thp: remove unnecessary check in start_khugepaged
[deliverable/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
110
111 for_each_populated_zone(zone)
112 nr_zones++;
113
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117 /*
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
122 */
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
130
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
135}
136late_initcall(set_recommended_min_free_kbytes);
137
ba76149f
AA
138static int start_khugepaged(void)
139{
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
637e3a27 143
ba76149f
AA
144 mutex_lock(&khugepaged_mutex);
145 if (!khugepaged_thread)
146 khugepaged_thread = kthread_run(khugepaged, NULL,
147 "khugepaged");
148 if (unlikely(IS_ERR(khugepaged_thread))) {
149 printk(KERN_ERR
150 "khugepaged: kthread_run(khugepaged) failed\n");
151 err = PTR_ERR(khugepaged_thread);
152 khugepaged_thread = NULL;
153 }
154 wakeup = !list_empty(&khugepaged_scan.mm_head);
155 mutex_unlock(&khugepaged_mutex);
156 if (wakeup)
157 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
158
159 set_recommended_min_free_kbytes();
ba76149f
AA
160 } else
161 /* wakeup to exit */
162 wake_up_interruptible(&khugepaged_wait);
637e3a27 163
ba76149f
AA
164 return err;
165}
71e3aac0
AA
166
167#ifdef CONFIG_SYSFS
ba76149f 168
71e3aac0
AA
169static ssize_t double_flag_show(struct kobject *kobj,
170 struct kobj_attribute *attr, char *buf,
171 enum transparent_hugepage_flag enabled,
172 enum transparent_hugepage_flag req_madv)
173{
174 if (test_bit(enabled, &transparent_hugepage_flags)) {
175 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
176 return sprintf(buf, "[always] madvise never\n");
177 } else if (test_bit(req_madv, &transparent_hugepage_flags))
178 return sprintf(buf, "always [madvise] never\n");
179 else
180 return sprintf(buf, "always madvise [never]\n");
181}
182static ssize_t double_flag_store(struct kobject *kobj,
183 struct kobj_attribute *attr,
184 const char *buf, size_t count,
185 enum transparent_hugepage_flag enabled,
186 enum transparent_hugepage_flag req_madv)
187{
188 if (!memcmp("always", buf,
189 min(sizeof("always")-1, count))) {
190 set_bit(enabled, &transparent_hugepage_flags);
191 clear_bit(req_madv, &transparent_hugepage_flags);
192 } else if (!memcmp("madvise", buf,
193 min(sizeof("madvise")-1, count))) {
194 clear_bit(enabled, &transparent_hugepage_flags);
195 set_bit(req_madv, &transparent_hugepage_flags);
196 } else if (!memcmp("never", buf,
197 min(sizeof("never")-1, count))) {
198 clear_bit(enabled, &transparent_hugepage_flags);
199 clear_bit(req_madv, &transparent_hugepage_flags);
200 } else
201 return -EINVAL;
202
203 return count;
204}
205
206static ssize_t enabled_show(struct kobject *kobj,
207 struct kobj_attribute *attr, char *buf)
208{
209 return double_flag_show(kobj, attr, buf,
210 TRANSPARENT_HUGEPAGE_FLAG,
211 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
212}
213static ssize_t enabled_store(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 const char *buf, size_t count)
216{
ba76149f
AA
217 ssize_t ret;
218
219 ret = double_flag_store(kobj, attr, buf, count,
220 TRANSPARENT_HUGEPAGE_FLAG,
221 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
222
223 if (ret > 0) {
224 int err = start_khugepaged();
225 if (err)
226 ret = err;
227 }
228
f000565a
AA
229 if (ret > 0 &&
230 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
231 &transparent_hugepage_flags) ||
232 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
233 &transparent_hugepage_flags)))
234 set_recommended_min_free_kbytes();
235
ba76149f 236 return ret;
71e3aac0
AA
237}
238static struct kobj_attribute enabled_attr =
239 __ATTR(enabled, 0644, enabled_show, enabled_store);
240
241static ssize_t single_flag_show(struct kobject *kobj,
242 struct kobj_attribute *attr, char *buf,
243 enum transparent_hugepage_flag flag)
244{
e27e6151
BH
245 return sprintf(buf, "%d\n",
246 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 247}
e27e6151 248
71e3aac0
AA
249static ssize_t single_flag_store(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 const char *buf, size_t count,
252 enum transparent_hugepage_flag flag)
253{
e27e6151
BH
254 unsigned long value;
255 int ret;
256
257 ret = kstrtoul(buf, 10, &value);
258 if (ret < 0)
259 return ret;
260 if (value > 1)
261 return -EINVAL;
262
263 if (value)
71e3aac0 264 set_bit(flag, &transparent_hugepage_flags);
e27e6151 265 else
71e3aac0 266 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
267
268 return count;
269}
270
271/*
272 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
273 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
274 * memory just to allocate one more hugepage.
275 */
276static ssize_t defrag_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
279 return double_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
281 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
282}
283static ssize_t defrag_store(struct kobject *kobj,
284 struct kobj_attribute *attr,
285 const char *buf, size_t count)
286{
287 return double_flag_store(kobj, attr, buf, count,
288 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
289 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
290}
291static struct kobj_attribute defrag_attr =
292 __ATTR(defrag, 0644, defrag_show, defrag_store);
293
294#ifdef CONFIG_DEBUG_VM
295static ssize_t debug_cow_show(struct kobject *kobj,
296 struct kobj_attribute *attr, char *buf)
297{
298 return single_flag_show(kobj, attr, buf,
299 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
300}
301static ssize_t debug_cow_store(struct kobject *kobj,
302 struct kobj_attribute *attr,
303 const char *buf, size_t count)
304{
305 return single_flag_store(kobj, attr, buf, count,
306 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
307}
308static struct kobj_attribute debug_cow_attr =
309 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
310#endif /* CONFIG_DEBUG_VM */
311
312static struct attribute *hugepage_attr[] = {
313 &enabled_attr.attr,
314 &defrag_attr.attr,
315#ifdef CONFIG_DEBUG_VM
316 &debug_cow_attr.attr,
317#endif
318 NULL,
319};
320
321static struct attribute_group hugepage_attr_group = {
322 .attrs = hugepage_attr,
ba76149f
AA
323};
324
325static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 char *buf)
328{
329 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
330}
331
332static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
333 struct kobj_attribute *attr,
334 const char *buf, size_t count)
335{
336 unsigned long msecs;
337 int err;
338
339 err = strict_strtoul(buf, 10, &msecs);
340 if (err || msecs > UINT_MAX)
341 return -EINVAL;
342
343 khugepaged_scan_sleep_millisecs = msecs;
344 wake_up_interruptible(&khugepaged_wait);
345
346 return count;
347}
348static struct kobj_attribute scan_sleep_millisecs_attr =
349 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
350 scan_sleep_millisecs_store);
351
352static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 char *buf)
355{
356 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
357}
358
359static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
360 struct kobj_attribute *attr,
361 const char *buf, size_t count)
362{
363 unsigned long msecs;
364 int err;
365
366 err = strict_strtoul(buf, 10, &msecs);
367 if (err || msecs > UINT_MAX)
368 return -EINVAL;
369
370 khugepaged_alloc_sleep_millisecs = msecs;
371 wake_up_interruptible(&khugepaged_wait);
372
373 return count;
374}
375static struct kobj_attribute alloc_sleep_millisecs_attr =
376 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
377 alloc_sleep_millisecs_store);
378
379static ssize_t pages_to_scan_show(struct kobject *kobj,
380 struct kobj_attribute *attr,
381 char *buf)
382{
383 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
384}
385static ssize_t pages_to_scan_store(struct kobject *kobj,
386 struct kobj_attribute *attr,
387 const char *buf, size_t count)
388{
389 int err;
390 unsigned long pages;
391
392 err = strict_strtoul(buf, 10, &pages);
393 if (err || !pages || pages > UINT_MAX)
394 return -EINVAL;
395
396 khugepaged_pages_to_scan = pages;
397
398 return count;
399}
400static struct kobj_attribute pages_to_scan_attr =
401 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
402 pages_to_scan_store);
403
404static ssize_t pages_collapsed_show(struct kobject *kobj,
405 struct kobj_attribute *attr,
406 char *buf)
407{
408 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
409}
410static struct kobj_attribute pages_collapsed_attr =
411 __ATTR_RO(pages_collapsed);
412
413static ssize_t full_scans_show(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 char *buf)
416{
417 return sprintf(buf, "%u\n", khugepaged_full_scans);
418}
419static struct kobj_attribute full_scans_attr =
420 __ATTR_RO(full_scans);
421
422static ssize_t khugepaged_defrag_show(struct kobject *kobj,
423 struct kobj_attribute *attr, char *buf)
424{
425 return single_flag_show(kobj, attr, buf,
426 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
427}
428static ssize_t khugepaged_defrag_store(struct kobject *kobj,
429 struct kobj_attribute *attr,
430 const char *buf, size_t count)
431{
432 return single_flag_store(kobj, attr, buf, count,
433 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
434}
435static struct kobj_attribute khugepaged_defrag_attr =
436 __ATTR(defrag, 0644, khugepaged_defrag_show,
437 khugepaged_defrag_store);
438
439/*
440 * max_ptes_none controls if khugepaged should collapse hugepages over
441 * any unmapped ptes in turn potentially increasing the memory
442 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
443 * reduce the available free memory in the system as it
444 * runs. Increasing max_ptes_none will instead potentially reduce the
445 * free memory in the system during the khugepaged scan.
