mm: rename is_mlocked_vma() to mlocked_vma_newpage()
[deliverable/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
110
111 for_each_populated_zone(zone)
112 nr_zones++;
113
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117 /*
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
122 */
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
130
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
135}
136late_initcall(set_recommended_min_free_kbytes);
137
ba76149f
AA
138static int start_khugepaged(void)
139{
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
143 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 err = -ENOMEM;
145 goto out;
146 }
147 mutex_lock(&khugepaged_mutex);
148 if (!khugepaged_thread)
149 khugepaged_thread = kthread_run(khugepaged, NULL,
150 "khugepaged");
151 if (unlikely(IS_ERR(khugepaged_thread))) {
152 printk(KERN_ERR
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err = PTR_ERR(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
157 wakeup = !list_empty(&khugepaged_scan.mm_head);
158 mutex_unlock(&khugepaged_mutex);
159 if (wakeup)
160 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
161
162 set_recommended_min_free_kbytes();
ba76149f
AA
163 } else
164 /* wakeup to exit */
165 wake_up_interruptible(&khugepaged_wait);
166out:
167 return err;
168}
71e3aac0
AA
169
170#ifdef CONFIG_SYSFS
ba76149f 171
71e3aac0
AA
172static ssize_t double_flag_show(struct kobject *kobj,
173 struct kobj_attribute *attr, char *buf,
174 enum transparent_hugepage_flag enabled,
175 enum transparent_hugepage_flag req_madv)
176{
177 if (test_bit(enabled, &transparent_hugepage_flags)) {
178 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 return sprintf(buf, "[always] madvise never\n");
180 } else if (test_bit(req_madv, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
184}
185static ssize_t double_flag_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count,
188 enum transparent_hugepage_flag enabled,
189 enum transparent_hugepage_flag req_madv)
190{
191 if (!memcmp("always", buf,
192 min(sizeof("always")-1, count))) {
193 set_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else if (!memcmp("madvise", buf,
196 min(sizeof("madvise")-1, count))) {
197 clear_bit(enabled, &transparent_hugepage_flags);
198 set_bit(req_madv, &transparent_hugepage_flags);
199 } else if (!memcmp("never", buf,
200 min(sizeof("never")-1, count))) {
201 clear_bit(enabled, &transparent_hugepage_flags);
202 clear_bit(req_madv, &transparent_hugepage_flags);
203 } else
204 return -EINVAL;
205
206 return count;
207}
208
209static ssize_t enabled_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
211{
212 return double_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_FLAG,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215}
216static ssize_t enabled_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count)
219{
ba76149f
AA
220 ssize_t ret;
221
222 ret = double_flag_store(kobj, attr, buf, count,
223 TRANSPARENT_HUGEPAGE_FLAG,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225
226 if (ret > 0) {
227 int err = start_khugepaged();
228 if (err)
229 ret = err;
230 }
231
f000565a
AA
232 if (ret > 0 &&
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 &transparent_hugepage_flags) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 &transparent_hugepage_flags)))
237 set_recommended_min_free_kbytes();
238
ba76149f 239 return ret;
71e3aac0
AA
240}
241static struct kobj_attribute enabled_attr =
242 __ATTR(enabled, 0644, enabled_show, enabled_store);
243
244static ssize_t single_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag flag)
247{
e27e6151
BH
248 return sprintf(buf, "%d\n",
249 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 250}
e27e6151 251
71e3aac0
AA
252static ssize_t single_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag flag)
256{
e27e6151
BH
257 unsigned long value;
258 int ret;
259
260 ret = kstrtoul(buf, 10, &value);
261 if (ret < 0)
262 return ret;
263 if (value > 1)
264 return -EINVAL;
265
266 if (value)
71e3aac0 267 set_bit(flag, &transparent_hugepage_flags);
e27e6151 268 else
71e3aac0 269 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
270
271 return count;
272}
273
274/*
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
278 */
279static ssize_t defrag_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281{
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285}
286static ssize_t defrag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289{
290 return double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297#ifdef CONFIG_DEBUG_VM
298static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return single_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303}
304static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307{
308 return single_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310}
311static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313#endif /* CONFIG_DEBUG_VM */
314
315static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318#ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320#endif
321 NULL,
322};
323
324static struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
ba76149f
AA
326};
327
328static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 char *buf)
331{
332 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333}
334
335static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
338{
339 unsigned long msecs;
340 int err;
341
342 err = strict_strtoul(buf, 10, &msecs);
343 if (err || msecs > UINT_MAX)
344 return -EINVAL;
345
346 khugepaged_scan_sleep_millisecs = msecs;
347 wake_up_interruptible(&khugepaged_wait);
348
349 return count;
350}
351static struct kobj_attribute scan_sleep_millisecs_attr =
352 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 scan_sleep_millisecs_store);
354
355static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 char *buf)
358{
359 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360}
361
362static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365{
366 unsigned long msecs;
367 int err;
368
369 err = strict_strtoul(buf, 10, &msecs);
370 if (err || msecs > UINT_MAX)
371 return -EINVAL;
372
373 khugepaged_alloc_sleep_millisecs = msecs;
374 wake_up_interruptible(&khugepaged_wait);
375
376 return count;
377}
378static struct kobj_attribute alloc_sleep_millisecs_attr =
379 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 alloc_sleep_millisecs_store);
381
382static ssize_t pages_to_scan_show(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 char *buf)
385{
386 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387}
388static ssize_t pages_to_scan_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
391{
392 int err;
393 unsigned long pages;
394
395 err = strict_strtoul(buf, 10, &pages);
396 if (err || !pages || pages > UINT_MAX)
397 return -EINVAL;
398
399 khugepaged_pages_to_scan = pages;
400
401 return count;
402}
403static struct kobj_attribute pages_to_scan_attr =
404 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 pages_to_scan_store);
406
407static ssize_t pages_collapsed_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412}
413static struct kobj_attribute pages_collapsed_attr =
414 __ATTR_RO(pages_collapsed);
415
416static ssize_t full_scans_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
419{
420 return sprintf(buf, "%u\n", khugepaged_full_scans);
421}
422static struct kobj_attribute full_scans_attr =
423 __ATTR_RO(full_scans);
424
425static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 struct kobj_attribute *attr, char *buf)
427{
428 return single_flag_show(kobj, attr, buf,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430}
431static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 struct kobj_attribute *attr,
433 const char *buf, size_t count)
434{
435 return single_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437}
438static struct kobj_attribute khugepaged_defrag_attr =
439 __ATTR(defrag, 0644, khugepaged_defrag_show,
440 khugepaged_defrag_store);
441
442/*
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
449 */
450static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 char *buf)
453{
454 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455}
456static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 struct kobj_attribute *attr,
458 const char *buf, size_t count)
459{
460 int err;
461 unsigned long max_ptes_none;
462
463 err = strict_strtoul(buf, 10, &max_ptes_none);
464 if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 return -EINVAL;
466
467 khugepaged_max_ptes_none = max_ptes_none;
468
469 return count;
470}
471static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 khugepaged_max_ptes_none_store);
474
475static struct attribute *khugepaged_attr[] = {
476 &khugepaged_defrag_attr.attr,
477 &khugepaged_max_ptes_none_attr.attr,
478 &pages_to_scan_attr.attr,
479 &pages_collapsed_attr.attr,
480 &full_scans_attr.attr,
481 &scan_sleep_millisecs_attr.attr,
482 &alloc_sleep_millisecs_attr.attr,
483 NULL,
484};
485
486static struct attribute_group khugepaged_attr_group = {
487 .attrs = khugepaged_attr,
488 .name = "khugepaged",
71e3aac0 489};
71e3aac0 490
569e5590 491static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 492{
71e3aac0
AA
493 int err;
494
569e5590
SL
495 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496 if (unlikely(!*hugepage_kobj)) {
ba76149f 497 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 498 return -ENOMEM;
ba76149f
AA
499 }
500
569e5590 501 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
502 if (err) {
503 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 504 goto delete_obj;
ba76149f
AA
505 }
506
569e5590 507 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
508 if (err) {
509 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 510 goto remove_hp_group;
ba76149f 511 }
569e5590
SL
512
513 return 0;
514
515remove_hp_group:
516 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517delete_obj:
518 kobject_put(*hugepage_kobj);
519 return err;
520}
521
522static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523{
524 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526 kobject_put(hugepage_kobj);
527}
528#else
529static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530{
531 return 0;
532}
533
534static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535{
536}
537#endif /* CONFIG_SYSFS */
538
539static int __init hugepage_init(void)
540{
541 int err;
542 struct kobject *hugepage_kobj;
543
544 if (!has_transparent_hugepage()) {
545 transparent_hugepage_flags = 0;
546 return -EINVAL;
547 }
548
549 err = hugepage_init_sysfs(&hugepage_kobj);
550 if (err)
551 return err;
ba76149f
AA
552
553 err = khugepaged_slab_init();
554 if (err)
555 goto out;
556
557 err = mm_slots_hash_init();
558 if (err) {
559 khugepaged_slab_free();
560 goto out;
561 }
562
97562cd2
RR
563 /*
564 * By default disable transparent hugepages on smaller systems,
565 * where the extra memory used could hurt more than TLB overhead
566 * is likely to save. The admin can still enable it through /sys.
