWC);
3010 indirect = (const int32_t *)
3011 _NL_CURRENT (LC_COLLATE,
3012 _NL_COLLATE_INDIRECTWC);
3013
3014 idx = findidx ((const wint_t**)&cp);
3015 if (idx == 0 || cp < (wint_t*) str + c1)
3016 /* This is no valid character. */
3017 FREE_STACK_RETURN (REG_ECOLLATE);
3018
3019 str[0] = (wchar_t)idx;
3020 }
3021 else /* delim == '.' */
3022 {
3023 /* We push collation sequence value
3024 for collating symbol. */
3025 int32_t table_size;
3026 const int32_t *symb_table;
3027 const unsigned char *extra;
3028 int32_t idx;
3029 int32_t elem;
3030 int32_t second;
3031 int32_t hash;
3032 char char_str[c1];
3033
3034 /* We have to convert the name to a single-byte
3035 string. This is possible since the names
3036 consist of ASCII characters and the internal
3037 representation is UCS4. */
3038 for (i = 0; i < c1; ++i)
3039 char_str[i] = str[i];
3040
3041 table_size =
3042 _NL_CURRENT_WORD (LC_COLLATE,
3043 _NL_COLLATE_SYMB_HASH_SIZEMB);
3044 symb_table = (const int32_t *)
3045 _NL_CURRENT (LC_COLLATE,
3046 _NL_COLLATE_SYMB_TABLEMB);
3047 extra = (const unsigned char *)
3048 _NL_CURRENT (LC_COLLATE,
3049 _NL_COLLATE_SYMB_EXTRAMB);
3050
3051 /* Locate the character in the hashing table. */
3052 hash = elem_hash (char_str, c1);
3053
3054 idx = 0;
3055 elem = hash % table_size;
3056 second = hash % (table_size - 2);
3057 while (symb_table[2 * elem] != 0)
3058 {
3059 /* First compare the hashing value. */
3060 if (symb_table[2 * elem] == hash
3061 && c1 == extra[symb_table[2 * elem + 1]]
a9022147 3062 && memcmp (char_str,
2a6ef469
DD
3063 &extra[symb_table[2 * elem + 1]
3064 + 1], c1) == 0)
3065 {
3066 /* Yep, this is the entry. */
3067 idx = symb_table[2 * elem + 1];
3068 idx += 1 + extra[idx];
3069 break;
3070 }
3071
3072 /* Next entry. */
3073 elem += second;
3074 }
3075
3076 if (symb_table[2 * elem] != 0)
3077 {
3078 /* Compute the index of the byte sequence
3079 in the table. */
3080 idx += 1 + extra[idx];
3081 /* Adjust for the alignment. */
a9022147 3082 idx = (idx + 3) & ~3;
2a6ef469
DD
3083
3084 str[0] = (wchar_t) idx + 4;
3085 }
3086 else if (symb_table[2 * elem] == 0 && c1 == 1)
3087 {
3088 /* No valid character. Match it as a
3089 single byte character. */
3090 had_char_class = false;
3091 BUF_PUSH(str[0]);
3092 /* Update the length of characters */
3093 laststart[5]++;
3094 range_start = str[0];
3095
3096 /* Throw away the ] at the end of the
3097 collating symbol. */
3098 PATFETCH (c);
3099 /* exit from the switch block. */
3100 continue;
3101 }
3102 else
3103 FREE_STACK_RETURN (REG_ECOLLATE);
3104 }
3105 datasize = 1;
3106 }
3107# endif
3108 /* Throw away the ] at the end of the equivalence
3109 class (or collating symbol). */
3110 PATFETCH (c);
3111
3112 /* Allocate the space for the equivalence class
3113 (or collating symbol) (and '\0' if needed). */
3114 GET_BUFFER_SPACE(datasize);
3115 /* Update the pointer to indicate end of buffer. */
3116 b += datasize;
3117
3118 if (delim == '=')
3119 { /* equivalence class */
3120 /* Calculate the offset of char_ranges,
3121 which is next to equivalence_classes. */
3122 offset = laststart[1] + laststart[2]
3123 + laststart[3] +6;
3124 /* Insert space. */
3125 insert_space(datasize, laststart + offset, b - 1);
3126
3127 /* Write the equivalence_class and \0. */
3128 for (i = 0 ; i < datasize ; i++)
3129 laststart[offset + i] = str[i];
3130
3131 /* Update the length of equivalence_classes. */
3132 laststart[3] += datasize;
3133 had_char_class = true;
3134 }
3135 else /* delim == '.' */
3136 { /* collating symbol */
3137 /* Calculate the offset of the equivalence_classes,
3138 which is next to collating_symbols. */
3139 offset = laststart[1] + laststart[2] + 6;
3140 /* Insert space and write the collationg_symbol
3141 and \0. */
3142 insert_space(datasize, laststart + offset, b-1);
3143 for (i = 0 ; i < datasize ; i++)
3144 laststart[offset + i] = str[i];
3145
3146 /* In re_match_2_internal if range_start < -1, we
3147 assume -range_start is the offset of the
3148 collating symbol which is specified as
3149 the character of the range start. So we assign
3150 -(laststart[1] + laststart[2] + 6) to
3151 range_start. */
3152 range_start = -(laststart[1] + laststart[2] + 6);
3153 /* Update the length of collating_symbol. */
3154 laststart[2] += datasize;
3155 had_char_class = false;
3156 }
3157 }
3158 else
3159 {
3160 c1++;
3161 while (c1--)
3162 PATUNFETCH;
3163 BUF_PUSH ('[');
3164 BUF_PUSH (delim);
3165 laststart[5] += 2; /* Update the length of characters */
3166 range_start = delim;
3167 had_char_class = false;
3168 }
3169 }
3170 else
3171 {
3172 had_char_class = false;
3173 BUF_PUSH(c);
3174 laststart[5]++; /* Update the length of characters */
3175 range_start = c;
3176 }
3177 }
3178
3179#else /* BYTE */
3180 /* Ensure that we have enough space to push a charset: the
3181 opcode, the length count, and the bitset; 34 bytes in all. */
3182 GET_BUFFER_SPACE (34);
3183
3184 laststart = b;
3185
3186 /* We test `*p == '^' twice, instead of using an if
3187 statement, so we only need one BUF_PUSH. */
3188 BUF_PUSH (*p == '^' ? charset_not : charset);
3189 if (*p == '^')
3190 p++;
3191
3192 /* Remember the first position in the bracket expression. */
3193 p1 = p;
3194
3195 /* Push the number of bytes in the bitmap. */
3196 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3197
3198 /* Clear the whole map. */
3199 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3200
3201 /* charset_not matches newline according to a syntax bit. */
3202 if ((re_opcode_t) b[-2] == charset_not
3203 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3204 SET_LIST_BIT ('\n');
3205
3206 /* Read in characters and ranges, setting map bits. */
3207 for (;;)
3208 {
3209 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3210
3211 PATFETCH (c);
3212
3213 /* \ might escape characters inside [...] and [^...]. */
3214 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3215 {
3216 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3217
3218 PATFETCH (c1);
3219 SET_LIST_BIT (c1);
3220 range_start = c1;
3221 continue;
3222 }
3223
3224 /* Could be the end of the bracket expression. If it's
3225 not (i.e., when the bracket expression is `[]' so
3226 far), the ']' character bit gets set way below. */
3227 if (c == ']' && p != p1 + 1)
3228 break;
3229
3230 /* Look ahead to see if it's a range when the last thing
3231 was a character class. */
3232 if (had_char_class && c == '-' && *p != ']')
3233 FREE_STACK_RETURN (REG_ERANGE);
3234
3235 /* Look ahead to see if it's a range when the last thing
3236 was a character: if this is a hyphen not at the
3237 beginning or the end of a list, then it's the range
3238 operator. */
3239 if (c == '-'
3240 && !(p - 2 >= pattern && p[-2] == '[')
3241 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3242 && *p != ']')
3243 {
3244 reg_errcode_t ret
3245 = byte_compile_range (range_start, &p, pend, translate,
3246 syntax, b);
3247 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3248 range_start = 0xffffffff;
3249 }
3250
3251 else if (p[0] == '-' && p[1] != ']')
3252 { /* This handles ranges made up of characters only. */
3253 reg_errcode_t ret;
3254
3255 /* Move past the `-'. */
3256 PATFETCH (c1);
3257
3258 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3259 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3260 range_start = 0xffffffff;
3261 }
3262
3263 /* See if we're at the beginning of a possible character
3264 class. */
3265
3266 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3267 { /* Leave room for the null. */
3268 char str[CHAR_CLASS_MAX_LENGTH + 1];
3269
3270 PATFETCH (c);
3271 c1 = 0;
3272
3273 /* If pattern is `[[:'. */
3274 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3275
3276 for (;;)
3277 {
3278 PATFETCH (c);
3279 if ((c == ':' && *p == ']') || p == pend)
3280 break;
3281 if (c1 < CHAR_CLASS_MAX_LENGTH)
3282 str[c1++] = c;
3283 else
3284 /* This is in any case an invalid class name. */
3285 str[0] = '\0';
3286 }
3287 str[c1] = '\0';
3288
3289 /* If isn't a word bracketed by `[:' and `:]':
3290 undo the ending character, the letters, and leave
3291 the leading `:' and `[' (but set bits for them). */
3292 if (c == ':' && *p == ']')
3293 {
3294# if defined _LIBC || WIDE_CHAR_SUPPORT
3295 boolean is_lower = STREQ (str, "lower");
3296 boolean is_upper = STREQ (str, "upper");
3297 wctype_t wt;
3298 int ch;
3299
3300 wt = IS_CHAR_CLASS (str);
3301 if (wt == 0)
3302 FREE_STACK_RETURN (REG_ECTYPE);
3303
3304 /* Throw away the ] at the end of the character
3305 class. */
3306 PATFETCH (c);
3307
3308 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3309
3310 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3311 {
3312# ifdef _LIBC
3313 if (__iswctype (__btowc (ch), wt))
3314 SET_LIST_BIT (ch);
3315# else
3316 if (iswctype (btowc (ch), wt))
3317 SET_LIST_BIT (ch);
3318# endif
3319
3320 if (translate && (is_upper || is_lower)
3321 && (ISUPPER (ch) || ISLOWER (ch)))
3322 SET_LIST_BIT (ch);
3323 }
3324
3325 had_char_class = true;
3326# else
3327 int ch;
3328 boolean is_alnum = STREQ (str, "alnum");
3329 boolean is_alpha = STREQ (str, "alpha");
3330 boolean is_blank = STREQ (str, "blank");
3331 boolean is_cntrl = STREQ (str, "cntrl");
3332 boolean is_digit = STREQ (str, "digit");
3333 boolean is_graph = STREQ (str, "graph");
3334 boolean is_lower = STREQ (str, "lower");
3335 boolean is_print = STREQ (str, "print");
3336 boolean is_punct = STREQ (str, "punct");
3337 boolean is_space = STREQ (str, "space");
3338 boolean is_upper = STREQ (str, "upper");
3339 boolean is_xdigit = STREQ (str, "xdigit");
3340
3341 if (!IS_CHAR_CLASS (str))
3342 FREE_STACK_RETURN (REG_ECTYPE);
3343
3344 /* Throw away the ] at the end of the character
3345 class. */
3346 PATFETCH (c);
3347
3348 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3349
3350 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3351 {
3352 /* This was split into 3 if's to
3353 avoid an arbitrary limit in some compiler. */
3354 if ( (is_alnum && ISALNUM (ch))
3355 || (is_alpha && ISALPHA (ch))
3356 || (is_blank && ISBLANK (ch))
3357 || (is_cntrl && ISCNTRL (ch)))
3358 SET_LIST_BIT (ch);
3359 if ( (is_digit && ISDIGIT (ch))
3360 || (is_graph && ISGRAPH (ch))
3361 || (is_lower && ISLOWER (ch))
3362 || (is_print && ISPRINT (ch)))
3363 SET_LIST_BIT (ch);
3364 if ( (is_punct && ISPUNCT (ch))
3365 || (is_space && ISSPACE (ch))
3366 || (is_upper && ISUPPER (ch))
3367 || (is_xdigit && ISXDIGIT (ch)))
3368 SET_LIST_BIT (ch);
3369 if ( translate && (is_upper || is_lower)
3370 && (ISUPPER (ch) || ISLOWER (ch)))
3371 SET_LIST_BIT (ch);
3372 }
3373 had_char_class = true;
3374# endif /* libc || wctype.h */
3375 }
3376 else
3377 {
3378 c1++;
3379 while (c1--)
3380 PATUNFETCH;
3381 SET_LIST_BIT ('[');
3382 SET_LIST_BIT (':');
3383 range_start = ':';
3384 had_char_class = false;
3385 }
3386 }
3387 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3388 {
3389 unsigned char str[MB_LEN_MAX + 1];
3390# ifdef _LIBC
3391 uint32_t nrules =
3392 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3393# endif
3394
3395 PATFETCH (c);
3396 c1 = 0;
3397
3398 /* If pattern is `[[='. */
3399 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3400
3401 for (;;)
3402 {
3403 PATFETCH (c);
3404 if ((c == '=' && *p == ']') || p == pend)
3405 break;
3406 if (c1 < MB_LEN_MAX)
3407 str[c1++] = c;
3408 else
3409 /* This is in any case an invalid class name. */
3410 str[0] = '\0';
3411 }
3412 str[c1] = '\0';
3413
3414 if (c == '=' && *p == ']' && str[0] != '\0')
3415 {
3416 /* If we have no collation data we use the default
3417 collation in which each character is in a class
3418 by itself. It also means that ASCII is the
3419 character set and therefore we cannot have character
3420 with more than one byte in the multibyte
3421 representation. */
3422# ifdef _LIBC
3423 if (nrules == 0)
3424# endif
3425 {
3426 if (c1 != 1)
3427 FREE_STACK_RETURN (REG_ECOLLATE);
3428
3429 /* Throw away the ] at the end of the equivalence
3430 class. */
3431 PATFETCH (c);
3432
3433 /* Set the bit for the character. */
3434 SET_LIST_BIT (str[0]);
3435 }
3436# ifdef _LIBC
3437 else
3438 {
3439 /* Try to match the byte sequence in `str' against
3440 those known to the collate implementation.
3441 First find out whether the bytes in `str' are
3442 actually from exactly one character. */
3443 const int32_t *table;
3444 const unsigned char *weights;
3445 const unsigned char *extra;
3446 const int32_t *indirect;
3447 int32_t idx;
3448 const unsigned char *cp = str;
3449 int ch;
3450
3451 /* This #include defines a local function! */
3452# include <locale/weight.h>
3453
3454 table = (const int32_t *)
3455 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3456 weights = (const unsigned char *)
3457 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3458 extra = (const unsigned char *)
3459 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3460 indirect = (const int32_t *)
3461 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3462
3463 idx = findidx (&cp);
3464 if (idx == 0 || cp < str + c1)
3465 /* This is no valid character. */
3466 FREE_STACK_RETURN (REG_ECOLLATE);
3467
3468 /* Throw away the ] at the end of the equivalence
3469 class. */
3470 PATFETCH (c);
3471
3472 /* Now we have to go throught the whole table
3473 and find all characters which have the same
3474 first level weight.
3475
3476 XXX Note that this is not entirely correct.
3477 we would have to match multibyte sequences
3478 but this is not possible with the current
3479 implementation. */
3480 for (ch = 1; ch < 256; ++ch)
3481 /* XXX This test would have to be changed if we
3482 would allow matching multibyte sequences. */
3483 if (table[ch] > 0)
3484 {
3485 int32_t idx2 = table[ch];
3486 size_t len = weights[idx2];
3487
3488 /* Test whether the lenghts match. */
3489 if (weights[idx] == len)
3490 {
3491 /* They do. New compare the bytes of
3492 the weight. */
3493 size_t cnt = 0;
3494
3495 while (cnt < len
3496 && (weights[idx + 1 + cnt]
3497 == weights[idx2 + 1 + cnt]))
3498 ++cnt;
3499
3500 if (cnt == len)
3501 /* They match. Mark the character as
3502 acceptable. */
3503 SET_LIST_BIT (ch);
3504 }
3505 }
3506 }
3507# endif
3508 had_char_class = true;
3509 }
3510 else
3511 {
3512 c1++;
3513 while (c1--)
3514 PATUNFETCH;
3515 SET_LIST_BIT ('[');
3516 SET_LIST_BIT ('=');
3517 range_start = '=';
3518 had_char_class = false;
3519 }
3520 }
3521 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3522 {
3523 unsigned char str[128]; /* Should be large enough. */
3524# ifdef _LIBC
3525 uint32_t nrules =
3526 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3527# endif
3528
3529 PATFETCH (c);
3530 c1 = 0;
3531
3532 /* If pattern is `[[.'. */
3533 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3534
3535 for (;;)
3536 {
3537 PATFETCH (c);
3538 if ((c == '.' && *p == ']') || p == pend)
3539 break;
3540 if (c1 < sizeof (str))
3541 str[c1++] = c;
3542 else
3543 /* This is in any case an invalid class name. */
3544 str[0] = '\0';
3545 }
3546 str[c1] = '\0';
3547
3548 if (c == '.' && *p == ']' && str[0] != '\0')
3549 {
3550 /* If we have no collation data we use the default
3551 collation in which each character is the name
3552 for its own class which contains only the one
3553 character. It also means that ASCII is the
3554 character set and therefore we cannot have character
3555 with more than one byte in the multibyte
3556 representation. */
3557# ifdef _LIBC
3558 if (nrules == 0)
3559# endif
3560 {
3561 if (c1 != 1)
3562 FREE_STACK_RETURN (REG_ECOLLATE);
3563
3564 /* Throw away the ] at the end of the equivalence
3565 class. */
3566 PATFETCH (c);
3567
3568 /* Set the bit for the character. */
3569 SET_LIST_BIT (str[0]);
3570 range_start = ((const unsigned char *) str)[0];
3571 }
3572# ifdef _LIBC
3573 else
3574 {
3575 /* Try to match the byte sequence in `str' against
3576 those known to the collate implementation.
3577 First find out whether the bytes in `str' are
3578 actually from exactly one character. */
3579 int32_t table_size;
3580 const int32_t *symb_table;
3581 const unsigned char *extra;
3582 int32_t idx;
3583 int32_t elem;
3584 int32_t second;
3585 int32_t hash;
3586
3587 table_size =
3588 _NL_CURRENT_WORD (LC_COLLATE,
3589 _NL_COLLATE_SYMB_HASH_SIZEMB);
3590 symb_table = (const int32_t *)
3591 _NL_CURRENT (LC_COLLATE,
3592 _NL_COLLATE_SYMB_TABLEMB);
3593 extra = (const unsigned char *)
3594 _NL_CURRENT (LC_COLLATE,
3595 _NL_COLLATE_SYMB_EXTRAMB);
3596
3597 /* Locate the character in the hashing table. */
3598 hash = elem_hash (str, c1);
3599
3600 idx = 0;
3601 elem = hash % table_size;
3602 second = hash % (table_size - 2);
3603 while (symb_table[2 * elem] != 0)
3604 {
3605 /* First compare the hashing value. */
3606 if (symb_table[2 * elem] == hash
3607 && c1 == extra[symb_table[2 * elem + 1]]
3608 && memcmp (str,
3609 &extra[symb_table[2 * elem + 1]
3610 + 1],
3611 c1) == 0)
3612 {
3613 /* Yep, this is the entry. */
3614 idx = symb_table[2 * elem + 1];
3615 idx += 1 + extra[idx];
3616 break;
3617 }
3618
3619 /* Next entry. */
3620 elem += second;
3621 }
3622
3623 if (symb_table[2 * elem] == 0)
3624 /* This is no valid character. */
3625 FREE_STACK_RETURN (REG_ECOLLATE);
3626
3627 /* Throw away the ] at the end of the equivalence
3628 class. */
3629 PATFETCH (c);
3630
3631 /* Now add the multibyte character(s) we found
3632 to the accept list.