446 */
447static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
448 struct kobj_attribute *attr,
449 char *buf)
450{
451 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
452}
453static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
454 struct kobj_attribute *attr,
455 const char *buf, size_t count)
456{
457 int err;
458 unsigned long max_ptes_none;
459
460 err = strict_strtoul(buf, 10, &max_ptes_none);
461 if (err || max_ptes_none > HPAGE_PMD_NR-1)
462 return -EINVAL;
463
464 khugepaged_max_ptes_none = max_ptes_none;
465
466 return count;
467}
468static struct kobj_attribute khugepaged_max_ptes_none_attr =
469 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
470 khugepaged_max_ptes_none_store);
471
472static struct attribute *khugepaged_attr[] = {
473 &khugepaged_defrag_attr.attr,
474 &khugepaged_max_ptes_none_attr.attr,
475 &pages_to_scan_attr.attr,
476 &pages_collapsed_attr.attr,
477 &full_scans_attr.attr,
478 &scan_sleep_millisecs_attr.attr,
479 &alloc_sleep_millisecs_attr.attr,
480 NULL,
481};
482
483static struct attribute_group khugepaged_attr_group = {
484 .attrs = khugepaged_attr,
485 .name = "khugepaged",
71e3aac0 486};
71e3aac0 487
569e5590 488static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 489{
71e3aac0
AA
490 int err;
491
569e5590
SL
492 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
493 if (unlikely(!*hugepage_kobj)) {
ba76149f 494 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 495 return -ENOMEM;
ba76149f
AA
496 }
497
569e5590 498 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
499 if (err) {
500 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 501 goto delete_obj;
ba76149f
AA
502 }
503
569e5590 504 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
505 if (err) {
506 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 507 goto remove_hp_group;
ba76149f 508 }
569e5590
SL
509
510 return 0;
511
512remove_hp_group:
513 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
514delete_obj:
515 kobject_put(*hugepage_kobj);
516 return err;
517}
518
519static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
520{
521 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
522 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
523 kobject_put(hugepage_kobj);
524}
525#else
526static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
527{
528 return 0;
529}
530
531static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
532{
533}
534#endif /* CONFIG_SYSFS */
535
536static int __init hugepage_init(void)
537{
538 int err;
539 struct kobject *hugepage_kobj;
540
541 if (!has_transparent_hugepage()) {
542 transparent_hugepage_flags = 0;
543 return -EINVAL;
544 }
545
546 err = hugepage_init_sysfs(&hugepage_kobj);
547 if (err)
548 return err;
ba76149f
AA
549
550 err = khugepaged_slab_init();
551 if (err)
552 goto out;
553
554 err = mm_slots_hash_init();
555 if (err) {
556 khugepaged_slab_free();
557 goto out;
558 }
559
97562cd2
RR
560 /*
561 * By default disable transparent hugepages on smaller systems,
562 * where the extra memory used could hurt more than TLB overhead
563 * is likely to save. The admin can still enable it through /sys.
564 */
565 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
566 transparent_hugepage_flags = 0;
567
ba76149f
AA
568 start_khugepaged();
569
f000565a
AA
570 set_recommended_min_free_kbytes();
571
569e5590 572 return 0;
ba76149f 573out:
569e5590 574 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 575 return err;
71e3aac0
AA
576}
577module_init(hugepage_init)
578
579static int __init setup_transparent_hugepage(char *str)
580{
581 int ret = 0;
582 if (!str)
583 goto out;
584 if (!strcmp(str, "always")) {
585 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
586 &transparent_hugepage_flags);
587 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
588 &transparent_hugepage_flags);
589 ret = 1;
590 } else if (!strcmp(str, "madvise")) {
591 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
592 &transparent_hugepage_flags);
593 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
594 &transparent_hugepage_flags);
595 ret = 1;
596 } else if (!strcmp(str, "never")) {
597 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
598 &transparent_hugepage_flags);
599 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
600 &transparent_hugepage_flags);
601 ret = 1;
602 }
603out:
604 if (!ret)
605 printk(KERN_WARNING
606 "transparent_hugepage= cannot parse, ignored\n");
607 return ret;
608}
609__setup("transparent_hugepage=", setup_transparent_hugepage);
610
611static void prepare_pmd_huge_pte(pgtable_t pgtable,
612 struct mm_struct *mm)
613{
614 assert_spin_locked(&mm->page_table_lock);
615
616 /* FIFO */
617 if (!mm->pmd_huge_pte)
618 INIT_LIST_HEAD(&pgtable->lru);
619 else
620 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
621 mm->pmd_huge_pte = pgtable;
622}
623
624static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
625{
626 if (likely(vma->vm_flags & VM_WRITE))
627 pmd = pmd_mkwrite(pmd);
628 return pmd;
629}
630
631static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
632 struct vm_area_struct *vma,
633 unsigned long haddr, pmd_t *pmd,
634 struct page *page)
635{
71e3aac0
AA
636 pgtable_t pgtable;
637
638 VM_BUG_ON(!PageCompound(page));
639 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 640 if (unlikely(!pgtable))
71e3aac0 641 return VM_FAULT_OOM;
71e3aac0
AA
642
643 clear_huge_page(page, haddr, HPAGE_PMD_NR);
644 __SetPageUptodate(page);
645
646 spin_lock(&mm->page_table_lock);
647 if (unlikely(!pmd_none(*pmd))) {
648 spin_unlock(&mm->page_table_lock);
b9bbfbe3 649 mem_cgroup_uncharge_page(page);
71e3aac0
AA
650 put_page(page);
651 pte_free(mm, pgtable);
652 } else {
653 pmd_t entry;
654 entry = mk_pmd(page, vma->vm_page_prot);
655 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
656 entry = pmd_mkhuge(entry);
657 /*
658 * The spinlocking to take the lru_lock inside
659 * page_add_new_anon_rmap() acts as a full memory
660 * barrier to be sure clear_huge_page writes become
661 * visible after the set_pmd_at() write.
662 */
663 page_add_new_anon_rmap(page, vma, haddr);
664 set_pmd_at(mm, haddr, pmd, entry);
665 prepare_pmd_huge_pte(pgtable, mm);
666 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 667 mm->nr_ptes++;
71e3aac0
AA
668 spin_unlock(&mm->page_table_lock);
669 }
670
aa2e878e 671 return 0;
71e3aac0
AA
672}
673
cc5d462f 674static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 675{
cc5d462f 676 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
677}
678
679static inline struct page *alloc_hugepage_vma(int defrag,
680 struct vm_area_struct *vma,
cc5d462f
AK
681 unsigned long haddr, int nd,
682 gfp_t extra_gfp)
0bbbc0b3 683{
cc5d462f 684 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 685 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
686}
687
688#ifndef CONFIG_NUMA
71e3aac0
AA
689static inline struct page *alloc_hugepage(int defrag)
690{
cc5d462f 691 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
692 HPAGE_PMD_ORDER);
693}
0bbbc0b3 694#endif
71e3aac0
AA
695
696int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
697 unsigned long address, pmd_t *pmd,
698 unsigned int flags)
699{
700 struct page *page;
701 unsigned long haddr = address & HPAGE_PMD_MASK;
702 pte_t *pte;
703
704 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
705 if (unlikely(anon_vma_prepare(vma)))
706 return VM_FAULT_OOM;
ba76149f
AA
707 if (unlikely(khugepaged_enter(vma)))
708 return VM_FAULT_OOM;
0bbbc0b3 709 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 710 vma, haddr, numa_node_id(), 0);
81ab4201
AK
711 if (unlikely(!page)) {
712 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 713 goto out;
81ab4201
AK
714 }
715 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
716 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
717 put_page(page);
718 goto out;
719 }
edad9d2c
DR
720 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
721 page))) {
722 mem_cgroup_uncharge_page(page);
723 put_page(page);
724 goto out;
725 }
71e3aac0 726
edad9d2c 727 return 0;
71e3aac0
AA
728 }
729out:
730 /*
731 * Use __pte_alloc instead of pte_alloc_map, because we can't
732 * run pte_offset_map on the pmd, if an huge pmd could
733 * materialize from under us from a different thread.
734 */
735 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
736 return VM_FAULT_OOM;
737 /* if an huge pmd materialized from under us just retry later */
738 if (unlikely(pmd_trans_huge(*pmd)))
739 return 0;
740 /*
741 * A regular pmd is established and it can't morph into a huge pmd
742 * from under us anymore at this point because we hold the mmap_sem
743 * read mode and khugepaged takes it in write mode. So now it's
744 * safe to run pte_offset_map().