567 */
568 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569 transparent_hugepage_flags = 0;
570
ba76149f
AA
571 start_khugepaged();
572
f000565a
AA
573 set_recommended_min_free_kbytes();
574
569e5590 575 return 0;
ba76149f 576out:
569e5590 577 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 578 return err;
71e3aac0
AA
579}
580module_init(hugepage_init)
581
582static int __init setup_transparent_hugepage(char *str)
583{
584 int ret = 0;
585 if (!str)
586 goto out;
587 if (!strcmp(str, "always")) {
588 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 &transparent_hugepage_flags);
590 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 &transparent_hugepage_flags);
592 ret = 1;
593 } else if (!strcmp(str, "madvise")) {
594 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595 &transparent_hugepage_flags);
596 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597 &transparent_hugepage_flags);
598 ret = 1;
599 } else if (!strcmp(str, "never")) {
600 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601 &transparent_hugepage_flags);
602 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603 &transparent_hugepage_flags);
604 ret = 1;
605 }
606out:
607 if (!ret)
608 printk(KERN_WARNING
609 "transparent_hugepage= cannot parse, ignored\n");
610 return ret;
611}
612__setup("transparent_hugepage=", setup_transparent_hugepage);
613
614static void prepare_pmd_huge_pte(pgtable_t pgtable,
615 struct mm_struct *mm)
616{
617 assert_spin_locked(&mm->page_table_lock);
618
619 /* FIFO */
620 if (!mm->pmd_huge_pte)
621 INIT_LIST_HEAD(&pgtable->lru);
622 else
623 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624 mm->pmd_huge_pte = pgtable;
625}
626
627static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628{
629 if (likely(vma->vm_flags & VM_WRITE))
630 pmd = pmd_mkwrite(pmd);
631 return pmd;
632}
633
634static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635 struct vm_area_struct *vma,
636 unsigned long haddr, pmd_t *pmd,
637 struct page *page)
638{
71e3aac0
AA
639 pgtable_t pgtable;
640
641 VM_BUG_ON(!PageCompound(page));
642 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 643 if (unlikely(!pgtable))
71e3aac0 644 return VM_FAULT_OOM;
71e3aac0
AA
645
646 clear_huge_page(page, haddr, HPAGE_PMD_NR);
647 __SetPageUptodate(page);
648
649 spin_lock(&mm->page_table_lock);
650 if (unlikely(!pmd_none(*pmd))) {
651 spin_unlock(&mm->page_table_lock);
b9bbfbe3 652 mem_cgroup_uncharge_page(page);
71e3aac0
AA
653 put_page(page);
654 pte_free(mm, pgtable);
655 } else {
656 pmd_t entry;
657 entry = mk_pmd(page, vma->vm_page_prot);
658 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
659 entry = pmd_mkhuge(entry);
660 /*
661 * The spinlocking to take the lru_lock inside
662 * page_add_new_anon_rmap() acts as a full memory
663 * barrier to be sure clear_huge_page writes become
664 * visible after the set_pmd_at() write.
665 */
666 page_add_new_anon_rmap(page, vma, haddr);
667 set_pmd_at(mm, haddr, pmd, entry);
668 prepare_pmd_huge_pte(pgtable, mm);
669 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 670 mm->nr_ptes++;
71e3aac0
AA
671 spin_unlock(&mm->page_table_lock);
672 }
673
aa2e878e 674 return 0;
71e3aac0
AA
675}
676
cc5d462f 677static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 678{
cc5d462f 679 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
680}
681
682static inline struct page *alloc_hugepage_vma(int defrag,
683 struct vm_area_struct *vma,
cc5d462f
AK
684 unsigned long haddr, int nd,
685 gfp_t extra_gfp)
0bbbc0b3 686{
cc5d462f 687 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 688 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
689}
690
691#ifndef CONFIG_NUMA
71e3aac0
AA
692static inline struct page *alloc_hugepage(int defrag)
693{
cc5d462f 694 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
695 HPAGE_PMD_ORDER);
696}
0bbbc0b3 697#endif
71e3aac0
AA
698
699int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
700 unsigned long address, pmd_t *pmd,
701 unsigned int flags)
702{
703 struct page *page;
704 unsigned long haddr = address & HPAGE_PMD_MASK;
705 pte_t *pte;
706
707 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
708 if (unlikely(anon_vma_prepare(vma)))
709 return VM_FAULT_OOM;
ba76149f
AA
710 if (unlikely(khugepaged_enter(vma)))
711 return VM_FAULT_OOM;
0bbbc0b3 712 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 713 vma, haddr, numa_node_id(), 0);
81ab4201
AK
714 if (unlikely(!page)) {
715 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 716 goto out;
81ab4201
AK
717 }
718 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
719 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
720 put_page(page);
721 goto out;
722 }
edad9d2c
DR
723 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
724 page))) {
725 mem_cgroup_uncharge_page(page);
726 put_page(page);
727 goto out;
728 }
71e3aac0 729
edad9d2c 730 return 0;
71e3aac0
AA
731 }
732out:
733 /*
734 * Use __pte_alloc instead of pte_alloc_map, because we can't
735 * run pte_offset_map on the pmd, if an huge pmd could
736 * materialize from under us from a different thread.
737 */
738 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
739 return VM_FAULT_OOM;
740 /* if an huge pmd materialized from under us just retry later */
741 if (unlikely(pmd_trans_huge(*pmd)))
742 return 0;
743 /*
744 * A regular pmd is established and it can't morph into a huge pmd
745 * from under us anymore at this point because we hold the mmap_sem
746 * read mode and khugepaged takes it in write mode. So now it's
747 * safe to run pte_offset_map().
748 */
749 pte = pte_offset_map(pmd, address);
750 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
751}
752
753int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
754 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
755 struct vm_area_struct *vma)
756{
757 struct page *src_page;
758 pmd_t pmd;
759 pgtable_t pgtable;
760 int ret;
761
762 ret = -ENOMEM;
763 pgtable = pte_alloc_one(dst_mm, addr);
764 if (unlikely(!pgtable))
765 goto out;
766
767 spin_lock(&dst_mm->page_table_lock);
768 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
769
770 ret = -EAGAIN;
771 pmd = *src_pmd;
772 if (unlikely(!pmd_trans_huge(pmd))) {
773 pte_free(dst_mm, pgtable);
774 goto out_unlock;
775 }
776 if (unlikely(pmd_trans_splitting(pmd))) {
777 /* split huge page running from under us */
778 spin_unlock(&src_mm->page_table_lock);
779 spin_unlock(&dst_mm->page_table_lock);
780 pte_free(dst_mm, pgtable);
781
782 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
783 goto out;
784 }
785 src_page = pmd_page(pmd);
786 VM_BUG_ON(!PageHead(src_page));
787 get_page(src_page);
788 page_dup_rmap(src_page);
789 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
790
791 pmdp_set_wrprotect(src_mm, addr, src_pmd);
792 pmd = pmd_mkold(pmd_wrprotect(pmd));
793 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
794 prepare_pmd_huge_pte(pgtable, dst_mm);
1c641e84 795 dst_mm->nr_ptes++;
71e3aac0
AA
796
797 ret = 0;
798out_unlock:
799 spin_unlock(&src_mm->page_table_lock);
800 spin_unlock(&dst_mm->page_table_lock);
801out:
802 return ret;
803}
804
805/* no "address" argument so destroys page coloring of some arch */
806pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
807{
808 pgtable_t pgtable;
809
810 assert_spin_locked(&mm->page_table_lock);
811
812 /* FIFO */
813 pgtable = mm->pmd_huge_pte;
814 if (list_empty(&pgtable->lru))
815 mm->pmd_huge_pte = NULL;
816 else {
817 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
818 struct page, lru);
819 list_del(&pgtable->lru);
820 }
821 return pgtable;
822}
823
824static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
825 struct vm_area_struct *vma,
826 unsigned long address,
827 pmd_t *pmd, pmd_t orig_pmd,
828 struct page *page,
829 unsigned long haddr)
830{
831 pgtable_t pgtable;
832 pmd_t _pmd;
833 int ret = 0, i;
834 struct page **pages;
835
836 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
837 GFP_KERNEL);
838 if (unlikely(!pages)) {
839 ret |= VM_FAULT_OOM;
840 goto out;
841 }
842
843 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
844 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
845 __GFP_OTHER_NODE,
19ee151e 846 vma, address, page_to_nid(page));
b9bbfbe3
AA
847 if (unlikely(!pages[i] ||
848 mem_cgroup_newpage_charge(pages[i], mm,
849 GFP_KERNEL))) {
850 if (pages[i])
71e3aac0 851 put_page(pages[i]);
b9bbfbe3
AA
852 mem_cgroup_uncharge_start();
