tools/testing/nvdimm: fix SIGTERM vs hotplug crash
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
e231875b 628 unsigned long nr = 0;
ef8f2327
MG
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
e231875b
JZ
639 }
640 return nr;
889976db 641}
bb2a0de9 642
c0ff4b85 643static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 644 unsigned int lru_mask)
6d12e2d8 645{
e231875b 646 unsigned long nr = 0;
889976db 647 int nid;
6d12e2d8 648
31aaea4a 649 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
d52aa412
KH
652}
653
f53d7ce3
JW
654static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
7a159cc9
JW
656{
657 unsigned long val, next;
658
13114716 659 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 660 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 661 /* from time_after() in jiffies.h */
f53d7ce3
JW
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
bb4cc1a8
AM
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
f53d7ce3
JW
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
7a159cc9 678 }
f53d7ce3 679 return false;
d2265e6f
KH
680}
681
682/*
683 * Check events in order.
684 *
685 */
c0ff4b85 686static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
687{
688 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 691 bool do_softlimit;
82b3f2a7 692 bool do_numainfo __maybe_unused;
f53d7ce3 693
bb4cc1a8
AM
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
696#if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699#endif
c0ff4b85 700 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
453a9bf3 703#if MAX_NUMNODES > 1
f53d7ce3 704 if (unlikely(do_numainfo))
c0ff4b85 705 atomic_inc(&memcg->numainfo_events);
453a9bf3 706#endif
0a31bc97 707 }
d2265e6f
KH
708}
709
cf475ad2 710struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 711{
31a78f23
BS
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
073219e9 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 721}
33398cf2 722EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 723
df381975 724static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 725{
c0ff4b85 726 struct mem_cgroup *memcg = NULL;
0b7f569e 727
54595fe2
KH
728 rcu_read_lock();
729 do {
6f6acb00
MH
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
df381975 736 memcg = root_mem_cgroup;
6f6acb00
MH
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
ec903c0c 742 } while (!css_tryget_online(&memcg->css));
54595fe2 743 rcu_read_unlock();
c0ff4b85 744 return memcg;
54595fe2
KH
745}
746
5660048c
JW
747/**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
694fbc0f 764struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 765 struct mem_cgroup *prev,
694fbc0f 766 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 767{
33398cf2 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 769 struct cgroup_subsys_state *css = NULL;
9f3a0d09 770 struct mem_cgroup *memcg = NULL;
5ac8fb31 771 struct mem_cgroup *pos = NULL;
711d3d2c 772
694fbc0f
AM
773 if (mem_cgroup_disabled())
774 return NULL;
5660048c 775
9f3a0d09
JW
776 if (!root)
777 root = root_mem_cgroup;
7d74b06f 778
9f3a0d09 779 if (prev && !reclaim)
5ac8fb31 780 pos = prev;
14067bb3 781
9f3a0d09
JW
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
5ac8fb31 784 goto out;
694fbc0f 785 return root;
9f3a0d09 786 }
14067bb3 787
542f85f9 788 rcu_read_lock();
5f578161 789
5ac8fb31 790 if (reclaim) {
ef8f2327 791 struct mem_cgroup_per_node *mz;
5ac8fb31 792
ef8f2327 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
6df38689 799 while (1) {
4db0c3c2 800 pos = READ_ONCE(iter->position);
6df38689
VD
801 if (!pos || css_tryget(&pos->css))
802 break;
5ac8fb31 803 /*
6df38689
VD
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
5ac8fb31
JW
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
527a5ec9 830 }
7d74b06f 831
5ac8fb31
JW
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
14067bb3 838
5ac8fb31
JW
839 if (css == &root->css)
840 break;
14067bb3 841
0b8f73e1
JW
842 if (css_tryget(css))
843 break;
9f3a0d09 844
5ac8fb31 845 memcg = NULL;
9f3a0d09 846 }
5ac8fb31
JW
847
848 if (reclaim) {
5ac8fb31 849 /*
6df38689
VD
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 853 */
6df38689
VD
854 (void)cmpxchg(&iter->position, pos, memcg);
855
5ac8fb31
JW
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
9f3a0d09 863 }
5ac8fb31 864
542f85f9
MH
865out_unlock:
866 rcu_read_unlock();
5ac8fb31 867out:
c40046f3
MH
868 if (prev && prev != root)
869 css_put(&prev->css);
870
9f3a0d09 871 return memcg;
14067bb3 872}
7d74b06f 873
5660048c
JW
874/**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
9f3a0d09
JW
881{
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886}
7d74b06f 887
6df38689
VD
888static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889{
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
892 struct mem_cgroup_per_node *mz;
893 int nid;
6df38689
VD
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
ef8f2327
MG
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
6df38689
VD
903 }
904 }
905 }
906}
907
9f3a0d09
JW
908/*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 915 iter != NULL; \
527a5ec9 916 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 917
9f3a0d09 918#define for_each_mem_cgroup(iter) \
527a5ec9 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 920 iter != NULL; \
527a5ec9 921 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 922
925b7673 923/**
dfe0e773 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 925 * @page: the page
fa9add64 926 * @zone: zone of the page
dfe0e773
JW
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 931 */
599d0c95 932struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 933{
ef8f2327 934 struct mem_cgroup_per_node *mz;
925b7673 935 struct mem_cgroup *memcg;
bea8c150 936 struct lruvec *lruvec;
6d12e2d8 937
bea8c150 938 if (mem_cgroup_disabled()) {
599d0c95 939 lruvec = &pgdat->lruvec;
bea8c150
HD
940 goto out;
941 }
925b7673 942
1306a85a 943 memcg = page->mem_cgroup;
7512102c 944 /*
dfe0e773 945 * Swapcache readahead pages are added to the LRU - and
29833315 946 * possibly migrated - before they are charged.
7512102c 947 */
29833315
JW
948 if (!memcg)
949 memcg = root_mem_cgroup;
7512102c 950
ef8f2327 951 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
952 lruvec = &mz->lruvec;
953out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
599d0c95
MG
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
bea8c150 961 return lruvec;
08e552c6 962}
b69408e8 963
925b7673 964/**
fa9add64
HD
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
925b7673 969 *
ca707239
HD
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 973 */
fa9add64 974void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
7ee36a14 975 int nr_pages)
3f58a829 976{
ef8f2327 977 struct mem_cgroup_per_node *mz;
fa9add64 978 unsigned long *lru_size;
ca707239
HD
979 long size;
980 bool empty;
3f58a829
MK
981
982 if (mem_cgroup_disabled())
983 return;
984
ef8f2327 985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
fa9add64 986 lru_size = mz->lru_size + lru;
ca707239
HD
987 empty = list_empty(lruvec->lists + lru);
988
989 if (nr_pages < 0)
990 *lru_size += nr_pages;
991
992 size = *lru_size;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 VM_BUG_ON(1);
997 *lru_size = 0;
998 }
999
1000 if (nr_pages > 0)
1001 *lru_size += nr_pages;
08e552c6 1002}
544122e5 1003
2314b42d 1004bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1005{
2314b42d 1006 struct mem_cgroup *task_memcg;
158e0a2d 1007 struct task_struct *p;
ffbdccf5 1008 bool ret;
4c4a2214 1009
158e0a2d 1010 p = find_lock_task_mm(task);
de077d22 1011 if (p) {
2314b42d 1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1013 task_unlock(p);
1014 } else {
1015 /*
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1019 */
ffbdccf5 1020 rcu_read_lock();
2314b42d
JW
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
ffbdccf5 1023 rcu_read_unlock();
de077d22 1024 }
2314b42d
JW
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
4c4a2214
DR
1027 return ret;
1028}
1029
19942822 1030/**
9d11ea9f 1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1032 * @memcg: the memory cgroup
19942822 1033 *
9d11ea9f 1034 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1035 * pages.
19942822 1036 */
c0ff4b85 1037static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1038{
3e32cb2e
JW
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
9d11ea9f 1042
3e32cb2e 1043 count = page_counter_read(&memcg->memory);
4db0c3c2 1044 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1045 if (count < limit)
1046 margin = limit - count;
1047
7941d214 1048 if (do_memsw_account()) {
3e32cb2e 1049 count = page_counter_read(&memcg->memsw);
4db0c3c2 1050 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1051 if (count <= limit)
1052 margin = min(margin, limit - count);
cbedbac3
LR
1053 else
1054 margin = 0;
3e32cb2e
JW
1055 }
1056
1057 return margin;
19942822
JW
1058}
1059
32047e2a 1060/*
bdcbb659 1061 * A routine for checking "mem" is under move_account() or not.
32047e2a 1062 *
bdcbb659
QH
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1065 * caused by "move".
32047e2a 1066 */
c0ff4b85 1067static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1068{
2bd9bb20
KH
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
4b534334 1071 bool ret = false;
2bd9bb20
KH
1072 /*
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 */
1076 spin_lock(&mc.lock);
1077 from = mc.from;
1078 to = mc.to;
1079 if (!from)
1080 goto unlock;
3e92041d 1081
2314b42d
JW
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1084unlock:
1085 spin_unlock(&mc.lock);
4b534334
KH
1086 return ret;
1087}
1088
c0ff4b85 1089static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1090{
1091 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1092 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1093 DEFINE_WAIT(wait);
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1096 if (mc.moving_task)
1097 schedule();
1098 finish_wait(&mc.waitq, &wait);
1099 return true;
1100 }
1101 }
1102 return false;
1103}
1104
58cf188e 1105#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1106/**
58cf188e 1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1110 *
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112 * enabled
1113 */
1114void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115{
58cf188e
SZ
1116 struct mem_cgroup *iter;
1117 unsigned int i;
e222432b 1118
e222432b
BS
1119 rcu_read_lock();
1120
2415b9f5
BV
1121 if (p) {
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1125 } else {
1126 pr_info("Memory limit reached of cgroup ");
1127 }
1128
e61734c5 1129 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1130 pr_cont("\n");
e222432b 1131
e222432b
BS
1132 rcu_read_unlock();
1133
3e32cb2e
JW
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1143
1144 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1147 pr_cont(":");
1148
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1151 continue;
484ebb3b 1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1153 K(mem_cgroup_read_stat(iter, i)));
1154 }
1155
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159
1160 pr_cont("\n");
1161 }
e222432b
BS
1162}
1163
81d39c20
KH
1164/*
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1167 */
c0ff4b85 1168static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1169{
1170 int num = 0;
7d74b06f
KH
1171 struct mem_cgroup *iter;
1172
c0ff4b85 1173 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1174 num++;
81d39c20
KH
1175 return num;
1176}
1177
a63d83f4
DR
1178/*
1179 * Return the memory (and swap, if configured) limit for a memcg.
1180 */
3e32cb2e 1181static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1182{
3e32cb2e 1183 unsigned long limit;
f3e8eb70 1184
3e32cb2e 1185 limit = memcg->memory.limit;
9a5a8f19 1186 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1187 unsigned long memsw_limit;
37e84351 1188 unsigned long swap_limit;
9a5a8f19 1189
3e32cb2e 1190 memsw_limit = memcg->memsw.limit;
37e84351
VD
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1194 }
9a5a8f19 1195 return limit;
a63d83f4
DR
1196}
1197
b6e6edcf 1198static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1199 int order)
9cbb78bb 1200{
6e0fc46d
DR
1201 struct oom_control oc = {
1202 .zonelist = NULL,
1203 .nodemask = NULL,
2a966b77 1204 .memcg = memcg,
6e0fc46d
DR
1205 .gfp_mask = gfp_mask,
1206 .order = order,
6e0fc46d 1207 };
9cbb78bb
DR
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1213
dc56401f
JW
1214 mutex_lock(&oom_lock);
1215
876aafbf 1216 /*
465adcf1
DR
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
876aafbf 1220 */
1af8bb43 1221 if (task_will_free_mem(current)) {
16e95196 1222 mark_oom_victim(current);
1af8bb43 1223 wake_oom_reaper(current);
dc56401f 1224 goto unlock;
876aafbf
DR
1225 }
1226
2a966b77 1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
3e32cb2e 1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1229 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1230 struct css_task_iter it;
9cbb78bb
DR
1231 struct task_struct *task;
1232
72ec7029
TH
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
fbe84a09 1235 switch (oom_scan_process_thread(&oc, task)) {
9cbb78bb
DR
1236 case OOM_SCAN_SELECT:
1237 if (chosen)
1238 put_task_struct(chosen);
1239 chosen = task;
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1242 /* fall through */
1243 case OOM_SCAN_CONTINUE:
1244 continue;
1245 case OOM_SCAN_ABORT:
72ec7029 1246 css_task_iter_end(&it);
9cbb78bb
DR
1247 mem_cgroup_iter_break(memcg, iter);
1248 if (chosen)
1249 put_task_struct(chosen);
1ebab2db
TH
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
dc56401f 1252 goto unlock;
9cbb78bb
DR
1253 case OOM_SCAN_OK:
1254 break;
1255 };
1256 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1257 if (!points || points < chosen_points)
1258 continue;
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1262 continue;
1263
1264 if (chosen)
1265 put_task_struct(chosen);
1266 chosen = task;
1267 chosen_points = points;
1268 get_task_struct(chosen);
9cbb78bb 1269 }
72ec7029 1270 css_task_iter_end(&it);
9cbb78bb
DR
1271 }
1272
dc56401f
JW
1273 if (chosen) {
1274 points = chosen_points * 1000 / totalpages;
2a966b77 1275 oom_kill_process(&oc, chosen, points, totalpages,
6e0fc46d 1276 "Memory cgroup out of memory");
dc56401f
JW
1277 }
1278unlock:
1279 mutex_unlock(&oom_lock);
b6e6edcf 1280 return chosen;
9cbb78bb
DR
1281}
1282
ae6e71d3
MC
1283#if MAX_NUMNODES > 1
1284
4d0c066d
KH
1285/**
1286 * test_mem_cgroup_node_reclaimable
dad7557e 1287 * @memcg: the target memcg
4d0c066d
KH
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1290 *
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1294 */
c0ff4b85 1295static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1296 int nid, bool noswap)
1297{
c0ff4b85 1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1299 return true;
1300 if (noswap || !total_swap_pages)
1301 return false;
c0ff4b85 1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1303 return true;
1304 return false;
1305
1306}
889976db
YH
1307
1308/*
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312 *
1313 */
c0ff4b85 1314static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1315{
1316 int nid;
453a9bf3
KH
1317 /*
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1320 */
c0ff4b85 1321 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1322 return;
c0ff4b85 1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1324 return;
1325
889976db 1326 /* make a nodemask where this memcg uses memory from */
31aaea4a 1327 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1328
31aaea4a 1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1330
c0ff4b85
R
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
889976db 1333 }
453a9bf3 1334
c0ff4b85
R
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1337}
1338
1339/*
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1343 *
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1348 *
1349 * Now, we use round-robin. Better algorithm is welcomed.
1350 */
c0ff4b85 1351int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 int node;
1354
c0ff4b85
R
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
889976db 1357
0edaf86c 1358 node = next_node_in(node, memcg->scan_nodes);
889976db 1359 /*
fda3d69b
MH
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
889976db
YH
1363 */
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1366
c0ff4b85 1367 memcg->last_scanned_node = node;
889976db
YH
1368 return node;
1369}
889976db 1370#else
c0ff4b85 1371int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1372{
1373 return 0;
1374}
1375#endif
1376
0608f43d 1377static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1378 pg_data_t *pgdat,
0608f43d
AM
1379 gfp_t gfp_mask,
1380 unsigned long *total_scanned)
1381{
1382 struct mem_cgroup *victim = NULL;
1383 int total = 0;
1384 int loop = 0;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1388 .pgdat = pgdat,
0608f43d
AM
1389 .priority = 0,
1390 };
1391
3e32cb2e 1392 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1393
1394 while (1) {
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 if (!victim) {
1397 loop++;
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!total)
1405 break;
1406 /*
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1411 */
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 break;
1415 }
1416 continue;
1417 }
a9dd0a83 1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1419 pgdat, &nr_scanned);
0608f43d 1420 *total_scanned += nr_scanned;
3e32cb2e 1421 if (!soft_limit_excess(root_memcg))
0608f43d 1422 break;
6d61ef40 1423 }
0608f43d
AM
1424 mem_cgroup_iter_break(root_memcg, victim);
1425 return total;
6d61ef40
BS
1426}
1427
0056f4e6
JW
1428#ifdef CONFIG_LOCKDEP
1429static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1431};
1432#endif
1433
fb2a6fc5
JW
1434static DEFINE_SPINLOCK(memcg_oom_lock);
1435
867578cb
KH
1436/*
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1439 */
fb2a6fc5 1440static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1441{
79dfdacc 1442 struct mem_cgroup *iter, *failed = NULL;
a636b327 1443
fb2a6fc5
JW
1444 spin_lock(&memcg_oom_lock);
1445
9f3a0d09 1446 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1447 if (iter->oom_lock) {
79dfdacc
MH
1448 /*
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1451 */
79dfdacc 1452 failed = iter;
9f3a0d09
JW
1453 mem_cgroup_iter_break(memcg, iter);
1454 break;
23751be0
JW
1455 } else
1456 iter->oom_lock = true;
7d74b06f 1457 }
867578cb 1458
fb2a6fc5
JW
1459 if (failed) {
1460 /*
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1463 */
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1467 break;
1468 }
1469 iter->oom_lock = false;
79dfdacc 1470 }
0056f4e6
JW
1471 } else
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1473
1474 spin_unlock(&memcg_oom_lock);
1475
1476 return !failed;
a636b327 1477}
0b7f569e 1478
fb2a6fc5 1479static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1480{
7d74b06f
KH
1481 struct mem_cgroup *iter;
1482
fb2a6fc5 1483 spin_lock(&memcg_oom_lock);
0056f4e6 1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1485 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1486 iter->oom_lock = false;
fb2a6fc5 1487 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1488}
1489
c0ff4b85 1490static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1491{
1492 struct mem_cgroup *iter;
1493
c2b42d3c 1494 spin_lock(&memcg_oom_lock);
c0ff4b85 1495 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1496 iter->under_oom++;
1497 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1498}
1499
c0ff4b85 1500static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1501{
1502 struct mem_cgroup *iter;
1503
867578cb
KH
1504 /*
1505 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1507 */
c2b42d3c 1508 spin_lock(&memcg_oom_lock);
c0ff4b85 1509 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1510 if (iter->under_oom > 0)
1511 iter->under_oom--;
1512 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1513}
1514
867578cb
KH
1515static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516
dc98df5a 1517struct oom_wait_info {
d79154bb 1518 struct mem_cgroup *memcg;
dc98df5a
KH
1519 wait_queue_t wait;
1520};
1521
1522static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1524{
d79154bb
HD
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1527 struct oom_wait_info *oom_wait_info;
1528
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1530 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1531
2314b42d
JW
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1534 return 0;
dc98df5a
KH
1535 return autoremove_wake_function(wait, mode, sync, arg);
1536}
1537
c0ff4b85 1538static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1539{
c2b42d3c
TH
1540 /*
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1547 */
1548 if (memcg && memcg->under_oom)
f4b90b70 1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1550}
1551
3812c8c8 1552static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1553{
d0db7afa 1554 if (!current->memcg_may_oom)
3812c8c8 1555 return;
867578cb 1556 /*
49426420
JW
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1560 *
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1564 *
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
867578cb 1569 */
49426420 1570 css_get(&memcg->css);
626ebc41
TH
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
3812c8c8
JW
1574}
1575
1576/**
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1578 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1579 *
49426420
JW
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
3812c8c8 1582 *
49426420 1583 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1588 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1589 *
1590 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1591 * completed, %false otherwise.