745 */
746 pte = pte_offset_map(pmd, address);
747 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
748}
749
750int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
751 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
752 struct vm_area_struct *vma)
753{
754 struct page *src_page;
755 pmd_t pmd;
756 pgtable_t pgtable;
757 int ret;
758
759 ret = -ENOMEM;
760 pgtable = pte_alloc_one(dst_mm, addr);
761 if (unlikely(!pgtable))
762 goto out;
763
764 spin_lock(&dst_mm->page_table_lock);
765 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
766
767 ret = -EAGAIN;
768 pmd = *src_pmd;
769 if (unlikely(!pmd_trans_huge(pmd))) {
770 pte_free(dst_mm, pgtable);
771 goto out_unlock;
772 }
773 if (unlikely(pmd_trans_splitting(pmd))) {
774 /* split huge page running from under us */
775 spin_unlock(&src_mm->page_table_lock);
776 spin_unlock(&dst_mm->page_table_lock);
777 pte_free(dst_mm, pgtable);
778
779 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
780 goto out;
781 }
782 src_page = pmd_page(pmd);
783 VM_BUG_ON(!PageHead(src_page));
784 get_page(src_page);
785 page_dup_rmap(src_page);
786 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
787
788 pmdp_set_wrprotect(src_mm, addr, src_pmd);
789 pmd = pmd_mkold(pmd_wrprotect(pmd));
790 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
791 prepare_pmd_huge_pte(pgtable, dst_mm);
1c641e84 792 dst_mm->nr_ptes++;
71e3aac0
AA
793
794 ret = 0;
795out_unlock:
796 spin_unlock(&src_mm->page_table_lock);
797 spin_unlock(&dst_mm->page_table_lock);
798out:
799 return ret;
800}
801
802/* no "address" argument so destroys page coloring of some arch */
803pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
804{
805 pgtable_t pgtable;
806
807 assert_spin_locked(&mm->page_table_lock);
808
809 /* FIFO */
810 pgtable = mm->pmd_huge_pte;
811 if (list_empty(&pgtable->lru))
812 mm->pmd_huge_pte = NULL;
813 else {
814 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
815 struct page, lru);
816 list_del(&pgtable->lru);
817 }
818 return pgtable;
819}
820
821static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
822 struct vm_area_struct *vma,
823 unsigned long address,
824 pmd_t *pmd, pmd_t orig_pmd,
825 struct page *page,
826 unsigned long haddr)
827{
828 pgtable_t pgtable;
829 pmd_t _pmd;
830 int ret = 0, i;
831 struct page **pages;
832
833 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
834 GFP_KERNEL);
835 if (unlikely(!pages)) {
836 ret |= VM_FAULT_OOM;
837 goto out;
838 }
839
840 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
841 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
842 __GFP_OTHER_NODE,
19ee151e 843 vma, address, page_to_nid(page));
b9bbfbe3
AA
844 if (unlikely(!pages[i] ||
845 mem_cgroup_newpage_charge(pages[i], mm,
846 GFP_KERNEL))) {
847 if (pages[i])
71e3aac0 848 put_page(pages[i]);
b9bbfbe3
AA
849 mem_cgroup_uncharge_start();
850 while (--i >= 0) {
851 mem_cgroup_uncharge_page(pages[i]);
852 put_page(pages[i]);
853 }
854 mem_cgroup_uncharge_end();
71e3aac0
AA
855 kfree(pages);
856 ret |= VM_FAULT_OOM;
857 goto out;
858 }
859 }
860
861 for (i = 0; i < HPAGE_PMD_NR; i++) {
862 copy_user_highpage(pages[i], page + i,
0089e485 863 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
864 __SetPageUptodate(pages[i]);
865 cond_resched();
866 }
867
868 spin_lock(&mm->page_table_lock);
869 if (unlikely(!pmd_same(*pmd, orig_pmd)))
870 goto out_free_pages;
871 VM_BUG_ON(!PageHead(page));
872
873 pmdp_clear_flush_notify(vma, haddr, pmd);
874 /* leave pmd empty until pte is filled */
875
876 pgtable = get_pmd_huge_pte(mm);
877 pmd_populate(mm, &_pmd, pgtable);
878
879 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
880 pte_t *pte, entry;
881 entry = mk_pte(pages[i], vma->vm_page_prot);
882 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
883 page_add_new_anon_rmap(pages[i], vma, haddr);
884 pte = pte_offset_map(&_pmd, haddr);
885 VM_BUG_ON(!pte_none(*pte));
886 set_pte_at(mm, haddr, pte, entry);
887 pte_unmap(pte);
888 }
889 kfree(pages);
890
71e3aac0
AA
891 smp_wmb(); /* make pte visible before pmd */
892 pmd_populate(mm, pmd, pgtable);
893 page_remove_rmap(page);
894 spin_unlock(&mm->page_table_lock);
895
896 ret |= VM_FAULT_WRITE;
897 put_page(page);
898
899out:
900 return ret;
901
902out_free_pages:
903 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
904 mem_cgroup_uncharge_start();
905 for (i = 0; i < HPAGE_PMD_NR; i++) {
906 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 907 put_page(pages[i]);
b9bbfbe3
AA
908 }
909 mem_cgroup_uncharge_end();
71e3aac0
AA
910 kfree(pages);
911 goto out;
912}
913
914int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
915 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
916{
917 int ret = 0;
918 struct page *page, *new_page;
919 unsigned long haddr;
920
921 VM_BUG_ON(!vma->anon_vma);
922 spin_lock(&mm->page_table_lock);
923 if (unlikely(!pmd_same(*pmd, orig_pmd)))
924 goto out_unlock;
925
926 page = pmd_page(orig_pmd);
927 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
928 haddr = address & HPAGE_PMD_MASK;
929 if (page_mapcount(page) == 1) {
930 pmd_t entry;
931 entry = pmd_mkyoung(orig_pmd);
932 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
933 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
934 update_mmu_cache(vma, address, entry);
935 ret |= VM_FAULT_WRITE;
936 goto out_unlock;
937 }
938 get_page(page);
939 spin_unlock(&mm->page_table_lock);
940
941 if (transparent_hugepage_enabled(vma) &&
942 !transparent_hugepage_debug_cow())
0bbbc0b3 943 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 944 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
945 else
946 new_page = NULL;
947
948 if (unlikely(!new_page)) {
81ab4201 949 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
950 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
951 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
952 if (ret & VM_FAULT_OOM)
953 split_huge_page(page);
71e3aac0
AA
954 put_page(page);
955 goto out;
956 }
81ab4201 957 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 958
b9bbfbe3
AA
959 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
960 put_page(new_page);
1f1d06c3 961 split_huge_page(page);
b9bbfbe3
AA
962 put_page(page);
963 ret |= VM_FAULT_OOM;
964 goto out;
965 }
966
71e3aac0
AA
967 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
968 __SetPageUptodate(new_page);
969
970 spin_lock(&mm->page_table_lock);
971 put_page(page);
b9bbfbe3 972 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 973 spin_unlock(&mm->page_table_lock);
b9bbfbe3 974 mem_cgroup_uncharge_page(new_page);
71e3aac0 975 put_page(new_page);
6f60b69d 976 goto out;
b9bbfbe3 977 } else {
71e3aac0
AA
978 pmd_t entry;
979 VM_BUG_ON(!PageHead(page));
980 entry = mk_pmd(new_page, vma->vm_page_prot);
981 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
982 entry = pmd_mkhuge(entry);
983 pmdp_clear_flush_notify(vma, haddr, pmd);
984 page_add_new_anon_rmap(new_page, vma, haddr);
985 set_pmd_at(mm, haddr, pmd, entry);
986 update_mmu_cache(vma, address, entry);
987 page_remove_rmap(page);
988 put_page(page);
989 ret |= VM_FAULT_WRITE;
990 }
991out_unlock:
992 spin_unlock(&mm->page_table_lock);
993out:
994 return ret;
995}
996
997struct page *follow_trans_huge_pmd(struct mm_struct *mm,
998 unsigned long addr,
999 pmd_t *pmd,
1000 unsigned int flags)
1001{
1002 struct page *page = NULL;
1003
1004 assert_spin_locked(&mm->page_table_lock);
1005
1006 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1007 goto out;
1008
1009 page = pmd_page(*pmd);
1010 VM_BUG_ON(!PageHead(page));
1011 if (flags & FOLL_TOUCH) {
1012 pmd_t _pmd;
1013 /*
1014 * We should set the dirty bit only for FOLL_WRITE but
1015 * for now the dirty bit in the pmd is meaningless.
1016 * And if the dirty bit will become meaningful and
1017 * we'll only set it with FOLL_WRITE, an atomic
1018 * set_bit will be required on the pmd to set the
1019 * young bit, instead of the current set_pmd_at.
1020 */
1021 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1022 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1023 }
1024 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1025 VM_BUG_ON(!PageCompound(page));
1026 if (flags & FOLL_GET)
70b50f94 1027 get_page_foll(page);
71e3aac0
AA
1028
1029out:
1030 return page;
1031}
1032
1033int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1034 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1035{
1036 int ret = 0;
1037
025c5b24
NH
1038 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1039 struct page *page;
1040 pgtable_t pgtable;
1041 pgtable = get_pmd_huge_pte(tlb->mm);
1042 page = pmd_page(*pmd);
1043 pmd_clear(pmd);
1044 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1045 page_remove_rmap(page);
1046 VM_BUG_ON(page_mapcount(page) < 0);
1047 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1048 VM_BUG_ON(!PageHead(page));
1049 tlb->mm->nr_ptes--;
71e3aac0 1050 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1051 tlb_remove_page(tlb, page);
1052 pte_free(tlb->mm, pgtable);
1053 ret = 1;
1054 }
71e3aac0
AA
1055 return ret;
1056}
1057
0ca1634d
JW
1058int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1059 unsigned long addr, unsigned long end,
1060 unsigned char *vec)
1061{
1062 int ret = 0;
1063
025c5b24
NH
1064 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1065 /*
1066 * All logical pages in the range are present
1067 * if backed by a huge page.