853 while (--i >= 0) {
854 mem_cgroup_uncharge_page(pages[i]);
855 put_page(pages[i]);
856 }
857 mem_cgroup_uncharge_end();
71e3aac0
AA
858 kfree(pages);
859 ret |= VM_FAULT_OOM;
860 goto out;
861 }
862 }
863
864 for (i = 0; i < HPAGE_PMD_NR; i++) {
865 copy_user_highpage(pages[i], page + i,
0089e485 866 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
867 __SetPageUptodate(pages[i]);
868 cond_resched();
869 }
870
871 spin_lock(&mm->page_table_lock);
872 if (unlikely(!pmd_same(*pmd, orig_pmd)))
873 goto out_free_pages;
874 VM_BUG_ON(!PageHead(page));
875
876 pmdp_clear_flush_notify(vma, haddr, pmd);
877 /* leave pmd empty until pte is filled */
878
879 pgtable = get_pmd_huge_pte(mm);
880 pmd_populate(mm, &_pmd, pgtable);
881
882 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
883 pte_t *pte, entry;
884 entry = mk_pte(pages[i], vma->vm_page_prot);
885 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
886 page_add_new_anon_rmap(pages[i], vma, haddr);
887 pte = pte_offset_map(&_pmd, haddr);
888 VM_BUG_ON(!pte_none(*pte));
889 set_pte_at(mm, haddr, pte, entry);
890 pte_unmap(pte);
891 }
892 kfree(pages);
893
71e3aac0
AA
894 smp_wmb(); /* make pte visible before pmd */
895 pmd_populate(mm, pmd, pgtable);
896 page_remove_rmap(page);
897 spin_unlock(&mm->page_table_lock);
898
899 ret |= VM_FAULT_WRITE;
900 put_page(page);
901
902out:
903 return ret;
904
905out_free_pages:
906 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
907 mem_cgroup_uncharge_start();
908 for (i = 0; i < HPAGE_PMD_NR; i++) {
909 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 910 put_page(pages[i]);
b9bbfbe3
AA
911 }
912 mem_cgroup_uncharge_end();
71e3aac0
AA
913 kfree(pages);
914 goto out;
915}
916
917int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
918 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
919{
920 int ret = 0;
921 struct page *page, *new_page;
922 unsigned long haddr;
923
924 VM_BUG_ON(!vma->anon_vma);
925 spin_lock(&mm->page_table_lock);
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 goto out_unlock;
928
929 page = pmd_page(orig_pmd);
930 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
931 haddr = address & HPAGE_PMD_MASK;
932 if (page_mapcount(page) == 1) {
933 pmd_t entry;
934 entry = pmd_mkyoung(orig_pmd);
935 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
936 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
937 update_mmu_cache(vma, address, entry);
938 ret |= VM_FAULT_WRITE;
939 goto out_unlock;
940 }
941 get_page(page);
942 spin_unlock(&mm->page_table_lock);
943
944 if (transparent_hugepage_enabled(vma) &&
945 !transparent_hugepage_debug_cow())
0bbbc0b3 946 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 947 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
948 else
949 new_page = NULL;
950
951 if (unlikely(!new_page)) {
81ab4201 952 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
953 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
954 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
955 if (ret & VM_FAULT_OOM)
956 split_huge_page(page);
71e3aac0
AA
957 put_page(page);
958 goto out;
959 }
81ab4201 960 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 961
b9bbfbe3
AA
962 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
963 put_page(new_page);
1f1d06c3 964 split_huge_page(page);
b9bbfbe3
AA
965 put_page(page);
966 ret |= VM_FAULT_OOM;
967 goto out;
968 }
969
71e3aac0
AA
970 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
971 __SetPageUptodate(new_page);
972
973 spin_lock(&mm->page_table_lock);
974 put_page(page);
b9bbfbe3
AA
975 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
976 mem_cgroup_uncharge_page(new_page);
71e3aac0 977 put_page(new_page);
b9bbfbe3 978 } else {
71e3aac0
AA
979 pmd_t entry;
980 VM_BUG_ON(!PageHead(page));
981 entry = mk_pmd(new_page, vma->vm_page_prot);
982 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
983 entry = pmd_mkhuge(entry);
984 pmdp_clear_flush_notify(vma, haddr, pmd);
985 page_add_new_anon_rmap(new_page, vma, haddr);
986 set_pmd_at(mm, haddr, pmd, entry);
987 update_mmu_cache(vma, address, entry);
988 page_remove_rmap(page);
989 put_page(page);
990 ret |= VM_FAULT_WRITE;
991 }
992out_unlock:
993 spin_unlock(&mm->page_table_lock);
994out:
995 return ret;
996}
997
998struct page *follow_trans_huge_pmd(struct mm_struct *mm,
999 unsigned long addr,
1000 pmd_t *pmd,
1001 unsigned int flags)
1002{
1003 struct page *page = NULL;
1004
1005 assert_spin_locked(&mm->page_table_lock);
1006
1007 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1008 goto out;
1009
1010 page = pmd_page(*pmd);
1011 VM_BUG_ON(!PageHead(page));
1012 if (flags & FOLL_TOUCH) {
1013 pmd_t _pmd;
1014 /*
1015 * We should set the dirty bit only for FOLL_WRITE but
1016 * for now the dirty bit in the pmd is meaningless.
1017 * And if the dirty bit will become meaningful and
1018 * we'll only set it with FOLL_WRITE, an atomic
1019 * set_bit will be required on the pmd to set the
1020 * young bit, instead of the current set_pmd_at.
1021 */
1022 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1023 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1024 }
1025 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1026 VM_BUG_ON(!PageCompound(page));
1027 if (flags & FOLL_GET)
70b50f94 1028 get_page_foll(page);
71e3aac0
AA
1029
1030out:
1031 return page;
1032}
1033
1034int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1035 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1036{
1037 int ret = 0;
1038
025c5b24
NH
1039 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1040 struct page *page;
1041 pgtable_t pgtable;
1042 pgtable = get_pmd_huge_pte(tlb->mm);
1043 page = pmd_page(*pmd);
1044 pmd_clear(pmd);
1045 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1046 page_remove_rmap(page);
1047 VM_BUG_ON(page_mapcount(page) < 0);
1048 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1049 VM_BUG_ON(!PageHead(page));
1050 tlb->mm->nr_ptes--;
71e3aac0 1051 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1052 tlb_remove_page(tlb, page);
1053 pte_free(tlb->mm, pgtable);
1054 ret = 1;
1055 }
71e3aac0
AA
1056 return ret;
1057}
1058
0ca1634d
JW
1059int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1060 unsigned long addr, unsigned long end,
1061 unsigned char *vec)
1062{
1063 int ret = 0;
1064
025c5b24
NH
1065 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1066 /*
1067 * All logical pages in the range are present
1068 * if backed by a huge page.
1069 */
0ca1634d 1070 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1071 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1072 ret = 1;
1073 }
0ca1634d
JW
1074
1075 return ret;
1076}
1077
37a1c49a
AA
1078int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1079 unsigned long old_addr,
1080 unsigned long new_addr, unsigned long old_end,
1081 pmd_t *old_pmd, pmd_t *new_pmd)
1082{
1083 int ret = 0;
1084 pmd_t pmd;
1085
1086 struct mm_struct *mm = vma->vm_mm;
1087
1088 if ((old_addr & ~HPAGE_PMD_MASK) ||
1089 (new_addr & ~HPAGE_PMD_MASK) ||
1090 old_end - old_addr < HPAGE_PMD_SIZE ||
1091 (new_vma->vm_flags & VM_NOHUGEPAGE))
1092 goto out;
1093
1094 /*
1095 * The destination pmd shouldn't be established, free_pgtables()
1096 * should have release it.
1097 */
1098 if (WARN_ON(!pmd_none(*new_pmd))) {
1099 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1100 goto out;
1101 }
1102
025c5b24
NH
1103 ret = __pmd_trans_huge_lock(old_pmd, vma);
1104 if (ret == 1) {
1105 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1106 VM_BUG_ON(!pmd_none(*new_pmd));
1107 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1108 spin_unlock(&mm->page_table_lock);
1109 }
1110out:
1111 return ret;
1112}
1113
cd7548ab
JW
1114int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1115 unsigned long addr, pgprot_t newprot)
1116{
1117 struct mm_struct *mm = vma->vm_mm;
1118 int ret = 0;
1119
025c5b24
NH
1120 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1121 pmd_t entry;
1122 entry = pmdp_get_and_clear(mm, addr, pmd);
1123 entry = pmd_modify(entry, newprot);
1124 set_pmd_at(mm, addr, pmd, entry);
1125 spin_unlock(&vma->vm_mm->page_table_lock);
1126 ret = 1;
1127 }
1128
1129 return ret;
1130}
1131
1132/*
1133 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1134 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1135 *
1136 * Note that if it returns 1, this routine returns without unlocking page
1137 * table locks. So callers must unlock them.