3633
3634 XXX Note that this is not entirely correct.
3635 we would have to match multibyte sequences
3636 but this is not possible with the current
3637 implementation. Also, we have to match
3638 collating symbols, which expand to more than
3639 one file, as a whole and not allow the
3640 individual bytes. */
3641 c1 = extra[idx++];
3642 if (c1 == 1)
3643 range_start = extra[idx];
3644 while (c1-- > 0)
3645 {
3646 SET_LIST_BIT (extra[idx]);
3647 ++idx;
3648 }
3649 }
3650# endif
3651 had_char_class = false;
3652 }
3653 else
3654 {
3655 c1++;
3656 while (c1--)
3657 PATUNFETCH;
3658 SET_LIST_BIT ('[');
3659 SET_LIST_BIT ('.');
3660 range_start = '.';
3661 had_char_class = false;
3662 }
3663 }
3664 else
3665 {
3666 had_char_class = false;
3667 SET_LIST_BIT (c);
3668 range_start = c;
3669 }
3670 }
3671
3672 /* Discard any (non)matching list bytes that are all 0 at the
3673 end of the map. Decrease the map-length byte too. */
3674 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3675 b[-1]--;
3676 b += b[-1];
3677#endif /* WCHAR */
3678 }
3679 break;
3680
3681
3682 case '(':
3683 if (syntax & RE_NO_BK_PARENS)
3684 goto handle_open;
3685 else
3686 goto normal_char;
3687
3688
3689 case ')':
3690 if (syntax & RE_NO_BK_PARENS)
3691 goto handle_close;
3692 else
3693 goto normal_char;
3694
3695
3696 case '\n':
3697 if (syntax & RE_NEWLINE_ALT)
3698 goto handle_alt;
3699 else
3700 goto normal_char;
3701
3702
3703 case '|':
3704 if (syntax & RE_NO_BK_VBAR)
3705 goto handle_alt;
3706 else
3707 goto normal_char;
3708
3709
3710 case '{':
3711 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3712 goto handle_interval;
3713 else
3714 goto normal_char;
3715
3716
3717 case '\\':
3718 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3719
3720 /* Do not translate the character after the \, so that we can
3721 distinguish, e.g., \B from \b, even if we normally would
3722 translate, e.g., B to b. */
3723 PATFETCH_RAW (c);
3724
3725 switch (c)
3726 {
3727 case '(':
3728 if (syntax & RE_NO_BK_PARENS)
3729 goto normal_backslash;
3730
3731 handle_open:
3732 bufp->re_nsub++;
3733 regnum++;
3734
3735 if (COMPILE_STACK_FULL)
3736 {
3737 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3738 compile_stack_elt_t);
3739 if (compile_stack.stack == NULL) return REG_ESPACE;
3740
3741 compile_stack.size <<= 1;
3742 }
3743
3744 /* These are the values to restore when we hit end of this
3745 group. They are all relative offsets, so that if the
3746 whole pattern moves because of realloc, they will still
3747 be valid. */
3748 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3749 COMPILE_STACK_TOP.fixup_alt_jump
3750 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3751 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3752 COMPILE_STACK_TOP.regnum = regnum;
3753
3754 /* We will eventually replace the 0 with the number of
3755 groups inner to this one. But do not push a
3756 start_memory for groups beyond the last one we can
3757 represent in the compiled pattern. */
3758 if (regnum <= MAX_REGNUM)
3759 {
3760 COMPILE_STACK_TOP.inner_group_offset = b
3761 - COMPILED_BUFFER_VAR + 2;
3762 BUF_PUSH_3 (start_memory, regnum, 0);
3763 }
3764
3765 compile_stack.avail++;
3766
3767 fixup_alt_jump = 0;
3768 laststart = 0;
3769 begalt = b;
3770 /* If we've reached MAX_REGNUM groups, then this open
3771 won't actually generate any code, so we'll have to
3772 clear pending_exact explicitly. */
3773 pending_exact = 0;
3774 break;
3775
3776
3777 case ')':
3778 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3779
3780 if (COMPILE_STACK_EMPTY)
3781 {
3782 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3783 goto normal_backslash;
3784 else
3785 FREE_STACK_RETURN (REG_ERPAREN);
3786 }
3787
3788 handle_close:
3789 if (fixup_alt_jump)
3790 { /* Push a dummy failure point at the end of the
3791 alternative for a possible future
3792 `pop_failure_jump' to pop. See comments at
3793 `push_dummy_failure' in `re_match_2'. */
3794 BUF_PUSH (push_dummy_failure);
3795
3796 /* We allocated space for this jump when we assigned
3797 to `fixup_alt_jump', in the `handle_alt' case below. */
3798 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3799 }
3800
3801 /* See similar code for backslashed left paren above. */
3802 if (COMPILE_STACK_EMPTY)
3803 {
3804 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3805 goto normal_char;
3806 else
3807 FREE_STACK_RETURN (REG_ERPAREN);
3808 }
3809
3810 /* Since we just checked for an empty stack above, this
3811 ``can't happen''. */
3812 assert (compile_stack.avail != 0);
3813 {
3814 /* We don't just want to restore into `regnum', because
3815 later groups should continue to be numbered higher,
3816 as in `(ab)c(de)' -- the second group is #2. */
3817 regnum_t this_group_regnum;
3818
3819 compile_stack.avail--;
3820 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3821 fixup_alt_jump
3822 = COMPILE_STACK_TOP.fixup_alt_jump
3823 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3824 : 0;
3825 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3826 this_group_regnum = COMPILE_STACK_TOP.regnum;
3827 /* If we've reached MAX_REGNUM groups, then this open
3828 won't actually generate any code, so we'll have to
3829 clear pending_exact explicitly. */
3830 pending_exact = 0;
3831
3832 /* We're at the end of the group, so now we know how many
3833 groups were inside this one. */
3834 if (this_group_regnum <= MAX_REGNUM)
3835 {
3836 UCHAR_T *inner_group_loc
3837 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3838
3839 *inner_group_loc = regnum - this_group_regnum;
3840 BUF_PUSH_3 (stop_memory, this_group_regnum,
3841 regnum - this_group_regnum);
3842 }
3843 }
3844 break;
3845
3846
3847 case '|': /* `\|'. */
3848 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3849 goto normal_backslash;
3850 handle_alt:
3851 if (syntax & RE_LIMITED_OPS)
3852 goto normal_char;
3853
3854 /* Insert before the previous alternative a jump which
3855 jumps to this alternative if the former fails. */
3856 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3857 INSERT_JUMP (on_failure_jump, begalt,
3858 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3859 pending_exact = 0;
3860 b += 1 + OFFSET_ADDRESS_SIZE;
3861
3862 /* The alternative before this one has a jump after it
3863 which gets executed if it gets matched. Adjust that
3864 jump so it will jump to this alternative's analogous
3865 jump (put in below, which in turn will jump to the next
3866 (if any) alternative's such jump, etc.). The last such
3867 jump jumps to the correct final destination. A picture:
3868 _____ _____
3869 | | | |
3870 | v | v
3871 a | b | c
3872
3873 If we are at `b', then fixup_alt_jump right now points to a
3874 three-byte space after `a'. We'll put in the jump, set
3875 fixup_alt_jump to right after `b', and leave behind three
3876 bytes which we'll fill in when we get to after `c'. */
3877
3878 if (fixup_alt_jump)
3879 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3880
3881 /* Mark and leave space for a jump after this alternative,
3882 to be filled in later either by next alternative or
3883 when know we're at the end of a series of alternatives. */
3884 fixup_alt_jump = b;
3885 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3886 b += 1 + OFFSET_ADDRESS_SIZE;
3887
3888 laststart = 0;
3889 begalt = b;
3890 break;
3891
3892
3893 case '{':
3894 /* If \{ is a literal. */
3895 if (!(syntax & RE_INTERVALS)
3896 /* If we're at `\{' and it's not the open-interval
3897 operator. */
3898 || (syntax & RE_NO_BK_BRACES))
3899 goto normal_backslash;
3900
3901 handle_interval:
3902 {
3903 /* If got here, then the syntax allows intervals. */
3904
3905 /* At least (most) this many matches must be made. */
3906 int lower_bound = -1, upper_bound = -1;
3907
3908 /* Place in the uncompiled pattern (i.e., just after
3909 the '{') to go back to if the interval is invalid. */
3910 const CHAR_T *beg_interval = p;
3911
3912 if (p == pend)
3913 goto invalid_interval;
3914
3915 GET_UNSIGNED_NUMBER (lower_bound);
3916
3917 if (c == ',')
3918 {
3919 GET_UNSIGNED_NUMBER (upper_bound);
3920 if (upper_bound < 0)
3921 upper_bound = RE_DUP_MAX;
3922 }
3923 else
3924 /* Interval such as `{1}' => match exactly once. */
3925 upper_bound = lower_bound;
3926
3927 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3928 goto invalid_interval;
3929
3930 if (!(syntax & RE_NO_BK_BRACES))
3931 {
3932 if (c != '\\' || p == pend)
3933 goto invalid_interval;
3934 PATFETCH (c);
3935 }
3936
3937 if (c != '}')
3938 goto invalid_interval;
3939
3940 /* If it's invalid to have no preceding re. */
3941 if (!laststart)
3942 {
3943 if (syntax & RE_CONTEXT_INVALID_OPS
3944 && !(syntax & RE_INVALID_INTERVAL_ORD))
3945 FREE_STACK_RETURN (REG_BADRPT);
3946 else if (syntax & RE_CONTEXT_INDEP_OPS)
3947 laststart = b;
3948 else
3949 goto unfetch_interval;
3950 }
3951
3952 /* We just parsed a valid interval. */
3953
3954 if (RE_DUP_MAX < upper_bound)
3955 FREE_STACK_RETURN (REG_BADBR);
3956
3957 /* If the upper bound is zero, don't want to succeed at
3958 all; jump from `laststart' to `b + 3', which will be
3959 the end of the buffer after we insert the jump. */
3960 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3961 instead of 'b + 3'. */
3962 if (upper_bound == 0)
3963 {
3964 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3965 INSERT_JUMP (jump, laststart, b + 1
3966 + OFFSET_ADDRESS_SIZE);
3967 b += 1 + OFFSET_ADDRESS_SIZE;
3968 }
3969
3970 /* Otherwise, we have a nontrivial interval. When
3971 we're all done, the pattern will look like:
3972 set_number_at <jump count> <upper bound>
3973 set_number_at <succeed_n count> <lower bound>
3974 succeed_n <after jump addr> <succeed_n count>
3975 <body of loop>
3976 jump_n <succeed_n addr> <jump count>
3977 (The upper bound and `jump_n' are omitted if
3978 `upper_bound' is 1, though.) */
3979 else
3980 { /* If the upper bound is > 1, we need to insert
3981 more at the end of the loop. */
3982 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3983 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3984
3985 GET_BUFFER_SPACE (nbytes);
3986
3987 /* Initialize lower bound of the `succeed_n', even
3988 though it will be set during matching by its
3989 attendant `set_number_at' (inserted next),
3990 because `re_compile_fastmap' needs to know.
3991 Jump to the `jump_n' we might insert below. */
3992 INSERT_JUMP2 (succeed_n, laststart,
3993 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3994 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3995 , lower_bound);
3996 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3997
3998 /* Code to initialize the lower bound. Insert
3999 before the `succeed_n'. The `5' is the last two
4000 bytes of this `set_number_at', plus 3 bytes of
4001 the following `succeed_n'. */
4002 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4003 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4004 of the following `succeed_n'. */
4005 PREFIX(insert_op2) (set_number_at, laststart, 1
4006 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
4007 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4008
4009 if (upper_bound > 1)
4010 { /* More than one repetition is allowed, so
4011 append a backward jump to the `succeed_n'
4012 that starts this interval.
4013
4014 When we've reached this during matching,
4015 we'll have matched the interval once, so
4016 jump back only `upper_bound - 1' times. */
4017 STORE_JUMP2 (jump_n, b, laststart
4018 + 2 * OFFSET_ADDRESS_SIZE + 1,
4019 upper_bound - 1);
4020 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4021
4022 /* The location we want to set is the second
4023 parameter of the `jump_n'; that is `b-2' as
4024 an absolute address. `laststart' will be
4025 the `set_number_at' we're about to insert;
4026 `laststart+3' the number to set, the source
4027 for the relative address. But we are
4028 inserting into the middle of the pattern --
4029 so everything is getting moved up by 5.
4030 Conclusion: (b - 2) - (laststart + 3) + 5,
4031 i.e., b - laststart.
4032
4033 We insert this at the beginning of the loop
4034 so that if we fail during matching, we'll
4035 reinitialize the bounds. */
4036 PREFIX(insert_op2) (set_number_at, laststart,
4037 b - laststart,
4038 upper_bound - 1, b);
4039 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4040 }
4041 }
4042 pending_exact = 0;
4043 break;
4044
4045 invalid_interval:
4046 if (!(syntax & RE_INVALID_INTERVAL_ORD))
4047 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4048 unfetch_interval:
4049 /* Match the characters as literals. */
4050 p = beg_interval;
4051 c = '{';
4052 if (syntax & RE_NO_BK_BRACES)
4053 goto normal_char;
4054 else
4055 goto normal_backslash;
4056 }
4057
4058#ifdef emacs
4059 /* There is no way to specify the before_dot and after_dot
4060 operators. rms says this is ok. --karl */
4061 case '=':
4062 BUF_PUSH (at_dot);
4063 break;
4064
4065 case 's':
4066 laststart = b;
4067 PATFETCH (c);
4068 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4069 break;
4070
4071 case 'S':
4072 laststart = b;
4073 PATFETCH (c);
4074 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4075 break;
4076#endif /* emacs */
4077
4078
4079 case 'w':
4080 if (syntax & RE_NO_GNU_OPS)
4081 goto normal_char;
4082 laststart = b;
4083 BUF_PUSH (wordchar);
4084 break;
4085
4086
4087 case 'W':
4088 if (syntax & RE_NO_GNU_OPS)
4089 goto normal_char;
4090 laststart = b;
4091 BUF_PUSH (notwordchar);
4092 break;
4093
4094
4095 case '<':
4096 if (syntax & RE_NO_GNU_OPS)
4097 goto normal_char;
4098 BUF_PUSH (wordbeg);
4099 break;
4100
4101 case '>':
4102 if (syntax & RE_NO_GNU_OPS)
4103 goto normal_char;
4104 BUF_PUSH (wordend);
4105 break;
4106
4107 case 'b':
4108 if (syntax & RE_NO_GNU_OPS)
4109 goto normal_char;
4110 BUF_PUSH (wordbound);
4111 break;
4112
4113 case 'B':
4114 if (syntax & RE_NO_GNU_OPS)
4115 goto normal_char;
4116 BUF_PUSH (notwordbound);
4117 break;
4118
4119 case '`':
4120 if (syntax & RE_NO_GNU_OPS)
4121 goto normal_char;
4122 BUF_PUSH (begbuf);
4123 break;
4124
4125 case '\'':
4126 if (syntax & RE_NO_GNU_OPS)
4127 goto normal_char;
4128 BUF_PUSH (endbuf);
4129 break;
4130
4131 case '1': case '2': case '3': case '4': case '5':
4132 case '6': case '7': case '8': case '9':
4133 if (syntax & RE_NO_BK_REFS)
4134 goto normal_char;
4135
4136 c1 = c - '0';
4137
4138 if (c1 > regnum)
4139 FREE_STACK_RETURN (REG_ESUBREG);
4140
4141 /* Can't back reference to a subexpression if inside of it. */
4142 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4143 goto normal_char;
4144
4145 laststart = b;
4146 BUF_PUSH_2 (duplicate, c1);
4147 break;
4148
4149
4150 case '+':
4151 case '?':
4152 if (syntax & RE_BK_PLUS_QM)
4153 goto handle_plus;
4154 else
4155 goto normal_backslash;
4156
4157 default:
4158 normal_backslash:
4159 /* You might think it would be useful for \ to mean
4160 not to translate; but if we don't translate it
4161 it will never match anything. */
4162 c = TRANSLATE (c);
4163 goto normal_char;
4164 }
4165 break;
4166
4167
4168 default:
4169 /* Expects the character in `c'. */
4170 normal_char:
4171 /* If no exactn currently being built. */
4172 if (!pending_exact
4173#ifdef WCHAR
4174 /* If last exactn handle binary(or character) and
4175 new exactn handle character(or binary). */
4176 || is_exactn_bin != is_binary[p - 1 - pattern]
4177#endif /* WCHAR */
4178
4179 /* If last exactn not at current position. */
4180 || pending_exact + *pending_exact + 1 != b
4181
4182 /* We have only one byte following the exactn for the count. */
4183 || *pending_exact == (1 << BYTEWIDTH) - 1
4184
4185 /* If followed by a repetition operator. */
4186 || *p == '*' || *p == '^'
4187 || ((syntax & RE_BK_PLUS_QM)
4188 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4189 : (*p == '+' || *p == '?'))