3812c8c8 1592 */
49426420 1593bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1594{
626ebc41 1595 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1596 struct oom_wait_info owait;
49426420 1597 bool locked;
3812c8c8
JW
1598
1599 /* OOM is global, do not handle */
3812c8c8 1600 if (!memcg)
49426420 1601 return false;
3812c8c8 1602
c32b3cbe 1603 if (!handle || oom_killer_disabled)
49426420 1604 goto cleanup;
3812c8c8
JW
1605
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1611
3812c8c8 1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1613 mem_cgroup_mark_under_oom(memcg);
1614
1615 locked = mem_cgroup_oom_trylock(memcg);
1616
1617 if (locked)
1618 mem_cgroup_oom_notify(memcg);
1619
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
49426420 1625 } else {
3812c8c8 1626 schedule();
49426420
JW
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630
1631 if (locked) {
fb2a6fc5
JW
1632 mem_cgroup_oom_unlock(memcg);
1633 /*
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1637 */
1638 memcg_oom_recover(memcg);
1639 }
49426420 1640cleanup:
626ebc41 1641 current->memcg_in_oom = NULL;
3812c8c8 1642 css_put(&memcg->css);
867578cb 1643 return true;
0b7f569e
KH
1644}
1645
d7365e78 1646/**
81f8c3a4
JW
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1648 * @page: the page
32047e2a 1649 *
81f8c3a4
JW
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1652 */
62cccb8c 1653void lock_page_memcg(struct page *page)
89c06bd5
KH
1654{
1655 struct mem_cgroup *memcg;
6de22619 1656 unsigned long flags;
89c06bd5 1657
6de22619
JW
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
6de22619 1662 */
d7365e78
JW
1663 rcu_read_lock();
1664
1665 if (mem_cgroup_disabled())
62cccb8c 1666 return;
89c06bd5 1667again:
1306a85a 1668 memcg = page->mem_cgroup;
29833315 1669 if (unlikely(!memcg))
62cccb8c 1670 return;
d7365e78 1671
bdcbb659 1672 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1673 return;
89c06bd5 1674
6de22619 1675 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1676 if (memcg != page->mem_cgroup) {
6de22619 1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1678 goto again;
1679 }
6de22619
JW
1680
1681 /*
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1684 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1685 */
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
d7365e78 1688
62cccb8c 1689 return;
89c06bd5 1690}
81f8c3a4 1691EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1692
d7365e78 1693/**
81f8c3a4 1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1695 * @page: the page
d7365e78 1696 */
62cccb8c 1697void unlock_page_memcg(struct page *page)
89c06bd5 1698{
62cccb8c
JW
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1700
6de22619
JW
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1703
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1706
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 }
89c06bd5 1709
d7365e78 1710 rcu_read_unlock();
89c06bd5 1711}
81f8c3a4 1712EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1713
cdec2e42
KH
1714/*
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1717 */
7ec99d62 1718#define CHARGE_BATCH 32U
cdec2e42
KH
1719struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1721 unsigned int nr_pages;
cdec2e42 1722 struct work_struct work;
26fe6168 1723 unsigned long flags;
a0db00fc 1724#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1725};
1726static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1727static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1728
a0956d54
SS
1729/**
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1733 *
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1737 *
1738 * returns true if successful, false otherwise.
cdec2e42 1739 */
a0956d54 1740static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1741{
1742 struct memcg_stock_pcp *stock;
3e32cb2e 1743 bool ret = false;
cdec2e42 1744
a0956d54 1745 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1746 return ret;
a0956d54 1747
cdec2e42 1748 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1749 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1750 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1751 ret = true;
1752 }
cdec2e42
KH
1753 put_cpu_var(memcg_stock);
1754 return ret;
1755}
1756
1757/*
3e32cb2e 1758 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1759 */
1760static void drain_stock(struct memcg_stock_pcp *stock)
1761{
1762 struct mem_cgroup *old = stock->cached;
1763
11c9ea4e 1764 if (stock->nr_pages) {
3e32cb2e 1765 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1766 if (do_memsw_account())
3e32cb2e 1767 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1768 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1769 stock->nr_pages = 0;
cdec2e42
KH
1770 }
1771 stock->cached = NULL;
cdec2e42
KH
1772}
1773
1774/*
1775 * This must be called under preempt disabled or must be called by
1776 * a thread which is pinned to local cpu.
1777 */
1778static void drain_local_stock(struct work_struct *dummy)
1779{
7c8e0181 1780 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1781 drain_stock(stock);
26fe6168 1782 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1783}
1784
1785/*
3e32cb2e 1786 * Cache charges(val) to local per_cpu area.
320cc51d 1787 * This will be consumed by consume_stock() function, later.
cdec2e42 1788 */
c0ff4b85 1789static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1790{
1791 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1792
c0ff4b85 1793 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1794 drain_stock(stock);
c0ff4b85 1795 stock->cached = memcg;
cdec2e42 1796 }
11c9ea4e 1797 stock->nr_pages += nr_pages;
cdec2e42
KH
1798 put_cpu_var(memcg_stock);
1799}
1800
1801/*
c0ff4b85 1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1803 * of the hierarchy under it.
cdec2e42 1804 */
6d3d6aa2 1805static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1806{
26fe6168 1807 int cpu, curcpu;
d38144b7 1808
6d3d6aa2
JW
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex))
1811 return;
cdec2e42 1812 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1813 get_online_cpus();
5af12d0e 1814 curcpu = get_cpu();
cdec2e42
KH
1815 for_each_online_cpu(cpu) {
1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1817 struct mem_cgroup *memcg;
26fe6168 1818
c0ff4b85
R
1819 memcg = stock->cached;
1820 if (!memcg || !stock->nr_pages)
26fe6168 1821 continue;
2314b42d 1822 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1823 continue;
d1a05b69
MH
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 if (cpu == curcpu)
1826 drain_local_stock(&stock->work);
1827 else
1828 schedule_work_on(cpu, &stock->work);
1829 }
cdec2e42 1830 }
5af12d0e 1831 put_cpu();
f894ffa8 1832 put_online_cpus();
9f50fad6 1833 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1834}
1835
0db0628d 1836static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1837 unsigned long action,
1838 void *hcpu)
1839{
1840 int cpu = (unsigned long)hcpu;
1841 struct memcg_stock_pcp *stock;
1842
619d094b 1843 if (action == CPU_ONLINE)
1489ebad 1844 return NOTIFY_OK;
1489ebad 1845
d833049b 1846 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1847 return NOTIFY_OK;
711d3d2c 1848
cdec2e42
KH
1849 stock = &per_cpu(memcg_stock, cpu);
1850 drain_stock(stock);
1851 return NOTIFY_OK;
1852}
1853
f7e1cb6e
JW
1854static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857{
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1872}
1873
b23afb93
TH
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1881 struct mem_cgroup *memcg;
b23afb93
TH
1882
1883 if (likely(!nr_pages))
1884 return;
1885
f7e1cb6e
JW
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890}
1891
00501b53
JW
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
8a9f3ccd 1894{
7ec99d62 1895 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1897 struct mem_cgroup *mem_over_limit;
3e32cb2e 1898 struct page_counter *counter;
6539cc05 1899 unsigned long nr_reclaimed;
b70a2a21
JW
1900 bool may_swap = true;
1901 bool drained = false;
a636b327 1902
ce00a967 1903 if (mem_cgroup_is_root(memcg))
10d53c74 1904 return 0;
6539cc05 1905retry:
b6b6cc72 1906 if (consume_stock(memcg, nr_pages))
10d53c74 1907 return 0;
8a9f3ccd 1908
7941d214 1909 if (!do_memsw_account() ||
6071ca52
JW
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1912 goto done_restock;
7941d214 1913 if (do_memsw_account())
3e32cb2e
JW
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1916 } else {
3e32cb2e 1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1918 may_swap = false;
3fbe7244 1919 }
7a81b88c 1920
6539cc05
JW
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
6d61ef40 1925
06b078fc
JW
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
10d53c74 1935 goto force;
06b078fc
JW
1936
1937 if (unlikely(task_in_memcg_oom(current)))
1938 goto nomem;
1939
d0164adc 1940 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1941 goto nomem;
4b534334 1942
241994ed
JW
1943 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1944
b70a2a21
JW
1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 gfp_mask, may_swap);
6539cc05 1947
61e02c74 1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1949 goto retry;
28c34c29 1950
b70a2a21 1951 if (!drained) {
6d3d6aa2 1952 drain_all_stock(mem_over_limit);
b70a2a21
JW
1953 drained = true;
1954 goto retry;
1955 }
1956
28c34c29
JW
1957 if (gfp_mask & __GFP_NORETRY)
1958 goto nomem;
6539cc05
JW
1959 /*
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1963 *
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1967 */
61e02c74 1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1969 goto retry;
1970 /*
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1973 */
1974 if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 goto retry;
1976
9b130619
JW
1977 if (nr_retries--)
1978 goto retry;
1979
06b078fc 1980 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1981 goto force;
06b078fc 1982
6539cc05 1983 if (fatal_signal_pending(current))
10d53c74 1984 goto force;
6539cc05 1985
241994ed
JW
1986 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1987
3608de07
JM
1988 mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1990nomem:
6d1fdc48 1991 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1992 return -ENOMEM;
10d53c74
TH
1993force:
1994 /*
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1998 */
1999 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2000 if (do_memsw_account())
10d53c74
TH
2001 page_counter_charge(&memcg->memsw, nr_pages);
2002 css_get_many(&memcg->css, nr_pages);
2003
2004 return 0;
6539cc05
JW
2005
2006done_restock:
e8ea14cc 2007 css_get_many(&memcg->css, batch);
6539cc05
JW
2008 if (batch > nr_pages)
2009 refill_stock(memcg, batch - nr_pages);
b23afb93 2010
241994ed 2011 /*
b23afb93
TH
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2019 */
2020 do {
b23afb93 2021 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg->high_work);
2025 break;
2026 }
9516a18a 2027 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2028 set_notify_resume(current);
2029 break;
2030 }
241994ed 2031 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2032
2033 return 0;
7a81b88c 2034}
8a9f3ccd 2035
00501b53 2036static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2037{
ce00a967
JW
2038 if (mem_cgroup_is_root(memcg))
2039 return;
2040
3e32cb2e 2041 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2042 if (do_memsw_account())
3e32cb2e 2043 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2044
e8ea14cc 2045 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2046}
2047
0a31bc97
JW
2048static void lock_page_lru(struct page *page, int *isolated)
2049{
2050 struct zone *zone = page_zone(page);
2051
a52633d8 2052 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2053 if (PageLRU(page)) {
2054 struct lruvec *lruvec;
2055
599d0c95 2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2057 ClearPageLRU(page);
2058 del_page_from_lru_list(page, lruvec, page_lru(page));
2059 *isolated = 1;
2060 } else
2061 *isolated = 0;
2062}
2063
2064static void unlock_page_lru(struct page *page, int isolated)
2065{
2066 struct zone *zone = page_zone(page);
2067
2068 if (isolated) {
2069 struct lruvec *lruvec;
2070
599d0c95 2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2072 VM_BUG_ON_PAGE(PageLRU(page), page);
2073 SetPageLRU(page);
2074 add_page_to_lru_list(page, lruvec, page_lru(page));
2075 }
a52633d8 2076 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2077}
2078
00501b53 2079static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2080 bool lrucare)
7a81b88c 2081{
0a31bc97 2082 int isolated;
9ce70c02 2083
1306a85a 2084 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2085
2086 /*
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2089 */
0a31bc97
JW
2090 if (lrucare)
2091 lock_page_lru(page, &isolated);
9ce70c02 2092
0a31bc97
JW
2093 /*
2094 * Nobody should be changing or seriously looking at
1306a85a 2095 * page->mem_cgroup at this point:
0a31bc97
JW
2096 *
2097 * - the page is uncharged
2098 *
2099 * - the page is off-LRU
2100 *
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2103 *
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2106 */
1306a85a 2107 page->mem_cgroup = memcg;
9ce70c02 2108
0a31bc97
JW
2109 if (lrucare)
2110 unlock_page_lru(page, isolated);
7a81b88c 2111}
66e1707b 2112
127424c8 2113#ifndef CONFIG_SLOB
f3bb3043 2114static int memcg_alloc_cache_id(void)
55007d84 2115{
f3bb3043
VD
2116 int id, size;
2117 int err;
2118
dbcf73e2 2119 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 if (id < 0)
2122 return id;
55007d84 2123
dbcf73e2 2124 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2125 return id;
2126
2127 /*
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2130 */
05257a1a 2131 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2132
2133 size = 2 * (id + 1);
55007d84
GC
2134 if (size < MEMCG_CACHES_MIN_SIZE)
2135 size = MEMCG_CACHES_MIN_SIZE;
2136 else if (size > MEMCG_CACHES_MAX_SIZE)
2137 size = MEMCG_CACHES_MAX_SIZE;
2138
f3bb3043 2139 err = memcg_update_all_caches(size);
60d3fd32
VD
2140 if (!err)
2141 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2142 if (!err)
2143 memcg_nr_cache_ids = size;
2144
2145 up_write(&memcg_cache_ids_sem);
2146
f3bb3043 2147 if (err) {
dbcf73e2 2148 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2149 return err;
2150 }
2151 return id;
2152}
2153
2154static void memcg_free_cache_id(int id)
2155{
dbcf73e2 2156 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2157}
2158
d5b3cf71 2159struct memcg_kmem_cache_create_work {
5722d094
VD
2160 struct mem_cgroup *memcg;
2161 struct kmem_cache *cachep;
2162 struct work_struct work;
2163};
2164
d5b3cf71 2165static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2166{
d5b3cf71
VD
2167 struct memcg_kmem_cache_create_work *cw =
2168 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2169 struct mem_cgroup *memcg = cw->memcg;
2170 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2171
d5b3cf71 2172 memcg_create_kmem_cache(memcg, cachep);
bd673145 2173
5722d094 2174 css_put(&memcg->css);
d7f25f8a
GC
2175 kfree(cw);
2176}
2177
2178/*
2179 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2180 */
d5b3cf71
VD
2181static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 struct kmem_cache *cachep)
d7f25f8a 2183{
d5b3cf71 2184 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2185
776ed0f0 2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2187 if (!cw)
d7f25f8a 2188 return;
8135be5a
VD
2189
2190 css_get(&memcg->css);
d7f25f8a
GC
2191
2192 cw->memcg = memcg;
2193 cw->cachep = cachep;
d5b3cf71 2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2195
d7f25f8a
GC
2196 schedule_work(&cw->work);
2197}
2198
d5b3cf71
VD
2199static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 struct kmem_cache *cachep)
0e9d92f2
GC
2201{
2202 /*
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2205 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2206 *
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2212 */
6f185c29 2213 current->memcg_kmem_skip_account = 1;
d5b3cf71 2214 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2215 current->memcg_kmem_skip_account = 0;
0e9d92f2 2216}
c67a8a68 2217
45264778
VD
2218static inline bool memcg_kmem_bypass(void)
2219{
2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 return true;
2222 return false;
2223}
2224
2225/**
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2228 *
d7f25f8a
GC
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2231 *
45264778
VD
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
d7f25f8a 2235 *
45264778
VD
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2239 * reference.
d7f25f8a 2240 */
45264778 2241struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2242{
2243 struct mem_cgroup *memcg;
959c8963 2244 struct kmem_cache *memcg_cachep;
2a4db7eb 2245 int kmemcg_id;
d7f25f8a 2246
f7ce3190 2247 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2248
45264778 2249 if (memcg_kmem_bypass())
230e9fc2
VD
2250 return cachep;
2251
9d100c5e 2252 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2253 return cachep;
2254
8135be5a 2255 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2257 if (kmemcg_id < 0)
ca0dde97 2258 goto out;
d7f25f8a 2259
2a4db7eb 2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2261 if (likely(memcg_cachep))
2262 return memcg_cachep;
ca0dde97
LZ
2263
2264 /*
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2269 *
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2274 * defer everything.
ca0dde97 2275 */
d5b3cf71 2276 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2277out:
8135be5a 2278 css_put(&memcg->css);
ca0dde97 2279 return cachep;
d7f25f8a 2280}
d7f25f8a 2281
45264778
VD
2282/**
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2285 */
2286void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2287{
2288 if (!is_root_cache(cachep))
f7ce3190 2289 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2290}
2291
45264778
VD
2292/**
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 struct mem_cgroup *memcg)
7ae1e1d0 2303{
f3ccb2c4
VD
2304 unsigned int nr_pages = 1 << order;
2305 struct page_counter *counter;
7ae1e1d0
GC
2306 int ret;
2307
f3ccb2c4 2308 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2309 if (ret)
f3ccb2c4 2310 return ret;
52c29b04
JW
2311
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 cancel_charge(memcg, nr_pages);
2315 return -ENOMEM;
7ae1e1d0
GC
2316 }
2317
f3ccb2c4 2318 page->mem_cgroup = memcg;
7ae1e1d0 2319
f3ccb2c4 2320 return 0;
7ae1e1d0
GC
2321}
2322
45264778
VD
2323/**
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 *
2329 * Returns 0 on success, an error code on failure.
2330 */
2331int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2332{
f3ccb2c4 2333 struct mem_cgroup *memcg;
fcff7d7e 2334 int ret = 0;
7ae1e1d0 2335
45264778
VD
2336 if (memcg_kmem_bypass())
2337 return 0;
2338
f3ccb2c4 2339 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2340 if (!mem_cgroup_is_root(memcg))
45264778 2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2342 css_put(&memcg->css);
d05e83a6 2343 return ret;
7ae1e1d0 2344}
45264778
VD
2345/**
2346 * memcg_kmem_uncharge: uncharge a kmem page
2347 * @page: page to uncharge
2348 * @order: allocation order
2349 */
2350void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2351{
1306a85a 2352 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2353 unsigned int nr_pages = 1 << order;
7ae1e1d0 2354
7ae1e1d0
GC
2355 if (!memcg)
2356 return;
2357
309381fe 2358 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2359
52c29b04
JW
2360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2361 page_counter_uncharge(&memcg->kmem, nr_pages);
2362
f3ccb2c4 2363 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2364 if (do_memsw_account())
f3ccb2c4 2365 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2366
1306a85a 2367 page->mem_cgroup = NULL;
f3ccb2c4 2368 css_put_many(&memcg->css, nr_pages);
60d3fd32 2369}
127424c8 2370#endif /* !CONFIG_SLOB */
7ae1e1d0 2371
ca3e0214
KH
2372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2373
ca3e0214
KH
2374/*
2375 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2376 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2377 */
e94c8a9c 2378void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2379{
e94c8a9c 2380 int i;
ca3e0214 2381
3d37c4a9
KH
2382 if (mem_cgroup_disabled())
2383 return;
b070e65c 2384
29833315 2385 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2386 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2387
1306a85a 2388 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2389 HPAGE_PMD_NR);
ca3e0214 2390}
12d27107 2391#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2392
c255a458 2393#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2394static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2395 bool charge)
d13d1443 2396{
0a31bc97
JW
2397 int val = (charge) ? 1 : -1;
2398 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2399}
02491447
DN
2400
2401/**
2402 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2403 * @entry: swap entry to be moved
2404 * @from: mem_cgroup which the entry is moved from
2405 * @to: mem_cgroup which the entry is moved to
2406 *
2407 * It succeeds only when the swap_cgroup's record for this entry is the same
2408 * as the mem_cgroup's id of @from.