1138 */
1139int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1140{
1141 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1142 if (likely(pmd_trans_huge(*pmd))) {
1143 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1144 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1145 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1146 return -1;
cd7548ab 1147 } else {
025c5b24
NH
1148 /* Thp mapped by 'pmd' is stable, so we can
1149 * handle it as it is. */
1150 return 1;
cd7548ab 1151 }
025c5b24
NH
1152 }
1153 spin_unlock(&vma->vm_mm->page_table_lock);
1154 return 0;
cd7548ab
JW
1155}
1156
71e3aac0
AA
1157pmd_t *page_check_address_pmd(struct page *page,
1158 struct mm_struct *mm,
1159 unsigned long address,
1160 enum page_check_address_pmd_flag flag)
1161{
1162 pgd_t *pgd;
1163 pud_t *pud;
1164 pmd_t *pmd, *ret = NULL;
1165
1166 if (address & ~HPAGE_PMD_MASK)
1167 goto out;
1168
1169 pgd = pgd_offset(mm, address);
1170 if (!pgd_present(*pgd))
1171 goto out;
1172
1173 pud = pud_offset(pgd, address);
1174 if (!pud_present(*pud))
1175 goto out;
1176
1177 pmd = pmd_offset(pud, address);
1178 if (pmd_none(*pmd))
1179 goto out;
1180 if (pmd_page(*pmd) != page)
1181 goto out;
94fcc585
AA
1182 /*
1183 * split_vma() may create temporary aliased mappings. There is
1184 * no risk as long as all huge pmd are found and have their
1185 * splitting bit set before __split_huge_page_refcount
1186 * runs. Finding the same huge pmd more than once during the
1187 * same rmap walk is not a problem.
1188 */
1189 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1190 pmd_trans_splitting(*pmd))
1191 goto out;
71e3aac0
AA
1192 if (pmd_trans_huge(*pmd)) {
1193 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1194 !pmd_trans_splitting(*pmd));
1195 ret = pmd;
1196 }
1197out:
1198 return ret;
1199}
1200
1201static int __split_huge_page_splitting(struct page *page,
1202 struct vm_area_struct *vma,
1203 unsigned long address)
1204{
1205 struct mm_struct *mm = vma->vm_mm;
1206 pmd_t *pmd;
1207 int ret = 0;
1208
1209 spin_lock(&mm->page_table_lock);
1210 pmd = page_check_address_pmd(page, mm, address,
1211 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1212 if (pmd) {
1213 /*
1214 * We can't temporarily set the pmd to null in order
1215 * to split it, the pmd must remain marked huge at all
1216 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1217 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1218 * serialize against split_huge_page*.
1219 */
1220 pmdp_splitting_flush_notify(vma, address, pmd);
1221 ret = 1;
1222 }
1223 spin_unlock(&mm->page_table_lock);
1224
1225 return ret;
1226}
1227
1228static void __split_huge_page_refcount(struct page *page)
1229{
1230 int i;
71e3aac0 1231 struct zone *zone = page_zone(page);
70b50f94 1232 int tail_count = 0;
71e3aac0
AA
1233
1234 /* prevent PageLRU to go away from under us, and freeze lru stats */
1235 spin_lock_irq(&zone->lru_lock);
1236 compound_lock(page);
e94c8a9c
KH
1237 /* complete memcg works before add pages to LRU */
1238 mem_cgroup_split_huge_fixup(page);
71e3aac0 1239
45676885 1240 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1241 struct page *page_tail = page + i;
1242
70b50f94
AA
1243 /* tail_page->_mapcount cannot change */
1244 BUG_ON(page_mapcount(page_tail) < 0);
1245 tail_count += page_mapcount(page_tail);
1246 /* check for overflow */
1247 BUG_ON(tail_count < 0);
1248 BUG_ON(atomic_read(&page_tail->_count) != 0);
1249 /*
1250 * tail_page->_count is zero and not changing from
1251 * under us. But get_page_unless_zero() may be running
1252 * from under us on the tail_page. If we used
1253 * atomic_set() below instead of atomic_add(), we
1254 * would then run atomic_set() concurrently with
1255 * get_page_unless_zero(), and atomic_set() is
1256 * implemented in C not using locked ops. spin_unlock
1257 * on x86 sometime uses locked ops because of PPro
1258 * errata 66, 92, so unless somebody can guarantee
1259 * atomic_set() here would be safe on all archs (and
1260 * not only on x86), it's safer to use atomic_add().
1261 */
1262 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1263 &page_tail->_count);
71e3aac0
AA
1264
1265 /* after clearing PageTail the gup refcount can be released */
1266 smp_mb();
1267
a6d30ddd
JD
1268 /*
1269 * retain hwpoison flag of the poisoned tail page:
1270 * fix for the unsuitable process killed on Guest Machine(KVM)
1271 * by the memory-failure.
1272 */
1273 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1274 page_tail->flags |= (page->flags &
1275 ((1L << PG_referenced) |
1276 (1L << PG_swapbacked) |
1277 (1L << PG_mlocked) |
1278 (1L << PG_uptodate)));
1279 page_tail->flags |= (1L << PG_dirty);
1280
70b50f94 1281 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1282 smp_wmb();
1283
1284 /*
1285 * __split_huge_page_splitting() already set the
1286 * splitting bit in all pmd that could map this
1287 * hugepage, that will ensure no CPU can alter the
1288 * mapcount on the head page. The mapcount is only
1289 * accounted in the head page and it has to be
1290 * transferred to all tail pages in the below code. So
1291 * for this code to be safe, the split the mapcount
1292 * can't change. But that doesn't mean userland can't
1293 * keep changing and reading the page contents while
1294 * we transfer the mapcount, so the pmd splitting
1295 * status is achieved setting a reserved bit in the
1296 * pmd, not by clearing the present bit.
1297 */
71e3aac0
AA
1298 page_tail->_mapcount = page->_mapcount;
1299
1300 BUG_ON(page_tail->mapping);
1301 page_tail->mapping = page->mapping;
1302
45676885 1303 page_tail->index = page->index + i;
71e3aac0
AA
1304
1305 BUG_ON(!PageAnon(page_tail));
1306 BUG_ON(!PageUptodate(page_tail));
1307 BUG_ON(!PageDirty(page_tail));
1308 BUG_ON(!PageSwapBacked(page_tail));
1309
ca3e0214 1310
71e3aac0
AA
1311 lru_add_page_tail(zone, page, page_tail);
1312 }
70b50f94
AA
1313 atomic_sub(tail_count, &page->_count);
1314 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1315
79134171
AA
1316 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1317 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1318
71e3aac0
AA
1319 ClearPageCompound(page);
1320 compound_unlock(page);
1321 spin_unlock_irq(&zone->lru_lock);
1322
1323 for (i = 1; i < HPAGE_PMD_NR; i++) {
1324 struct page *page_tail = page + i;
1325 BUG_ON(page_count(page_tail) <= 0);
1326 /*
1327 * Tail pages may be freed if there wasn't any mapping
1328 * like if add_to_swap() is running on a lru page that
1329 * had its mapping zapped. And freeing these pages
1330 * requires taking the lru_lock so we do the put_page
1331 * of the tail pages after the split is complete.
1332 */
1333 put_page(page_tail);
1334 }
1335
1336 /*
1337 * Only the head page (now become a regular page) is required
1338 * to be pinned by the caller.
1339 */
1340 BUG_ON(page_count(page) <= 0);
1341}
1342
1343static int __split_huge_page_map(struct page *page,
1344 struct vm_area_struct *vma,
1345 unsigned long address)
1346{
1347 struct mm_struct *mm = vma->vm_mm;
1348 pmd_t *pmd, _pmd;
1349 int ret = 0, i;
1350 pgtable_t pgtable;
1351 unsigned long haddr;
1352
1353 spin_lock(&mm->page_table_lock);
1354 pmd = page_check_address_pmd(page, mm, address,
1355 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1356 if (pmd) {
1357 pgtable = get_pmd_huge_pte(mm);
1358 pmd_populate(mm, &_pmd, pgtable);
1359
1360 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1361 i++, haddr += PAGE_SIZE) {
1362 pte_t *pte, entry;
1363 BUG_ON(PageCompound(page+i));
1364 entry = mk_pte(page + i, vma->vm_page_prot);
1365 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1366 if (!pmd_write(*pmd))
1367 entry = pte_wrprotect(entry);
1368 else
1369 BUG_ON(page_mapcount(page) != 1);
1370 if (!pmd_young(*pmd))
1371 entry = pte_mkold(entry);
1372 pte = pte_offset_map(&_pmd, haddr);
1373 BUG_ON(!pte_none(*pte));
1374 set_pte_at(mm, haddr, pte, entry);
1375 pte_unmap(pte);
1376 }
1377
71e3aac0
AA
1378 smp_wmb(); /* make pte visible before pmd */
1379 /*
1380 * Up to this point the pmd is present and huge and
1381 * userland has the whole access to the hugepage
1382 * during the split (which happens in place). If we
1383 * overwrite the pmd with the not-huge version
1384 * pointing to the pte here (which of course we could
1385 * if all CPUs were bug free), userland could trigger
1386 * a small page size TLB miss on the small sized TLB
1387 * while the hugepage TLB entry is still established
1388 * in the huge TLB. Some CPU doesn't like that. See
1389 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1390 * Erratum 383 on page 93. Intel should be safe but is
1391 * also warns that it's only safe if the permission
1392 * and cache attributes of the two entries loaded in
1393 * the two TLB is identical (which should be the case
1394 * here). But it is generally safer to never allow
1395 * small and huge TLB entries for the same virtual
1396 * address to be loaded simultaneously. So instead of
1397 * doing "pmd_populate(); flush_tlb_range();" we first
1398 * mark the current pmd notpresent (atomically because
1399 * here the pmd_trans_huge and pmd_trans_splitting
1400 * must remain set at all times on the pmd until the
1401 * split is complete for this pmd), then we flush the
1402 * SMP TLB and finally we write the non-huge version
1403 * of the pmd entry with pmd_populate.