4190 || ((syntax & RE_INTERVALS)
4191 && ((syntax & RE_NO_BK_BRACES)
4192 ? *p == '{'
4193 : (p[0] == '\\' && p[1] == '{'))))
4194 {
4195 /* Start building a new exactn. */
4196
4197 laststart = b;
4198
4199#ifdef WCHAR
4200 /* Is this exactn binary data or character? */
4201 is_exactn_bin = is_binary[p - 1 - pattern];
4202 if (is_exactn_bin)
4203 BUF_PUSH_2 (exactn_bin, 0);
4204 else
4205 BUF_PUSH_2 (exactn, 0);
4206#else
4207 BUF_PUSH_2 (exactn, 0);
4208#endif /* WCHAR */
4209 pending_exact = b - 1;
4210 }
4211
4212 BUF_PUSH (c);
4213 (*pending_exact)++;
4214 break;
4215 } /* switch (c) */
4216 } /* while p != pend */
4217
4218
4219 /* Through the pattern now. */
4220
4221 if (fixup_alt_jump)
4222 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4223
4224 if (!COMPILE_STACK_EMPTY)
4225 FREE_STACK_RETURN (REG_EPAREN);
4226
4227 /* If we don't want backtracking, force success
4228 the first time we reach the end of the compiled pattern. */
4229 if (syntax & RE_NO_POSIX_BACKTRACKING)
4230 BUF_PUSH (succeed);
4231
4232#ifdef WCHAR
4233 free (pattern);
4234 free (mbs_offset);
4235 free (is_binary);
4236#endif
4237 free (compile_stack.stack);
4238
4239 /* We have succeeded; set the length of the buffer. */
4240#ifdef WCHAR
4241 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4242#else
4243 bufp->used = b - bufp->buffer;
4244#endif
4245
4246#ifdef DEBUG
4247 if (debug)
4248 {
4249 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4250 PREFIX(print_compiled_pattern) (bufp);
4251 }
4252#endif /* DEBUG */
4253
4254#ifndef MATCH_MAY_ALLOCATE
4255 /* Initialize the failure stack to the largest possible stack. This
4256 isn't necessary unless we're trying to avoid calling alloca in
4257 the search and match routines. */
4258 {
4259 int num_regs = bufp->re_nsub + 1;
4260
4261 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4262 is strictly greater than re_max_failures, the largest possible stack
4263 is 2 * re_max_failures failure points. */
4264 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4265 {
4266 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4267
4268# ifdef emacs
4269 if (! fail_stack.stack)
4270 fail_stack.stack
4271 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4272 * sizeof (PREFIX(fail_stack_elt_t)));
4273 else
4274 fail_stack.stack
4275 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4276 (fail_stack.size
4277 * sizeof (PREFIX(fail_stack_elt_t))));
4278# else /* not emacs */
4279 if (! fail_stack.stack)
4280 fail_stack.stack
4281 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4282 * sizeof (PREFIX(fail_stack_elt_t)));
4283 else
4284 fail_stack.stack
4285 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4286 (fail_stack.size
4287 * sizeof (PREFIX(fail_stack_elt_t))));
4288# endif /* not emacs */
4289 }
4290
4291 PREFIX(regex_grow_registers) (num_regs);
4292 }
4293#endif /* not MATCH_MAY_ALLOCATE */
4294
4295 return REG_NOERROR;
4296} /* regex_compile */
4297
4298/* Subroutines for `regex_compile'. */
4299
4300/* Store OP at LOC followed by two-byte integer parameter ARG. */
4301/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4302
4303static void
4304PREFIX(store_op1) (op, loc, arg)
4305 re_opcode_t op;
4306 UCHAR_T *loc;
4307 int arg;
4308{
4309 *loc = (UCHAR_T) op;
4310 STORE_NUMBER (loc + 1, arg);
4311}
4312
4313
4314/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4315/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4316
4317static void
4318PREFIX(store_op2) (op, loc, arg1, arg2)
4319 re_opcode_t op;
4320 UCHAR_T *loc;
4321 int arg1, arg2;
4322{
4323 *loc = (UCHAR_T) op;
4324 STORE_NUMBER (loc + 1, arg1);
4325 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4326}
4327
4328
4329/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4330 for OP followed by two-byte integer parameter ARG. */
4331/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4332
4333static void
4334PREFIX(insert_op1) (op, loc, arg, end)
4335 re_opcode_t op;
4336 UCHAR_T *loc;
4337 int arg;
4338 UCHAR_T *end;
4339{
4340 register UCHAR_T *pfrom = end;
4341 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4342
4343 while (pfrom != loc)
4344 *--pto = *--pfrom;
4345
4346 PREFIX(store_op1) (op, loc, arg);
4347}
4348
4349
4350/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4351/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4352
4353static void
4354PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4355 re_opcode_t op;
4356 UCHAR_T *loc;
4357 int arg1, arg2;
4358 UCHAR_T *end;
4359{
4360 register UCHAR_T *pfrom = end;
4361 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4362
4363 while (pfrom != loc)
4364 *--pto = *--pfrom;
4365
4366 PREFIX(store_op2) (op, loc, arg1, arg2);
4367}
4368
4369
4370/* P points to just after a ^ in PATTERN. Return true if that ^ comes
4371 after an alternative or a begin-subexpression. We assume there is at
4372 least one character before the ^. */
4373
4374static boolean
4375PREFIX(at_begline_loc_p) (pattern, p, syntax)
4376 const CHAR_T *pattern, *p;
4377 reg_syntax_t syntax;
4378{
4379 const CHAR_T *prev = p - 2;
4380 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4381
4382 return
4383 /* After a subexpression? */
4384 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4385 /* After an alternative? */
4386 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4387}
4388
4389
4390/* The dual of at_begline_loc_p. This one is for $. We assume there is
4391 at least one character after the $, i.e., `P < PEND'. */
4392
4393static boolean
4394PREFIX(at_endline_loc_p) (p, pend, syntax)
4395 const CHAR_T *p, *pend;
4396 reg_syntax_t syntax;
4397{
4398 const CHAR_T *next = p;
4399 boolean next_backslash = *next == '\\';
4400 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4401
4402 return
4403 /* Before a subexpression? */
4404 (syntax & RE_NO_BK_PARENS ? *next == ')'
4405 : next_backslash && next_next && *next_next == ')')
4406 /* Before an alternative? */
4407 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4408 : next_backslash && next_next && *next_next == '|');
4409}
4410
4411#else /* not INSIDE_RECURSION */
4412
4413/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4414 false if it's not. */
4415
4416static boolean
4417group_in_compile_stack (compile_stack, regnum)
4418 compile_stack_type compile_stack;
4419 regnum_t regnum;
4420{
4421 int this_element;
4422
4423 for (this_element = compile_stack.avail - 1;
4424 this_element >= 0;
4425 this_element--)
4426 if (compile_stack.stack[this_element].regnum == regnum)
4427 return true;
4428
4429 return false;
4430}
4431#endif /* not INSIDE_RECURSION */
4432
4433#ifdef INSIDE_RECURSION
4434
4435#ifdef WCHAR
4436/* This insert space, which size is "num", into the pattern at "loc".
4437 "end" must point the end of the allocated buffer. */
4438static void
4439insert_space (num, loc, end)
4440 int num;
4441 CHAR_T *loc;
4442 CHAR_T *end;
4443{
4444 register CHAR_T *pto = end;
4445 register CHAR_T *pfrom = end - num;
4446
4447 while (pfrom >= loc)
4448 *pto-- = *pfrom--;
4449}
4450#endif /* WCHAR */
4451
4452#ifdef WCHAR
4453static reg_errcode_t
4454wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4455 char_set)
4456 CHAR_T range_start_char;
4457 const CHAR_T **p_ptr, *pend;
4458 CHAR_T *char_set, *b;
4459 RE_TRANSLATE_TYPE translate;
4460 reg_syntax_t syntax;
4461{
4462 const CHAR_T *p = *p_ptr;
4463 CHAR_T range_start, range_end;
4464 reg_errcode_t ret;
4465# ifdef _LIBC
4466 uint32_t nrules;
4467 uint32_t start_val, end_val;
4468# endif
4469 if (p == pend)
4470 return REG_ERANGE;
4471
4472# ifdef _LIBC
4473 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4474 if (nrules != 0)
4475 {
4476 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4477 _NL_COLLATE_COLLSEQWC);
4478 const unsigned char *extra = (const unsigned char *)
4479 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4480
4481 if (range_start_char < -1)
4482 {
4483 /* range_start is a collating symbol. */
4484 int32_t *wextra;
4485 /* Retreive the index and get collation sequence value. */
4486 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4487 start_val = wextra[1 + *wextra];
4488 }
4489 else
4490 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4491
4492 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4493
4494 /* Report an error if the range is empty and the syntax prohibits
4495 this. */
4496 ret = ((syntax & RE_NO_EMPTY_RANGES)
4497 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4498
4499 /* Insert space to the end of the char_ranges. */
4500 insert_space(2, b - char_set[5] - 2, b - 1);
4501 *(b - char_set[5] - 2) = (wchar_t)start_val;
4502 *(b - char_set[5] - 1) = (wchar_t)end_val;
4503 char_set[4]++; /* ranges_index */
4504 }
4505 else
4506# endif
4507 {
4508 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4509 range_start_char;
4510 range_end = TRANSLATE (p[0]);
4511 /* Report an error if the range is empty and the syntax prohibits
4512 this. */
4513 ret = ((syntax & RE_NO_EMPTY_RANGES)
4514 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4515
4516 /* Insert space to the end of the char_ranges. */
4517 insert_space(2, b - char_set[5] - 2, b - 1);
4518 *(b - char_set[5] - 2) = range_start;
4519 *(b - char_set[5] - 1) = range_end;
4520 char_set[4]++; /* ranges_index */
4521 }
4522 /* Have to increment the pointer into the pattern string, so the
4523 caller isn't still at the ending character. */
4524 (*p_ptr)++;
4525
4526 return ret;
4527}
4528#else /* BYTE */
4529/* Read the ending character of a range (in a bracket expression) from the
4530 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4531 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4532 Then we set the translation of all bits between the starting and
4533 ending characters (inclusive) in the compiled pattern B.
4534
4535 Return an error code.
4536
4537 We use these short variable names so we can use the same macros as
4538 `regex_compile' itself. */
4539
4540static reg_errcode_t
4541byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4542 unsigned int range_start_char;
4543 const char **p_ptr, *pend;
4544 RE_TRANSLATE_TYPE translate;
4545 reg_syntax_t syntax;
4546 unsigned char *b;
4547{
4548 unsigned this_char;
4549 const char *p = *p_ptr;
4550 reg_errcode_t ret;
4551# if _LIBC
4552 const unsigned char *collseq;
4553 unsigned int start_colseq;
4554 unsigned int end_colseq;
4555# else
4556 unsigned end_char;
4557# endif
4558
4559 if (p == pend)
4560 return REG_ERANGE;
4561
4562 /* Have to increment the pointer into the pattern string, so the
4563 caller isn't still at the ending character. */
4564 (*p_ptr)++;
4565
4566 /* Report an error if the range is empty and the syntax prohibits this. */
4567 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4568
4569# if _LIBC
4570 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4571 _NL_COLLATE_COLLSEQMB);
4572
4573 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4574 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4575 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4576 {
4577 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4578
4579 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4580 {
4581 SET_LIST_BIT (TRANSLATE (this_char));
4582 ret = REG_NOERROR;
4583 }
4584 }
4585# else
4586 /* Here we see why `this_char' has to be larger than an `unsigned
4587 char' -- we would otherwise go into an infinite loop, since all
4588 characters <= 0xff. */
4589 range_start_char = TRANSLATE (range_start_char);
4590 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4591 and some compilers cast it to int implicitly, so following for_loop
4592 may fall to (almost) infinite loop.
4593 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4594 To avoid this, we cast p[0] to unsigned int and truncate it. */
4595 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4596
4597 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4598 {
4599 SET_LIST_BIT (TRANSLATE (this_char));
4600 ret = REG_NOERROR;
4601 }
4602# endif
4603
4604 return ret;
4605}
4606#endif /* WCHAR */
4607\f
4608/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4609 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4610 characters can start a string that matches the pattern. This fastmap
4611 is used by re_search to skip quickly over impossible starting points.
4612
4613 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4614 area as BUFP->fastmap.
4615
4616 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4617 the pattern buffer.
4618
4619 Returns 0 if we succeed, -2 if an internal error. */
4620
4621#ifdef WCHAR
4622/* local function for re_compile_fastmap.
4623 truncate wchar_t character to char. */
4624static unsigned char truncate_wchar (CHAR_T c);
4625
4626static unsigned char
4627truncate_wchar (c)
4628 CHAR_T c;
4629{
4630 unsigned char buf[MB_LEN_MAX];
4631 int retval = wctomb(buf, c);
4632 return retval > 0 ? buf[0] : (unsigned char)c;
4633}
4634#endif /* WCHAR */
4635
4636static int
4637PREFIX(re_compile_fastmap) (bufp)
4638 struct re_pattern_buffer *bufp;
4639{
4640 int j, k;
4641#ifdef MATCH_MAY_ALLOCATE
4642 PREFIX(fail_stack_type) fail_stack;
4643#endif
4644#ifndef REGEX_MALLOC
4645 char *destination;
4646#endif
4647
4648 register char *fastmap = bufp->fastmap;
4649
4650#ifdef WCHAR
4651 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4652 pattern to (char*) in regex_compile. */
4653 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4654 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4655#else /* BYTE */
4656 UCHAR_T *pattern = bufp->buffer;
4657 register UCHAR_T *pend = pattern + bufp->used;
4658#endif /* WCHAR */
4659 UCHAR_T *p = pattern;
4660
4661#ifdef REL_ALLOC
4662 /* This holds the pointer to the failure stack, when
4663 it is allocated relocatably. */
4664 fail_stack_elt_t *failure_stack_ptr;
4665#endif
4666
4667 /* Assume that each path through the pattern can be null until
4668 proven otherwise. We set this false at the bottom of switch
4669 statement, to which we get only if a particular path doesn't
4670 match the empty string. */
4671 boolean path_can_be_null = true;
4672
4673 /* We aren't doing a `succeed_n' to begin with. */
4674 boolean succeed_n_p = false;
4675
4676 assert (fastmap != NULL && p != NULL);
4677
4678 INIT_FAIL_STACK ();
4679 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4680 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4681 bufp->can_be_null = 0;
4682
4683 while (1)
4684 {
4685 if (p == pend || *p == succeed)
4686 {
4687 /* We have reached the (effective) end of pattern. */
4688 if (!FAIL_STACK_EMPTY ())
4689 {
4690 bufp->can_be_null |= path_can_be_null;
4691
4692 /* Reset for next path. */
4693 path_can_be_null = true;
4694
4695 p = fail_stack.stack[--fail_stack.avail].pointer;
4696
4697 continue;
4698 }
4699 else
4700 break;
4701 }
4702
4703 /* We should never be about to go beyond the end of the pattern. */
4704 assert (p < pend);
4705
4706 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4707 {
4708
4709 /* I guess the idea here is to simply not bother with a fastmap
4710 if a backreference is used, since it's too hard to figure out
4711 the fastmap for the corresponding group. Setting
4712 `can_be_null' stops `re_search_2' from using the fastmap, so
4713 that is all we do. */
4714 case duplicate:
4715 bufp->can_be_null = 1;
4716 goto done;
4717
4718
4719 /* Following are the cases which match a character. These end
4720 with `break'. */
4721
4722#ifdef WCHAR
4723 case exactn:
4724 fastmap[truncate_wchar(p[1])] = 1;
4725 break;
4726#else /* BYTE */
4727 case exactn:
4728 fastmap[p[1]] = 1;
4729 break;
4730#endif /* WCHAR */
4731#ifdef MBS_SUPPORT
4732 case exactn_bin:
4733 fastmap[p[1]] = 1;
4734 break;
4735#endif
4736
4737#ifdef WCHAR
4738 /* It is hard to distinguish fastmap from (multi byte) characters
4739 which depends on current locale. */
4740 case charset:
4741 case charset_not:
4742 case wordchar:
4743 case notwordchar:
4744 bufp->can_be_null = 1;
4745 goto done;
4746#else /* BYTE */
4747 case charset:
4748 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4749 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4750 fastmap[j] = 1;
4751 break;
4752
4753
4754 case charset_not:
4755 /* Chars beyond end of map must be allowed. */
4756 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4757 fastmap[j] = 1;
4758
4759 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4760 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4761 fastmap[j] = 1;
4762 break;
4763
4764
4765 case wordchar:
4766 for (j = 0; j < (1 << BYTEWIDTH); j++)
4767 if (SYNTAX (j) == Sword)
4768 fastmap[j] = 1;
4769 break;
4770
4771
4772 case notwordchar:
4773 for (j = 0; j < (1 << BYTEWIDTH); j++)
4774 if (SYNTAX (j) != Sword)
4775 fastmap[j] = 1;
4776 break;
4777#endif /* WCHAR */
4778
4779 case anychar:
4780 {
4781 int fastmap_newline = fastmap['\n'];
4782
4783 /* `.' matches anything ... */
4784 for (j = 0; j < (1 << BYTEWIDTH); j++)
4785 fastmap[j] = 1;
4786
4787 /* ... except perhaps newline. */
4788 if (!(bufp->syntax & RE_DOT_NEWLINE))
4789 fastmap['\n'] = fastmap_newline;
4790
4791 /* Return if we have already set `can_be_null'; if we have,
4792 then the fastmap is irrelevant. Something's wrong here. */
4793 else if (bufp->can_be_null)
4794 goto done;
4795
4796 /* Otherwise, have to check alternative paths. */
4797 break;
4798 }
4799
4800#ifdef emacs
4801 case syntaxspec:
4802 k = *p++;
4803 for (j = 0; j < (1 << BYTEWIDTH); j++)
4804 if (SYNTAX (j) == (enum syntaxcode) k)
4805 fastmap[j] = 1;
4806 break;
4807
4808
4809 case notsyntaxspec:
4810 k = *p++;
4811 for (j = 0; j < (1 << BYTEWIDTH); j++)
4812 if (SYNTAX (j) != (enum syntaxcode) k)
4813 fastmap[j] = 1;
4814 break;
4815
4816
4817 /* All cases after this match the empty string. These end with
4818 `continue'. */
4819
4820
4821 case before_dot:
4822 case at_dot:
4823 case after_dot:
4824 continue;
4825#endif /* emacs */
4826
4827
4828 case no_op:
4829 case begline:
4830 case endline:
4831 case begbuf:
4832 case endbuf:
4833 case wordbound:
4834 case notwordbound:
4835 case wordbeg:
4836 case wordend:
4837 case push_dummy_failure:
4838 continue;
4839
4840
4841 case jump_n:
4842 case pop_failure_jump:
4843 case maybe_pop_jump:
4844 case jump:
4845 case jump_past_alt:
4846 case dummy_failure_jump:
4847 EXTRACT_NUMBER_AND_INCR (j, p);
4848 p += j;
4849 if (j > 0)
4850 continue;
4851
4852 /* Jump backward implies we just went through the body of a
4853 loop and matched nothing. Opcode jumped to should be
4854 `on_failure_jump' or `succeed_n'. Just treat it like an
4855 ordinary jump. For a * loop, it has pushed its failure
4856 point already; if so, discard that as redundant. */
4857 if ((re_opcode_t) *p != on_failure_jump
4858 && (re_opcode_t) *p != succeed_n)
4859 continue;
4860
4861 p++;
4862 EXTRACT_NUMBER_AND_INCR (j, p);
4863 p += j;
4864
4865 /* If what's on the stack is where we are now, pop it. */
4866 if (!FAIL_STACK_EMPTY ()
4867 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4868 fail_stack.avail--;
4869
4870 continue;
4871
4872
4873 case on_failure_jump:
4874 case on_failure_keep_string_jump:
4875 handle_on_failure_jump:
4876 EXTRACT_NUMBER_AND_INCR (j, p);
4877
4878 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4879 end of the pattern. We don't want to push such a point,
4880 since when we restore it above, entering the switch will
4881 increment `p' past the end of the pattern. We don't need
4882 to push such a point since we obviously won't find any more
4883 fastmap entries beyond `pend'. Such a pattern can match
4884 the null string, though. */
4885 if (p + j < pend)
4886 {
4887 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4888 {
4889 RESET_FAIL_STACK ();
4890 return -2;
4891 }
4892 }
4893 else
4894 bufp->can_be_null = 1;
4895
4896 if (succeed_n_p)
4897 {
4898 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4899 succeed_n_p = false;
4900 }
4901
4902 continue;
4903
4904
4905 case succeed_n:
4906 /* Get to the number of times to succeed. */
4907 p += OFFSET_ADDRESS_SIZE;
4908
4909 /* Increment p past the n for when k != 0. */
4910 EXTRACT_NUMBER_AND_INCR (k, p);
4911 if (k == 0)
4912 {
4913 p -= 2 * OFFSET_ADDRESS_SIZE;
4914 succeed_n_p = true; /* Spaghetti code alert. */
4915 goto handle_on_failure_jump;
4916 }
4917 continue;
4918
4919
4920 case set_number_at:
4921 p += 2 * OFFSET_ADDRESS_SIZE;
4922 continue;
4923
4924
4925 case start_memory:
4926 case stop_memory:
4927 p += 2;
4928 continue;
4929
4930
4931 default:
4932 abort (); /* We have listed all the cases. */
4933 } /* switch *p++ */
4934
4935 /* Getting here means we have found the possible starting
4936 characters for one path of the pattern -- and that the empty
4937 string does not match. We need not follow this path further.
4938 Instead, look at the next alternative (remembered on the
4939 stack), or quit if no more. The test at the top of the loop
4940 does these things. */
4941 path_can_be_null = false;
4942 p = pend;
4943 } /* while p */
4944
4945 /* Set `can_be_null' for the last path (also the first path, if the
4946 pattern is empty). */
4947 bufp->can_be_null |= path_can_be_null;
4948
4949 done:
4950 RESET_FAIL_STACK ();
4951 return 0;
4952}
4953
4954#else /* not INSIDE_RECURSION */
4955
4956int
4957re_compile_fastmap (bufp)
4958 struct re_pattern_buffer *bufp;
4959{
4960# ifdef MBS_SUPPORT
4961 if (MB_CUR_MAX != 1)
4962 return wcs_re_compile_fastmap(bufp);
4963 else
4964# endif
4965 return byte_re_compile_fastmap(bufp);
4966} /* re_compile_fastmap */
4967#ifdef _LIBC
4968weak_alias (__re_compile_fastmap, re_compile_fastmap)
4969#endif
4970\f
4971
4972/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4973 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4974 this memory for recording register information. STARTS and ENDS
4975 must be allocated using the malloc library routine, and must each
4976 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4977
4978 If NUM_REGS == 0, then subsequent matches should allocate their own
4979 register data.