2409 *
2410 * Returns 0 on success, -EINVAL on failure.
2411 *
3e32cb2e 2412 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2413 * both res and memsw, and called css_get().
2414 */
2415static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2416 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2417{
2418 unsigned short old_id, new_id;
2419
34c00c31
LZ
2420 old_id = mem_cgroup_id(from);
2421 new_id = mem_cgroup_id(to);
02491447
DN
2422
2423 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2424 mem_cgroup_swap_statistics(from, false);
483c30b5 2425 mem_cgroup_swap_statistics(to, true);
02491447
DN
2426 return 0;
2427 }
2428 return -EINVAL;
2429}
2430#else
2431static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2432 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2433{
2434 return -EINVAL;
2435}
8c7c6e34 2436#endif
d13d1443 2437
3e32cb2e 2438static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2439
d38d2a75 2440static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2441 unsigned long limit)
628f4235 2442{
3e32cb2e
JW
2443 unsigned long curusage;
2444 unsigned long oldusage;
2445 bool enlarge = false;
81d39c20 2446 int retry_count;
3e32cb2e 2447 int ret;
81d39c20
KH
2448
2449 /*
2450 * For keeping hierarchical_reclaim simple, how long we should retry
2451 * is depends on callers. We set our retry-count to be function
2452 * of # of children which we should visit in this loop.
2453 */
3e32cb2e
JW
2454 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2455 mem_cgroup_count_children(memcg);
81d39c20 2456
3e32cb2e 2457 oldusage = page_counter_read(&memcg->memory);
628f4235 2458
3e32cb2e 2459 do {
628f4235
KH
2460 if (signal_pending(current)) {
2461 ret = -EINTR;
2462 break;
2463 }
3e32cb2e
JW
2464
2465 mutex_lock(&memcg_limit_mutex);
2466 if (limit > memcg->memsw.limit) {
2467 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2468 ret = -EINVAL;
628f4235
KH
2469 break;
2470 }
3e32cb2e
JW
2471 if (limit > memcg->memory.limit)
2472 enlarge = true;
2473 ret = page_counter_limit(&memcg->memory, limit);
2474 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2475
2476 if (!ret)
2477 break;
2478
b70a2a21
JW
2479 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2480
3e32cb2e 2481 curusage = page_counter_read(&memcg->memory);
81d39c20 2482 /* Usage is reduced ? */
f894ffa8 2483 if (curusage >= oldusage)
81d39c20
KH
2484 retry_count--;
2485 else
2486 oldusage = curusage;
3e32cb2e
JW
2487 } while (retry_count);
2488
3c11ecf4
KH
2489 if (!ret && enlarge)
2490 memcg_oom_recover(memcg);
14797e23 2491
8c7c6e34
KH
2492 return ret;
2493}
2494
338c8431 2495static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2496 unsigned long limit)
8c7c6e34 2497{
3e32cb2e
JW
2498 unsigned long curusage;
2499 unsigned long oldusage;
2500 bool enlarge = false;
81d39c20 2501 int retry_count;
3e32cb2e 2502 int ret;
8c7c6e34 2503
81d39c20 2504 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2505 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2506 mem_cgroup_count_children(memcg);
2507
2508 oldusage = page_counter_read(&memcg->memsw);
2509
2510 do {
8c7c6e34
KH
2511 if (signal_pending(current)) {
2512 ret = -EINTR;
2513 break;
2514 }
3e32cb2e
JW
2515
2516 mutex_lock(&memcg_limit_mutex);
2517 if (limit < memcg->memory.limit) {
2518 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2519 ret = -EINVAL;
8c7c6e34
KH
2520 break;
2521 }
3e32cb2e
JW
2522 if (limit > memcg->memsw.limit)
2523 enlarge = true;
2524 ret = page_counter_limit(&memcg->memsw, limit);
2525 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2526
2527 if (!ret)
2528 break;
2529
b70a2a21
JW
2530 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2531
3e32cb2e 2532 curusage = page_counter_read(&memcg->memsw);
81d39c20 2533 /* Usage is reduced ? */
8c7c6e34 2534 if (curusage >= oldusage)
628f4235 2535 retry_count--;
81d39c20
KH
2536 else
2537 oldusage = curusage;
3e32cb2e
JW
2538 } while (retry_count);
2539
3c11ecf4
KH
2540 if (!ret && enlarge)
2541 memcg_oom_recover(memcg);
3e32cb2e 2542
628f4235
KH
2543 return ret;
2544}
2545
ef8f2327 2546unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2547 gfp_t gfp_mask,
2548 unsigned long *total_scanned)
2549{
2550 unsigned long nr_reclaimed = 0;
ef8f2327 2551 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2552 unsigned long reclaimed;
2553 int loop = 0;
ef8f2327 2554 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2555 unsigned long excess;
0608f43d
AM
2556 unsigned long nr_scanned;
2557
2558 if (order > 0)
2559 return 0;
2560
ef8f2327 2561 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2562
2563 /*
2564 * Do not even bother to check the largest node if the root
2565 * is empty. Do it lockless to prevent lock bouncing. Races
2566 * are acceptable as soft limit is best effort anyway.
2567 */
2568 if (RB_EMPTY_ROOT(&mctz->rb_root))
2569 return 0;
2570
0608f43d
AM
2571 /*
2572 * This loop can run a while, specially if mem_cgroup's continuously
2573 * keep exceeding their soft limit and putting the system under
2574 * pressure
2575 */
2576 do {
2577 if (next_mz)
2578 mz = next_mz;
2579 else
2580 mz = mem_cgroup_largest_soft_limit_node(mctz);
2581 if (!mz)
2582 break;
2583
2584 nr_scanned = 0;
ef8f2327 2585 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2586 gfp_mask, &nr_scanned);
2587 nr_reclaimed += reclaimed;
2588 *total_scanned += nr_scanned;
0a31bc97 2589 spin_lock_irq(&mctz->lock);
bc2f2e7f 2590 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2591
2592 /*
2593 * If we failed to reclaim anything from this memory cgroup
2594 * it is time to move on to the next cgroup
2595 */
2596 next_mz = NULL;
bc2f2e7f
VD
2597 if (!reclaimed)
2598 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2599
3e32cb2e 2600 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2601 /*
2602 * One school of thought says that we should not add
2603 * back the node to the tree if reclaim returns 0.
2604 * But our reclaim could return 0, simply because due
2605 * to priority we are exposing a smaller subset of
2606 * memory to reclaim from. Consider this as a longer
2607 * term TODO.
2608 */
2609 /* If excess == 0, no tree ops */
cf2c8127 2610 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2611 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2612 css_put(&mz->memcg->css);
2613 loop++;
2614 /*
2615 * Could not reclaim anything and there are no more
2616 * mem cgroups to try or we seem to be looping without
2617 * reclaiming anything.
2618 */
2619 if (!nr_reclaimed &&
2620 (next_mz == NULL ||
2621 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2622 break;
2623 } while (!nr_reclaimed);
2624 if (next_mz)
2625 css_put(&next_mz->memcg->css);
2626 return nr_reclaimed;
2627}
2628
ea280e7b
TH
2629/*
2630 * Test whether @memcg has children, dead or alive. Note that this
2631 * function doesn't care whether @memcg has use_hierarchy enabled and
2632 * returns %true if there are child csses according to the cgroup
2633 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2634 */
b5f99b53
GC
2635static inline bool memcg_has_children(struct mem_cgroup *memcg)
2636{
ea280e7b
TH
2637 bool ret;
2638
ea280e7b
TH
2639 rcu_read_lock();
2640 ret = css_next_child(NULL, &memcg->css);
2641 rcu_read_unlock();
2642 return ret;
b5f99b53
GC
2643}
2644
c26251f9 2645/*
51038171 2646 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2647 *
2648 * Caller is responsible for holding css reference for memcg.
2649 */
2650static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2651{
2652 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2653
c1e862c1
KH
2654 /* we call try-to-free pages for make this cgroup empty */
2655 lru_add_drain_all();
f817ed48 2656 /* try to free all pages in this cgroup */
3e32cb2e 2657 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2658 int progress;
c1e862c1 2659
c26251f9
MH
2660 if (signal_pending(current))
2661 return -EINTR;
2662
b70a2a21
JW
2663 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2664 GFP_KERNEL, true);
c1e862c1 2665 if (!progress) {
f817ed48 2666 nr_retries--;
c1e862c1 2667 /* maybe some writeback is necessary */
8aa7e847 2668 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2669 }
f817ed48
KH
2670
2671 }
ab5196c2
MH
2672
2673 return 0;
cc847582
KH
2674}
2675
6770c64e
TH
2676static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2677 char *buf, size_t nbytes,
2678 loff_t off)
c1e862c1 2679{
6770c64e 2680 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2681
d8423011
MH
2682 if (mem_cgroup_is_root(memcg))
2683 return -EINVAL;
6770c64e 2684 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2685}
2686
182446d0
TH
2687static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2688 struct cftype *cft)
18f59ea7 2689{
182446d0 2690 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2691}
2692
182446d0
TH
2693static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2694 struct cftype *cft, u64 val)
18f59ea7
BS
2695{
2696 int retval = 0;
182446d0 2697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2698 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2699
567fb435 2700 if (memcg->use_hierarchy == val)
0b8f73e1 2701 return 0;
567fb435 2702
18f59ea7 2703 /*
af901ca1 2704 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2705 * in the child subtrees. If it is unset, then the change can
2706 * occur, provided the current cgroup has no children.
2707 *
2708 * For the root cgroup, parent_mem is NULL, we allow value to be
2709 * set if there are no children.
2710 */
c0ff4b85 2711 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2712 (val == 1 || val == 0)) {
ea280e7b 2713 if (!memcg_has_children(memcg))
c0ff4b85 2714 memcg->use_hierarchy = val;
18f59ea7
BS
2715 else
2716 retval = -EBUSY;
2717 } else
2718 retval = -EINVAL;
567fb435 2719
18f59ea7
BS
2720 return retval;
2721}
2722
72b54e73 2723static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2724{
2725 struct mem_cgroup *iter;
72b54e73 2726 int i;
ce00a967 2727
72b54e73 2728 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2729
72b54e73
VD
2730 for_each_mem_cgroup_tree(iter, memcg) {
2731 for (i = 0; i < MEMCG_NR_STAT; i++)
2732 stat[i] += mem_cgroup_read_stat(iter, i);
2733 }
ce00a967
JW
2734}
2735
72b54e73 2736static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2737{
2738 struct mem_cgroup *iter;
72b54e73 2739 int i;
587d9f72 2740
72b54e73 2741 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2742
72b54e73
VD
2743 for_each_mem_cgroup_tree(iter, memcg) {
2744 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2745 events[i] += mem_cgroup_read_events(iter, i);
2746 }
587d9f72
JW
2747}
2748
6f646156 2749static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2750{
72b54e73 2751 unsigned long val = 0;
ce00a967 2752
3e32cb2e 2753 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2754 struct mem_cgroup *iter;
2755
2756 for_each_mem_cgroup_tree(iter, memcg) {
2757 val += mem_cgroup_read_stat(iter,
2758 MEM_CGROUP_STAT_CACHE);
2759 val += mem_cgroup_read_stat(iter,
2760 MEM_CGROUP_STAT_RSS);
2761 if (swap)
2762 val += mem_cgroup_read_stat(iter,
2763 MEM_CGROUP_STAT_SWAP);
2764 }
3e32cb2e 2765 } else {
ce00a967 2766 if (!swap)
3e32cb2e 2767 val = page_counter_read(&memcg->memory);
ce00a967 2768 else
3e32cb2e 2769 val = page_counter_read(&memcg->memsw);
ce00a967 2770 }
c12176d3 2771 return val;
ce00a967
JW
2772}
2773
3e32cb2e
JW
2774enum {
2775 RES_USAGE,
2776 RES_LIMIT,
2777 RES_MAX_USAGE,
2778 RES_FAILCNT,
2779 RES_SOFT_LIMIT,
2780};
ce00a967 2781
791badbd 2782static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2783 struct cftype *cft)
8cdea7c0 2784{
182446d0 2785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2786 struct page_counter *counter;
af36f906 2787
3e32cb2e 2788 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2789 case _MEM:
3e32cb2e
JW
2790 counter = &memcg->memory;
2791 break;
8c7c6e34 2792 case _MEMSWAP:
3e32cb2e
JW
2793 counter = &memcg->memsw;
2794 break;
510fc4e1 2795 case _KMEM:
3e32cb2e 2796 counter = &memcg->kmem;
510fc4e1 2797 break;
d55f90bf 2798 case _TCP:
0db15298 2799 counter = &memcg->tcpmem;
d55f90bf 2800 break;
8c7c6e34
KH
2801 default:
2802 BUG();
8c7c6e34 2803 }
3e32cb2e
JW
2804
2805 switch (MEMFILE_ATTR(cft->private)) {
2806 case RES_USAGE:
2807 if (counter == &memcg->memory)
c12176d3 2808 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2809 if (counter == &memcg->memsw)
c12176d3 2810 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2811 return (u64)page_counter_read(counter) * PAGE_SIZE;
2812 case RES_LIMIT:
2813 return (u64)counter->limit * PAGE_SIZE;
2814 case RES_MAX_USAGE:
2815 return (u64)counter->watermark * PAGE_SIZE;
2816 case RES_FAILCNT:
2817 return counter->failcnt;
2818 case RES_SOFT_LIMIT:
2819 return (u64)memcg->soft_limit * PAGE_SIZE;
2820 default:
2821 BUG();
2822 }
8cdea7c0 2823}
510fc4e1 2824
127424c8 2825#ifndef CONFIG_SLOB
567e9ab2 2826static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2827{
d6441637
VD
2828 int memcg_id;
2829
b313aeee
VD
2830 if (cgroup_memory_nokmem)
2831 return 0;
2832
2a4db7eb 2833 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2834 BUG_ON(memcg->kmem_state);
d6441637 2835
f3bb3043 2836 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2837 if (memcg_id < 0)
2838 return memcg_id;
d6441637 2839
ef12947c 2840 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2841 /*
567e9ab2 2842 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2843 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2844 * guarantee no one starts accounting before all call sites are
2845 * patched.
2846 */
900a38f0 2847 memcg->kmemcg_id = memcg_id;
567e9ab2 2848 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2849
2850 return 0;
d6441637
VD
2851}
2852
8e0a8912
JW
2853static void memcg_offline_kmem(struct mem_cgroup *memcg)
2854{
2855 struct cgroup_subsys_state *css;
2856 struct mem_cgroup *parent, *child;
2857 int kmemcg_id;
2858
2859 if (memcg->kmem_state != KMEM_ONLINE)
2860 return;
2861 /*
2862 * Clear the online state before clearing memcg_caches array
2863 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 * guarantees that no cache will be created for this cgroup
2865 * after we are done (see memcg_create_kmem_cache()).
2866 */
2867 memcg->kmem_state = KMEM_ALLOCATED;
2868
2869 memcg_deactivate_kmem_caches(memcg);
2870
2871 kmemcg_id = memcg->kmemcg_id;
2872 BUG_ON(kmemcg_id < 0);
2873
2874 parent = parent_mem_cgroup(memcg);
2875 if (!parent)
2876 parent = root_mem_cgroup;
2877
2878 /*
2879 * Change kmemcg_id of this cgroup and all its descendants to the
2880 * parent's id, and then move all entries from this cgroup's list_lrus
2881 * to ones of the parent. After we have finished, all list_lrus
2882 * corresponding to this cgroup are guaranteed to remain empty. The
2883 * ordering is imposed by list_lru_node->lock taken by
2884 * memcg_drain_all_list_lrus().
2885 */
3a06bb78 2886 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2887 css_for_each_descendant_pre(css, &memcg->css) {
2888 child = mem_cgroup_from_css(css);
2889 BUG_ON(child->kmemcg_id != kmemcg_id);
2890 child->kmemcg_id = parent->kmemcg_id;
2891 if (!memcg->use_hierarchy)
2892 break;
2893 }
3a06bb78
TH
2894 rcu_read_unlock();
2895
8e0a8912
JW
2896 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2897
2898 memcg_free_cache_id(kmemcg_id);
2899}
2900
2901static void memcg_free_kmem(struct mem_cgroup *memcg)
2902{
0b8f73e1
JW
2903 /* css_alloc() failed, offlining didn't happen */
2904 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2905 memcg_offline_kmem(memcg);
2906
8e0a8912
JW
2907 if (memcg->kmem_state == KMEM_ALLOCATED) {
2908 memcg_destroy_kmem_caches(memcg);
2909 static_branch_dec(&memcg_kmem_enabled_key);
2910 WARN_ON(page_counter_read(&memcg->kmem));
2911 }
8e0a8912 2912}
d6441637 2913#else
0b8f73e1 2914static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2915{
2916 return 0;
2917}
2918static void memcg_offline_kmem(struct mem_cgroup *memcg)
2919{
2920}
2921static void memcg_free_kmem(struct mem_cgroup *memcg)
2922{
2923}
2924#endif /* !CONFIG_SLOB */
2925
d6441637 2926static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2927 unsigned long limit)
d6441637 2928{
b313aeee 2929 int ret;
127424c8
JW
2930
2931 mutex_lock(&memcg_limit_mutex);
127424c8 2932 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2933 mutex_unlock(&memcg_limit_mutex);
2934 return ret;
d6441637 2935}
510fc4e1 2936
d55f90bf
VD
2937static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2938{
2939 int ret;
2940
2941 mutex_lock(&memcg_limit_mutex);
2942
0db15298 2943 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2944 if (ret)
2945 goto out;
2946
0db15298 2947 if (!memcg->tcpmem_active) {
d55f90bf
VD
2948 /*
2949 * The active flag needs to be written after the static_key
2950 * update. This is what guarantees that the socket activation
2951 * function is the last one to run. See sock_update_memcg() for
2952 * details, and note that we don't mark any socket as belonging
2953 * to this memcg until that flag is up.
2954 *
2955 * We need to do this, because static_keys will span multiple
2956 * sites, but we can't control their order. If we mark a socket
2957 * as accounted, but the accounting functions are not patched in
2958 * yet, we'll lose accounting.
2959 *
2960 * We never race with the readers in sock_update_memcg(),
2961 * because when this value change, the code to process it is not
2962 * patched in yet.