1404 */
1405 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1406 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1407 pmd_populate(mm, pmd, pgtable);
1408 ret = 1;
1409 }
1410 spin_unlock(&mm->page_table_lock);
1411
1412 return ret;
1413}
1414
2b575eb6 1415/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1416static void __split_huge_page(struct page *page,
1417 struct anon_vma *anon_vma)
1418{
1419 int mapcount, mapcount2;
1420 struct anon_vma_chain *avc;
1421
1422 BUG_ON(!PageHead(page));
1423 BUG_ON(PageTail(page));
1424
1425 mapcount = 0;
1426 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1427 struct vm_area_struct *vma = avc->vma;
1428 unsigned long addr = vma_address(page, vma);
1429 BUG_ON(is_vma_temporary_stack(vma));
1430 if (addr == -EFAULT)
1431 continue;
1432 mapcount += __split_huge_page_splitting(page, vma, addr);
1433 }
05759d38
AA
1434 /*
1435 * It is critical that new vmas are added to the tail of the
1436 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1437 * and establishes a child pmd before
1438 * __split_huge_page_splitting() freezes the parent pmd (so if
1439 * we fail to prevent copy_huge_pmd() from running until the
1440 * whole __split_huge_page() is complete), we will still see
1441 * the newly established pmd of the child later during the
1442 * walk, to be able to set it as pmd_trans_splitting too.
1443 */
1444 if (mapcount != page_mapcount(page))
1445 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1446 mapcount, page_mapcount(page));
71e3aac0
AA
1447 BUG_ON(mapcount != page_mapcount(page));
1448
1449 __split_huge_page_refcount(page);
1450
1451 mapcount2 = 0;
1452 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1453 struct vm_area_struct *vma = avc->vma;
1454 unsigned long addr = vma_address(page, vma);
1455 BUG_ON(is_vma_temporary_stack(vma));
1456 if (addr == -EFAULT)
1457 continue;
1458 mapcount2 += __split_huge_page_map(page, vma, addr);
1459 }
05759d38
AA
1460 if (mapcount != mapcount2)
1461 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1462 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1463 BUG_ON(mapcount != mapcount2);
1464}
1465
1466int split_huge_page(struct page *page)
1467{
1468 struct anon_vma *anon_vma;
1469 int ret = 1;
1470
1471 BUG_ON(!PageAnon(page));
1472 anon_vma = page_lock_anon_vma(page);
1473 if (!anon_vma)
1474 goto out;
1475 ret = 0;
1476 if (!PageCompound(page))
1477 goto out_unlock;
1478
1479 BUG_ON(!PageSwapBacked(page));
1480 __split_huge_page(page, anon_vma);
81ab4201 1481 count_vm_event(THP_SPLIT);
71e3aac0
AA
1482
1483 BUG_ON(PageCompound(page));
1484out_unlock:
1485 page_unlock_anon_vma(anon_vma);
1486out:
1487 return ret;
1488}
1489
78f11a25
AA
1490#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1491 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1492
60ab3244
AA
1493int hugepage_madvise(struct vm_area_struct *vma,
1494 unsigned long *vm_flags, int advice)
0af4e98b 1495{
a664b2d8
AA
1496 switch (advice) {
1497 case MADV_HUGEPAGE:
1498 /*
1499 * Be somewhat over-protective like KSM for now!
1500 */
78f11a25 1501 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1502 return -EINVAL;
1503 *vm_flags &= ~VM_NOHUGEPAGE;
1504 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1505 /*
1506 * If the vma become good for khugepaged to scan,
1507 * register it here without waiting a page fault that
1508 * may not happen any time soon.
1509 */
1510 if (unlikely(khugepaged_enter_vma_merge(vma)))
1511 return -ENOMEM;
a664b2d8
AA
1512 break;
1513 case MADV_NOHUGEPAGE:
1514 /*
1515 * Be somewhat over-protective like KSM for now!
1516 */
78f11a25 1517 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1518 return -EINVAL;
1519 *vm_flags &= ~VM_HUGEPAGE;
1520 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1521 /*
1522 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1523 * this vma even if we leave the mm registered in khugepaged if
1524 * it got registered before VM_NOHUGEPAGE was set.
1525 */
a664b2d8
AA
1526 break;
1527 }
0af4e98b
AA
1528
1529 return 0;
1530}
1531
ba76149f
AA
1532static int __init khugepaged_slab_init(void)
1533{
1534 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1535 sizeof(struct mm_slot),
1536 __alignof__(struct mm_slot), 0, NULL);
1537 if (!mm_slot_cache)
1538 return -ENOMEM;
1539
1540 return 0;
1541}
1542
1543static void __init khugepaged_slab_free(void)
1544{
1545 kmem_cache_destroy(mm_slot_cache);
1546 mm_slot_cache = NULL;
1547}
1548
1549static inline struct mm_slot *alloc_mm_slot(void)
1550{
1551 if (!mm_slot_cache) /* initialization failed */
1552 return NULL;
1553 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1554}
1555
1556static inline void free_mm_slot(struct mm_slot *mm_slot)
1557{
1558 kmem_cache_free(mm_slot_cache, mm_slot);
1559}
1560
1561static int __init mm_slots_hash_init(void)
1562{
1563 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1564 GFP_KERNEL);
1565 if (!mm_slots_hash)
1566 return -ENOMEM;
1567 return 0;
1568}
1569
1570#if 0
1571static void __init mm_slots_hash_free(void)
1572{
1573 kfree(mm_slots_hash);
1574 mm_slots_hash = NULL;
1575}
1576#endif
1577
1578static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1579{
1580 struct mm_slot *mm_slot;
1581 struct hlist_head *bucket;
1582 struct hlist_node *node;
1583
1584 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1585 % MM_SLOTS_HASH_HEADS];
1586 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1587 if (mm == mm_slot->mm)
1588 return mm_slot;
1589 }
1590 return NULL;
1591}
1592
1593static void insert_to_mm_slots_hash(struct mm_struct *mm,
1594 struct mm_slot *mm_slot)
1595{
1596 struct hlist_head *bucket;
1597
1598 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1599 % MM_SLOTS_HASH_HEADS];
1600 mm_slot->mm = mm;
1601 hlist_add_head(&mm_slot->hash, bucket);
1602}
1603
1604static inline int khugepaged_test_exit(struct mm_struct *mm)
1605{
1606 return atomic_read(&mm->mm_users) == 0;
1607}
1608
1609int __khugepaged_enter(struct mm_struct *mm)
1610{
1611 struct mm_slot *mm_slot;
1612 int wakeup;
1613
1614 mm_slot = alloc_mm_slot();
1615 if (!mm_slot)
1616 return -ENOMEM;
1617
1618 /* __khugepaged_exit() must not run from under us */
1619 VM_BUG_ON(khugepaged_test_exit(mm));
1620 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1621 free_mm_slot(mm_slot);
1622 return 0;
1623 }
1624
1625 spin_lock(&khugepaged_mm_lock);
1626 insert_to_mm_slots_hash(mm, mm_slot);
1627 /*
1628 * Insert just behind the scanning cursor, to let the area settle
1629 * down a little.
1630 */
1631 wakeup = list_empty(&khugepaged_scan.mm_head);
1632 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1633 spin_unlock(&khugepaged_mm_lock);
1634
1635 atomic_inc(&mm->mm_count);
1636 if (wakeup)
1637 wake_up_interruptible(&khugepaged_wait);
1638
1639 return 0;
1640}
1641
1642int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1643{
1644 unsigned long hstart, hend;
1645 if (!vma->anon_vma)
1646 /*
1647 * Not yet faulted in so we will register later in the
1648 * page fault if needed.
1649 */
1650 return 0;
78f11a25 1651 if (vma->vm_ops)
ba76149f
AA
1652 /* khugepaged not yet working on file or special mappings */
1653 return 0;
78f11a25
AA
1654 /*
1655 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1656 * true too, verify it here.