4980
4981 Unless this function is called, the first search or match using
4982 PATTERN_BUFFER will allocate its own register data, without
4983 freeing the old data. */
4984
4985void
4986re_set_registers (bufp, regs, num_regs, starts, ends)
4987 struct re_pattern_buffer *bufp;
4988 struct re_registers *regs;
4989 unsigned num_regs;
4990 regoff_t *starts, *ends;
4991{
4992 if (num_regs)
4993 {
4994 bufp->regs_allocated = REGS_REALLOCATE;
4995 regs->num_regs = num_regs;
4996 regs->start = starts;
4997 regs->end = ends;
4998 }
4999 else
5000 {
5001 bufp->regs_allocated = REGS_UNALLOCATED;
5002 regs->num_regs = 0;
5003 regs->start = regs->end = (regoff_t *) 0;
5004 }
5005}
5006#ifdef _LIBC
5007weak_alias (__re_set_registers, re_set_registers)
5008#endif
5009\f
5010/* Searching routines. */
5011
5012/* Like re_search_2, below, but only one string is specified, and
5013 doesn't let you say where to stop matching. */
5014
5015int
5016re_search (bufp, string, size, startpos, range, regs)
5017 struct re_pattern_buffer *bufp;
5018 const char *string;
5019 int size, startpos, range;
5020 struct re_registers *regs;
5021{
5022 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
5023 regs, size);
5024}
5025#ifdef _LIBC
5026weak_alias (__re_search, re_search)
5027#endif
5028
5029
5030/* Using the compiled pattern in BUFP->buffer, first tries to match the
5031 virtual concatenation of STRING1 and STRING2, starting first at index
5032 STARTPOS, then at STARTPOS + 1, and so on.
5033
5034 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5035
5036 RANGE is how far to scan while trying to match. RANGE = 0 means try
5037 only at STARTPOS; in general, the last start tried is STARTPOS +
5038 RANGE.
5039
5040 In REGS, return the indices of the virtual concatenation of STRING1
5041 and STRING2 that matched the entire BUFP->buffer and its contained
5042 subexpressions.
5043
5044 Do not consider matching one past the index STOP in the virtual
5045 concatenation of STRING1 and STRING2.
5046
5047 We return either the position in the strings at which the match was
5048 found, -1 if no match, or -2 if error (such as failure
5049 stack overflow). */
5050
5051int
5052re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5053 struct re_pattern_buffer *bufp;
5054 const char *string1, *string2;
5055 int size1, size2;
5056 int startpos;
5057 int range;
5058 struct re_registers *regs;
5059 int stop;
5060{
5061# ifdef MBS_SUPPORT
5062 if (MB_CUR_MAX != 1)
5063 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5064 range, regs, stop);
5065 else
5066# endif
5067 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5068 range, regs, stop);
5069} /* re_search_2 */
5070#ifdef _LIBC
5071weak_alias (__re_search_2, re_search_2)
5072#endif
5073
5074#endif /* not INSIDE_RECURSION */
5075
5076#ifdef INSIDE_RECURSION
5077
5078#ifdef MATCH_MAY_ALLOCATE
5079# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5080#else
5081# define FREE_VAR(var) if (var) free (var); var = NULL
5082#endif
5083
5084#ifdef WCHAR
86710ce2
DD
5085# define MAX_ALLOCA_SIZE 2000
5086
5087# define FREE_WCS_BUFFERS() \
5088 do { \
5089 if (size1 > MAX_ALLOCA_SIZE) \
5090 { \
5091 free (wcs_string1); \
5092 free (mbs_offset1); \
5093 } \
5094 else \
5095 { \
5096 FREE_VAR (wcs_string1); \
5097 FREE_VAR (mbs_offset1); \
5098 } \
5099 if (size2 > MAX_ALLOCA_SIZE) \
5100 { \
5101 free (wcs_string2); \
5102 free (mbs_offset2); \
5103 } \
5104 else \
5105 { \
5106 FREE_VAR (wcs_string2); \
5107 FREE_VAR (mbs_offset2); \
5108 } \
2a6ef469
DD
5109 } while (0)
5110
5111#endif
5112
86710ce2 5113
2a6ef469
DD
5114static int
5115PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5116 regs, stop)
5117 struct re_pattern_buffer *bufp;
5118 const char *string1, *string2;
5119 int size1, size2;
5120 int startpos;
5121 int range;
5122 struct re_registers *regs;
5123 int stop;
5124{
5125 int val;
5126 register char *fastmap = bufp->fastmap;
5127 register RE_TRANSLATE_TYPE translate = bufp->translate;
5128 int total_size = size1 + size2;
5129 int endpos = startpos + range;
5130#ifdef WCHAR
5131 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5132 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5133 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5134 int wcs_size1 = 0, wcs_size2 = 0;
5135 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5136 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5137 /* They hold whether each wchar_t is binary data or not. */
5138 char *is_binary = NULL;
5139#endif /* WCHAR */
5140
5141 /* Check for out-of-range STARTPOS. */
5142 if (startpos < 0 || startpos > total_size)
5143 return -1;
5144
5145 /* Fix up RANGE if it might eventually take us outside
5146 the virtual concatenation of STRING1 and STRING2.
5147 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5148 if (endpos < 0)
5149 range = 0 - startpos;
5150 else if (endpos > total_size)
5151 range = total_size - startpos;
5152
5153 /* If the search isn't to be a backwards one, don't waste time in a
5154 search for a pattern that must be anchored. */
5155 if (bufp->used > 0 && range > 0
5156 && ((re_opcode_t) bufp->buffer[0] == begbuf
5157 /* `begline' is like `begbuf' if it cannot match at newlines. */
5158 || ((re_opcode_t) bufp->buffer[0] == begline
5159 && !bufp->newline_anchor)))
5160 {
5161 if (startpos > 0)
5162 return -1;
5163 else
5164 range = 1;
5165 }
5166
5167#ifdef emacs
5168 /* In a forward search for something that starts with \=.
5169 don't keep searching past point. */
5170 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5171 {
5172 range = PT - startpos;
5173 if (range <= 0)
5174 return -1;
5175 }
5176#endif /* emacs */
5177
5178 /* Update the fastmap now if not correct already. */
5179 if (fastmap && !bufp->fastmap_accurate)
5180 if (re_compile_fastmap (bufp) == -2)
5181 return -2;
5182
5183#ifdef WCHAR
5184 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5185 fill them with converted string. */
5186 if (size1 != 0)
5187 {
86710ce2
DD
5188 if (size1 > MAX_ALLOCA_SIZE)
5189 {
5190 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5191 mbs_offset1 = TALLOC (size1 + 1, int);
5192 is_binary = TALLOC (size1 + 1, char);
5193 }
5194 else
5195 {
5196 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5197 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5198 is_binary = REGEX_TALLOC (size1 + 1, char);
5199 }
2a6ef469
DD
5200 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5201 {
86710ce2
DD
5202 if (size1 > MAX_ALLOCA_SIZE)
5203 {
5204 free (wcs_string1);
5205 free (mbs_offset1);
5206 free (is_binary);
5207 }
5208 else
5209 {
5210 FREE_VAR (wcs_string1);
5211 FREE_VAR (mbs_offset1);
5212 FREE_VAR (is_binary);
5213 }
2a6ef469
DD
5214 return -2;
5215 }
5216 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5217 mbs_offset1, is_binary);
5218 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
86710ce2
DD
5219 if (size1 > MAX_ALLOCA_SIZE)
5220 free (is_binary);
5221 else
5222 FREE_VAR (is_binary);
2a6ef469
DD
5223 }
5224 if (size2 != 0)
5225 {
86710ce2
DD
5226 if (size2 > MAX_ALLOCA_SIZE)
5227 {
5228 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5229 mbs_offset2 = TALLOC (size2 + 1, int);
5230 is_binary = TALLOC (size2 + 1, char);
5231 }
5232 else
5233 {
5234 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5235 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5236 is_binary = REGEX_TALLOC (size2 + 1, char);
5237 }
2a6ef469
DD
5238 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5239 {
5240 FREE_WCS_BUFFERS ();
86710ce2
DD
5241 if (size2 > MAX_ALLOCA_SIZE)
5242 free (is_binary);
5243 else
5244 FREE_VAR (is_binary);
2a6ef469
DD
5245 return -2;
5246 }
5247 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5248 mbs_offset2, is_binary);
5249 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
86710ce2
DD
5250 if (size2 > MAX_ALLOCA_SIZE)
5251 free (is_binary);
5252 else
5253 FREE_VAR (is_binary);
2a6ef469
DD
5254 }
5255#endif /* WCHAR */
5256
5257
5258 /* Loop through the string, looking for a place to start matching. */
5259 for (;;)
5260 {
5261 /* If a fastmap is supplied, skip quickly over characters that
5262 cannot be the start of a match. If the pattern can match the
5263 null string, however, we don't need to skip characters; we want
5264 the first null string. */
5265 if (fastmap && startpos < total_size && !bufp->can_be_null)
5266 {
5267 if (range > 0) /* Searching forwards. */
5268 {
5269 register const char *d;
5270 register int lim = 0;
5271 int irange = range;
5272
5273 if (startpos < size1 && startpos + range >= size1)
5274 lim = range - (size1 - startpos);
5275
5276 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5277
5278 /* Written out as an if-else to avoid testing `translate'
5279 inside the loop. */
5280 if (translate)
5281 while (range > lim
5282 && !fastmap[(unsigned char)
5283 translate[(unsigned char) *d++]])
5284 range--;
5285 else
5286 while (range > lim && !fastmap[(unsigned char) *d++])
5287 range--;
5288
5289 startpos += irange - range;
5290 }
5291 else /* Searching backwards. */
5292 {
5293 register CHAR_T c = (size1 == 0 || startpos >= size1
5294 ? string2[startpos - size1]
5295 : string1[startpos]);
5296
5297 if (!fastmap[(unsigned char) TRANSLATE (c)])
5298 goto advance;
5299 }
5300 }
5301
5302 /* If can't match the null string, and that's all we have left, fail. */
5303 if (range >= 0 && startpos == total_size && fastmap
5304 && !bufp->can_be_null)
5305 {
5306#ifdef WCHAR
5307 FREE_WCS_BUFFERS ();
5308#endif
5309 return -1;
5310 }
5311
5312#ifdef WCHAR
5313 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5314 size2, startpos, regs, stop,
5315 wcs_string1, wcs_size1,
5316 wcs_string2, wcs_size2,
5317 mbs_offset1, mbs_offset2);
5318#else /* BYTE */
5319 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5320 size2, startpos, regs, stop);
5321#endif /* BYTE */
5322
5323#ifndef REGEX_MALLOC
5324# ifdef C_ALLOCA
5325 alloca (0);
5326# endif
5327#endif
5328
5329 if (val >= 0)
5330 {
5331#ifdef WCHAR
5332 FREE_WCS_BUFFERS ();
5333#endif
5334 return startpos;
5335 }
5336
5337 if (val == -2)
5338 {
5339#ifdef WCHAR
5340 FREE_WCS_BUFFERS ();
5341#endif
5342 return -2;
5343 }
5344
5345 advance:
5346 if (!range)
5347 break;
5348 else if (range > 0)
5349 {
5350 range--;
5351 startpos++;
5352 }
5353 else
5354 {
5355 range++;
5356 startpos--;
5357 }
5358 }
5359#ifdef WCHAR
5360 FREE_WCS_BUFFERS ();
5361#endif
5362 return -1;
5363}
5364
5365#ifdef WCHAR
5366/* This converts PTR, a pointer into one of the search wchar_t strings
5367 `string1' and `string2' into an multibyte string offset from the
5368 beginning of that string. We use mbs_offset to optimize.
5369 See convert_mbs_to_wcs. */
5370# define POINTER_TO_OFFSET(ptr) \
5371 (FIRST_STRING_P (ptr) \
5372 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5373 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5374 + csize1)))
5375#else /* BYTE */
5376/* This converts PTR, a pointer into one of the search strings `string1'
5377 and `string2' into an offset from the beginning of that string. */
5378# define POINTER_TO_OFFSET(ptr) \
5379 (FIRST_STRING_P (ptr) \
5380 ? ((regoff_t) ((ptr) - string1)) \
5381 : ((regoff_t) ((ptr) - string2 + size1)))
5382#endif /* WCHAR */
5383
5384/* Macros for dealing with the split strings in re_match_2. */
5385
5386#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5387
5388/* Call before fetching a character with *d. This switches over to
5389 string2 if necessary. */
5390#define PREFETCH() \
5391 while (d == dend) \
5392 { \
5393 /* End of string2 => fail. */ \
5394 if (dend == end_match_2) \
5395 goto fail; \
5396 /* End of string1 => advance to string2. */ \
5397 d = string2; \
5398 dend = end_match_2; \
5399 }
5400
5401/* Test if at very beginning or at very end of the virtual concatenation
5402 of `string1' and `string2'. If only one string, it's `string2'. */
5403#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5404#define AT_STRINGS_END(d) ((d) == end2)
5405
5406
5407/* Test if D points to a character which is word-constituent. We have
5408 two special cases to check for: if past the end of string1, look at
5409 the first character in string2; and if before the beginning of
5410 string2, look at the last character in string1. */
5411#ifdef WCHAR
5412/* Use internationalized API instead of SYNTAX. */
5413# define WORDCHAR_P(d) \
5414 (iswalnum ((wint_t)((d) == end1 ? *string2 \
6ad8a379
DD
5415 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5416 || ((d) == end1 ? *string2 \
5417 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
2a6ef469
DD
5418#else /* BYTE */
5419# define WORDCHAR_P(d) \
5420 (SYNTAX ((d) == end1 ? *string2 \
5421 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5422 == Sword)
5423#endif /* WCHAR */
5424
5425/* Disabled due to a compiler bug -- see comment at case wordbound */
5426#if 0
5427/* Test if the character before D and the one at D differ with respect
5428 to being word-constituent. */
5429#define AT_WORD_BOUNDARY(d) \
5430 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5431 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5432#endif
5433
5434/* Free everything we malloc. */
5435#ifdef MATCH_MAY_ALLOCATE
5436# ifdef WCHAR
5437# define FREE_VARIABLES() \
5438 do { \
5439 REGEX_FREE_STACK (fail_stack.stack); \
5440 FREE_VAR (regstart); \
5441 FREE_VAR (regend); \
5442 FREE_VAR (old_regstart); \
5443 FREE_VAR (old_regend); \
5444 FREE_VAR (best_regstart); \
5445 FREE_VAR (best_regend); \
5446 FREE_VAR (reg_info); \
5447 FREE_VAR (reg_dummy); \
5448 FREE_VAR (reg_info_dummy); \
5449 if (!cant_free_wcs_buf) \
5450 { \
5451 FREE_VAR (string1); \
5452 FREE_VAR (string2); \
5453 FREE_VAR (mbs_offset1); \
5454 FREE_VAR (mbs_offset2); \
5455 } \
5456 } while (0)
5457# else /* BYTE */
5458# define FREE_VARIABLES() \
5459 do { \
5460 REGEX_FREE_STACK (fail_stack.stack); \
5461 FREE_VAR (regstart); \
5462 FREE_VAR (regend); \
5463 FREE_VAR (old_regstart); \
5464 FREE_VAR (old_regend); \
5465 FREE_VAR (best_regstart); \
5466 FREE_VAR (best_regend); \
5467 FREE_VAR (reg_info); \
5468 FREE_VAR (reg_dummy); \
5469 FREE_VAR (reg_info_dummy); \
5470 } while (0)
5471# endif /* WCHAR */
5472#else
5473# ifdef WCHAR
5474# define FREE_VARIABLES() \
5475 do { \
5476 if (!cant_free_wcs_buf) \
5477 { \
5478 FREE_VAR (string1); \
5479 FREE_VAR (string2); \
5480 FREE_VAR (mbs_offset1); \
5481 FREE_VAR (mbs_offset2); \
5482 } \
5483 } while (0)
5484# else /* BYTE */
5485# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5486# endif /* WCHAR */
5487#endif /* not MATCH_MAY_ALLOCATE */
5488
5489/* These values must meet several constraints. They must not be valid
5490 register values; since we have a limit of 255 registers (because
5491 we use only one byte in the pattern for the register number), we can
5492 use numbers larger than 255. They must differ by 1, because of
5493 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5494 be larger than the value for the highest register, so we do not try
5495 to actually save any registers when none are active. */
5496#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5497#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5498\f
5499#else /* not INSIDE_RECURSION */
5500/* Matching routines. */
5501
5502#ifndef emacs /* Emacs never uses this. */
5503/* re_match is like re_match_2 except it takes only a single string. */
5504
5505int
5506re_match (bufp, string, size, pos, regs)
5507 struct re_pattern_buffer *bufp;
5508 const char *string;
5509 int size, pos;
5510 struct re_registers *regs;
5511{
5512 int result;
5513# ifdef MBS_SUPPORT
5514 if (MB_CUR_MAX != 1)
5515 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5516 pos, regs, size,
5517 NULL, 0, NULL, 0, NULL, NULL);
5518 else
5519# endif
5520 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5521 pos, regs, size);
5522# ifndef REGEX_MALLOC
5523# ifdef C_ALLOCA
5524 alloca (0);
5525# endif
5526# endif
5527 return result;
5528}
5529# ifdef _LIBC
5530weak_alias (__re_match, re_match)
5531# endif
5532#endif /* not emacs */
5533
5534#endif /* not INSIDE_RECURSION */
5535
5536#ifdef INSIDE_RECURSION
5537static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5538 UCHAR_T *end,
5539 PREFIX(register_info_type) *reg_info));
5540static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5541 UCHAR_T *end,
5542 PREFIX(register_info_type) *reg_info));
5543static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5544 UCHAR_T *end,
5545 PREFIX(register_info_type) *reg_info));
5546static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5547 int len, char *translate));
5548#else /* not INSIDE_RECURSION */
5549
5550/* re_match_2 matches the compiled pattern in BUFP against the
5551 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5552 and SIZE2, respectively). We start matching at POS, and stop
5553 matching at STOP.
5554
5555 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5556 store offsets for the substring each group matched in REGS. See the
5557 documentation for exactly how many groups we fill.
5558
5559 We return -1 if no match, -2 if an internal error (such as the
5560 failure stack overflowing). Otherwise, we return the length of the
5561 matched substring. */
5562
5563int
5564re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5565 struct re_pattern_buffer *bufp;
5566 const char *string1, *string2;
5567 int size1, size2;
5568 int pos;
5569 struct re_registers *regs;
5570 int stop;
5571{
5572 int result;
5573# ifdef MBS_SUPPORT
5574 if (MB_CUR_MAX != 1)
5575 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5576 pos, regs, stop,
5577 NULL, 0, NULL, 0, NULL, NULL);
5578 else
5579# endif
5580 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5581 pos, regs, stop);
5582
5583#ifndef REGEX_MALLOC
5584# ifdef C_ALLOCA
5585 alloca (0);
5586# endif
5587#endif
5588 return result;
5589}
5590#ifdef _LIBC
5591weak_alias (__re_match_2, re_match_2)
5592#endif
5593
5594#endif /* not INSIDE_RECURSION */
5595
5596#ifdef INSIDE_RECURSION
5597
5598#ifdef WCHAR
5599static int count_mbs_length PARAMS ((int *, int));
5600
5601/* This check the substring (from 0, to length) of the multibyte string,
5602 to which offset_buffer correspond. And count how many wchar_t_characters
5603 the substring occupy. We use offset_buffer to optimization.
5604 See convert_mbs_to_wcs. */
5605
5606static int
5607count_mbs_length(offset_buffer, length)
5608 int *offset_buffer;
5609 int length;
5610{
5611 int upper, lower;
5612
5613 /* Check whether the size is valid. */
5614 if (length < 0)
5615 return -1;
5616
5617 if (offset_buffer == NULL)
5618 return 0;
5619
5620 /* If there are no multibyte character, offset_buffer[i] == i.