2963 */
2964 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2965 memcg->tcpmem_active = true;
d55f90bf
VD
2966 }
2967out:
2968 mutex_unlock(&memcg_limit_mutex);
2969 return ret;
2970}
d55f90bf 2971
628f4235
KH
2972/*
2973 * The user of this function is...
2974 * RES_LIMIT.
2975 */
451af504
TH
2976static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2977 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2978{
451af504 2979 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2980 unsigned long nr_pages;
628f4235
KH
2981 int ret;
2982
451af504 2983 buf = strstrip(buf);
650c5e56 2984 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2985 if (ret)
2986 return ret;
af36f906 2987
3e32cb2e 2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2989 case RES_LIMIT:
4b3bde4c
BS
2990 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2991 ret = -EINVAL;
2992 break;
2993 }
3e32cb2e
JW
2994 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 case _MEM:
2996 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2997 break;
3e32cb2e
JW
2998 case _MEMSWAP:
2999 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3000 break;
3e32cb2e
JW
3001 case _KMEM:
3002 ret = memcg_update_kmem_limit(memcg, nr_pages);
3003 break;
d55f90bf
VD
3004 case _TCP:
3005 ret = memcg_update_tcp_limit(memcg, nr_pages);
3006 break;
3e32cb2e 3007 }
296c81d8 3008 break;
3e32cb2e
JW
3009 case RES_SOFT_LIMIT:
3010 memcg->soft_limit = nr_pages;
3011 ret = 0;
628f4235
KH
3012 break;
3013 }
451af504 3014 return ret ?: nbytes;
8cdea7c0
BS
3015}
3016
6770c64e
TH
3017static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3018 size_t nbytes, loff_t off)
c84872e1 3019{
6770c64e 3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3021 struct page_counter *counter;
c84872e1 3022
3e32cb2e
JW
3023 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3024 case _MEM:
3025 counter = &memcg->memory;
3026 break;
3027 case _MEMSWAP:
3028 counter = &memcg->memsw;
3029 break;
3030 case _KMEM:
3031 counter = &memcg->kmem;
3032 break;
d55f90bf 3033 case _TCP:
0db15298 3034 counter = &memcg->tcpmem;
d55f90bf 3035 break;
3e32cb2e
JW
3036 default:
3037 BUG();
3038 }
af36f906 3039
3e32cb2e 3040 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3041 case RES_MAX_USAGE:
3e32cb2e 3042 page_counter_reset_watermark(counter);
29f2a4da
PE
3043 break;
3044 case RES_FAILCNT:
3e32cb2e 3045 counter->failcnt = 0;
29f2a4da 3046 break;
3e32cb2e
JW
3047 default:
3048 BUG();
29f2a4da 3049 }
f64c3f54 3050
6770c64e 3051 return nbytes;
c84872e1
PE
3052}
3053
182446d0 3054static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3055 struct cftype *cft)
3056{
182446d0 3057 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3058}
3059
02491447 3060#ifdef CONFIG_MMU
182446d0 3061static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3062 struct cftype *cft, u64 val)
3063{
182446d0 3064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3065
1dfab5ab 3066 if (val & ~MOVE_MASK)
7dc74be0 3067 return -EINVAL;
ee5e8472 3068
7dc74be0 3069 /*
ee5e8472
GC
3070 * No kind of locking is needed in here, because ->can_attach() will
3071 * check this value once in the beginning of the process, and then carry
3072 * on with stale data. This means that changes to this value will only
3073 * affect task migrations starting after the change.
7dc74be0 3074 */
c0ff4b85 3075 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3076 return 0;
3077}
02491447 3078#else
182446d0 3079static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3080 struct cftype *cft, u64 val)
3081{
3082 return -ENOSYS;
3083}
3084#endif
7dc74be0 3085
406eb0c9 3086#ifdef CONFIG_NUMA
2da8ca82 3087static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3088{
25485de6
GT
3089 struct numa_stat {
3090 const char *name;
3091 unsigned int lru_mask;
3092 };
3093
3094 static const struct numa_stat stats[] = {
3095 { "total", LRU_ALL },
3096 { "file", LRU_ALL_FILE },
3097 { "anon", LRU_ALL_ANON },
3098 { "unevictable", BIT(LRU_UNEVICTABLE) },
3099 };
3100 const struct numa_stat *stat;
406eb0c9 3101 int nid;
25485de6 3102 unsigned long nr;
2da8ca82 3103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3104
25485de6
GT
3105 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3107 seq_printf(m, "%s=%lu", stat->name, nr);
3108 for_each_node_state(nid, N_MEMORY) {
3109 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3110 stat->lru_mask);
3111 seq_printf(m, " N%d=%lu", nid, nr);
3112 }
3113 seq_putc(m, '\n');
406eb0c9 3114 }
406eb0c9 3115
071aee13
YH
3116 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 struct mem_cgroup *iter;
3118
3119 nr = 0;
3120 for_each_mem_cgroup_tree(iter, memcg)
3121 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3122 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3123 for_each_node_state(nid, N_MEMORY) {
3124 nr = 0;
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 nr += mem_cgroup_node_nr_lru_pages(
3127 iter, nid, stat->lru_mask);
3128 seq_printf(m, " N%d=%lu", nid, nr);
3129 }
3130 seq_putc(m, '\n');
406eb0c9 3131 }
406eb0c9 3132
406eb0c9
YH
3133 return 0;
3134}
3135#endif /* CONFIG_NUMA */
3136
2da8ca82 3137static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3138{
2da8ca82 3139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3140 unsigned long memory, memsw;
af7c4b0e
JW
3141 struct mem_cgroup *mi;
3142 unsigned int i;
406eb0c9 3143
0ca44b14
GT
3144 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3145 MEM_CGROUP_STAT_NSTATS);
3146 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3147 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3149
af7c4b0e 3150 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3151 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3152 continue;
484ebb3b 3153 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3154 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3155 }
7b854121 3156
af7c4b0e
JW
3157 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3158 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3159 mem_cgroup_read_events(memcg, i));
3160
3161 for (i = 0; i < NR_LRU_LISTS; i++)
3162 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3163 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3164
14067bb3 3165 /* Hierarchical information */
3e32cb2e
JW
3166 memory = memsw = PAGE_COUNTER_MAX;
3167 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3168 memory = min(memory, mi->memory.limit);
3169 memsw = min(memsw, mi->memsw.limit);
fee7b548 3170 }
3e32cb2e
JW
3171 seq_printf(m, "hierarchical_memory_limit %llu\n",
3172 (u64)memory * PAGE_SIZE);
7941d214 3173 if (do_memsw_account())
3e32cb2e
JW
3174 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3175 (u64)memsw * PAGE_SIZE);
7f016ee8 3176
af7c4b0e 3177 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3178 unsigned long long val = 0;
af7c4b0e 3179
7941d214 3180 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3181 continue;
af7c4b0e
JW
3182 for_each_mem_cgroup_tree(mi, memcg)
3183 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3184 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3185 }
3186
3187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_events(mi, i);
3192 seq_printf(m, "total_%s %llu\n",
3193 mem_cgroup_events_names[i], val);
3194 }
3195
3196 for (i = 0; i < NR_LRU_LISTS; i++) {
3197 unsigned long long val = 0;
3198
3199 for_each_mem_cgroup_tree(mi, memcg)
3200 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3201 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3202 }
14067bb3 3203
7f016ee8 3204#ifdef CONFIG_DEBUG_VM
7f016ee8 3205 {
ef8f2327
MG
3206 pg_data_t *pgdat;
3207 struct mem_cgroup_per_node *mz;
89abfab1 3208 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3209 unsigned long recent_rotated[2] = {0, 0};
3210 unsigned long recent_scanned[2] = {0, 0};
3211
ef8f2327
MG
3212 for_each_online_pgdat(pgdat) {
3213 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3214 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3215
ef8f2327
MG
3216 recent_rotated[0] += rstat->recent_rotated[0];
3217 recent_rotated[1] += rstat->recent_rotated[1];
3218 recent_scanned[0] += rstat->recent_scanned[0];
3219 recent_scanned[1] += rstat->recent_scanned[1];
3220 }
78ccf5b5
JW
3221 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3222 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3223 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3224 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3225 }
3226#endif
3227
d2ceb9b7
KH
3228 return 0;
3229}
3230
182446d0
TH
3231static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3232 struct cftype *cft)
a7885eb8 3233{
182446d0 3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3235
1f4c025b 3236 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3237}
3238
182446d0
TH
3239static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3240 struct cftype *cft, u64 val)
a7885eb8 3241{
182446d0 3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3243
3dae7fec 3244 if (val > 100)
a7885eb8
KM
3245 return -EINVAL;
3246
14208b0e 3247 if (css->parent)
3dae7fec
JW
3248 memcg->swappiness = val;
3249 else
3250 vm_swappiness = val;
068b38c1 3251
a7885eb8
KM
3252 return 0;
3253}
3254
2e72b634
KS
3255static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3256{
3257 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3258 unsigned long usage;
2e72b634
KS
3259 int i;
3260
3261 rcu_read_lock();
3262 if (!swap)
2c488db2 3263 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3264 else
2c488db2 3265 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3266
3267 if (!t)
3268 goto unlock;
3269
ce00a967 3270 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3271
3272 /*
748dad36 3273 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3274 * If it's not true, a threshold was crossed after last
3275 * call of __mem_cgroup_threshold().
3276 */
5407a562 3277 i = t->current_threshold;
2e72b634
KS
3278
3279 /*
3280 * Iterate backward over array of thresholds starting from
3281 * current_threshold and check if a threshold is crossed.
3282 * If none of thresholds below usage is crossed, we read
3283 * only one element of the array here.
3284 */
3285 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3286 eventfd_signal(t->entries[i].eventfd, 1);
3287
3288 /* i = current_threshold + 1 */
3289 i++;
3290
3291 /*
3292 * Iterate forward over array of thresholds starting from
3293 * current_threshold+1 and check if a threshold is crossed.
3294 * If none of thresholds above usage is crossed, we read
3295 * only one element of the array here.
3296 */
3297 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3298 eventfd_signal(t->entries[i].eventfd, 1);
3299
3300 /* Update current_threshold */
5407a562 3301 t->current_threshold = i - 1;
2e72b634
KS
3302unlock:
3303 rcu_read_unlock();
3304}
3305
3306static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3307{
ad4ca5f4
KS
3308 while (memcg) {
3309 __mem_cgroup_threshold(memcg, false);
7941d214 3310 if (do_memsw_account())
ad4ca5f4
KS
3311 __mem_cgroup_threshold(memcg, true);
3312
3313 memcg = parent_mem_cgroup(memcg);
3314 }
2e72b634
KS
3315}
3316
3317static int compare_thresholds(const void *a, const void *b)
3318{
3319 const struct mem_cgroup_threshold *_a = a;
3320 const struct mem_cgroup_threshold *_b = b;
3321
2bff24a3
GT
3322 if (_a->threshold > _b->threshold)
3323 return 1;
3324
3325 if (_a->threshold < _b->threshold)
3326 return -1;
3327
3328 return 0;
2e72b634
KS
3329}
3330
c0ff4b85 3331static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3332{
3333 struct mem_cgroup_eventfd_list *ev;
3334
2bcf2e92
MH
3335 spin_lock(&memcg_oom_lock);
3336
c0ff4b85 3337 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3338 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3339
3340 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3341 return 0;
3342}
3343
c0ff4b85 3344static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3345{
7d74b06f
KH
3346 struct mem_cgroup *iter;
3347
c0ff4b85 3348 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3349 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3350}
3351
59b6f873 3352static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3353 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3354{
2c488db2
KS
3355 struct mem_cgroup_thresholds *thresholds;
3356 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3357 unsigned long threshold;
3358 unsigned long usage;
2c488db2 3359 int i, size, ret;
2e72b634 3360
650c5e56 3361 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3362 if (ret)
3363 return ret;
3364
3365 mutex_lock(&memcg->thresholds_lock);
2c488db2 3366
05b84301 3367 if (type == _MEM) {
2c488db2 3368 thresholds = &memcg->thresholds;
ce00a967 3369 usage = mem_cgroup_usage(memcg, false);
05b84301 3370 } else if (type == _MEMSWAP) {
2c488db2 3371 thresholds = &memcg->memsw_thresholds;
ce00a967 3372 usage = mem_cgroup_usage(memcg, true);
05b84301 3373 } else
2e72b634
KS
3374 BUG();
3375
2e72b634 3376 /* Check if a threshold crossed before adding a new one */
2c488db2 3377 if (thresholds->primary)
2e72b634
KS
3378 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3379
2c488db2 3380 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3381
3382 /* Allocate memory for new array of thresholds */
2c488db2 3383 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3384 GFP_KERNEL);
2c488db2 3385 if (!new) {
2e72b634
KS
3386 ret = -ENOMEM;
3387 goto unlock;
3388 }
2c488db2 3389 new->size = size;
2e72b634
KS
3390
3391 /* Copy thresholds (if any) to new array */
2c488db2
KS
3392 if (thresholds->primary) {
3393 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3394 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3395 }
3396
2e72b634 3397 /* Add new threshold */
2c488db2
KS
3398 new->entries[size - 1].eventfd = eventfd;
3399 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3400
3401 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3402 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3403 compare_thresholds, NULL);
3404
3405 /* Find current threshold */
2c488db2 3406 new->current_threshold = -1;
2e72b634 3407 for (i = 0; i < size; i++) {
748dad36 3408 if (new->entries[i].threshold <= usage) {
2e72b634 3409 /*
2c488db2
KS
3410 * new->current_threshold will not be used until
3411 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3412 * it here.
3413 */
2c488db2 3414 ++new->current_threshold;
748dad36
SZ
3415 } else
3416 break;
2e72b634
KS
3417 }
3418
2c488db2
KS
3419 /* Free old spare buffer and save old primary buffer as spare */
3420 kfree(thresholds->spare);
3421 thresholds->spare = thresholds->primary;
3422
3423 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3424
907860ed 3425 /* To be sure that nobody uses thresholds */
2e72b634
KS
3426 synchronize_rcu();
3427
2e72b634
KS
3428unlock:
3429 mutex_unlock(&memcg->thresholds_lock);
3430
3431 return ret;
3432}
3433
59b6f873 3434static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3435 struct eventfd_ctx *eventfd, const char *args)
3436{
59b6f873 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3438}
3439
59b6f873 3440static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3441 struct eventfd_ctx *eventfd, const char *args)
3442{
59b6f873 3443 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3444}
3445
59b6f873 3446static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3447 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3448{
2c488db2
KS
3449 struct mem_cgroup_thresholds *thresholds;
3450 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3451 unsigned long usage;
2c488db2 3452 int i, j, size;
2e72b634
KS
3453
3454 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3455
3456 if (type == _MEM) {
2c488db2 3457 thresholds = &memcg->thresholds;
ce00a967 3458 usage = mem_cgroup_usage(memcg, false);
05b84301 3459 } else if (type == _MEMSWAP) {
2c488db2 3460 thresholds = &memcg->memsw_thresholds;
ce00a967 3461 usage = mem_cgroup_usage(memcg, true);
05b84301 3462 } else
2e72b634
KS
3463 BUG();
3464
371528ca
AV
3465 if (!thresholds->primary)
3466 goto unlock;
3467
2e72b634
KS
3468 /* Check if a threshold crossed before removing */
3469 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3470
3471 /* Calculate new number of threshold */
2c488db2
KS
3472 size = 0;
3473 for (i = 0; i < thresholds->primary->size; i++) {
3474 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3475 size++;
3476 }
3477
2c488db2 3478 new = thresholds->spare;
907860ed 3479
2e72b634
KS
3480 /* Set thresholds array to NULL if we don't have thresholds */
3481 if (!size) {
2c488db2
KS
3482 kfree(new);
3483 new = NULL;
907860ed 3484 goto swap_buffers;
2e72b634
KS
3485 }
3486
2c488db2 3487 new->size = size;
2e72b634
KS
3488
3489 /* Copy thresholds and find current threshold */
2c488db2
KS
3490 new->current_threshold = -1;
3491 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3492 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3493 continue;
3494
2c488db2 3495 new->entries[j] = thresholds->primary->entries[i];
748dad36 3496 if (new->entries[j].threshold <= usage) {
2e72b634 3497 /*
2c488db2 3498 * new->current_threshold will not be used
2e72b634
KS
3499 * until rcu_assign_pointer(), so it's safe to increment
3500 * it here.
3501 */
2c488db2 3502 ++new->current_threshold;
2e72b634
KS
3503 }
3504 j++;
3505 }
3506
907860ed 3507swap_buffers:
2c488db2
KS
3508 /* Swap primary and spare array */
3509 thresholds->spare = thresholds->primary;
8c757763 3510
2c488db2 3511 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3512
907860ed 3513 /* To be sure that nobody uses thresholds */
2e72b634 3514 synchronize_rcu();
6611d8d7
MC
3515
3516 /* If all events are unregistered, free the spare array */
3517 if (!new) {
3518 kfree(thresholds->spare);
3519 thresholds->spare = NULL;
3520 }
371528ca 3521unlock:
2e72b634 3522 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3523}
c1e862c1 3524
59b6f873 3525static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3526 struct eventfd_ctx *eventfd)
3527{
59b6f873 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3529}
3530
59b6f873 3531static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3532 struct eventfd_ctx *eventfd)
3533{
59b6f873 3534 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3535}
3536
59b6f873 3537static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3538 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3539{
9490ff27 3540 struct mem_cgroup_eventfd_list *event;
9490ff27 3541
9490ff27
KH
3542 event = kmalloc(sizeof(*event), GFP_KERNEL);
3543 if (!event)
3544 return -ENOMEM;
3545
1af8efe9 3546 spin_lock(&memcg_oom_lock);
9490ff27
KH
3547
3548 event->eventfd = eventfd;
3549 list_add(&event->list, &memcg->oom_notify);
3550
3551 /* already in OOM ? */
c2b42d3c 3552 if (memcg->under_oom)
9490ff27 3553 eventfd_signal(eventfd, 1);
1af8efe9 3554 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3555
3556 return 0;
3557}
3558
59b6f873 3559static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3560 struct eventfd_ctx *eventfd)
9490ff27 3561{
9490ff27 3562 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3563
1af8efe9 3564 spin_lock(&memcg_oom_lock);
9490ff27 3565
c0ff4b85 3566 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3567 if (ev->eventfd == eventfd) {
3568 list_del(&ev->list);
3569 kfree(ev);
3570 }
3571 }
3572
1af8efe9 3573 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3574}
3575
2da8ca82 3576static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3577{
2da8ca82 3578 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3579
791badbd 3580 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3581 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3582 return 0;
3583}
3584
182446d0 3585static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3586 struct cftype *cft, u64 val)
3587{
182446d0 3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3589
3590 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3591 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3592 return -EINVAL;
3593
c0ff4b85 3594 memcg->oom_kill_disable = val;
4d845ebf 3595 if (!val)
c0ff4b85 3596 memcg_oom_recover(memcg);
3dae7fec 3597
3c11ecf4
KH
3598 return 0;
3599}
3600
52ebea74
TH
3601#ifdef CONFIG_CGROUP_WRITEBACK
3602
3603struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3604{
3605 return &memcg->cgwb_list;
3606}
3607
841710aa
TH
3608static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3609{
3610 return wb_domain_init(&memcg->cgwb_domain, gfp);
3611}
3612
3613static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3614{
3615 wb_domain_exit(&memcg->cgwb_domain);
3616}
3617
2529bb3a
TH
3618static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3619{
3620 wb_domain_size_changed(&memcg->cgwb_domain);
3621}
3622
841710aa
TH
3623struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3624{
3625 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3626
3627 if (!memcg->css.parent)
3628 return NULL;
3629
3630 return &memcg->cgwb_domain;
3631}
3632
c2aa723a
TH
3633/**
3634 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3635 * @wb: bdi_writeback in question
c5edf9cd
TH
3636 * @pfilepages: out parameter for number of file pages
3637 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3638 * @pdirty: out parameter for number of dirty pages
3639 * @pwriteback: out parameter for number of pages under writeback
3640 *
c5edf9cd
TH
3641 * Determine the numbers of file, headroom, dirty, and writeback pages in
3642 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3643 * is a bit more involved.
c2aa723a 3644 *
c5edf9cd
TH
3645 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3646 * headroom is calculated as the lowest headroom of itself and the
3647 * ancestors. Note that this doesn't consider the actual amount of
3648 * available memory in the system. The caller should further cap
3649 * *@pheadroom accordingly.
c2aa723a 3650 */
c5edf9cd
TH
3651void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3652 unsigned long *pheadroom, unsigned long *pdirty,
3653 unsigned long *pwriteback)
c2aa723a
TH
3654{
3655 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3656 struct mem_cgroup *parent;
c2aa723a
TH
3657
3658 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3659
3660 /* this should eventually include NR_UNSTABLE_NFS */
3661 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3662 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3663 (1 << LRU_ACTIVE_FILE));
3664 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3665
c2aa723a
TH
3666 while ((parent = parent_mem_cgroup(memcg))) {
3667 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3668 unsigned long used = page_counter_read(&memcg->memory);
3669
c5edf9cd 3670 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3671 memcg = parent;
3672 }
c2aa723a
TH
3673}
3674
841710aa
TH
3675#else /* CONFIG_CGROUP_WRITEBACK */
3676
3677static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3678{
3679 return 0;
3680}
3681
3682static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3683{
3684}
3685
2529bb3a
TH
3686static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3687{
3688}
3689
52ebea74
TH
3690#endif /* CONFIG_CGROUP_WRITEBACK */
3691
3bc942f3
TH
3692/*
3693 * DO NOT USE IN NEW FILES.
