* hashtab.c, partition.c, xmemdup.c: Include string.h
[deliverable/binutils-gdb.git] / libiberty / sort.c
CommitLineData
5c82d20a
ZW
1/* Sorting algorithms.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3 Contributed by Mark Mitchell <mark@codesourcery.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22#ifdef HAVE_CONFIG_H
23#include "config.h"
24#endif
25#include "libiberty.h"
26#include "sort.h"
27#include <limits.h>
28#ifdef HAVE_STDLIB_H
29#include <stdlib.h>
30#endif
31#ifdef HAVE_STRING_H
32#include <string.h>
33#endif
34
35#ifndef UCHAR_MAX
36#define UCHAR_MAX ((unsigned char)(-1))
37#endif
38
39/* POINTERS and WORK are both arrays of N pointers. When this
40 function returns POINTERS will be sorted in ascending order. */
41
42void sort_pointers (n, pointers, work)
43 size_t n;
44 void **pointers;
45 void **work;
46{
47 /* The type of a single digit. This can be any unsigned integral
48 type. When changing this, DIGIT_MAX should be changed as
49 well. */
50 typedef unsigned char digit_t;
51
52 /* The maximum value a single digit can have. */
53#define DIGIT_MAX (UCHAR_MAX + 1)
54
55 /* The Ith entry is the number of elements in *POINTERSP that have I
56 in the digit on which we are currently sorting. */
57 unsigned int count[DIGIT_MAX];
58 /* Nonzero if we are running on a big-endian machine. */
59 int big_endian_p;
60 size_t i;
61 size_t j;
62
63 /* The algorithm used here is radix sort which takes time linear in
64 the number of elements in the array. */
65
66 /* The algorithm here depends on being able to swap the two arrays
67 an even number of times. */
68 if ((sizeof (void *) / sizeof (digit_t)) % 2 != 0)
69 abort ();
70
71 /* Figure out the endianness of the machine. */
72 for (i = 0, j = 0; i < sizeof (size_t); ++i)
73 {
74 j *= (UCHAR_MAX + 1);
75 j += i;
76 }
77 big_endian_p = (((char *)&j)[0] == 0);
78
79 /* Move through the pointer values from least significant to most
80 significant digits. */
81 for (i = 0; i < sizeof (void *) / sizeof (digit_t); ++i)
82 {
83 digit_t *digit;
84 digit_t *bias;
85 digit_t *top;
86 unsigned int *countp;
87 void **pointerp;
88
89 /* The offset from the start of the pointer will depend on the
90 endianness of the machine. */
91 if (big_endian_p)
92 j = sizeof (void *) / sizeof (digit_t) - i;
93 else
94 j = i;
95
96 /* Now, perform a stable sort on this digit. We use counting
97 sort. */
98 memset (count, 0, DIGIT_MAX * sizeof (unsigned int));
99
100 /* Compute the address of the appropriate digit in the first and
101 one-past-the-end elements of the array. On a little-endian
102 machine, the least-significant digit is closest to the front. */
103 bias = ((digit_t *) pointers) + j;
104 top = ((digit_t *) (pointers + n)) + j;
105
106 /* Count how many there are of each value. At the end of this
107 loop, COUNT[K] will contain the number of pointers whose Ith
108 digit is K. */
109 for (digit = bias;
110 digit < top;
111 digit += sizeof (void *) / sizeof (digit_t))
112 ++count[*digit];
113
114 /* Now, make COUNT[K] contain the number of pointers whose Ith
115 digit is less than or equal to K. */
116 for (countp = count + 1; countp < count + DIGIT_MAX; ++countp)
117 *countp += countp[-1];
118
119 /* Now, drop the pointers into their correct locations. */
120 for (pointerp = pointers + n - 1; pointerp >= pointers; --pointerp)
121 work[--count[((digit_t *) pointerp)[j]]] = *pointerp;
122
123 /* Swap WORK and POINTERS so that POINTERS contains the sorted
124 array. */
125 pointerp = pointers;
126 pointers = work;
127 work = pointerp;
128 }
129}
130
131/* Everything below here is a unit test for the routines in this
132 file. */
133
134#ifdef UNIT_TEST
135
136#include <stdio.h>
137
138void *xmalloc (n)
139 size_t n;
140{
141 return malloc (n);
142}
143
144int main (int argc, char **argv)
145{
146 int k;
147 int result;
148 size_t i;
149 void **pointers;
150 void **work;
151
152 if (argc > 1)
153 k = atoi (argv[1]);
154 else
155 k = 10;
156
157 pointers = xmalloc (k * sizeof (void *));
158 work = xmalloc (k * sizeof (void *));
159
160 for (i = 0; i < k; ++i)
161 {
162 pointers[i] = (void *) random ();
163 printf ("%x\n", pointers[i]);
164 }
165
166 sort_pointers (k, pointers, work);
167
168 printf ("\nSorted\n\n");
169
170 result = 0;
171
172 for (i = 0; i < k; ++i)
173 {
174 printf ("%x\n", pointers[i]);
175 if (i > 0 && (char*) pointers[i] < (char*) pointers[i - 1])
176 result = 1;
177 }
178
179 free (pointers);
180 free (work);
181
182 return result;
183}
184
185#endif
This page took 0.029455 seconds and 4 git commands to generate.