5621 Optmize for this case. */
5622 if (offset_buffer[length] == length)
5623 return length;
5624
5625 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5626 upper = length;
5627 lower = 0;
5628
5629 while (true)
5630 {
5631 int middle = (lower + upper) / 2;
5632 if (middle == lower || middle == upper)
5633 break;
5634 if (offset_buffer[middle] > length)
5635 upper = middle;
5636 else if (offset_buffer[middle] < length)
5637 lower = middle;
5638 else
5639 return middle;
5640 }
5641
5642 return -1;
5643}
5644#endif /* WCHAR */
5645
5646/* This is a separate function so that we can force an alloca cleanup
5647 afterwards. */
5648#ifdef WCHAR
5649static int
5650wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5651 regs, stop, string1, size1, string2, size2,
5652 mbs_offset1, mbs_offset2)
5653 struct re_pattern_buffer *bufp;
5654 const char *cstring1, *cstring2;
5655 int csize1, csize2;
5656 int pos;
5657 struct re_registers *regs;
5658 int stop;
5659 /* string1 == string2 == NULL means string1/2, size1/2 and
5660 mbs_offset1/2 need seting up in this function. */
5661 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5662 wchar_t *string1, *string2;
5663 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5664 int size1, size2;
5665 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5666 int *mbs_offset1, *mbs_offset2;
5667#else /* BYTE */
5668static int
5669byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5670 regs, stop)
5671 struct re_pattern_buffer *bufp;
5672 const char *string1, *string2;
5673 int size1, size2;
5674 int pos;
5675 struct re_registers *regs;
5676 int stop;
5677#endif /* BYTE */
5678{
5679 /* General temporaries. */
5680 int mcnt;
5681 UCHAR_T *p1;
5682#ifdef WCHAR
5683 /* They hold whether each wchar_t is binary data or not. */
5684 char *is_binary = NULL;
5685 /* If true, we can't free string1/2, mbs_offset1/2. */
5686 int cant_free_wcs_buf = 1;
5687#endif /* WCHAR */
5688
5689 /* Just past the end of the corresponding string. */
5690 const CHAR_T *end1, *end2;
5691
5692 /* Pointers into string1 and string2, just past the last characters in
5693 each to consider matching. */
5694 const CHAR_T *end_match_1, *end_match_2;
5695
5696 /* Where we are in the data, and the end of the current string. */
5697 const CHAR_T *d, *dend;
5698
5699 /* Where we are in the pattern, and the end of the pattern. */
5700#ifdef WCHAR
5701 UCHAR_T *pattern, *p;
5702 register UCHAR_T *pend;
5703#else /* BYTE */
5704 UCHAR_T *p = bufp->buffer;
5705 register UCHAR_T *pend = p + bufp->used;
5706#endif /* WCHAR */
5707
5708 /* Mark the opcode just after a start_memory, so we can test for an
5709 empty subpattern when we get to the stop_memory. */
5710 UCHAR_T *just_past_start_mem = 0;
5711
5712 /* We use this to map every character in the string. */
5713 RE_TRANSLATE_TYPE translate = bufp->translate;
5714
5715 /* Failure point stack. Each place that can handle a failure further
5716 down the line pushes a failure point on this stack. It consists of
5717 restart, regend, and reg_info for all registers corresponding to
5718 the subexpressions we're currently inside, plus the number of such
5719 registers, and, finally, two char *'s. The first char * is where
5720 to resume scanning the pattern; the second one is where to resume
5721 scanning the strings. If the latter is zero, the failure point is
5722 a ``dummy''; if a failure happens and the failure point is a dummy,
5723 it gets discarded and the next next one is tried. */
5724#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5725 PREFIX(fail_stack_type) fail_stack;
5726#endif
5727#ifdef DEBUG
5728 static unsigned failure_id;
5729 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5730#endif
5731
5732#ifdef REL_ALLOC
5733 /* This holds the pointer to the failure stack, when
5734 it is allocated relocatably. */
5735 fail_stack_elt_t *failure_stack_ptr;
5736#endif
5737
5738 /* We fill all the registers internally, independent of what we
5739 return, for use in backreferences. The number here includes
5740 an element for register zero. */
5741 size_t num_regs = bufp->re_nsub + 1;
5742
5743 /* The currently active registers. */
5744 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5745 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5746
5747 /* Information on the contents of registers. These are pointers into
5748 the input strings; they record just what was matched (on this
5749 attempt) by a subexpression part of the pattern, that is, the
5750 regnum-th regstart pointer points to where in the pattern we began
5751 matching and the regnum-th regend points to right after where we
5752 stopped matching the regnum-th subexpression. (The zeroth register
5753 keeps track of what the whole pattern matches.) */
5754#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5755 const CHAR_T **regstart, **regend;
5756#endif
5757
5758 /* If a group that's operated upon by a repetition operator fails to
5759 match anything, then the register for its start will need to be
5760 restored because it will have been set to wherever in the string we
5761 are when we last see its open-group operator. Similarly for a
5762 register's end. */
5763#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5764 const CHAR_T **old_regstart, **old_regend;
5765#endif
5766
5767 /* The is_active field of reg_info helps us keep track of which (possibly
5768 nested) subexpressions we are currently in. The matched_something
5769 field of reg_info[reg_num] helps us tell whether or not we have
5770 matched any of the pattern so far this time through the reg_num-th
5771 subexpression. These two fields get reset each time through any
5772 loop their register is in. */
5773#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5774 PREFIX(register_info_type) *reg_info;
5775#endif
5776
5777 /* The following record the register info as found in the above
5778 variables when we find a match better than any we've seen before.
5779 This happens as we backtrack through the failure points, which in
5780 turn happens only if we have not yet matched the entire string. */
5781 unsigned best_regs_set = false;
5782#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5783 const CHAR_T **best_regstart, **best_regend;
5784#endif
5785
5786 /* Logically, this is `best_regend[0]'. But we don't want to have to
5787 allocate space for that if we're not allocating space for anything
5788 else (see below). Also, we never need info about register 0 for
5789 any of the other register vectors, and it seems rather a kludge to
5790 treat `best_regend' differently than the rest. So we keep track of
5791 the end of the best match so far in a separate variable. We
5792 initialize this to NULL so that when we backtrack the first time
5793 and need to test it, it's not garbage. */
5794 const CHAR_T *match_end = NULL;
5795
5796 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5797 int set_regs_matched_done = 0;
5798
5799 /* Used when we pop values we don't care about. */
5800#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5801 const CHAR_T **reg_dummy;
5802 PREFIX(register_info_type) *reg_info_dummy;
5803#endif
5804
5805#ifdef DEBUG
5806 /* Counts the total number of registers pushed. */
5807 unsigned num_regs_pushed = 0;
5808#endif
5809
5810 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5811
5812 INIT_FAIL_STACK ();
5813
5814#ifdef MATCH_MAY_ALLOCATE
5815 /* Do not bother to initialize all the register variables if there are
5816 no groups in the pattern, as it takes a fair amount of time. If
5817 there are groups, we include space for register 0 (the whole
5818 pattern), even though we never use it, since it simplifies the
5819 array indexing. We should fix this. */
5820 if (bufp->re_nsub)
5821 {
5822 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5823 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5824 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5825 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5826 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5827 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5828 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5829 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5830 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5831
5832 if (!(regstart && regend && old_regstart && old_regend && reg_info
5833 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5834 {
5835 FREE_VARIABLES ();
5836 return -2;
5837 }
5838 }
5839 else
5840 {
5841 /* We must initialize all our variables to NULL, so that
5842 `FREE_VARIABLES' doesn't try to free them. */
5843 regstart = regend = old_regstart = old_regend = best_regstart
5844 = best_regend = reg_dummy = NULL;
5845 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5846 }
5847#endif /* MATCH_MAY_ALLOCATE */
5848
5849 /* The starting position is bogus. */
5850#ifdef WCHAR
5851 if (pos < 0 || pos > csize1 + csize2)
5852#else /* BYTE */
5853 if (pos < 0 || pos > size1 + size2)
5854#endif
5855 {
5856 FREE_VARIABLES ();
5857 return -1;
5858 }
5859
5860#ifdef WCHAR
5861 /* Allocate wchar_t array for string1 and string2 and
5862 fill them with converted string. */
5863 if (string1 == NULL && string2 == NULL)
5864 {
5865 /* We need seting up buffers here. */
5866
5867 /* We must free wcs buffers in this function. */
5868 cant_free_wcs_buf = 0;
5869
5870 if (csize1 != 0)
5871 {
5872 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5873 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5874 is_binary = REGEX_TALLOC (csize1 + 1, char);
5875 if (!string1 || !mbs_offset1 || !is_binary)
5876 {
5877 FREE_VAR (string1);
5878 FREE_VAR (mbs_offset1);
5879 FREE_VAR (is_binary);
5880 return -2;
5881 }
5882 }
5883 if (csize2 != 0)
5884 {
5885 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5886 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5887 is_binary = REGEX_TALLOC (csize2 + 1, char);
5888 if (!string2 || !mbs_offset2 || !is_binary)
5889 {
5890 FREE_VAR (string1);
5891 FREE_VAR (mbs_offset1);
5892 FREE_VAR (string2);
5893 FREE_VAR (mbs_offset2);
5894 FREE_VAR (is_binary);
5895 return -2;
5896 }
5897 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5898 mbs_offset2, is_binary);
5899 string2[size2] = L'\0'; /* for a sentinel */
5900 FREE_VAR (is_binary);
5901 }
5902 }
5903
5904 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5905 pattern to (char*) in regex_compile. */
5906 p = pattern = (CHAR_T*)bufp->buffer;
5907 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5908
5909#endif /* WCHAR */
5910
5911 /* Initialize subexpression text positions to -1 to mark ones that no
5912 start_memory/stop_memory has been seen for. Also initialize the
5913 register information struct. */
5914 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5915 {
5916 regstart[mcnt] = regend[mcnt]
5917 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5918
5919 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5920 IS_ACTIVE (reg_info[mcnt]) = 0;
5921 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5922 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5923 }
5924
5925 /* We move `string1' into `string2' if the latter's empty -- but not if
5926 `string1' is null. */
5927 if (size2 == 0 && string1 != NULL)
5928 {
5929 string2 = string1;
5930 size2 = size1;
5931 string1 = 0;
5932 size1 = 0;
5933#ifdef WCHAR
5934 mbs_offset2 = mbs_offset1;
5935 csize2 = csize1;
5936 mbs_offset1 = NULL;
5937 csize1 = 0;
5938#endif
5939 }
5940 end1 = string1 + size1;
5941 end2 = string2 + size2;
5942
5943 /* Compute where to stop matching, within the two strings. */
5944#ifdef WCHAR
5945 if (stop <= csize1)
5946 {
5947 mcnt = count_mbs_length(mbs_offset1, stop);
5948 end_match_1 = string1 + mcnt;
5949 end_match_2 = string2;
5950 }
5951 else
5952 {
5953 if (stop > csize1 + csize2)
5954 stop = csize1 + csize2;
5955 end_match_1 = end1;
5956 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5957 end_match_2 = string2 + mcnt;
5958 }
5959 if (mcnt < 0)
5960 { /* count_mbs_length return error. */
5961 FREE_VARIABLES ();
5962 return -1;
5963 }
5964#else
5965 if (stop <= size1)
5966 {
5967 end_match_1 = string1 + stop;
5968 end_match_2 = string2;
5969 }
5970 else
5971 {
5972 end_match_1 = end1;
5973 end_match_2 = string2 + stop - size1;
5974 }
5975#endif /* WCHAR */
5976
5977 /* `p' scans through the pattern as `d' scans through the data.
5978 `dend' is the end of the input string that `d' points within. `d'
5979 is advanced into the following input string whenever necessary, but
5980 this happens before fetching; therefore, at the beginning of the
5981 loop, `d' can be pointing at the end of a string, but it cannot
5982 equal `string2'. */
5983#ifdef WCHAR
5984 if (size1 > 0 && pos <= csize1)
5985 {
5986 mcnt = count_mbs_length(mbs_offset1, pos);
5987 d = string1 + mcnt;
5988 dend = end_match_1;
5989 }
5990 else
5991 {
5992 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5993 d = string2 + mcnt;
5994 dend = end_match_2;
5995 }
5996
5997 if (mcnt < 0)
5998 { /* count_mbs_length return error. */
5999 FREE_VARIABLES ();
6000 return -1;
6001 }
6002#else
6003 if (size1 > 0 && pos <= size1)
6004 {
6005 d = string1 + pos;
6006 dend = end_match_1;
6007 }
6008 else
6009 {
6010 d = string2 + pos - size1;
6011 dend = end_match_2;
6012 }
6013#endif /* WCHAR */
6014
6015 DEBUG_PRINT1 ("The compiled pattern is:\n");
6016 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
6017 DEBUG_PRINT1 ("The string to match is: `");
6018 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
6019 DEBUG_PRINT1 ("'\n");
6020
6021 /* This loops over pattern commands. It exits by returning from the
6022 function if the match is complete, or it drops through if the match
6023 fails at this starting point in the input data. */
6024 for (;;)
6025 {
6026#ifdef _LIBC
6027 DEBUG_PRINT2 ("\n%p: ", p);
6028#else
6029 DEBUG_PRINT2 ("\n0x%x: ", p);
6030#endif
6031
6032 if (p == pend)
6033 { /* End of pattern means we might have succeeded. */
6034 DEBUG_PRINT1 ("end of pattern ... ");
6035
6036 /* If we haven't matched the entire string, and we want the
6037 longest match, try backtracking. */
6038 if (d != end_match_2)
6039 {
6040 /* 1 if this match ends in the same string (string1 or string2)
6041 as the best previous match. */
6042 boolean same_str_p = (FIRST_STRING_P (match_end)
6043 == MATCHING_IN_FIRST_STRING);
6044 /* 1 if this match is the best seen so far. */
6045 boolean best_match_p;
6046
6047 /* AIX compiler got confused when this was combined
6048 with the previous declaration. */
6049 if (same_str_p)
6050 best_match_p = d > match_end;
6051 else
6052 best_match_p = !MATCHING_IN_FIRST_STRING;
6053
6054 DEBUG_PRINT1 ("backtracking.\n");
6055
6056 if (!FAIL_STACK_EMPTY ())
6057 { /* More failure points to try. */
6058
6059 /* If exceeds best match so far, save it. */
6060 if (!best_regs_set || best_match_p)
6061 {
6062 best_regs_set = true;
6063 match_end = d;
6064
6065 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6066
6067 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6068 {
6069 best_regstart[mcnt] = regstart[mcnt];
6070 best_regend[mcnt] = regend[mcnt];
6071 }
6072 }
6073 goto fail;
6074 }
6075
6076 /* If no failure points, don't restore garbage. And if
6077 last match is real best match, don't restore second
6078 best one. */
6079 else if (best_regs_set && !best_match_p)
6080 {
6081 restore_best_regs:
6082 /* Restore best match. It may happen that `dend ==
6083 end_match_1' while the restored d is in string2.
6084 For example, the pattern `x.*y.*z' against the
6085 strings `x-' and `y-z-', if the two strings are
6086 not consecutive in memory. */
6087 DEBUG_PRINT1 ("Restoring best registers.\n");
6088
6089 d = match_end;
6090 dend = ((d >= string1 && d <= end1)
6091 ? end_match_1 : end_match_2);
6092
6093 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6094 {
6095 regstart[mcnt] = best_regstart[mcnt];
6096 regend[mcnt] = best_regend[mcnt];
6097 }
6098 }
6099 } /* d != end_match_2 */
6100
6101 succeed_label:
6102 DEBUG_PRINT1 ("Accepting match.\n");
6103 /* If caller wants register contents data back, do it. */
6104 if (regs && !bufp->no_sub)
6105 {
6106 /* Have the register data arrays been allocated? */
6107 if (bufp->regs_allocated == REGS_UNALLOCATED)
6108 { /* No. So allocate them with malloc. We need one
6109 extra element beyond `num_regs' for the `-1' marker
6110 GNU code uses. */
6111 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6112 regs->start = TALLOC (regs->num_regs, regoff_t);
6113 regs->end = TALLOC (regs->num_regs, regoff_t);
6114 if (regs->start == NULL || regs->end == NULL)
6115 {
6116 FREE_VARIABLES ();
6117 return -2;
6118 }
6119 bufp->regs_allocated = REGS_REALLOCATE;
6120 }
6121 else if (bufp->regs_allocated == REGS_REALLOCATE)
6122 { /* Yes. If we need more elements than were already
6123 allocated, reallocate them. If we need fewer, just
6124 leave it alone. */
6125 if (regs->num_regs < num_regs + 1)
6126 {
6127 regs->num_regs = num_regs + 1;
6128 RETALLOC (regs->start, regs->num_regs, regoff_t);
6129 RETALLOC (regs->end, regs->num_regs, regoff_t);
6130 if (regs->start == NULL || regs->end == NULL)
6131 {
6132 FREE_VARIABLES ();
6133 return -2;
6134 }
6135 }
6136 }
6137 else
6138 {
6139 /* These braces fend off a "empty body in an else-statement"
6140 warning under GCC when assert expands to nothing. */
6141 assert (bufp->regs_allocated == REGS_FIXED);
6142 }
6143
6144 /* Convert the pointer data in `regstart' and `regend' to
6145 indices. Register zero has to be set differently,
6146 since we haven't kept track of any info for it. */
6147 if (regs->num_regs > 0)
6148 {
6149 regs->start[0] = pos;
6150#ifdef WCHAR
6151 if (MATCHING_IN_FIRST_STRING)
6152 regs->end[0] = mbs_offset1 != NULL ?