3694 *
3695 * "cgroup.event_control" implementation.
3696 *
3697 * This is way over-engineered. It tries to support fully configurable
3698 * events for each user. Such level of flexibility is completely
3699 * unnecessary especially in the light of the planned unified hierarchy.
3700 *
3701 * Please deprecate this and replace with something simpler if at all
3702 * possible.
3703 */
3704
79bd9814
TH
3705/*
3706 * Unregister event and free resources.
3707 *
3708 * Gets called from workqueue.
3709 */
3bc942f3 3710static void memcg_event_remove(struct work_struct *work)
79bd9814 3711{
3bc942f3
TH
3712 struct mem_cgroup_event *event =
3713 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3714 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3715
3716 remove_wait_queue(event->wqh, &event->wait);
3717
59b6f873 3718 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3719
3720 /* Notify userspace the event is going away. */
3721 eventfd_signal(event->eventfd, 1);
3722
3723 eventfd_ctx_put(event->eventfd);
3724 kfree(event);
59b6f873 3725 css_put(&memcg->css);
79bd9814
TH
3726}
3727
3728/*
3729 * Gets called on POLLHUP on eventfd when user closes it.
3730 *
3731 * Called with wqh->lock held and interrupts disabled.
3732 */
3bc942f3
TH
3733static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3734 int sync, void *key)
79bd9814 3735{
3bc942f3
TH
3736 struct mem_cgroup_event *event =
3737 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3738 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3739 unsigned long flags = (unsigned long)key;
3740
3741 if (flags & POLLHUP) {
3742 /*
3743 * If the event has been detached at cgroup removal, we
3744 * can simply return knowing the other side will cleanup
3745 * for us.
3746 *
3747 * We can't race against event freeing since the other
3748 * side will require wqh->lock via remove_wait_queue(),
3749 * which we hold.
3750 */
fba94807 3751 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3752 if (!list_empty(&event->list)) {
3753 list_del_init(&event->list);
3754 /*
3755 * We are in atomic context, but cgroup_event_remove()
3756 * may sleep, so we have to call it in workqueue.
3757 */
3758 schedule_work(&event->remove);
3759 }
fba94807 3760 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3761 }
3762
3763 return 0;
3764}
3765
3bc942f3 3766static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3767 wait_queue_head_t *wqh, poll_table *pt)
3768{
3bc942f3
TH
3769 struct mem_cgroup_event *event =
3770 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3771
3772 event->wqh = wqh;
3773 add_wait_queue(wqh, &event->wait);
3774}
3775
3776/*
3bc942f3
TH
3777 * DO NOT USE IN NEW FILES.
3778 *
79bd9814
TH
3779 * Parse input and register new cgroup event handler.
3780 *
3781 * Input must be in format '<event_fd> <control_fd> <args>'.
3782 * Interpretation of args is defined by control file implementation.
3783 */
451af504
TH
3784static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3785 char *buf, size_t nbytes, loff_t off)
79bd9814 3786{
451af504 3787 struct cgroup_subsys_state *css = of_css(of);
fba94807 3788 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3789 struct mem_cgroup_event *event;
79bd9814
TH
3790 struct cgroup_subsys_state *cfile_css;
3791 unsigned int efd, cfd;
3792 struct fd efile;
3793 struct fd cfile;
fba94807 3794 const char *name;
79bd9814
TH
3795 char *endp;
3796 int ret;
3797
451af504
TH
3798 buf = strstrip(buf);
3799
3800 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3801 if (*endp != ' ')
3802 return -EINVAL;
451af504 3803 buf = endp + 1;
79bd9814 3804
451af504 3805 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3806 if ((*endp != ' ') && (*endp != '\0'))
3807 return -EINVAL;
451af504 3808 buf = endp + 1;
79bd9814
TH
3809
3810 event = kzalloc(sizeof(*event), GFP_KERNEL);
3811 if (!event)
3812 return -ENOMEM;
3813
59b6f873 3814 event->memcg = memcg;
79bd9814 3815 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3816 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3817 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3818 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3819
3820 efile = fdget(efd);
3821 if (!efile.file) {
3822 ret = -EBADF;
3823 goto out_kfree;
3824 }
3825
3826 event->eventfd = eventfd_ctx_fileget(efile.file);
3827 if (IS_ERR(event->eventfd)) {
3828 ret = PTR_ERR(event->eventfd);
3829 goto out_put_efile;
3830 }
3831
3832 cfile = fdget(cfd);
3833 if (!cfile.file) {
3834 ret = -EBADF;
3835 goto out_put_eventfd;
3836 }
3837
3838 /* the process need read permission on control file */
3839 /* AV: shouldn't we check that it's been opened for read instead? */
3840 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3841 if (ret < 0)
3842 goto out_put_cfile;
3843
fba94807
TH
3844 /*
3845 * Determine the event callbacks and set them in @event. This used
3846 * to be done via struct cftype but cgroup core no longer knows
3847 * about these events. The following is crude but the whole thing
3848 * is for compatibility anyway.
3bc942f3
TH
3849 *
3850 * DO NOT ADD NEW FILES.
fba94807 3851 */
b583043e 3852 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3853
3854 if (!strcmp(name, "memory.usage_in_bytes")) {
3855 event->register_event = mem_cgroup_usage_register_event;
3856 event->unregister_event = mem_cgroup_usage_unregister_event;
3857 } else if (!strcmp(name, "memory.oom_control")) {
3858 event->register_event = mem_cgroup_oom_register_event;
3859 event->unregister_event = mem_cgroup_oom_unregister_event;
3860 } else if (!strcmp(name, "memory.pressure_level")) {
3861 event->register_event = vmpressure_register_event;
3862 event->unregister_event = vmpressure_unregister_event;
3863 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3864 event->register_event = memsw_cgroup_usage_register_event;
3865 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3866 } else {
3867 ret = -EINVAL;
3868 goto out_put_cfile;
3869 }
3870
79bd9814 3871 /*
b5557c4c
TH
3872 * Verify @cfile should belong to @css. Also, remaining events are
3873 * automatically removed on cgroup destruction but the removal is
3874 * asynchronous, so take an extra ref on @css.
79bd9814 3875 */
b583043e 3876 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3877 &memory_cgrp_subsys);
79bd9814 3878 ret = -EINVAL;
5a17f543 3879 if (IS_ERR(cfile_css))
79bd9814 3880 goto out_put_cfile;
5a17f543
TH
3881 if (cfile_css != css) {
3882 css_put(cfile_css);
79bd9814 3883 goto out_put_cfile;
5a17f543 3884 }
79bd9814 3885
451af504 3886 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3887 if (ret)
3888 goto out_put_css;
3889
3890 efile.file->f_op->poll(efile.file, &event->pt);
3891
fba94807
TH
3892 spin_lock(&memcg->event_list_lock);
3893 list_add(&event->list, &memcg->event_list);
3894 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3895
3896 fdput(cfile);
3897 fdput(efile);
3898
451af504 3899 return nbytes;
79bd9814
TH
3900
3901out_put_css:
b5557c4c 3902 css_put(css);
79bd9814
TH
3903out_put_cfile:
3904 fdput(cfile);
3905out_put_eventfd:
3906 eventfd_ctx_put(event->eventfd);
3907out_put_efile:
3908 fdput(efile);
3909out_kfree:
3910 kfree(event);
3911
3912 return ret;
3913}
3914
241994ed 3915static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3916 {
0eea1030 3917 .name = "usage_in_bytes",
8c7c6e34 3918 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3919 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3920 },
c84872e1
PE
3921 {
3922 .name = "max_usage_in_bytes",
8c7c6e34 3923 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3924 .write = mem_cgroup_reset,
791badbd 3925 .read_u64 = mem_cgroup_read_u64,
c84872e1 3926 },
8cdea7c0 3927 {
0eea1030 3928 .name = "limit_in_bytes",
8c7c6e34 3929 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3930 .write = mem_cgroup_write,
791badbd 3931 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3932 },
296c81d8
BS
3933 {
3934 .name = "soft_limit_in_bytes",
3935 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3936 .write = mem_cgroup_write,
791badbd 3937 .read_u64 = mem_cgroup_read_u64,
296c81d8 3938 },
8cdea7c0
BS
3939 {
3940 .name = "failcnt",
8c7c6e34 3941 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3942 .write = mem_cgroup_reset,
791badbd 3943 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3944 },
d2ceb9b7
KH
3945 {
3946 .name = "stat",
2da8ca82 3947 .seq_show = memcg_stat_show,
d2ceb9b7 3948 },
c1e862c1
KH
3949 {
3950 .name = "force_empty",
6770c64e 3951 .write = mem_cgroup_force_empty_write,
c1e862c1 3952 },
18f59ea7
BS
3953 {
3954 .name = "use_hierarchy",
3955 .write_u64 = mem_cgroup_hierarchy_write,
3956 .read_u64 = mem_cgroup_hierarchy_read,
3957 },
79bd9814 3958 {
3bc942f3 3959 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3960 .write = memcg_write_event_control,
7dbdb199 3961 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3962 },
a7885eb8
KM
3963 {
3964 .name = "swappiness",
3965 .read_u64 = mem_cgroup_swappiness_read,
3966 .write_u64 = mem_cgroup_swappiness_write,
3967 },
7dc74be0
DN
3968 {
3969 .name = "move_charge_at_immigrate",
3970 .read_u64 = mem_cgroup_move_charge_read,
3971 .write_u64 = mem_cgroup_move_charge_write,
3972 },
9490ff27
KH
3973 {
3974 .name = "oom_control",
2da8ca82 3975 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3976 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3977 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3978 },
70ddf637
AV
3979 {
3980 .name = "pressure_level",
70ddf637 3981 },
406eb0c9
YH
3982#ifdef CONFIG_NUMA
3983 {
3984 .name = "numa_stat",
2da8ca82 3985 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3986 },
3987#endif
510fc4e1
GC
3988 {
3989 .name = "kmem.limit_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3991 .write = mem_cgroup_write,
791badbd 3992 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3993 },
3994 {
3995 .name = "kmem.usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3998 },
3999 {
4000 .name = "kmem.failcnt",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4002 .write = mem_cgroup_reset,
791badbd 4003 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4004 },
4005 {
4006 .name = "kmem.max_usage_in_bytes",
4007 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4008 .write = mem_cgroup_reset,
791badbd 4009 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4010 },
749c5415
GC
4011#ifdef CONFIG_SLABINFO
4012 {
4013 .name = "kmem.slabinfo",
b047501c
VD
4014 .seq_start = slab_start,
4015 .seq_next = slab_next,
4016 .seq_stop = slab_stop,
4017 .seq_show = memcg_slab_show,
749c5415
GC
4018 },
4019#endif
d55f90bf
VD
4020 {
4021 .name = "kmem.tcp.limit_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4023 .write = mem_cgroup_write,
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.failcnt",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 {
4038 .name = "kmem.tcp.max_usage_in_bytes",
4039 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4040 .write = mem_cgroup_reset,
4041 .read_u64 = mem_cgroup_read_u64,
4042 },
6bc10349 4043 { }, /* terminate */
af36f906 4044};
8c7c6e34 4045
73f576c0
JW
4046/*
4047 * Private memory cgroup IDR
4048 *
4049 * Swap-out records and page cache shadow entries need to store memcg
4050 * references in constrained space, so we maintain an ID space that is
4051 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4052 * memory-controlled cgroups to 64k.
4053 *
4054 * However, there usually are many references to the oflline CSS after
4055 * the cgroup has been destroyed, such as page cache or reclaimable
4056 * slab objects, that don't need to hang on to the ID. We want to keep
4057 * those dead CSS from occupying IDs, or we might quickly exhaust the
4058 * relatively small ID space and prevent the creation of new cgroups
4059 * even when there are much fewer than 64k cgroups - possibly none.
4060 *
4061 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4062 * be freed and recycled when it's no longer needed, which is usually
4063 * when the CSS is offlined.
4064 *
4065 * The only exception to that are records of swapped out tmpfs/shmem
4066 * pages that need to be attributed to live ancestors on swapin. But
4067 * those references are manageable from userspace.
4068 */
4069
4070static DEFINE_IDR(mem_cgroup_idr);
4071
4072static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4073{
4074 atomic_inc(&memcg->id.ref);
4075}
4076
4077static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4078{
4079 if (atomic_dec_and_test(&memcg->id.ref)) {
4080 idr_remove(&mem_cgroup_idr, memcg->id.id);
4081 memcg->id.id = 0;
4082
4083 /* Memcg ID pins CSS */
4084 css_put(&memcg->css);
4085 }
4086}
4087
4088/**
4089 * mem_cgroup_from_id - look up a memcg from a memcg id
4090 * @id: the memcg id to look up
4091 *
4092 * Caller must hold rcu_read_lock().
4093 */
4094struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4095{
4096 WARN_ON_ONCE(!rcu_read_lock_held());
4097 return idr_find(&mem_cgroup_idr, id);
4098}
4099
ef8f2327 4100static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4101{
4102 struct mem_cgroup_per_node *pn;
ef8f2327 4103 int tmp = node;
1ecaab2b
KH
4104 /*
4105 * This routine is called against possible nodes.
4106 * But it's BUG to call kmalloc() against offline node.
4107 *
4108 * TODO: this routine can waste much memory for nodes which will
4109 * never be onlined. It's better to use memory hotplug callback
4110 * function.
4111 */
41e3355d
KH
4112 if (!node_state(node, N_NORMAL_MEMORY))
4113 tmp = -1;
17295c88 4114 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4115 if (!pn)
4116 return 1;
1ecaab2b 4117
ef8f2327
MG
4118 lruvec_init(&pn->lruvec);
4119 pn->usage_in_excess = 0;
4120 pn->on_tree = false;
4121 pn->memcg = memcg;
4122
54f72fe0 4123 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4124 return 0;
4125}
4126
ef8f2327 4127static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4128{
54f72fe0 4129 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4130}
4131
0b8f73e1 4132static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4133{
c8b2a36f 4134 int node;
59927fb9 4135
0b8f73e1 4136 memcg_wb_domain_exit(memcg);
c8b2a36f 4137 for_each_node(node)
ef8f2327 4138 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4139 free_percpu(memcg->stat);
8ff69e2c 4140 kfree(memcg);
59927fb9 4141}
3afe36b1 4142
0b8f73e1 4143static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4144{
d142e3e6 4145 struct mem_cgroup *memcg;
0b8f73e1 4146 size_t size;
6d12e2d8 4147 int node;
8cdea7c0 4148
0b8f73e1
JW
4149 size = sizeof(struct mem_cgroup);
4150 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4151
4152 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4153 if (!memcg)
0b8f73e1
JW
4154 return NULL;
4155
73f576c0
JW
4156 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4157 1, MEM_CGROUP_ID_MAX,
4158 GFP_KERNEL);
4159 if (memcg->id.id < 0)
4160 goto fail;
4161
0b8f73e1
JW
4162 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4163 if (!memcg->stat)
4164 goto fail;
78fb7466 4165
3ed28fa1 4166 for_each_node(node)
ef8f2327 4167 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4168 goto fail;
f64c3f54 4169
0b8f73e1
JW
4170 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4171 goto fail;
28dbc4b6 4172
f7e1cb6e 4173 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4174 memcg->last_scanned_node = MAX_NUMNODES;
4175 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4176 mutex_init(&memcg->thresholds_lock);
4177 spin_lock_init(&memcg->move_lock);
70ddf637 4178 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4179 INIT_LIST_HEAD(&memcg->event_list);
4180 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4181 memcg->socket_pressure = jiffies;
127424c8 4182#ifndef CONFIG_SLOB
900a38f0 4183 memcg->kmemcg_id = -1;
900a38f0 4184#endif
52ebea74
TH
4185#ifdef CONFIG_CGROUP_WRITEBACK
4186 INIT_LIST_HEAD(&memcg->cgwb_list);
4187#endif
73f576c0 4188 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4189 return memcg;
4190fail:
73f576c0
JW
4191 if (memcg->id.id > 0)
4192 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4193 mem_cgroup_free(memcg);
4194 return NULL;
d142e3e6
GC
4195}
4196
0b8f73e1
JW
4197static struct cgroup_subsys_state * __ref
4198mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4199{
0b8f73e1
JW
4200 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4201 struct mem_cgroup *memcg;
4202 long error = -ENOMEM;
d142e3e6 4203
0b8f73e1
JW
4204 memcg = mem_cgroup_alloc();
4205 if (!memcg)
4206 return ERR_PTR(error);
d142e3e6 4207
0b8f73e1
JW
4208 memcg->high = PAGE_COUNTER_MAX;
4209 memcg->soft_limit = PAGE_COUNTER_MAX;
4210 if (parent) {
4211 memcg->swappiness = mem_cgroup_swappiness(parent);
4212 memcg->oom_kill_disable = parent->oom_kill_disable;
4213 }
4214 if (parent && parent->use_hierarchy) {
4215 memcg->use_hierarchy = true;
3e32cb2e 4216 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4217 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4218 page_counter_init(&memcg->memsw, &parent->memsw);
4219 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4220 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4221 } else {
3e32cb2e 4222 page_counter_init(&memcg->memory, NULL);
37e84351 4223 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4224 page_counter_init(&memcg->memsw, NULL);
4225 page_counter_init(&memcg->kmem, NULL);
0db15298 4226 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4227 /*
4228 * Deeper hierachy with use_hierarchy == false doesn't make
4229 * much sense so let cgroup subsystem know about this
4230 * unfortunate state in our controller.