1068 */
0ca1634d 1069 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1070 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1071 ret = 1;
1072 }
0ca1634d
JW
1073
1074 return ret;
1075}
1076
37a1c49a
AA
1077int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1078 unsigned long old_addr,
1079 unsigned long new_addr, unsigned long old_end,
1080 pmd_t *old_pmd, pmd_t *new_pmd)
1081{
1082 int ret = 0;
1083 pmd_t pmd;
1084
1085 struct mm_struct *mm = vma->vm_mm;
1086
1087 if ((old_addr & ~HPAGE_PMD_MASK) ||
1088 (new_addr & ~HPAGE_PMD_MASK) ||
1089 old_end - old_addr < HPAGE_PMD_SIZE ||
1090 (new_vma->vm_flags & VM_NOHUGEPAGE))
1091 goto out;
1092
1093 /*
1094 * The destination pmd shouldn't be established, free_pgtables()
1095 * should have release it.
1096 */
1097 if (WARN_ON(!pmd_none(*new_pmd))) {
1098 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1099 goto out;
1100 }
1101
025c5b24
NH
1102 ret = __pmd_trans_huge_lock(old_pmd, vma);
1103 if (ret == 1) {
1104 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1105 VM_BUG_ON(!pmd_none(*new_pmd));
1106 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1107 spin_unlock(&mm->page_table_lock);
1108 }
1109out:
1110 return ret;
1111}
1112
cd7548ab
JW
1113int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1114 unsigned long addr, pgprot_t newprot)
1115{
1116 struct mm_struct *mm = vma->vm_mm;
1117 int ret = 0;
1118
025c5b24
NH
1119 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1120 pmd_t entry;
1121 entry = pmdp_get_and_clear(mm, addr, pmd);
1122 entry = pmd_modify(entry, newprot);
1123 set_pmd_at(mm, addr, pmd, entry);
1124 spin_unlock(&vma->vm_mm->page_table_lock);
1125 ret = 1;
1126 }
1127
1128 return ret;
1129}
1130
1131/*
1132 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1133 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1134 *
1135 * Note that if it returns 1, this routine returns without unlocking page
1136 * table locks. So callers must unlock them.
1137 */
1138int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1139{
1140 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1141 if (likely(pmd_trans_huge(*pmd))) {
1142 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1143 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1144 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1145 return -1;
cd7548ab 1146 } else {
025c5b24
NH
1147 /* Thp mapped by 'pmd' is stable, so we can
1148 * handle it as it is. */
1149 return 1;
cd7548ab 1150 }
025c5b24
NH
1151 }
1152 spin_unlock(&vma->vm_mm->page_table_lock);
1153 return 0;
cd7548ab
JW
1154}
1155
71e3aac0
AA
1156pmd_t *page_check_address_pmd(struct page *page,
1157 struct mm_struct *mm,
1158 unsigned long address,
1159 enum page_check_address_pmd_flag flag)
1160{
1161 pgd_t *pgd;
1162 pud_t *pud;
1163 pmd_t *pmd, *ret = NULL;
1164
1165 if (address & ~HPAGE_PMD_MASK)
1166 goto out;
1167
1168 pgd = pgd_offset(mm, address);
1169 if (!pgd_present(*pgd))
1170 goto out;
1171
1172 pud = pud_offset(pgd, address);
1173 if (!pud_present(*pud))
1174 goto out;
1175
1176 pmd = pmd_offset(pud, address);
1177 if (pmd_none(*pmd))
1178 goto out;
1179 if (pmd_page(*pmd) != page)
1180 goto out;
94fcc585
AA
1181 /*
1182 * split_vma() may create temporary aliased mappings. There is
1183 * no risk as long as all huge pmd are found and have their
1184 * splitting bit set before __split_huge_page_refcount
1185 * runs. Finding the same huge pmd more than once during the
1186 * same rmap walk is not a problem.
1187 */
1188 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1189 pmd_trans_splitting(*pmd))
1190 goto out;
71e3aac0
AA
1191 if (pmd_trans_huge(*pmd)) {
1192 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1193 !pmd_trans_splitting(*pmd));
1194 ret = pmd;
1195 }
1196out:
1197 return ret;
1198}
1199
1200static int __split_huge_page_splitting(struct page *page,
1201 struct vm_area_struct *vma,
1202 unsigned long address)
1203{
1204 struct mm_struct *mm = vma->vm_mm;
1205 pmd_t *pmd;
1206 int ret = 0;
1207
1208 spin_lock(&mm->page_table_lock);
1209 pmd = page_check_address_pmd(page, mm, address,
1210 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1211 if (pmd) {
1212 /*
1213 * We can't temporarily set the pmd to null in order
1214 * to split it, the pmd must remain marked huge at all
1215 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1216 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1217 * serialize against split_huge_page*.
1218 */
1219 pmdp_splitting_flush_notify(vma, address, pmd);
1220 ret = 1;
1221 }
1222 spin_unlock(&mm->page_table_lock);
1223
1224 return ret;
1225}
1226
1227static void __split_huge_page_refcount(struct page *page)
1228{
1229 int i;
71e3aac0 1230 struct zone *zone = page_zone(page);
fa9add64 1231 struct lruvec *lruvec;
70b50f94 1232 int tail_count = 0;
71e3aac0
AA
1233
1234 /* prevent PageLRU to go away from under us, and freeze lru stats */
1235 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1236 lruvec = mem_cgroup_page_lruvec(page, zone);
1237
71e3aac0 1238 compound_lock(page);
e94c8a9c
KH
1239 /* complete memcg works before add pages to LRU */
1240 mem_cgroup_split_huge_fixup(page);
71e3aac0 1241
45676885 1242 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1243 struct page *page_tail = page + i;
1244
70b50f94
AA
1245 /* tail_page->_mapcount cannot change */
1246 BUG_ON(page_mapcount(page_tail) < 0);
1247 tail_count += page_mapcount(page_tail);
1248 /* check for overflow */
1249 BUG_ON(tail_count < 0);
1250 BUG_ON(atomic_read(&page_tail->_count) != 0);
1251 /*
1252 * tail_page->_count is zero and not changing from
1253 * under us. But get_page_unless_zero() may be running
1254 * from under us on the tail_page. If we used
1255 * atomic_set() below instead of atomic_add(), we
1256 * would then run atomic_set() concurrently with
1257 * get_page_unless_zero(), and atomic_set() is
1258 * implemented in C not using locked ops. spin_unlock
1259 * on x86 sometime uses locked ops because of PPro
1260 * errata 66, 92, so unless somebody can guarantee
1261 * atomic_set() here would be safe on all archs (and
1262 * not only on x86), it's safer to use atomic_add().
1263 */
1264 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1265 &page_tail->_count);
71e3aac0
AA
1266
1267 /* after clearing PageTail the gup refcount can be released */
1268 smp_mb();
1269
a6d30ddd
JD
1270 /*
1271 * retain hwpoison flag of the poisoned tail page:
1272 * fix for the unsuitable process killed on Guest Machine(KVM)
1273 * by the memory-failure.
1274 */
1275 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1276 page_tail->flags |= (page->flags &
1277 ((1L << PG_referenced) |
1278 (1L << PG_swapbacked) |
1279 (1L << PG_mlocked) |
1280 (1L << PG_uptodate)));
1281 page_tail->flags |= (1L << PG_dirty);
1282
70b50f94 1283 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1284 smp_wmb();
1285
1286 /*
1287 * __split_huge_page_splitting() already set the
1288 * splitting bit in all pmd that could map this
1289 * hugepage, that will ensure no CPU can alter the
1290 * mapcount on the head page. The mapcount is only
1291 * accounted in the head page and it has to be
1292 * transferred to all tail pages in the below code. So
1293 * for this code to be safe, the split the mapcount
1294 * can't change. But that doesn't mean userland can't
1295 * keep changing and reading the page contents while
1296 * we transfer the mapcount, so the pmd splitting
1297 * status is achieved setting a reserved bit in the
1298 * pmd, not by clearing the present bit.
1299 */
71e3aac0
AA
1300 page_tail->_mapcount = page->_mapcount;
1301
1302 BUG_ON(page_tail->mapping);
1303 page_tail->mapping = page->mapping;
1304
45676885 1305 page_tail->index = page->index + i;
71e3aac0
AA
1306
1307 BUG_ON(!PageAnon(page_tail));
1308 BUG_ON(!PageUptodate(page_tail));
1309 BUG_ON(!PageDirty(page_tail));
1310 BUG_ON(!PageSwapBacked(page_tail));
1311
fa9add64 1312 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1313 }
70b50f94
AA
1314 atomic_sub(tail_count, &page->_count);
1315 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1316
fa9add64 1317 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1318 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1319
71e3aac0
AA
1320 ClearPageCompound(page);
1321 compound_unlock(page);
1322 spin_unlock_irq(&zone->lru_lock);
1323
1324 for (i = 1; i < HPAGE_PMD_NR; i++) {
1325 struct page *page_tail = page + i;
1326 BUG_ON(page_count(page_tail) <= 0);
1327 /*
1328 * Tail pages may be freed if there wasn't any mapping
1329 * like if add_to_swap() is running on a lru page that
1330 * had its mapping zapped. And freeing these pages
1331 * requires taking the lru_lock so we do the put_page
1332 * of the tail pages after the split is complete.