6153 mbs_offset1[d-string1] : 0;
6154 else
6155 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6156 mbs_offset2[d-string2] : 0);
6157#else
6158 regs->end[0] = (MATCHING_IN_FIRST_STRING
6159 ? ((regoff_t) (d - string1))
6160 : ((regoff_t) (d - string2 + size1)));
6161#endif /* WCHAR */
6162 }
6163
6164 /* Go through the first `min (num_regs, regs->num_regs)'
6165 registers, since that is all we initialized. */
6166 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6167 mcnt++)
6168 {
6169 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6170 regs->start[mcnt] = regs->end[mcnt] = -1;
6171 else
6172 {
6173 regs->start[mcnt]
6174 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6175 regs->end[mcnt]
6176 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6177 }
6178 }
6179
6180 /* If the regs structure we return has more elements than
6181 were in the pattern, set the extra elements to -1. If
6182 we (re)allocated the registers, this is the case,
6183 because we always allocate enough to have at least one
6184 -1 at the end. */
6185 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6186 regs->start[mcnt] = regs->end[mcnt] = -1;
6187 } /* regs && !bufp->no_sub */
6188
6189 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6190 nfailure_points_pushed, nfailure_points_popped,
6191 nfailure_points_pushed - nfailure_points_popped);
6192 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6193
6194#ifdef WCHAR
6195 if (MATCHING_IN_FIRST_STRING)
6196 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6197 else
6198 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6199 csize1;
6200 mcnt -= pos;
6201#else
6202 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6203 ? string1
6204 : string2 - size1);
6205#endif /* WCHAR */
6206
6207 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6208
6209 FREE_VARIABLES ();
6210 return mcnt;
6211 }
6212
6213 /* Otherwise match next pattern command. */
6214 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6215 {
6216 /* Ignore these. Used to ignore the n of succeed_n's which
6217 currently have n == 0. */
6218 case no_op:
6219 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6220 break;
6221
6222 case succeed:
6223 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6224 goto succeed_label;
6225
6226 /* Match the next n pattern characters exactly. The following
6227 byte in the pattern defines n, and the n bytes after that
6228 are the characters to match. */
6229 case exactn:
6230#ifdef MBS_SUPPORT
6231 case exactn_bin:
6232#endif
6233 mcnt = *p++;
6234 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6235
6236 /* This is written out as an if-else so we don't waste time
6237 testing `translate' inside the loop. */
6238 if (translate)
6239 {
6240 do
6241 {
6242 PREFETCH ();
6243#ifdef WCHAR
6244 if (*d <= 0xff)
6245 {
6246 if ((UCHAR_T) translate[(unsigned char) *d++]
6247 != (UCHAR_T) *p++)
6248 goto fail;
6249 }
6250 else
6251 {
6252 if (*d++ != (CHAR_T) *p++)
6253 goto fail;
6254 }
6255#else
6256 if ((UCHAR_T) translate[(unsigned char) *d++]
6257 != (UCHAR_T) *p++)
6258 goto fail;
6259#endif /* WCHAR */
6260 }
6261 while (--mcnt);
6262 }
6263 else
6264 {
6265 do
6266 {
6267 PREFETCH ();
6268 if (*d++ != (CHAR_T) *p++) goto fail;
6269 }
6270 while (--mcnt);
6271 }
6272 SET_REGS_MATCHED ();
6273 break;
6274
6275
6276 /* Match any character except possibly a newline or a null. */
6277 case anychar:
6278 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6279
6280 PREFETCH ();
6281
6282 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6283 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6284 goto fail;
6285
6286 SET_REGS_MATCHED ();
6287 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6288 d++;
6289 break;
6290
6291
6292 case charset:
6293 case charset_not:
6294 {
6295 register UCHAR_T c;
6296#ifdef WCHAR
6297 unsigned int i, char_class_length, coll_symbol_length,
6298 equiv_class_length, ranges_length, chars_length, length;
6299 CHAR_T *workp, *workp2, *charset_top;
6300#define WORK_BUFFER_SIZE 128
6301 CHAR_T str_buf[WORK_BUFFER_SIZE];
6302# ifdef _LIBC
6303 uint32_t nrules;
6304# endif /* _LIBC */
6305#endif /* WCHAR */
6306 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6307
6308 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6309 PREFETCH ();
6310 c = TRANSLATE (*d); /* The character to match. */
6311#ifdef WCHAR
6312# ifdef _LIBC
6313 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6314# endif /* _LIBC */
6315 charset_top = p - 1;
6316 char_class_length = *p++;
6317 coll_symbol_length = *p++;
6318 equiv_class_length = *p++;
6319 ranges_length = *p++;
6320 chars_length = *p++;
6321 /* p points charset[6], so the address of the next instruction
6322 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6323 where l=length of char_classes, m=length of collating_symbol,
6324 n=equivalence_class, o=length of char_range,
6325 p'=length of character. */
6326 workp = p;
6327 /* Update p to indicate the next instruction. */
6328 p += char_class_length + coll_symbol_length+ equiv_class_length +
6329 2*ranges_length + chars_length;
6330
6331 /* match with char_class? */
6332 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6333 {
6334 wctype_t wctype;
6335 uintptr_t alignedp = ((uintptr_t)workp
6336 + __alignof__(wctype_t) - 1)
6337 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6338 wctype = *((wctype_t*)alignedp);
6339 workp += CHAR_CLASS_SIZE;
6340 if (iswctype((wint_t)c, wctype))
6341 goto char_set_matched;
6342 }
6343
6344 /* match with collating_symbol? */
6345# ifdef _LIBC
6346 if (nrules != 0)
6347 {
6348 const unsigned char *extra = (const unsigned char *)
6349 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6350
6351 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6352 workp++)
6353 {
6354 int32_t *wextra;
6355 wextra = (int32_t*)(extra + *workp++);
6356 for (i = 0; i < *wextra; ++i)
6357 if (TRANSLATE(d[i]) != wextra[1 + i])
6358 break;
6359
6360 if (i == *wextra)
6361 {
6362 /* Update d, however d will be incremented at
6363 char_set_matched:, we decrement d here. */
6364 d += i - 1;
6365 goto char_set_matched;
6366 }
6367 }
6368 }
6369 else /* (nrules == 0) */
6370# endif
6371 /* If we can't look up collation data, we use wcscoll
6372 instead. */
6373 {
6374 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6375 {
6376 const CHAR_T *backup_d = d, *backup_dend = dend;
6377 length = wcslen(workp);
6378
6379 /* If wcscoll(the collating symbol, whole string) > 0,
6380 any substring of the string never match with the
6381 collating symbol. */
6382 if (wcscoll(workp, d) > 0)
6383 {
6384 workp += length + 1;
6385 continue;
6386 }
6387
6388 /* First, we compare the collating symbol with
6389 the first character of the string.
6390 If it don't match, we add the next character to
6391 the compare buffer in turn. */
6392 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6393 {
6394 int match;
6395 if (d == dend)
6396 {
6397 if (dend == end_match_2)
6398 break;
6399 d = string2;
6400 dend = end_match_2;
6401 }
6402
6403 /* add next character to the compare buffer. */
6404 str_buf[i] = TRANSLATE(*d);
6405 str_buf[i+1] = '\0';
6406
6407 match = wcscoll(workp, str_buf);
6408 if (match == 0)
6409 goto char_set_matched;
6410
6411 if (match < 0)
6412 /* (str_buf > workp) indicate (str_buf + X > workp),
6413 because for all X (str_buf + X > str_buf).
6414 So we don't need continue this loop. */
6415 break;
6416
6417 /* Otherwise(str_buf < workp),
6418 (str_buf+next_character) may equals (workp).
6419 So we continue this loop. */
6420 }
6421 /* not matched */
6422 d = backup_d;
6423 dend = backup_dend;
6424 workp += length + 1;
6425 }
6426 }
6427 /* match with equivalence_class? */
6428# ifdef _LIBC
6429 if (nrules != 0)
6430 {
6431 const CHAR_T *backup_d = d, *backup_dend = dend;
6432 /* Try to match the equivalence class against
6433 those known to the collate implementation. */
6434 const int32_t *table;
6435 const int32_t *weights;
6436 const int32_t *extra;
6437 const int32_t *indirect;
6438 int32_t idx, idx2;
6439 wint_t *cp;
6440 size_t len;
6441
6442 /* This #include defines a local function! */
6443# include <locale/weightwc.h>
6444
6445 table = (const int32_t *)
6446 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6447 weights = (const wint_t *)
6448 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6449 extra = (const wint_t *)
6450 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6451 indirect = (const int32_t *)
6452 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6453
6454 /* Write 1 collating element to str_buf, and
6455 get its index. */
6456 idx2 = 0;
6457
6458 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6459 {
6460 cp = (wint_t*)str_buf;
6461 if (d == dend)
6462 {
6463 if (dend == end_match_2)
6464 break;
6465 d = string2;
6466 dend = end_match_2;
6467 }
6468 str_buf[i] = TRANSLATE(*(d+i));
6469 str_buf[i+1] = '\0'; /* sentinel */
6470 idx2 = findidx ((const wint_t**)&cp);
6471 }
6472
6473 /* Update d, however d will be incremented at
6474 char_set_matched:, we decrement d here. */
6475 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6476 if (d >= dend)
6477 {
6478 if (dend == end_match_2)
6479 d = dend;
6480 else
6481 {
6482 d = string2;
6483 dend = end_match_2;
6484 }
6485 }
6486
6487 len = weights[idx2];
6488
6489 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6490 workp++)
6491 {
6492 idx = (int32_t)*workp;
6493 /* We already checked idx != 0 in regex_compile. */
6494
6495 if (idx2 != 0 && len == weights[idx])
6496 {
6497 int cnt = 0;
6498 while (cnt < len && (weights[idx + 1 + cnt]
6499 == weights[idx2 + 1 + cnt]))
6500 ++cnt;
6501
6502 if (cnt == len)
6503 goto char_set_matched;
6504 }
6505 }
6506 /* not matched */
6507 d = backup_d;
6508 dend = backup_dend;
6509 }
6510 else /* (nrules == 0) */
6511# endif
6512 /* If we can't look up collation data, we use wcscoll
6513 instead. */
6514 {
6515 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6516 {
6517 const CHAR_T *backup_d = d, *backup_dend = dend;
6518 length = wcslen(workp);
6519
6520 /* If wcscoll(the collating symbol, whole string) > 0,
6521 any substring of the string never match with the
6522 collating symbol. */
6523 if (wcscoll(workp, d) > 0)
6524 {
6525 workp += length + 1;
6526 break;
6527 }
6528
6529 /* First, we compare the equivalence class with
6530 the first character of the string.
6531 If it don't match, we add the next character to
6532 the compare buffer in turn. */
6533 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6534 {
6535 int match;
6536 if (d == dend)
6537 {
6538 if (dend == end_match_2)
6539 break;
6540 d = string2;
6541 dend = end_match_2;
6542 }
6543
6544 /* add next character to the compare buffer. */
6545 str_buf[i] = TRANSLATE(*d);
6546 str_buf[i+1] = '\0';
6547
6548 match = wcscoll(workp, str_buf);
6549
6550 if (match == 0)
6551 goto char_set_matched;
6552
6553 if (match < 0)
6554 /* (str_buf > workp) indicate (str_buf + X > workp),
6555 because for all X (str_buf + X > str_buf).
6556 So we don't need continue this loop. */
6557 break;
6558
6559 /* Otherwise(str_buf < workp),
6560 (str_buf+next_character) may equals (workp).
6561 So we continue this loop. */
6562 }
6563 /* not matched */
6564 d = backup_d;
6565 dend = backup_dend;
6566 workp += length + 1;
6567 }
6568 }
6569
6570 /* match with char_range? */
6571#ifdef _LIBC
6572 if (nrules != 0)
6573 {
6574 uint32_t collseqval;
6575 const char *collseq = (const char *)
6576 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6577
6578 collseqval = collseq_table_lookup (collseq, c);
6579
6580 for (; workp < p - chars_length ;)
6581 {
6582 uint32_t start_val, end_val;
6583
6584 /* We already compute the collation sequence value
6585 of the characters (or collating symbols). */
6586 start_val = (uint32_t) *workp++; /* range_start */
6587 end_val = (uint32_t) *workp++; /* range_end */
6588
6589 if (start_val <= collseqval && collseqval <= end_val)
6590 goto char_set_matched;
6591 }
6592 }
6593 else
6594#endif
6595 {
6596 /* We set range_start_char at str_buf[0], range_end_char
6597 at str_buf[4], and compared char at str_buf[2]. */
6598 str_buf[1] = 0;
6599 str_buf[2] = c;
6600 str_buf[3] = 0;
6601 str_buf[5] = 0;
6602 for (; workp < p - chars_length ;)
6603 {
6604 wchar_t *range_start_char, *range_end_char;
6605
6606 /* match if (range_start_char <= c <= range_end_char). */
6607
6608 /* If range_start(or end) < 0, we assume -range_start(end)
6609 is the offset of the collating symbol which is specified
6610 as the character of the range start(end). */
6611
6612 /* range_start */
6613 if (*workp < 0)
6614 range_start_char = charset_top - (*workp++);
6615 else
6616 {
6617 str_buf[0] = *workp++;
6618 range_start_char = str_buf;
6619 }
6620
6621 /* range_end */
6622 if (*workp < 0)
6623 range_end_char = charset_top - (*workp++);
6624 else
6625 {
6626 str_buf[4] = *workp++;
6627 range_end_char = str_buf + 4;
6628 }
6629
6630 if (wcscoll(range_start_char, str_buf+2) <= 0 &&
6631 wcscoll(str_buf+2, range_end_char) <= 0)
6632
6633 goto char_set_matched;
6634 }
6635 }
6636
6637 /* match with char? */
6638 for (; workp < p ; workp++)
6639 if (c == *workp)
6640 goto char_set_matched;
6641
6642 not = !not;
6643
6644 char_set_matched:
6645 if (not) goto fail;
6646#else
6647 /* Cast to `unsigned' instead of `unsigned char' in case the
6648 bit list is a full 32 bytes long. */
6649 if (c < (unsigned) (*p * BYTEWIDTH)
6650 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6651 not = !not;
6652
6653 p += 1 + *p;
6654
6655 if (!not) goto fail;
6656#undef WORK_BUFFER_SIZE
6657#endif /* WCHAR */
6658 SET_REGS_MATCHED ();
6659 d++;
6660 break;
6661 }
6662
6663
6664 /* The beginning of a group is represented by start_memory.
6665 The arguments are the register number in the next byte, and the
6666 number of groups inner to this one in the next. The text
6667 matched within the group is recorded (in the internal
6668 registers data structure) under the register number. */
6669 case start_memory:
6670 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6671 (long int) *p, (long int) p[1]);
6672
6673 /* Find out if this group can match the empty string. */
6674 p1 = p; /* To send to group_match_null_string_p. */
6675
6676 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6677 REG_MATCH_NULL_STRING_P (reg_info[*p])
6678 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6679
6680 /* Save the position in the string where we were the last time
6681 we were at this open-group operator in case the group is
6682 operated upon by a repetition operator, e.g., with `(a*)*b'
6683 against `ab'; then we want to ignore where we are now in
6684 the string in case this attempt to match fails. */
6685 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6686 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6687 : regstart[*p];
6688 DEBUG_PRINT2 (" old_regstart: %d\n",
6689 POINTER_TO_OFFSET (old_regstart[*p]));
6690
6691 regstart[*p] = d;
6692 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6693
6694 IS_ACTIVE (reg_info[*p]) = 1;
6695 MATCHED_SOMETHING (reg_info[*p]) = 0;
6696
6697 /* Clear this whenever we change the register activity status. */
6698 set_regs_matched_done = 0;
6699
6700 /* This is the new highest active register. */
6701 highest_active_reg = *p;
6702
6703 /* If nothing was active before, this is the new lowest active
6704 register. */
6705 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6706 lowest_active_reg = *p;
6707
6708 /* Move past the register number and inner group count. */
6709 p += 2;
6710 just_past_start_mem = p;
6711
6712 break;
6713
6714
6715 /* The stop_memory opcode represents the end of a group. Its
6716 arguments are the same as start_memory's: the register
6717 number, and the number of inner groups. */
6718 case stop_memory:
6719 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6720 (long int) *p, (long int) p[1]);
6721
6722 /* We need to save the string position the last time we were at
6723 this close-group operator in case the group is operated
6724 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6725 against `aba'; then we want to ignore where we are now in
6726 the string in case this attempt to match fails. */
6727 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6728 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6729 : regend[*p];
6730 DEBUG_PRINT2 (" old_regend: %d\n",
6731 POINTER_TO_OFFSET (old_regend[*p]));
6732
6733 regend[*p] = d;
6734 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6735
6736 /* This register isn't active anymore. */
6737 IS_ACTIVE (reg_info[*p]) = 0;
6738
6739 /* Clear this whenever we change the register activity status. */
6740 set_regs_matched_done = 0;
6741
6742 /* If this was the only register active, nothing is active
6743 anymore. */
6744 if (lowest_active_reg == highest_active_reg)
6745 {
6746 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6747 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6748 }
6749 else
6750 { /* We must scan for the new highest active register, since
6751 it isn't necessarily one less than now: consider
6752 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6753 new highest active register is 1. */
6754 UCHAR_T r = *p - 1;
6755 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6756 r--;
6757
6758 /* If we end up at register zero, that means that we saved
6759 the registers as the result of an `on_failure_jump', not
6760 a `start_memory', and we jumped to past the innermost
6761 `stop_memory'. For example, in ((.)*) we save
6762 registers 1 and 2 as a result of the *, but when we pop
6763 back to the second ), we are at the stop_memory 1.
6764 Thus, nothing is active. */
6765 if (r == 0)
6766 {
6767 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6768 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6769 }
6770 else
6771 highest_active_reg = r;
6772 }
6773
6774 /* If just failed to match something this time around with a
6775 group that's operated on by a repetition operator, try to
6776 force exit from the ``loop'', and restore the register
6777 information for this group that we had before trying this
6778 last match. */
6779 if ((!MATCHED_SOMETHING (reg_info[*p])
6780 || just_past_start_mem == p - 1)
6781 && (p + 2) < pend)
6782 {
6783 boolean is_a_jump_n = false;
6784
6785 p1 = p + 2;
6786 mcnt = 0;
6787 switch ((re_opcode_t) *p1++)
6788 {
6789 case jump_n:
6790 is_a_jump_n = true;
6791 case pop_failure_jump:
6792 case maybe_pop_jump:
6793 case jump:
6794 case dummy_failure_jump:
6795 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6796 if (is_a_jump_n)
6797 p1 += OFFSET_ADDRESS_SIZE;
6798 break;
6799
6800 default:
6801 /* do nothing */ ;
6802 }
6803 p1 += mcnt;
6804
6805 /* If the next operation is a jump backwards in the pattern
6806 to an on_failure_jump right before the start_memory
6807 corresponding to this stop_memory, exit from the loop
6808 by forcing a failure after pushing on the stack the
6809 on_failure_jump's jump in the pattern, and d. */
6810 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6811 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6812 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6813 {
6814 /* If this group ever matched anything, then restore
6815 what its registers were before trying this last
6816 failed match, e.g., with `(a*)*b' against `ab' for
6817 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6818 against `aba' for regend[3].
6819
6820 Also restore the registers for inner groups for,
6821 e.g., `((a*)(b*))*' against `aba' (register 3 would
6822 otherwise get trashed). */
6823
6824 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6825 {
6826 unsigned r;
6827
6828 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6829
6830 /* Restore this and inner groups' (if any) registers. */
6831 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6832 r++)
6833 {
6834 regstart[r] = old_regstart[r];
6835
6836 /* xx why this test? */
6837 if (old_regend[r] >= regstart[r])
6838 regend[r] = old_regend[r];
6839 }
6840 }
6841 p1++;
6842 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6843 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6844
6845 goto fail;
6846 }
6847 }
6848
6849 /* Move past the register number and the inner group count. */
6850 p += 2;
6851 break;
6852
6853
6854 /* \<digit> has been turned into a `duplicate' command which is
6855 followed by the numeric value of <digit> as the register number. */
6856 case duplicate:
6857 {
6858 register const CHAR_T *d2, *dend2;
6859 int regno = *p++; /* Get which register to match against. */
6860 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6861
6862 /* Can't back reference a group which we've never matched. */
6863 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6864 goto fail;
6865
6866 /* Where in input to try to start matching. */
6867 d2 = regstart[regno];
6868
6869 /* Where to stop matching; if both the place to start and
6870 the place to stop matching are in the same string, then
6871 set to the place to stop, otherwise, for now have to use
6872 the end of the first string. */
6873
6874 dend2 = ((FIRST_STRING_P (regstart[regno])
6875 == FIRST_STRING_P (regend[regno]))
6876 ? regend[regno] : end_match_1);
6877 for (;;)
6878 {
6879 /* If necessary, advance to next segment in register
6880 contents. */
6881 while (d2 == dend2)
6882 {
6883 if (dend2 == end_match_2) break;
6884 if (dend2 == regend[regno]) break;
6885
6886 /* End of string1 => advance to string2. */
6887 d2 = string2;
6888 dend2 = regend[regno];
6889 }
6890 /* At end of register contents => success */
6891 if (d2 == dend2) break;
6892
6893 /* If necessary, advance to next segment in data. */
6894 PREFETCH ();
6895
6896 /* How many characters left in this segment to match. */
6897 mcnt = dend - d;
6898
6899 /* Want how many consecutive characters we can match in
6900 one shot, so, if necessary, adjust the count. */
6901 if (mcnt > dend2 - d2)
6902 mcnt = dend2 - d2;
6903
6904 /* Compare that many; failure if mismatch, else move
6905 past them. */
6906 if (translate
6907 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6908 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6909 goto fail;
6910 d += mcnt, d2 += mcnt;
6911
6912 /* Do this because we've match some characters. */
6913 SET_REGS_MATCHED ();
6914 }
6915 }
6916 break;
6917
6918
6919 /* begline matches the empty string at the beginning of the string
6920 (unless `not_bol' is set in `bufp'), and, if
6921 `newline_anchor' is set, after newlines. */
6922 case begline:
6923 DEBUG_PRINT1 ("EXECUTING begline.\n");
6924
6925 if (AT_STRINGS_BEG (d))
6926 {
6927 if (!bufp->not_bol) break;
6928 }
6929 else if (d[-1] == '\n' && bufp->newline_anchor)
6930 {
6931 break;
6932 }
6933 /* In all other cases, we fail. */
6934 goto fail;
6935
6936
6937 /* endline is the dual of begline. */
6938 case endline:
6939 DEBUG_PRINT1 ("EXECUTING endline.\n");
6940
6941 if (AT_STRINGS_END (d))
6942 {
6943 if (!bufp->not_eol) break;
6944 }
6945
6946 /* We have to ``prefetch'' the next character. */
6947 else if ((d == end1 ? *string2 : *d) == '\n'
6948 && bufp->newline_anchor)
6949 {
6950 break;
6951 }
6952 goto fail;
6953
6954
6955 /* Match at the very beginning of the data. */
6956 case begbuf:
6957 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6958 if (AT_STRINGS_BEG (d))
6959 break;
6960 goto fail;
6961
6962
6963 /* Match at the very end of the data. */
6964 case endbuf:
6965 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6966 if (AT_STRINGS_END (d))
6967 break;
6968 goto fail;
6969
6970
6971 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6972 pushes NULL as the value for the string on the stack. Then
6973 `pop_failure_point' will keep the current value for the
6974 string, instead of restoring it. To see why, consider
6975 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6976 then the . fails against the \n. But the next thing we want
6977 to do is match the \n against the \n; if we restored the
6978 string value, we would be back at the foo.