4231 */
d142e3e6 4232 if (parent != root_mem_cgroup)
073219e9 4233 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4234 }
d6441637 4235
0b8f73e1
JW
4236 /* The following stuff does not apply to the root */
4237 if (!parent) {
4238 root_mem_cgroup = memcg;
4239 return &memcg->css;
4240 }
4241
b313aeee 4242 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4243 if (error)
4244 goto fail;
127424c8 4245
f7e1cb6e 4246 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4247 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4248
0b8f73e1
JW
4249 return &memcg->css;
4250fail:
4251 mem_cgroup_free(memcg);
ea3a9645 4252 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4253}
4254
73f576c0 4255static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4256{
73f576c0
JW
4257 /* Online state pins memcg ID, memcg ID pins CSS */
4258 mem_cgroup_id_get(mem_cgroup_from_css(css));
4259 css_get(css);
2f7dd7a4 4260 return 0;
8cdea7c0
BS
4261}
4262
eb95419b 4263static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4264{
eb95419b 4265 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4266 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4267
4268 /*
4269 * Unregister events and notify userspace.
4270 * Notify userspace about cgroup removing only after rmdir of cgroup
4271 * directory to avoid race between userspace and kernelspace.
4272 */
fba94807
TH
4273 spin_lock(&memcg->event_list_lock);
4274 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4275 list_del_init(&event->list);
4276 schedule_work(&event->remove);
4277 }
fba94807 4278 spin_unlock(&memcg->event_list_lock);
ec64f515 4279
567e9ab2 4280 memcg_offline_kmem(memcg);
52ebea74 4281 wb_memcg_offline(memcg);
73f576c0
JW
4282
4283 mem_cgroup_id_put(memcg);
df878fb0
KH
4284}
4285
6df38689
VD
4286static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4287{
4288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4289
4290 invalidate_reclaim_iterators(memcg);
4291}
4292
eb95419b 4293static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4294{
eb95419b 4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4296
f7e1cb6e 4297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4298 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4299
0db15298 4300 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4301 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4302
0b8f73e1
JW
4303 vmpressure_cleanup(&memcg->vmpressure);
4304 cancel_work_sync(&memcg->high_work);
4305 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4306 memcg_free_kmem(memcg);
0b8f73e1 4307 mem_cgroup_free(memcg);
8cdea7c0
BS
4308}
4309
1ced953b
TH
4310/**
4311 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4312 * @css: the target css
4313 *
4314 * Reset the states of the mem_cgroup associated with @css. This is
4315 * invoked when the userland requests disabling on the default hierarchy
4316 * but the memcg is pinned through dependency. The memcg should stop
4317 * applying policies and should revert to the vanilla state as it may be
4318 * made visible again.
4319 *
4320 * The current implementation only resets the essential configurations.
4321 * This needs to be expanded to cover all the visible parts.
4322 */
4323static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4324{
4325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4326
d334c9bc
VD
4327 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4328 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4329 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4330 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4331 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4332 memcg->low = 0;
4333 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4334 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4335 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4336}
4337
02491447 4338#ifdef CONFIG_MMU
7dc74be0 4339/* Handlers for move charge at task migration. */
854ffa8d 4340static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4341{
05b84301 4342 int ret;
9476db97 4343
d0164adc
MG
4344 /* Try a single bulk charge without reclaim first, kswapd may wake */
4345 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4346 if (!ret) {
854ffa8d 4347 mc.precharge += count;
854ffa8d
DN
4348 return ret;
4349 }
9476db97
JW
4350
4351 /* Try charges one by one with reclaim */
854ffa8d 4352 while (count--) {
00501b53 4353 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4354 if (ret)
38c5d72f 4355 return ret;
854ffa8d 4356 mc.precharge++;
9476db97 4357 cond_resched();
854ffa8d 4358 }
9476db97 4359 return 0;
4ffef5fe
DN
4360}
4361
4ffef5fe
DN
4362union mc_target {
4363 struct page *page;
02491447 4364 swp_entry_t ent;
4ffef5fe
DN
4365};
4366
4ffef5fe 4367enum mc_target_type {
8d32ff84 4368 MC_TARGET_NONE = 0,
4ffef5fe 4369 MC_TARGET_PAGE,
02491447 4370 MC_TARGET_SWAP,
4ffef5fe
DN
4371};
4372
90254a65
DN
4373static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4374 unsigned long addr, pte_t ptent)
4ffef5fe 4375{
90254a65 4376 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4377
90254a65
DN
4378 if (!page || !page_mapped(page))
4379 return NULL;
4380 if (PageAnon(page)) {
1dfab5ab 4381 if (!(mc.flags & MOVE_ANON))
90254a65 4382 return NULL;
1dfab5ab
JW
4383 } else {
4384 if (!(mc.flags & MOVE_FILE))
4385 return NULL;
4386 }
90254a65
DN
4387 if (!get_page_unless_zero(page))
4388 return NULL;
4389
4390 return page;
4391}
4392
4b91355e 4393#ifdef CONFIG_SWAP
90254a65 4394static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4395 pte_t ptent, swp_entry_t *entry)
90254a65 4396{
90254a65
DN
4397 struct page *page = NULL;
4398 swp_entry_t ent = pte_to_swp_entry(ptent);
4399
1dfab5ab 4400 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4401 return NULL;
4b91355e
KH
4402 /*
4403 * Because lookup_swap_cache() updates some statistics counter,
4404 * we call find_get_page() with swapper_space directly.
4405 */
33806f06 4406 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4407 if (do_memsw_account())
90254a65
DN
4408 entry->val = ent.val;
4409
4410 return page;
4411}
4b91355e
KH
4412#else
4413static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4414 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4415{
4416 return NULL;
4417}
4418#endif
90254a65 4419
87946a72
DN
4420static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4421 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4422{
4423 struct page *page = NULL;
87946a72
DN
4424 struct address_space *mapping;
4425 pgoff_t pgoff;
4426
4427 if (!vma->vm_file) /* anonymous vma */
4428 return NULL;
1dfab5ab 4429 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4430 return NULL;
4431
87946a72 4432 mapping = vma->vm_file->f_mapping;
0661a336 4433 pgoff = linear_page_index(vma, addr);
87946a72
DN
4434
4435 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4436#ifdef CONFIG_SWAP
4437 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4438 if (shmem_mapping(mapping)) {
4439 page = find_get_entry(mapping, pgoff);
4440 if (radix_tree_exceptional_entry(page)) {
4441 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4442 if (do_memsw_account())
139b6a6f
JW
4443 *entry = swp;
4444 page = find_get_page(swap_address_space(swp), swp.val);
4445 }
4446 } else
4447 page = find_get_page(mapping, pgoff);
4448#else
4449 page = find_get_page(mapping, pgoff);
aa3b1895 4450#endif
87946a72
DN
4451 return page;
4452}
4453
b1b0deab
CG
4454/**
4455 * mem_cgroup_move_account - move account of the page
4456 * @page: the page
25843c2b 4457 * @compound: charge the page as compound or small page
b1b0deab
CG
4458 * @from: mem_cgroup which the page is moved from.
4459 * @to: mem_cgroup which the page is moved to. @from != @to.
4460 *
3ac808fd 4461 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4462 *
4463 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4464 * from old cgroup.
4465 */
4466static int mem_cgroup_move_account(struct page *page,
f627c2f5 4467 bool compound,
b1b0deab
CG
4468 struct mem_cgroup *from,
4469 struct mem_cgroup *to)
4470{
4471 unsigned long flags;
f627c2f5 4472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4473 int ret;
c4843a75 4474 bool anon;
b1b0deab
CG
4475
4476 VM_BUG_ON(from == to);
4477 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4478 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4479
4480 /*
6a93ca8f 4481 * Prevent mem_cgroup_migrate() from looking at
45637bab 4482 * page->mem_cgroup of its source page while we change it.
b1b0deab 4483 */
f627c2f5 4484 ret = -EBUSY;
b1b0deab
CG
4485 if (!trylock_page(page))
4486 goto out;
4487
4488 ret = -EINVAL;
4489 if (page->mem_cgroup != from)
4490 goto out_unlock;
4491
c4843a75
GT
4492 anon = PageAnon(page);
4493
b1b0deab
CG
4494 spin_lock_irqsave(&from->move_lock, flags);
4495
c4843a75 4496 if (!anon && page_mapped(page)) {
b1b0deab
CG
4497 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4498 nr_pages);
4499 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4500 nr_pages);
4501 }
4502
c4843a75
GT
4503 /*
4504 * move_lock grabbed above and caller set from->moving_account, so
4505 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4506 * So mapping should be stable for dirty pages.
4507 */
4508 if (!anon && PageDirty(page)) {
4509 struct address_space *mapping = page_mapping(page);
4510
4511 if (mapping_cap_account_dirty(mapping)) {
4512 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4513 nr_pages);
4514 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4515 nr_pages);
4516 }
4517 }
4518
b1b0deab
CG
4519 if (PageWriteback(page)) {
4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4521 nr_pages);
4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4523 nr_pages);
4524 }
4525
4526 /*
4527 * It is safe to change page->mem_cgroup here because the page
4528 * is referenced, charged, and isolated - we can't race with
4529 * uncharging, charging, migration, or LRU putback.
4530 */
4531
4532 /* caller should have done css_get */
4533 page->mem_cgroup = to;
4534 spin_unlock_irqrestore(&from->move_lock, flags);
4535
4536 ret = 0;
4537
4538 local_irq_disable();
f627c2f5 4539 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4540 memcg_check_events(to, page);
f627c2f5 4541 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4542 memcg_check_events(from, page);
4543 local_irq_enable();
4544out_unlock:
4545 unlock_page(page);
4546out:
4547 return ret;
4548}
4549
7cf7806c
LR
4550/**
4551 * get_mctgt_type - get target type of moving charge
4552 * @vma: the vma the pte to be checked belongs
4553 * @addr: the address corresponding to the pte to be checked
4554 * @ptent: the pte to be checked
4555 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4556 *
4557 * Returns
4558 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4559 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4560 * move charge. if @target is not NULL, the page is stored in target->page
4561 * with extra refcnt got(Callers should handle it).
4562 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4563 * target for charge migration. if @target is not NULL, the entry is stored
4564 * in target->ent.
4565 *
4566 * Called with pte lock held.
4567 */
4568
8d32ff84 4569static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4570 unsigned long addr, pte_t ptent, union mc_target *target)
4571{
4572 struct page *page = NULL;
8d32ff84 4573 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4574 swp_entry_t ent = { .val = 0 };
4575
4576 if (pte_present(ptent))
4577 page = mc_handle_present_pte(vma, addr, ptent);
4578 else if (is_swap_pte(ptent))
48406ef8 4579 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4580 else if (pte_none(ptent))
87946a72 4581 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4582
4583 if (!page && !ent.val)
8d32ff84 4584 return ret;
02491447 4585 if (page) {
02491447 4586 /*
0a31bc97 4587 * Do only loose check w/o serialization.
1306a85a 4588 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4589 * not under LRU exclusion.
02491447 4590 */
1306a85a 4591 if (page->mem_cgroup == mc.from) {
02491447
DN
4592 ret = MC_TARGET_PAGE;
4593 if (target)
4594 target->page = page;
4595 }
4596 if (!ret || !target)
4597 put_page(page);
4598 }
90254a65
DN
4599 /* There is a swap entry and a page doesn't exist or isn't charged */
4600 if (ent.val && !ret &&
34c00c31 4601 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4602 ret = MC_TARGET_SWAP;
4603 if (target)
4604 target->ent = ent;
4ffef5fe 4605 }
4ffef5fe
DN
4606 return ret;
4607}
4608
12724850
NH
4609#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4610/*
4611 * We don't consider swapping or file mapped pages because THP does not
4612 * support them for now.
4613 * Caller should make sure that pmd_trans_huge(pmd) is true.
4614 */
4615static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4616 unsigned long addr, pmd_t pmd, union mc_target *target)
4617{
4618 struct page *page = NULL;
12724850
NH
4619 enum mc_target_type ret = MC_TARGET_NONE;
4620
4621 page = pmd_page(pmd);
309381fe 4622 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4623 if (!(mc.flags & MOVE_ANON))
12724850 4624 return ret;
1306a85a 4625 if (page->mem_cgroup == mc.from) {
12724850
NH
4626 ret = MC_TARGET_PAGE;
4627 if (target) {
4628 get_page(page);
4629 target->page = page;
4630 }
4631 }
4632 return ret;
4633}
4634#else
4635static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4636 unsigned long addr, pmd_t pmd, union mc_target *target)
4637{
4638 return MC_TARGET_NONE;
4639}
4640#endif
4641
4ffef5fe
DN
4642static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4643 unsigned long addr, unsigned long end,
4644 struct mm_walk *walk)
4645{
26bcd64a 4646 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4647 pte_t *pte;
4648 spinlock_t *ptl;
4649
b6ec57f4
KS
4650 ptl = pmd_trans_huge_lock(pmd, vma);
4651 if (ptl) {
12724850
NH
4652 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4653 mc.precharge += HPAGE_PMD_NR;
bf929152 4654 spin_unlock(ptl);
1a5a9906 4655 return 0;
12724850 4656 }
03319327 4657
45f83cef
AA
4658 if (pmd_trans_unstable(pmd))
4659 return 0;
4ffef5fe
DN
4660 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4661 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4662 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4663 mc.precharge++; /* increment precharge temporarily */
4664 pte_unmap_unlock(pte - 1, ptl);
4665 cond_resched();
4666
7dc74be0
DN
4667 return 0;
4668}
4669
4ffef5fe
DN
4670static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4671{
4672 unsigned long precharge;
4ffef5fe 4673
26bcd64a
NH
4674 struct mm_walk mem_cgroup_count_precharge_walk = {
4675 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4676 .mm = mm,
4677 };
dfe076b0 4678 down_read(&mm->mmap_sem);
26bcd64a 4679 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4680 up_read(&mm->mmap_sem);
4ffef5fe
DN
4681
4682 precharge = mc.precharge;
4683 mc.precharge = 0;
4684
4685 return precharge;
4686}
4687
4ffef5fe
DN
4688static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4689{
dfe076b0
DN
4690 unsigned long precharge = mem_cgroup_count_precharge(mm);
4691
4692 VM_BUG_ON(mc.moving_task);
4693 mc.moving_task = current;
4694 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4695}
4696
dfe076b0
DN
4697/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4698static void __mem_cgroup_clear_mc(void)
4ffef5fe 4699{
2bd9bb20
KH
4700 struct mem_cgroup *from = mc.from;
4701 struct mem_cgroup *to = mc.to;
4702
4ffef5fe 4703 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4704 if (mc.precharge) {
00501b53 4705 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4706 mc.precharge = 0;
4707 }
4708 /*
4709 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4710 * we must uncharge here.
4711 */
4712 if (mc.moved_charge) {
00501b53 4713 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4714 mc.moved_charge = 0;
4ffef5fe 4715 }
483c30b5
DN
4716 /* we must fixup refcnts and charges */
4717 if (mc.moved_swap) {
483c30b5 4718 /* uncharge swap account from the old cgroup */
ce00a967 4719 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4720 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4721
05b84301 4722 /*
3e32cb2e
JW
4723 * we charged both to->memory and to->memsw, so we
4724 * should uncharge to->memory.
05b84301 4725 */
ce00a967 4726 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4727 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4728
e8ea14cc 4729 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4730
4050377b 4731 /* we've already done css_get(mc.to) */
483c30b5
DN
4732 mc.moved_swap = 0;
4733 }
dfe076b0
DN
4734 memcg_oom_recover(from);
4735 memcg_oom_recover(to);
4736 wake_up_all(&mc.waitq);
4737}
4738
4739static void mem_cgroup_clear_mc(void)
4740{
264a0ae1
TH
4741 struct mm_struct *mm = mc.mm;
4742
dfe076b0
DN
4743 /*
4744 * we must clear moving_task before waking up waiters at the end of
4745 * task migration.
4746 */
4747 mc.moving_task = NULL;
4748 __mem_cgroup_clear_mc();
2bd9bb20 4749 spin_lock(&mc.lock);
4ffef5fe
DN
4750 mc.from = NULL;
4751 mc.to = NULL;
264a0ae1 4752 mc.mm = NULL;
2bd9bb20 4753 spin_unlock(&mc.lock);
264a0ae1
TH
4754
4755 mmput(mm);
4ffef5fe
DN
4756}
4757
1f7dd3e5 4758static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4759{
1f7dd3e5 4760 struct cgroup_subsys_state *css;
eed67d75 4761 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4762 struct mem_cgroup *from;
4530eddb 4763 struct task_struct *leader, *p;
9f2115f9 4764 struct mm_struct *mm;
1dfab5ab 4765 unsigned long move_flags;
9f2115f9 4766 int ret = 0;
7dc74be0 4767
1f7dd3e5
TH
4768 /* charge immigration isn't supported on the default hierarchy */
4769 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4770 return 0;
4771
4530eddb
TH
4772 /*
4773 * Multi-process migrations only happen on the default hierarchy
4774 * where charge immigration is not used. Perform charge
4775 * immigration if @tset contains a leader and whine if there are
4776 * multiple.
4777 */
4778 p = NULL;
1f7dd3e5 4779 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4780 WARN_ON_ONCE(p);
4781 p = leader;
1f7dd3e5 4782 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4783 }
4784 if (!p)
4785 return 0;
4786
1f7dd3e5
TH
4787 /*
4788 * We are now commited to this value whatever it is. Changes in this
4789 * tunable will only affect upcoming migrations, not the current one.
4790 * So we need to save it, and keep it going.