1657 */
1658 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
ba76149f
AA
1659 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1660 hend = vma->vm_end & HPAGE_PMD_MASK;
1661 if (hstart < hend)
1662 return khugepaged_enter(vma);
1663 return 0;
1664}
1665
1666void __khugepaged_exit(struct mm_struct *mm)
1667{
1668 struct mm_slot *mm_slot;
1669 int free = 0;
1670
1671 spin_lock(&khugepaged_mm_lock);
1672 mm_slot = get_mm_slot(mm);
1673 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1674 hlist_del(&mm_slot->hash);
1675 list_del(&mm_slot->mm_node);
1676 free = 1;
1677 }
d788e80a 1678 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1679
1680 if (free) {
ba76149f
AA
1681 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1682 free_mm_slot(mm_slot);
1683 mmdrop(mm);
1684 } else if (mm_slot) {
ba76149f
AA
1685 /*
1686 * This is required to serialize against
1687 * khugepaged_test_exit() (which is guaranteed to run
1688 * under mmap sem read mode). Stop here (after we
1689 * return all pagetables will be destroyed) until
1690 * khugepaged has finished working on the pagetables
1691 * under the mmap_sem.
1692 */
1693 down_write(&mm->mmap_sem);
1694 up_write(&mm->mmap_sem);
d788e80a 1695 }
ba76149f
AA
1696}
1697
1698static void release_pte_page(struct page *page)
1699{
1700 /* 0 stands for page_is_file_cache(page) == false */
1701 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1702 unlock_page(page);
1703 putback_lru_page(page);
1704}
1705
1706static void release_pte_pages(pte_t *pte, pte_t *_pte)
1707{
1708 while (--_pte >= pte) {
1709 pte_t pteval = *_pte;
1710 if (!pte_none(pteval))
1711 release_pte_page(pte_page(pteval));
1712 }
1713}
1714
1715static void release_all_pte_pages(pte_t *pte)
1716{
1717 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1718}
1719
1720static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1721 unsigned long address,
1722 pte_t *pte)
1723{
1724 struct page *page;
1725 pte_t *_pte;
1726 int referenced = 0, isolated = 0, none = 0;
1727 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1728 _pte++, address += PAGE_SIZE) {
1729 pte_t pteval = *_pte;
1730 if (pte_none(pteval)) {
1731 if (++none <= khugepaged_max_ptes_none)
1732 continue;
1733 else {
1734 release_pte_pages(pte, _pte);
1735 goto out;
1736 }
1737 }
1738 if (!pte_present(pteval) || !pte_write(pteval)) {
1739 release_pte_pages(pte, _pte);
1740 goto out;
1741 }
1742 page = vm_normal_page(vma, address, pteval);
1743 if (unlikely(!page)) {
1744 release_pte_pages(pte, _pte);
1745 goto out;
1746 }
1747 VM_BUG_ON(PageCompound(page));
1748 BUG_ON(!PageAnon(page));
1749 VM_BUG_ON(!PageSwapBacked(page));
1750
1751 /* cannot use mapcount: can't collapse if there's a gup pin */
1752 if (page_count(page) != 1) {
1753 release_pte_pages(pte, _pte);
1754 goto out;
1755 }
1756 /*
1757 * We can do it before isolate_lru_page because the
1758 * page can't be freed from under us. NOTE: PG_lock
1759 * is needed to serialize against split_huge_page
1760 * when invoked from the VM.
1761 */
1762 if (!trylock_page(page)) {
1763 release_pte_pages(pte, _pte);
1764 goto out;
1765 }
1766 /*
1767 * Isolate the page to avoid collapsing an hugepage
1768 * currently in use by the VM.
1769 */
1770 if (isolate_lru_page(page)) {
1771 unlock_page(page);
1772 release_pte_pages(pte, _pte);
1773 goto out;
1774 }
1775 /* 0 stands for page_is_file_cache(page) == false */
1776 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1777 VM_BUG_ON(!PageLocked(page));
1778 VM_BUG_ON(PageLRU(page));
1779
1780 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1781 if (pte_young(pteval) || PageReferenced(page) ||
1782 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1783 referenced = 1;
1784 }
1785 if (unlikely(!referenced))
1786 release_all_pte_pages(pte);
1787 else
1788 isolated = 1;
1789out:
1790 return isolated;
1791}
1792
1793static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1794 struct vm_area_struct *vma,
1795 unsigned long address,
1796 spinlock_t *ptl)
1797{
1798 pte_t *_pte;
1799 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1800 pte_t pteval = *_pte;
1801 struct page *src_page;
1802
1803 if (pte_none(pteval)) {
1804 clear_user_highpage(page, address);
1805 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1806 } else {
1807 src_page = pte_page(pteval);
1808 copy_user_highpage(page, src_page, address, vma);
1809 VM_BUG_ON(page_mapcount(src_page) != 1);
1810 VM_BUG_ON(page_count(src_page) != 2);
1811 release_pte_page(src_page);
1812 /*
1813 * ptl mostly unnecessary, but preempt has to
1814 * be disabled to update the per-cpu stats
1815 * inside page_remove_rmap().
1816 */
1817 spin_lock(ptl);
1818 /*
1819 * paravirt calls inside pte_clear here are
1820 * superfluous.
1821 */
1822 pte_clear(vma->vm_mm, address, _pte);
1823 page_remove_rmap(src_page);
1824 spin_unlock(ptl);
1825 free_page_and_swap_cache(src_page);
1826 }
1827
1828 address += PAGE_SIZE;
1829 page++;
1830 }
1831}
1832
1833static void collapse_huge_page(struct mm_struct *mm,
1834 unsigned long address,
ce83d217 1835 struct page **hpage,
5c4b4be3
AK
1836 struct vm_area_struct *vma,
1837 int node)
ba76149f 1838{
ba76149f
AA
1839 pgd_t *pgd;
1840 pud_t *pud;
1841 pmd_t *pmd, _pmd;
1842 pte_t *pte;
1843 pgtable_t pgtable;
1844 struct page *new_page;
1845 spinlock_t *ptl;
1846 int isolated;
1847 unsigned long hstart, hend;
1848
1849 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1850#ifndef CONFIG_NUMA
692e0b35 1851 up_read(&mm->mmap_sem);
ba76149f 1852 VM_BUG_ON(!*hpage);
ce83d217 1853 new_page = *hpage;
0bbbc0b3
AA
1854#else
1855 VM_BUG_ON(*hpage);
ce83d217
AA
1856 /*
1857 * Allocate the page while the vma is still valid and under
1858 * the mmap_sem read mode so there is no memory allocation
1859 * later when we take the mmap_sem in write mode. This is more
1860 * friendly behavior (OTOH it may actually hide bugs) to
1861 * filesystems in userland with daemons allocating memory in
1862 * the userland I/O paths. Allocating memory with the
1863 * mmap_sem in read mode is good idea also to allow greater
1864 * scalability.
1865 */
5c4b4be3 1866 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1867 node, __GFP_OTHER_NODE);
692e0b35
AA
1868
1869 /*
1870 * After allocating the hugepage, release the mmap_sem read lock in
1871 * preparation for taking it in write mode.
1872 */
1873 up_read(&mm->mmap_sem);
ce83d217 1874 if (unlikely(!new_page)) {
81ab4201 1875 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217
AA
1876 *hpage = ERR_PTR(-ENOMEM);
1877 return;
1878 }
692e0b35
AA
1879#endif
1880
81ab4201 1881 count_vm_event(THP_COLLAPSE_ALLOC);
ce83d217 1882 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
692e0b35 1883#ifdef CONFIG_NUMA
ce83d217 1884 put_page(new_page);
692e0b35 1885#endif
ce83d217
AA
1886 return;
1887 }
ba76149f
AA
1888
1889 /*
1890 * Prevent all access to pagetables with the exception of
1891 * gup_fast later hanlded by the ptep_clear_flush and the VM
1892 * handled by the anon_vma lock + PG_lock.
1893 */
1894 down_write(&mm->mmap_sem);
1895 if (unlikely(khugepaged_test_exit(mm)))
1896 goto out;
1897
1898 vma = find_vma(mm, address);
1899 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1900 hend = vma->vm_end & HPAGE_PMD_MASK;
1901 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1902 goto out;
1903
60ab3244
AA
1904 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1905 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1906 goto out;
1907
78f11a25 1908 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1909 goto out;
a7d6e4ec
AA
1910 if (is_vma_temporary_stack(vma))
1911 goto out;
78f11a25
AA
1912 /*
1913 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1914 * true too, verify it here.