6979
6980 Because this is used only in specific cases, we don't need to
6981 check all the things that `on_failure_jump' does, to make
6982 sure the right things get saved on the stack. Hence we don't
6983 share its code. The only reason to push anything on the
6984 stack at all is that otherwise we would have to change
6985 `anychar's code to do something besides goto fail in this
6986 case; that seems worse than this. */
6987 case on_failure_keep_string_jump:
6988 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6989
6990 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6991#ifdef _LIBC
6992 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6993#else
6994 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6995#endif
6996
6997 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6998 break;
6999
7000
7001 /* Uses of on_failure_jump:
7002
7003 Each alternative starts with an on_failure_jump that points
7004 to the beginning of the next alternative. Each alternative
7005 except the last ends with a jump that in effect jumps past
7006 the rest of the alternatives. (They really jump to the
7007 ending jump of the following alternative, because tensioning
7008 these jumps is a hassle.)
7009
7010 Repeats start with an on_failure_jump that points past both
7011 the repetition text and either the following jump or
7012 pop_failure_jump back to this on_failure_jump. */
7013 case on_failure_jump:
7014 on_failure:
7015 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7016
7017 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7018#ifdef _LIBC
7019 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7020#else
7021 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7022#endif
7023
7024 /* If this on_failure_jump comes right before a group (i.e.,
7025 the original * applied to a group), save the information
7026 for that group and all inner ones, so that if we fail back
7027 to this point, the group's information will be correct.
7028 For example, in \(a*\)*\1, we need the preceding group,
7029 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7030
7031 /* We can't use `p' to check ahead because we push
7032 a failure point to `p + mcnt' after we do this. */
7033 p1 = p;
7034
7035 /* We need to skip no_op's before we look for the
7036 start_memory in case this on_failure_jump is happening as
7037 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7038 against aba. */
7039 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7040 p1++;
7041
7042 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7043 {
7044 /* We have a new highest active register now. This will
7045 get reset at the start_memory we are about to get to,
7046 but we will have saved all the registers relevant to
7047 this repetition op, as described above. */
7048 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7049 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7050 lowest_active_reg = *(p1 + 1);
7051 }
7052
7053 DEBUG_PRINT1 (":\n");
7054 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7055 break;
7056
7057
7058 /* A smart repeat ends with `maybe_pop_jump'.
7059 We change it to either `pop_failure_jump' or `jump'. */
7060 case maybe_pop_jump:
7061 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7062 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7063 {
7064 register UCHAR_T *p2 = p;
7065
7066 /* Compare the beginning of the repeat with what in the
7067 pattern follows its end. If we can establish that there
7068 is nothing that they would both match, i.e., that we
7069 would have to backtrack because of (as in, e.g., `a*a')
7070 then we can change to pop_failure_jump, because we'll
7071 never have to backtrack.
7072
7073 This is not true in the case of alternatives: in
7074 `(a|ab)*' we do need to backtrack to the `ab' alternative
7075 (e.g., if the string was `ab'). But instead of trying to
7076 detect that here, the alternative has put on a dummy
7077 failure point which is what we will end up popping. */
7078
7079 /* Skip over open/close-group commands.
7080 If what follows this loop is a ...+ construct,
7081 look at what begins its body, since we will have to
7082 match at least one of that. */
7083 while (1)
7084 {
7085 if (p2 + 2 < pend
7086 && ((re_opcode_t) *p2 == stop_memory
7087 || (re_opcode_t) *p2 == start_memory))
7088 p2 += 3;
7089 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7090 && (re_opcode_t) *p2 == dummy_failure_jump)
7091 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7092 else
7093 break;
7094 }
7095
7096 p1 = p + mcnt;
7097 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7098 to the `maybe_finalize_jump' of this case. Examine what
7099 follows. */
7100
7101 /* If we're at the end of the pattern, we can change. */
7102 if (p2 == pend)
7103 {
7104 /* Consider what happens when matching ":\(.*\)"
7105 against ":/". I don't really understand this code
7106 yet. */
7107 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7108 pop_failure_jump;
7109 DEBUG_PRINT1
7110 (" End of pattern: change to `pop_failure_jump'.\n");
7111 }
7112
7113 else if ((re_opcode_t) *p2 == exactn
7114#ifdef MBS_SUPPORT
7115 || (re_opcode_t) *p2 == exactn_bin
7116#endif
7117 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7118 {
7119 register UCHAR_T c
7120 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7121
7122 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7123#ifdef MBS_SUPPORT
7124 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7125#endif
7126 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7127 {
7128 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7129 pop_failure_jump;
7130#ifdef WCHAR
7131 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7132 (wint_t) c,
7133 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7134#else
7135 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7136 (char) c,
7137 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7138#endif
7139 }
7140
7141#ifndef WCHAR
7142 else if ((re_opcode_t) p1[3] == charset
7143 || (re_opcode_t) p1[3] == charset_not)
7144 {
7145 int not = (re_opcode_t) p1[3] == charset_not;
7146
7147 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7148 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7149 not = !not;
7150
7151 /* `not' is equal to 1 if c would match, which means
7152 that we can't change to pop_failure_jump. */
7153 if (!not)
7154 {
7155 p[-3] = (unsigned char) pop_failure_jump;
7156 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7157 }
7158 }
7159#endif /* not WCHAR */
7160 }
7161#ifndef WCHAR
7162 else if ((re_opcode_t) *p2 == charset)
7163 {
7164 /* We win if the first character of the loop is not part
7165 of the charset. */
7166 if ((re_opcode_t) p1[3] == exactn
7167 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7168 && (p2[2 + p1[5] / BYTEWIDTH]
7169 & (1 << (p1[5] % BYTEWIDTH)))))
7170 {
7171 p[-3] = (unsigned char) pop_failure_jump;
7172 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7173 }
7174
7175 else if ((re_opcode_t) p1[3] == charset_not)
7176 {
7177 int idx;
7178 /* We win if the charset_not inside the loop
7179 lists every character listed in the charset after. */
7180 for (idx = 0; idx < (int) p2[1]; idx++)
7181 if (! (p2[2 + idx] == 0
7182 || (idx < (int) p1[4]
7183 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7184 break;
7185
7186 if (idx == p2[1])
7187 {
7188 p[-3] = (unsigned char) pop_failure_jump;
7189 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7190 }
7191 }
7192 else if ((re_opcode_t) p1[3] == charset)
7193 {
7194 int idx;
7195 /* We win if the charset inside the loop
7196 has no overlap with the one after the loop. */
7197 for (idx = 0;
7198 idx < (int) p2[1] && idx < (int) p1[4];
7199 idx++)
7200 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7201 break;
7202
7203 if (idx == p2[1] || idx == p1[4])
7204 {
7205 p[-3] = (unsigned char) pop_failure_jump;
7206 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7207 }
7208 }
7209 }
7210#endif /* not WCHAR */
7211 }
7212 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7213 if ((re_opcode_t) p[-1] != pop_failure_jump)
7214 {
7215 p[-1] = (UCHAR_T) jump;
7216 DEBUG_PRINT1 (" Match => jump.\n");
7217 goto unconditional_jump;
7218 }
7219 /* Note fall through. */
7220
7221
7222 /* The end of a simple repeat has a pop_failure_jump back to
7223 its matching on_failure_jump, where the latter will push a
7224 failure point. The pop_failure_jump takes off failure
7225 points put on by this pop_failure_jump's matching
7226 on_failure_jump; we got through the pattern to here from the
7227 matching on_failure_jump, so didn't fail. */
7228 case pop_failure_jump:
7229 {
7230 /* We need to pass separate storage for the lowest and
7231 highest registers, even though we don't care about the
7232 actual values. Otherwise, we will restore only one
7233 register from the stack, since lowest will == highest in
7234 `pop_failure_point'. */
7235 active_reg_t dummy_low_reg, dummy_high_reg;
7236 UCHAR_T *pdummy = NULL;
7237 const CHAR_T *sdummy = NULL;
7238
7239 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7240 POP_FAILURE_POINT (sdummy, pdummy,
7241 dummy_low_reg, dummy_high_reg,
7242 reg_dummy, reg_dummy, reg_info_dummy);
7243 }
7244 /* Note fall through. */
7245
7246 unconditional_jump:
7247#ifdef _LIBC
7248 DEBUG_PRINT2 ("\n%p: ", p);
7249#else
7250 DEBUG_PRINT2 ("\n0x%x: ", p);
7251#endif
7252 /* Note fall through. */
7253
7254 /* Unconditionally jump (without popping any failure points). */
7255 case jump:
7256 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7257 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7258 p += mcnt; /* Do the jump. */
7259#ifdef _LIBC
7260 DEBUG_PRINT2 ("(to %p).\n", p);
7261#else
7262 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7263#endif
7264 break;
7265
7266
7267 /* We need this opcode so we can detect where alternatives end
7268 in `group_match_null_string_p' et al. */
7269 case jump_past_alt:
7270 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7271 goto unconditional_jump;
7272
7273
7274 /* Normally, the on_failure_jump pushes a failure point, which
7275 then gets popped at pop_failure_jump. We will end up at
7276 pop_failure_jump, also, and with a pattern of, say, `a+', we
7277 are skipping over the on_failure_jump, so we have to push
7278 something meaningless for pop_failure_jump to pop. */
7279 case dummy_failure_jump:
7280 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7281 /* It doesn't matter what we push for the string here. What
7282 the code at `fail' tests is the value for the pattern. */
7283 PUSH_FAILURE_POINT (NULL, NULL, -2);
7284 goto unconditional_jump;
7285
7286
7287 /* At the end of an alternative, we need to push a dummy failure
7288 point in case we are followed by a `pop_failure_jump', because
7289 we don't want the failure point for the alternative to be
7290 popped. For example, matching `(a|ab)*' against `aab'
7291 requires that we match the `ab' alternative. */
7292 case push_dummy_failure:
7293 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7294 /* See comments just above at `dummy_failure_jump' about the
7295 two zeroes. */
7296 PUSH_FAILURE_POINT (NULL, NULL, -2);
7297 break;
7298
7299 /* Have to succeed matching what follows at least n times.
7300 After that, handle like `on_failure_jump'. */
7301 case succeed_n:
7302 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7303 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7304
7305 assert (mcnt >= 0);
7306 /* Originally, this is how many times we HAVE to succeed. */
7307 if (mcnt > 0)
7308 {
7309 mcnt--;
7310 p += OFFSET_ADDRESS_SIZE;
7311 STORE_NUMBER_AND_INCR (p, mcnt);
7312#ifdef _LIBC
7313 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7314 , mcnt);
7315#else
7316 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7317 , mcnt);
7318#endif
7319 }
7320 else if (mcnt == 0)
7321 {
7322#ifdef _LIBC
7323 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7324 p + OFFSET_ADDRESS_SIZE);
7325#else
7326 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7327 p + OFFSET_ADDRESS_SIZE);
7328#endif /* _LIBC */
7329
7330#ifdef WCHAR
7331 p[1] = (UCHAR_T) no_op;
7332#else
7333 p[2] = (UCHAR_T) no_op;
7334 p[3] = (UCHAR_T) no_op;
7335#endif /* WCHAR */
7336 goto on_failure;
7337 }
7338 break;
7339
7340 case jump_n:
7341 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7342 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7343
7344 /* Originally, this is how many times we CAN jump. */
7345 if (mcnt)
7346 {
7347 mcnt--;
7348 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7349
7350#ifdef _LIBC
7351 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7352 mcnt);
7353#else
7354 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7355 mcnt);
7356#endif /* _LIBC */
7357 goto unconditional_jump;
7358 }
7359 /* If don't have to jump any more, skip over the rest of command. */
7360 else
7361 p += 2 * OFFSET_ADDRESS_SIZE;
7362 break;
7363
7364 case set_number_at:
7365 {
7366 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7367
7368 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7369 p1 = p + mcnt;
7370 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7371#ifdef _LIBC
7372 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7373#else
7374 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7375#endif
7376 STORE_NUMBER (p1, mcnt);
7377 break;
7378 }
7379
7380#if 0
7381 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7382 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7383 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7384 macro and introducing temporary variables works around the bug. */
7385
7386 case wordbound:
7387 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7388 if (AT_WORD_BOUNDARY (d))
7389 break;
7390 goto fail;
7391
7392 case notwordbound:
7393 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7394 if (AT_WORD_BOUNDARY (d))
7395 goto fail;
7396 break;
7397#else
7398 case wordbound:
7399 {
7400 boolean prevchar, thischar;
7401
7402 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7403 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7404 break;
7405
7406 prevchar = WORDCHAR_P (d - 1);
7407 thischar = WORDCHAR_P (d);
7408 if (prevchar != thischar)
7409 break;
7410 goto fail;
7411 }
7412
7413 case notwordbound:
7414 {
7415 boolean prevchar, thischar;
7416
7417 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7418 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7419 goto fail;
7420
7421 prevchar = WORDCHAR_P (d - 1);
7422 thischar = WORDCHAR_P (d);
7423 if (prevchar != thischar)
7424 goto fail;
7425 break;
7426 }
7427#endif
7428
7429 case wordbeg:
7430 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7431 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7432 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7433 break;
7434 goto fail;
7435
7436 case wordend:
7437 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7438 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7439 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7440 break;
7441 goto fail;
7442
7443#ifdef emacs
7444 case before_dot:
7445 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7446 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7447 goto fail;
7448 break;
7449
7450 case at_dot:
7451 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7452 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7453 goto fail;
7454 break;
7455
7456 case after_dot:
7457 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7458 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7459 goto fail;
7460 break;
7461
7462 case syntaxspec:
7463 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7464 mcnt = *p++;
7465 goto matchsyntax;
7466
7467 case wordchar:
7468 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7469 mcnt = (int) Sword;
7470 matchsyntax:
7471 PREFETCH ();
7472 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7473 d++;
7474 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7475 goto fail;
7476 SET_REGS_MATCHED ();
7477 break;
7478
7479 case notsyntaxspec:
7480 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7481 mcnt = *p++;
7482 goto matchnotsyntax;
7483
7484 case notwordchar:
7485 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7486 mcnt = (int) Sword;
7487 matchnotsyntax:
7488 PREFETCH ();
7489 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7490 d++;
7491 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7492 goto fail;
7493 SET_REGS_MATCHED ();
7494 break;
7495
7496#else /* not emacs */
7497 case wordchar:
7498 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7499 PREFETCH ();
7500 if (!WORDCHAR_P (d))
7501 goto fail;
7502 SET_REGS_MATCHED ();
7503 d++;
7504 break;
7505
7506 case notwordchar:
7507 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7508 PREFETCH ();
7509 if (WORDCHAR_P (d))
7510 goto fail;
7511 SET_REGS_MATCHED ();
7512 d++;
7513 break;
7514#endif /* not emacs */
7515
7516 default:
7517 abort ();
7518 }
7519 continue; /* Successfully executed one pattern command; keep going. */
7520
7521
7522 /* We goto here if a matching operation fails. */
7523 fail:
7524 if (!FAIL_STACK_EMPTY ())
7525 { /* A restart point is known. Restore to that state. */
7526 DEBUG_PRINT1 ("\nFAIL:\n");
7527 POP_FAILURE_POINT (d, p,
7528 lowest_active_reg, highest_active_reg,
7529 regstart, regend, reg_info);
7530
7531 /* If this failure point is a dummy, try the next one. */
7532 if (!p)
7533 goto fail;
7534
7535 /* If we failed to the end of the pattern, don't examine *p. */
7536 assert (p <= pend);
7537 if (p < pend)
7538 {
7539 boolean is_a_jump_n = false;
7540
7541 /* If failed to a backwards jump that's part of a repetition
7542 loop, need to pop this failure point and use the next one. */
7543 switch ((re_opcode_t) *p)
7544 {
7545 case jump_n:
7546 is_a_jump_n = true;
7547 case maybe_pop_jump:
7548 case pop_failure_jump:
7549 case jump:
7550 p1 = p + 1;
7551 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7552 p1 += mcnt;
7553
7554 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7555 || (!is_a_jump_n
7556 && (re_opcode_t) *p1 == on_failure_jump))
7557 goto fail;
7558 break;
7559 default:
7560 /* do nothing */ ;
7561 }
7562 }
7563
7564 if (d >= string1 && d <= end1)
7565 dend = end_match_1;
7566 }
7567 else
7568 break; /* Matching at this starting point really fails. */
7569 } /* for (;;) */
7570
7571 if (best_regs_set)
7572 goto restore_best_regs;
7573
7574 FREE_VARIABLES ();
7575
7576 return -1; /* Failure to match. */
7577} /* re_match_2 */
7578\f
7579/* Subroutine definitions for re_match_2. */
7580
7581
7582/* We are passed P pointing to a register number after a start_memory.
7583
7584 Return true if the pattern up to the corresponding stop_memory can
7585 match the empty string, and false otherwise.
7586
7587 If we find the matching stop_memory, sets P to point to one past its number.
7588 Otherwise, sets P to an undefined byte less than or equal to END.
7589
7590 We don't handle duplicates properly (yet). */
7591
7592static boolean
7593PREFIX(group_match_null_string_p) (p, end, reg_info)
7594 UCHAR_T **p, *end;
7595 PREFIX(register_info_type) *reg_info;
7596{
7597 int mcnt;
7598 /* Point to after the args to the start_memory. */
7599 UCHAR_T *p1 = *p + 2;
7600
7601 while (p1 < end)
7602 {
7603 /* Skip over opcodes that can match nothing, and return true or
7604 false, as appropriate, when we get to one that can't, or to the
7605 matching stop_memory. */
7606
7607 switch ((re_opcode_t) *p1)
7608 {
7609 /* Could be either a loop or a series of alternatives. */
7610 case on_failure_jump:
7611 p1++;
7612 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7613
7614 /* If the next operation is not a jump backwards in the
7615 pattern. */
7616
7617 if (mcnt >= 0)
7618 {
7619 /* Go through the on_failure_jumps of the alternatives,
7620 seeing if any of the alternatives cannot match nothing.