4791 */
4792 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4793 if (!move_flags)
4794 return 0;
4795
9f2115f9
TH
4796 from = mem_cgroup_from_task(p);
4797
4798 VM_BUG_ON(from == memcg);
4799
4800 mm = get_task_mm(p);
4801 if (!mm)
4802 return 0;
4803 /* We move charges only when we move a owner of the mm */
4804 if (mm->owner == p) {
4805 VM_BUG_ON(mc.from);
4806 VM_BUG_ON(mc.to);
4807 VM_BUG_ON(mc.precharge);
4808 VM_BUG_ON(mc.moved_charge);
4809 VM_BUG_ON(mc.moved_swap);
4810
4811 spin_lock(&mc.lock);
264a0ae1 4812 mc.mm = mm;
9f2115f9
TH
4813 mc.from = from;
4814 mc.to = memcg;
4815 mc.flags = move_flags;
4816 spin_unlock(&mc.lock);
4817 /* We set mc.moving_task later */
4818
4819 ret = mem_cgroup_precharge_mc(mm);
4820 if (ret)
4821 mem_cgroup_clear_mc();
264a0ae1
TH
4822 } else {
4823 mmput(mm);
7dc74be0
DN
4824 }
4825 return ret;
4826}
4827
1f7dd3e5 4828static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4829{
4e2f245d
JW
4830 if (mc.to)
4831 mem_cgroup_clear_mc();
7dc74be0
DN
4832}
4833
4ffef5fe
DN
4834static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4835 unsigned long addr, unsigned long end,
4836 struct mm_walk *walk)
7dc74be0 4837{
4ffef5fe 4838 int ret = 0;
26bcd64a 4839 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4840 pte_t *pte;
4841 spinlock_t *ptl;
12724850
NH
4842 enum mc_target_type target_type;
4843 union mc_target target;
4844 struct page *page;
4ffef5fe 4845
b6ec57f4
KS
4846 ptl = pmd_trans_huge_lock(pmd, vma);
4847 if (ptl) {
62ade86a 4848 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4849 spin_unlock(ptl);
12724850
NH
4850 return 0;
4851 }
4852 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4853 if (target_type == MC_TARGET_PAGE) {
4854 page = target.page;
4855 if (!isolate_lru_page(page)) {
f627c2f5 4856 if (!mem_cgroup_move_account(page, true,
1306a85a 4857 mc.from, mc.to)) {
12724850
NH
4858 mc.precharge -= HPAGE_PMD_NR;
4859 mc.moved_charge += HPAGE_PMD_NR;
4860 }
4861 putback_lru_page(page);
4862 }
4863 put_page(page);
4864 }
bf929152 4865 spin_unlock(ptl);
1a5a9906 4866 return 0;
12724850
NH
4867 }
4868
45f83cef
AA
4869 if (pmd_trans_unstable(pmd))
4870 return 0;
4ffef5fe
DN
4871retry:
4872 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4873 for (; addr != end; addr += PAGE_SIZE) {
4874 pte_t ptent = *(pte++);
02491447 4875 swp_entry_t ent;
4ffef5fe
DN
4876
4877 if (!mc.precharge)
4878 break;
4879
8d32ff84 4880 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4881 case MC_TARGET_PAGE:
4882 page = target.page;
53f9263b
KS
4883 /*
4884 * We can have a part of the split pmd here. Moving it
4885 * can be done but it would be too convoluted so simply
4886 * ignore such a partial THP and keep it in original
4887 * memcg. There should be somebody mapping the head.
4888 */
4889 if (PageTransCompound(page))
4890 goto put;
4ffef5fe
DN
4891 if (isolate_lru_page(page))
4892 goto put;
f627c2f5
KS
4893 if (!mem_cgroup_move_account(page, false,
4894 mc.from, mc.to)) {
4ffef5fe 4895 mc.precharge--;
854ffa8d
DN
4896 /* we uncharge from mc.from later. */
4897 mc.moved_charge++;
4ffef5fe
DN
4898 }
4899 putback_lru_page(page);
8d32ff84 4900put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4901 put_page(page);
4902 break;
02491447
DN
4903 case MC_TARGET_SWAP:
4904 ent = target.ent;
e91cbb42 4905 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4906 mc.precharge--;
483c30b5
DN
4907 /* we fixup refcnts and charges later. */
4908 mc.moved_swap++;
4909 }
02491447 4910 break;
4ffef5fe
DN
4911 default:
4912 break;
4913 }
4914 }
4915 pte_unmap_unlock(pte - 1, ptl);
4916 cond_resched();
4917
4918 if (addr != end) {
4919 /*
4920 * We have consumed all precharges we got in can_attach().
4921 * We try charge one by one, but don't do any additional
4922 * charges to mc.to if we have failed in charge once in attach()
4923 * phase.
4924 */
854ffa8d 4925 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4926 if (!ret)
4927 goto retry;
4928 }
4929
4930 return ret;
4931}
4932
264a0ae1 4933static void mem_cgroup_move_charge(void)
4ffef5fe 4934{
26bcd64a
NH
4935 struct mm_walk mem_cgroup_move_charge_walk = {
4936 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4937 .mm = mc.mm,
26bcd64a 4938 };
4ffef5fe
DN
4939
4940 lru_add_drain_all();
312722cb 4941 /*
81f8c3a4
JW
4942 * Signal lock_page_memcg() to take the memcg's move_lock
4943 * while we're moving its pages to another memcg. Then wait
4944 * for already started RCU-only updates to finish.
312722cb
JW
4945 */
4946 atomic_inc(&mc.from->moving_account);
4947 synchronize_rcu();
dfe076b0 4948retry:
264a0ae1 4949 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4950 /*
4951 * Someone who are holding the mmap_sem might be waiting in
4952 * waitq. So we cancel all extra charges, wake up all waiters,
4953 * and retry. Because we cancel precharges, we might not be able
4954 * to move enough charges, but moving charge is a best-effort
4955 * feature anyway, so it wouldn't be a big problem.
4956 */
4957 __mem_cgroup_clear_mc();
4958 cond_resched();
4959 goto retry;
4960 }
26bcd64a
NH
4961 /*
4962 * When we have consumed all precharges and failed in doing
4963 * additional charge, the page walk just aborts.
4964 */
4965 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4966 up_read(&mc.mm->mmap_sem);
312722cb 4967 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4968}
4969
264a0ae1 4970static void mem_cgroup_move_task(void)
67e465a7 4971{
264a0ae1
TH
4972 if (mc.to) {
4973 mem_cgroup_move_charge();
a433658c 4974 mem_cgroup_clear_mc();
264a0ae1 4975 }
67e465a7 4976}
5cfb80a7 4977#else /* !CONFIG_MMU */
1f7dd3e5 4978static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4979{
4980 return 0;
4981}
1f7dd3e5 4982static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4983{
4984}
264a0ae1 4985static void mem_cgroup_move_task(void)
5cfb80a7
DN
4986{
4987}
4988#endif
67e465a7 4989
f00baae7
TH
4990/*
4991 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4992 * to verify whether we're attached to the default hierarchy on each mount
4993 * attempt.
f00baae7 4994 */
eb95419b 4995static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4996{
4997 /*
aa6ec29b 4998 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4999 * guarantees that @root doesn't have any children, so turning it
5000 * on for the root memcg is enough.
5001 */
9e10a130 5002 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5003 root_mem_cgroup->use_hierarchy = true;
5004 else
5005 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5006}
5007
241994ed
JW
5008static u64 memory_current_read(struct cgroup_subsys_state *css,
5009 struct cftype *cft)
5010{
f5fc3c5d
JW
5011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5012
5013 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5014}
5015
5016static int memory_low_show(struct seq_file *m, void *v)
5017{
5018 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5019 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5020
5021 if (low == PAGE_COUNTER_MAX)
d2973697 5022 seq_puts(m, "max\n");
241994ed
JW
5023 else
5024 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5025
5026 return 0;
5027}
5028
5029static ssize_t memory_low_write(struct kernfs_open_file *of,
5030 char *buf, size_t nbytes, loff_t off)
5031{
5032 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5033 unsigned long low;
5034 int err;
5035
5036 buf = strstrip(buf);
d2973697 5037 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5038 if (err)
5039 return err;
5040
5041 memcg->low = low;
5042
5043 return nbytes;
5044}
5045
5046static int memory_high_show(struct seq_file *m, void *v)
5047{
5048 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5049 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5050
5051 if (high == PAGE_COUNTER_MAX)
d2973697 5052 seq_puts(m, "max\n");
241994ed
JW
5053 else
5054 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5055
5056 return 0;
5057}
5058
5059static ssize_t memory_high_write(struct kernfs_open_file *of,
5060 char *buf, size_t nbytes, loff_t off)
5061{
5062 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5063 unsigned long nr_pages;
241994ed
JW
5064 unsigned long high;
5065 int err;
5066
5067 buf = strstrip(buf);
d2973697 5068 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5069 if (err)
5070 return err;
5071
5072 memcg->high = high;
5073
588083bb
JW
5074 nr_pages = page_counter_read(&memcg->memory);
5075 if (nr_pages > high)
5076 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5077 GFP_KERNEL, true);
5078
2529bb3a 5079 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5080 return nbytes;
5081}
5082
5083static int memory_max_show(struct seq_file *m, void *v)
5084{
5085 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5086 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5087
5088 if (max == PAGE_COUNTER_MAX)
d2973697 5089 seq_puts(m, "max\n");
241994ed
JW
5090 else
5091 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5092
5093 return 0;
5094}
5095
5096static ssize_t memory_max_write(struct kernfs_open_file *of,
5097 char *buf, size_t nbytes, loff_t off)
5098{
5099 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5100 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5101 bool drained = false;
241994ed
JW
5102 unsigned long max;
5103 int err;
5104
5105 buf = strstrip(buf);
d2973697 5106 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5107 if (err)
5108 return err;
5109
b6e6edcf
JW
5110 xchg(&memcg->memory.limit, max);
5111
5112 for (;;) {
5113 unsigned long nr_pages = page_counter_read(&memcg->memory);
5114
5115 if (nr_pages <= max)
5116 break;
5117
5118 if (signal_pending(current)) {
5119 err = -EINTR;
5120 break;
5121 }
5122
5123 if (!drained) {
5124 drain_all_stock(memcg);
5125 drained = true;
5126 continue;
5127 }
5128
5129 if (nr_reclaims) {
5130 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5131 GFP_KERNEL, true))
5132 nr_reclaims--;
5133 continue;
5134 }
5135
5136 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5137 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5138 break;
5139 }
241994ed 5140
2529bb3a 5141 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5142 return nbytes;
5143}
5144
5145static int memory_events_show(struct seq_file *m, void *v)
5146{
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5148
5149 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5150 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5151 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5152 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5153
5154 return 0;
5155}
5156
587d9f72
JW
5157static int memory_stat_show(struct seq_file *m, void *v)
5158{
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5160 unsigned long stat[MEMCG_NR_STAT];
5161 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5162 int i;
5163
5164 /*
5165 * Provide statistics on the state of the memory subsystem as
5166 * well as cumulative event counters that show past behavior.
5167 *
5168 * This list is ordered following a combination of these gradients:
5169 * 1) generic big picture -> specifics and details
5170 * 2) reflecting userspace activity -> reflecting kernel heuristics
5171 *
5172 * Current memory state:
5173 */
5174
72b54e73
VD
5175 tree_stat(memcg, stat);
5176 tree_events(memcg, events);
5177
587d9f72 5178 seq_printf(m, "anon %llu\n",
72b54e73 5179 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5180 seq_printf(m, "file %llu\n",
72b54e73 5181 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5182 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5183 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5184 seq_printf(m, "slab %llu\n",
5185 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5186 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5187 seq_printf(m, "sock %llu\n",
72b54e73 5188 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5189
5190 seq_printf(m, "file_mapped %llu\n",
72b54e73 5191 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5192 seq_printf(m, "file_dirty %llu\n",
72b54e73 5193 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5194 seq_printf(m, "file_writeback %llu\n",
72b54e73 5195 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5196
5197 for (i = 0; i < NR_LRU_LISTS; i++) {
5198 struct mem_cgroup *mi;
5199 unsigned long val = 0;
5200
5201 for_each_mem_cgroup_tree(mi, memcg)
5202 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5203 seq_printf(m, "%s %llu\n",
5204 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5205 }
5206
27ee57c9
VD
5207 seq_printf(m, "slab_reclaimable %llu\n",
5208 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5209 seq_printf(m, "slab_unreclaimable %llu\n",
5210 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5211
587d9f72
JW
5212 /* Accumulated memory events */
5213
5214 seq_printf(m, "pgfault %lu\n",
72b54e73 5215 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5216 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5217 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5218
5219 return 0;
5220}
5221
241994ed
JW
5222static struct cftype memory_files[] = {
5223 {
5224 .name = "current",
f5fc3c5d 5225 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5226 .read_u64 = memory_current_read,
5227 },
5228 {
5229 .name = "low",
5230 .flags = CFTYPE_NOT_ON_ROOT,
5231 .seq_show = memory_low_show,
5232 .write = memory_low_write,
5233 },
5234 {
5235 .name = "high",
5236 .flags = CFTYPE_NOT_ON_ROOT,
5237 .seq_show = memory_high_show,
5238 .write = memory_high_write,
5239 },
5240 {
5241 .name = "max",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_max_show,
5244 .write = memory_max_write,
5245 },
5246 {
5247 .name = "events",
5248 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5249 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5250 .seq_show = memory_events_show,
5251 },
587d9f72
JW
5252 {
5253 .name = "stat",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_stat_show,
5256 },
241994ed
JW
5257 { } /* terminate */
5258};
5259
073219e9 5260struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5261 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5262 .css_online = mem_cgroup_css_online,
92fb9748 5263 .css_offline = mem_cgroup_css_offline,
6df38689 5264 .css_released = mem_cgroup_css_released,
92fb9748 5265 .css_free = mem_cgroup_css_free,
1ced953b 5266 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5267 .can_attach = mem_cgroup_can_attach,
5268 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5269 .post_attach = mem_cgroup_move_task,
f00baae7 5270 .bind = mem_cgroup_bind,
241994ed
JW
5271 .dfl_cftypes = memory_files,
5272 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5273 .early_init = 0,
8cdea7c0 5274};
c077719b 5275
241994ed
JW
5276/**
5277 * mem_cgroup_low - check if memory consumption is below the normal range
5278 * @root: the highest ancestor to consider
5279 * @memcg: the memory cgroup to check
5280 *
5281 * Returns %true if memory consumption of @memcg, and that of all
5282 * configurable ancestors up to @root, is below the normal range.
5283 */
5284bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5285{
5286 if (mem_cgroup_disabled())
5287 return false;
5288
5289 /*
5290 * The toplevel group doesn't have a configurable range, so
5291 * it's never low when looked at directly, and it is not
5292 * considered an ancestor when assessing the hierarchy.
5293 */
5294
5295 if (memcg == root_mem_cgroup)
5296 return false;
5297
4e54dede 5298 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5299 return false;
5300
5301 while (memcg != root) {
5302 memcg = parent_mem_cgroup(memcg);
5303
5304 if (memcg == root_mem_cgroup)
5305 break;
5306
4e54dede 5307 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5308 return false;
5309 }
5310 return true;
5311}
5312
00501b53
JW
5313/**
5314 * mem_cgroup_try_charge - try charging a page
5315 * @page: page to charge
5316 * @mm: mm context of the victim
5317 * @gfp_mask: reclaim mode
5318 * @memcgp: charged memcg return
25843c2b 5319 * @compound: charge the page as compound or small page
00501b53
JW
5320 *
5321 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5322 * pages according to @gfp_mask if necessary.
5323 *
5324 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5325 * Otherwise, an error code is returned.
5326 *
5327 * After page->mapping has been set up, the caller must finalize the
5328 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5329 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5330 */
5331int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5332 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5333 bool compound)
00501b53
JW
5334{
5335 struct mem_cgroup *memcg = NULL;
f627c2f5 5336 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5337 int ret = 0;
5338
5339 if (mem_cgroup_disabled())
5340 goto out;
5341
5342 if (PageSwapCache(page)) {
00501b53
JW
5343 /*
5344 * Every swap fault against a single page tries to charge the
5345 * page, bail as early as possible. shmem_unuse() encounters
5346 * already charged pages, too. The USED bit is protected by
5347 * the page lock, which serializes swap cache removal, which
5348 * in turn serializes uncharging.
5349 */
e993d905 5350 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5351 if (page->mem_cgroup)
00501b53 5352 goto out;
e993d905 5353
37e84351 5354 if (do_swap_account) {
e993d905
VD
5355 swp_entry_t ent = { .val = page_private(page), };
5356 unsigned short id = lookup_swap_cgroup_id(ent);
5357
5358 rcu_read_lock();
5359 memcg = mem_cgroup_from_id(id);
5360 if (memcg && !css_tryget_online(&memcg->css))
5361 memcg = NULL;
5362 rcu_read_unlock();
5363 }
00501b53
JW
5364 }
5365
00501b53
JW
5366 if (!memcg)
5367 memcg = get_mem_cgroup_from_mm(mm);
5368
5369 ret = try_charge(memcg, gfp_mask, nr_pages);
5370
5371 css_put(&memcg->css);
00501b53
JW
5372out:
5373 *memcgp = memcg;
5374 return ret;
5375}
5376
5377/**
5378 * mem_cgroup_commit_charge - commit a page charge
5379 * @page: page to charge
5380 * @memcg: memcg to charge the page to
5381 * @lrucare: page might be on LRU already
25843c2b 5382 * @compound: charge the page as compound or small page
00501b53
JW
5383 *
5384 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5385 * after page->mapping has been set up. This must happen atomically
5386 * as part of the page instantiation, i.e. under the page table lock
5387 * for anonymous pages, under the page lock for page and swap cache.
5388 *
5389 * In addition, the page must not be on the LRU during the commit, to
5390 * prevent racing with task migration. If it might be, use @lrucare.
5391 *
5392 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5393 */
5394void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5395 bool lrucare, bool compound)
00501b53 5396{
f627c2f5 5397 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5398
5399 VM_BUG_ON_PAGE(!page->mapping, page);
5400 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5401
5402 if (mem_cgroup_disabled())
5403 return;
5404 /*
5405 * Swap faults will attempt to charge the same page multiple
5406 * times. But reuse_swap_page() might have removed the page
5407 * from swapcache already, so we can't check PageSwapCache().
5408 */
5409 if (!memcg)
5410 return;
5411
6abb5a86
JW
5412 commit_charge(page, memcg, lrucare);
5413
6abb5a86 5414 local_irq_disable();
f627c2f5 5415 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5416 memcg_check_events(memcg, page);
5417 local_irq_enable();
00501b53 5418
7941d214 5419 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5420 swp_entry_t entry = { .val = page_private(page) };
5421 /*
5422 * The swap entry might not get freed for a long time,
5423 * let's not wait for it. The page already received a
5424 * memory+swap charge, drop the swap entry duplicate.
5425 */
5426 mem_cgroup_uncharge_swap(entry);
5427 }
5428}
5429
5430/**
5431 * mem_cgroup_cancel_charge - cancel a page charge
5432 * @page: page to charge
5433 * @memcg: memcg to charge the page to
25843c2b 5434 * @compound: charge the page as compound or small page
00501b53
JW
5435 *
5436 * Cancel a charge transaction started by mem_cgroup_try_charge().
5437 */
f627c2f5
KS
5438void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5439 bool compound)
00501b53 5440{
f627c2f5 5441 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5442
5443 if (mem_cgroup_disabled())
5444 return;
5445 /*
5446 * Swap faults will attempt to charge the same page multiple
5447 * times. But reuse_swap_page() might have removed the page
5448 * from swapcache already, so we can't check PageSwapCache().