1333 */
1334 put_page(page_tail);
1335 }
1336
1337 /*
1338 * Only the head page (now become a regular page) is required
1339 * to be pinned by the caller.
1340 */
1341 BUG_ON(page_count(page) <= 0);
1342}
1343
1344static int __split_huge_page_map(struct page *page,
1345 struct vm_area_struct *vma,
1346 unsigned long address)
1347{
1348 struct mm_struct *mm = vma->vm_mm;
1349 pmd_t *pmd, _pmd;
1350 int ret = 0, i;
1351 pgtable_t pgtable;
1352 unsigned long haddr;
1353
1354 spin_lock(&mm->page_table_lock);
1355 pmd = page_check_address_pmd(page, mm, address,
1356 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1357 if (pmd) {
1358 pgtable = get_pmd_huge_pte(mm);
1359 pmd_populate(mm, &_pmd, pgtable);
1360
1361 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1362 i++, haddr += PAGE_SIZE) {
1363 pte_t *pte, entry;
1364 BUG_ON(PageCompound(page+i));
1365 entry = mk_pte(page + i, vma->vm_page_prot);
1366 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1367 if (!pmd_write(*pmd))
1368 entry = pte_wrprotect(entry);
1369 else
1370 BUG_ON(page_mapcount(page) != 1);
1371 if (!pmd_young(*pmd))
1372 entry = pte_mkold(entry);
1373 pte = pte_offset_map(&_pmd, haddr);
1374 BUG_ON(!pte_none(*pte));
1375 set_pte_at(mm, haddr, pte, entry);
1376 pte_unmap(pte);
1377 }
1378
71e3aac0
AA
1379 smp_wmb(); /* make pte visible before pmd */
1380 /*
1381 * Up to this point the pmd is present and huge and
1382 * userland has the whole access to the hugepage
1383 * during the split (which happens in place). If we
1384 * overwrite the pmd with the not-huge version
1385 * pointing to the pte here (which of course we could
1386 * if all CPUs were bug free), userland could trigger
1387 * a small page size TLB miss on the small sized TLB
1388 * while the hugepage TLB entry is still established
1389 * in the huge TLB. Some CPU doesn't like that. See
1390 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1391 * Erratum 383 on page 93. Intel should be safe but is
1392 * also warns that it's only safe if the permission
1393 * and cache attributes of the two entries loaded in
1394 * the two TLB is identical (which should be the case
1395 * here). But it is generally safer to never allow
1396 * small and huge TLB entries for the same virtual
1397 * address to be loaded simultaneously. So instead of
1398 * doing "pmd_populate(); flush_tlb_range();" we first
1399 * mark the current pmd notpresent (atomically because
1400 * here the pmd_trans_huge and pmd_trans_splitting
1401 * must remain set at all times on the pmd until the
1402 * split is complete for this pmd), then we flush the
1403 * SMP TLB and finally we write the non-huge version
1404 * of the pmd entry with pmd_populate.
1405 */
1406 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1407 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1408 pmd_populate(mm, pmd, pgtable);
1409 ret = 1;
1410 }
1411 spin_unlock(&mm->page_table_lock);
1412
1413 return ret;
1414}
1415
2b575eb6 1416/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1417static void __split_huge_page(struct page *page,
1418 struct anon_vma *anon_vma)
1419{
1420 int mapcount, mapcount2;
1421 struct anon_vma_chain *avc;
1422
1423 BUG_ON(!PageHead(page));
1424 BUG_ON(PageTail(page));
1425
1426 mapcount = 0;
1427 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1428 struct vm_area_struct *vma = avc->vma;
1429 unsigned long addr = vma_address(page, vma);
1430 BUG_ON(is_vma_temporary_stack(vma));
1431 if (addr == -EFAULT)
1432 continue;
1433 mapcount += __split_huge_page_splitting(page, vma, addr);
1434 }
05759d38
AA
1435 /*
1436 * It is critical that new vmas are added to the tail of the
1437 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1438 * and establishes a child pmd before
1439 * __split_huge_page_splitting() freezes the parent pmd (so if
1440 * we fail to prevent copy_huge_pmd() from running until the
1441 * whole __split_huge_page() is complete), we will still see
1442 * the newly established pmd of the child later during the
1443 * walk, to be able to set it as pmd_trans_splitting too.
1444 */
1445 if (mapcount != page_mapcount(page))
1446 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1447 mapcount, page_mapcount(page));
71e3aac0
AA
1448 BUG_ON(mapcount != page_mapcount(page));
1449
1450 __split_huge_page_refcount(page);
1451
1452 mapcount2 = 0;
1453 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1454 struct vm_area_struct *vma = avc->vma;
1455 unsigned long addr = vma_address(page, vma);
1456 BUG_ON(is_vma_temporary_stack(vma));
1457 if (addr == -EFAULT)
1458 continue;
1459 mapcount2 += __split_huge_page_map(page, vma, addr);
1460 }
05759d38
AA
1461 if (mapcount != mapcount2)
1462 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1463 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1464 BUG_ON(mapcount != mapcount2);
1465}
1466
1467int split_huge_page(struct page *page)
1468{
1469 struct anon_vma *anon_vma;
1470 int ret = 1;
1471
1472 BUG_ON(!PageAnon(page));
1473 anon_vma = page_lock_anon_vma(page);
1474 if (!anon_vma)
1475 goto out;
1476 ret = 0;
1477 if (!PageCompound(page))
1478 goto out_unlock;
1479
1480 BUG_ON(!PageSwapBacked(page));
1481 __split_huge_page(page, anon_vma);
81ab4201 1482 count_vm_event(THP_SPLIT);
71e3aac0
AA
1483
1484 BUG_ON(PageCompound(page));
1485out_unlock:
1486 page_unlock_anon_vma(anon_vma);
1487out:
1488 return ret;
1489}
1490
4b6e1e37 1491#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1492
60ab3244
AA
1493int hugepage_madvise(struct vm_area_struct *vma,
1494 unsigned long *vm_flags, int advice)
0af4e98b 1495{
a664b2d8
AA
1496 switch (advice) {
1497 case MADV_HUGEPAGE:
1498 /*
1499 * Be somewhat over-protective like KSM for now!
1500 */
78f11a25 1501 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1502 return -EINVAL;
1503 *vm_flags &= ~VM_NOHUGEPAGE;
1504 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1505 /*
1506 * If the vma become good for khugepaged to scan,
1507 * register it here without waiting a page fault that
1508 * may not happen any time soon.
1509 */
1510 if (unlikely(khugepaged_enter_vma_merge(vma)))
1511 return -ENOMEM;
a664b2d8
AA
1512 break;
1513 case MADV_NOHUGEPAGE:
1514 /*
1515 * Be somewhat over-protective like KSM for now!
1516 */
78f11a25 1517 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1518 return -EINVAL;
1519 *vm_flags &= ~VM_HUGEPAGE;
1520 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1521 /*
1522 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1523 * this vma even if we leave the mm registered in khugepaged if
1524 * it got registered before VM_NOHUGEPAGE was set.
1525 */
a664b2d8
AA
1526 break;
1527 }
0af4e98b
AA
1528
1529 return 0;
1530}
1531
ba76149f
AA
1532static int __init khugepaged_slab_init(void)
1533{
1534 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1535 sizeof(struct mm_slot),
1536 __alignof__(struct mm_slot), 0, NULL);
1537 if (!mm_slot_cache)
1538 return -ENOMEM;
1539
1540 return 0;
1541}
1542
1543static void __init khugepaged_slab_free(void)
1544{
1545 kmem_cache_destroy(mm_slot_cache);
1546 mm_slot_cache = NULL;
1547}
1548
1549static inline struct mm_slot *alloc_mm_slot(void)
1550{
1551 if (!mm_slot_cache) /* initialization failed */
1552 return NULL;
1553 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1554}
1555
1556static inline void free_mm_slot(struct mm_slot *mm_slot)
1557{
1558 kmem_cache_free(mm_slot_cache, mm_slot);
1559}
1560
1561static int __init mm_slots_hash_init(void)
1562{
1563 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1564 GFP_KERNEL);
1565 if (!mm_slots_hash)
1566 return -ENOMEM;
1567 return 0;
1568}
1569
1570#if 0
1571static void __init mm_slots_hash_free(void)
1572{
1573 kfree(mm_slots_hash);
1574 mm_slots_hash = NULL;
1575}
1576#endif
1577
1578static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1579{
1580 struct mm_slot *mm_slot;
1581 struct hlist_head *bucket;
1582 struct hlist_node *node;
1583
1584 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1585 % MM_SLOTS_HASH_HEADS];
1586 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1587 if (mm == mm_slot->mm)
1588 return mm_slot;
1589 }
1590 return NULL;
1591}
1592
1593static void insert_to_mm_slots_hash(struct mm_struct *mm,
1594 struct mm_slot *mm_slot)
1595{
1596 struct hlist_head *bucket;
1597
1598 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1599 % MM_SLOTS_HASH_HEADS];
1600 mm_slot->mm = mm;
1601 hlist_add_head(&mm_slot->hash, bucket);
1602}
1603
1604static inline int khugepaged_test_exit(struct mm_struct *mm)
1605{
1606 return atomic_read(&mm->mm_users) == 0;
1607}
1608
1609int __khugepaged_enter(struct mm_struct *mm)
1610{
1611 struct mm_slot *mm_slot;
1612 int wakeup;
1613
1614 mm_slot = alloc_mm_slot();
1615 if (!mm_slot)
1616 return -ENOMEM;
1617
1618 /* __khugepaged_exit() must not run from under us */
1619 VM_BUG_ON(khugepaged_test_exit(mm));
1620 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1621 free_mm_slot(mm_slot);
1622 return 0;
1623 }
1624
1625 spin_lock(&khugepaged_mm_lock);
1626 insert_to_mm_slots_hash(mm, mm_slot);
1627 /*
1628 * Insert just behind the scanning cursor, to let the area settle
1629 * down a little.