1915 */
1916 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
ba76149f
AA
1917
1918 pgd = pgd_offset(mm, address);
1919 if (!pgd_present(*pgd))
1920 goto out;
1921
1922 pud = pud_offset(pgd, address);
1923 if (!pud_present(*pud))
1924 goto out;
1925
1926 pmd = pmd_offset(pud, address);
1927 /* pmd can't go away or become huge under us */
1928 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1929 goto out;
1930
ba76149f
AA
1931 anon_vma_lock(vma->anon_vma);
1932
1933 pte = pte_offset_map(pmd, address);
1934 ptl = pte_lockptr(mm, pmd);
1935
1936 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1937 /*
1938 * After this gup_fast can't run anymore. This also removes
1939 * any huge TLB entry from the CPU so we won't allow
1940 * huge and small TLB entries for the same virtual address
1941 * to avoid the risk of CPU bugs in that area.
1942 */
1943 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1944 spin_unlock(&mm->page_table_lock);
1945
1946 spin_lock(ptl);
1947 isolated = __collapse_huge_page_isolate(vma, address, pte);
1948 spin_unlock(ptl);
ba76149f
AA
1949
1950 if (unlikely(!isolated)) {
453c7192 1951 pte_unmap(pte);
ba76149f
AA
1952 spin_lock(&mm->page_table_lock);
1953 BUG_ON(!pmd_none(*pmd));
1954 set_pmd_at(mm, address, pmd, _pmd);
1955 spin_unlock(&mm->page_table_lock);
1956 anon_vma_unlock(vma->anon_vma);
ce83d217 1957 goto out;
ba76149f
AA
1958 }
1959
1960 /*
1961 * All pages are isolated and locked so anon_vma rmap
1962 * can't run anymore.
1963 */
1964 anon_vma_unlock(vma->anon_vma);
1965
1966 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1967 pte_unmap(pte);
ba76149f
AA
1968 __SetPageUptodate(new_page);
1969 pgtable = pmd_pgtable(_pmd);
1970 VM_BUG_ON(page_count(pgtable) != 1);
1971 VM_BUG_ON(page_mapcount(pgtable) != 0);
1972
1973 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1974 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1975 _pmd = pmd_mkhuge(_pmd);
1976
1977 /*
1978 * spin_lock() below is not the equivalent of smp_wmb(), so
1979 * this is needed to avoid the copy_huge_page writes to become
1980 * visible after the set_pmd_at() write.
1981 */
1982 smp_wmb();
1983
1984 spin_lock(&mm->page_table_lock);
1985 BUG_ON(!pmd_none(*pmd));
1986 page_add_new_anon_rmap(new_page, vma, address);
1987 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 1988 update_mmu_cache(vma, address, _pmd);
ba76149f 1989 prepare_pmd_huge_pte(pgtable, mm);
ba76149f
AA
1990 spin_unlock(&mm->page_table_lock);
1991
0bbbc0b3 1992#ifndef CONFIG_NUMA
ba76149f 1993 *hpage = NULL;
0bbbc0b3 1994#endif
ba76149f 1995 khugepaged_pages_collapsed++;
ce83d217 1996out_up_write:
ba76149f 1997 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1998 return;
1999
ce83d217 2000out:
678ff896 2001 mem_cgroup_uncharge_page(new_page);
0bbbc0b3
AA
2002#ifdef CONFIG_NUMA
2003 put_page(new_page);
2004#endif
ce83d217 2005 goto out_up_write;
ba76149f
AA
2006}
2007
2008static int khugepaged_scan_pmd(struct mm_struct *mm,
2009 struct vm_area_struct *vma,
2010 unsigned long address,
2011 struct page **hpage)
2012{
2013 pgd_t *pgd;
2014 pud_t *pud;
2015 pmd_t *pmd;
2016 pte_t *pte, *_pte;
2017 int ret = 0, referenced = 0, none = 0;
2018 struct page *page;
2019 unsigned long _address;
2020 spinlock_t *ptl;
5c4b4be3 2021 int node = -1;
ba76149f
AA
2022
2023 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2024
2025 pgd = pgd_offset(mm, address);
2026 if (!pgd_present(*pgd))
2027 goto out;
2028
2029 pud = pud_offset(pgd, address);
2030 if (!pud_present(*pud))
2031 goto out;
2032
2033 pmd = pmd_offset(pud, address);
2034 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2035 goto out;
2036
2037 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2038 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2039 _pte++, _address += PAGE_SIZE) {
2040 pte_t pteval = *_pte;
2041 if (pte_none(pteval)) {
2042 if (++none <= khugepaged_max_ptes_none)
2043 continue;
2044 else
2045 goto out_unmap;
2046 }
2047 if (!pte_present(pteval) || !pte_write(pteval))
2048 goto out_unmap;
2049 page = vm_normal_page(vma, _address, pteval);
2050 if (unlikely(!page))
2051 goto out_unmap;
5c4b4be3
AK
2052 /*
2053 * Chose the node of the first page. This could
2054 * be more sophisticated and look at more pages,
2055 * but isn't for now.
2056 */
2057 if (node == -1)
2058 node = page_to_nid(page);
ba76149f
AA
2059 VM_BUG_ON(PageCompound(page));
2060 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2061 goto out_unmap;
2062 /* cannot use mapcount: can't collapse if there's a gup pin */
2063 if (page_count(page) != 1)
2064 goto out_unmap;
8ee53820
AA
2065 if (pte_young(pteval) || PageReferenced(page) ||
2066 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2067 referenced = 1;
2068 }
2069 if (referenced)
2070 ret = 1;
2071out_unmap:
2072 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2073 if (ret)
2074 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2075 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2076out:
2077 return ret;
2078}
2079
2080static void collect_mm_slot(struct mm_slot *mm_slot)
2081{
2082 struct mm_struct *mm = mm_slot->mm;
2083
b9980cdc 2084 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2085
2086 if (khugepaged_test_exit(mm)) {
2087 /* free mm_slot */
2088 hlist_del(&mm_slot->hash);
2089 list_del(&mm_slot->mm_node);
2090
2091 /*
2092 * Not strictly needed because the mm exited already.
2093 *
2094 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2095 */
2096
2097 /* khugepaged_mm_lock actually not necessary for the below */
2098 free_mm_slot(mm_slot);
2099 mmdrop(mm);
2100 }
2101}
2102
2103static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2104 struct page **hpage)
2f1da642
HS
2105 __releases(&khugepaged_mm_lock)
2106 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2107{
2108 struct mm_slot *mm_slot;
2109 struct mm_struct *mm;
2110 struct vm_area_struct *vma;
2111 int progress = 0;
2112
2113 VM_BUG_ON(!pages);
b9980cdc 2114 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2115
2116 if (khugepaged_scan.mm_slot)
2117 mm_slot = khugepaged_scan.mm_slot;
2118 else {
2119 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2120 struct mm_slot, mm_node);
2121 khugepaged_scan.address = 0;
2122 khugepaged_scan.mm_slot = mm_slot;
2123 }
2124 spin_unlock(&khugepaged_mm_lock);
2125
2126 mm = mm_slot->mm;
2127 down_read(&mm->mmap_sem);
2128 if (unlikely(khugepaged_test_exit(mm)))
2129 vma = NULL;
2130 else
2131 vma = find_vma(mm, khugepaged_scan.address);
2132
2133 progress++;
2134 for (; vma; vma = vma->vm_next) {
2135 unsigned long hstart, hend;
2136
2137 cond_resched();
2138 if (unlikely(khugepaged_test_exit(mm))) {
2139 progress++;
2140 break;
2141 }
2142
60ab3244
AA
2143 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2144 !khugepaged_always()) ||
2145 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2146 skip:
ba76149f
AA
2147 progress++;
2148 continue;
2149 }
78f11a25 2150 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2151 goto skip;
2152 if (is_vma_temporary_stack(vma))
2153 goto skip;
78f11a25
AA
2154 /*
2155 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2156 * must be true too, verify it here.
2157 */
2158 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2159 vma->vm_flags & VM_NO_THP);
ba76149f
AA
2160
2161 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2162 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2163 if (hstart >= hend)
2164 goto skip;
2165 if (khugepaged_scan.address > hend)
2166 goto skip;
ba76149f
AA
2167 if (khugepaged_scan.address < hstart)
2168 khugepaged_scan.address = hstart;
a7d6e4ec 2169 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2170
2171 while (khugepaged_scan.address < hend) {
2172 int ret;
2173 cond_resched();
2174 if (unlikely(khugepaged_test_exit(mm)))
2175 goto breakouterloop;
2176
2177 VM_BUG_ON(khugepaged_scan.address < hstart ||
2178 khugepaged_scan.address + HPAGE_PMD_SIZE >
2179 hend);
2180 ret = khugepaged_scan_pmd(mm, vma,
2181 khugepaged_scan.address,
2182 hpage);
2183 /* move to next address */
2184 khugepaged_scan.address += HPAGE_PMD_SIZE;
2185 progress += HPAGE_PMD_NR;
2186 if (ret)
2187 /* we released mmap_sem so break loop */
2188 goto breakouterloop_mmap_sem;
2189 if (progress >= pages)
2190 goto breakouterloop;
2191 }
2192 }
2193breakouterloop:
2194 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2195breakouterloop_mmap_sem:
2196
2197 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2198 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2199 /*
2200 * Release the current mm_slot if this mm is about to die, or
2201 * if we scanned all vmas of this mm.