5449 */
5450 if (!memcg)
5451 return;
5452
00501b53
JW
5453 cancel_charge(memcg, nr_pages);
5454}
5455
747db954 5456static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5457 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5458 unsigned long nr_huge, unsigned long nr_kmem,
5459 struct page *dummy_page)
747db954 5460{
5e8d35f8 5461 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5462 unsigned long flags;
5463
ce00a967 5464 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5465 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5466 if (do_memsw_account())
18eca2e6 5467 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5468 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5469 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5470 memcg_oom_recover(memcg);
5471 }
747db954
JW
5472
5473 local_irq_save(flags);
5474 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5475 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5476 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5477 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5478 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5479 memcg_check_events(memcg, dummy_page);
5480 local_irq_restore(flags);
e8ea14cc
JW
5481
5482 if (!mem_cgroup_is_root(memcg))
18eca2e6 5483 css_put_many(&memcg->css, nr_pages);
747db954
JW
5484}
5485
5486static void uncharge_list(struct list_head *page_list)
5487{
5488 struct mem_cgroup *memcg = NULL;
747db954
JW
5489 unsigned long nr_anon = 0;
5490 unsigned long nr_file = 0;
5491 unsigned long nr_huge = 0;
5e8d35f8 5492 unsigned long nr_kmem = 0;
747db954 5493 unsigned long pgpgout = 0;
747db954
JW
5494 struct list_head *next;
5495 struct page *page;
5496
8b592656
JW
5497 /*
5498 * Note that the list can be a single page->lru; hence the
5499 * do-while loop instead of a simple list_for_each_entry().
5500 */
747db954
JW
5501 next = page_list->next;
5502 do {
747db954
JW
5503 page = list_entry(next, struct page, lru);
5504 next = page->lru.next;
5505
5506 VM_BUG_ON_PAGE(PageLRU(page), page);
5507 VM_BUG_ON_PAGE(page_count(page), page);
5508
1306a85a 5509 if (!page->mem_cgroup)
747db954
JW
5510 continue;
5511
5512 /*
5513 * Nobody should be changing or seriously looking at
1306a85a 5514 * page->mem_cgroup at this point, we have fully
29833315 5515 * exclusive access to the page.
747db954
JW
5516 */
5517
1306a85a 5518 if (memcg != page->mem_cgroup) {
747db954 5519 if (memcg) {
18eca2e6 5520 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5521 nr_huge, nr_kmem, page);
5522 pgpgout = nr_anon = nr_file =
5523 nr_huge = nr_kmem = 0;
747db954 5524 }
1306a85a 5525 memcg = page->mem_cgroup;
747db954
JW
5526 }
5527
5e8d35f8
VD
5528 if (!PageKmemcg(page)) {
5529 unsigned int nr_pages = 1;
747db954 5530
5e8d35f8
VD
5531 if (PageTransHuge(page)) {
5532 nr_pages <<= compound_order(page);
5e8d35f8
VD
5533 nr_huge += nr_pages;
5534 }
5535 if (PageAnon(page))
5536 nr_anon += nr_pages;
5537 else
5538 nr_file += nr_pages;
5539 pgpgout++;
5540 } else
5541 nr_kmem += 1 << compound_order(page);
747db954 5542
1306a85a 5543 page->mem_cgroup = NULL;
747db954
JW
5544 } while (next != page_list);
5545
5546 if (memcg)
18eca2e6 5547 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5548 nr_huge, nr_kmem, page);
747db954
JW
5549}
5550
0a31bc97
JW
5551/**
5552 * mem_cgroup_uncharge - uncharge a page
5553 * @page: page to uncharge
5554 *
5555 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5556 * mem_cgroup_commit_charge().
5557 */
5558void mem_cgroup_uncharge(struct page *page)
5559{
0a31bc97
JW
5560 if (mem_cgroup_disabled())
5561 return;
5562
747db954 5563 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5564 if (!page->mem_cgroup)
0a31bc97
JW
5565 return;
5566
747db954
JW
5567 INIT_LIST_HEAD(&page->lru);
5568 uncharge_list(&page->lru);
5569}
0a31bc97 5570
747db954
JW
5571/**
5572 * mem_cgroup_uncharge_list - uncharge a list of page
5573 * @page_list: list of pages to uncharge
5574 *
5575 * Uncharge a list of pages previously charged with
5576 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5577 */
5578void mem_cgroup_uncharge_list(struct list_head *page_list)
5579{
5580 if (mem_cgroup_disabled())
5581 return;
0a31bc97 5582
747db954
JW
5583 if (!list_empty(page_list))
5584 uncharge_list(page_list);
0a31bc97
JW
5585}
5586
5587/**
6a93ca8f
JW
5588 * mem_cgroup_migrate - charge a page's replacement
5589 * @oldpage: currently circulating page
5590 * @newpage: replacement page
0a31bc97 5591 *
6a93ca8f
JW
5592 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5593 * be uncharged upon free.
0a31bc97
JW
5594 *
5595 * Both pages must be locked, @newpage->mapping must be set up.
5596 */
6a93ca8f 5597void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5598{
29833315 5599 struct mem_cgroup *memcg;
44b7a8d3
JW
5600 unsigned int nr_pages;
5601 bool compound;
d93c4130 5602 unsigned long flags;
0a31bc97
JW
5603
5604 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5605 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5606 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5607 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5608 newpage);
0a31bc97
JW
5609
5610 if (mem_cgroup_disabled())
5611 return;
5612
5613 /* Page cache replacement: new page already charged? */
1306a85a 5614 if (newpage->mem_cgroup)
0a31bc97
JW
5615 return;
5616
45637bab 5617 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5618 memcg = oldpage->mem_cgroup;
29833315 5619 if (!memcg)
0a31bc97
JW
5620 return;
5621
44b7a8d3
JW
5622 /* Force-charge the new page. The old one will be freed soon */
5623 compound = PageTransHuge(newpage);
5624 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5625
5626 page_counter_charge(&memcg->memory, nr_pages);
5627 if (do_memsw_account())
5628 page_counter_charge(&memcg->memsw, nr_pages);
5629 css_get_many(&memcg->css, nr_pages);
0a31bc97 5630
9cf7666a 5631 commit_charge(newpage, memcg, false);
44b7a8d3 5632
d93c4130 5633 local_irq_save(flags);
44b7a8d3
JW
5634 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5635 memcg_check_events(memcg, newpage);
d93c4130 5636 local_irq_restore(flags);
0a31bc97
JW
5637}
5638
ef12947c 5639DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5640EXPORT_SYMBOL(memcg_sockets_enabled_key);
5641
5642void sock_update_memcg(struct sock *sk)
5643{
5644 struct mem_cgroup *memcg;
5645
5646 /* Socket cloning can throw us here with sk_cgrp already
5647 * filled. It won't however, necessarily happen from
5648 * process context. So the test for root memcg given
5649 * the current task's memcg won't help us in this case.
5650 *
5651 * Respecting the original socket's memcg is a better
5652 * decision in this case.
5653 */
5654 if (sk->sk_memcg) {
5655 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5656 css_get(&sk->sk_memcg->css);
5657 return;
5658 }
5659
5660 rcu_read_lock();
5661 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5662 if (memcg == root_mem_cgroup)
5663 goto out;
0db15298 5664 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5665 goto out;
f7e1cb6e 5666 if (css_tryget_online(&memcg->css))
11092087 5667 sk->sk_memcg = memcg;
f7e1cb6e 5668out:
11092087
JW
5669 rcu_read_unlock();
5670}
5671EXPORT_SYMBOL(sock_update_memcg);
5672
5673void sock_release_memcg(struct sock *sk)
5674{
5675 WARN_ON(!sk->sk_memcg);
5676 css_put(&sk->sk_memcg->css);
5677}
5678
5679/**
5680 * mem_cgroup_charge_skmem - charge socket memory
5681 * @memcg: memcg to charge
5682 * @nr_pages: number of pages to charge
5683 *
5684 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5685 * @memcg's configured limit, %false if the charge had to be forced.
5686 */
5687bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5688{
f7e1cb6e 5689 gfp_t gfp_mask = GFP_KERNEL;
11092087 5690
f7e1cb6e 5691 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5692 struct page_counter *fail;
f7e1cb6e 5693
0db15298
JW
5694 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5695 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5696 return true;
5697 }
0db15298
JW
5698 page_counter_charge(&memcg->tcpmem, nr_pages);
5699 memcg->tcpmem_pressure = 1;
f7e1cb6e 5700 return false;
11092087 5701 }
d886f4e4 5702
f7e1cb6e
JW
5703 /* Don't block in the packet receive path */
5704 if (in_softirq())
5705 gfp_mask = GFP_NOWAIT;
5706
b2807f07
JW
5707 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5708
f7e1cb6e
JW
5709 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5710 return true;
5711
5712 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5713 return false;
5714}
5715
5716/**
5717 * mem_cgroup_uncharge_skmem - uncharge socket memory
5718 * @memcg - memcg to uncharge
5719 * @nr_pages - number of pages to uncharge
5720 */
5721void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5722{
f7e1cb6e 5723 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5724 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5725 return;
5726 }
d886f4e4 5727
b2807f07
JW
5728 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5729
f7e1cb6e
JW
5730 page_counter_uncharge(&memcg->memory, nr_pages);
5731 css_put_many(&memcg->css, nr_pages);
11092087
JW
5732}
5733
f7e1cb6e
JW
5734static int __init cgroup_memory(char *s)
5735{
5736 char *token;
5737
5738 while ((token = strsep(&s, ",")) != NULL) {
5739 if (!*token)
5740 continue;
5741 if (!strcmp(token, "nosocket"))
5742 cgroup_memory_nosocket = true;
04823c83
VD
5743 if (!strcmp(token, "nokmem"))
5744 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5745 }
5746 return 0;
5747}
5748__setup("cgroup.memory=", cgroup_memory);
11092087 5749
2d11085e 5750/*
1081312f
MH
5751 * subsys_initcall() for memory controller.
5752 *
5753 * Some parts like hotcpu_notifier() have to be initialized from this context
5754 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5755 * everything that doesn't depend on a specific mem_cgroup structure should
5756 * be initialized from here.
2d11085e
MH
5757 */
5758static int __init mem_cgroup_init(void)
5759{
95a045f6
JW
5760 int cpu, node;
5761
2d11085e 5762 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5763
5764 for_each_possible_cpu(cpu)
5765 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5766 drain_local_stock);
5767
5768 for_each_node(node) {
5769 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5770
5771 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5772 node_online(node) ? node : NUMA_NO_NODE);
5773
ef8f2327
MG
5774 rtpn->rb_root = RB_ROOT;
5775 spin_lock_init(&rtpn->lock);
95a045f6
JW
5776 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5777 }
5778
2d11085e
MH
5779 return 0;
5780}
5781subsys_initcall(mem_cgroup_init);
21afa38e
JW
5782
5783#ifdef CONFIG_MEMCG_SWAP
5784/**
5785 * mem_cgroup_swapout - transfer a memsw charge to swap
5786 * @page: page whose memsw charge to transfer
5787 * @entry: swap entry to move the charge to
5788 *
5789 * Transfer the memsw charge of @page to @entry.
5790 */
5791void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5792{
5793 struct mem_cgroup *memcg;
5794 unsigned short oldid;
5795
5796 VM_BUG_ON_PAGE(PageLRU(page), page);
5797 VM_BUG_ON_PAGE(page_count(page), page);
5798
7941d214 5799 if (!do_memsw_account())
21afa38e
JW
5800 return;
5801
5802 memcg = page->mem_cgroup;
5803
5804 /* Readahead page, never charged */
5805 if (!memcg)
5806 return;
5807
73f576c0 5808 mem_cgroup_id_get(memcg);
21afa38e
JW
5809 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5810 VM_BUG_ON_PAGE(oldid, page);
5811 mem_cgroup_swap_statistics(memcg, true);
5812
5813 page->mem_cgroup = NULL;
5814
5815 if (!mem_cgroup_is_root(memcg))
5816 page_counter_uncharge(&memcg->memory, 1);
5817
ce9ce665
SAS
5818 /*
5819 * Interrupts should be disabled here because the caller holds the
5820 * mapping->tree_lock lock which is taken with interrupts-off. It is
5821 * important here to have the interrupts disabled because it is the
5822 * only synchronisation we have for udpating the per-CPU variables.
5823 */
5824 VM_BUG_ON(!irqs_disabled());
f627c2f5 5825 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5826 memcg_check_events(memcg, page);
73f576c0
JW
5827
5828 if (!mem_cgroup_is_root(memcg))
5829 css_put(&memcg->css);
21afa38e
JW
5830}
5831
37e84351
VD
5832/*
5833 * mem_cgroup_try_charge_swap - try charging a swap entry
5834 * @page: page being added to swap
5835 * @entry: swap entry to charge
5836 *
5837 * Try to charge @entry to the memcg that @page belongs to.
5838 *
5839 * Returns 0 on success, -ENOMEM on failure.
5840 */
5841int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5842{
5843 struct mem_cgroup *memcg;
5844 struct page_counter *counter;
5845 unsigned short oldid;
5846
5847 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5848 return 0;
5849
5850 memcg = page->mem_cgroup;
5851
5852 /* Readahead page, never charged */
5853 if (!memcg)
5854 return 0;
5855
5856 if (!mem_cgroup_is_root(memcg) &&
5857 !page_counter_try_charge(&memcg->swap, 1, &counter))
5858 return -ENOMEM;
5859
73f576c0 5860 mem_cgroup_id_get(memcg);
37e84351
VD
5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5862 VM_BUG_ON_PAGE(oldid, page);
5863 mem_cgroup_swap_statistics(memcg, true);
5864
37e84351
VD
5865 return 0;
5866}
5867
21afa38e
JW
5868/**
5869 * mem_cgroup_uncharge_swap - uncharge a swap entry
5870 * @entry: swap entry to uncharge
5871 *
37e84351 5872 * Drop the swap charge associated with @entry.
21afa38e
JW
5873 */
5874void mem_cgroup_uncharge_swap(swp_entry_t entry)
5875{
5876 struct mem_cgroup *memcg;
5877 unsigned short id;
5878
37e84351 5879 if (!do_swap_account)
21afa38e
JW
5880 return;
5881
5882 id = swap_cgroup_record(entry, 0);
5883 rcu_read_lock();
adbe427b 5884 memcg = mem_cgroup_from_id(id);
21afa38e 5885 if (memcg) {
37e84351
VD
5886 if (!mem_cgroup_is_root(memcg)) {
5887 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5888 page_counter_uncharge(&memcg->swap, 1);
5889 else
5890 page_counter_uncharge(&memcg->memsw, 1);
5891 }
21afa38e 5892 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5893 mem_cgroup_id_put(memcg);
21afa38e
JW
5894 }
5895 rcu_read_unlock();
5896}
5897
d8b38438
VD
5898long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5899{
5900 long nr_swap_pages = get_nr_swap_pages();
5901
5902 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5903 return nr_swap_pages;
5904 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5905 nr_swap_pages = min_t(long, nr_swap_pages,
5906 READ_ONCE(memcg->swap.limit) -
5907 page_counter_read(&memcg->swap));
5908 return nr_swap_pages;
5909}
5910
5ccc5aba
VD
5911bool mem_cgroup_swap_full(struct page *page)
5912{
5913 struct mem_cgroup *memcg;
5914
5915 VM_BUG_ON_PAGE(!PageLocked(page), page);
5916
5917 if (vm_swap_full())
5918 return true;
5919 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5920 return false;
5921
5922 memcg = page->mem_cgroup;
5923 if (!memcg)
5924 return false;
5925
5926 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5927 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5928 return true;
5929
5930 return false;
5931}
5932
21afa38e
JW
5933/* for remember boot option*/
5934#ifdef CONFIG_MEMCG_SWAP_ENABLED
5935static int really_do_swap_account __initdata = 1;
5936#else
5937static int really_do_swap_account __initdata;
5938#endif
5939
5940static int __init enable_swap_account(char *s)
5941{
5942 if (!strcmp(s, "1"))
5943 really_do_swap_account = 1;
5944 else if (!strcmp(s, "0"))
5945 really_do_swap_account = 0;
5946 return 1;
5947}
5948__setup("swapaccount=", enable_swap_account);
5949
37e84351
VD
5950static u64 swap_current_read(struct cgroup_subsys_state *css,
5951 struct cftype *cft)
5952{
5953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5954
5955 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5956}
5957
5958static int swap_max_show(struct seq_file *m, void *v)
5959{
5960 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5961 unsigned long max = READ_ONCE(memcg->swap.limit);
5962
5963 if (max == PAGE_COUNTER_MAX)
5964 seq_puts(m, "max\n");
5965 else
5966 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5967
5968 return 0;
5969}
5970
5971static ssize_t swap_max_write(struct kernfs_open_file *of,
5972 char *buf, size_t nbytes, loff_t off)
5973{
5974 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5975 unsigned long max;
5976 int err;
5977
5978 buf = strstrip(buf);
5979 err = page_counter_memparse(buf, "max", &max);
5980 if (err)
5981 return err;
5982
5983 mutex_lock(&memcg_limit_mutex);
5984 err = page_counter_limit(&memcg->swap, max);
5985 mutex_unlock(&memcg_limit_mutex);
5986 if (err)
5987 return err;
5988
5989 return nbytes;
5990}
5991
5992static struct cftype swap_files[] = {
5993 {
5994 .name = "swap.current",
5995 .flags = CFTYPE_NOT_ON_ROOT,
5996 .read_u64 = swap_current_read,
5997 },
5998 {
5999 .name = "swap.max",
6000 .flags = CFTYPE_NOT_ON_ROOT,
6001 .seq_show = swap_max_show,
6002 .write = swap_max_write,
6003 },
6004 { } /* terminate */
6005};
6006
21afa38e
JW
6007static struct cftype memsw_cgroup_files[] = {
6008 {
6009 .name = "memsw.usage_in_bytes",
6010 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6011 .read_u64 = mem_cgroup_read_u64,
6012 },
6013 {
6014 .name = "memsw.max_usage_in_bytes",
6015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6016 .write = mem_cgroup_reset,
6017 .read_u64 = mem_cgroup_read_u64,
6018 },
6019 {
6020 .name = "memsw.limit_in_bytes",
6021 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6022 .write = mem_cgroup_write,
6023 .read_u64 = mem_cgroup_read_u64,
6024 },
6025 {
6026 .name = "memsw.failcnt",
6027 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6028 .write = mem_cgroup_reset,
6029 .read_u64 = mem_cgroup_read_u64,
6030 },
6031 { }, /* terminate */
6032};
6033
6034static int __init mem_cgroup_swap_init(void)
6035{
6036 if (!mem_cgroup_disabled() && really_do_swap_account) {
6037 do_swap_account = 1;
37e84351
VD
6038 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6039 swap_files));
21afa38e
JW
6040 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6041 memsw_cgroup_files));
6042 }
6043 return 0;
6044}
6045subsys_initcall(mem_cgroup_swap_init);
6046
6047#endif /* CONFIG_MEMCG_SWAP */
This page took 1.320318 seconds and 5 git commands to generate.