1630 */
1631 wakeup = list_empty(&khugepaged_scan.mm_head);
1632 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1633 spin_unlock(&khugepaged_mm_lock);
1634
1635 atomic_inc(&mm->mm_count);
1636 if (wakeup)
1637 wake_up_interruptible(&khugepaged_wait);
1638
1639 return 0;
1640}
1641
1642int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1643{
1644 unsigned long hstart, hend;
1645 if (!vma->anon_vma)
1646 /*
1647 * Not yet faulted in so we will register later in the
1648 * page fault if needed.
1649 */
1650 return 0;
78f11a25 1651 if (vma->vm_ops)
ba76149f
AA
1652 /* khugepaged not yet working on file or special mappings */
1653 return 0;
b3b9c293 1654 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1655 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1656 hend = vma->vm_end & HPAGE_PMD_MASK;
1657 if (hstart < hend)
1658 return khugepaged_enter(vma);
1659 return 0;
1660}
1661
1662void __khugepaged_exit(struct mm_struct *mm)
1663{
1664 struct mm_slot *mm_slot;
1665 int free = 0;
1666
1667 spin_lock(&khugepaged_mm_lock);
1668 mm_slot = get_mm_slot(mm);
1669 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1670 hlist_del(&mm_slot->hash);
1671 list_del(&mm_slot->mm_node);
1672 free = 1;
1673 }
d788e80a 1674 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1675
1676 if (free) {
ba76149f
AA
1677 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1678 free_mm_slot(mm_slot);
1679 mmdrop(mm);
1680 } else if (mm_slot) {
ba76149f
AA
1681 /*
1682 * This is required to serialize against
1683 * khugepaged_test_exit() (which is guaranteed to run
1684 * under mmap sem read mode). Stop here (after we
1685 * return all pagetables will be destroyed) until
1686 * khugepaged has finished working on the pagetables
1687 * under the mmap_sem.
1688 */
1689 down_write(&mm->mmap_sem);
1690 up_write(&mm->mmap_sem);
d788e80a 1691 }
ba76149f
AA
1692}
1693
1694static void release_pte_page(struct page *page)
1695{
1696 /* 0 stands for page_is_file_cache(page) == false */
1697 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698 unlock_page(page);
1699 putback_lru_page(page);
1700}
1701
1702static void release_pte_pages(pte_t *pte, pte_t *_pte)
1703{
1704 while (--_pte >= pte) {
1705 pte_t pteval = *_pte;
1706 if (!pte_none(pteval))
1707 release_pte_page(pte_page(pteval));
1708 }
1709}
1710
1711static void release_all_pte_pages(pte_t *pte)
1712{
1713 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1714}
1715
1716static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1717 unsigned long address,
1718 pte_t *pte)
1719{
1720 struct page *page;
1721 pte_t *_pte;
1722 int referenced = 0, isolated = 0, none = 0;
1723 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1724 _pte++, address += PAGE_SIZE) {
1725 pte_t pteval = *_pte;
1726 if (pte_none(pteval)) {
1727 if (++none <= khugepaged_max_ptes_none)
1728 continue;
1729 else {
1730 release_pte_pages(pte, _pte);
1731 goto out;
1732 }
1733 }
1734 if (!pte_present(pteval) || !pte_write(pteval)) {
1735 release_pte_pages(pte, _pte);
1736 goto out;
1737 }
1738 page = vm_normal_page(vma, address, pteval);
1739 if (unlikely(!page)) {
1740 release_pte_pages(pte, _pte);
1741 goto out;
1742 }
1743 VM_BUG_ON(PageCompound(page));
1744 BUG_ON(!PageAnon(page));
1745 VM_BUG_ON(!PageSwapBacked(page));
1746
1747 /* cannot use mapcount: can't collapse if there's a gup pin */
1748 if (page_count(page) != 1) {
1749 release_pte_pages(pte, _pte);
1750 goto out;
1751 }
1752 /*
1753 * We can do it before isolate_lru_page because the
1754 * page can't be freed from under us. NOTE: PG_lock
1755 * is needed to serialize against split_huge_page
1756 * when invoked from the VM.
1757 */
1758 if (!trylock_page(page)) {
1759 release_pte_pages(pte, _pte);
1760 goto out;
1761 }
1762 /*
1763 * Isolate the page to avoid collapsing an hugepage
1764 * currently in use by the VM.
1765 */
1766 if (isolate_lru_page(page)) {
1767 unlock_page(page);
1768 release_pte_pages(pte, _pte);
1769 goto out;
1770 }
1771 /* 0 stands for page_is_file_cache(page) == false */
1772 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1773 VM_BUG_ON(!PageLocked(page));
1774 VM_BUG_ON(PageLRU(page));
1775
1776 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1777 if (pte_young(pteval) || PageReferenced(page) ||
1778 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1779 referenced = 1;
1780 }
1781 if (unlikely(!referenced))
1782 release_all_pte_pages(pte);
1783 else
1784 isolated = 1;
1785out:
1786 return isolated;
1787}
1788
1789static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1790 struct vm_area_struct *vma,
1791 unsigned long address,
1792 spinlock_t *ptl)
1793{
1794 pte_t *_pte;
1795 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1796 pte_t pteval = *_pte;
1797 struct page *src_page;
1798
1799 if (pte_none(pteval)) {
1800 clear_user_highpage(page, address);
1801 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1802 } else {
1803 src_page = pte_page(pteval);
1804 copy_user_highpage(page, src_page, address, vma);
1805 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1806 release_pte_page(src_page);
1807 /*
1808 * ptl mostly unnecessary, but preempt has to
1809 * be disabled to update the per-cpu stats
1810 * inside page_remove_rmap().
1811 */
1812 spin_lock(ptl);
1813 /*
1814 * paravirt calls inside pte_clear here are
1815 * superfluous.
1816 */
1817 pte_clear(vma->vm_mm, address, _pte);
1818 page_remove_rmap(src_page);
1819 spin_unlock(ptl);
1820 free_page_and_swap_cache(src_page);
1821 }
1822
1823 address += PAGE_SIZE;
1824 page++;
1825 }
1826}
1827
1828static void collapse_huge_page(struct mm_struct *mm,
1829 unsigned long address,
ce83d217 1830 struct page **hpage,
5c4b4be3
AK
1831 struct vm_area_struct *vma,
1832 int node)
ba76149f 1833{
ba76149f
AA
1834 pgd_t *pgd;
1835 pud_t *pud;
1836 pmd_t *pmd, _pmd;
1837 pte_t *pte;
1838 pgtable_t pgtable;
1839 struct page *new_page;
1840 spinlock_t *ptl;
1841 int isolated;
1842 unsigned long hstart, hend;
1843
1844 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1845#ifndef CONFIG_NUMA
692e0b35 1846 up_read(&mm->mmap_sem);
ba76149f 1847 VM_BUG_ON(!*hpage);
ce83d217 1848 new_page = *hpage;
0bbbc0b3
AA
1849#else
1850 VM_BUG_ON(*hpage);
ce83d217
AA
1851 /*
1852 * Allocate the page while the vma is still valid and under
1853 * the mmap_sem read mode so there is no memory allocation
1854 * later when we take the mmap_sem in write mode. This is more
1855 * friendly behavior (OTOH it may actually hide bugs) to
1856 * filesystems in userland with daemons allocating memory in
1857 * the userland I/O paths. Allocating memory with the
1858 * mmap_sem in read mode is good idea also to allow greater
1859 * scalability.
1860 */
5c4b4be3 1861 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1862 node, __GFP_OTHER_NODE);
692e0b35
AA
1863
1864 /*
1865 * After allocating the hugepage, release the mmap_sem read lock in
1866 * preparation for taking it in write mode.
1867 */
1868 up_read(&mm->mmap_sem);
ce83d217 1869 if (unlikely(!new_page)) {
81ab4201 1870 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217
AA
1871 *hpage = ERR_PTR(-ENOMEM);
1872 return;
1873 }
65b3c07b 1874 count_vm_event(THP_COLLAPSE_ALLOC);
692e0b35
AA
1875#endif
1876
ce83d217 1877 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
692e0b35 1878#ifdef CONFIG_NUMA
ce83d217 1879 put_page(new_page);
692e0b35 1880#endif
ce83d217
AA
1881 return;
1882 }
ba76149f
AA
1883
1884 /*
1885 * Prevent all access to pagetables with the exception of
1886 * gup_fast later hanlded by the ptep_clear_flush and the VM
1887 * handled by the anon_vma lock + PG_lock.