2202 */
2203 if (khugepaged_test_exit(mm) || !vma) {
2204 /*
2205 * Make sure that if mm_users is reaching zero while
2206 * khugepaged runs here, khugepaged_exit will find
2207 * mm_slot not pointing to the exiting mm.
2208 */
2209 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2210 khugepaged_scan.mm_slot = list_entry(
2211 mm_slot->mm_node.next,
2212 struct mm_slot, mm_node);
2213 khugepaged_scan.address = 0;
2214 } else {
2215 khugepaged_scan.mm_slot = NULL;
2216 khugepaged_full_scans++;
2217 }
2218
2219 collect_mm_slot(mm_slot);
2220 }
2221
2222 return progress;
2223}
2224
2225static int khugepaged_has_work(void)
2226{
2227 return !list_empty(&khugepaged_scan.mm_head) &&
2228 khugepaged_enabled();
2229}
2230
2231static int khugepaged_wait_event(void)
2232{
2233 return !list_empty(&khugepaged_scan.mm_head) ||
2234 !khugepaged_enabled();
2235}
2236
2237static void khugepaged_do_scan(struct page **hpage)
2238{
2239 unsigned int progress = 0, pass_through_head = 0;
2240 unsigned int pages = khugepaged_pages_to_scan;
2241
2242 barrier(); /* write khugepaged_pages_to_scan to local stack */
2243
2244 while (progress < pages) {
2245 cond_resched();
2246
0bbbc0b3 2247#ifndef CONFIG_NUMA
ba76149f
AA
2248 if (!*hpage) {
2249 *hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2250 if (unlikely(!*hpage)) {
2251 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ba76149f 2252 break;
81ab4201
AK
2253 }
2254 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f 2255 }
0bbbc0b3
AA
2256#else
2257 if (IS_ERR(*hpage))
2258 break;
2259#endif
ba76149f 2260
878aee7d
AA
2261 if (unlikely(kthread_should_stop() || freezing(current)))
2262 break;
2263
ba76149f
AA
2264 spin_lock(&khugepaged_mm_lock);
2265 if (!khugepaged_scan.mm_slot)
2266 pass_through_head++;
2267 if (khugepaged_has_work() &&
2268 pass_through_head < 2)
2269 progress += khugepaged_scan_mm_slot(pages - progress,
2270 hpage);
2271 else
2272 progress = pages;
2273 spin_unlock(&khugepaged_mm_lock);
2274 }
2275}
2276
0bbbc0b3
AA
2277static void khugepaged_alloc_sleep(void)
2278{
1dfb059b
AA
2279 wait_event_freezable_timeout(khugepaged_wait, false,
2280 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
0bbbc0b3
AA
2281}
2282
2283#ifndef CONFIG_NUMA
ba76149f
AA
2284static struct page *khugepaged_alloc_hugepage(void)
2285{
2286 struct page *hpage;
2287
2288 do {
2289 hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2290 if (!hpage) {
2291 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
0bbbc0b3 2292 khugepaged_alloc_sleep();
81ab4201
AK
2293 } else
2294 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f
AA
2295 } while (unlikely(!hpage) &&
2296 likely(khugepaged_enabled()));
2297 return hpage;
2298}
0bbbc0b3 2299#endif
ba76149f
AA
2300
2301static void khugepaged_loop(void)
2302{
2303 struct page *hpage;
2304
0bbbc0b3
AA
2305#ifdef CONFIG_NUMA
2306 hpage = NULL;
2307#endif
ba76149f 2308 while (likely(khugepaged_enabled())) {
0bbbc0b3 2309#ifndef CONFIG_NUMA
ba76149f 2310 hpage = khugepaged_alloc_hugepage();
f300ea49 2311 if (unlikely(!hpage))
ba76149f 2312 break;
0bbbc0b3
AA
2313#else
2314 if (IS_ERR(hpage)) {
2315 khugepaged_alloc_sleep();
2316 hpage = NULL;
2317 }
2318#endif
ba76149f
AA
2319
2320 khugepaged_do_scan(&hpage);
0bbbc0b3 2321#ifndef CONFIG_NUMA
ba76149f
AA
2322 if (hpage)
2323 put_page(hpage);
0bbbc0b3 2324#endif
878aee7d
AA
2325 try_to_freeze();
2326 if (unlikely(kthread_should_stop()))
2327 break;
ba76149f 2328 if (khugepaged_has_work()) {
ba76149f
AA
2329 if (!khugepaged_scan_sleep_millisecs)
2330 continue;
1dfb059b
AA
2331 wait_event_freezable_timeout(khugepaged_wait, false,
2332 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
ba76149f 2333 } else if (khugepaged_enabled())
878aee7d
AA
2334 wait_event_freezable(khugepaged_wait,
2335 khugepaged_wait_event());
ba76149f
AA
2336 }
2337}
2338
2339static int khugepaged(void *none)
2340{
2341 struct mm_slot *mm_slot;
2342
878aee7d 2343 set_freezable();
ba76149f
AA
2344 set_user_nice(current, 19);
2345
2346 /* serialize with start_khugepaged() */
2347 mutex_lock(&khugepaged_mutex);
2348
2349 for (;;) {
2350 mutex_unlock(&khugepaged_mutex);
a7d6e4ec 2351 VM_BUG_ON(khugepaged_thread != current);
ba76149f 2352 khugepaged_loop();
a7d6e4ec 2353 VM_BUG_ON(khugepaged_thread != current);
ba76149f
AA
2354
2355 mutex_lock(&khugepaged_mutex);
2356 if (!khugepaged_enabled())
2357 break;
878aee7d
AA
2358 if (unlikely(kthread_should_stop()))
2359 break;
ba76149f
AA
2360 }
2361
2362 spin_lock(&khugepaged_mm_lock);
2363 mm_slot = khugepaged_scan.mm_slot;
2364 khugepaged_scan.mm_slot = NULL;
2365 if (mm_slot)
2366 collect_mm_slot(mm_slot);
2367 spin_unlock(&khugepaged_mm_lock);
2368
2369 khugepaged_thread = NULL;
2370 mutex_unlock(&khugepaged_mutex);
2371
2372 return 0;
2373}
2374
71e3aac0
AA
2375void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2376{
2377 struct page *page;
2378
2379 spin_lock(&mm->page_table_lock);
2380 if (unlikely(!pmd_trans_huge(*pmd))) {
2381 spin_unlock(&mm->page_table_lock);
2382 return;
2383 }
2384 page = pmd_page(*pmd);
2385 VM_BUG_ON(!page_count(page));
2386 get_page(page);
2387 spin_unlock(&mm->page_table_lock);
2388
2389 split_huge_page(page);
2390
2391 put_page(page);
2392 BUG_ON(pmd_trans_huge(*pmd));
2393}
94fcc585
AA
2394
2395static void split_huge_page_address(struct mm_struct *mm,
2396 unsigned long address)
2397{
2398 pgd_t *pgd;
2399 pud_t *pud;
2400 pmd_t *pmd;
2401
2402 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2403
2404 pgd = pgd_offset(mm, address);
2405 if (!pgd_present(*pgd))
2406 return;
2407
2408 pud = pud_offset(pgd, address);
2409 if (!pud_present(*pud))
2410 return;
2411
2412 pmd = pmd_offset(pud, address);
2413 if (!pmd_present(*pmd))
2414 return;
2415 /*
2416 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2417 * materialize from under us.
2418 */
2419 split_huge_page_pmd(mm, pmd);
2420}
2421
2422void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2423 unsigned long start,
2424 unsigned long end,
2425 long adjust_next)
2426{
2427 /*
2428 * If the new start address isn't hpage aligned and it could
2429 * previously contain an hugepage: check if we need to split
2430 * an huge pmd.
2431 */
2432 if (start & ~HPAGE_PMD_MASK &&
2433 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2434 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2435 split_huge_page_address(vma->vm_mm, start);
2436
2437 /*
2438 * If the new end address isn't hpage aligned and it could
2439 * previously contain an hugepage: check if we need to split
2440 * an huge pmd.
2441 */
2442 if (end & ~HPAGE_PMD_MASK &&
2443 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2444 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2445 split_huge_page_address(vma->vm_mm, end);
2446
2447 /*
2448 * If we're also updating the vma->vm_next->vm_start, if the new
2449 * vm_next->vm_start isn't page aligned and it could previously
2450 * contain an hugepage: check if we need to split an huge pmd.
2451 */
2452 if (adjust_next > 0) {
2453 struct vm_area_struct *next = vma->vm_next;
2454 unsigned long nstart = next->vm_start;
2455 nstart += adjust_next << PAGE_SHIFT;
2456 if (nstart & ~HPAGE_PMD_MASK &&
2457 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2458 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2459 split_huge_page_address(next->vm_mm, nstart);
2460 }
2461}
This page took 0.364161 seconds and 5 git commands to generate.