7621 The last alternative starts with only a jump,
7622 whereas the rest start with on_failure_jump and end
7623 with a jump, e.g., here is the pattern for `a|b|c':
7624
7625 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7626 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7627 /exactn/1/c
7628
7629 So, we have to first go through the first (n-1)
7630 alternatives and then deal with the last one separately. */
7631
7632
7633 /* Deal with the first (n-1) alternatives, which start
7634 with an on_failure_jump (see above) that jumps to right
7635 past a jump_past_alt. */
7636
7637 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7638 jump_past_alt)
7639 {
7640 /* `mcnt' holds how many bytes long the alternative
7641 is, including the ending `jump_past_alt' and
7642 its number. */
7643
7644 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7645 (1 + OFFSET_ADDRESS_SIZE),
7646 reg_info))
7647 return false;
7648
7649 /* Move to right after this alternative, including the
7650 jump_past_alt. */
7651 p1 += mcnt;
7652
7653 /* Break if it's the beginning of an n-th alternative
7654 that doesn't begin with an on_failure_jump. */
7655 if ((re_opcode_t) *p1 != on_failure_jump)
7656 break;
7657
7658 /* Still have to check that it's not an n-th
7659 alternative that starts with an on_failure_jump. */
7660 p1++;
7661 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7662 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7663 jump_past_alt)
7664 {
7665 /* Get to the beginning of the n-th alternative. */
7666 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7667 break;
7668 }
7669 }
7670
7671 /* Deal with the last alternative: go back and get number
7672 of the `jump_past_alt' just before it. `mcnt' contains
7673 the length of the alternative. */
7674 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7675
7676 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7677 return false;
7678
7679 p1 += mcnt; /* Get past the n-th alternative. */
7680 } /* if mcnt > 0 */
7681 break;
7682
7683
7684 case stop_memory:
7685 assert (p1[1] == **p);
7686 *p = p1 + 2;
7687 return true;
7688
7689
7690 default:
7691 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7692 return false;
7693 }
7694 } /* while p1 < end */
7695
7696 return false;
7697} /* group_match_null_string_p */
7698
7699
7700/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7701 It expects P to be the first byte of a single alternative and END one
7702 byte past the last. The alternative can contain groups. */
7703
7704static boolean
7705PREFIX(alt_match_null_string_p) (p, end, reg_info)
7706 UCHAR_T *p, *end;
7707 PREFIX(register_info_type) *reg_info;
7708{
7709 int mcnt;
7710 UCHAR_T *p1 = p;
7711
7712 while (p1 < end)
7713 {
7714 /* Skip over opcodes that can match nothing, and break when we get
7715 to one that can't. */
7716
7717 switch ((re_opcode_t) *p1)
7718 {
7719 /* It's a loop. */
7720 case on_failure_jump:
7721 p1++;
7722 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7723 p1 += mcnt;
7724 break;
7725
7726 default:
7727 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7728 return false;
7729 }
7730 } /* while p1 < end */
7731
7732 return true;
7733} /* alt_match_null_string_p */
7734
7735
7736/* Deals with the ops common to group_match_null_string_p and
7737 alt_match_null_string_p.
7738
7739 Sets P to one after the op and its arguments, if any. */
7740
7741static boolean
7742PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7743 UCHAR_T **p, *end;
7744 PREFIX(register_info_type) *reg_info;
7745{
7746 int mcnt;
7747 boolean ret;
7748 int reg_no;
7749 UCHAR_T *p1 = *p;
7750
7751 switch ((re_opcode_t) *p1++)
7752 {
7753 case no_op:
7754 case begline:
7755 case endline:
7756 case begbuf:
7757 case endbuf:
7758 case wordbeg:
7759 case wordend:
7760 case wordbound:
7761 case notwordbound:
7762#ifdef emacs
7763 case before_dot:
7764 case at_dot:
7765 case after_dot:
7766#endif
7767 break;
7768
7769 case start_memory:
7770 reg_no = *p1;
7771 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7772 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7773
7774 /* Have to set this here in case we're checking a group which
7775 contains a group and a back reference to it. */
7776
7777 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7778 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7779
7780 if (!ret)
7781 return false;
7782 break;
7783
7784 /* If this is an optimized succeed_n for zero times, make the jump. */
7785 case jump:
7786 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7787 if (mcnt >= 0)
7788 p1 += mcnt;
7789 else
7790 return false;
7791 break;
7792
7793 case succeed_n:
7794 /* Get to the number of times to succeed. */
7795 p1 += OFFSET_ADDRESS_SIZE;
7796 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7797
7798 if (mcnt == 0)
7799 {
7800 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7801 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7802 p1 += mcnt;
7803 }
7804 else
7805 return false;
7806 break;
7807
7808 case duplicate:
7809 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7810 return false;
7811 break;
7812
7813 case set_number_at:
7814 p1 += 2 * OFFSET_ADDRESS_SIZE;
7815
7816 default:
7817 /* All other opcodes mean we cannot match the empty string. */
7818 return false;
7819 }
7820
7821 *p = p1;
7822 return true;
7823} /* common_op_match_null_string_p */
7824
7825
7826/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7827 bytes; nonzero otherwise. */
7828
7829static int
7830PREFIX(bcmp_translate) (s1, s2, len, translate)
7831 const CHAR_T *s1, *s2;
7832 register int len;
7833 RE_TRANSLATE_TYPE translate;
7834{
7835 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7836 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7837 while (len)
7838 {
7839#ifdef WCHAR
7840 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7841 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7842 return 1;
7843#else /* BYTE */
7844 if (translate[*p1++] != translate[*p2++]) return 1;
7845#endif /* WCHAR */
7846 len--;
7847 }
7848 return 0;
7849}
7850\f
7851
7852#else /* not INSIDE_RECURSION */
7853
7854/* Entry points for GNU code. */
7855
7856/* re_compile_pattern is the GNU regular expression compiler: it
7857 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7858 Returns 0 if the pattern was valid, otherwise an error string.
7859
7860 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7861 are set in BUFP on entry.
7862
7863 We call regex_compile to do the actual compilation. */
7864
7865const char *
7866re_compile_pattern (pattern, length, bufp)
7867 const char *pattern;
7868 size_t length;
7869 struct re_pattern_buffer *bufp;
7870{
7871 reg_errcode_t ret;
7872
7873 /* GNU code is written to assume at least RE_NREGS registers will be set
7874 (and at least one extra will be -1). */
7875 bufp->regs_allocated = REGS_UNALLOCATED;
7876
7877 /* And GNU code determines whether or not to get register information
7878 by passing null for the REGS argument to re_match, etc., not by
7879 setting no_sub. */
7880 bufp->no_sub = 0;
7881
7882 /* Match anchors at newline. */
7883 bufp->newline_anchor = 1;
7884
7885# ifdef MBS_SUPPORT
7886 if (MB_CUR_MAX != 1)
7887 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7888 else
7889# endif
7890 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7891
7892 if (!ret)
7893 return NULL;
7894 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7895}
7896#ifdef _LIBC
7897weak_alias (__re_compile_pattern, re_compile_pattern)
7898#endif
7899\f
7900/* Entry points compatible with 4.2 BSD regex library. We don't define
7901 them unless specifically requested. */
7902
7903#if defined _REGEX_RE_COMP || defined _LIBC
7904
7905/* BSD has one and only one pattern buffer. */
7906static struct re_pattern_buffer re_comp_buf;
7907
7908char *
7909#ifdef _LIBC
7910/* Make these definitions weak in libc, so POSIX programs can redefine
7911 these names if they don't use our functions, and still use
7912 regcomp/regexec below without link errors. */
7913weak_function
7914#endif
7915re_comp (s)
7916 const char *s;
7917{
7918 reg_errcode_t ret;
7919
7920 if (!s)
7921 {
7922 if (!re_comp_buf.buffer)
7923 return gettext ("No previous regular expression");
7924 return 0;
7925 }
7926
7927 if (!re_comp_buf.buffer)
7928 {
7929 re_comp_buf.buffer = (unsigned char *) malloc (200);
7930 if (re_comp_buf.buffer == NULL)
7931 return (char *) gettext (re_error_msgid
7932 + re_error_msgid_idx[(int) REG_ESPACE]);
7933 re_comp_buf.allocated = 200;
7934
7935 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7936 if (re_comp_buf.fastmap == NULL)
7937 return (char *) gettext (re_error_msgid
7938 + re_error_msgid_idx[(int) REG_ESPACE]);
7939 }
7940
7941 /* Since `re_exec' always passes NULL for the `regs' argument, we
7942 don't need to initialize the pattern buffer fields which affect it. */
7943
7944 /* Match anchors at newlines. */
7945 re_comp_buf.newline_anchor = 1;
7946
7947# ifdef MBS_SUPPORT
7948 if (MB_CUR_MAX != 1)
7949 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7950 else
7951# endif
7952 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7953
7954 if (!ret)
7955 return NULL;
7956
7957 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7958 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7959}
7960
7961
7962int
7963#ifdef _LIBC
7964weak_function
7965#endif
7966re_exec (s)
7967 const char *s;
7968{
7969 const int len = strlen (s);
7970 return
7971 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7972}
7973
7974#endif /* _REGEX_RE_COMP */
7975\f
7976/* POSIX.2 functions. Don't define these for Emacs. */
7977
7978#ifndef emacs
7979
7980/* regcomp takes a regular expression as a string and compiles it.
7981
7982 PREG is a regex_t *. We do not expect any fields to be initialized,
7983 since POSIX says we shouldn't. Thus, we set
7984
7985 `buffer' to the compiled pattern;
7986 `used' to the length of the compiled pattern;
7987 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7988 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7989 RE_SYNTAX_POSIX_BASIC;
7990 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7991 `fastmap' to an allocated space for the fastmap;
7992 `fastmap_accurate' to zero;
7993 `re_nsub' to the number of subexpressions in PATTERN.
7994
7995 PATTERN is the address of the pattern string.
7996
7997 CFLAGS is a series of bits which affect compilation.
7998
7999 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8000 use POSIX basic syntax.
8001
8002 If REG_NEWLINE is set, then . and [^...] don't match newline.
8003 Also, regexec will try a match beginning after every newline.
8004
8005 If REG_ICASE is set, then we considers upper- and lowercase
8006 versions of letters to be equivalent when matching.
8007
8008 If REG_NOSUB is set, then when PREG is passed to regexec, that
8009 routine will report only success or failure, and nothing about the
8010 registers.
8011
8012 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8013 the return codes and their meanings.) */
8014
8015int
8016regcomp (preg, pattern, cflags)
8017 regex_t *preg;
8018 const char *pattern;
8019 int cflags;
8020{
8021 reg_errcode_t ret;
8022 reg_syntax_t syntax
8023 = (cflags & REG_EXTENDED) ?
8024 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8025
8026 /* regex_compile will allocate the space for the compiled pattern. */
8027 preg->buffer = 0;
8028 preg->allocated = 0;
8029 preg->used = 0;
8030
8031 /* Try to allocate space for the fastmap. */
8032 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8033
8034 if (cflags & REG_ICASE)
8035 {
8036 unsigned i;
8037
8038 preg->translate
8039 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8040 * sizeof (*(RE_TRANSLATE_TYPE)0));
8041 if (preg->translate == NULL)
8042 return (int) REG_ESPACE;
8043
8044 /* Map uppercase characters to corresponding lowercase ones. */
8045 for (i = 0; i < CHAR_SET_SIZE; i++)
8046 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8047 }
8048 else
8049 preg->translate = NULL;
8050
8051 /* If REG_NEWLINE is set, newlines are treated differently. */
8052 if (cflags & REG_NEWLINE)
8053 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8054 syntax &= ~RE_DOT_NEWLINE;
8055 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8056 /* It also changes the matching behavior. */
8057 preg->newline_anchor = 1;
8058 }
8059 else
8060 preg->newline_anchor = 0;
8061
8062 preg->no_sub = !!(cflags & REG_NOSUB);
8063
8064 /* POSIX says a null character in the pattern terminates it, so we
8065 can use strlen here in compiling the pattern. */
8066# ifdef MBS_SUPPORT
8067 if (MB_CUR_MAX != 1)
8068 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8069 else
8070# endif
8071 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8072
8073 /* POSIX doesn't distinguish between an unmatched open-group and an
8074 unmatched close-group: both are REG_EPAREN. */
8075 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8076
8077 if (ret == REG_NOERROR && preg->fastmap)
8078 {
8079 /* Compute the fastmap now, since regexec cannot modify the pattern
8080 buffer. */
8081 if (re_compile_fastmap (preg) == -2)
8082 {
8083 /* Some error occurred while computing the fastmap, just forget
8084 about it. */
8085 free (preg->fastmap);
8086 preg->fastmap = NULL;
8087 }
8088 }
8089
8090 return (int) ret;
8091}
8092#ifdef _LIBC
8093weak_alias (__regcomp, regcomp)
8094#endif
8095
8096
8097/* regexec searches for a given pattern, specified by PREG, in the
8098 string STRING.
8099
8100 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8101 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8102 least NMATCH elements, and we set them to the offsets of the
8103 corresponding matched substrings.
8104
8105 EFLAGS specifies `execution flags' which affect matching: if
8106 REG_NOTBOL is set, then ^ does not match at the beginning of the
8107 string; if REG_NOTEOL is set, then $ does not match at the end.
8108
8109 We return 0 if we find a match and REG_NOMATCH if not. */
8110
8111int
8112regexec (preg, string, nmatch, pmatch, eflags)
8113 const regex_t *preg;
8114 const char *string;
8115 size_t nmatch;
8116 regmatch_t pmatch[];
8117 int eflags;
8118{
8119 int ret;
8120 struct re_registers regs;
8121 regex_t private_preg;
8122 int len = strlen (string);
8123 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8124
8125 private_preg = *preg;
8126
8127 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8128 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8129
8130 /* The user has told us exactly how many registers to return
8131 information about, via `nmatch'. We have to pass that on to the
8132 matching routines. */
8133 private_preg.regs_allocated = REGS_FIXED;
8134
8135 if (want_reg_info)
8136 {
8137 regs.num_regs = nmatch;
8138 regs.start = TALLOC (nmatch * 2, regoff_t);
8139 if (regs.start == NULL)
8140 return (int) REG_NOMATCH;
8141 regs.end = regs.start + nmatch;
8142 }
8143
8144 /* Perform the searching operation. */
8145 ret = re_search (&private_preg, string, len,
8146 /* start: */ 0, /* range: */ len,
8147 want_reg_info ? &regs : (struct re_registers *) 0);
8148
8149 /* Copy the register information to the POSIX structure. */
8150 if (want_reg_info)
8151 {
8152 if (ret >= 0)
8153 {
8154 unsigned r;
8155
8156 for (r = 0; r < nmatch; r++)
8157 {
8158 pmatch[r].rm_so = regs.start[r];
8159 pmatch[r].rm_eo = regs.end[r];
8160 }
8161 }
8162
8163 /* If we needed the temporary register info, free the space now. */
8164 free (regs.start);
8165 }
8166
8167 /* We want zero return to mean success, unlike `re_search'. */
8168 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8169}
8170#ifdef _LIBC
8171weak_alias (__regexec, regexec)
8172#endif
8173
8174
8175/* Returns a message corresponding to an error code, ERRCODE, returned
8176 from either regcomp or regexec. We don't use PREG here. */
8177
8178size_t
8179regerror (errcode, preg, errbuf, errbuf_size)
8180 int errcode;
8181 const regex_t *preg;
8182 char *errbuf;
8183 size_t errbuf_size;
8184{
8185 const char *msg;
8186 size_t msg_size;
8187
8188 if (errcode < 0
8189 || errcode >= (int) (sizeof (re_error_msgid_idx)
8190 / sizeof (re_error_msgid_idx[0])))
8191 /* Only error codes returned by the rest of the code should be passed
8192 to this routine. If we are given anything else, or if other regex
8193 code generates an invalid error code, then the program has a bug.
8194 Dump core so we can fix it. */
8195 abort ();
8196
8197 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8198
8199 msg_size = strlen (msg) + 1; /* Includes the null. */
8200
8201 if (errbuf_size != 0)
8202 {
8203 if (msg_size > errbuf_size)
8204 {
8205#if defined HAVE_MEMPCPY || defined _LIBC
8206 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8207#else
8208 memcpy (errbuf, msg, errbuf_size - 1);
8209 errbuf[errbuf_size - 1] = 0;
8210#endif
8211 }
8212 else
8213 memcpy (errbuf, msg, msg_size);
8214 }
8215
8216 return msg_size;
8217}
8218#ifdef _LIBC
8219weak_alias (__regerror, regerror)
8220#endif
8221
8222
8223/* Free dynamically allocated space used by PREG. */
8224
8225void
8226regfree (preg)
8227 regex_t *preg;
8228{
8229 if (preg->buffer != NULL)
8230 free (preg->buffer);
8231 preg->buffer = NULL;
8232
8233 preg->allocated = 0;
8234 preg->used = 0;
8235
8236 if (preg->fastmap != NULL)
8237 free (preg->fastmap);
8238 preg->fastmap = NULL;
8239 preg->fastmap_accurate = 0;
8240
8241 if (preg->translate != NULL)
8242 free (preg->translate);
8243 preg->translate = NULL;
8244}
8245#ifdef _LIBC
8246weak_alias (__regfree, regfree)
8247#endif
8248
8249#endif /* not emacs */
8250
8251#endif /* not INSIDE_RECURSION */
8252
8253\f
8254#undef STORE_NUMBER
8255#undef STORE_NUMBER_AND_INCR
8256#undef EXTRACT_NUMBER
8257#undef EXTRACT_NUMBER_AND_INCR
8258
8259#undef DEBUG_PRINT_COMPILED_PATTERN
8260#undef DEBUG_PRINT_DOUBLE_STRING
8261
8262#undef INIT_FAIL_STACK
8263#undef RESET_FAIL_STACK
8264#undef DOUBLE_FAIL_STACK
8265#undef PUSH_PATTERN_OP
8266#undef PUSH_FAILURE_POINTER
8267#undef PUSH_FAILURE_INT
8268#undef PUSH_FAILURE_ELT
8269#undef POP_FAILURE_POINTER
8270#undef POP_FAILURE_INT
8271#undef POP_FAILURE_ELT
8272#undef DEBUG_PUSH
8273#undef DEBUG_POP
8274#undef PUSH_FAILURE_POINT
8275#undef POP_FAILURE_POINT
8276
8277#undef REG_UNSET_VALUE
8278#undef REG_UNSET
8279
8280#undef PATFETCH
8281#undef PATFETCH_RAW
8282#undef PATUNFETCH
8283#undef TRANSLATE
8284
8285#undef INIT_BUF_SIZE
8286#undef GET_BUFFER_SPACE
8287#undef BUF_PUSH
8288#undef BUF_PUSH_2
8289#undef BUF_PUSH_3
8290#undef STORE_JUMP
8291#undef STORE_JUMP2
8292#undef INSERT_JUMP
8293#undef INSERT_JUMP2
8294#undef EXTEND_BUFFER
8295#undef GET_UNSIGNED_NUMBER
8296#undef FREE_STACK_RETURN
8297
8298# undef POINTER_TO_OFFSET
8299# undef MATCHING_IN_FRST_STRING
8300# undef PREFETCH
8301# undef AT_STRINGS_BEG
8302# undef AT_STRINGS_END
8303# undef WORDCHAR_P
8304# undef FREE_VAR
8305# undef FREE_VARIABLES
8306# undef NO_HIGHEST_ACTIVE_REG
8307# undef NO_LOWEST_ACTIVE_REG
8308
8309# undef CHAR_T
8310# undef UCHAR_T
8311# undef COMPILED_BUFFER_VAR
8312# undef OFFSET_ADDRESS_SIZE
8313# undef CHAR_CLASS_SIZE
8314# undef PREFIX
8315# undef ARG_PREFIX
8316# undef PUT_CHAR
8317# undef BYTE
8318# undef WCHAR
8319
8320# define DEFINED_ONCE
This page took 0.4449 seconds and 4 git commands to generate.