1888 */
1889 down_write(&mm->mmap_sem);
1890 if (unlikely(khugepaged_test_exit(mm)))
1891 goto out;
1892
1893 vma = find_vma(mm, address);
1894 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1895 hend = vma->vm_end & HPAGE_PMD_MASK;
1896 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1897 goto out;
1898
60ab3244
AA
1899 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1900 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1901 goto out;
1902
78f11a25 1903 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1904 goto out;
a7d6e4ec
AA
1905 if (is_vma_temporary_stack(vma))
1906 goto out;
b3b9c293 1907 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1908
1909 pgd = pgd_offset(mm, address);
1910 if (!pgd_present(*pgd))
1911 goto out;
1912
1913 pud = pud_offset(pgd, address);
1914 if (!pud_present(*pud))
1915 goto out;
1916
1917 pmd = pmd_offset(pud, address);
1918 /* pmd can't go away or become huge under us */
1919 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1920 goto out;
1921
ba76149f
AA
1922 anon_vma_lock(vma->anon_vma);
1923
1924 pte = pte_offset_map(pmd, address);
1925 ptl = pte_lockptr(mm, pmd);
1926
1927 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1928 /*
1929 * After this gup_fast can't run anymore. This also removes
1930 * any huge TLB entry from the CPU so we won't allow
1931 * huge and small TLB entries for the same virtual address
1932 * to avoid the risk of CPU bugs in that area.
1933 */
1934 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1935 spin_unlock(&mm->page_table_lock);
1936
1937 spin_lock(ptl);
1938 isolated = __collapse_huge_page_isolate(vma, address, pte);
1939 spin_unlock(ptl);
ba76149f
AA
1940
1941 if (unlikely(!isolated)) {
453c7192 1942 pte_unmap(pte);
ba76149f
AA
1943 spin_lock(&mm->page_table_lock);
1944 BUG_ON(!pmd_none(*pmd));
1945 set_pmd_at(mm, address, pmd, _pmd);
1946 spin_unlock(&mm->page_table_lock);
1947 anon_vma_unlock(vma->anon_vma);
ce83d217 1948 goto out;
ba76149f
AA
1949 }
1950
1951 /*
1952 * All pages are isolated and locked so anon_vma rmap
1953 * can't run anymore.
1954 */
1955 anon_vma_unlock(vma->anon_vma);
1956
1957 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1958 pte_unmap(pte);
ba76149f
AA
1959 __SetPageUptodate(new_page);
1960 pgtable = pmd_pgtable(_pmd);
1961 VM_BUG_ON(page_count(pgtable) != 1);
1962 VM_BUG_ON(page_mapcount(pgtable) != 0);
1963
1964 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1965 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1966 _pmd = pmd_mkhuge(_pmd);
1967
1968 /*
1969 * spin_lock() below is not the equivalent of smp_wmb(), so
1970 * this is needed to avoid the copy_huge_page writes to become
1971 * visible after the set_pmd_at() write.
1972 */
1973 smp_wmb();
1974
1975 spin_lock(&mm->page_table_lock);
1976 BUG_ON(!pmd_none(*pmd));
1977 page_add_new_anon_rmap(new_page, vma, address);
1978 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 1979 update_mmu_cache(vma, address, _pmd);
ba76149f 1980 prepare_pmd_huge_pte(pgtable, mm);
ba76149f
AA
1981 spin_unlock(&mm->page_table_lock);
1982
0bbbc0b3 1983#ifndef CONFIG_NUMA
ba76149f 1984 *hpage = NULL;
0bbbc0b3 1985#endif
ba76149f 1986 khugepaged_pages_collapsed++;
ce83d217 1987out_up_write:
ba76149f 1988 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1989 return;
1990
ce83d217 1991out:
678ff896 1992 mem_cgroup_uncharge_page(new_page);
0bbbc0b3
AA
1993#ifdef CONFIG_NUMA
1994 put_page(new_page);
1995#endif
ce83d217 1996 goto out_up_write;
ba76149f
AA
1997}
1998
1999static int khugepaged_scan_pmd(struct mm_struct *mm,
2000 struct vm_area_struct *vma,
2001 unsigned long address,
2002 struct page **hpage)
2003{
2004 pgd_t *pgd;
2005 pud_t *pud;
2006 pmd_t *pmd;
2007 pte_t *pte, *_pte;
2008 int ret = 0, referenced = 0, none = 0;
2009 struct page *page;
2010 unsigned long _address;
2011 spinlock_t *ptl;
5c4b4be3 2012 int node = -1;
ba76149f
AA
2013
2014 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2015
2016 pgd = pgd_offset(mm, address);
2017 if (!pgd_present(*pgd))
2018 goto out;
2019
2020 pud = pud_offset(pgd, address);
2021 if (!pud_present(*pud))
2022 goto out;
2023
2024 pmd = pmd_offset(pud, address);
2025 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2026 goto out;
2027
2028 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2029 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2030 _pte++, _address += PAGE_SIZE) {
2031 pte_t pteval = *_pte;
2032 if (pte_none(pteval)) {
2033 if (++none <= khugepaged_max_ptes_none)
2034 continue;
2035 else
2036 goto out_unmap;
2037 }
2038 if (!pte_present(pteval) || !pte_write(pteval))
2039 goto out_unmap;
2040 page = vm_normal_page(vma, _address, pteval);
2041 if (unlikely(!page))
2042 goto out_unmap;
5c4b4be3
AK
2043 /*
2044 * Chose the node of the first page. This could
2045 * be more sophisticated and look at more pages,
2046 * but isn't for now.
2047 */
2048 if (node == -1)
2049 node = page_to_nid(page);
ba76149f
AA
2050 VM_BUG_ON(PageCompound(page));
2051 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2052 goto out_unmap;
2053 /* cannot use mapcount: can't collapse if there's a gup pin */
2054 if (page_count(page) != 1)
2055 goto out_unmap;
8ee53820
AA
2056 if (pte_young(pteval) || PageReferenced(page) ||
2057 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2058 referenced = 1;
2059 }
2060 if (referenced)
2061 ret = 1;
2062out_unmap:
2063 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2064 if (ret)
2065 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2066 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2067out:
2068 return ret;
2069}
2070
2071static void collect_mm_slot(struct mm_slot *mm_slot)
2072{
2073 struct mm_struct *mm = mm_slot->mm;
2074
b9980cdc 2075 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2076
2077 if (khugepaged_test_exit(mm)) {
2078 /* free mm_slot */
2079 hlist_del(&mm_slot->hash);
2080 list_del(&mm_slot->mm_node);
2081
2082 /*
2083 * Not strictly needed because the mm exited already.
2084 *
2085 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2086 */
2087
2088 /* khugepaged_mm_lock actually not necessary for the below */
2089 free_mm_slot(mm_slot);
2090 mmdrop(mm);
2091 }
2092}
2093
2094static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2095 struct page **hpage)
2f1da642
HS
2096 __releases(&khugepaged_mm_lock)
2097 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2098{
2099 struct mm_slot *mm_slot;
2100 struct mm_struct *mm;
2101 struct vm_area_struct *vma;
2102 int progress = 0;
2103
2104 VM_BUG_ON(!pages);
b9980cdc 2105 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2106
2107 if (khugepaged_scan.mm_slot)
2108 mm_slot = khugepaged_scan.mm_slot;
2109 else {
2110 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2111 struct mm_slot, mm_node);
2112 khugepaged_scan.address = 0;
2113 khugepaged_scan.mm_slot = mm_slot;
2114 }
2115 spin_unlock(&khugepaged_mm_lock);
2116
2117 mm = mm_slot->mm;
2118 down_read(&mm->mmap_sem);
2119 if (unlikely(khugepaged_test_exit(mm)))
2120 vma = NULL;
2121 else
2122 vma = find_vma(mm, khugepaged_scan.address);
2123
2124 progress++;
2125 for (; vma; vma = vma->vm_next) {
2126 unsigned long hstart, hend;
2127
2128 cond_resched();
2129 if (unlikely(khugepaged_test_exit(mm))) {
2130 progress++;
2131 break;
2132 }
2133
60ab3244
AA
2134 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2135 !khugepaged_always()) ||
2136 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2137 skip:
ba76149f
AA
2138 progress++;
2139 continue;
2140 }
78f11a25 2141 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2142 goto skip;
2143 if (is_vma_temporary_stack(vma))
2144 goto skip;
b3b9c293 2145 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2146
2147 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2148 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2149 if (hstart >= hend)
2150 goto skip;
2151 if (khugepaged_scan.address > hend)
2152 goto skip;
ba76149f
AA
2153 if (khugepaged_scan.address < hstart)
2154 khugepaged_scan.address = hstart;
a7d6e4ec 2155 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2156
2157 while (khugepaged_scan.address < hend) {
2158 int ret;
2159 cond_resched();
2160 if (unlikely(khugepaged_test_exit(mm)))
2161 goto breakouterloop;
2162
2163 VM_BUG_ON(khugepaged_scan.address < hstart ||
2164 khugepaged_scan.address + HPAGE_PMD_SIZE >
2165 hend);
2166 ret = khugepaged_scan_pmd(mm, vma,
2167 khugepaged_scan.address,
2168 hpage);
2169 /* move to next address */
2170 khugepaged_scan.address += HPAGE_PMD_SIZE;
2171 progress += HPAGE_PMD_NR;
2172 if (ret)
2173 /* we released mmap_sem so break loop */
2174 goto breakouterloop_mmap_sem;
2175 if (progress >= pages)
2176 goto breakouterloop;
2177 }
2178 }
2179breakouterloop:
2180 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2181breakouterloop_mmap_sem:
2182
2183 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2184 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2185 /*
2186 * Release the current mm_slot if this mm is about to die, or
2187 * if we scanned all vmas of this mm.
2188 */
2189 if (khugepaged_test_exit(mm) || !vma) {
2190 /*
2191 * Make sure that if mm_users is reaching zero while
2192 * khugepaged runs here, khugepaged_exit will find
2193 * mm_slot not pointing to the exiting mm.
2194 */
2195 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2196 khugepaged_scan.mm_slot = list_entry(
2197 mm_slot->mm_node.next,
2198 struct mm_slot, mm_node);
2199 khugepaged_scan.address = 0;
2200 } else {
2201 khugepaged_scan.mm_slot = NULL;
2202 khugepaged_full_scans++;
2203 }
2204
2205 collect_mm_slot(mm_slot);
2206 }
2207
2208 return progress;
2209}
2210
2211static int khugepaged_has_work(void)
2212{
2213 return !list_empty(&khugepaged_scan.mm_head) &&
2214 khugepaged_enabled();
2215}
2216
2217static int khugepaged_wait_event(void)
2218{
2219 return !list_empty(&khugepaged_scan.mm_head) ||
2220 !khugepaged_enabled();
2221}
2222
2223static void khugepaged_do_scan(struct page **hpage)
2224{
2225 unsigned int progress = 0, pass_through_head = 0;
2226 unsigned int pages = khugepaged_pages_to_scan;
2227
2228 barrier(); /* write khugepaged_pages_to_scan to local stack */
2229
2230 while (progress < pages) {
2231 cond_resched();
2232
0bbbc0b3 2233#ifndef CONFIG_NUMA
ba76149f
AA
2234 if (!*hpage) {
2235 *hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2236 if (unlikely(!*hpage)) {
2237 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ba76149f 2238 break;
81ab4201
AK
2239 }
2240 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f 2241 }
0bbbc0b3
AA
2242#else
2243 if (IS_ERR(*hpage))
2244 break;
2245#endif
ba76149f 2246
878aee7d
AA
2247 if (unlikely(kthread_should_stop() || freezing(current)))
2248 break;
2249
ba76149f
AA
2250 spin_lock(&khugepaged_mm_lock);
2251 if (!khugepaged_scan.mm_slot)
2252 pass_through_head++;
2253 if (khugepaged_has_work() &&
2254 pass_through_head < 2)
2255 progress += khugepaged_scan_mm_slot(pages - progress,
2256 hpage);
2257 else
2258 progress = pages;
2259 spin_unlock(&khugepaged_mm_lock);
2260 }
2261}
2262
0bbbc0b3
AA
2263static void khugepaged_alloc_sleep(void)
2264{
1dfb059b
AA
2265 wait_event_freezable_timeout(khugepaged_wait, false,
2266 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
0bbbc0b3
AA
2267}
2268
2269#ifndef CONFIG_NUMA
ba76149f
AA
2270static struct page *khugepaged_alloc_hugepage(void)
2271{
2272 struct page *hpage;
2273
2274 do {
2275 hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2276 if (!hpage) {
2277 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
0bbbc0b3 2278 khugepaged_alloc_sleep();
81ab4201
AK
2279 } else
2280 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f
AA
2281 } while (unlikely(!hpage) &&
2282 likely(khugepaged_enabled()));
2283 return hpage;
2284}
0bbbc0b3 2285#endif
ba76149f
AA
2286
2287static void khugepaged_loop(void)
2288{
2289 struct page *hpage;
2290
0bbbc0b3
AA
2291#ifdef CONFIG_NUMA
2292 hpage = NULL;
2293#endif
ba76149f 2294 while (likely(khugepaged_enabled())) {
0bbbc0b3 2295#ifndef CONFIG_NUMA
ba76149f 2296 hpage = khugepaged_alloc_hugepage();
f300ea49 2297 if (unlikely(!hpage))
ba76149f 2298 break;
0bbbc0b3
AA
2299#else
2300 if (IS_ERR(hpage)) {
2301 khugepaged_alloc_sleep();
2302 hpage = NULL;
2303 }
2304#endif
ba76149f
AA
2305
2306 khugepaged_do_scan(&hpage);
0bbbc0b3 2307#ifndef CONFIG_NUMA
ba76149f
AA
2308 if (hpage)
2309 put_page(hpage);
0bbbc0b3 2310#endif
878aee7d
AA
2311 try_to_freeze();
2312 if (unlikely(kthread_should_stop()))
2313 break;
ba76149f 2314 if (khugepaged_has_work()) {
ba76149f
AA
2315 if (!khugepaged_scan_sleep_millisecs)
2316 continue;
1dfb059b
AA
2317 wait_event_freezable_timeout(khugepaged_wait, false,
2318 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
ba76149f 2319 } else if (khugepaged_enabled())
878aee7d
AA
2320 wait_event_freezable(khugepaged_wait,
2321 khugepaged_wait_event());
ba76149f
AA
2322 }
2323}
2324
2325static int khugepaged(void *none)
2326{
2327 struct mm_slot *mm_slot;
2328
878aee7d 2329 set_freezable();
ba76149f
AA
2330 set_user_nice(current, 19);
2331
2332 /* serialize with start_khugepaged() */
2333 mutex_lock(&khugepaged_mutex);
2334
2335 for (;;) {
2336 mutex_unlock(&khugepaged_mutex);
a7d6e4ec 2337 VM_BUG_ON(khugepaged_thread != current);
ba76149f 2338 khugepaged_loop();
a7d6e4ec 2339 VM_BUG_ON(khugepaged_thread != current);
ba76149f
AA
2340
2341 mutex_lock(&khugepaged_mutex);
2342 if (!khugepaged_enabled())
2343 break;
878aee7d
AA
2344 if (unlikely(kthread_should_stop()))
2345 break;
ba76149f
AA
2346 }
2347
2348 spin_lock(&khugepaged_mm_lock);
2349 mm_slot = khugepaged_scan.mm_slot;
2350 khugepaged_scan.mm_slot = NULL;
2351 if (mm_slot)
2352 collect_mm_slot(mm_slot);
2353 spin_unlock(&khugepaged_mm_lock);
2354
2355 khugepaged_thread = NULL;
2356 mutex_unlock(&khugepaged_mutex);
2357
2358 return 0;
2359}
2360
71e3aac0
AA
2361void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2362{
2363 struct page *page;
2364
2365 spin_lock(&mm->page_table_lock);
2366 if (unlikely(!pmd_trans_huge(*pmd))) {
2367 spin_unlock(&mm->page_table_lock);
2368 return;
2369 }
2370 page = pmd_page(*pmd);
2371 VM_BUG_ON(!page_count(page));
2372 get_page(page);
2373 spin_unlock(&mm->page_table_lock);
2374
2375 split_huge_page(page);
2376
2377 put_page(page);
2378 BUG_ON(pmd_trans_huge(*pmd));
2379}
94fcc585
AA
2380
2381static void split_huge_page_address(struct mm_struct *mm,
2382 unsigned long address)
2383{
2384 pgd_t *pgd;
2385 pud_t *pud;
2386 pmd_t *pmd;
2387
2388 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2389
2390 pgd = pgd_offset(mm, address);
2391 if (!pgd_present(*pgd))
2392 return;
2393
2394 pud = pud_offset(pgd, address);
2395 if (!pud_present(*pud))
2396 return;
2397
2398 pmd = pmd_offset(pud, address);
2399 if (!pmd_present(*pmd))
2400 return;
2401 /*
2402 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2403 * materialize from under us.
2404 */
2405 split_huge_page_pmd(mm, pmd);
2406}
2407
2408void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2409 unsigned long start,
2410 unsigned long end,
2411 long adjust_next)
2412{
2413 /*
2414 * If the new start address isn't hpage aligned and it could
2415 * previously contain an hugepage: check if we need to split
2416 * an huge pmd.
2417 */
2418 if (start & ~HPAGE_PMD_MASK &&
2419 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2420 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2421 split_huge_page_address(vma->vm_mm, start);
2422
2423 /*
2424 * If the new end address isn't hpage aligned and it could
2425 * previously contain an hugepage: check if we need to split
2426 * an huge pmd.
2427 */
2428 if (end & ~HPAGE_PMD_MASK &&
2429 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2430 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2431 split_huge_page_address(vma->vm_mm, end);
2432
2433 /*
2434 * If we're also updating the vma->vm_next->vm_start, if the new
2435 * vm_next->vm_start isn't page aligned and it could previously
2436 * contain an hugepage: check if we need to split an huge pmd.
2437 */
2438 if (adjust_next > 0) {
2439 struct vm_area_struct *next = vma->vm_next;
2440 unsigned long nstart = next->vm_start;
2441 nstart += adjust_next << PAGE_SHIFT;
2442 if (nstart & ~HPAGE_PMD_MASK &&
2443 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2444 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2445 split_huge_page_address(next->vm_mm, nstart);
2446 }
2447}
This page took 0.241566 seconds and 5 git commands to generate.